Sample records for multi-user virtual world

  1. An Intelligent Crawler for a Virtual World

    ERIC Educational Resources Information Center

    Eno, Joshua

    2010-01-01

    Virtual worlds, which allow users to create and interact with content in a 3D, multi-user environment, growing and becoming more integrated with the traditional flat web. However, little is empirically known about the content users create in virtual world and how it can be indexed and searched effectively. In order to gain a better understanding…

  2. The Effect of the Use of the 3-D Multi-User Virtual Environment "Second Life" on Student Motivation and Language Proficiency in Courses of Spanish as a Foreign Language

    ERIC Educational Resources Information Center

    Pares-Toral, Maria T.

    2013-01-01

    The ever increasing popularity of virtual worlds, also known as 3-D multi-user virtual environments (MUVEs) or simply virtual worlds provides language instructors with a new tool they can exploit in their courses. For now, "Second Life" is one of the most popular MUVEs used for teaching and learning, and although "Second Life"…

  3. Second Life in Higher Education: Assessing the Potential for and the Barriers to Deploying Virtual Worlds in Learning and Teaching

    ERIC Educational Resources Information Center

    Warburton, Steven

    2009-01-01

    "Second Life" (SL) is currently the most mature and popular multi-user virtual world platform being used in education. Through an in-depth examination of SL, this article explores its potential and the barriers that multi-user virtual environments present to educators wanting to use immersive 3-D spaces in their teaching. The context is set by…

  4. Collaborative Virtual Gaming Worlds in Higher Education

    ERIC Educational Resources Information Center

    Whitton, Nicola; Hollins, Paul

    2008-01-01

    There is growing interest in the use of virtual gaming worlds in education, supported by the increased use of multi-user virtual environments (MUVEs) and massively multi-player online role-playing games (MMORPGs) for collaborative learning. However, this paper argues that collaborative gaming worlds have been in use much longer and are much wider…

  5. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  6. Exploring the Educational Potential of Three-Dimensional Multi-User Virtual Worlds for STEM Education: A Mixed-Method Systematic Literature Review

    ERIC Educational Resources Information Center

    Pellas, Nikolaos; Kazanidis, Ioannis; Konstantinou, Nikolaos; Georgiou, Georgia

    2017-01-01

    The present literature review builds on the results of 50 research articles published from 2000 until 2016. All these studies have successfully accomplished various learning tasks in the domain of Science, Technology, Engineering, and Mathematics (STEM) education using three-dimensional (3-D) multi-user virtual worlds for Primary, Secondary and…

  7. Pre-Service Teachers' Perspectives on Using Scenario-Based Virtual Worlds in Science Education

    ERIC Educational Resources Information Center

    Kennedy-Clark, Shannon

    2011-01-01

    This paper presents the findings of a study on the current knowledge and attitudes of pre-service teachers on the use of scenario-based multi-user virtual environments in science education. The 28 participants involved in the study were introduced to "Virtual Singapura," a multi-user virtual environment, and completed an open-ended questionnaire.…

  8. Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play

    NASA Astrophysics Data System (ADS)

    Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven

    2007-02-01

    In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.

  9. Erratum to: Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play

    NASA Astrophysics Data System (ADS)

    Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven

    2010-08-01

    In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.

  10. Civic Participation among Seventh-Grade Social Studies Students in Multi-User Virtual Environments

    ERIC Educational Resources Information Center

    Zieger, Laura; Farber, Matthew

    2012-01-01

    Technological advances on the Internet now enable students to develop participation skills in virtual worlds. Similar to controlling a character in a video game, multi-user virtual environments, or MUVEs, allow participants to interact with others in synchronous, online settings. The authors of this study created a link between MUVEs and…

  11. Design and Implementation of a 3D Multi-User Virtual World for Language Learning

    ERIC Educational Resources Information Center

    Ibanez, Maria Blanca; Garcia, Jose Jesus; Galan, Sergio; Maroto, David; Morillo, Diego; Kloos, Carlos Delgado

    2011-01-01

    The best way to learn is by having a good teacher and the best language learning takes place when the learner is immersed in an environment where the language is natively spoken. 3D multi-user virtual worlds have been claimed to be useful for learning, and the field of exploiting them for education is becoming more and more active thanks to the…

  12. Teaching with Virtual Worlds: Factors to Consider for Instructional Use of Second Life

    ERIC Educational Resources Information Center

    Mayrath, Michael C.; Traphagan, Tomoko; Jarmon, Leslie; Trivedi, Avani; Resta, Paul

    2010-01-01

    Substantial evidence now supports pedagogical applications of virtual worlds; however, most research supporting virtual worlds for education has been conducted using researcher-developed Multi-User Virtual Environments (MUVE). Second Life (SL) is a MUVE that has been adopted by a large number of academic institutions; however, little research has…

  13. Design Concerns in the Engineering of Virtual Worlds for Learning

    ERIC Educational Resources Information Center

    Rapanotti, Lucia; Hall, Jon G.

    2011-01-01

    The convergence of 3D simulation and social networking into current multi-user virtual environments has opened the door to new forms of interaction for learning in order to complement the face-to-face and Web 2.0-based systems. Yet, despite a growing user community, design knowledge for virtual worlds remains patchy, particularly when it comes to…

  14. DWTP: a basis for networked VR on the Internet

    NASA Astrophysics Data System (ADS)

    Broll, Wolfgang; Schick, Daniel

    1998-04-01

    Shared virtual worlds are one of today's major research topics. While limited to particular application areas and high speed networks in the past, they become more and more available to a large number of users. One reason for this development was the introduction of VRML (the Virtual Reality Modeling Language), which has been established as a standard of the exchange of 3D worlds on the Internet. Although a number of prototype systems have been developed to realize shared multi-user worlds based on VRML, no suitable network protocol to support the demands of such environments has yet been established. In this paper we will introduce our approach of a network protocol for shared virtual environments: DWTP--the Distributed Worlds Transfer and communication Protocol. We will show how DWTP meets the demands of shared virtual environments on the Internet. We will further present SmallView, our prototype of a distributed multi-user VR system, to show how DWTP can be used to realize shared worlds.

  15. On Being Bored and Lost (in Virtuality)

    ERIC Educational Resources Information Center

    Moore, Kristen; Pflugfelder, Ehren Helmut

    2010-01-01

    Education in virtual worlds has the potential, it seems, for engaging students in innovative ways and for enabling new discourses on a host of issues. Virtual locations like "Second Life," "Kaneva," or "World of Warcraft," among other multi-user virtual environments (MUVEs), also come with unique challenges for educators as they consider the…

  16. An Investigation into Cooperative Learning in a Virtual World Using Problem-Based Learning

    ERIC Educational Resources Information Center

    Parson, Vanessa; Bignell, Simon

    2017-01-01

    Three-dimensional multi-user virtual environments (MUVEs) have the potential to provide experiential learning qualitatively similar to that found in the real world. MUVEs offer a pedagogically-driven immersive learning opportunity for educationalists that is cost-effective and enjoyable. A family of digital virtual avatars was created within…

  17. 13 Tips for Virtual World Teaching

    ERIC Educational Resources Information Center

    Villano, Matt

    2008-01-01

    Multi-user virtual environments (MUVEs) are gaining momentum as the latest and greatest learning tool in the world of education technology. How does one get started with them? How do they work? This article shares 13 secrets from immersive education experts and educators on how to have success in implementing these new tools and technologies on…

  18. A Theoretical Cybernetic Macro-Script to Articulate Collaborative Interactions of Cyber Entities in Virtual Worlds

    ERIC Educational Resources Information Center

    Pellas, Nikolaos

    2014-01-01

    Nowadays, the dissemination and exploitation of three-dimensional (3D) multi-user virtual worlds in higher education have been disclosed from their widespread acceptance as candidate learning platforms. However, it is still lacking a theoretical cybernetic macro-script to elaborate the coordination of multiple complex interactions among…

  19. Brave New World

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2007-01-01

    Across the globe, progressive universities are embracing any number of MUVEs (multi-user virtual environments), 3D environments, and "immersive" virtual reality tools. And within the next few months, several universities are expected to test so-called "telepresence" videoconferencing systems from Cisco Systems and other leading…

  20. SmallTool - a toolkit for realizing shared virtual environments on the Internet

    NASA Astrophysics Data System (ADS)

    Broll, Wolfgang

    1998-09-01

    With increasing graphics capabilities of computers and higher network communication speed, networked virtual environments have become available to a large number of people. While the virtual reality modelling language (VRML) provides users with the ability to exchange 3D data, there is still a lack of appropriate support to realize large-scale multi-user applications on the Internet. In this paper we will present SmallTool, a toolkit to support shared virtual environments on the Internet. The toolkit consists of a VRML-based parsing and rendering library, a device library, and a network library. This paper will focus on the networking architecture, provided by the network library - the distributed worlds transfer and communication protocol (DWTP). DWTP provides an application-independent network architecture to support large-scale multi-user environments on the Internet.

  1. A Virtual World Workshop Environment for Learning Agile Software Development Techniques

    ERIC Educational Resources Information Center

    Parsons, David; Stockdale, Rosemary

    2012-01-01

    Multi-User Virtual Environments (MUVEs) are the subject of increasing interest for educators and trainers. This article reports on a longitudinal project that seeks to establish a virtual agile software development workshop hosted in the Open Wonderland MUVE, designed to help learners to understand the basic principles of some core agile software…

  2. Design on the MUVE: Synergizing Online Design Education with Multi-User Virtual Environments (MUVE)

    ERIC Educational Resources Information Center

    Sakalli, Isinsu; Chung, WonJoon

    2015-01-01

    The world is becoming increasingly virtual. Since the invention of the World Wide Web, information and human interaction has been transferring to the web at a rapid rate. Education is one of the many institutions that is taking advantage of accessing large numbers of people globally through computers. While this can be a simpler task for…

  3. Multi-User Domain Object Oriented (MOO) as a High School Procedure for Foreign Language Acquisition.

    ERIC Educational Resources Information Center

    Backer, James A.

    Foreign language students experience added difficulty when they are isolated from native speakers and from the culture of the target language. It has been posited that MOO (Multi-User Domain Object Oriented) may help overcome the geographical isolation of these students. MOOs are Internet-based virtual worlds in which people from all over the real…

  4. EduMOOs: Virtual Learning Centers.

    ERIC Educational Resources Information Center

    Woods, Judy C.

    1998-01-01

    Multi-user Object Oriented Internet activities (MOOs) permit real time interaction in a text-based virtual reality via the Internet. This article explains EduMOOs (educational MOOs) and provides brief descriptions, World Wide Web addresses, and telnet addresses for selected EduMOOs. Instructions for connecting to a MOO and a list of related Web…

  5. Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Pretto, N.; Poiesi, F.

    2017-11-01

    We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.

  6. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  7. A CALL for Evolving Teacher Education through 3D Microteaching

    ERIC Educational Resources Information Center

    Pappa, Giouli; Papadima-Sophocleous, Salomi

    2016-01-01

    This paper describes micro-teaching delivery in virtual worlds. Emphasis is placed on examining the effectiveness of Singularity Viewer, an Internet-based Multi-User Virtual Environment (MUVE) as the tool used for assessment of the student teacher performance. The overall goal of this endeavour lies in exploiting the opportunities derived from…

  8. The Creation of a Theoretical Framework for Avatar Creation and Revision

    ERIC Educational Resources Information Center

    Beck, Dennis; Murphy, Cheryl

    2014-01-01

    Multi-User Virtual Environments (MUVE) are increasingly being used in education and provide environments where users can manipulate minute details of their avatar's appearance including those traditionally associated with gender and race identification. The ability to choose racial and gender characteristics differs from real-world educational…

  9. Emerging technologies in education and training: applications for the laboratory animal science community.

    PubMed

    Ketelhut, Diane Jass; Niemi, Steven M

    2007-01-01

    This article examines several new and exciting communication technologies. Many of the technologies were developed by the entertainment industry; however, other industries are adopting and modifying them for their own needs. These new technologies allow people to collaborate across distance and time and to learn in simulated work contexts. The article explores the potential utility of these technologies for advancing laboratory animal care and use through better education and training. Descriptions include emerging technologies such as augmented reality and multi-user virtual environments, which offer new approaches with different capabilities. Augmented reality interfaces, characterized by the use of handheld computers to infuse the virtual world into the real one, result in deeply immersive simulations. In these simulations, users can access virtual resources and communicate with real and virtual participants. Multi-user virtual environments enable multiple participants to simultaneously access computer-based three-dimensional virtual spaces, called "worlds," and to interact with digital tools. They allow for authentic experiences that promote collaboration, mentoring, and communication. Because individuals may learn or train differently, it is advantageous to combine the capabilities of these technologies and applications with more traditional methods to increase the number of students who are served by using current methods alone. The use of these technologies in animal care and use programs can create detailed training and education environments that allow students to learn the procedures more effectively, teachers to assess their progress more objectively, and researchers to gain insights into animal care.

  10. Investigating Student Attitudes toward a Synchronous, Online Graduate Course in a Multi-User Virtual Learning Environment

    ERIC Educational Resources Information Center

    Annetta, Leonard; Murray, Marshall; Gull Laird, Shelby; Bohr, Stephanie; Park, John

    2008-01-01

    This article describes a graduate distance education course at North Carolina State University, which combined science content and pedagogy with video game design. The course was conducted entirely in a synchronous, online, Virtual Learning Environment (VLE) through the ActiveWorlds[TM] platform. Inservice teachers enrolled as graduate students in…

  11. Designing for Real-World Scientific Inquiry in Virtual Environments

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.

    2010-01-01

    Background: Most policy doctrines promote the use of scientific inquiry in the K-12 classroom, but good inquiry is hard to implement, particularly for schools with fiscal and safety constraints and for teachers struggling with understanding how to do so. Purpose: In this paper, we present the design of a multi-user virtual environment (MUVE)…

  12. Predicting Virtual World User Population Fluctuations with Deep Learning

    PubMed Central

    Park, Nuri; Zhang, Qimeng; Kim, Jun Gi; Kang, Shin Jin; Kim, Chang Hun

    2016-01-01

    This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds. PMID:27936009

  13. Predicting Virtual World User Population Fluctuations with Deep Learning.

    PubMed

    Kim, Young Bin; Park, Nuri; Zhang, Qimeng; Kim, Jun Gi; Kang, Shin Jin; Kim, Chang Hun

    2016-01-01

    This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds.

  14. Sensor supervision and multiagent commanding by means of projective virtual reality

    NASA Astrophysics Data System (ADS)

    Rossmann, Juergen

    1998-10-01

    When autonomous systems with multiple agents are considered, conventional control- and supervision technologies are often inadequate because the amount of information available is often presented in a way that the user is effectively overwhelmed by the displayed data. New virtual reality (VR) techniques can help to cope with this problem, because VR offers the chance to convey information in an intuitive manner and can combine supervision capabilities and new, intuitive approaches to the control of autonomous systems. In the approach taken, control and supervision issues were equally stressed and finally led to the new ideas and the general framework for Projective Virtual Reality. The key idea of this new approach for an intuitively operable man machine interface for decentrally controlled multi-agent systems is to let the user act in the virtual world, detect the changes and have an action planning component automatically generate task descriptions for the agents involved to project actions that have been carried out by users in the virtual world into the physical world, e.g. with the help of robots. Thus the Projective Virtual Reality approach is to split the job between the task deduction in the VR and the task `projection' onto the physical automation components by the automatic action planning component. Besides describing the realized projective virtual reality system, the paper will also describe in detail the metaphors and visualization aids used to present different types of (e.g. sensor-) information in an intuitively comprehensible manner.

  15. iVirtualWorld: A Domain-Oriented End-User Development Environment for Building 3D Virtual Chemistry Experiments

    ERIC Educational Resources Information Center

    Zhong, Ying

    2013-01-01

    Virtual worlds are well-suited for building virtual laboratories for educational purposes to complement hands-on physical laboratories. However, educators may face technical challenges because developing virtual worlds requires skills in programming and 3D design. Current virtual world building tools are developed for users who have programming…

  16. Interreality: A New Paradigm for E-health.

    PubMed

    Riva, Giuseppe

    2009-01-01

    "Interreality" is a personalized immersive e-therapy whose main novelty is a hybrid, closed-loop empowering experience bridging physical and virtual worlds. The main feature of interreality is a twofold link between the virtual and the real world: (a) behavior in the physical world influences the experience in the virtual one; (b) behavior in the virtual world influences the experience in the real one. This is achieved through: (1) 3D Shared Virtual Worlds: role-playing experiences in which one or more users interact with one another within a 3D world; (2) Bio and Activity Sensors (From the Real to the Virtual World): They are used to track the emotional/health/activity status of the user and to influence his/her experience in the virtual world (aspect, activity and access); (3) Mobile Internet Appliances (From the Virtual to the Real One): In interreality, the social and individual user activity in the virtual world has a direct link with the users' life through a mobile phone/digital assistant. The different technologies that are involved in the interreality vision and its clinical rationale are addressed and discussed.

  17. Inspiring Equal Contribution and Opportunity in a 3D Multi-User Virtual Environment: Bringing Together Men Gamers and Women Non-Gamers in Second Life[R

    ERIC Educational Resources Information Center

    deNoyelles, Aimee; Seo, Kay Kyeong-Ju

    2012-01-01

    A 3D multi-user virtual environment holds promise to support and enhance student online learning communities due to its ability to promote global synchronous interaction and collaboration, rich multisensory experience and expression, and elaborate design capabilities. Second Life[R], a multi-user virtual environment intended for adult users 18 and…

  18. Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis.

    PubMed

    Kim, Young Bin; Lee, Sang Hyeok; Kang, Shin Jin; Choi, Myung Jin; Lee, Jung; Kim, Chang Hun

    2015-01-01

    In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs). Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it.

  19. Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis

    PubMed Central

    Kim, Young Bin; Lee, Sang Hyeok; Kang, Shin Jin; Choi, Myung Jin; Lee, Jung; Kim, Chang Hun

    2015-01-01

    In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs). Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it. PMID:26241496

  20. Virtual hand: a 3D tactile interface to virtual environments

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Borrel, Paul

    2008-02-01

    We introduce a novel system that allows users to experience the sensation of touch in a computer graphics environment. In this system, the user places his/her hand on an array of pins, which is moved about space on a 6 degree-of-freedom robot arm. The surface of the pins defines a surface in the virtual world. This "virtual hand" can move about the virtual world. When the virtual hand encounters an object in the virtual world, the heights of the pins are adjusted so that they represent the object's shape, surface, and texture. A control system integrates pin and robot arm motions to transmit information about objects in the computer graphics world to the user. It also allows the user to edit, change and move the virtual objects, shapes and textures. This system provides a general framework for touching, manipulating, and modifying objects in a 3-D computer graphics environment, which may be useful in a wide range of applications, including computer games, computer aided design systems, and immersive virtual worlds.

  1. Studying the Effectiveness of Multi-User Immersive Environments for Collaborative Evaluation Tasks

    ERIC Educational Resources Information Center

    Lorenzo, Carlos-Miguel; Sicilia, Miguel Angel; Sanchez, Salvador

    2012-01-01

    Massively Multiuser On-line Learning (MMOL) Platforms, often called "virtual learning worlds", constitute a still unexplored context for communication-enhanced learning, where synchronous communication skills in an explicit social setting enhance the potential of effective collaboration. In this paper, we report on an experimental study of…

  2. Facilitating 3D Virtual World Learning Environments Creation by Non-Technical End Users through Template-Based Virtual World Instantiation

    ERIC Educational Resources Information Center

    Liu, Chang; Zhong, Ying; Ozercan, Sertac; Zhu, Qing

    2013-01-01

    This paper presents a template-based solution to overcome technical barriers non-technical computer end users face when developing functional learning environments in three-dimensional virtual worlds (3DVW). "iVirtualWorld," a prototype of a platform-independent 3DVW creation tool that implements the proposed solution, facilitates 3DVW…

  3. Proposal for Implementing Multi-User Database (MUD) Technology in an Academic Library.

    ERIC Educational Resources Information Center

    Filby, A. M. Iliana

    1996-01-01

    Explores the use of MOO (multi-user object oriented) virtual environments in academic libraries to enhance reference services. Highlights include the development of multi-user database (MUD) technology from gaming to non-recreational settings; programming issues; collaborative MOOs; MOOs as distinguished from other types of virtual reality; audio…

  4. Formalizing and Promoting Collaboration in 3D Virtual Environments - A Blueprint for the Creation of Group Interaction Patterns

    NASA Astrophysics Data System (ADS)

    Schmeil, Andreas; Eppler, Martin J.

    Despite the fact that virtual worlds and other types of multi-user 3D collaboration spaces have long been subjects of research and of application experiences, it still remains unclear how to best benefit from meeting with colleagues and peers in a virtual environment with the aim of working together. Making use of the potential of virtual embodiment, i.e. being immersed in a space as a personal avatar, allows for innovative new forms of collaboration. In this paper, we present a framework that serves as a systematic formalization of collaboration elements in virtual environments. The framework is based on the semiotic distinctions among pragmatic, semantic and syntactic perspectives. It serves as a blueprint to guide users in designing, implementing, and executing virtual collaboration patterns tailored to their needs. We present two team and two community collaboration pattern examples as a result of the application of the framework: Virtual Meeting, Virtual Design Studio, Spatial Group Configuration, and Virtual Knowledge Fair. In conclusion, we also point out future research directions for this emerging domain.

  5. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  6. The Selimiye Mosque of Edirne, Turkey - AN Immersive and Interactive Virtual Reality Experience Using Htc Vive

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Büyüksalih, G.; Tschirschwitz, F.; Kan, T.; Deggim, S.; Kaya, Y.; Baskaraca, A. P.

    2017-05-01

    Recent advances in contemporary Virtual Reality (VR) technologies are going to have a significant impact on veryday life. Through VR it is possible to virtually explore a computer-generated environment as a different reality, and to immerse oneself into the past or in a virtual museum without leaving the current real-life situation. For such the ultimate VR experience, the user should only see the virtual world. Currently, the user must wear a VR headset which fits around the head and over the eyes to visually separate themselves from the physical world. Via the headset images are fed to the eyes through two small lenses. Cultural heritage monuments are ideally suited both for thorough multi-dimensional geometric documentation and for realistic interactive visualisation in immersive VR applications. Additionally, the game industry offers tools for interactive visualisation of objects to motivate users to virtually visit objects and places. In this paper the generation of a virtual 3D model of the Selimiye mosque in the city of Edirne, Turkey and its processing for data integration into the game engine Unity is presented. The project has been carried out as a co-operation between BİMTAŞ, a company of the Greater Municipality of Istanbul, Turkey and the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg, Germany to demonstrate an immersive and interactive visualisation using the new VR system HTC Vive. The workflow from data acquisition to VR visualisation, including the necessary programming for navigation, is described. Furthermore, the possible use (including simultaneous multiple users environments) of such a VR visualisation for a CH monument is discussed in this contribution.

  7. Investigating the Concept of Consumers as Producers in Virtual Worlds: Looking through Social, Technical, Economic, and Legal Lenses

    NASA Astrophysics Data System (ADS)

    Kienle, Holger M.; Lober, Andreas; Vasiliu, Crina A.; Müller, Hausi A.

    Virtual worlds such as World of Warcraft and Second Life enable consumers as producers, that is users can choose to be passive consumers of content, active producers of content, or both. Consumers as producers poses unique challenges and opportunities for both operators and users of virtual worlds. While the degrees of freedom for user-generated content differ depending on the world, instances of consumers as producers can be found in many virtual worlds. In this paper we characterize consumers as producers with the help of four "lenses"—social, technical, economic, and legal—and use the lenses to discuss implications for operators and users. These lenses provide a complementary analysis of consumers as producers from different angels and shows that an understanding of it requires a holistic approach.

  8. Learning Outcome, Presence and Satisfaction from a Science Activity in Second Life

    ERIC Educational Resources Information Center

    Vrellis, Ioannis; Avouris, Nikolaos; Mikropoulos, Tassos A.

    2016-01-01

    Although problem-based learning (PBL) has many advantages, it often fails to connect to the real world outside the classroom. The integration with the laboratory setting and the use of information and communication technologies (ICTs) have been proposed to address this deficiency. Multi-user virtual environments (MUVEs) like Second Life (SL) are…

  9. Virtual goods recommendations in virtual worlds.

    PubMed

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods.

  10. Virtual Goods Recommendations in Virtual Worlds

    PubMed Central

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods. PMID:25834837

  11. Virtual Worlds for Virtual Organizing

    NASA Astrophysics Data System (ADS)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  12. Using Virtual Worlds in Education: Second Life[R] as an Educational Tool

    ERIC Educational Resources Information Center

    Baker, Suzanne C.; Wentz, Ryan K.; Woods, Madison M.

    2009-01-01

    The online virtual world Second Life (www.secondlife.com) has multiple potential uses in teaching. In Second Life (SL), users create avatars that represent them in the virtual world. Within SL, avatars can interact with each other and with objects and environments. SL offers tremendous creative potential in that users can create content within the…

  13. Multi-Level Adaptation in End-User Development of 3D Virtual Chemistry Experiments

    ERIC Educational Resources Information Center

    Liu, Chang; Zhong, Ying

    2014-01-01

    Multi-level adaptation in end-user development (EUD) is an effective way to enable non-technical end users such as educators to gradually introduce more functionality with increasing complexity to 3D virtual learning environments developed by themselves using EUD approaches. Parameterization, integration, and extension are three levels of…

  14. A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris

    2010-01-01

    This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…

  15. Get immersed in the Soil Sciences: the first community of avatars in the EGU Assembly 2015!

    NASA Astrophysics Data System (ADS)

    Castillo, Sebastian; Alarcón, Purificación; Beato, Mamen; Emilio Guerrero, José; José Martínez, Juan; Pérez, Cristina; Ortiz, Leovigilda; Taguas, Encarnación V.

    2015-04-01

    Virtual reality and immersive worlds refer to artificial computer-generated environments, with which users act and interact as in a known environment by the use of figurative virtual individuals (avatars). Virtual environments will be the technology of the early twenty-first century that will most dramatically change the way we live, particularly in the areas of training and education, product development and entertainment (Schmorrow, 2009). The usefulness of immersive worlds has been proved in different fields. They reduce geographic and social barriers between different stakeholders and create virtual social spaces which can positively impact learning and discussion outcomes (Lorenzo et al. 2012). In this work we present a series of interactive meetings in a virtual building to celebrate the International Year of Soil to promote the importance of soil functions and its conservation. In a virtual room, the avatars of different senior researchers will meet young scientist avatars to talk about: 1) what remains to be done in Soil Sciences; 2) which are their main current limitations and difficulties and 3) which are the future hot research lines. The interactive participation does not require physically attend to the EGU Assembly 2015. In addition, this virtual building inspired in Soil Sciences can be completed with different teaching resources from different locations around the world and it will be used to improve the learning of Soil Sciences in a multicultural context. REFERENCES: Lorenzo C.M., Sicilia, M.A., Sánchez S. 2012. Studying the effectiveness of multi-user immersive environments for collaborative evaluation tasks. Computers & Education 59 (2012) 1361-1376 Schmorrow D.D. 2009. "Why virtual?" Theoretical Issues in Ergonomics Science 10(3): 279-282.

  16. A workout for virtual bodybuilders (design issues for embodiment in multi-actor virtual environments)

    NASA Technical Reports Server (NTRS)

    Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave

    1994-01-01

    This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.

  17. Envisioning the Educational Possibilities of User-Created Virtual Worlds

    ERIC Educational Resources Information Center

    Antonacci, David M.; Modaress, Nellie

    2008-01-01

    Educational games and simulations can engage students in higher-level cognitive thinking, such as interpreting, analyzing, discovering, evaluating, acting, and problem solving. Recent technical advances in multiplayer, user-created virtual worlds have significantly expanded the capabilities of user interaction and development within these…

  18. Risks and Uncertainties in Virtual Worlds: An Educators' Perspective

    ERIC Educational Resources Information Center

    Farahmand, Fariborz; Yadav, Aman; Spafford, Eugene H.

    2013-01-01

    Virtual worlds present tremendous advantages to cyberlearning. For example, in virtual worlds users can socialize with others, build objects and share them, customize parts of the world and hold lectures, do experiments, or share data. However, virtual worlds pose a wide range of security, privacy, and safety concerns. This may lead educators to…

  19. Estimation of detection thresholds for redirected walking techniques.

    PubMed

    Steinicke, Frank; Bruder, Gerd; Jerald, Jason; Frenz, Harald; Lappe, Markus

    2010-01-01

    In immersive virtual environments (IVEs), users can control their virtual viewpoint by moving their tracked head and walking through the real world. Usually, movements in the real world are mapped one-to-one to virtual camera motions. With redirection techniques, the virtual camera is manipulated by applying gains to user motion so that the virtual world moves differently than the real world. Thus, users can walk through large-scale IVEs while physically remaining in a reasonably small workspace. In psychophysical experiments with a two-alternative forced-choice task, we have quantified how much humans can unknowingly be redirected on physical paths that are different from the visually perceived paths. We tested 12 subjects in three different experiments: (E1) discrimination between virtual and physical rotations, (E2) discrimination between virtual and physical straightforward movements, and (E3) discrimination of path curvature. In experiment E1, subjects performed rotations with different gains, and then had to choose whether the visually perceived rotation was smaller or greater than the physical rotation. In experiment E2, subjects chose whether the physical walk was shorter or longer than the visually perceived scaled travel distance. In experiment E3, subjects estimate the path curvature when walking a curved path in the real world while the visual display shows a straight path in the virtual world. Our results show that users can be turned physically about 49 percent more or 20 percent less than the perceived virtual rotation, distances can be downscaled by 14 percent and upscaled by 26 percent, and users can be redirected on a circular arc with a radius greater than 22 m while they believe that they are walking straight.

  20. Whose point-of-view is it anyway?

    NASA Astrophysics Data System (ADS)

    Garvey, Gregory P.

    2011-03-01

    Shared virtual worlds such as Second Life privilege a single point-of-view, namely that of the user. When logged into Second Life a user sees the virtual world from a default viewpoint, which is from slightly above and behind the user's avatar (the user's alter ego 'in-world.') This point-of-view is as if the user were viewing his or her avatar using a camera floating a few feet behind it. In fact it is possible to set the view to as if you were seeing the world through the eyes of your avatar or you can even move the camera completely independent of your avatar. A change in point-of-view, means, more than just a different camera point-of-view. The practice of using multiple avatars requires a transformation of identity and personality. When a user 'enacts' the identity of a particular avatar, their 'real' personality is masked by the assumed personality. The technology of virtual worlds permits both a change of point-of -view and also facilitates a change in identity. Does this cause any psychological distress? Or is the ability to be someone else and see a world (a game, a virtual world) through a different set of eyes somehow liberating and even beneficial?

  1. Open Sim and Sloodle Integration for Preservice Foreign Language Teachers' Continuing Professional Development: A Comparative Analysis of Learning Effectiveness Using the Community of Inquiry Model

    ERIC Educational Resources Information Center

    Pellas, Nikolaos; Boumpa, Anna

    2016-01-01

    A considerable interest in using three-dimensional multi-user virtual worlds for different educational disciplines has been widely observed. Despite the potential benefits of this technology, many questions still remain open, as far as the design of appropriate activities in well-defined instructional design frameworks and their effectiveness on…

  2. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study.

    PubMed

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-10-25

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the "Florida Secundaria" high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable).

  3. Global Village as Virtual Community (On Writing, Thinking, and Teacher Education).

    ERIC Educational Resources Information Center

    Polin, Linda

    1993-01-01

    Describes virtual communities known as Multi-User Simulated Environment (MUSE) or Multi-User Object Oriented environment (MOO), text-based computer "communities" whose inhabitants are a combination of the real people and constructed objects that people agree to treat as real. Describes their uses in the classroom. (SR)

  4. Hack-proof Synchronization Protocol for Multi-player Online Games

    NASA Astrophysics Data System (ADS)

    Fung, Yeung Siu; Lui, John C. S.

    Modern multi-player online games are popular and attractive because they provide a sense of virtual world experience to users: players can interact with each other on the Internet but perceive a local area network responsiveness. To make this possible, most modern multi-player online games use similar networking architecture that aims to hide the effects of network latency, packet loss, and high variance of delay from players. Because real-time interactivity is a crucial feature from a player's point of view, any delay perceived by a player can affect his/her performance [16]. Therefore, the game client must be able to run and accept new user commands continuously regardless of the condition of the underlying communication channel, and that it will not stop responding because of waiting for update packets from other players. To make this possible, multi-player online games typically use protocols based on "dead-reckoning" [5, 6, 9] which allows loose synchronization between players.

  5. World Reaction to Virtual Space

    NASA Technical Reports Server (NTRS)

    1999-01-01

    DRaW Computing developed virtual reality software for the International Space Station. Open Worlds, as the software has been named, can be made to support Java scripting and virtual reality hardware devices. Open Worlds permits the use of VRML script nodes to add virtual reality capabilities to the user's applications.

  6. Virtual reality and telerobotics applications of an Address Recalculation Pipeline

    NASA Technical Reports Server (NTRS)

    Regan, Matthew; Pose, Ronald

    1994-01-01

    The technology described in this paper was designed to reduce latency to user interactions in immersive virtual reality environments. It is also ideally suited to telerobotic applications such as interaction with remote robotic manipulators in space or in deep sea operations. in such circumstances the significant latency is observed response to user stimulus which is due to communications delays, and the disturbing jerkiness due to low and unpredictable frame rates on compressed video user feedback or computationally limited virtual worlds, can be masked by our techniques. The user is provided with highly responsive visual feedback independent of communication or computational delays in providing physical video feedback or in rendering virtual world images. Virtual and physical environments can be combined seamlessly using these techniques.

  7. The James Webb Space Telescope RealWorld-InWorld Design Challenge: Involving Professionals in a Virtual Classroom

    NASA Astrophysics Data System (ADS)

    Masetti, Margaret; Bowers, S.

    2011-01-01

    Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.

  8. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study

    PubMed Central

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-01-01

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the “Florida Secundaria” high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable). PMID:27792132

  9. Educational MOO: Text-Based Virtual Reality for Learning in Community. ERIC Digest.

    ERIC Educational Resources Information Center

    Turbee, Lonnie

    MOO stands for "Multi-user domain, Object-Oriented." Early multi-user domains, or "MUDs," began as net-based dungeons-and-dragons type games, but MOOs have evolved from these origins to become some of cyberspace's most fascinating and engaging online communities. MOOs are social environments in a text-based virtual reality…

  10. Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play

    ERIC Educational Resources Information Center

    Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven

    2007-01-01

    In this paper we describe our research using a multi-user virtual environment, "Quest Atlantis," to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment…

  11. Preservice Teachers Experience Reading Response Pedagogy in a Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Dooley, Caitlin McMunn; Calandra, Brendan; Harmon, Stephen

    2014-01-01

    This qualitative case study describes how 18 preservice teachers learned to nurture literary meaning-making via activities based on Louise Rosenblatt's Reader Response Theory within a multi-user virtual environment (MUVE). Participants re-created and responded to scenes from selected works of children's literature in Second Life as a way to…

  12. Validation of virtual reality as a tool to understand and prevent child pedestrian injury.

    PubMed

    Schwebel, David C; Gaines, Joanna; Severson, Joan

    2008-07-01

    In recent years, virtual reality has emerged as an innovative tool for health-related education and training. Among the many benefits of virtual reality is the opportunity for novice users to engage unsupervised in a safe environment when the real environment might be dangerous. Virtual environments are only useful for health-related research, however, if behavior in the virtual world validly matches behavior in the real world. This study was designed to test the validity of an immersive, interactive virtual pedestrian environment. A sample of 102 children and 74 adults was recruited to complete simulated road-crossings in both the virtual environment and the identical real environment. In both the child and adult samples, construct validity was demonstrated via significant correlations between behavior in the virtual and real worlds. Results also indicate construct validity through developmental differences in behavior; convergent validity by showing correlations between parent-reported child temperament and behavior in the virtual world; internal reliability of various measures of pedestrian safety in the virtual world; and face validity, as measured by users' self-reported perception of realism in the virtual world. We discuss issues of generalizability to other virtual environments, and the implications for application of virtual reality to understanding and preventing pediatric pedestrian injuries.

  13. Immersive telepresence system using high-resolution omnidirectional movies and a locomotion interface

    NASA Astrophysics Data System (ADS)

    Ikeda, Sei; Sato, Tomokazu; Kanbara, Masayuki; Yokoya, Naokazu

    2004-05-01

    Technology that enables users to experience a remote site virtually is called telepresence. A telepresence system using real environment images is expected to be used in the field of entertainment, medicine, education and so on. This paper describes a novel telepresence system which enables users to walk through a photorealistic virtualized environment by actual walking. To realize such a system, a wide-angle high-resolution movie is projected on an immersive multi-screen display to present users the virtualized environments and a treadmill is controlled according to detected user's locomotion. In this study, we use an omnidirectional multi-camera system to acquire images real outdoor scene. The proposed system provides users with rich sense of walking in a remote site.

  14. Internet-based distributed collaborative environment for engineering education and design

    NASA Astrophysics Data System (ADS)

    Sun, Qiuli

    2001-07-01

    This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the same geometric model simultaneously over the Internet and communicate with each other through a chat room. They can also conduct finite element analysis collaboratively on the same object over the Internet. They can mesh the same object, apply and edit the same boundary conditions and forces, obtain the same analysis results, and then discuss the results through the Internet.

  15. Exploring the Integration of Technology into Jewish Education: Multi-User Virtual Environments and Supplementary School Settings

    ERIC Educational Resources Information Center

    Sohn, Johannah Eve

    2014-01-01

    This descriptive case study explores the implementation of a multi-user virtual environment (MUVE) in a Jewish supplemental school setting. The research was conducted to present the recollections and reflections of three constituent populations of a new technology exploring constructivist education in the context of supplemental and online…

  16. Managing Cognitive Load in Educational Multi-User Virtual Environments: Reflection on Design Practice

    ERIC Educational Resources Information Center

    Nelson, Brian C.; Erlandson, Benjamin E.

    2008-01-01

    In this paper, we explore how the application of multimedia design principles may inform the development of educational multi-user virtual environments (MUVEs). We look at design principles that have been shown to help learners manage cognitive load within multimedia environments and conduct a conjectural analysis of the extent to which such…

  17. Socialisation for Learning at a Distance in a 3-D Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Edirisingha, Palitha; Nie, Ming; Pluciennik, Mark; Young, Ruth

    2009-01-01

    This paper reports findings of a pilot study that examined the pedagogical potential of "Second Life" (SL), a popular three-dimensional multi-user virtual environment (3-D MUVE) developed by the Linden Lab. The study is part of a 1-year research and development project titled "Modelling of Secondlife Environments"…

  18. 'Putting it on the table': direct-manipulative interaction and multi-user display technologies for semi-immersive environments and augmented reality applications.

    PubMed

    Encarnação, L Miguel; Bimber, Oliver

    2002-01-01

    Collaborative virtual environments for diagnosis and treatment planning are increasingly gaining importance in our global society. Virtual and Augmented Reality approaches promised to provide valuable means for the involved interactive data analysis, but the underlying technologies still create a cumbersome work environment that is inadequate for clinical employment. This paper addresses two of the shortcomings of such technology: Intuitive interaction with multi-dimensional data in immersive and semi-immersive environments as well as stereoscopic multi-user displays combining the advantages of Virtual and Augmented Reality technology.

  19. Art Treasure Quests in Second Life: A Multi-Literacy Adventure

    ERIC Educational Resources Information Center

    Stokrocki, Mary

    2014-01-01

    Treasure quests in virtual worlds can help students develop multi-literacy communication skills and promote community, offering insights about art teaching and learning. As part of the new media literacy, students explore the offerings of Second Life (SL), a virtual world, as a series of quests. Multi-literacy involves communication. Through their…

  20. Framing the magic

    NASA Astrophysics Data System (ADS)

    Tsoupikova, Daria

    2006-02-01

    This paper will explore how the aesthetics of the virtual world affects, transforms, and enhances the immersive emotional experience of the user. What we see and what we do upon entering the virtual environment influences our feelings, mental state, physiological changes and sensibility. To create a unique virtual experience the important component to design is the beauty of the virtual world based on the aesthetics of the graphical objects such as textures, models, animation, and special effects. The aesthetic potency of the images that comprise the virtual environment can make the immersive experience much stronger and more compelling. The aesthetic qualities of the virtual world as born out through images and graphics can influence the user's state of mind. Particular changes and effects on the user can be induced through the application of techniques derived from the research fields of psychology, anthropology, biology, color theory, education, art therapy, music, and art history. Many contemporary artists and developers derive much inspiration for their work from their experience with traditional arts such as painting, sculpture, design, architecture and music. This knowledge helps them create a higher quality of images and stereo graphics in the virtual world. The understanding of the close relation between the aesthetic quality of the virtual environment and the resulting human perception is the key to developing an impressive virtual experience.

  1. On the Value of Second Life for Students' Engagement in Blended and Online Courses: A Comparative Study from the Higher Education in Greece

    ERIC Educational Resources Information Center

    Pellas, Nikolaos; Kazanidis, Ioannis

    2015-01-01

    Nowadays three-dimensional (3D) multi-user virtual worlds (VWs) are the most well-known candidate platforms in Higher education. Despite the growing number of notable studies that have presented VWs as valuable platforms for the e-Education, there is still a paucity of a comparative study in order to be determined the degree of the students'…

  2. A Case Study in User Support for Managing OpenSim Based Multi User Learning Environments

    ERIC Educational Resources Information Center

    Perera, Indika; Miller, Alan; Allison, Colin

    2017-01-01

    Immersive 3D Multi User Learning Environments (MULE) have shown sufficient success to warrant their consideration as a mainstream educational paradigm. These are based on 3D Multi User Virtual Environment platforms (MUVE), and although they have been used for various innovative educational projects their complex permission systems and large…

  3. Enhancing Navigation Skills through Audio Gaming.

    PubMed

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2010-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.

  4. Enhancing Navigation Skills through Audio Gaming

    PubMed Central

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2014-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796

  5. The Impact of Student Self-Efficacy on Scientific Inquiry Skills: An Exploratory Investigation in "River City," a Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass

    2007-01-01

    This exploratory study investigated data-gathering behaviors exhibited by 100 seventh-grade students as they participated in a scientific inquiry-based curriculum project delivered by a multi-user virtual environment (MUVE). This research examined the relationship between students' self-efficacy on entry into the authentic scientific activity and…

  6. Tuning self-motion perception in virtual reality with visual illusions.

    PubMed

    Bruder, Gerd; Steinicke, Frank; Wieland, Phil; Lappe, Markus

    2012-07-01

    Motion perception in immersive virtual environments significantly differs from the real world. For example, previous work has shown that users tend to underestimate travel distances in virtual environments (VEs). As a solution to this problem, researchers proposed to scale the mapped virtual camera motion relative to the tracked real-world movement of a user until real and virtual motion are perceived as equal, i.e., real-world movements could be mapped with a larger gain to the VE in order to compensate for the underestimation. However, introducing discrepancies between real and virtual motion can become a problem, in particular, due to misalignments of both worlds and distorted space cognition. In this paper, we describe a different approach that introduces apparent self-motion illusions by manipulating optic flow fields during movements in VEs. These manipulations can affect self-motion perception in VEs, but omit a quantitative discrepancy between real and virtual motions. In particular, we consider to which regions of the virtual view these apparent self-motion illusions can be applied, i.e., the ground plane or peripheral vision. Therefore, we introduce four illusions and show in experiments that optic flow manipulation can significantly affect users' self-motion judgments. Furthermore, we show that with such manipulations of optic flow fields the underestimation of travel distances can be compensated.

  7. The SEE Experience: Edutainment in 3D Virtual Worlds.

    ERIC Educational Resources Information Center

    Di Blas, Nicoletta; Paolini, Paolo; Hazan, Susan

    Shared virtual worlds are innovative applications where several users, represented by Avatars, simultaneously access via Internet a 3D space. Users cooperate through interaction with the environment and with each other, manipulating objects and chatting as they go. Apart from in the well documented online action games industry, now often played…

  8. Mixed Methods for Mixed Reality: Understanding Users' Avatar Activities in Virtual Worlds

    ERIC Educational Resources Information Center

    Feldon, David F.; Kafai, Yasmin B.

    2008-01-01

    This paper examines the use of mixed methods for analyzing users' avatar-related activities in a virtual world. Server logs recorded keystroke-level activity for 595 participants over a six-month period in Whyville.net, an informal science website. Participants also completed surveys and participated in interviews regarding their experiences.…

  9. A Study of Multi-Representation of Geometry Problem Solving with Virtual Manipulatives and Whiteboard System

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Su, Jia-Han; Huang, Yueh-Min; Dong, Jian-Jie

    2009-01-01

    In this paper, the development of an innovative Virtual Manipulatives and Whiteboard (VMW) system is described. The VMW system allowed users to manipulate virtual objects in 3D space and find clues to solve geometry problems. To assist with multi-representation transformation, translucent multimedia whiteboards were used to provide a virtual 3D…

  10. TSI-Enhanced Pedagogical Agents to Engage Learners in Virtual Worlds

    ERIC Educational Resources Information Center

    Leung, Steve; Virwaney, Sandeep; Lin, Fuhua; Armstrong, AJ; Dubbelboer, Adien

    2013-01-01

    Building pedagogical applications in virtual worlds is a multi-disciplinary endeavor that involves learning theories, application development framework, and mediated communication theories. This paper presents a project that integrates game-based learning, multi-agent system architecture (MAS), and the theory of Transformed Social Interaction…

  11. Social Presence and Motivation in a Three-Dimensional Virtual World: An Explanatory Study

    ERIC Educational Resources Information Center

    Yilmaz, Rabia M.; Topu, F. Burcu; Goktas, Yuksel; Coban, Murat

    2013-01-01

    Three-dimensional (3-D) virtual worlds differ from other learning environments in their similarity to real life, providing opportunities for more effective communication and interaction. With these features, 3-D virtual worlds possess considerable potential to enhance learning opportunities. For effective learning, the users' motivation levels and…

  12. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life

    PubMed Central

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  13. A virtual therapeutic environment with user projective agents.

    PubMed

    Ookita, S Y; Tokuda, H

    2001-02-01

    Today, we see the Internet as more than just an information infrastructure, but a socializing place and a safe outlet of inner feelings. Many personalities develop aside from real world life due to its anonymous environment. Virtual world interactions are bringing about new psychological illnesses ranging from netaddiction to technostress, as well as online personality disorders and conflicts in multiple identities that exist in the virtual world. Presently, there are no standard therapy models for the virtual environment. There are very few therapeutic environments, or tools especially made for virtual therapeutic environments. The goal of our research is to provide the therapy model and middleware tools for psychologists to use in virtual therapeutic environments. We propose the Cyber Therapy Model, and Projective Agents, a tool used in the therapeutic environment. To evaluate the effectiveness of the tool, we created a prototype system, called the Virtual Group Counseling System, which is a therapeutic environment that allows the user to participate in group counseling through the eyes of their Projective Agent. Projective Agents inherit the user's personality traits. During the virtual group counseling, the user's Projective Agent interacts and collaborates to recover and increase their psychological growth. The prototype system provides a simulation environment where psychologists can adjust the parameters and customize their own simulation environment. The model and tool is a first attempt toward simulating online personalities that may exist only online, and provide data for observation.

  14. A Distributed Multi-Agent System for Collaborative Information Management and Learning

    NASA Technical Reports Server (NTRS)

    Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In this paper, we present DIAMS, a system of distributed, collaborative agents to help users access, manage, share and exchange information. A DIAMS personal agent helps its owner find information most relevant to current needs. It provides tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Flexible hierarchical display is integrated with indexed query search-to support effective information access. Automatic indexing methods are employed to support user queries and communication between agents. Contents of a repository are kept in object-oriented storage to facilitate information sharing. Collaboration between users is aided by easy sharing utilities as well as automated information exchange. Matchmaker agents are designed to establish connections between users with similar interests and expertise. DIAMS agents provide needed services for users to share and learn information from one another on the World Wide Web.

  15. Curricular Implications of Virtual World Technology: A Review of Business Applications

    ERIC Educational Resources Information Center

    Cyphert, Dale; Wurtz, M. Susan; Duclos, Leslie K.

    2013-01-01

    As business organizations grow increasingly virtual, traditional principles of organizational communication require examination and modification. This article considers the curricular implications of the growing business uses of virtual world technology through three different lenses--students as employee-users, students as strategic designers and…

  16. IYA2009 in Second Life

    NASA Astrophysics Data System (ADS)

    Gauthier, Adrienne J.

    2009-05-01

    Highlights from the first 6 months of the IYA2009 island in the multi-user 3D virtual world called Second Life ® will be shown. Future plans for exhibits and events will be discussed. You can find the 'Astronomy 2009' island by visiting this URL: http://secondastronomy.org/Astronomy2009/ which will trigger a teleport to our space. Keep up with our project at http://secondastronomy.org. Special thanks go to our primary sponsors: 400 Years of the Telescope/Interstellar Studios and The University of Arizona Department of Astronomy.

  17. Confessions of a Second Life: Conforming in the Virtual World?

    NASA Astrophysics Data System (ADS)

    Chicas, K.; Bailenson, J.; Stevenson Won, A.; Bailey, J.

    2012-12-01

    Virtual Worlds such as Second Life or World of Warcraft are increasingly popular, with people all over the world joining these online communities. In these virtual environments people break the barrier of reality every day when they fly, walk through walls and teleport places. It is easy for people to violate the norms and behaviors of the real world in the virtual environment without real world consequences. However, previous research has shown that users' behavior may conform to their digital self-representation (avatar). This is also known as the Proteus effect (Yee, 2007). Are people behaving in virtual worlds in ways that most people would not in the physical world? It's important to understand the behaviors that occur in the virtual world if they have an impact on how people act in the real world.

  18. See-through 3D technology for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young

    2017-06-01

    Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.

  19. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  20. Game-Based Virtual Worlds as Decentralized Virtual Activity Systems

    NASA Astrophysics Data System (ADS)

    Scacchi, Walt

    There is widespread interest in the development and use of decentralized systems and virtual world environments as possible new places for engaging in collaborative work activities. Similarly, there is widespread interest in stimulating new technological innovations that enable people to come together through social networking, file/media sharing, and networked multi-player computer game play. A decentralized virtual activity system (DVAS) is a networked computer supported work/play system whose elements and social activities can be both virtual and decentralized (Scacchi et al. 2008b). Massively multi-player online games (MMOGs) such as World of Warcraft and online virtual worlds such as Second Life are each popular examples of a DVAS. Furthermore, these systems are beginning to be used for research, deve-lopment, and education activities in different science, technology, and engineering domains (Bainbridge 2007, Bohannon et al. 2009; Rieber 2005; Scacchi and Adams 2007; Shaffer 2006), which are also of interest here. This chapter explores two case studies of DVASs developed at the University of California at Irvine that employ game-based virtual worlds to support collaborative work/play activities in different settings. The settings include those that model and simulate practical or imaginative physical worlds in different domains of science, technology, or engineering through alternative virtual worlds where players/workers engage in different kinds of quests or quest-like workflows (Jakobsson 2006).

  1. 3D Inhabited Virtual Worlds: Interactivity and Interaction between Avatars, Autonomous Agents, and Users.

    ERIC Educational Resources Information Center

    Jensen, Jens F.

    This paper addresses some of the central questions currently related to 3-Dimensional Inhabited Virtual Worlds (3D-IVWs), their virtual interactions, and communication, drawing from the theory and methodology of sociology, interaction analysis, interpersonal communication, semiotics, cultural studies, and media studies. First, 3D-IVWs--seen as a…

  2. Future Evolution of Virtual Worlds as Communication Environments

    NASA Astrophysics Data System (ADS)

    Prisco, Giulio

    Extensive experience creating locations and activities inside virtual worlds provides the basis for contemplating their future. Users of virtual worlds are diverse in their goals for these online environments; for example, immersionists want them to be alternative realities disconnected from real life, whereas augmentationists want them to be communication media supporting real-life activities. As the technology improves, the diversity of virtual worlds will increase along with their significance. Many will incorporate more advanced virtual reality, or serve as major media for long-distance collaboration, or become the venues for futurist social movements. Key issues are how people can create their own virtual worlds, travel across worlds, and experience a variety of multimedia immersive environments. This chapter concludes by noting the view among some computer scientists that future technologies will permit uploading human personalities to artificial intelligence avatars, thereby enhancing human beings and rendering the virtual worlds entirely real.

  3. Development of MPEG standards for 3D and free viewpoint video

    NASA Astrophysics Data System (ADS)

    Smolic, Aljoscha; Kimata, Hideaki; Vetro, Anthony

    2005-11-01

    An overview of 3D and free viewpoint video is given in this paper with special focus on related standardization activities in MPEG. Free viewpoint video allows the user to freely navigate within real world visual scenes, as known from virtual worlds in computer graphics. Suitable 3D scene representation formats are classified and the processing chain is explained. Examples are shown for image-based and model-based free viewpoint video systems, highlighting standards conform realization using MPEG-4. Then the principles of 3D video are introduced providing the user with a 3D depth impression of the observed scene. Example systems are described again focusing on their realization based on MPEG-4. Finally multi-view video coding is described as a key component for 3D and free viewpoint video systems. MPEG is currently working on a new standard for multi-view video coding. The conclusion is that the necessary technology including standard media formats for 3D and free viewpoint is available or will be available in the near future, and that there is a clear demand from industry and user side for such applications. 3DTV at home and free viewpoint video on DVD will be available soon, and will create huge new markets.

  4. The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments.

    PubMed

    Pollock, Brice; Burton, Melissa; Kelly, Jonathan W; Gilbert, Stephen; Winer, Eliot

    2012-04-01

    Stereoscopic depth cues improve depth perception and increase immersion within virtual environments (VEs). However, improper display of these cues can distort perceived distances and directions. Consider a multi-user VE, where all users view identical stereoscopic images regardless of physical location. In this scenario, cues are typically customized for one "leader" equipped with a head-tracking device. This user stands at the center of projection (CoP) and all other users ("followers") view the scene from other locations and receive improper depth cues. This paper examines perceived depth distortion when viewing stereoscopic VEs from follower perspectives and the impact of these distortions on collaborative spatial judgments. Pairs of participants made collaborative depth judgments of virtual shapes viewed from the CoP or after displacement forward or backward. Forward and backward displacement caused perceived depth compression and expansion, respectively, with greater compression than expansion. Furthermore, distortion was less than predicted by a ray-intersection model of stereo geometry. Collaboration times were significantly longer when participants stood at different locations compared to the same location, and increased with greater perceived depth discrepancy between the two viewing locations. These findings advance our understanding of spatial distortions in multi-user VEs, and suggest a strategy for reducing distortion.

  5. Speaking in Character: Voice Communication in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Wadley, Greg; Gibbs, Martin R.

    This chapter summarizes 5 years of research on the implications of introducing voice communication systems to virtual worlds. Voice introduces both benefits and problems for players of fast-paced team games, from better coordination of groups and greater social presence of fellow players on the positive side, to negative features such as channel congestion, transmission of noise, and an unwillingness by some to use voice with strangers online. Similarly, in non-game worlds like Second Life, issues related to identity and impression management play important roles, as voice may build greater trust that is especially important for business users, yet it erodes the anonymity and ability to conceal social attributes like gender that are important for other users. A very different mixture of problems and opportunities exists when users conduct several simultaneous conversations in multiple text and voice channels. Technical difficulties still exist with current systems, including the challenge of debugging and harmonizing all the participants' voice setups. Different groups use virtual worlds for very different purposes, so a single modality may not suit all.

  6. Determinants of Presence in 3D Virtual Worlds: A Structural Equation Modelling Analysis

    ERIC Educational Resources Information Center

    Chow, Meyrick

    2016-01-01

    There is a growing body of evidence that feeling present in virtual environments contributes to effective learning. Presence is a psychological state of the user; hence, it is generally agreed that individual differences in user characteristics can lead to different experiences of presence. Despite the fact that user characteristics can play a…

  7. ARC+(Registered Trademark) and ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies

    NASA Technical Reports Server (NTRS)

    Choquet, Claude

    2011-01-01

    123 Certification Inc., a Montreal based company, has developed an innovative hands-on welding simulator solution to help build the welding workforce in the most simple way. The solution lies in virtual reality technology, which has been fully tested since the early 90's. President and founder of 123 Certification Inc., Mr. Claude Choquet Ing. Msc. IWE. acts as a bridge between the welding and the programming world. Working in these fields for more than 20 years. he has filed 12 patents world-wide for a gesture control platform with leading edge hardware related to simulation. In the summer of 2006. Mr Choquet was proud to be invited to the annual IIW International Weld ing Congress in Quebec City to launch the ARC+ welding simulator. A 100% virtual reality system and web based training center was developed to simulate multi process. multi-materiaL multi-position and multi pass welding. The simulator is intended to train welding students and apprentices in schools or industries. The welding simulator is composed of a real welding e[eetrode holder (SMAW-GTAW) and gun (GMAW-FCAW). a head mounted display (HMD), a 6 degrees of freedom tracking system for interaction between the user's hands and head. as well as external audio speakers. Both guns and HMD are interacting online and simultaneously. The welding simulation is based on the law of physics and empirical results from detailed analysis of a series of welding tests based on industrial applications tested over the last 20 years. The simulation runs in real-time, using a local logic network to determine the quality and shape of the created weld. These results are based on the orientation distance. and speed of the welding torch and depth of penetration. The welding process and resulting weld bc.1d are displayed in a virtual environment with screenplay interactive training modules. For review. weld quality and recorded process values can be displayed and diagnosed after welding. To help in the le.tming process, a learning curve for each student and each Virtual Welding Class'" can be plotted, for an instructor's review or a required third party evaluation.

  8. Cognitive Aspects of Collaboration in 3d Virtual Environments

    NASA Astrophysics Data System (ADS)

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  9. Lunar Exploration Island, NASA’s Return to the Moon in Second Life

    NASA Astrophysics Data System (ADS)

    Ireton, F. M.; Bleacher, L.; Day, B.; Hsu, B. C.; Mitchell, B. K.

    2009-12-01

    Second Life is a metaverse—a massively multi-user virtual world (MMVR) community. With over 9 million users worldwide, there are 40,000-50,000 users on line at any one time. Second Life hosts over 200 educational and institutional simulation locations termed “islands” or sims that are developed by users providing support for education and business endeavors. On-line tools are provided to construct structures and landforms simulating a real world in a virtual three-dimensional environment. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move in Second Life by walking, flying, or teleporting and interact with other users via text or voice chat. This poster details the design and creation of the Second Life exhibit hall for NASA’s Lunar Precursor Robotics Program and the LRO/LCROSS missions. The hall has been placed on the Lunar Exploration Island (LEI) in Second Life. Avatars enter via teleportation to an orientation room with information about the project, a simulator map, and other information. A central hall of flight houses exhibits pertaining to the LRO/ LCROSS missions and includes full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the missions, both spacecraft instrument suites, and EPO directed to support the missions. The sim includes several sites for meetings, a conference amphitheater with a stage and screen for video links such as live broadcasts of conferences and speakers. A link is provided to NASATV for live viewing LRO/LCROSS launch and impact activities and other NASA events. Recently visitors have viewed the Hubble servicing mission and several shuttle launches as well as the LRO/LCROSS launch. Lunar Exploration Island in Second Life

  10. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  11. Crossing the Virtual World Barrier with OpenAvatar

    NASA Technical Reports Server (NTRS)

    Joy, Bruce; Kavle, Lori; Tan, Ian

    2012-01-01

    There are multiple standards and formats for 3D models in virtual environments. The problem is that there is no open source platform for generating models out of discrete parts; this results in the process of having to "reinvent the wheel" when new games, virtual worlds and simulations want to enable their users to create their own avatars or easily customize in-world objects. OpenAvatar is designed to provide a framework to allow artists and programmers to create reusable assets which can be used by end users to generate vast numbers of complete models that are unique and functional. OpenAvatar serves as a framework which facilitates the modularization of 3D models allowing parts to be interchanged within a set of logical constraints.

  12. [Virtual reality in neurosurgery].

    PubMed

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  13. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    ERIC Educational Resources Information Center

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…

  14. A game based virtual campus tour

    NASA Astrophysics Data System (ADS)

    Razia Sulthana, A.; Arokiaraj Jovith, A.; Saveetha, D.; Jaithunbi, A. K.

    2018-04-01

    The aim of the application is to create a virtual reality game, whose purpose is to showcase the facilities of SRM University, while doing so in an entertaining manner. The virtual prototype of the institution is deployed in a game engine which eases the students to look over the infrastructure, thereby reducing the resources utilization. Time and money are the resources in concern today. The virtual campus application assists the end user even from a remote location. The virtual world simulates the exact location and hence the effect is created. Thus, it virtually transports the user to the university, with the help of a VR Headset. This is a dynamic application wherein the user can move in any direction. The VR headset provides an interface to get gyro input and this is used to start and stop the movement. Virtual Campus is size efficient and occupies minimal space. It is scalable against mobile gadgets. This gaming application helps the end user to explore the campus, while having fun too. It is a user friendly application that supports users worldwide.

  15. Learning in the Virtual World: The Pedagogical Potentials of Massively Multiplayer Online Role Playing Games

    ERIC Educational Resources Information Center

    Yu, Tao Wang

    2009-01-01

    A much more attractive way to use the internet was discovered. Users are represented by avatars in the fantasy persistent 3D world, and the avatars apparently come to occupy a special place in the hearts of their creators (Castronova, 2001). At present, millions of people worldwide have accounts to some kind of virtual environments. Virtual world…

  16. Flows of Literacy across Corporate and User-Produced Virtual Worlds

    ERIC Educational Resources Information Center

    Black, Rebecca W.; Alexander, Jonathan; Korobkova, Ksenia

    2017-01-01

    Background/Context: Sociocultural research on young people's literate practices with digital media has generally focused on literacy events and practices that are grounded in distinct online locations, such as affinity spaces, specific websites, particular videogames, or virtual worlds. Purpose/Objective/Research Question/Focus of Study:…

  17. Theft of Virtual Property — Towards Security Requirements for Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Beyer, Anja

    The article is focused to introduce the topic of information technology security for Virtual Worlds to a security experts’ audience. Virtual Worlds are Web 2.0 applications where the users cruise through the world with their individually shaped avatars to find either amusement, challenges or the next best business deal. People do invest a lot of time but beyond they invest in buying virtual assets like fantasy witcheries, wepaons, armour, houses, clothes,...etc with the power of real world money. Although it is called “virtual” (which is often put on the same level as “not existent”) there is a real value behind it. In November 2007 dutch police arrested a seventeen years old teenager who was suspicted to have stolen virtual items in a Virtual World called Habbo Hotel [Reuters07]. In order to successfully provide security mechanisms into Virtual Worlds it is necessarry to fully understand the domain for which the security mechansims are defined. As Virtual Worlds must be clasified into the domain of Social Software the article starts with an overview of how to understand Web 2.0 and gives a short introduction to Virtual Worlds. The article then provides a consideration of assets of Virtual Worlds participants, describes how these assets can be threatened and gives an overview of appopriate security requirements and completes with an outlook of possible countermeasures.

  18. Real-Life Migrants on the MUVE: Stories of Virtual Transitions

    ERIC Educational Resources Information Center

    Perkins, Ross A.; Arreguin, Cathy

    2007-01-01

    The communication and collaborative interface known as a multi-user virtual environment (MUVE), has existed since as early as the late 1970s. MUVEs refer to programs that have an animated character ("avatar") controlled by a user within a wider environment that can be explored--or built--at will. Second Life, a MUVE created by San Francisco-based…

  19. A Virtual Walk through London: Culture Learning through a Cultural Immersion Experience

    ERIC Educational Resources Information Center

    Shih, Ya-Chun

    2015-01-01

    Integrating Google Street View into a three-dimensional virtual environment in which users control personal avatars provides these said users with access to an innovative, interactive, and real-world context for communication and culture learning. We have selected London, a city famous for its rich historical, architectural, and artistic heritage,…

  20. Libraries' Place in Virtual Social Networks

    ERIC Educational Resources Information Center

    Mathews, Brian S.

    2007-01-01

    Do libraries belong in the virtual world of social networking? With more than 100 million users, this environment is impossible to ignore. A rising philosophy for libraries, particularly in blog-land, involves the concept of being where the users are. Simply using new media to deliver an old message is not progress. Instead, librarians should…

  1. Building intuitive 3D interfaces for virtual reality systems

    NASA Astrophysics Data System (ADS)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Seitel, Mathias; Mullick, Rakesh

    2007-03-01

    An exploration of techniques for developing intuitive, and efficient user interfaces for virtual reality systems. Work seeks to understand which paradigms from the better-understood world of 2D user interfaces remain viable within 3D environments. In order to establish this a new user interface was created that applied various understood principles of interface design. A user study was then performed where it was compared with an earlier interface for a series of medical visualization tasks.

  2. Multi-modal virtual environment research at Armstrong Laboratory

    NASA Technical Reports Server (NTRS)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  3. Robots, multi-user virtual environments and healthcare: synergies for future directions.

    PubMed

    Moon, Ajung; Grajales, Francisco J; Van der Loos, H F Machiel

    2011-01-01

    The adoption of technology in healthcare over the last twenty years has steadily increased, particularly as it relates to medical robotics and Multi-User Virtual Environments (MUVEs) such as Second Life. Both disciplines have been shown to improve the quality of care and have evolved, for the most part, in isolation from each other. In this paper, we present four synergies between medical robotics and MUVEs that have the potential to decrease resource utilization and improve the quality of healthcare delivery. We conclude with some foreseeable barriers and future research directions for researchers in these fields.

  4. The Third Place in Second Life: Real Life Community in a Virtual World

    NASA Astrophysics Data System (ADS)

    Peachey, Anna

    In June 2006 The Open University (OU) purchased its first land in Second LifeTM (SL). Over a two and a half year period, the OU presence evolved and grew to a point where an average of between 150 and 250 unique users in any 7-day period are active in an OU area. This chapter charts the history of the development of the OU Second Life social community and considers the nature of that activity at a point of critical change, in January 2009, shortly before a new island is developed to provide a permanent home for the community. In order for the community to continue evolving it is necessary to understand the nature of the core activities of these users, and to consider this in a context of sustainable development. Through reference to aspects of socialisation and physical community, the author proposes that a virtual world environment can be described using the physical world concept of a Third Place in the information age, and considers the value of virtual space to a learning community. From a perspective of ethnography, this chapter captures a community development within SL and proposes that physical world concepts of community and Third Place are exhibited in a virtual world, and that there are equivalent benefits in the sense of support and belonging to a virtual world community.

  5. Negotiation for Action: English Language Learning in Game-Based Virtual Worlds

    ERIC Educational Resources Information Center

    Zheng, Dongping; Young, Michael F.; Wagner, Manuela Maria; Brewer, Robert A.

    2009-01-01

    This study analyzes the user chat logs and other artifacts of a virtual world, "Quest Atlantis" (QA), and proposes the concept of Negotiation for Action (NfA) to explain how interaction, specifically, avatar-embodied collaboration between native English speakers and nonnative English speakers, provided resources for English language acquisition.…

  6. Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution

    PubMed Central

    Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir

    2016-01-01

    Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks–walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the potential usefulness of such environments for understanding what visual scenes are supposed to look like and their potential for complex training and suggested many future environments they wished to experience. PMID:26882473

  7. Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution.

    PubMed

    Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir

    2016-01-01

    Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks-walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the potential usefulness of such environments for understanding what visual scenes are supposed to look like and their potential for complex training and suggested many future environments they wished to experience.

  8. Virtual reality for intelligent and interactive operating, training, and visualization systems

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.

  9. Vision-based augmented reality system

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Wang, Yongtian; Shi, Qi; Yan, Dayuan

    2003-04-01

    The most promising aspect of augmented reality lies in its ability to integrate the virtual world of the computer with the real world of the user. Namely, users can interact with the real world subjects and objects directly. This paper presents an experimental augmented reality system with a video see-through head-mounted device to display visual objects, as if they were lying on the table together with real objects. In order to overlay virtual objects on the real world at the right position and orientation, the accurate calibration and registration are most important. A vision-based method is used to estimate CCD external parameters by tracking 4 known points with different colors. It achieves sufficient accuracy for non-critical applications such as gaming, annotation and so on.

  10. Virtual community centre for power wheelchair training: Experience of children and clinicians.

    PubMed

    Torkia, Caryne; Ryan, Stephen E; Reid, Denise; Boissy, Patrick; Lemay, Martin; Routhier, François; Contardo, Resi; Woodhouse, Janet; Archambault, Phillipe S

    2017-11-02

    To: 1) characterize the overall experience in using the McGill immersive wheelchair - community centre (miWe-CC) simulator; and 2) investigate the experience of presence (i.e., sense of being in the virtual rather than in the real, physical environment) while driving a PW in the miWe-CC. A qualitative research design with structured interviews was used. Fifteen clinicians and 11 children were interviewed after driving a power wheelchair (PW) in the miWe-CC simulator. Data were analyzed using the conventional and directed content analysis approaches. Overall, participants enjoyed using the simulator and experienced a sense of presence in the virtual space. They felt a sense of being in the virtual environment, involved and focused on driving the virtual PW rather than on the surroundings of the actual room where they were. Participants reported several similarities between the virtual community centre layout and activities of the miWe-CC and the day-to-day reality of paediatric PW users. The simulator replicated participants' expectations of real-life PW use and promises to have an effect on improving the driving skills of new PW users. Implications for rehabilitation Among young users, the McGill immersive wheelchair (miWe) simulator provides an experience of presence within the virtual environment. This experience of presence is generated by a sense of being in the virtual scene, a sense of being involved, engaged, and focused on interacting within the virtual environment, and by the perception that the virtual environment is consistent with the real world. The miWe is a relevant and accessible approach, complementary to real world power wheelchair training for young users.

  11. An intelligent virtual human system for providing healthcare information and support.

    PubMed

    Rizzo, Albert A; Lange, Belinda; Buckwalter, John G; Forbell, Eric; Kim, Julia; Sagae, Kenji; Williams, Josh; Rothbaum, Barbara O; Difede, JoAnn; Reger, Greg; Parsons, Thomas; Kenny, Patrick

    2011-01-01

    Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality simulation technology for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality with the "birth" of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive, artificially intelligent and natural language capable virtual human agents that can engage real human users in a credible fashion. No longer at the level of a prop to add context or minimal faux interaction in a virtual world, virtual humans can be designed to perceive and act in a 3D virtual world, engage in spoken dialogues with real users and can be capable of exhibiting human-like emotional reactions. This paper will present an overview of the SimCoach project that aims to develop virtual human support agents to serve as online guides for promoting access to psychological healthcare information and for assisting military personnel and family members in breaking down barriers to initiating care. The SimCoach experience is being designed to attract and engage military Service Members, Veterans and their significant others who might not otherwise seek help with a live healthcare provider. It is expected that this experience will motivate users to take the first step--to empower themselves to seek advice and information regarding their healthcare and general personal welfare and encourage them to take the next step towards seeking more formal resources if needed.

  12. Do students with higher self-efficacy exhibit greater and more diverse scientific inquiry skills: An exploratory investigation in "River City", a multi-user virtual environment

    NASA Astrophysics Data System (ADS)

    Ketelhut, Diane Jass

    In this thesis, I conduct an exploratory study to investigate the relationship between students' self-efficacy on entry into authentic scientific activity and the scientific inquiry behaviors they employ while engaged in that process, over time. Scientific inquiry has been a major standard in most science education policy doctrines for the past two decades and is exemplified by activities such as making observations, formulating hypotheses, gathering and analyzing data, and forming conclusions from that data. The self-efficacy literature, however, indicates that self-efficacy levels affect perseverance and engagement. This study investigated the relationship between these two constructs. The study is conducted in a novel setting, using an innovative science curriculum delivered through an interactive computer technology that recorded each student's conversations, movements, and activities while behaving as a practicing scientist in a "virtual world" called River City. River City is a Multi-User Virtual Environment designed to engage students in a collaborative scientific inquiry-based learning experience. As a result, I was able to follow students' moment-by-moment choices of behavior while they were behaving as scientists. I collected data on students' total scientific inquiry behaviors over three visits to River City, as well as the number of sources from which they gathered their scientific data. I analyzed my longitudinal data on the 96 seventh-graders using individual growth modeling. I found that self-efficacy played a role in the number of data-gathering behaviors students engaged in initially, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. However, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender; by the end of the study, student self-efficacy did not impact data gathering. In addition, students' level of self-efficacy did not affect how many different sources from which they chose to gather data. There are indications in my results that novel interventions like a Multi-user Virtual Environment might act as a catalyst for change in student learning. Further research using these techniques may enable a better understanding of the interaction between self-efficacy and scientific inquiry, and eventually science learning outcomes.

  13. Virtual World Learning Spaces: Developing a Second Life Operating Room Simulation

    ERIC Educational Resources Information Center

    Gerald, Stephanie; Antonacci, David M.

    2009-01-01

    User-created virtual worlds, such as Second Life, are a hot topic in higher education. Thousands of educators are currently exploring and using Second Life, and hundreds of colleges and universities have purchased and developed their own private islands in Second Life, including the University of Kansas Medical Center (KUMC). Because it is so easy…

  14. The Information Needs of Virtual Users: A Study of Second Life Libraries

    ERIC Educational Resources Information Center

    Chow, Anthony S.; Baity, C. Chase; Zamarripa, Marilyn; Chappell, Pam; Rachlin, David; Vinson, Curtis

    2012-01-01

    As virtual worlds continue to proliferate globally, libraries are faced with the question of whether to provide information services to virtual patrons. This study, utilizing a mixed-method approach of interviews, focus groups, and surveys, represents one of the largest studies of virtual libraries attempted to date. Taking a holistic perspective,…

  15. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment

    PubMed Central

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-01-01

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service. PMID:26393609

  16. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment.

    PubMed

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-09-18

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service.

  17. Virtual World Astrosociology

    NASA Astrophysics Data System (ADS)

    Bainbridge, William Sims

    2010-01-01

    This essay introduces the opportunity for theory development and even empirical research on some aspects of astrosociology through today's online virtual worlds. The examples covered present life on other planets or in space itself, in a manner that can be experienced by the user and where the user's reactions may simulate to some degree future human behavior in real extraterrestrial environments: Tabula Rasa, Anarchy Online, Entropia Universe, EVE Online, StarCraft and World of Warcraft. Ethnographic exploration of these computerized environments raises many questions about the social science both of space exploration and of direct contact with extraterrestrials. The views expressed in this essay do not necessarily represent the views of the National Science Foundation or the United States.

  18. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  19. Designing Virtual Worlds for Use in Mathematics Education.

    ERIC Educational Resources Information Center

    Winn, William; Bricken, William

    Virtual Reality (VR) is a computer generated, multi-dimensional, inclusive environment that can build axioms of algebra into the behavior of the world. This paper discusses the use of VR to represent part of the algebra curriculum in order to improve students' classroom experiences in learning algebra. Students learn to construct their knowledge…

  20. An Examination of Usability of a Virtual Environment for Students Enrolled in a College of Agriculture

    ERIC Educational Resources Information Center

    Murphrey, Theresa Pesl; Rutherford, Tracy A.; Doerfert, David L.; Edgar, Leslie D.; Edgar, Don W.

    2014-01-01

    Educational technology continues to expand with multi-user virtual environments (e.g., Second Life™) being the latest technology. Understanding a virtual environment's usability can enhance educational planning and effective use. Usability includes the interaction quality between an individual and the item being assessed. The purpose was to assess…

  1. Delivering an Alternative Medicine Resource to the User's Desktop via World Wide Web.

    ERIC Educational Resources Information Center

    Li, Jie; Wu, Gang; Marks, Ellen; Fan, Weiyu

    1998-01-01

    Discusses the design and implementation of a World Wide Web-based alternative medicine virtual resource. This homepage integrates regional, national, and international resources and delivers library services to the user's desktop. Goals, structure, and organizational schemes of the system are detailed, and design issues for building such a…

  2. Virtual Beach v2.2 User Guide

    EPA Science Inventory

    Virtual Beach version 2.2 (VB 2.2) is a decision support tool. It is designed to construct site-specific Multi-Linear Regression (MLR) models to predict pathogen indicator levels (or fecal indicator bacteria, FIB) at recreational beaches. MLR analysis has outperformed persisten...

  3. Characterizing Mobility and Contact Networks in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Machado, Felipe; Santos, Matheus; Almeida, Virgílio; Guedes, Dorgival

    Virtual worlds have recently gained wide recognition as an important field of study in Computer Science. In this work we present an analysis of the mobility and interactions among characters in World of Warcraft (WoW) and Second Life based on the contact opportunities extracted from actual user data in each of those domains. We analyze character contacts in terms of their spatial and temporal characteristics, as well as the social network derived from such contacts. Our results show that the contacts observed may be more influenced by the nature of the interactions and goals of the users in each situation than by the intrinsic structure of such worlds. In particular, observations from a city in WoW are closer to those of Second Life than to other areas in WoW itself.

  4. Surgery applications of virtual reality

    NASA Technical Reports Server (NTRS)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  5. [Virtual + 1] * Reality

    NASA Astrophysics Data System (ADS)

    Beckhaus, Steffi

    Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.

  6. Generating Contextual Descriptions of Virtual Reality (VR) Spaces

    NASA Astrophysics Data System (ADS)

    Olson, D. M.; Zaman, C. H.; Sutherland, A.

    2017-12-01

    Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.

  7. Active Learning through the Use of Virtual Environments

    ERIC Educational Resources Information Center

    Mayrose, James

    2012-01-01

    Immersive Virtual Reality (VR) has seen explosive growth over the last decade. Immersive VR attempts to give users the sensation of being fully immersed in a synthetic environment by providing them with 3D hardware, and allowing them to interact with objects in virtual worlds. The technology is extremely effective for learning and exploration, and…

  8. Virtual Environments Supporting Learning and Communication in Special Needs Education

    ERIC Educational Resources Information Center

    Cobb, Sue V. G.

    2007-01-01

    Virtual reality (VR) describes a set of technologies that allow users to explore and experience 3-dimensional computer-generated "worlds" or "environments." These virtual environments can contain representations of real or imaginary objects on a small or large scale (from modeling of molecular structures to buildings, streets, and scenery of a…

  9. An interactive VR system based on full-body tracking and gesture recognition

    NASA Astrophysics Data System (ADS)

    Zeng, Xia; Sang, Xinzhu; Chen, Duo; Wang, Peng; Guo, Nan; Yan, Binbin; Wang, Kuiru

    2016-10-01

    Most current virtual reality (VR) interactions are realized with the hand-held input device which leads to a low degree of presence. There is other solutions using sensors like Leap Motion to recognize the gestures of users in order to interact in a more natural way, but the navigation in these systems is still a problem, because they fail to map the actual walking to virtual walking only with a partial body of the user represented in the synthetic environment. Therefore, we propose a system in which users can walk around in the virtual environment as a humanoid model, selecting menu items and manipulating with the virtual objects using natural hand gestures. With a Kinect depth camera, the system tracks the joints of the user, mapping them to a full virtual body which follows the move of the tracked user. The movements of the feet can be detected to determine whether the user is in walking state, so that the walking of model in the virtual world can be activated and stopped by means of animation control in Unity engine. This method frees the hands of users comparing to traditional navigation way using hand-held device. We use the point cloud data getting from Kinect depth camera to recognize the gestures of users, such as swiping, pressing and manipulating virtual objects. Combining the full body tracking and gestures recognition using Kinect, we achieve our interactive VR system in Unity engine with a high degree of presence.

  10. Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Reprint of: Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-11-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Exploring virtual worlds with head-mounted displays

    NASA Astrophysics Data System (ADS)

    Chung, James C.; Harris, Mark R.; Brooks, F. P.; Fuchs, Henry; Kelley, Michael T.

    1989-02-01

    Research has been conducted in the use of simple head mounted displays in real world applications. Such units provide the user with non-holographic true 3-D information, since the kinetic depth effect, stereoscopy, and other visual cues combine to immerse the user in a virtual world which behaves like the real world in some respects. UNC's head mounted display was built inexpensively from commercially available off-the-shelf components. Tracking of the user's head position and orientation is performed by a Polhemus Navigation Sciences' 3SPACE tracker. The host computer uses the tracking information to generate updated images corresponding to the user's new left eye and right eye views. The images are broadcast to two liquid crystal television screens (220x320 pixels) mounted on a horizontal shelf at the user's forehead. The user views these color screens through half-silvered mirrors, enabling the computer generated image to be superimposed upon the user's real physical environment. The head mounted display was incorporated into existing molecular and architectural applications being developed at UNC. In molecular structure studies, chemists are presented with a room sized molecule with which they can interact in a manner more intuitive than that provided by conventional 2-D displays and dial boxes. Walking around and through the large molecule may provide quicker understanding of its structure, and such problems as drug enzyme docking may be approached with greater insight.

  13. Increasing Accessibility to the Blind of Virtual Environments, Using a Virtual Mobility Aid Based On the "EyeCane": Feasibility Study

    PubMed Central

    Maidenbaum, Shachar; Levy-Tzedek, Shelly; Chebat, Daniel-Robert; Amedi, Amir

    2013-01-01

    Virtual worlds and environments are becoming an increasingly central part of our lives, yet they are still far from accessible to the blind. This is especially unfortunate as such environments hold great potential for them for uses such as social interaction, online education and especially for use with familiarizing the visually impaired user with a real environment virtually from the comfort and safety of his own home before visiting it in the real world. We have implemented a simple algorithm to improve this situation using single-point depth information, enabling the blind to use a virtual cane, modeled on the “EyeCane” electronic travel aid, within any virtual environment with minimal pre-processing. Use of the Virtual-EyeCane, enables this experience to potentially be later used in real world environments with identical stimuli to those from the virtual environment. We show the fast-learned practical use of this algorithm for navigation in simple environments. PMID:23977316

  14. Claiming Unclaimed Spaces: Virtual Spaces for Learning

    ERIC Educational Resources Information Center

    Miller, Nicole C.

    2016-01-01

    The purpose of this study was to describe and examine the environments used by teacher candidates in multi-user virtual environments. Secondary data analysis of a case study methodology was employed. Multiple data sources including interviews, surveys, observations, snapshots, course artifacts, and the researcher's journal were used in the initial…

  15. WeaVR: a self-contained and wearable immersive virtual environment simulation system.

    PubMed

    Hodgson, Eric; Bachmann, Eric R; Vincent, David; Zmuda, Michael; Waller, David; Calusdian, James

    2015-03-01

    We describe WeaVR, a computer simulation system that takes virtual reality technology beyond specialized laboratories and research sites and makes it available in any open space, such as a gymnasium or a public park. Novel hardware and software systems enable HMD-based immersive virtual reality simulations to be conducted in any arbitrary location, with no external infrastructure and little-to-no setup or site preparation. The ability of the WeaVR system to provide realistic motion-tracked navigation for users, to improve the study of large-scale navigation, and to generate usable behavioral data is shown in three demonstrations. First, participants navigated through a full-scale virtual grocery store while physically situated in an open grass field. Trajectory data are presented for both normal tracking and for tracking during the use of redirected walking that constrained users to a predefined area. Second, users followed a straight path within a virtual world for distances of up to 2 km while walking naturally and being redirected to stay within the field, demonstrating the ability of the system to study large-scale navigation by simulating virtual worlds that are potentially unlimited in extent. Finally, the portability and pedagogical implications of this system were demonstrated by taking it to a regional high school for live use by a computer science class on their own school campus.

  16. Charliecloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priedhorsky, Reid; Randles, Tim

    Charliecloud is a set of scripts to let users run a virtual cluster of virtual machines (VMs) on a desktop or supercomputer. Key functions include: 1. Creating (typically by installing an operating system from vendor media) and updating VM images; 2. Running a single VM; 3. Running multiple VMs in a virtual cluster. The virtual machines can talk to one another over the network and (in some cases) the outside world. This is accomplished by calling external programs such as QEMU and the Virtual Distributed Ethernet (VDE) suite. The goal is to let users have a virtual cluster containing nodesmore » where they have privileged access, while isolating that privilege within the virtual cluster so it cannot affect the physical compute resources. Host configuration enforces security; this is not included in Charliecloud, though security guidelines are included in its documentation and Charliecloud is designed to facilitate such configuration. Charliecloud manages passing information from host computers into and out of the virtual machines, such as parameters of the virtual cluster, input data specified by the user, output data from virtual compute jobs, VM console display, and network connections (e.g., SSH or X11). Parameters for the virtual cluster (number of VMs, RAM and disk per VM, etc.) are specified by the user or gathered from the environment (e.g., SLURM environment variables). Example job scripts are included. These include computation examples (such as a "hello world" MPI job) as well as performance tests. They also include a security test script to verify that the virtual cluster is appropriately sandboxed. Tests include: 1. Pinging hosts inside and outside the virtual cluster to explore connectivity; 2. Port scans (again inside and outside) to see what services are available; 3. Sniffing tests to see what traffic is visible to running VMs; 4. IP address spoofing to test network functionality in this case; 5. File access tests to make sure host access permissions are enforced. This test script is not a comprehensive scanner and does not test for specific vulnerabilities. Importantly, no information about physical hosts or network topology is included in this script (or any of Charliecloud); while part of a sensible test, such information is specified by the user when the test is run. That is, one cannot learn anything about the LANL network or computing infrastructure by examining Charliecloud code.« less

  17. Soft Where? Licensing Struggles in a Virtual World

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2011-01-01

    As virtualization becomes commonplace in higher education, it is clear that the traditional licensing options for software are woefully inadequate. The definitions of who is licensed to use what--and where--are blurring, as users move from physical to virtual spaces and can access software from a variety of devices. In discussing the need for new…

  18. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  19. Ambient clumsiness in virtual environments

    NASA Astrophysics Data System (ADS)

    Ruzanka, Silvia; Behar, Katherine

    2010-01-01

    A fundamental pursuit of Virtual Reality is the experience of a seamless connection between the user's body and actions within the simulation. Virtual worlds often mediate the relationship between the physical and virtual body through creating an idealized representation of the self in an idealized space. This paper argues that the very ubiquity of the medium of virtual environments, such as the massively popular Second Life, has now made them mundane, and that idealized representations are no longer appropriate. In our artwork we introduce the attribute of clumsiness to Second Life by creating and distributing scripts that cause users' avatars to exhibit unpredictable stumbling, tripping, and momentary poor coordination, thus subtly and unexpectedly intervening with, rather than amplifying, a user's intent. These behaviors are publicly distributed, and manifest only occasionally - rather than intentional, conscious actions, they are involuntary and ambient. We suggest that the physical human body is itself an imperfect interface, and that the continued blurring of distinctions between the physical body and virtual representations calls for the introduction of these mundane, clumsy elements.

  20. Usage of Thin-Client/Server Architecture in Computer Aided Education

    ERIC Educational Resources Information Center

    Cimen, Caghan; Kavurucu, Yusuf; Aydin, Halit

    2014-01-01

    With the advances of technology, thin-client/server architecture has become popular in multi-user/single network environments. Thin-client is a user terminal in which the user can login to a domain and run programs by connecting to a remote server. Recent developments in network and hardware technologies (cloud computing, virtualization, etc.)…

  1. Presence Personalization and Persistence: A New Approach to Building Archives to Support Collaborative Research

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas A.

    2008-01-01

    We discuss approaches to building archives that support the way most science is done. Today research is done in formal teams and informal groups. However our on-line services are designed to work with a single user. We have begun prototyping a new approach to building archives in which support for collaborative research is built in from the start. We organize the discussion along three elements that we believe to be necessary for effective support: We must enable user presence in the archive environment; users must be able to interact. Users must be able to personalize the environment, adding data and capabilities useful to themselves and their team. These changes must be persistent: subsequent sessions must be able to build upon previous sessions. In building the archive we see the large multi-player interactive games as a paradigm of how this approach can work. These three 'P's are essential in gaming as well and we shall use insights from the gaming world and virtual reality systems like Second Life in our prototype.

  2. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  3. A second life for eHealth: prospects for the use of 3-D virtual worlds in clinical psychology.

    PubMed

    Gorini, Alessandra; Gaggioli, Andrea; Vigna, Cinzia; Riva, Giuseppe

    2008-08-05

    The aim of the present paper is to describe the role played by three-dimensional (3-D) virtual worlds in eHealth applications, addressing some potential advantages and issues related to the use of this emerging medium in clinical practice. Due to the enormous diffusion of the World Wide Web (WWW), telepsychology, and telehealth in general, have become accepted and validated methods for the treatment of many different health care concerns. The introduction of the Web 2.0 has facilitated the development of new forms of collaborative interaction between multiple users based on 3-D virtual worlds. This paper describes the development and implementation of a form of tailored immersive e-therapy called p-health whose key factor is interreality, that is, the creation of a hybrid augmented experience merging physical and virtual worlds. We suggest that compared with conventional telehealth applications such as emails, chat, and videoconferences, the interaction between real and 3-D virtual worlds may convey greater feelings of presence, facilitate the clinical communication process, positively influence group processes and cohesiveness in group-based therapies, and foster higher levels of interpersonal trust between therapists and patients. However, challenges related to the potentially addictive nature of such virtual worlds and questions related to privacy and personal safety will also be discussed.

  4. The Use of Virtual Globes as a Spatial Teaching Tool with Suggestions for Metadata Standards

    ERIC Educational Resources Information Center

    Schultz, Richard B.; Kerski, Joseph J.; Patterson, Todd C.

    2008-01-01

    Virtual Globe software has become extremely popular both inside and outside of educational settings. This software allows users to explore the Earth in three dimensions while streaming satellite imagery, elevation, and other data from the Internet. Virtual Globes, such as Google Earth, NASA World Wind, and ESRI's ArcGIS Explorer can be effectively…

  5. Second Life in Education: The Case of Commercial Online Virtual Reality Applied to Teaching and Learning

    ERIC Educational Resources Information Center

    Brown, Abbie; Sugar, William

    2009-01-01

    Second Life is a three-dimensional, multi-user virtual environment that has attracted particular attention for its instructional potential in professional development and higher education settings. This article describes Second Life in general and explores the benefits and challenges of using it for teaching and learning.

  6. "Mooving" to a Virtual Curriculum.

    ERIC Educational Resources Information Center

    LaRoe, R. John

    Three writing classes at the University of Missouri (freshman, sophomore, and senior) spent much or most of the semester on the virtual campus of the Diversity University (DU) MOO (multi-user object oriented). The freshman class wrote one paper on Internet exploration, another on their favorite Internet destination, and for the third were given a…

  7. HyFinBall: A Two-Handed, Hybrid 2D/3D Desktop VR Interface for Visualization

    DTIC Science & Technology

    2013-01-01

    user study . This is done in the context of a rich, visual analytics interface containing coordinated views with 2D and 3D visualizations and...the user interface (hardware and software), the design space, as well as preliminary results of a formal user study . This is done in the context of a ... virtual reality , user interface , two-handed interface , hybrid user interface , multi-touch, gesture,

  8. Review of virtual reality treatment for mental health.

    PubMed

    Gourlay, D; Lun, K C; Liya, G

    2001-01-01

    This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.

  9. Authoring Tours of Geospatial Data With KML and Google Earth

    NASA Astrophysics Data System (ADS)

    Barcay, D. P.; Weiss-Malik, M.

    2008-12-01

    As virtual globes become widely adopted by the general public, the use of geospatial data has expanded greatly. With the popularization of Google Earth and other platforms, GIS systems have become virtual reality platforms. Using these platforms, a casual user can easily explore the world, browse massive data-sets, create powerful 3D visualizations, and share those visualizations with millions of people using the KML language. This technology has raised the bar for professionals and academics alike. It is now expected that studies and projects will be accompanied by compelling, high-quality visualizations. In this new landscape, a presentation of geospatial data can be the most effective form of advertisement for a project: engaging both the general public and the scientific community in a unified interactive experience. On the other hand, merely dumping a dataset into a virtual globe can be a disorienting, alienating experience for many users. To create an effective, far-reaching presentation, an author must take care to make their data approachable to a wide variety of users with varying knowledge of the subject matter, expertise in virtual globes, and attention spans. To that end, we present techniques for creating self-guided interactive tours of data represented in KML and visualized in Google Earth. Using these methods, we provide the ability to move the camera through the world while dynamically varying the content, style, and visibility of the displayed data. Such tours can automatically guide users through massive, complex datasets: engaging a broad user-base, and conveying subtle concepts that aren't immediately apparent when viewing the raw data. To the casual user these techniques result in an extremely compelling experience similar to watching video. Unlike video though, these techniques maintain the rich interactive environment provided by the virtual globe, allowing users to explore the data in detail and to add other data sources to the presentation.

  10. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases.

    PubMed

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-04-15

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

  11. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases

    PubMed Central

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-01-01

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907

  12. Transduction between worlds: using virtual and mixed reality for earth and planetary science

    NASA Astrophysics Data System (ADS)

    Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.

    2017-12-01

    Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.

  13. Virtual socialization in adults with spina bifida.

    PubMed

    Chan, Wendy M; Dicianno, Brad E

    2011-03-01

    To use spina bifida (SB) as a model of chronic physical disability to study the associations of virtual socialization, friendships, and quality of life (QOL) in adults. Cross-sectional survey. Subjects were recruited from residential living facilities, outpatient clinics, and the University of Pittsburgh Medical Center (UPMC) research registry. Inclusion criteria were age between 18 and 80 years and clinical diagnoses of SB cystica (myelomeningocele) and hydrocephalus. The exclusion criterion was the diagnosis of SB occulta. Sixty-three eligible adults were enrolled, and all completed the study. The survey via questionnaire was performed in person or over the telephone. Data collected included the World Health Organization's Medical Outcomes Study 26-item Short Form, Economic Self-Sufficiency from the Craig Handicap Assessment and Reporting Technique Short Form, virtual socializing habits, and number of friends. Three linear regression models were performed, each with a unique dependent variable: number of friends, psychological QOL, or social QOL. The following independent variables were included in all models: age, gender, ethnicity, economic self-sufficiency, marital status, education level, lesion level, health status, user group, collection method, and time spent virtually socializing. In addition, each regression model included the dependent variables from the other 2 models in its independent variables. Increased degree of virtual socialization (VS) was associated with a greater number of friends (P = .003, r = .684). Mean (standard deviation) numbers of friends by VS groups were the following: users, n = 4.9 ± 2.7; semi-users, n = 3.8 ± 2.7; and nonusers, n = 2.1 ± 2.3, which represent a 2.3 times greater number of friends between the users and nonusers. The effect of virtual socialization on QOL was also positive, however, not statistically significant. People with chronic physical disabilities, such as SB, are at high risk for peer rejection and long-term social avoidance. Users of the most immersive forms of virtual socialization, have more real world friends than both semi-users and nonusers. Any form of VS, whether immersive or real time, may improve the opportunity for meaningful social encounters. Prospective intervention studies are needed to elucidate whether a causal positive relationship between virtual socialization and friendships exists. Further research is needed to clarify virtual socialization's impact on QOL; however, the upward trend in all 4 domains of QOL across user groups suggests similar potential benefits. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. The Virtual Ramp to the Equivalent Experience in the Virtual Museum: Accessibility to Museums on the Web.

    ERIC Educational Resources Information Center

    Nevile, Liddy; McCathieNevile, Charles

    This paper argues that a range of forms and modalities of resources should be provided to ensure accessibility and richness on the World Wide Web for all users. Based on experiences in developing virtual exhibitions of Quinkan Aboriginal Rock Art, the authors present a brief overview of the technology available for accessibility. Then they explore…

  15. Bimanual Interaction with Interscopic Multi-Touch Surfaces

    NASA Astrophysics Data System (ADS)

    Schöning, Johannes; Steinicke, Frank; Krüger, Antonio; Hinrichs, Klaus; Valkov, Dimitar

    Multi-touch interaction has received considerable attention in the last few years, in particular for natural two-dimensional (2D) interaction. However, many application areas deal with three-dimensional (3D) data and require intuitive 3D interaction techniques therefore. Indeed, virtual reality (VR) systems provide sophisticated 3D user interface, but then lack efficient 2D interaction, and are therefore rarely adopted by ordinary users or even by experts. Since multi-touch interfaces represent a good trade-off between intuitive, constrained interaction on a touch surface providing tangible feedback, and unrestricted natural interaction without any instrumentation, they have the potential to form the foundation of the next generation user interface for 2D as well as 3D interaction. In particular, stereoscopic display of 3D data provides an additional depth cue, but until now the challenges and limitations for multi-touch interaction in this context have not been considered. In this paper we present new multi-touch paradigms and interactions that combine both traditional 2D interaction and novel 3D interaction on a touch surface to form a new class of multi-touch systems, which we refer to as interscopic multi-touch surfaces (iMUTS). We discuss iMUTS-based user interfaces that support interaction with 2D content displayed in monoscopic mode and 3D content usually displayed stereoscopically. In order to underline the potential of the proposed iMUTS setup, we have developed and evaluated two example interaction metaphors for different domains. First, we present intuitive navigation techniques for virtual 3D city models, and then we describe a natural metaphor for deforming volumetric datasets in a medical context.

  16. Avatars Go to Class: A Virtual Environment Soil Science Activity

    ERIC Educational Resources Information Center

    Mamo, M.; Namuth-Covert, D.; Guru, A.; Nugent, G.; Phillips, L.; Sandall, L.; Kettler, T.; McCallister, D.

    2011-01-01

    Web 2.0 technology is expanding rapidly from social and gaming uses into the educational applications. Specifically, the multi-user virtual environment (MUVE), such as SecondLife, allows educators to fill the gap of first-hand experience by creating simulated realistic evolving problems/games. In a pilot study, a team of educators at the…

  17. A Second Life for eHealth: Prospects for the Use of 3-D Virtual Worlds in Clinical Psychology

    PubMed Central

    Gaggioli, Andrea; Vigna, Cinzia; Riva, Giuseppe

    2008-01-01

    The aim of the present paper is to describe the role played by three-dimensional (3-D) virtual worlds in eHealth applications, addressing some potential advantages and issues related to the use of this emerging medium in clinical practice. Due to the enormous diffusion of the World Wide Web (WWW), telepsychology, and telehealth in general, have become accepted and validated methods for the treatment of many different health care concerns. The introduction of the Web 2.0 has facilitated the development of new forms of collaborative interaction between multiple users based on 3-D virtual worlds. This paper describes the development and implementation of a form of tailored immersive e-therapy called p-health whose key factor is interreality, that is, the creation of a hybrid augmented experience merging physical and virtual worlds. We suggest that compared with conventional telehealth applications such as emails, chat, and videoconferences, the interaction between real and 3-D virtual worlds may convey greater feelings of presence, facilitate the clinical communication process, positively influence group processes and cohesiveness in group-based therapies, and foster higher levels of interpersonal trust between therapists and patients. However, challenges related to the potentially addictive nature of such virtual worlds and questions related to privacy and personal safety will also be discussed. PMID:18678557

  18. A computer-based training system combining virtual reality and multimedia

    NASA Technical Reports Server (NTRS)

    Stansfield, Sharon A.

    1993-01-01

    Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.

  19. EMERGENCY RESPONSE TEAMS TRAINING IN PUBLIC HEALTH CRISIS - THE SERIOUSNESS OF SERIOUS GAMES.

    PubMed

    Stanojevic, Vojislav; Stanojevic, Cedomirka

    2016-07-01

    The rapid development of multimedia technologies in the last twenty years has lead to the emergence of new ways of learning academic and professional skills, which implies the application of multimedia technology in the form of a software -" serious computer games". Three-Dimensional Virtual Worlds. The basis of this game-platform is made of the platform of three-dimensional virtual worlds that can be described as communication systems in which participants share the same three-dimensional virtual space within which they can move, manipulate objects and communicate through their graphical representatives- avatars. Medical Education and Training. Arguments in favor of these computer tools in the learning process are accessibility, repeatability, low cost, the use of attractive graphics and a high degree of adaptation to the user. Specifically designed avatars allow students to get adapted to their roles in certain situations, especially to those which are considered rare, dangerous or unethical in real life. Drilling of major incidents, which includes the need to create environments for training, cannot be done in the real world due to high costs'and necessity to utilize the extensive resources. In addition, it is impossible to engage all the necessary health personnel at the same time. New technologies intended for conducting training, which are also called "virtual worlds", make the following possible: training at all times depending on user's commitments; simultaneous simulations on multiple levels, in several areas, in different circumstances, including dozens of unique victims; repeated scenarios and learning from mistakes; rapid feedback and the development of non-technical skills which are critical for reducing errors in dynamic, high-risk environments. Virtual worlds, which should be the subject of further research and improvements, in the field of hospital emergency response training for mass casualty incidents, certainly have a promising future.

  20. Virtual reality training improves balance function.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  1. Virtual reality training improves balance function

    PubMed Central

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  2. Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.

    PubMed

    Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor

    2008-03-01

    To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.

  3. Interaction Management Strategies on IRC and Virtual Chat Rooms.

    ERIC Educational Resources Information Center

    Altun, Arif

    Internet Relay Chat (IRC) is an electronic medium that combines orthographic form with real time, synchronous transmission in an unregulated global multi-user environment. The orthographic letters mediate the interaction in that users can only access the IRC session through reading and writing; they have no access to any visual representations at…

  4. Affective Load and Engagement in Second Life: Experiencing Urgent, Persistent, and Long-Term Information Needs

    ERIC Educational Resources Information Center

    Nahl, Diane

    2010-01-01

    New users of virtual environments face a steep learning curve, requiring persistence and determination to overcome challenges experienced while acclimatizing to the demands of avatar-mediated behavior. Concurrent structured self-reports can be used to monitor the personal affective and cognitive struggles involved in virtual world adaptation to…

  5. Evaluating Technology-Based Educational Interventions: A Review of Two Projects

    ERIC Educational Resources Information Center

    Adamo-Villani, Nicoletta; Dib, Hazar

    2013-01-01

    The article discusses current evaluation methodologies used to assess the usability, user enjoyment, and pedagogical efficacy of virtual learning environments (VLEs) and serious games. It also describes the evaluations of two recently developed projects: a virtual learning environment that employs a fantasy 3D world to engage deaf and hearing…

  6. A hardware and software architecture to deal with multimodal and collaborative interactions in multiuser virtual reality environments

    NASA Astrophysics Data System (ADS)

    Martin, P.; Tseu, A.; Férey, N.; Touraine, D.; Bourdot, P.

    2014-02-01

    Most advanced immersive devices provide collaborative environment within several users have their distinct head-tracked stereoscopic point of view. Combining with common used interactive features such as voice and gesture recognition, 3D mouse, haptic feedback, and spatialized audio rendering, these environments should faithfully reproduce a real context. However, even if many studies have been carried out on multimodal systems, we are far to definitively solve the issue of multimodal fusion, which consists in merging multimodal events coming from users and devices, into interpretable commands performed by the application. Multimodality and collaboration was often studied separately, despite of the fact that these two aspects share interesting similarities. We discuss how we address this problem, thought the design and implementation of a supervisor that is able to deal with both multimodal fusion and collaborative aspects. The aim of this supervisor is to ensure the merge of user's input from virtual reality devices in order to control immersive multi-user applications. We deal with this problem according to a practical point of view, because the main requirements of this supervisor was defined according to a industrial task proposed by our automotive partner, that as to be performed with multimodal and collaborative interactions in a co-located multi-user environment. In this task, two co-located workers of a virtual assembly chain has to cooperate to insert a seat into the bodywork of a car, using haptic devices to feel collision and to manipulate objects, combining speech recognition and two hands gesture recognition as multimodal instructions. Besides the architectural aspect of this supervisor, we described how we ensure the modularity of our solution that could apply on different virtual reality platforms, interactive contexts and virtual contents. A virtual context observer included in this supervisor in was especially designed to be independent to the content of the virtual scene of targeted application, and is use to report high-level interactive and collaborative events. This context observer allows the supervisor to merge these interactive and collaborative events, but is also used to deal with new issues coming from our observation of two co-located users in an immersive device performing this assembly task. We highlight the fact that when speech recognition features are provided to the two users, it is required to automatically detect according to the interactive context, whether the vocal instructions must be translated into commands that have to be performed by the machine, or whether they take a part of the natural communication necessary for collaboration. Information coming from this context observer that indicates a user is looking at its collaborator, is important to detect if the user is talking to its partner. Moreover, as the users are physically co-localised and head-tracking is used to provide high fidelity stereoscopic rendering, and natural walking navigation in the virtual scene, we have to deals with collision and screen occlusion between the co-located users in the physical work space. Working area and focus of each user, computed and reported by the context observer is necessary to prevent or avoid these situations.

  7. The effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation.

    PubMed

    Maidenbaum, Shachar; Levy-Tzedek, Shelly; Chebat, Daniel Robert; Namer-Furstenberg, Rinat; Amedi, Amir

    2014-01-01

    Mobility training programs for helping the blind navigate through unknown places with a White-Cane significantly improve their mobility. However, what is the effect of new assistive technologies, offering more information to the blind user, on the underlying premises of these programs such as navigation patterns? We developed the virtual-EyeCane, a minimalistic sensory substitution device translating single-point-distance into auditory cues identical to the EyeCane's in the real world. We compared performance in virtual environments when using the virtual-EyeCane, a virtual-White-Cane, no device and visual navigation. We show that the characteristics of virtual-EyeCane navigation differ from navigation with a virtual-White-Cane or no device, and that virtual-EyeCane users complete more levels successfully, taking shorter paths and with less collisions than these groups, and we demonstrate the relative similarity of virtual-EyeCane and visual navigation patterns. This suggests that additional distance information indeed changes navigation patterns from virtual-White-Cane use, and brings them closer to visual navigation.

  8. Productive confusions: learning from simulations of pandemic virus outbreaks in Second Life

    NASA Astrophysics Data System (ADS)

    Cárdenas, Micha; Greci, Laura S.; Hurst, Samantha; Garman, Karen; Hoffman, Helene; Huang, Ricky; Gates, Michael; Kho, Kristen; Mehrmand, Elle; Porteous, Todd; Calvitti, Alan; Higginbotham, Erin; Agha, Zia

    2011-03-01

    Users of immersive virtual reality environments have reported a wide variety of side and after effects including the confusion of characteristics of the real and virtual worlds. Perhaps this side effect of confusing the virtual and real can be turned around to explore the possibilities for immersion with minimal technological support in virtual world group training simulations. This paper will describe observations from my time working as an artist/researcher with the UCSD School of Medicine (SoM) and Veterans Administration San Diego Healthcare System (VASDHS) to develop trainings for nurses, doctors and Hospital Incident Command staff that simulate pandemic virus outbreaks. By examining moments of slippage between realities, both into and out of the virtual environment, moments of the confusion of boundaries between real and virtual, we can better understand methods for creating immersion. I will use the mixing of realities as a transversal line of inquiry, borrowing from virtual reality studies, game studies, and anthropological studies to better understand the mechanisms of immersion in virtual worlds. Focusing on drills conducted in Second Life, I will examine moments of training to learn the software interface, moments within the drill and interviews after the drill.

  9. Human-computer interface

    DOEpatents

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  10. Establishing a virtual learning environment: a nursing experience.

    PubMed

    Wood, Anya; McPhee, Carolyn

    2011-11-01

    The use of virtual worlds has exploded in popularity, but getting started may not be easy. In this article, the authors, members of the corporate nursing education team at University Health Network, outline their experience with incorporating virtual technology into their learning environment. Over a period of several months, a virtual hospital, including two nursing units, was created in Second Life®, allowing more than 500 nurses to role-play in a safe environment without the fear of making a mistake. This experience has provided valuable insight into the best ways to develop and learn in a virtual environment. The authors discuss the challenges of installing and building the Second Life® platform and provide guidelines for preparing users and suggestions for crafting educational activities. This article provides a starting point for organizations planning to incorporate virtual worlds into their learning environment. Copyright 2011, SLACK Incorporated.

  11. Immersive Collaboration Simulations: Multi-User Virtual Environments and Augmented Realities

    NASA Technical Reports Server (NTRS)

    Dede, Chris

    2008-01-01

    Emerging information technologies are reshaping the following: shifts in the knowledge and skills society values, development of new methods of teaching and learning, and changes in the characteristics of learning.

  12. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    NASA Astrophysics Data System (ADS)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  13. GeoMapApp, Virtual Ocean, and other Free Data Resources for the 21st Century Classroom

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Ryan, W.; Carbotte, S.; Melkonian, A.; Coplan, J.; Arko, R.; Ferrini, V.; O'Hara, S.; Leung, A.; Bonckzowski, J.

    2008-12-01

    With funding from the U.S. National Science Foundation, the Marine Geoscience Data System (MGDS) (http://www.marine-geo.org/) is developing GeoMapApp (http://www.geomapapp.org) - a computer application that provides wide-ranging map-based visualization and manipulation options for interdisciplinary geosciences research and education. The novelty comes from the use of this visual tool to discover and explore data, with seamless links to further discovery using traditional text-based approaches. Users can generate custom maps and grids and import their own data sets. Built-in functionality allows users to readily explore a broad suite of interactive data sets and interfaces. Examples include multi-resolution global digital models of topography, gravity, sediment thickness, and crustal ages; rock, fluid, biology and sediment sample information; research cruise underway geophysical and multibeam data; earthquake events; submersible dive photos of hydrothermal vents; geochemical analyses; DSDP/ODP core logs; seismic reflection profiles; contouring, shading, profiling of grids; and many more. On-line audio-visual tutorials lead users step-by-step through GeoMapApp functionality (http://www.geomapapp.org/tutorials/). Virtual Ocean (http://www.virtualocean.org/) integrates GeoMapApp with a 3-D earth browser based upon NASA WorldWind, providing yet more powerful capabilities. The searchable MGDS Media Bank (http://media.marine-geo.org/) supports viewing of remarkable images and video from the NSF Ridge 2000 and MARGINS programs. For users familiar with Google Earth (tm), KML files are available for viewing several MGDS data sets (http://www.marine-geo.org/education/kmls.php). Examples of accessing and manipulating a range of geoscience data sets from various NSF-funded programs will be shown. GeoMapApp, Virtual Ocean, the MGDS Media Bank and KML files are free MGDS data resources and work on any type of computer. They are currently used by educators, researchers, school teachers and the general public.

  14. E-Drama: Facilitating Online Role-Play Using an AI Actor and Emotionally Expressive Characters

    ERIC Educational Resources Information Center

    Zhang, Li; Gillies, Marco; Dhaliwal, Kulwant; Gower, Amanda; Robertson, Dale; Crabtree, Barry

    2009-01-01

    This paper describes a multi-user role-playing environment, referred to as "e-drama", which enables groups of people to converse online, in scenario driven virtual environments. The starting point of this research, is an existing application known as "edrama", a 2D graphical environment in which users are represented by static…

  15. An optical tracking system for virtual reality

    NASA Astrophysics Data System (ADS)

    Hrimech, Hamid; Merienne, Frederic

    2009-03-01

    In this paper we present a low-cost 3D tracking system which we have developed and tested in order to move away from traditional 2D interaction techniques (keyboard and mouse) in an attempt to improve user's experience while using a CVE. Such a tracking system is used to implement 3D interaction techniques that augment user experience, promote user's sense of transportation in the virtual world as well as user's awareness of their partners. The tracking system is a passive optical tracking system using stereoscopy a technique allowing the reconstruction of three-dimensional information from a couple of images. We have currently deployed our 3D tracking system on a collaborative research platform for investigating 3D interaction techniques in CVEs.

  16. Adaptation of a Multi-Block Structured Solver for Effective Use in a Hybrid CPU/GPU Massively Parallel Environment

    NASA Astrophysics Data System (ADS)

    Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain

    2014-11-01

    Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.

  17. E-Learning Application of Tarsier with Virtual Reality using Android Platform

    NASA Astrophysics Data System (ADS)

    Oroh, H. N.; Munir, R.; Paseru, D.

    2017-01-01

    Spectral Tarsier is a primitive primate that can only be found in the province of North Sulawesi. To study these primates can be used an e-learning application with Augmented Reality technology that uses a marker to confronted the camera computer to interact with three dimensions Tarsier object. But that application only shows tarsier object in three dimensions without habitat and requires a lot of resources because it runs on a Personal Computer. The same technology can be shown three dimensions’ objects is Virtual Reality to excess can make the user like venturing into the virtual world with Android platform that requires fewer resources. So, put on Virtual Reality technology using the Android platform that can make users not only to view and interact with the tarsiers but also the habitat. The results of this research indicate that the user can learn the Tarsier and habitat with good. Thus, the use of Virtual Reality technology in the e-learning application of tarsiers can help people to see, know, and learn about Spectral Tarsier.

  18. The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning

    ERIC Educational Resources Information Center

    Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar

    2017-01-01

    Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…

  19. Virtual Terrorism and the Internet E-Learning Options

    ERIC Educational Resources Information Center

    Cole, David R.

    2007-01-01

    E-learning on the Internet is constituted by the options that this global technology gives the user. This article explores these options in terms of the lifestyle choices and decisions that the learner will make about the virtual worlds, textual meanings and cultural groupings that they will find as they learn online. This is a non-linear process…

  20. Eodataservice.org: Big Data Platform to Enable Multi-disciplinary Information Extraction from Geospatial Data

    NASA Astrophysics Data System (ADS)

    Natali, S.; Mantovani, S.; Barboni, D.; Hogan, P.

    2017-12-01

    In 1999, US Vice-President Al Gore outlined the concept of `Digital Earth' as a multi-resolution, three-dimensional representation of the planet to find, visualise and make sense of vast amounts of geo- referenced information on physical and social environments, allowing to navigate through space and time, accessing historical and forecast data to support scientists, policy-makers, and any other user. The eodataservice platform (http://eodataservice.org/) implements the Digital Earth Concept: eodatasevice is a cross-domain platform that makes available a large set of multi-year global environmental collections allowing data discovery, visualization, combination, processing and download. It implements a "virtual datacube" approach where data stored on distributed data centers are made available via standardized OGC-compliant interfaces. Dedicated web-based Graphic User Interfaces (based on the ESA-NASA WebWorldWind technology) as well as web-based notebooks (e.g. Jupyter notebook), deskop GIS tools and command line interfaces can be used to access and manipulate the data. The platform can be fully customized on users' needs. So far eodataservice has been used for the following thematic applications: High resolution satellite data distribution Land surface monitoring using SAR surface deformation data Atmosphere, ocean and climate applications Climate-health applications Urban Environment monitoring Safeguard of cultural heritage sites Support to farmers and (re)-insurances in the agriculturés field In the current work, the EO Data Service concept is presented as key enabling technology; furthermore various examples are provided to demonstrate the high level of interdisciplinarity of the platform.

  1. Development and application of virtual reality for man/systems integration

    NASA Technical Reports Server (NTRS)

    Brown, Marcus

    1991-01-01

    While the graphical presentation of computer models signified a quantum leap over presentations limited to text and numbers, it still has the problem of presenting an interface barrier between the human user and the computer model. The user must learn a command language in order to orient themselves in the model. For example, to move left from the current viewpoint of the model, they might be required to type 'LEFT' at a keyboard. This command is fairly intuitive, but if the viewpoint moves far enough that there are no visual cues overlapping with the first view, the user does not know if the viewpoint has moved inches, feet, or miles to the left, or perhaps remained in the same position, but rotated to the left. Until the user becomes quite familiar with the interface language of the computer model presentation, they will be proned to lossing their bearings frequently. Even a highly skilled user will occasionally get lost in the model. A new approach to presenting type type of information is to directly interpret the user's body motions as the input language for determining what view to present. When the user's head turns 45 degrees to the left, the viewpoint should be rotated 45 degrees to the left. Since the head moves through several intermediate angles between the original view and the final one, several intermediate views should be presented, providing the user with a sense of continuity between the original view and the final one. Since the primary way a human physically interacts with their environment should monitor the movements of the user's hands and alter objects in the virtual model in a way consistent with the way an actual object would move when manipulated using the same hand movements. Since this approach to the man-computer interface closely models the same type of interface that humans have with the physical world, this type of interface is often called virtual reality, and the model is referred to as a virtual world. The task of this summer fellowship was to set up a virtual reality system at MSFC and begin applying it to some of the questions which concern scientists and engineers involved in space flight. A brief discussion of this work is presented.

  2. The Virtual Campus: Technology and Reform in Higher Education. ASHE-ERIC Higher Education Report, Volume 25, No. 5.

    ERIC Educational Resources Information Center

    Van Dusen, Gerald C.

    The "virtual campus" is a metaphor for the electronic teaching, learning, and research environment created by the convergence of several relatively new technologies including, but not restricted to, the Internet, World Wide Web, computer-mediated communication, video conferencing, multi-media, groupware, video-on-demand, desktop…

  3. Design and Development of a Virtual Facility Tour Using iPIX(TM) Technology

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2002-01-01

    The capabilities of the iPIX virtual tour software, in conjunction with a web-based interface create a unique and valuable system that provides users with an efficient virtual capability to tour facilities while being able to acquire the necessary technical content is demonstrated. A users guide to the Mechanics and Durability Branch's virtual tour is presented. The guide provides the user with instruction on operating both scripted and unscripted tours as well as a discussion of the tours for Buildings 1148, 1205 and 1256 and NASA Langley Research Center. Furthermore, an indepth discussion has been presented on how to develop a virtual tour using the iPIX software interface with conventional html and JavaScript. The main aspects for discussion are on network and computing issues associated with using this capability. A discussion of how to take the iPIX pictures, manipulate them and bond them together to form hemispherical images is also presented. Linking of images with additional multimedia content is discussed. Finally, a method to integrate the iPIX software with conventional HTML and JavaScript to facilitate linking with multi-media is presented.

  4. A Sidewalk Astronomy Experience in Second Life (R) for IYA2009

    NASA Astrophysics Data System (ADS)

    Gauthier, Adrienne J.; Huber, D.; I. New Media Task Group

    2009-01-01

    The NMTG has created an IYA 2009 presence in the 3-dimensional multi-user virtual world called Second Life (R), where residents (or avatars) interact with content built by others in dynamic, innovative, and social ways. The IYA2009 virtual real estate (called an island) will open in early January 2009 with an initial set of exhibits and interactives. Through 2009, additional exhibits, live talks, and webstreamed content will be added.Our Sidewalk Astronomy experience will be premiered for the island opening. We have designed the interactive to replicate a real-life small telescope experience. Visitors to our Second Life telescopes will first see an image of the object "as the eye sees" and will hear/read a narrative about the object, as one would experience in real life. The narratives have been carefully crafted to take the observer on a journey and not just hear straight facts about the object. Diving further into astronomical imagery, avatars will explore visible, infrared, X-ray, and radio views of the object (if available), all wrapped in contextual information that ties the multiwavelength views together. The content of the telescopes will update every month to be equivalent to mid-latitude 9pm sky views for the Northern Hemisphere, Southern Hemisphere pending. Supplemental materials will include World Wide Telescope tours and Google Sky layers. We are hoping to add live star party events throughout the year, using real life video feeds from amateur telescopes. Additionally, we will have links to the Sidewalk Astronomy IYA webpage so virtual residents can find real life star parties to attend. The Sidewalk Astronomy Second Life experience will also have a traveling version that can be placed in multiple locations (stores, events, parks) in order to bring astronomy to the virtual masses in a true Sidewalk Astronomy way.

  5. iScreen: world's first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ying; Chang, Kai-Wei; Chen, Calvin Yu-Chian

    2011-06-01

    The rapidly advancing researches on traditional Chinese medicine (TCM) have greatly intrigued pharmaceutical industries worldwide. To take initiative in the next generation of drug development, we constructed a cloud-computing system for TCM intelligent screening system (iScreen) based on TCM Database@Taiwan. iScreen is compacted web server for TCM docking and followed by customized de novo drug design. We further implemented a protein preparation tool that both extract protein of interest from a raw input file and estimate the size of ligand bind site. In addition, iScreen is designed in user-friendly graphic interface for users who have less experience with the command line systems. For customized docking, multiple docking services, including standard, in-water, pH environment, and flexible docking modes are implemented. Users can download first 200 TCM compounds of best docking results. For TCM de novo drug design, iScreen provides multiple molecular descriptors for a user's interest. iScreen is the world's first web server that employs world's largest TCM database for virtual screening and de novo drug design. We believe our web server can lead TCM research to a new era of drug development. The TCM docking and screening server is available at http://iScreen.cmu.edu.tw/.

  6. iScreen: world's first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan.

    PubMed

    Tsai, Tsung-Ying; Chang, Kai-Wei; Chen, Calvin Yu-Chian

    2011-06-01

    The rapidly advancing researches on traditional Chinese medicine (TCM) have greatly intrigued pharmaceutical industries worldwide. To take initiative in the next generation of drug development, we constructed a cloud-computing system for TCM intelligent screening system (iScreen) based on TCM Database@Taiwan. iScreen is compacted web server for TCM docking and followed by customized de novo drug design. We further implemented a protein preparation tool that both extract protein of interest from a raw input file and estimate the size of ligand bind site. In addition, iScreen is designed in user-friendly graphic interface for users who have less experience with the command line systems. For customized docking, multiple docking services, including standard, in-water, pH environment, and flexible docking modes are implemented. Users can download first 200 TCM compounds of best docking results. For TCM de novo drug design, iScreen provides multiple molecular descriptors for a user's interest. iScreen is the world's first web server that employs world's largest TCM database for virtual screening and de novo drug design. We believe our web server can lead TCM research to a new era of drug development. The TCM docking and screening server is available at http://iScreen.cmu.edu.tw/.

  7. The Virtual Dollhouse: Body Image and Weight Stigma in Second Life

    NASA Astrophysics Data System (ADS)

    Linares, R.; Bailenson, J.; Bailey, J.; Stevenson Won, A.

    2012-12-01

    Second Life is a virtual world where fantasy and reality collide as users can customize their digital representation or avatar. The act of wanting to ignore or avoid the real world's physical limitations can be called "avatar escapism" (Ducheneaut, Wen, Yee, Wadley, 2009). In the media the increasingly thin standard of beauty (Berel, Irving, 1998) has augmented negative stereotypes of overweight people to the point of making it acceptable for people to ridicule others' bodies image (Wang, Brownell, Wadden, 2004). In the real world, these concepts hurt people who are unable or unwilling to achieve an "acceptable" body size often leading them to be ridiculed. In the virtual world, a person may portray their desired body potentially escaping judgment from others. Can this more liberated form of bodily expression lead people to expect and need that perfection to a point where they abandon the real world in order to live in that perfection? With this knowledge we looked at the implications of the real world idolization of the perfect body and how this is transferred into the virtual space. In addition, we investigated how the reactions and behaviors that people have when others rebel against the "Barbie doll" appearance (Ducheneaut, Wen, Yee, Wadley, 2009) affect us in the real world.

  8. An artificial reality environment for remote factory control and monitoring

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  9. A convertor and user interface to import CAD files into worldtoolkit virtual reality systems

    NASA Technical Reports Server (NTRS)

    Wang, Peter Hor-Ching

    1996-01-01

    Virtual Reality (VR) is a rapidly developing human-to-computer interface technology. VR can be considered as a three-dimensional computer-generated Virtual World (VW) which can sense particular aspects of a user's behavior, allow the user to manipulate the objects interactively, and render the VW at real-time accordingly. The user is totally immersed in the virtual world and feel the sense of transforming into that VW. NASA/MSFC Computer Application Virtual Environments (CAVE) has been developing the space-related VR applications since 1990. The VR systems in CAVE lab are based on VPL RB2 system which consists of a VPL RB2 control tower, an LX eyephone, an Isotrak polhemus sensor, two Fastrak polhemus sensors, a folk of Bird sensor, and two VPL DG2 DataGloves. A dynamics animator called Body Electric from VPL is used as the control system to interface with all the input/output devices and to provide the network communications as well as VR programming environment. The RB2 Swivel 3D is used as the modelling program to construct the VW's. A severe limitation of the VPL VR system is the use of RB2 Swivel 3D, which restricts the files to a maximum of 1020 objects and doesn't have the advanced graphics texture mapping. The other limitation is that the VPL VR system is a turn-key system which does not provide the flexibility for user to add new sensors and C language interface. Recently, NASA/MSFC CAVE lab provides VR systems built on Sense8 WorldToolKit (WTK) which is a C library for creating VR development environments. WTK provides device drivers for most of the sensors and eyephones available on the VR market. WTK accepts several CAD file formats, such as Sense8 Neutral File Format, AutoCAD DXF and 3D Studio file format, Wave Front OBJ file format, VideoScape GEO file format, Intergraph EMS stereolithographics and CATIA Stereolithographics STL file formats. WTK functions are object-oriented in their naming convention, are grouped into classes, and provide easy C language interface. Using a CAD or modelling program to build a VW for WTK VR applications, we typically construct the stationary universe with all the geometric objects except the dynamic objects, and create each dynamic object in an individual file.

  10. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  11. Surgical model-view-controller simulation software framework for local and collaborative applications

    PubMed Central

    Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2010-01-01

    Purpose Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. Methods A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. Results The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. Conclusion A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users. PMID:20714933

  12. Surgical model-view-controller simulation software framework for local and collaborative applications.

    PubMed

    Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2011-07-01

    Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez Anez, Francisco

    This paper presents two development projects (STARMATE and VIRMAN) focused on supporting training on maintenance. Both projects aim at specifying, designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Augmented and Virtual Reality techniques. VIRMAN is a Spanish development project. The objective is to create a computer tool for maintenance training course elaborations and training delivery based on 3D virtual reality models of complex components. The training delivery includes 3D record displays on maintenance procedures with all complementary information for intervention understanding. Users are requested to perform the maintenance intervention trying to follow up themore » procedure. Users can be evaluated about the level of knowledge achieved. Instructors can check the evaluation records left during the training sessions. VIRMAN is simple software supported by a regular computer and can be used in an Internet framework. STARMATE is a forward step in the area of virtual reality. STARMATE is a European Commission project in the frame of 'Information Societies Technologies'. A consortium of five companies and one research institute shares their expertise in this new technology. STARMATE provides two main functionalities (1) user assistance for achieving assembly/de-assembly and following maintenance procedures, and (2) workforce training. The project relies on Augmented Reality techniques, which is a growing area in Virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene, generated by a computer, augmenting the reality with additional information. The user interface is see-through goggles, headphones, microphone and an optical tracking system. All these devices are integrated in a helmet connected with two regular computers. The user has his hands free for performing the maintenance intervention and he can navigate in the virtual world thanks to a voice recognition system and a virtual pointing device. The maintenance work is guided with audio instructions, 2D and 3D information are directly displayed into the user's goggles: There is a position-tracking system that allows 3D virtual models to be displayed in the real counterpart positions independently of the user allocation. The user can create his own virtual environment, placing the information required wherever he wants. The STARMATE system is applicable to a large variety of real work situations. (author)« less

  14. The social computing room: a multi-purpose collaborative visualization environment

    NASA Astrophysics Data System (ADS)

    Borland, David; Conway, Michael; Coposky, Jason; Ginn, Warren; Idaszak, Ray

    2010-01-01

    The Social Computing Room (SCR) is a novel collaborative visualization environment for viewing and interacting with large amounts of visual data. The SCR consists of a square room with 12 projectors (3 per wall) used to display a single 360-degree desktop environment that provides a large physical real estate for arranging visual information. The SCR was designed to be cost-effective, collaborative, configurable, widely applicable, and approachable for naive users. Because the SCR displays a single desktop, a wide range of applications is easily supported, making it possible for a variety of disciplines to take advantage of the room. We provide a technical overview of the room and highlight its application to scientific visualization, arts and humanities projects, research group meetings, and virtual worlds, among other uses.

  15. Real enough: using virtual public speaking environments to evoke feelings and behaviors targeted in stuttering assessment and treatment.

    PubMed

    Brundage, Shelley B; Hancock, Adrienne B

    2015-05-01

    Virtual reality environments (VREs) are computer-generated, 3-dimensional worlds that allow users to experience situations similar to those encountered in the real world. The purpose of this study was to investigate VREs for potential use in assessing and treating persons who stutter (PWS) by determining the extent to which PWS's affective, behavioral, and cognitive measures in a VRE correlate with those same measures in a similar live environment. Ten PWS delivered speeches-first to a live audience and, on another day, to 2 virtual audiences (neutral and challenging audiences). Participants completed standard tests of communication apprehension and confidence prior to each condition, and frequency of stuttering was measured during each speech. Correlational analyses revealed significant, positive correlations between virtual and live conditions for affective and cognitive measures as well as for frequency of stuttering. These findings suggest that virtual public speaking environments engender affective, behavioral, and cognitive reactions in PWS that correspond to those experienced in the real world. Therefore, the authentic, safe, and controlled environments provided by VREs may be useful for stuttering assessment and treatment.

  16. Interreality: The Experiential Use of Technology in the Treatment of Obesity

    PubMed Central

    G, Riva; B.K, Wiederhold; F, Mantovani; A, Gaggioli

    2011-01-01

    For many of us, obesity is the outcome of an energy imbalance: more energy input than expenditure. However, our waistlines are growing in spite of the huge amount of diets and fat-free/low-calorie products available to cope with this issue. Even when we are able to reduce our waistlines, maintaining the new size is very difficult: in the year after the end of a nutritional and/or behavioral treatment obese persons typically regain from 30% to 50% of their initial losses. A possible strategy for improving the treatment of obesity is the use of advanced information technologies. In the past, different technologies (internet, virtual reality, mobile phones) have shown promising effects in producing a healthy lifestyle in obese patients. Here we suggest that a new technological paradigm - Interreality – that integrates assessment and treatment within a hybrid experiential environment - including both virtual and real worlds - has the potential to improve the clinical outcome of obesity treatments. The potential advantages offered by this approach are: (a) an extended sense of presence: Interreality uses advanced simulations (virtual experiences) to transform health guidelines and provisions in experiences; (b) an extended sense of community: Interreality uses virtual communities to provide users with targeted – but also anonymous, if required - social support in both real and virtual worlds; (c) real-time feedback between physical and virtual worlds: Interreality uses bio and activity sensors and devices (smartphones) both to track in real time the behavior/health status of the user, and to provide targeted suggestions and guidelines. This paper describes in detail the different technologies involved in the Interreality vision. In order to illustrate the concept of Interreality in practice, a clinical scenario is also presented and discussed: Daniela, a 35-year-old fast-food worker with obesity problems. PMID:21559236

  17. Exploring engagement in a virtual community of practice in pediatric rehabilitation: who are non-users, lurkers, and posters?

    PubMed

    Hurtubise, Karen; Pratte, Gabrielle; Rivard, Lisa; Berbari, Jade; Héguy, Léa; Camden, Chantal

    2017-12-20

    Communities of practice are increasingly recognized in rehabilitation as useful knowledge transfer tools; however, little is known about their users. This exploratory study describes the characteristics of participants and non-participants invited to engage in a pediatric rehabilitation virtual community of practice. In addition, we explored virtual community of practice utilization behaviors, engagement predictors, and the impact of strategies designed to foster engagement. Participants' demographics including information-seeking style and organization e-readiness, as well as online platform frequency of use data were collected and analyzed using descriptive, comparative, and predictive statistics. Seventy-four percent of those invited used the virtual community of practice. Users had less years of experience in pediatric rehabilitation than non-users. Among the users, 71% were classified as "lurkers," who engaged through reading content only; while 29% were classified as "posters," editing online content. Predictive factors were not uncovered, however an increased number of forum visits correlated with being a poster, a non-information seeker, an employee of an organization demonstrating e-readiness, and regularly working with children with the virtual community of practice specific condition. User-engagement strategies increased visits to the forum. These findings will assist rehabilitation leaders in leveraging rehabilitation-specific virtual community of practice to improve knowledge transfer and practice in pediatric rehabilitation and disability management. Implications for Rehabilitation Communities of practice are increasingly recognized as useful knowledge transfer tools for rehabilitation professionals and are made more accessible thanks to virtual technologies. Our virtual community of practice was found to be optimized in health care organizations with an electronic culture, when the topic area had daily relevance to its target audience, and was particularly beneficial for those who have limited years of experience in pediatric rehabilitation. A strongly committed, selected leadership team with the technological skills, content expertise, and designated time to maintain the site and to nurture discussion was deemed vital in fostering knowledge exchange in this context. User-focused engagement strategies showed promise in increasing visits to the virtual community of practice. Our study supports the importance of multi-pronged approaches in enhancing health care professional knowledge and skills Findings from this study will assist rehabilitation leaders in optimally leveraging rehabilitation-specific virtual community of practice to improve knowledge transfer in pediatric rehabilitation and disability management.

  18. Hybrid 2-D and 3-D Immersive and Interactive User Interface for Scientific Data Visualization

    DTIC Science & Technology

    2017-08-01

    visualization, 3-D interactive visualization, scientific visualization, virtual reality, real -time ray tracing 16. SECURITY CLASSIFICATION OF: 17...scientists to employ in the real world. Other than user-friendly software and hardware setup, scientists also need to be able to perform their usual...and scientific visualization communities mostly have different research priorities. For the VR community, the ability to support real -time user

  19. Development of an audio-based virtual gaming environment to assist with navigation skills in the blind.

    PubMed

    Connors, Erin C; Yazzolino, Lindsay A; Sánchez, Jaime; Merabet, Lotfi B

    2013-03-27

    Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind. Using only audio based cues and set within the context of a video game metaphor, users gather relevant spatial information regarding a building's layout. This allows the user to develop an accurate spatial cognitive map of a large-scale three-dimensional space that can be manipulated for the purposes of a real indoor navigation task. After game play, participants are then assessed on their ability to navigate within the target physical building represented in the game. Preliminary results suggest that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building as indexed by their performance on a series of navigation tasks. These tasks included path finding through the virtual and physical building, as well as a series of drop off tasks. We find that the immersive and highly interactive nature of the AbES software appears to greatly engage the blind user to actively explore the virtual environment. Applications of this approach may extend to larger populations of visually impaired individuals.

  20. Virtualized Traffic: reconstructing traffic flows from discrete spatiotemporal data.

    PubMed

    Sewall, Jason; van den Berg, Jur; Lin, Ming C; Manocha, Dinesh

    2011-01-01

    We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatiotemporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct the traffic flows (i.e., the dynamic motions of multiple cars over time) between the two locations along the highway for immersive visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur. We demonstrate our reconstruction technique with both synthetic and real-world input. © 2011 IEEE Published by the IEEE Computer Society

  1. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE PAGES

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp; ...

    2017-02-03

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  2. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  3. Combined virtual and real robotic test-bed for single operator control of multiple robots

    NASA Astrophysics Data System (ADS)

    Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash

    2010-04-01

    Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.

  4. Visualization of Vgi Data Through the New NASA Web World Wind Virtual Globe

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Kilsedar, C. E.; Zamboni, G.

    2016-06-01

    GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI) systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS). The new Application Programming Interface (API) of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL) is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM) is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK) platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.

  5. Novel graphical environment for virtual and real-world operations of tracked mobile manipulators

    NASA Astrophysics Data System (ADS)

    Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.

    1993-08-01

    A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.

  6. Parallel-distributed mobile robot simulator

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Sekiguchi, Minoru; Watanabe, Nobuo

    1996-06-01

    The aim of this project is to achieve an autonomous learning and growth function based on active interaction with the real world. It should also be able to autonomically acquire knowledge about the context in which jobs take place, and how the jobs are executed. This article describes a parallel distributed movable robot system simulator with an autonomous learning and growth function. The autonomous learning and growth function which we are proposing is characterized by its ability to learn and grow through interaction with the real world. When the movable robot interacts with the real world, the system compares the virtual environment simulation with the interaction result in the real world. The system then improves the virtual environment to match the real-world result more closely. This the system learns and grows. It is very important that such a simulation is time- realistic. The parallel distributed movable robot simulator was developed to simulate the space of a movable robot system with an autonomous learning and growth function. The simulator constructs a virtual space faithful to the real world and also integrates the interfaces between the user, the actual movable robot and the virtual movable robot. Using an ultrafast CG (computer graphics) system (FUJITSU AG series), time-realistic 3D CG is displayed.

  7. What makes virtual agents believable?

    NASA Astrophysics Data System (ADS)

    Bogdanovych, Anton; Trescak, Tomas; Simoff, Simeon

    2016-01-01

    In this paper we investigate the concept of believability and make an attempt to isolate individual characteristics (features) that contribute to making virtual characters believable. As the result of this investigation we have produced a formalisation of believability and based on this formalisation built a computational framework focused on simulation of believable virtual agents that possess the identified features. In order to test whether the identified features are, in fact, responsible for agents being perceived as more believable, we have conducted a user study. In this study we tested user reactions towards the virtual characters that were created for a simulation of aboriginal inhabitants of a particular area of Sydney, Australia in 1770 A.D. The participants of our user study were exposed to short simulated scenes, in which virtual agents performed some behaviour in two different ways (while possessing a certain aspect of believability vs. not possessing it). The results of the study indicate that virtual agents that appear resource bounded, are aware of their environment, own interaction capabilities and their state in the world, agents that can adapt to changes in the environment and exist in correct social context are those that are being perceived as more believable. Further in the paper we discuss these and other believability features and provide a quantitative analysis of the level of contribution for each such feature to the overall perceived believability of a virtual agent.

  8. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays.

    PubMed

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A; Wetzstein, Gordon

    2017-02-28

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  9. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    NASA Astrophysics Data System (ADS)

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A.; Wetzstein, Gordon

    2017-02-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  10. Links between real and virtual networks: a comparative study of online communities in Japan and Korea.

    PubMed

    Ishii, Kenichi; Ogasahara, Morihiro

    2007-04-01

    The present study explores how online communities affect real-world personal relations based on a cross-cultural survey conducted in Japan and Korea. Findings indicate that the gratifications of online communities moderate the effects of online communities on social participation. Online communities are categorized into a real-group-based community and a virtual-network-based community. The membership of real-group-based online community is positively correlated with social bonding gratification and negatively correlated with information- seeking gratification. Japanese users prefer more virtual-network-based online communities, while their Korean counterparts prefer real-group-based online communities. Korean users are more active in online communities and seek a higher level of socializing gratifications, such as social bonding and making new friends, when compared with their Japanese counterparts. These results indicate that in Korea, personal relations via the online community are closely associated with the real-world personal relations, but this is not the case in Japan. This study suggests that the effects of the Internet are culture-specific and that the online community can serve a different function in different cultural environments.

  11. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    PubMed Central

    Pouke, Matti; Häkkilä, Jonna

    2013-01-01

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand. PMID:24351747

  12. A multilayer network dataset of interaction and influence spreading in a virtual world

    NASA Astrophysics Data System (ADS)

    Jankowski, Jarosław; Michalski, Radosław; Bródka, Piotr

    2017-10-01

    Presented data contains the record of five spreading campaigns that occurred in a virtual world platform. Users distributed avatars between each other during the campaigns. The processes varied in time and range and were either incentivized or not incentivized. Campaign data is accompanied by events. The data can be used to build a multilayer network to place the campaigns in a wider context. To the best of the authors' knowledge, the study is the first publicly available dataset containing a complete real multilayer social network together, along with five complete spreading processes in it.

  13. A Learning Game for Youth Financial Literacy Education in the Teen Grid of Second Life Three-Dimensional Virtual Environment

    ERIC Educational Resources Information Center

    Liu, Chang; Franklin, Teresa; Shelor, Roger; Ozercan, Sertac; Reuter, Jarrod; Ye, En; Moriarty, Scott

    2011-01-01

    Game-like three-dimensional (3D) virtual worlds have become popular venues for youth to explore and interact with friends. To bring vital financial literacy education to them in places they frequent, a multi-disciplinary team of computer scientists, educators, and financial experts developed a youth-oriented financial literacy education game in…

  14. Binary Lives: Digital Citizenship and Disability Participation in a User Content Created Virtual World

    ERIC Educational Resources Information Center

    Vizenor, Katie Virginia

    2014-01-01

    Digital Citizenship is a concept typically used in discussions of how technology impacts our relationships with others and our physical world communities. It is also used to describe ways that we can leverage our technology use and skill to make our communities and nations better and stronger. Educators are now teaching "good digital…

  15. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  16. Learning, Teaching and Ambiguity in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Carr, Diane; Oliver, Martin; Burn, Andrew

    What might online communities and informal learning practices teach us about virtual world pedagogy? In this chapter we describe a research project in which learning practices in online worlds such as World of Warcraft and Second LifeTM (SL) were investigated. Working within an action research framework, we employed a range of methods to investigate how members of online communities define the worlds they encounter, negotiate the terms of participation, and manage the incremental complexity of game worlds. The implications of such practices for online pedagogy were then explored through teaching in SL. SL eludes simple definitions. Users, or "residents", of SL partake of a range of pleasures and activities - socialising, building, creating and exhibiting art, playing games, exploring, shopping, or running a business, for instance. We argue that the variable nature of SL gives rise to degrees of ambiguity. This ambiguity impacts on inworld social practices, and has significant implications for online teaching and learning.

  17. Design method for multi-user workstations utilizing anthropometry and preference data.

    PubMed

    Mahoney, Joseph M; Kurczewski, Nicolas A; Froede, Erick W

    2015-01-01

    Past efforts have been made to design single-user workstations to accommodate users' anthropometric and preference distributions. However, there is a lack of methods for designing workstations for group interaction. This paper introduces a method for sizing workstations to allow for a personal work area for each user and a shared space for adjacent users. We first create a virtual population with the same anthropometric and preference distributions as an intended demographic of college-aged students. Members of the virtual population are randomly paired to test if their extended reaches overlap but their normal reaches do not. This process is repeated in a Monte Carlo simulation to estimate the total percentage of groups in the population that will be accommodated for a workstation size. We apply our method to two test cases: in the first, we size polygonal workstations for two populations and, in the second, we dimension circular workstations for different group sizes. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Experiential Fidelity: Leveraging the Mind to Improve the VR Experience

    NASA Astrophysics Data System (ADS)

    Beckhaus, Steffi; Lindeman, Robert W.

    Much of Virtual Reality (VR) is about creating environments that are believable. But though the visual and audio experiences we provide today are already of a rather high sensory fidelity, there is still something lacking; something hinders us from fully buying into the worlds we experience through VR technology. We introduce the notion of Experiential Fidelity, which is an attempt to create a deeper sense of presence by carefully designing the user experience. We suggest to guide the users' frame of mind in a way that their expectations, attitude, and attention are aligned with the actual VR experience, and that the user's own imagination is stimulated to complete the experience. This work was inspired by a collection of personal magic moments and factors that were named by leading researchers in VR. We present those magic moments and some thoughts on how we can tap into experiential fidelity. We propose to do this not through technological means, but rather through the careful use of suggestion and allusion. By priming the user's mind prior to exposure to our virtual worlds, we can assist her in entering a mental state that is more willing to believe, even using the limited actual fidelity available today.

  19. Dissociation in virtual reality: depersonalization and derealization

    NASA Astrophysics Data System (ADS)

    Garvey, Gregory P.

    2010-01-01

    This paper looks at virtual worlds such as Second Life7 (SL) as possible incubators of dissociation disorders as classified by the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition3 (also known as the DSM-IV). Depersonalization is where "a person feels that he or she has changed in some way or is somehow unreal." Derealization when "the same beliefs are held about one's surroundings." Dissociative Identity Disorder (DID), previously known as multiple personality disorder fits users of Second Life who adopt "in-world" avatars and in effect, enact multiple distinct identities or personalities (known as alter egos or alters). Select questions from the Structured Clinical Interview for Depersonalization (SCI-DER)8 will be discussed as they might apply to the user's experience in Second Life. Finally I would like to consider the hypothesis that rather than a pathological disorder, dissociation is a normal response to the "artificial reality" of Second Life.

  20. Hybrid diffractive-refractive optical system design of head-mounted display for augmented reality

    NASA Astrophysics Data System (ADS)

    Zhang, Huijuan

    2005-02-01

    An optical see-through head-mounted display for augmented reality is designed in this paper. Considering the factors, such as the optical performance, the utilization ratios of energy of real world and virtual world, the feelings of users when he wears it and etc., a structure of the optical see-through is adopted. With the characteristics of the particular negative dispersive and the power of realizing random-phase modulation, the diffractive surface is helpful for optical system of reducing weight, simplifying structure and etc., and a diffractive surface is introduced in our optical system. The optical system with 25 mm eye relief, 12 mm exit pupil and 20° (H)x15.4° (V) field-of-view is designed. The utilization ratios of energy of real world and virtual world are 1/4 and 1/2, respectively. The angular resolution of display is 0.27 mrad and it less than that of the minimum of human eyes. The diameter of this system is less than 46mm, and it applies the binocular. This diffractive-refractive optical system of see-through head-mounted display not only satisfies the demands of user"s factors in structure, but also with high resolution, very small chromatic aberration and distortion, and satisfies the need of augmented reality. In the end, the parameters of the diffractive surface are discussed.

  1. Telescopic multi-resolution augmented reality

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold

    2014-05-01

    To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.

  2. Local concurrent error detection and correction in data structures using virtual backpointers

    NASA Technical Reports Server (NTRS)

    Li, C. C.; Chen, P. P.; Fuchs, W. K.

    1987-01-01

    A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data structures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared databased of Virtual Double Linked Lists.

  3. Local concurrent error detection and correction in data structures using virtual backpointers

    NASA Technical Reports Server (NTRS)

    Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent

    1989-01-01

    A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.

  4. Virtual worlds and avatars as the new frontier of telehealth care.

    PubMed

    Morie, J; Haynes, E; Chance, E; Purohit, D

    2012-01-01

    We are entering a new age where people routinely visit, inhabit, play in and learn within virtual worlds (VWs). One in eight people worldwide are VW participants, according to the latest 2011 figures from KZERO [1]. VWs are also emerging as a new and advanced form of telehealth care delivery. In addition to existing telehealth care advantages; VWs feature three powerful affordances that can benefit a wide range of physical and psychological issues. First, the highly social nature of VWs encourages social networking and the formation of essential support groups. Secondly, the type of spaces that have been proven in the physical world to promote psychological health and well-being can be virtually recreated. Finally, research suggests that embodied avatar representation within VWs can affect users psychologically and physically. These three aspects of VWs can be leveraged for enhanced patient-client interactions, spaces that promote healing and positive responses, and avatar activities that transfer real benefits from the virtual to the physical world. This paper explains the mounting evidence behind these claims and provides examples of VWs as an innovative and compelling form of telehealth care destined to become commonplace in the future.

  5. Performance implications from sizing a VM on multi-core systems: A Data analytic application s view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Horey, James L; Begoli, Edmon

    In this paper, we present a quantitative performance analysis of data analytics applications running on multi-core virtual machines. Such environments form the core of cloud computing. In addition, data analytics applications, such as Cassandra and Hadoop, are becoming increasingly popular on cloud computing platforms. This convergence necessitates a better understanding of the performance and cost implications of such hybrid systems. For example, the very rst step in hosting applications in virtualized environments, requires the user to con gure the number of virtual processors and the size of memory. To understand performance implications of this step, we benchmarked three Yahoo Cloudmore » Serving Benchmark (YCSB) workloads in a virtualized multi-core environment. Our measurements indicate that the performance of Cassandra for YCSB workloads does not heavily depend on the processing capacity of a system, while the size of the data set is critical to performance relative to allocated memory. We also identi ed a strong relationship between the running time of workloads and various hardware events (last level cache loads, misses, and CPU migrations). From this analysis, we provide several suggestions to improve the performance of data analytics applications running on cloud computing environments.« less

  6. Simulating 3D deformation using connected polygons

    NASA Astrophysics Data System (ADS)

    Tarigan, J. T.; Jaya, I.; Hardi, S. M.; Zamzami, E. M.

    2018-03-01

    In modern 3D application, interaction between user and the virtual world is one of an important factor to increase the realism. This interaction can be visualized in many forms; one of them is object deformation. There are many ways to simulate object deformation in virtual 3D world; each comes with different level of realism and performance. Our objective is to present a new method to simulate object deformation by using a graph-connected polygon. In this solution, each object contains multiple level of polygons in different level of volume. The proposed solution focusses on performance rather while maintaining the acceptable level of realism. In this paper, we present the design and implementation of our solution and show that this solution is usable in performance sensitive 3D application such as games and virtual reality.

  7. Library Automation at the University for Development Studies: Challenges and Prospects

    ERIC Educational Resources Information Center

    Thompson, Edwin S.; Pwadura, Joana

    2014-01-01

    The automation of a library that basically aims at improving the management of the library's resources and increasing access to these same resources by users has caught on so well in the western world that virtually all academic libraries in that part of the world have automated most of their services. In Africa, however, several challenges are…

  8. Architecture, Design, and Development of an HTML/JavaScript Web-Based Group Support System.

    ERIC Educational Resources Information Center

    Romano, Nicholas C., Jr.; Nunamaker, Jay F., Jr.; Briggs, Robert O.; Vogel, Douglas R.

    1998-01-01

    Examines the need for virtual workspaces and describes the architecture, design, and development of GroupSystems for the World Wide Web (GSWeb), an HTML/JavaScript Web-based Group Support System (GSS). GSWeb, an application interface similar to a Graphical User Interface (GUI), is currently used by teams around the world and relies on user…

  9. Evaluating the Usability of Pinchigator, a system for Navigating Virtual Worlds using Pinch Gloves

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Brookman, Stephen; Dumas, Joseph D. II; Tilghman, Neal

    2003-01-01

    Appropriate design of two dimensional user interfaces (2D U/I) utilizing the well known WIMP (Window, Icon, Menu, Pointing device) environment for computer software is well studied and guidance can be found in several standards. Three-dimensional U/I design is not nearly so mature as 2D U/I, and standards bodies have not reached consensus on what makes a usable interface. This is especially true when the tools for interacting with the virtual environment may include stereo viewing, real time trackers and pinch gloves instead of just a mouse & keyboard. Over the last several years the authors have created a 3D U/I system dubbed Pinchigator for navigating virtual worlds based on the dVise dV/Mockup visualization software, Fakespace Pinch Gloves and Pohlemus trackers. The current work is to test the usability of the system on several virtual worlds, suggest improvements to increase Pinchigator s usability, and then to generalize about what was learned and how those lessons might be applied to improve other 3D U/I systems.

  10. Virtual GEOINT Center: C2ISR through an avatar's eyes

    NASA Astrophysics Data System (ADS)

    Seibert, Mark; Tidbal, Travis; Basil, Maureen; Muryn, Tyler; Scupski, Joseph; Williams, Robert

    2013-05-01

    As the number of devices collecting and sending data in the world are increasing, finding ways to visualize and understand that data is becoming more and more of a problem. This has often been coined as the problem of "Big Data." The Virtual Geoint Center (VGC) aims to aid in solving that problem by providing a way to combine the use of the virtual world with outside tools. Using open-source software such as OpenSim and Blender, the VGC uses a visually stunning 3D environment to display the data sent to it. The VGC is broken up into two major components: The Kinect Minimap, and the Geoint Map. The Kinect Minimap uses the Microsoft Kinect and its open-source software to make a miniature display of people the Kinect detects in front of it. The Geoint Map collect smartphone sensor information from online databases and displays them in real time onto a map generated by Google Maps. By combining outside tools and the virtual world, the VGC can help a user "visualize" data, and provide additional tools to "understand" the data.

  11. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    PubMed

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  12. A multi-criteria approach to camera motion design for volume data animation.

    PubMed

    Hsu, Wei-Hsien; Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    We present an integrated camera motion design and path generation system for building volume data animations. Creating animations is an essential task in presenting complex scientific visualizations. Existing visualization systems use an established animation function based on keyframes selected by the user. This approach is limited in providing the optimal in-between views of the data. Alternatively, computer graphics and virtual reality camera motion planning is frequently focused on collision free movement in a virtual walkthrough. For semi-transparent, fuzzy, or blobby volume data the collision free objective becomes insufficient. Here, we provide a set of essential criteria focused on computing camera paths to establish effective animations of volume data. Our dynamic multi-criteria solver coupled with a force-directed routing algorithm enables rapid generation of camera paths. Once users review the resulting animation and evaluate the camera motion, they are able to determine how each criterion impacts path generation. In this paper, we demonstrate how incorporating this animation approach with an interactive volume visualization system reduces the effort in creating context-aware and coherent animations. This frees the user to focus on visualization tasks with the objective of gaining additional insight from the volume data.

  13. Using Virtual Reality to Improve Walking Post-Stroke: Translation to Individuals with Diabetes

    PubMed Central

    Deutsch, Judith E

    2011-01-01

    Use of virtual reality (VR) technology to improve walking for people post-stroke has been studied for its clinical application since 2004. The hardware and software used to create these systems has varied but has predominantly been constituted by projected environments with users walking on treadmills. Transfer of training from the virtual environment to real-world walking has modest but positive research support. Translation of the research findings to clinical practice has been hampered by commercial availability and costs of the VR systems. Suggestions for how the work for individuals post-stroke might be applied and adapted for individuals with diabetes and other impaired ambulatory conditions include involvement of the target user groups (both practitioners and clients) early in the design and integration of activity and education into the systems. PMID:21527098

  14. Using virtual reality to improve walking post-stroke: translation to individuals with diabetes.

    PubMed

    Deutsch, Judith E

    2011-03-01

    Use of virtual reality (VR) technology to improve walking for people post-stroke has been studied for its clinical application since 2004. The hardware and software used to create these systems has varied but has predominantly been constituted by projected environments with users walking on treadmills. Transfer of training from the virtual environment to real-world walking has modest but positive research support. Translation of the research findings to clinical practice has been hampered by commercial availability and costs of the VR systems. Suggestions for how the work for individuals post-stroke might be applied and adapted for individuals with diabetes and other impaired ambulatory conditions include involvement of the target user groups (both practitioners and clients) early in the design and integration of activity and education into the systems. © 2011 Diabetes Technology Society.

  15. Internet-to-orbit gateway and virtual ground station: A tool for space research and scientific outreach

    NASA Astrophysics Data System (ADS)

    Jaffer, Ghulam; Nader, Ronnie; Koudelka, Otto

    2011-09-01

    Students in higher education, and scientific and technological researchers want to communicate with the International Space Station (ISS), download live satellite images, and receive telemetry, housekeeping and science/engineering data from nano-satellites and larger spacecrafts. To meet this need the Ecuadorian Civilian Space Agency (EXA) has recently provided the civilian world with an internet-to-orbit gateway (Hermes-A/Minotaur) Space Flight Control Center (SFCC) available for public use. The gateway has a maximum range of tracking and detection of 22,000 km and sensitivity such that it can receive and discriminate the signals from a satellite transmitter with power˜0.1 W. The capability is enough to receive the faintest low-earth-orbit (LEO) satellites. This gateway virtually connects participating internet clients around the world to a remote satellite ground station (GS), providing a broad community for multinational cooperation. The goal of the GS is to lower financial and engineering barriers that hinder access to science and engineering data from orbit. The basic design of the virtual GS on a user side is based on free software suites. Using these and other software tools the GS is able to provide access to orbit for a multitude of users without each having to go through the costly setups. We present the design and implementation of the virtual GS in a higher education and scientific outreach settings. We also discuss the basic architecture of the single existing system and the benefits of a proposed distributed system. Details of the software tools and their applicability to synchronous round-the-world tracking, monitoring and processing performed by students and teams at Graz University of Technology, Austria, EXA-Ecuador, University of Michigan, USA and JAXA who have participated in various mission operations and have investigated real-time satellite data download and image acquisition and processing. Students and other remote users at these institutions undergo training with in orbit satellites in preparation for their own use with future university-class nano-satellites' post launch space operations. The exclusive ability of Hermes-A/Minotaur to act as a gateway between remote users (internet) and satellites (in orbit) makes the virtual GS at user-end more feasible for the long-term real-time nano/cubesats space operations. The only requirement is to have a mutual agreement between EXA and participating university/research organization and broadband internet connection at user-end. With successful and remote satellite tracking and downloading of real-time data from many operational satellites, the Hermes has been found a reliable potential GS for current and future university missions and a training platform for individuals pursuing space operations.

  16. CLEW: A Cooperative Learning Environment for the Web.

    ERIC Educational Resources Information Center

    Ribeiro, Marcelo Blois; Noya, Ricardo Choren; Fuks, Hugo

    This paper outlines CLEW (collaborative learning environment for the Web). The project combines MUD (Multi-User Dimension), workflow, VRML (Virtual Reality Modeling Language) and educational concepts like constructivism in a learning environment where students actively participate in the learning process. The MUD shapes the environment structure.…

  17. vTrain: a novel curriculum for patient surge training in a multi-user virtual environment (MUVE).

    PubMed

    Greci, Laura S; Ramloll, Rameshsharma; Hurst, Samantha; Garman, Karen; Beedasy, Jaishree; Pieper, Eric B; Huang, Ricky; Higginbotham, Erin; Agha, Zia

    2013-06-01

    During a pandemic influenza, emergency departments will be overwhelmed with a large influx of patients seeking care. Although all hospitals should have a written plan for dealing with this surge of health care utilization, most hospitals struggle with ways to educate the staff and practice for potentially catastrophic events. Hypothesis/Problem To better prepare hospital staff for a patient surge, a novel educational curriculum was developed utilizing an emergency department for a patient surge functional drill. A multidisciplinary team of medical educators, evaluators, emergency preparedness experts, and technology specialists developed a curriculum to: (1) train novice users to function in their job class in a multi-user virtual environment (MUVE); (2) obtain appropriate pre-drill disaster preparedness training; (3) perform functional team exercises in a MUVE; and (4) reflect on their performance after the drill. A total of 14 students participated in one of two iterations of the pilot training program; seven nurses completed the emergency department triage course, and seven hospital administrators completed the Command Post (CP) course. All participants reported positive experiences in written course evaluations and structured verbal debriefings, and self-reported increase in disaster preparedness knowledge. Students also reported improved team communication, planning, team decision making, and the ability to visualize and reflect on their performance. Data from this pilot program suggest that the immersive, virtual teaching method is well suited to team-based, reflective practice and learning of disaster management skills.

  18. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    PubMed Central

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Wetzstein, Gordon

    2017-01-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one. PMID:28193871

  19. Navigating a Maze with Balance Board and Wiimote

    NASA Astrophysics Data System (ADS)

    Fikkert, Wim; Hoeijmakers, Niek; van der Vet, Paul; Nijholt, Anton

    Input from the lower body in human-computer interfaces can be beneficial, enjoyable and even entertaining when users are expected to perform tasks simultaneously. Users can navigate a virtual (game) world or even an (empirical) dataset while having their hands free to issue commands. We compared the Wii Balance Board to a hand-held Wiimote for navigating a maze and found that users completed this task slower with the Balance Board. However, the Balance Board was considered more intuitive, easy to learn and ‘much fun’.

  20. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    PubMed

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption of urban and environment, and the unbalance between water supply and demand could be filled by virtual water import in water scarce regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Virtual Vision

    NASA Astrophysics Data System (ADS)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  2. Marketing analysis of a positive technology app for the self-management of psychological stress.

    PubMed

    Wiederhold, Brenda K; Boyd, Chelsie; Sulea, Camelia; Gaggioli, Andrea; Riva, Giuseppe

    2014-01-01

    The INTERSTRESS project developed a completely new concept in the treatment of psychological stress: Interreality, a concept that combines cognitive behavioral therapy with a hybrid, closed-loop empowering experience bridging real and virtual worlds. This model provides the opportunity for individual citizens to become active participants in their own health and well-being. This article contains the results of the Marketing Trial and analysis of the opinions of individual consumers/end users of the INTERSTRESS product. The specific objective of this study was to evaluate the feasibility, efficacy and user acceptance of a novel mobile-based relaxation training tool in combination with biofeedback exercises and wearable biosensors. Relaxation was aided through immersion in a mobile virtual scenario (a virtual island) featuring pre-recorded audio narratives guiding a series of relaxation exercises. During biofeedback exercises, a wearable biosensor system provided data which directly modified the virtual reality experience in real-time. Thirty-six participants evaluated the product and overall feedback from users was positive, with some variation seen based on participant gender. A larger market study is now underway to understand if there are cultural variations in acceptability of the device.

  3. Tactical Operations Analysis Support Facility.

    DTIC Science & Technology

    1981-05-01

    Punch/Reader 2 DMC-11AR DDCMP Micro Processor 2 DMC-11DA Network Link Line Unit 2 DL-11E Async Serial Line Interface 4 Intel IN-1670 448K Words MOS Memory...86 5.3 VIRTUAL PROCESSORS - VAX-11/750 ........................... 89 5.4 A RELATIONAL DATA MANAGEMENT SYSTEM - ORACLE...Central Processing Unit (CPU) is a 16 bit processor for high-speed, real time applications, and for large multi-user, multi- task, time shared

  4. Interface Design Implications for Recalling the Spatial Configuration of Virtual Auditory Environments

    NASA Astrophysics Data System (ADS)

    McMullen, Kyla A.

    Although the concept of virtual spatial audio has existed for almost twenty-five years, only in the past fifteen years has modern computing technology enabled the real-time processing needed to deliver high-precision spatial audio. Furthermore, the concept of virtually walking through an auditory environment did not exist. The applications of such an interface have numerous potential uses. Spatial audio has the potential to be used in various manners ranging from enhancing sounds delivered in virtual gaming worlds to conveying spatial locations in real-time emergency response systems. To incorporate this technology in real-world systems, various concerns should be addressed. First, to widely incorporate spatial audio into real-world systems, head-related transfer functions (HRTFs) must be inexpensively created for each user. The present study further investigated an HRTF subjective selection procedure previously developed within our research group. Users discriminated auditory cues to subjectively select their preferred HRTF from a publicly available database. Next, the issue of training to find virtual sources was addressed. Listeners participated in a localization training experiment using their selected HRTFs. The training procedure was created from the characterization of successful search strategies in prior auditory search experiments. Search accuracy significantly improved after listeners performed the training procedure. Next, in the investigation of auditory spatial memory, listeners completed three search and recall tasks with differing recall methods. Recall accuracy significantly decreased in tasks that required the storage of sound source configurations in memory. To assess the impacts of practical scenarios, the present work assessed the performance effects of: signal uncertainty, visual augmentation, and different attenuation modeling. Fortunately, source uncertainty did not affect listeners' ability to recall or identify sound sources. The present study also found that the presence of visual reference frames significantly increased recall accuracy. Additionally, the incorporation of drastic attenuation significantly improved environment recall accuracy. Through investigating the aforementioned concerns, the present study made initial footsteps guiding the design of virtual auditory environments that support spatial configuration recall.

  5. Designing 3 Dimensional Virtual Reality Using Panoramic Image

    NASA Astrophysics Data System (ADS)

    Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna

    The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.

  6. Design Virtual Reality Scene Roam for Tour Animations Base on VRML and Java

    NASA Astrophysics Data System (ADS)

    Cao, Zaihui; hu, Zhongyan

    Virtual reality has been involved in a wide range of academic and commercial applications. It can give users a natural feeling of the environment by creating realistic virtual worlds. Implementing a virtual tour through a model of a tourist area on the web has become fashionable. In this paper, we present a web-based application that allows a user to, walk through, see, and interact with a fully three-dimensional model of the tourist area. Issues regarding navigation and disorientation areaddressed and we suggest a combination of the metro map and an intuitive navigation system. Finally we present a prototype which implements our ideas. The application of VR techniques integrates the visualization and animation of the three dimensional modelling to landscape analysis. The use of the VRML format produces the possibility to obtain some views of the 3D model and to explore it in real time. It is an important goal for the spatial information sciences.

  7. Augmented reality on poster presentations, in the field and in the classroom

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Kolawole, Folarin

    2017-04-01

    Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.

  8. Multi-degree of freedom joystick for virtual reality simulation.

    PubMed

    Head, M J; Nelson, C A; Siu, K C

    2013-11-01

    A modular control interface and simulated virtual reality environment were designed and created in order to determine how the kinematic architecture of a control interface affects minimally invasive surgery training. A user is able to selectively determine the kinematic configuration of an input device (number, type and location of degrees of freedom) for a specific surgical simulation through the use of modular joints and constraint components. Furthermore, passive locking was designed and implemented through the use of inflated latex tubing around rotational joints in order to allow a user to step away from a simulation without unwanted tool motion. It is believed that these features will facilitate improved simulation of a variety of surgical procedures and, thus, improve surgical skills training.

  9. Three Community Building Strategies and Their Impacts in an On-Line Course.

    ERIC Educational Resources Information Center

    Egbert, Joy; Chao, Chin-Chi; Ngeow, Karen

    This paper describes three instructional strategies designed to support community building in an online graduate teacher education course: (1) MOO (Multi-User Dimensions Object Oriented) field trips, in which participants are introduced to text-based virtual environments on the Internet through metaphoric online "field trips"; (2)…

  10. MOOs for Teaching and Learning.

    ERIC Educational Resources Information Center

    Furst-Bowe, Julie

    1996-01-01

    Discusses the use of MOOs (Multi-User Dimension/Dungeon Object Oriented), text-based virtual reality environments, in education. Highlights include connecting to a network; exploring several MOOs to determine which is most appropriate; and familiarizing students with the MOO's interaction and behavior policies, as well as how to operate in the…

  11. Developing Simulations in Multi-User Virtual Environments to Enhance Healthcare Education

    ERIC Educational Resources Information Center

    Rogers, Luke

    2011-01-01

    Computer-based clinical simulations are a powerful teaching and learning tool because of their ability to expand healthcare students' clinical experience by providing practice-based learning. Despite the benefits of traditional computer-based clinical simulations, there are significant issues that arise when incorporating them into a flexible,…

  12. Generating Mosaics of Astronomical Images

    NASA Technical Reports Server (NTRS)

    Bergou, Attila; Berriman, Bruce; Good, John; Jacob, Joseph; Katz, Daniel; Laity, Anastasia; Prince, Thomas; Williams, Roy

    2005-01-01

    "Montage" is the name of a service of the National Virtual Observatory (NVO), and of software being developed to implement the service via the World Wide Web. Montage generates science-grade custom mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. "Science-grade" in this context signifies that terrestrial and instrumental features are removed from images in a way that can be described quantitatively. "Custom" refers to user-specified parameters of projection, coordinates, size, rotation, and spatial sampling. The greatest value of Montage is expected to lie in its ability to analyze images at multiple wavelengths, delivering them on a common projection, coordinate system, and spatial sampling, and thereby enabling further analysis as though they were part of a single, multi-wavelength image. Montage will be deployed as a computation-intensive service through existing astronomy portals and other Web sites. It will be integrated into the emerging NVO architecture and will be executed on the TeraGrid. The Montage software will also be portable and publicly available.

  13. Wearable Virtual White Cane Network for navigating people with visual impairment.

    PubMed

    Gao, Yabiao; Chandrawanshi, Rahul; Nau, Amy C; Tse, Zion Tsz Ho

    2015-09-01

    Navigating the world with visual impairments presents inconveniences and safety concerns. Although a traditional white cane is the most commonly used mobility aid due to its low cost and acceptable functionality, electronic traveling aids can provide more functionality as well as additional benefits. The Wearable Virtual Cane Network is an electronic traveling aid that utilizes ultrasound sonar technology to scan the surrounding environment for spatial information. The Wearable Virtual Cane Network is composed of four sensing nodes: one on each of the user's wrists, one on the waist, and one on the ankle. The Wearable Virtual Cane Network employs vibration and sound to communicate object proximity to the user. While conventional navigation devices are typically hand-held and bulky, the hands-free design of our prototype allows the user to perform other tasks while using the Wearable Virtual Cane Network. When the Wearable Virtual Cane Network prototype was tested for distance resolution and range detection limits at various displacements and compared with a traditional white cane, all participants performed significantly above the control bar (p < 4.3 × 10(-5), standard t-test) in distance estimation. Each sensor unit can detect an object with a surface area as small as 1 cm(2) (1 cm × 1 cm) located 70 cm away. Our results showed that the walking speed for an obstacle course was increased by 23% on average when subjects used the Wearable Virtual Cane Network rather than the white cane. The obstacle course experiment also shows that the use of the white cane in combination with the Wearable Virtual Cane Network can significantly improve navigation over using either the white cane or the Wearable Virtual Cane Network alone (p < 0.05, paired t-test). © IMechE 2015.

  14. World Wind: NASA's Virtual Globe

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2007-12-01

    Virtual globes have set the standard for information exchange. Once you've experienced the visually rich and highly compelling nature of data delivered via virtual globes with their highly engaging context of 3D, it's hard to go back to a flat 2D world. Just as the sawbones of not-too-long-ago have given way to sophisticated surgical operating theater, today's medium for information exchange is just beginning to leap from the staid chalkboards and remote libraries to fingertip navigable 3D worlds. How we harness this technology to serve a world inundated with information will describe the quality of our future. Our instincts for discovery and entertainment urge us on. There's so much we could know if the world's knowledge was presented to us in its natural context. Virtual globes are almost magical in their ability to reveal natural wonders. Anyone flying along a chain of volcanoes, a mid-ocean ridge or deep ocean trench, while simultaneously seeing the different depths to the history of earthquakes in those areas, will be delighted to sense Earth's dynamic nature in a way that would otherwise take several paragraphs of "boring" text. The sophisticated concepts related to global climate change would be far more comprehensible when experienced via a virtual globe. There is a large universe of public and private geospatial data sets that virtual globes can bring to light. The benefit derived from access to this data within virtual globes represents a significant return on investment for government, industry, the general public, and especially in the realm of education. Data access remains a key issue. Just as the highway infrastructure allows unimpeded access from point A to point B, an open standards-based infrastructure for data access allows virtual globes to exchange data in the most efficient manner possible. This data can be either free or proprietary. The Open Geospatial Consortium is providing the leadership necessary for this open standards-based data access infrastructure. The open-source community plays a crucial role in advancing virtual globe technology. This world community identifies, tracks and resolves technical problems, suggests new features and source code modifications, and often provides high-resolution data sets and other types of user-generated content, all while extending the functionality of virtual globe technology. NASA World Wind is one example of open source virtual globe technology that provides the world with the ability to build any desired functionality and make any desired data accessible.

  15. The Virtual Tablet: Virtual Reality as a Control System

    NASA Technical Reports Server (NTRS)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of hardware, write software to incorporate each piece of position or orientation data into a coherent description of the object's location in space, place the virtual analogue accordingly, and project the control interface onto it, resulting in a functioning object which has both a physical and a virtual presence. Additionally, the virtual environment was enhanced with two live video feeds from cameras mounted on the robotic device being used as an example target of the virtual interface. The working VT allows users to naturally interact with a control interface with little to no training and without the issues found in previous efforts.

  16. Stability and Workload of the Virtual Reality-Based Simulator-2.

    PubMed

    Kamaraj, Deepan C; Dicianno, Brad E; Mahajan, Harshal P; Buhari, Alhaji M; Cooper, Rory A

    2016-07-01

    To assess the stability of clinicians' and users' rating of electric-powered wheelchair (EPW) driving while using 4 different human-machine interfaces (HMIs) within the Virtual Reality-based SIMulator-version 2 (VRSIM-2) and in the real world (accounting for a total of 5 unique driving conditions). Within-subjects repeated-measures design. Simulation-based assessment in a research laboratory. A convenience sample of EPW athletes (N=21) recruited at the 31st National Veterans Wheelchair Games. Not applicable. Composite PMRT scores from the Power Mobility Road Test (PMRT); Raw Task Load Index; and the 6 subscale scores from the Task Load Index developed by the National Aeronautics and Space Administration (NASA-TLX). There was moderate stability (intraclass correlation coefficient between .50 and .75) in the total composite PMRT scores (P<.001) and the users' self-reported performance scores (P<.001) among the 5 driving conditions. There was a significant difference in the workload among the 5 different driving conditions as reflected by the Raw Task Load Index (P=.009). Subanalyses revealed this difference was due to the difference in the mental demand (P=.007) and frustration (P=.007) subscales. Post hoc analyses revealed that these differences in the NASA-TLX subscale scores were due to the differences between real-world and virtual driving scores, particularly attributable to the conditions (1 and 3) that lacked the rollers as a part of the simulation. Further design improvements in the simulator to increase immersion experienced by the EPW user, along with a standardized training program for clinicians to deliver PMRT in VRSIM-2, could improve the stability between the different HMIs and real-world driving. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Multi-tiered S-SOA, Parameter-Driven New Islamic Syariah Products of Holistic Islamic Banking System (HiCORE): Virtual Banking Environment

    NASA Astrophysics Data System (ADS)

    Halimah, B. Z.; Azlina, A.; Sembok, T. M.; Sufian, I.; Sharul Azman, M. N.; Azuraliza, A. B.; Zulaiha, A. O.; Nazlia, O.; Salwani, A.; Sanep, A.; Hailani, M. T.; Zaher, M. Z.; Azizah, J.; Nor Faezah, M. Y.; Choo, W. O.; Abdullah, Chew; Sopian, B.

    The Holistic Islamic Banking System (HiCORE), a banking system suitable for virtual banking environment, created based on universityindustry collaboration initiative between Universiti Kebangsaan Malaysia (UKM) and Fuziq Software Sdn Bhd. HiCORE was modeled on a multitiered Simple - Services Oriented Architecture (S-SOA), using the parameterbased semantic approach. HiCORE's existence is timely as the financial world is looking for a new approach to creating banking and financial products that are interest free or based on the Islamic Syariah principles and jurisprudence. An interest free banking system has currently caught the interest of bankers and financiers all over the world. HiCORE's Parameter-based module houses the Customer-information file (CIF), Deposit and Financing components. The Parameter based module represents the third tier of the multi-tiered Simple SOA approach. This paper highlights the multi-tiered parameter- driven approach to the creation of new Islamiic products based on the 'dalil' (Quran), 'syarat' (rules) and 'rukun' (procedures) as required by the syariah principles and jurisprudence reflected by the semantic ontology embedded in the parameter module of the system.

  18. Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.

    PubMed

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-02-21

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.

  19. Scaled Jump in Gravity-Reduced Virtual Environments.

    PubMed

    Kim, MyoungGon; Cho, Sunglk; Tran, Tanh Quang; Kim, Seong-Pil; Kwon, Ohung; Han, JungHyun

    2017-04-01

    The reduced gravity experienced in lunar or Martian surfaces can be simulated on the earth using a cable-driven system, where the cable lifts a person to reduce his or her weight. This paper presents a novel cable-driven system designed for the purpose. It is integrated with a head-mounted display and a motion capture system. Focusing on jump motion within the system, this paper proposes to scale the jump and reports the experiments made for quantifying the extent to which a jump can be scaled without the discrepancy between physical and virtual jumps being noticed by the user. With the tolerable range of scaling computed from these experiments, an application named retargeted jump is developed, where a user can jump up onto virtual objects while physically jumping in the real-world flat floor. The core techniques presented in this paper can be extended to develop extreme-sport simulators such as parasailing and skydiving.

  20. Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab VIEW

    PubMed Central

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-01-01

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented. PMID:23429578

  1. Effective Communication with Cultural Heritage Using Virtual Technologies

    NASA Astrophysics Data System (ADS)

    Reffat, R. M.; Nofal, E. M.

    2013-07-01

    Cultural heritage is neither static nor stable. There is a need to explore ways for effectively communicating with cultural heritage to tourists and society at large, in an age of immediacy, a time of multiple realities and to multi-cultural tourists. It is vital to consider cultural heritage as a creative and relational process where places and communities are constantly remade through creative performance. The paper introduces virtual technologies as an approach to attain effective communication with cultural heritage. This approach emphasizes the importance of "user, content and context" in guiding the production of virtual heritage, as opposed to technology being the sole motivator. It addresses how these three issues in virtual heritage need to be transformed from merely representing quantitative data towards cultural information using the proposed effective communication triangle through representing meaningful relationships between cultural heritage elements, users and context. The paper offers a focused articulation of a proposed computational platform of "interactive, personalized and contextual-based navigation" with Egyptian heritage monuments as a one step forward towards achieving effective communication with Egyptian cultural heritage.

  2. Internet Teleprescence by Real-Time View-Dependent Image Generation with Omnidirectional Video Camera

    NASA Astrophysics Data System (ADS)

    Morita, Shinji; Yamazawa, Kazumasa; Yokoya, Naokazu

    2003-01-01

    This paper describes a new networked telepresence system which realizes virtual tours into a visualized dynamic real world without significant time delay. Our system is realized by the following three steps: (1) video-rate omnidirectional image acquisition, (2) transportation of an omnidirectional video stream via internet, and (3) real-time view-dependent perspective image generation from the omnidirectional video stream. Our system is applicable to real-time telepresence in the situation where the real world to be seen is far from an observation site, because the time delay from the change of user"s viewing direction to the change of displayed image is small and does not depend on the actual distance between both sites. Moreover, multiple users can look around from a single viewpoint in a visualized dynamic real world in different directions at the same time. In experiments, we have proved that the proposed system is useful for internet telepresence.

  3. Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR.

    PubMed

    Langbehn, Eike; Lubos, Paul; Bruder, Gerd; Steinicke, Frank

    2017-04-01

    Redirected walking (RDW) promises to allow near-natural walking in an infinitely large virtual environment (VE) by subtle manipulations of the virtual camera. Previous experiments analyzed the human sensitivity to RDW manipulations by focusing on the worst-case scenario, in which users walk perfectly straight ahead in the VE, whereas they are redirected on a circular path in the real world. The results showed that a physical radius of at least 22 meters is required for undetectable RDW. However, users do not always walk exactly straight in a VE. So far, it has not been investigated how much a physical path can be bent in situations in which users walk a virtual curved path instead of a straight one. Such curved walking paths can be often observed, for example, when users walk on virtual trails, through bent corridors, or when circling around obstacles. In such situations the question is not, whether or not the physical path can be bent, but how much the bending of the physical path may vary from the bending of the virtual path. In this article, we analyze this question and present redirection by means of bending gains that describe the discrepancy between the bending of curved paths in the real and virtual environment. Furthermore, we report the psychophysical experiments in which we analyzed the human sensitivity to these gains. The results reveal encouragingly wider detection thresholds than for straightforward walking. Based on our findings, we discuss the potential of curved walking and present a first approach to leverage bent paths in a way that can provide undetectable RDW manipulations even in room-scale VR.

  4. User Interface Design for Military AR Applications

    DTIC Science & Technology

    2010-12-12

    virtual objects with the real world: seeing ultrasound imagery within the patient. In: Computer graphics (SIGGRAPH ’ 92 proceedings), vol 26, pp 203–210... airborne reconnaissance and weapon delivery. In: Proceedings of symposium for image display and recording, US Air Force Avionics Laboratory, Wright

  5. USER-CUSTOMIZED ENVIRONMENTAL MAPPING AND DECISION SUPPORT USING NASA WORLD WIND AND DOE GENIE PRO SOFTWARE

    EPA Science Inventory

    Effective environmental stewardship requires timely geospatial information about ecology and

    environment for informed environmental decision support. Unprecedented public access to high resolution

    imagery from earth-looking sensors via online virtual earth browsers ...

  6. Love 2.0: a quantitative exploration of sex and relationships in the virtual world Second Life.

    PubMed

    Craft, Ashley John

    2012-08-01

    This study presents the quantitative results of a web-based survey exploring the experiences of those who seek sex and relationships in the virtual world of Second Life. The survey gathered data on demographics, relationships, and sexual behaviors from 235 Second Life residents to compare with U.S. General Social Survey data on Internet users and the general population. The Second Life survey also gathered data on interests in and experiences with a number of sexual practices in both offline and online environments. Comparative analysis found that survey participants were significantly older, more educated, and less religious than a wider group of Internet users, and in certain age groups were far less likely to be married or have children. Motivations for engaging in cybersex were presented. Analysis of interest and experience of different sexual practices supported findings by other researchers that online environments facilitated access, but also indicated that interest in certain sexual practices could differ between offline and online environments.

  7. NASA Webworldwind: Multidimensional Virtual Globe for Geo Big Data Visualization

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Hogan, P.; Prestifilippo, G.; Zamboni, G.

    2016-06-01

    In this paper, we presented a web application created using the NASA WebWorldWind framework. The application is capable of visualizing n-dimensional data using a Voxel model. In this case study, we handled social media data and Call Detailed Records (CDR) of telecommunication networks. These were retrieved from the "BigData Challenge 2015" of Telecom Italia. We focused on the visualization process for a suitable way to show this geo-data in a 3D environment, incorporating more than three dimensions. This engenders an interactive way to browse the data in their real context and understand them quickly. Users will be able to handle several varieties of data, import their dataset using a particular data structure, and then mash them up in the WebWorldWind virtual globe. A broad range of public use this tool for diverse purposes is possible, without much experience in the field, thanks to the intuitive user-interface of this web app.

  8. Prototype of haptic device for sole of foot using magnetic field sensitive elastomer

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Masuda, Y.; Sugiyama, M.; Mitsumata, T.; Ohori, S.

    2013-02-01

    Walking is one of the most popular activities and a healthy aerobic exercise for the elderly. However, if they have physical and / or cognitive disabilities, sometimes it is challenging to go somewhere they don't know well. The final goal of this study is to develop a virtual reality walking system that allows users to walk in virtual worlds fabricated with computer graphics. We focus on a haptic device that can perform various plantar pressures on users' soles of feet as an additional sense in the virtual reality walking. In this study, we discuss a use of a magnetic field sensitive elastomer (MSE) as a working material for the haptic interface on the sole. The first prototype with MSE was developed and evaluated in this work. According to the measurement of planter pressures, it was found that this device can perform different pressures on the sole of a light-weight user by applying magnetic field on the MSE. The result also implied necessities of the improvement of the magnetic circuit and the basic structure of the mechanism of the device.

  9. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

    NASA Astrophysics Data System (ADS)

    Portalés, Cristina; Lerma, José Luis; Navarro, Santiago

    2010-01-01

    Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.

  10. ARTEMIS: Reinvigorating History and Theory in Art and Design Education

    ERIC Educational Resources Information Center

    Janet, Jeff; Miles, Melissa

    2009-01-01

    ARTEMIS (Art Educational Multiplayer Interactive Space) is an online multi-user virtual environment that is designed around the objects, artefacts, philosophies, personalities and critical discourses of the histories and theories of art and design. Conceived as a means of reinvigorating art history and theory education in the digital age, ARTEMIS…

  11. The Role of Environment Design in an Educational Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Papachristos, Nikiforos M.; Vrellis, Ioannis; Natsis, Antonis; Mikropoulos, Tassos A.

    2014-01-01

    This paper presents empirical results from an exploratory study conducted in an authentic educational situation with preservice education students enrolled in an undergraduate course, which was partially taught in Second Life. The study investigated the effect of environment design on presence, learning outcomes and the overall experience of the…

  12. MOOving around the Net: The Educational Potential of MOOs.

    ERIC Educational Resources Information Center

    1996

    The use of MOOs, multi-user simulated environments in education examined in three papers include: "MOOving around the Net: The Educational Potential of MOOs: A Point of View" (Daniel Ingvarson); "MOOing in a Foreign Language: How, Why and Who?" (Lonnie Turbee) and "MOOving around the Net: Real to Virtual and Back…

  13. Programming for Fun: MUDs as a Context for Collaborative Learning.

    ERIC Educational Resources Information Center

    Bruckman, Amy

    Multi-User Dungeons (MUDs), are text-based virtual reality environments in which participants separated by great physical distances can communicate and collaborate in programming. Most MUDs started out as adventure games but are quickly being adapted for more "serious" endeavors. This paper presents a case study of the experiences of a…

  14. High-immersion three-dimensional display of the numerical computer model

    NASA Astrophysics Data System (ADS)

    Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu

    2013-08-01

    High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.

  15. Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress.

    PubMed

    Maples-Keller, Jessica L; Yasinski, Carly; Manjin, Nicole; Rothbaum, Barbara Olasov

    2017-07-01

    Virtual reality (VR) refers to an advanced technological communication interface in which the user is actively participating in a computer-generated 3-dimensional virtual world that includes computer sensory input devices used to simulate real-world interactive experiences. VR has been used within psychiatric treatment for anxiety disorders, particularly specific phobias and post-traumatic stress disorder, given several advantages that VR provides for use within treatment for these disorders. Exposure therapy for anxiety disorder is grounded in fear-conditioning models, in which extinction learning involves the process through which conditioned fear responses decrease or are inhibited. The present review will provide an overview of extinction training and anxiety disorder treatment, advantages for using VR within extinction training, a review of the literature regarding the effectiveness of VR within exposure therapy for specific phobias and post-traumatic stress disorder, and limitations and future directions of the extant empirical literature.

  16. Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.

    2014-01-01

    Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an operational data cube service to be delivered in mid-2014. An associated user-installable VO data service framework will provide the capabilities required to publish VO-compatible multi-dimensional images or data cubes.

  17. Implementing virtual reality interfaces for the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, W.; Jacobsen, J.; Austin, A.

    1996-06-01

    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter threemore » or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.« less

  18. DEEP SPACE: High Resolution VR Platform for Multi-user Interactive Narratives

    NASA Astrophysics Data System (ADS)

    Kuka, Daniela; Elias, Oliver; Martins, Ronald; Lindinger, Christopher; Pramböck, Andreas; Jalsovec, Andreas; Maresch, Pascal; Hörtner, Horst; Brandl, Peter

    DEEP SPACE is a large-scale platform for interactive, stereoscopic and high resolution content. The spatial and the system design of DEEP SPACE are facing constraints of CAVETM-like systems in respect to multi-user interactive storytelling. To be used as research platform and as public exhibition space for many people, DEEP SPACE is capable to process interactive, stereoscopic applications on two projection walls with a size of 16 by 9 meters and a resolution of four times 1080p (4K) each. The processed applications are ranging from Virtual Reality (VR)-environments to 3D-movies to computationally intensive 2D-productions. In this paper, we are describing DEEP SPACE as an experimental VR platform for multi-user interactive storytelling. We are focusing on the system design relevant for the platform, including the integration of the Apple iPod Touch technology as VR control, and a special case study that is demonstrating the research efforts in the field of multi-user interactive storytelling. The described case study, entitled "Papyrate's Island", provides a prototypical scenario of how physical drawings may impact on digital narratives. In this special case, DEEP SPACE helps us to explore the hypothesis that drawing, a primordial human creative skill, gives us access to entirely new creative possibilities in the domain of interactive storytelling.

  19. User Interface on the World Wide Web: How to Implement a Multi-Level Program Online

    NASA Technical Reports Server (NTRS)

    Cranford, Jonathan W.

    1995-01-01

    The objective of this Langley Aerospace Research Summer Scholars (LARSS) research project was to write a user interface that utilizes current World Wide Web (WWW) technologies for an existing computer program written in C, entitled LaRCRisk. The project entailed researching data presentation and script execution on the WWW and than writing input/output procedures for the database management portion of LaRCRisk.

  20. Assessment of wheelchair driving performance in a virtual reality-based simulator

    PubMed Central

    Mahajan, Harshal P.; Dicianno, Brad E.; Cooper, Rory A.; Ding, Dan

    2013-01-01

    Objective To develop a virtual reality (VR)-based simulator that can assist clinicians in performing standardized wheelchair driving assessments. Design A completely within-subjects repeated measures design. Methods Participants drove their wheelchairs along a virtual driving circuit modeled after the Power Mobility Road Test (PMRT) and in a hallway with decreasing width. The virtual simulator was displayed on computer screen and VR screens and participants interacted with it using a set of instrumented rollers and a wheelchair joystick. Driving performances of participants were estimated and compared using quantitative metrics from the simulator. Qualitative ratings from two experienced clinicians were used to estimate intra- and inter-rater reliability. Results Ten regular wheelchair users (seven men, three women; mean age ± SD, 39.5 ± 15.39 years) participated. The virtual PMRT scores from the two clinicians show high inter-rater reliability (78–90%) and high intra-rater reliability (71–90%) for all test conditions. More research is required to explore user preferences and effectiveness of the two control methods (rollers and mathematical model) and the display screens. Conclusions The virtual driving simulator seems to be a promising tool for wheelchair driving assessment that clinicians can use to supplement their real-world evaluations. PMID:23820148

  1. THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS

    PubMed Central

    Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel

    2010-01-01

    Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618

  2. Virtual Patients in a Behavioral Medicine Massive Open Online Course (MOOC): A Case-Based Analysis of Technical Capacity and User Navigation Pathways.

    PubMed

    Kononowicz, Andrzej A; Berman, Anne H; Stathakarou, Natalia; McGrath, Cormac; Bartyński, Tomasz; Nowakowski, Piotr; Malawski, Maciej; Zary, Nabil

    2015-09-10

    Massive open online courses (MOOCs) have been criticized for focusing on presentation of short video clip lectures and asking theoretical multiple-choice questions. A potential way of vitalizing these educational activities in the health sciences is to introduce virtual patients. Experiences from such extensions in MOOCs have not previously been reported in the literature. This study analyzes technical challenges and solutions for offering virtual patients in health-related MOOCs and describes patterns of virtual patient use in one such course. Our aims are to reduce the technical uncertainty related to these extensions, point to aspects that could be optimized for a better learner experience, and raise prospective research questions by describing indicators of virtual patient use on a massive scale. The Behavioral Medicine MOOC was offered by Karolinska Institutet, a medical university, on the EdX platform in the autumn of 2014. Course content was enhanced by two virtual patient scenarios presented in the OpenLabyrinth system and hosted on the VPH-Share cloud infrastructure. We analyzed web server and session logs and a participant satisfaction survey. Navigation pathways were summarized using a visual analytics tool developed for the purpose of this study. The number of course enrollments reached 19,236. At the official closing date, 2317 participants (12.1% of total enrollment) had declared completing the first virtual patient assignment and 1640 (8.5%) participants confirmed completion of the second virtual patient assignment. Peak activity involved 359 user sessions per day. The OpenLabyrinth system, deployed on four virtual servers, coped well with the workload. Participant survey respondents (n=479) regarded the activity as a helpful exercise in the course (83.1%). Technical challenges reported involved poor or restricted access to videos in certain areas of the world and occasional problems with lost sessions. The visual analyses of user pathways display the parts of virtual patient scenarios that elicited less interest and may have been perceived as nonchallenging options. Analyzing the user navigation pathways allowed us to detect indications of both surface and deep approaches to the content material among the MOOC participants. This study reported on first inclusion of virtual patients in a MOOC. It adds to the body of knowledge by demonstrating how a biomedical cloud provider service can ensure technical capacity and flexible design of a virtual patient platform on a massive scale. The study also presents a new way of analyzing the use of branched virtual patients by visualization of user navigation pathways. Suggestions are offered on improvements to the design of virtual patients in MOOCs.

  3. Virtual Patients in a Behavioral Medicine Massive Open Online Course (MOOC): A Case-Based Analysis of Technical Capacity and User Navigation Pathways

    PubMed Central

    Berman, Anne H; Stathakarou, Natalia; McGrath, Cormac; Bartyński, Tomasz; Nowakowski, Piotr; Malawski, Maciej; Zary, Nabil

    2015-01-01

    Background Massive open online courses (MOOCs) have been criticized for focusing on presentation of short video clip lectures and asking theoretical multiple-choice questions. A potential way of vitalizing these educational activities in the health sciences is to introduce virtual patients. Experiences from such extensions in MOOCs have not previously been reported in the literature. Objective This study analyzes technical challenges and solutions for offering virtual patients in health-related MOOCs and describes patterns of virtual patient use in one such course. Our aims are to reduce the technical uncertainty related to these extensions, point to aspects that could be optimized for a better learner experience, and raise prospective research questions by describing indicators of virtual patient use on a massive scale. Methods The Behavioral Medicine MOOC was offered by Karolinska Institutet, a medical university, on the EdX platform in the autumn of 2014. Course content was enhanced by two virtual patient scenarios presented in the OpenLabyrinth system and hosted on the VPH-Share cloud infrastructure. We analyzed web server and session logs and a participant satisfaction survey. Navigation pathways were summarized using a visual analytics tool developed for the purpose of this study. Results The number of course enrollments reached 19,236. At the official closing date, 2317 participants (12.1% of total enrollment) had declared completing the first virtual patient assignment and 1640 (8.5%) participants confirmed completion of the second virtual patient assignment. Peak activity involved 359 user sessions per day. The OpenLabyrinth system, deployed on four virtual servers, coped well with the workload. Participant survey respondents (n=479) regarded the activity as a helpful exercise in the course (83.1%). Technical challenges reported involved poor or restricted access to videos in certain areas of the world and occasional problems with lost sessions. The visual analyses of user pathways display the parts of virtual patient scenarios that elicited less interest and may have been perceived as nonchallenging options. Analyzing the user navigation pathways allowed us to detect indications of both surface and deep approaches to the content material among the MOOC participants. Conclusions This study reported on first inclusion of virtual patients in a MOOC. It adds to the body of knowledge by demonstrating how a biomedical cloud provider service can ensure technical capacity and flexible design of a virtual patient platform on a massive scale. The study also presents a new way of analyzing the use of branched virtual patients by visualization of user navigation pathways. Suggestions are offered on improvements to the design of virtual patients in MOOCs. PMID:27731844

  4. Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    PubMed Central

    Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall

    2012-01-01

    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561

  5. VAGUE: a graphical user interface for the Velvet assembler.

    PubMed

    Powell, David R; Seemann, Torsten

    2013-01-15

    Velvet is a popular open-source de novo genome assembly software tool, which is run from the Unix command line. Most of the problems experienced by new users of Velvet revolve around constructing syntactically and semantically correct command lines, getting input files into acceptable formats and assessing the output. Here, we present Velvet Assembler Graphical User Environment (VAGUE), a multi-platform graphical front-end for Velvet. VAGUE aims to make sequence assembly accessible to a wider audience and to facilitate better usage amongst existing users of Velvet. VAGUE is implemented in JRuby and targets the Java Virtual Machine. It is available under an open-source GPLv2 licence from http://www.vicbioinformatics.com/. torsten.seemann@monash.edu.

  6. Small satellite multi mission C2 for maximum effect

    USGS Publications Warehouse

    Miller, E.; Medina, O.; Lane, C.R.; Kirkham, A.; Ivancic, W.; Jones, B.; Risty, R.

    2006-01-01

    This paper discusses US Air Force, US Army, US Navy, and NASA demonstrations based around the Virtual Mission Operations Center (VMOC) and its application in fielding a Multi Mission Satellite Operations Center (MMSOC) designed to integrate small satellites into the inherently tiered system environment of operations. The intent is to begin standardizing the spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of Tactics, Techniques and Procedures (TTPs) that lead to Responsive Space employment. Combining the US Air Force/Army focus of theater command and control of payloads with the US Navy's user collaboration and FORCEnet consistent approach lays the groundwork for the fundamental change needed to maximize responsive space effects.

  7. Information Technology and Disabilities, 1997.

    ERIC Educational Resources Information Center

    McNulty, Tom, Ed.

    1997-01-01

    Articles published during 1997 include: "The Multi-Disability Workstation for Small Libraries" (Dick Banks and Steve Noble); "Talking Books: Toward a Digital Model" (John Cookson and others); "World Wide Access: Focus on Libraries" (Sheryl Burgstahler); "The Virtual Library: Collaborative Data Exchange and Electronic Text Delivery" (Steve Noble);…

  8. Learning Application of Astronomy Based Augmented Reality using Android Platform

    NASA Astrophysics Data System (ADS)

    Maleke, B.; Paseru, D.; Padang, R.

    2018-02-01

    Astronomy is a branch of science involving observations of celestial bodies such as stars, planets, nebular comets, star clusters, and galaxies as well as natural phenomena occurring outside the Earth’s atmosphere. The way of learning of Astronomy is quite varied, such as by using a book or observe directly with a telescope. But both ways of learning have shortcomings, for example learning through books is only presented in the form of interesting 2D drawings. While learning with a telescope requires a fairly expensive cost to buy the equipment. This study will present a more interesting way of learning from the previous one, namely through Augmented Reality (AR) application using Android platform. Augmented Reality is a combination of virtual world (virtual) and real world (real) made by computer. Virtual objects can be text, animation, 3D models or videos that are combined with the actual environment so that the user feels the virtual object is in his environment. With the use of the Android platform, this application makes the learning method more interesting because it can be used on various Android smartphones so that learning can be done anytime and anywhere. The methodology used in making applications is Multimedia Lifecycle, along with C # language for AR programming and flowchart as a modelling tool. The results of research on some users stated that this application can run well and can be used as an alternative way of learning Astronomy with more interesting.

  9. Investigation of tracking systems properties in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Szymaniak, Magda; Mazikowski, Adam; Meironke, Michał

    2017-08-01

    In recent years, many scientific and industrial centers in the world developed a virtual reality systems or laboratories. One of the most advanced solutions are Immersive 3D Visualization Lab (I3DVL), a CAVE-type (Cave Automatic Virtual Environment) laboratory. It contains two CAVE-type installations: six-screen installation arranged in a form of a cube, and four-screen installation, a simplified version of the previous one. The user feeling of "immersion" and interaction with virtual world depend on many factors, in particular on the accuracy of the tracking system of the user. In this paper properties of the tracking systems applied in I3DVL was investigated. For analysis two parameters were selected: the accuracy of the tracking system and the range of detection of markers by the tracking system in space of the CAVE. Measurements of system accuracy were performed for six-screen installation, equipped with four tracking cameras for three axes: X, Y, Z. Rotation around the Y axis was also analyzed. Measured tracking system shows good linear and rotating accuracy. The biggest issue was the range of the monitoring of markers inside the CAVE. It turned out, that the tracking system lose sight of the markers in the corners of the installation. For comparison, for a simplified version of CAVE (four-screen installation), equipped with eight tracking cameras, this problem was not occur. Obtained results will allow for improvement of cave quality.

  10. Role of virtual reality for cerebral palsy management.

    PubMed

    Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy

    2014-08-01

    Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.

  11. NASA World Wind: A New Mission

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Gaskins, T.; Bailey, J. E.

    2008-12-01

    Virtual Globes are well into their first generation, providing increasingly rich and beautiful visualization of more types and quantities of information. However, they are still mostly single and proprietary programs, akin to a web browser whose content and functionality are controlled and constrained largely by the browser's manufacturer. Today Google and Microsoft determine what we can and cannot see and do in these programs. NASA World Wind started out in nearly the same mode, a single program with limited functionality and information content. But as the possibilities of virtual globes became more apparent, we found that while enabling a new class of information visualization, we were also getting in the way. Many users want to provide World Wind functionality and information in their programs, not ours. They want it in their web pages. They want to include their own features. They told us that only with this kind of flexibility, could their objectives and the potential of the technology be truly realized. World Wind therefore changed its mission: from providing a single information browser to enabling a whole class of 3D geographic applications. Instead of creating one program, we create components to be used in any number of programs. World Wind is NASA open source software. With the source code being fully visible, anyone can readily use it and freely extend it to serve any use. Imagery and other information provided by the World Wind servers is also free and unencumbered, including the server technology to deliver geospatial data. World Wind developers can therefore provide exclusive and custom solutions based on user needs.

  12. The Path from Large Earth Science Datasets to Information

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  13. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  14. A Proposed Theory Seeded Methodology for Design Based Research into Effective Use of MUVES in Vocational Education Contexts

    ERIC Educational Resources Information Center

    Cochrane, Todd; Davis, Niki; Morrow, Donna

    2013-01-01

    A methodology for design based research (DBR) into effective development and use of Multi-User Virtual Environments (MUVE) in vocational education is proposed. It blends software development with DBR with two theories selected to inform the methodology. Legitimate peripheral participation LPP (Lave & Wenger, 1991) provides a filter when…

  15. Shifts in Student Motivation during Usage of a Multi-User Virtual Environment for Ecosystem Science

    ERIC Educational Resources Information Center

    Metcalf, Shari; Chen, Jason; Kamarainen, Amy; Frumin, Kim; Vickrey, Trisha; Grotzer, Tina; Dede, Chris

    2014-01-01

    In incorporating technology in science education, some have expressed concern that the value added by technology is primarily due to the novelty or excitement about using the devices, resulting in no lasting effect on student motivation or learning in science. This research addresses this concern through evaluation of student motivation during a…

  16. Adoption of Second Life in Higher Education: Comparing the Effect of Utilitarian and Hedonic Behaviours

    ERIC Educational Resources Information Center

    Saeed, Nauman; Sinnappan, Sukunesan

    2013-01-01

    Second Life is a three dimensional multi-user virtual environment within the Web 2.0 suite of applications which has gained wide spread popularity amongst educators in the recent years. However, limited empirical research has been reported on the adoption of Second Life, especially within higher education. The majority of technology adoption…

  17. Exploring the Use of Three-Dimensional Multi-User Virtual Environments for Online Problem-Based Learning

    ERIC Educational Resources Information Center

    Omale, Nicholas M.

    2010-01-01

    This exploratory case study examines how three media attributes in 3-D MUVEs--avatars, 3-D spaces and bubble dialogue boxes--affect interaction in an online problem-based learning (PBL) activity. The study participants were eleven undergraduate students enrolled in a 200-level, three-credit-hour technology integration course at a Midwestern…

  18. Using "Second Life" in School Librarianship

    ERIC Educational Resources Information Center

    Perez, Lisa

    2009-01-01

    In this article, the author discusses using Second Life (SL) in school librarianship. SL is a multi-user virtual environment in which persons create avatars to allow them to move and interact with other avatars. They can build and manipulate objects. To move, they can walk, run, fly, or teleport. There are many areas within SL to allow people to…

  19. Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning

    ERIC Educational Resources Information Center

    Dunleavy, Matt; Dede, Chris; Mitchell, Rebecca

    2009-01-01

    The purpose of this study was to document how teachers and students describe and comprehend the ways in which participating in an augmented reality (AR) simulation aids or hinders teaching and learning. Like the multi-user virtual environment (MUVE) interface that underlies Internet games, AR is a good medium for immersive collaborative…

  20. Satellite medical centers project

    NASA Astrophysics Data System (ADS)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  1. Development of and feedback on a fully automated virtual reality system for online training in weight management skills.

    PubMed

    Thomas, J Graham; Spitalnick, Josh S; Hadley, Wendy; Bond, Dale S; Wing, Rena R

    2015-01-01

    Virtual reality (VR) technology can provide a safe environment for observing, learning, and practicing use of behavioral weight management skills, which could be particularly useful in enhancing minimal contact online weight management programs. The Experience Success (ES) project developed a system for creating and deploying VR scenarios for online weight management skills training. Virtual environments populated with virtual actors allow users to experiment with implementing behavioral skills via a PC-based point and click interface. A culturally sensitive virtual coach guides the experience, including planning for real-world skill use. Thirty-seven overweight/obese women provided feedback on a test scenario focused on social eating situations. They reported that the scenario gave them greater skills, confidence, and commitment for controlling eating in social situations. © 2014 Diabetes Technology Society.

  2. Development of and Feedback on a Fully Automated Virtual Reality System for Online Training in Weight Management Skills

    PubMed Central

    Spitalnick, Josh S.; Hadley, Wendy; Bond, Dale S.; Wing, Rena R.

    2014-01-01

    Virtual reality (VR) technology can provide a safe environment for observing, learning, and practicing use of behavioral weight management skills, which could be particularly useful in enhancing minimal contact online weight management programs. The Experience Success (ES) project developed a system for creating and deploying VR scenarios for online weight management skills training. Virtual environments populated with virtual actors allow users to experiment with implementing behavioral skills via a PC-based point and click interface. A culturally sensitive virtual coach guides the experience, including planning for real-world skill use. Thirty-seven overweight/obese women provided feedback on a test scenario focused on social eating situations. They reported that the scenario gave them greater skills, confidence, and commitment for controlling eating in social situations. PMID:25367014

  3. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  4. Virtual Conversation Partner for Adults with Autism

    PubMed Central

    Trepagnier, Cheryl Y.; Olsen, Dale E.; Bell, Corinne A.

    2011-01-01

    Abstract Autistic Spectrum Disorder (ASD) is notable for severely impaired reciprocal social interaction skills relative to language and intellectual abilities, presenting a major barrier to social integration and vocational success. Evidence-based interventions to address these needs are lacking. We report on the development of a small, prototype conversation simulation to teach conversational skills to adolescents and adults with ASD and average to superior intellectual abilities. We also report on a test of the feasibility and acceptability of the simulation approach with a sample of the target population. The simulation engages the user in a virtual conversation with an on-screen partner whose reactions provide naturalistic feedback geared to the appropriateness of the learner's response choices. The prototype simulation, which provides for up to 12 potentially unique multi-turn conversations, was used over a period of 2 weeks by 16 adolescents and adults who then rated statements about the system on a linear scale of 1 (disagreement) to 5 (high agreement). The participants highly endorsed the majority of positive statements about the quality and credibility of the interaction and the virtual conversation partner. In contrast, agreement with positive statements about instructional features external to the conversation was moderate. Unexpectedly, most participants strongly agreed that using the simulation had been helpful to them. Further development and testing in the context of a controlled study with randomized assignment to control and experimental groups are needed to determine whether this approach is effective in improving real-world pragmatic language behavior of high-functioning adults with ASD. PMID:21329439

  5. Space Science Outreach in the Virtual World of Second Life

    NASA Astrophysics Data System (ADS)

    Crider, Anthony W.; International Spaceflight Museum

    2006-12-01

    The on-line "game" of Second Life allows users to construct a highly detailed and customized environment. Users often pool talents and resources to construct virtual islands that focus on their common interest. One such group has built the International Spaceflight Museum, committed to constructing and displaying accurate models of rockets, spacecraft, telescopes, and planetariums. Current exhibits include a Saturn V rocket, a Viking lander on Mars, Spaceship One, the New Horizons mission to the Kuiper Belt, and a prototype of the Orion crew exploration vehicle. This museum also hosts public lectures, shuttle launch viewings, and university astronomy class projects. In this presentation, I will focus on how space science researchers and educators may take advantage of this new resource as a means to engage the public.

  6. Software architecture and design of the web services facilitating climate model diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Pan, L.; Lee, S.; Zhang, J.; Tang, B.; Zhai, C.; Jiang, J. H.; Wang, W.; Bao, Q.; Qi, M.; Kubar, T. L.; Teixeira, J.

    2015-12-01

    Climate model diagnostic analysis is a computationally- and data-intensive task because it involves multiple numerical model outputs and satellite observation data that can both be high resolution. We have built an online tool that facilitates this process. The tool is called Climate Model Diagnostic Analyzer (CMDA). It employs the web service technology and provides a web-based user interface. The benefits of these choices include: (1) No installation of any software other than a browser, hence it is platform compatable; (2) Co-location of computation and big data on the server side, and small results and plots to be downloaded on the client side, hence high data efficiency; (3) multi-threaded implementation to achieve parallel performance on multi-core servers; and (4) cloud deployment so each user has a dedicated virtual machine. In this presentation, we will focus on the computer science aspects of this tool, namely the architectural design, the infrastructure of the web services, the implementation of the web-based user interface, the mechanism of provenance collection, the approach to virtualization, and the Amazon Cloud deployment. As an example, We will describe our methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). Another example is the use of Docker, a light-weight virtualization container, to distribute and deploy CMDA onto an Amazon EC2 instance. Our tool of CMDA has been successfully used in the 2014 Summer School hosted by the JPL Center for Climate Science. Students had positive feedbacks in general and we will report their comments. An enhanced version of CMDA with several new features, some requested by the 2014 students, will be used in the 2015 Summer School soon.

  7. Promoting Health in Virtual Worlds: Lessons From Second Life

    PubMed Central

    Mäntymäki, Matti; Söderlund, Sari

    2014-01-01

    Background Social media services can help empower people to take greater responsibility for their health. For example, virtual worlds are media-rich environments that have many technically advantageous characteristics that can be used for Health 2.0 purposes. Second Life has been used to build environments where people can obtain information and interact with other users for peer support and advice from health care professionals. Objective The intent of the study was to find out whether Second Life is a working and functional platform supporting the empowerment of people in health-related issues. Methods We conducted a review of the current health-related activity in Second Life, coupled with an extensive series of observations and interactions with the respective resources inside Second Life. Results A total of 24 operative health resources were found in Second Life, indicating that health-related activity is rather limited in Second Life, though at first glance it appears to contain very rich health-related content. The other main shortcomings of Second Life relate to a lack of activity, a low number of resource users, problems with Second Life’s search features, and the difficulty of finding trustworthy information. Conclusions For the average user, Second Life offers very little unique value compared to other online health resources. PMID:25313009

  8. A Storm's Approach; Hurricane Shelter Training in a Digital Age

    NASA Technical Reports Server (NTRS)

    Boyarsky, Andrew; Burden, David; Gronstedt, Anders; Jinman, Andrew

    2012-01-01

    New York City's Office of Emergency Management (OEM) originally ran hundreds of classroom based courses, where they brought together civil servants to learn how to run a Hurricane Shelter (HS). This approach was found to be costly, time consuming and lacked any sense of an impending disaster and need for emergency response. In partnership with the City of New York University School of Professional studies, Gronstedt Group and Daden Limited, the OEM wanted to create a simulation that overcame these issues, providing users with a more immersive and realistic approach at a lower cost. The HS simulation was built in the virtual world Second Life (SL). Virtual worlds are a genre of online communities that often take the form of a computer-based simulated environments, through which users can interact with one another and use or create objects. Using this technology allowed managers to apply their knowledge in both classroom and remote learning environments. The shelter simulation is operational 24/7, guiding users through a 4 1/2 hour narrative from start to finish. This paper will describe the rationale for the project, the technical approach taken - particularly the use of a web based authoring tool to create and manage the immersive simulation, and the results from operational use.

  9. Getting the point across: exploring the effects of dynamic virtual humans in an interactive museum exhibit on user perceptions.

    PubMed

    Rivera-Gutierrez, Diego; Ferdig, Rick; Li, Jian; Lok, Benjamin

    2014-04-01

    We have created “You, M.D.”, an interactive museum exhibit in which users learn about topics in public health literacy while interacting with virtual humans. You, M.D. is equipped with a weight sensor, a height sensor and a Microsoft Kinect that gather basic user information. Conceptually, You, M.D. could use this user information to dynamically select the appearance of the virtual humans in the interaction attempting to improve learning outcomes and user perception for each particular user. For this concept to be possible, a better understanding of how different elements of the visual appearance of a virtual human affects user perceptions is required. In this paper, we present the results of an initial user study with a large sample size (n =333) ran using You, M.D. The study measured users’ reactions based on the user’s gender and body-mass index (BMI) when facing virtual humans with BMI either concordant or discordant from the user’s BMI. The results of the study indicate that concordance between the users’ BMI and the virtual human’s BMI affects male and female users differently. The results also show that female users rate virtual humans as more knowledgeable than male users rate the same virtual humans.

  10. Marketing 2.0

    ERIC Educational Resources Information Center

    Germain, Carol Anne

    2008-01-01

    There is no doubt that today's student is much more savvy with using computers than the students of years gone by. This tech generation eagerly embraces the Internet, online searching, and the newer Web 2.0 technologies. This latter platform provides users with the ability to interact in a large virtual world, share/take (upload/download)…

  11. "Typing Back": Social Media as Space for Critical Discourse

    ERIC Educational Resources Information Center

    Careless, Erin Jennifer

    2015-01-01

    Social media applications such as Facebook and Twitter have become integrated into sociocultural practices for millions of people around the world, and are having an enduring impact on the field of adult education. As essentially free, virtually non-hierarchical tools that facilitate user-generated knowledge, these online spaces may be powerful…

  12. Gender and Power Issues in On-Line Learning Environments.

    ERIC Educational Resources Information Center

    Machanic, Mindy

    The Internet (Net) and World Wide Web (WWW) have developed a variety of cultures and communities. Although most early users of the Net (mostly males) were well-intentioned and well-mannered, their social conventions (some blatantly sexist, others in the nature of macho posturing) have continued in many online chat rooms and virtual gaming…

  13. Second Life: Creating Worlds of Wonder for Language Learners

    ERIC Educational Resources Information Center

    Ocasio, Michelle A.

    2016-01-01

    This article describes Second Life, a three-dimensional virtual environment in which a user creates an avatar for the purpose of socializing, learning, developing skills, and exploring a variety of academic and social areas. Since its inception in 2003, Second Life has been used by educators to build and foster innovative learning environments and…

  14. From Floppies to Flash--Your Guide to Removable Media

    ERIC Educational Resources Information Center

    Berdinka, Matthew J.

    2005-01-01

    Technology that once involved a scary, mysterious machine the size of a small house now fits on desktops and commonly appears in offices, schools, and homes. Computers allow for processing, storing and transmitting data between two or more people virtually anywhere in the world. They also allow users to save documents, presentations, photos and…

  15. Developing effective serious games: the effect of background sound on visual fidelity perception with varying texture resolution.

    PubMed

    Rojas, David; Kapralos, Bill; Cristancho, Sayra; Collins, Karen; Hogue, Andrew; Conati, Cristina; Dubrowski, Adam

    2012-01-01

    Despite the benefits associated with virtual learning environments and serious games, there are open, fundamental issues regarding simulation fidelity and multi-modal cue interaction and their effect on immersion, transfer of knowledge, and retention. Here we describe the results of a study that examined the effect of ambient (background) sound on the perception of visual fidelity (defined with respect to texture resolution). Results suggest that the perception of visual fidelity is dependent on ambient sound and more specifically, white noise can have detrimental effects on our perception of high quality visuals. The results of this study will guide future studies that will ultimately aid in developing an understanding of the role that fidelity, and multi-modal interactions play with respect to knowledge transfer and retention for users of virtual simulations and serious games.

  16. Infrastructure of electronic information management

    USGS Publications Warehouse

    Twitchell, G.D.

    2004-01-01

    The information technology infrastructure of an organization, whether it is a private, non-profit, federal, or academic institution, is key to delivering timely and high-quality products and services to its customers and stakeholders. With the evolution of the Internet and the World Wide Web, resources that were once "centralized" in nature are now distributed across the organization in various locations and often remote regions of the country. This presents tremendous challenges to the information technology managers, users, and CEOs of large world-wide corporations who wish to exchange information or get access to resources in today's global marketplace. Several tools and technologies have been developed over recent years that play critical roles in ensuring that the proper information infrastructure exists within the organization to facilitate this global information marketplace Such tools and technologies as JAVA, Proxy Servers, Virtual Private Networks (VPN), multi-platform database management solutions, high-speed telecommunication technologies (ATM, ISDN, etc.), mass storage devices, and firewall technologies most often determine the organization's success through effective and efficient information infrastructure practices. This session will address several of these technologies and provide options related to those that may exist and can be readily applied within Eastern Europe. ?? 2004 - IOS Press and the authors. All rights reserved.

  17. The RoboCup Mixed Reality League - A Case Study

    NASA Astrophysics Data System (ADS)

    Gerndt, Reinhard; Bohnen, Matthias; da Silva Guerra, Rodrigo; Asada, Minoru

    In typical mixed reality systems there is only a one-way interaction from real to virtual. A human user or the physics of a real object may influence the behavior of virtual objects, but real objects usually cannot be influenced by the virtual world. By introducing real robots into the mixed reality system, we allow a true two-way interaction between virtual and real worlds. Our system has been used since 2007 to implement the RoboCup mixed reality soccer games and other applications for research and edutainment. Our framework system is freely programmable to generate any virtual environment, which may then be further supplemented with virtual and real objects. The system allows for control of any real object based on differential drive robots. The robots may be adapted for different applications, e.g., with markers for identification or with covers to change shape and appearance. They may also be “equipped” with virtual tools. In this chapter we present the hardware and software architecture of our system and some applications. The authors believe this can be seen as a first implementation of Ivan Sutherland’s 1965 idea of the ultimate display: “The ultimate display would, of course, be a room within which the computer can control the existence of matter …” (Sutherland, 1965, Proceedings of IFIPS Congress 2:506-508).

  18. Exploring Ecosystems from the Inside: How Immersive Multi-User Virtual Environments Can Support Development of Epistemologically Grounded Modeling Practices in Ecosystem Science Instruction

    ERIC Educational Resources Information Center

    Kamarainen, Amy M.; Metcalf, Shari; Grotzer, Tina; Dede, Chris

    2015-01-01

    Recent reform efforts and the next generation science standards emphasize the importance of incorporating authentic scientific practices into science instruction. Modeling can be a particularly challenging practice to address because modeling occurs within a socially structured system of representation that is specific to a domain. Further, in the…

  19. A Look inside a MUVE Design Process: Blending Instructional Design and Game Principles to Target Writing Skills

    ERIC Educational Resources Information Center

    Warren, Scott J.; Stein, Richard A.; Dondlinger, Mary Jo; Barab, Sasha A.

    2009-01-01

    The number of games, simulations, and multi-user virtual environments designed to promote learning, engagement with subject matter, or intended to contextualize learning has been steadily increasing over the past decade. While the use of these digital designs in educational settings has begun to show promise for improving learning, motivation, and…

  20. Teachers and Game-Based Learning: Improving Understanding of How to Increase Efficacy of Adoption

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Schifter, Catherine C.

    2011-01-01

    Interest in game-based learning for K-12 is growing. Thus, helping teachers understand how to use these new pedagogies is important. This paper presents a cross-case study of the development of teacher professional development for the River City project, a games-based multi-user virtual environment science curriculum project for middle school…

  1. Multi-User Virtual Environments Fostering Collaboration in Formal Education

    ERIC Educational Resources Information Center

    Di Blas, Nicoletta; Paolini, Paolo

    2014-01-01

    This paper is about how serious games based on MUVEs in formal education can foster collaboration. More specifically, it is about a large case-study with four different programs which took place from 2002 to 2009 and involved more than 9,000 students, aged between 12 and 18, from various nations (18 European countries, Israel and the USA). These…

  2. Exploring the Use of Individualized, Reflective Guidance In an Educational Multi-User Virtual Environment

    NASA Astrophysics Data System (ADS)

    Nelson, Brian C.

    2007-02-01

    This study examines the patterns of use and potential impact of individualized, reflective guidance in an educational Multi-User Virtual Environment (MUVE). A guidance system embedded within a MUVE-based scientific inquiry curriculum was implemented with a sample of middle school students in an exploratory study investigating (a) whether access to the guidance system was associated with improved learning, (b) whether students viewing more guidance messages saw greater improvement on content tests than those viewing less, and (c) whether there were any differences in guidance use among boys and girls. Initial experimental findings showed that basic access to individualized guidance used with a MUVE had no measurable impact on learning. However, post-hoc exploratory analyses indicated that increased use of the system among those with access to it was positively associated with content test score gains. In addition, differences were found in overall learning outcomes by gender and in patterns of guidance use by boys and girls, with girls outperforming boys across a spectrum of guidance system use. Based on these exploratory findings, the paper suggests design guidelines for the development of guidance systems embedded in MUVEs and outlines directions for further research.

  3. Exploring Design Requirements for Repurposing Dental Virtual Patients From the Web to Second Life: A Focus Group Study

    PubMed Central

    Antoniou, Panagiotis E; Athanasopoulou, Christina A; Dafli, Eleni

    2014-01-01

    Background Since their inception, virtual patients have provided health care educators with a way to engage learners in an experience simulating the clinician’s environment without danger to learners and patients. This has led this learning modality to be accepted as an essential component of medical education. With the advent of the visually and audio-rich 3-dimensional multi-user virtual environment (MUVE), a new deployment platform has emerged for educational content. Immersive, highly interactive, multimedia-rich, MUVEs that seamlessly foster collaboration provide a new hotbed for the deployment of medical education content. Objective This work aims to assess the suitability of the Second Life MUVE as a virtual patient deployment platform for undergraduate dental education, and to explore the requirements and specifications needed to meaningfully repurpose Web-based virtual patients in MUVEs. Methods Through the scripting capabilities and available art assets in Second Life, we repurposed an existing Web-based periodontology virtual patient into Second Life. Through a series of point-and-click interactions and multiple-choice queries, the user experienced a specific periodontology case and was asked to provide the optimal responses for each of the challenges of the case. A focus group of 9 undergraduate dentistry students experienced both the Web-based and the Second Life version of this virtual patient. The group convened 3 times and discussed relevant issues such as the group’s computer literacy, the assessment of Second Life as a virtual patient deployment platform, and compared the Web-based and MUVE-deployed virtual patients. Results A comparison between the Web-based and the Second Life virtual patient revealed the inherent advantages of the more experiential and immersive Second Life virtual environment. However, several challenges for the successful repurposing of virtual patients from the Web to the MUVE were identified. The identified challenges for repurposing of Web virtual patients to the MUVE platform from the focus group study were (1) increased case complexity to facilitate the user’s gaming preconception in a MUVE, (2) necessity to decrease textual narration and provide the pertinent information in a more immersive sensory way, and (3) requirement to allow the user to actuate the solutions of problems instead of describing them through narration. Conclusions For a successful systematic repurposing effort of virtual patients to MUVEs such as Second Life, the best practices of experiential and immersive game design should be organically incorporated in the repurposing workflow (automated or not). These findings are pivotal in an era in which open educational content is transferred to and shared among users, learners, and educators of various open repositories/environments. PMID:24927470

  4. Coastal Online Analysis and Synthesis Tool 2.0 (COAST)

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Navard, Andrew R.; Nguyen, Beth T.

    2009-01-01

    The Coastal Online Assessment and Synthesis Tool (COAST) 3D geobrowser has been developed to integrate disparate coastal datasets from NASA and other sources into a desktop tool that provides new data visualization and analysis capabilities for coastal researchers, managers, and residents. It is built upon the widely used NASA-developed open source World Wind geobrowser from NASA Ames (Patrick Hogan et al.) .Net and C# version is used for development. It is leveraged off of World Wind community shared code samples and COAST 2.0 enhancement direction is based on Coastal science community feedback and needs assessment (GOMA). The main objective is to empower the user to bring more user-meaningful data into multi-layered, multi-temporal spatial context.

  5. Virtually Out of This World!

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.

  6. A microbased shared virtual world prototype

    NASA Technical Reports Server (NTRS)

    Pitts, Gerald; Robinson, Mark; Strange, Steve

    1993-01-01

    Virtual reality (VR) allows sensory immersion and interaction with a computer-generated environment. The user adopts a physical interface with the computer, through Input/Output devices such as a head-mounted display, data glove, mouse, keyboard, or monitor, to experience an alternate universe. What this means is that the computer generates an environment which, in its ultimate extension, becomes indistinguishable from the real world. 'Imagine a wraparound television with three-dimensional programs, including three-dimensional sound, and solid objects that you can pick up and manipulate, even feel with your fingers and hands.... 'Imagine that you are the creator as well as the consumer of your artificial experience, with the power to use a gesture or word to remold the world you see and hear and feel. That part is not fiction... three-dimensional computer graphics, input/output devices, computer models that constitute a VR system make it possible, today, to immerse yourself in an artificial world and to reach in and reshape it.' Our research's goal was to propose a feasibility experiment in the construction of a networked virtual reality system, making use of current personal computer (PC) technology. The prototype was built using Borland C compiler, running on an IBM 486 33 MHz and a 386 33 MHz. Each game currently is represented as an IPX client on a non-dedicated Novell server. We initially posed the two questions: (1) Is there a need for networked virtual reality? (2) In what ways can the technology be made available to the most people possible?

  7. Evaluation of a novel multi-articulated endoscope: proof of concept through a virtual simulation.

    PubMed

    Karvonen, Tuukka; Muranishi, Yusuke; Yamamoto, Goshiro; Kuroda, Tomohiro; Sato, Toshihiko

    2017-07-01

    In endoscopic surgery such as video-assisted thoracoscopic surgery and laparoscopic surgery, providing the surgeon a good view of the target is important. Rigid endoscope has for years been the go-to tool for this purpose, but it has certain limitations like the inability to work around obstacles. To improve on current tools, a novel multi-articulated endoscope (MAE) is currently under development. To investigate its feasibility and possible value, we performed a user test using virtual prototype of the MAE with the intent to show that it outperforms the conventional endoscope while bringing minimal additional burden to the operator. To evaluate the prototype, we built a virtual model of the MAE and a rigid oblique-viewing endoscope. Through a comparative user study we evaluate the ability of each device to visualize certain targets placed inside the virtual chest cavity by the angle between the visual axis of the scope and the normal of the plane of the target, while accounting for the usability of each endoscope by recording the time taken for each task. In addition, we collected a questionnaire from each participant to obtain feedback. The angles obtained using the MAE were smaller on average ([Formula: see text]), indicating that better visualization can be achieved through the proposed method. A nonsignificant difference in mean time taken for each task in favor of the rigid endoscope was also found ([Formula: see text]). We have demonstrated that better visualization for endoscopic surgery can be achieved through our novel MAE. The scope may bring about a paradigm shift in the field of minimally invasive surgery by providing more freedom in viewpoint selection, enabling surgeons to perform more elaborate procedures in minimally invasive settings.

  8. The (human) science of medical virtual learning environments.

    PubMed

    Stone, Robert J

    2011-01-27

    The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the 'ultimate' in so-called 'immersive' hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation--the science that helps to guarantee the transfer of skills from the simulated to the real--is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity--the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications.

  9. The Implementation and Validation of a Virtual Environment for Training Powered Wheelchair Manoeuvres.

    PubMed

    John, Nigel W; Pop, Serban R; Day, Thomas W; Ritsos, Panagiotis D; Headleand, Christopher J

    2018-05-01

    Navigating a powered wheelchair and avoiding collisions is often a daunting task for new wheelchair users. It takes time and practice to gain the coordination needed to become a competent driver and this can be even more of a challenge for someone with a disability. We present a cost-effective virtual reality (VR) application that takes advantage of consumer level VR hardware. The system can be easily deployed in an assessment centre or for home use, and does not depend on a specialized high-end virtual environment such as a Powerwall or CAVE. This paper reviews previous work that has used virtual environments technology for training tasks, particularly wheelchair simulation. We then describe the implementation of our own system and the first validation study carried out using thirty three able bodied volunteers. The study results indicate that at a significance level of 5 percent then there is an improvement in driving skills from the use of our VR system. We thus have the potential to develop the competency of a wheelchair user whilst avoiding the risks inherent to training in the real world. However, the occurrence of cybersickness is a particular problem in this application that will need to be addressed.

  10. Ergonomic approaches to designing educational materials for immersive multi-projection system

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Lee, JaeLin; Inoue, Tetsuri

    2014-02-01

    Rapid advances in computer and display technologies have made it possible to present high quality virtual reality (VR) environment. To use such virtual environments effectively, research should be performed into how users perceive and react to virtual environment in view of particular human factors. We created a VR simulation of sea fish for science education, and we conducted an experiment to examine how observers perceive the size and depth of an object within their reach and evaluated their visual fatigue. We chose a multi-projection system for presenting the educational VR simulation, because this system can provide actual-size objects and produce stereo images located close to the observer. The results of the experiment show that estimation of size and depth was relatively accurate when subjects used physical actions to assess them. Presenting images within the observer's reach is suggested to be useful for education in VR environment. Evaluation of visual fatigue shows that the level of symptoms from viewing stereo images with a large disparity in VR environment was low in a short time.

  11. Barbie Girls and Xtractaurs: Discourse and Identity in Virtual Worlds for Young Children

    ERIC Educational Resources Information Center

    Black, Rebecca W.; Korobkova, Ksenia; Epler, Alexandra

    2014-01-01

    This paper examines the ways in which Mattel's "Barbie Girls" and "Xtractaurs," online sites aimed at girls and boys of six years of age and up, respectively, offer markedly distinct literate and semiotic resources for their young users. Analysis focuses on the multimodal layers of meaning and the mediating tools,…

  12. Learning Anatomy via Mobile Augmented Reality: Effects on Achievement and Cognitive Load

    ERIC Educational Resources Information Center

    Küçük, Sevda; Kapakin, Samet; Göktas, Yüksel

    2016-01-01

    Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the…

  13. Learning Protein Structure with Peers in an AR-Enhanced Learning Environment

    ERIC Educational Resources Information Center

    Chen, Yu-Chien

    2013-01-01

    Augmented reality (AR) is an interactive system that allows users to interact with virtual objects and the real world at the same time. The purpose of this dissertation was to explore how AR, as a new visualization tool, that can demonstrate spatial relationships by representing three dimensional objects and animations, facilitates students to…

  14. From First Life to Second Life: Evaluating Task-Based Language Learning in a New Environment

    ERIC Educational Resources Information Center

    Jee, Min Jung

    2014-01-01

    With its growing number of users, Second Life as one of the avatar-based 3D virtual worlds has received attention from educators and researchers in various fields to explore its pedagogical benefits. Given the increasing implementation of technologies broadly in much instruction, this study investigated how ESL students negotiated meanings in…

  15. A Cost-Effective Virtual Environment for Simulating and Training Powered Wheelchairs Manoeuvres.

    PubMed

    Headleand, Christopher J; Day, Thomas; Pop, Serban R; Ritsos, Panagiotis D; John, Nigel W

    2016-01-01

    Control of a powered wheelchair is often not intuitive, making training of new users a challenging and sometimes hazardous task. Collisions, due to a lack of experience can result in injury for the user and other individuals. By conducting training activities in virtual reality (VR), we can potentially improve driving skills whilst avoiding the risks inherent to the real world. However, until recently VR technology has been expensive and limited the commercial feasibility of a general training solution. We describe Wheelchair-Rift, a cost effective prototype simulator that makes use of the Oculus Rift head mounted display and the Leap Motion hand tracking device. It has been assessed for face validity by a panel of experts from a local Posture and Mobility Service. Initial results augur well for our cost-effective training solution.

  16. Virtual Observatory Science Applications

    NASA Technical Reports Server (NTRS)

    McGlynn, Tom

    2005-01-01

    Many Virtual-Observatory-based applications are now available to astronomers for use in their research. These span data discovery, access, visualization and analysis. Tools can quickly gather and organize information from sites around the world to help in planning a response to a gamma-ray burst, help users pick filters to isolate a desired feature, make an average template for z=2 AGN, select sources based upon information in many catalogs, or correlate massive distributed databases. Using VO protocols, the reach of existing software tools and packages can be greatly extended, allowing users to find and access remote information almost as conveniently as local data. The talk highlights just a few of the tools available to scientists, describes how both large and small scale projects can use existing tools, and previews some of the new capabilities that will be available in the next few years.

  17. Virtual network computing: cross-platform remote display and collaboration software.

    PubMed

    Konerding, D E

    1999-04-01

    VNC (Virtual Network Computing) is a computer program written to address the problem of cross-platform remote desktop/application display. VNC uses a client/server model in which an image of the desktop of the server is transmitted to the client and displayed. The client collects mouse and keyboard input from the user and transmits them back to the server. The VNC client and server can run on Windows 95/98/NT, MacOS, and Unix (including Linux) operating systems. VNC is multi-user on Unix machines (any number of servers can be run are unrelated to the primary display of the computer), while it is effectively single-user on Macintosh and Windows machines (only one server can be run, displaying the contents of the primary display of the server). The VNC servers can be configured to allow more than one client to connect at one time, effectively allowing collaboration through the shared desktop. I describe the function of VNC, provide details of installation, describe how it achieves its goal, and evaluate the use of VNC for molecular modelling. VNC is an extremely useful tool for collaboration, instruction, software development, and debugging of graphical programs with remote users.

  18. Virtual Application of Darul Arif Palace from Serdang Sultanate using Virtual Reality

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Annisa, T.; Rahmat, R. F.; Muchtar, M. A.

    2017-01-01

    Serdang Sultanate is one of Malay Sultanate in Sumatera Utara. In the 18th century, many Malay Aristocrats have developed in Sumatera Utara. Social revolution has happened in 1946, many sultanates were overthrown and member of PKI (Communist Party of Indonesia) did mass killing on members of the sultanate families. As the results of this incident, many cultural and historical heritage destroyed. The integration of heritage preservation and the digital technology has become recent trend. The digital technology is not only able to record, preserve detailed documents and information of heritage completely, but also effectively bring the value-added. In this research, polygonal modelling techniques from 3D modelling technology is used to reconstruct Darul Arif Palace of Serdang Sultanate. After modelling the palace, it will be combined with virtual reality technology to allow user to explore the palace and the environment around the palace. Virtual technology is simulation of real objects in virtual world. The results in this research is that virtual reality application can run using Head-Mounted Display.

  19. A decade of research on the use of three-dimensional virtual worlds in health care: a systematic literature review.

    PubMed

    Ghanbarzadeh, Reza; Ghapanchi, Amir Hossein; Blumenstein, Michael; Talaei-Khoei, Amir

    2014-02-18

    A three-dimensional virtual world (3DVW) is a computer-simulated electronic 3D virtual environment that users can explore, inhabit, communicate, and interact with via avatars, which are graphical representations of the users. Since the early 2000s, 3DVWs have emerged as a technology that has much to offer the health care sector. The purpose of this study was to characterize different application areas of various 3DVWs in health and medical context and categorize them into meaningful categories. This study employs a systematic literature review on the application areas of 3DVWs in health care. Our search resulted in 62 papers from five top-ranking scientific databases published from 1990 to 2013 that describe the use of 3DVWs for health care specific purposes. We noted a growth in the number of academic studies on the topic since 2006. We found a wide range of application areas for 3DVWs in health care and classified them into the following six categories: academic education, professional education, treatment, evaluation, lifestyle, and modeling. The education category, including professional and academic education, contains the largest number of papers (n=34), of which 23 are related to the academic education category and 11 to the professional education category. Nine papers are allocated to treatment category, and 8 papers have contents related to evaluation. In 4 of the papers, the authors used 3DVWs for modeling, and 3 papers targeted lifestyle purposes. The results indicate that most of the research to date has focused on education in health care. We also found that most studies were undertaken in just two countries, the United States and the United Kingdom. 3D virtual worlds present several innovative ways to carry out a wide variety of health-related activities. The big picture of application areas of 3DVWs presented in this review could be of value and offer insights to both the health care community and researchers.

  20. New trends in the virtualization of hospitals--tools for global e-Health.

    PubMed

    Graschew, Georgi; Roelofs, Theo A; Rakowsky, Stefan; Schlag, Peter M; Heinzlreiter, Paul; Kranzlmüller, Dieter; Volkert, Jens

    2006-01-01

    The development of virtual hospitals and digital medicine helps to bridge the digital divide between different regions of the world and enables equal access to high-level medical care. Pre-operative planning, intra-operative navigation and minimally-invasive surgery require a digital and virtual environment supporting the perception of the physician. As data and computing resources in a virtual hospital are distributed over many sites the concept of the Grid should be integrated with other communication networks and platforms. A promising approach is the implementation of service-oriented architectures for an invisible grid, hiding complexity for both application developers and end-users. Examples of promising medical applications of Grid technology are the real-time 3D-visualization and manipulation of patient data for individualized treatment planning and the creation of distributed intelligent databases of medical images.

  1. Crops in silico: Generating virtual crops using an integrative and multi-scale modeling platform

    USDA-ARS?s Scientific Manuscript database

    There are currently 795 million hungry people in the world and 98 percent of them are in developing countries. Food demand is expected to increase by 70% by 2050. With a reduction in arable land, decreases in water availability, and an increasing impact of climate change, innovative technologies are...

  2. Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays.

    PubMed

    Itoh, Yuta; Klinker, Gudrun

    2015-04-01

    A critical requirement for AR applications with Optical See-Through Head-Mounted Displays (OST-HMD) is to project 3D information correctly into the current viewpoint of the user - more particularly, according to the user's eye position. Recently-proposed interaction-free calibration methods [16], [17] automatically estimate this projection by tracking the user's eye position, thereby freeing users from tedious manual calibrations. However, the method is still prone to contain systematic calibration errors. Such errors stem from eye-/HMD-related factors and are not represented in the conventional eye-HMD model used for HMD calibration. This paper investigates one of these factors - the fact that optical elements of OST-HMDs distort incoming world-light rays before they reach the eye, just as corrective glasses do. Any OST-HMD requires an optical element to display a virtual screen. Each such optical element has different distortions. Since users see a distorted world through the element, ignoring this distortion degenerates the projection quality. We propose a light-field correction method, based on a machine learning technique, which compensates the world-scene distortion caused by OST-HMD optics. We demonstrate that our method reduces the systematic error and significantly increases the calibration accuracy of the interaction-free calibration.

  3. Educational Game as Supplemental Learning Tool: Benefits, Challenges, and Tensions Arising from Use in an Elementary School Classroom

    ERIC Educational Resources Information Center

    Warren, Scott; Dondlinger, Mary Jo; Stein, Richard; Barab, Sasha

    2009-01-01

    This article examines the qualitative findings from a mixed-methods comparison study of the use of an online multi-user virtual environment called Anytown which supplemented face-to-face writing instruction in a fourth grade classroom to determine implications for the design of such environments and the reported impact of this design on students…

  4. An Activity Theoretical Perspective towards the Design of an ICT-Enhanced After-School Programme for Academically At-Risk Students

    ERIC Educational Resources Information Center

    Tay, Lee Yong; Lim, Cher Ping

    2010-01-01

    This paper examines how a game-like 3D Multi-User Virtual Environment (MUVE), Quest Atlantis (QA), is used in an after-school programme to engage a group of 14 academically at-risk primary students in their learning. It adopts an activity theoretical perspective to identify the disturbances and contradictions during the implementation of the…

  5. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  6. [Preliminary construction of three-dimensional visual educational system for clinical dentistry based on world wide web webpage].

    PubMed

    Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning

    2009-09-01

    To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.

  7. D-VASim: an interactive virtual laboratory environment for the simulation and analysis of genetic circuits.

    PubMed

    Baig, Hasan; Madsen, Jan

    2017-01-15

    Simulation and behavioral analysis of genetic circuits is a standard approach of functional verification prior to their physical implementation. Many software tools have been developed to perform in silico analysis for this purpose, but none of them allow users to interact with the model during runtime. The runtime interaction gives the user a feeling of being in the lab performing a real world experiment. In this work, we present a user-friendly software tool named D-VASim (Dynamic Virtual Analyzer and Simulator), which provides a virtual laboratory environment to simulate and analyze the behavior of genetic logic circuit models represented in an SBML (Systems Biology Markup Language). Hence, SBML models developed in other software environments can be analyzed and simulated in D-VASim. D-VASim offers deterministic as well as stochastic simulation; and differs from other software tools by being able to extract and validate the Boolean logic from the SBML model. D-VASim is also capable of analyzing the threshold value and propagation delay of a genetic circuit model. D-VASim is available for Windows and Mac OS and can be downloaded from bda.compute.dtu.dk/downloads/. haba@dtu.dk, jama@dtu.dk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Review of Data Integrity Models in Multi-Level Security Environments

    DTIC Science & Technology

    2011-02-01

    2: (E-1 extension) Only executions described in a (User, TP, (CDIs)) relation are allowed • E-3: Users must be authenticated before allowing TP... authentication and verification procedures for upgrading the integrity of certain objects. The mechanism used to manage access to objects is primarily...that is, the self-consistency of interdependent data and the consistency of real-world environment data. The prevention of authorised users from making

  9. Interactive and Stereoscopic Hybrid 3D Viewer of Radar Data with Gesture Recognition

    NASA Astrophysics Data System (ADS)

    Goenetxea, Jon; Moreno, Aitor; Unzueta, Luis; Galdós, Andoni; Segura, Álvaro

    This work presents an interactive and stereoscopic 3D viewer of weather information coming from a Doppler radar. The hybrid system shows a GIS model of the regional zone where the radar is located and the corresponding reconstructed 3D volume weather data. To enhance the immersiveness of the navigation, stereoscopic visualization has been added to the viewer, using a polarized glasses based system. The user can interact with the 3D virtual world using a Nintendo Wiimote for navigating through it and a Nintendo Wii Nunchuk for giving commands by means of hand gestures. We also present a dynamic gesture recognition procedure that measures the temporal advance of the performed gesture postures. Experimental results show how dynamic gestures are effectively recognized so that a more natural interaction and immersive navigation in the virtual world is achieved.

  10. Assessing upper extremity motor function in practice of virtual activities of daily living.

    PubMed

    Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T

    2015-03-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.

  11. Virtual fixtures as tools to enhance operator performance in telepresence environments

    NASA Astrophysics Data System (ADS)

    Rosenberg, Louis B.

    1993-12-01

    This paper introduces the notion of virtual fixtures for use in telepresence systems and presents an empirical study which demonstrates that such virtual fixtures can greatly enhance operator performance within remote environments. Just as tools and fixtures in the real world can enhance human performance by guiding manual operations, providing localizing references, and reducing the mental processing required to perform a task, virtual fixtures are computer generated percepts overlaid on top of the reflection of a remote workspace which can provide similar benefits. Like a ruler guiding a pencil in a real manipulation task, a virtual fixture overlaid on top of a remote workspace can act to reduce the mental processing required to perform a task, limit the workload of certain sensory modalities, and most of all allow precision and performance to exceed natural human abilities. Because such perceptual overlays are virtual constructions they can be diverse in modality, abstract in form, and custom tailored to individual task or user needs. This study investigates the potential of virtual fixtures by implementing simple combinations of haptic and auditory sensations as perceptual overlays during a standardized telemanipulation task.

  12. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking.

    PubMed

    Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina

    2018-04-01

    In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.

  13. Interfacing HTCondor-CE with OpenStack

    NASA Astrophysics Data System (ADS)

    Bockelman, B.; Caballero Bejar, J.; Hover, J.

    2017-10-01

    Over the past few years, Grid Computing technologies have reached a high level of maturity. One key aspect of this success has been the development and adoption of newer Compute Elements to interface the external Grid users with local batch systems. These new Compute Elements allow for better handling of jobs requirements and a more precise management of diverse local resources. However, despite this level of maturity, the Grid Computing world is lacking diversity in local execution platforms. As Grid Computing technologies have historically been driven by the needs of the High Energy Physics community, most resource providers run the platform (operating system version and architecture) that best suits the needs of their particular users. In parallel, the development of virtualization and cloud technologies has accelerated recently, making available a variety of solutions, both commercial and academic, proprietary and open source. Virtualization facilitates performing computational tasks on platforms not available at most computing sites. This work attempts to join the technologies, allowing users to interact with computing sites through one of the standard Computing Elements, HTCondor-CE, but running their jobs within VMs on a local cloud platform, OpenStack, when needed. The system will re-route, in a transparent way, end user jobs into dynamically-launched VM worker nodes when they have requirements that cannot be satisfied by the static local batch system nodes. Also, once the automated mechanisms are in place, it becomes straightforward to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud resources to be used without requiring the user to establish a separate account. Both scenarios are described in this work.

  14. Virtual button interface

    DOEpatents

    Jones, Jake S.

    1999-01-01

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  15. Teaching the blind to find their way by playing video games.

    PubMed

    Merabet, Lotfi B; Connors, Erin C; Halko, Mark A; Sánchez, Jaime

    2012-01-01

    Computer based video games are receiving great interest as a means to learn and acquire new skills. As a novel approach to teaching navigation skills in the blind, we have developed Audio-based Environment Simulator (AbES); a virtual reality environment set within the context of a video game metaphor. Despite the fact that participants were naïve to the overall purpose of the software, we found that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building using audio based cues alone. This was confirmed by a series of behavioral performance tests designed to assess the transfer of acquired spatial information to a large-scale, real-world indoor navigation task. Furthermore, learning the spatial layout through a goal directed gaming strategy allowed for the mental manipulation of spatial information as evidenced by enhanced navigation performance when compared to an explicit route learning strategy. We conclude that the immersive and highly interactive nature of the software greatly engages the blind user to actively explore the virtual environment. This in turn generates an accurate sense of a large-scale three-dimensional space and facilitates the learning and transfer of navigation skills to the physical world.

  16. Second Life in the Library: An Empirical Study of New Users' Experiences

    ERIC Educational Resources Information Center

    Clarke, Christopher Peter

    2012-01-01

    Purpose: This paper aims to examine the experiences of new users of Second Life in order to identify potential barriers and attractors to the expansion of the userbase and therefore the market for in-world information services. Design/methodology/approach: A multi-faceted methodological approach was taken utilising two questionnaires (pre- and…

  17. Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG

    PubMed Central

    Bigdely-Shamlo, Nima; Cockfield, Jeremy; Makeig, Scott; Rognon, Thomas; La Valle, Chris; Miyakoshi, Makoto; Robbins, Kay A.

    2016-01-01

    Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states. HED descriptions can include stimulus presentation events on screen or in virtual worlds, experimental or spontaneous events occurring in the real world environment, and events experienced via one or multiple sensory modalities. Furthermore, HED 2 can distinguish between the mere presence of an object and its actual (or putative) perception by a subject. Although the HED framework has implicit ontological and linked data representations, the user-interface for HED annotation is more intuitive than traditional ontological annotation. We believe that hiding the formal representations allows for a more user-friendly interface, making consistent, detailed tagging of experimental, and real-world events possible for research users. HED is extensible while retaining the advantages of having an enforced common core vocabulary. We have developed a collection of tools to support HED tag assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB (sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging existing studies. PMID:27799907

  18. The development of a virtual science museum for the public understanding of science in eastern China and in the United States

    NASA Astrophysics Data System (ADS)

    Delello, Julie Anne

    2009-12-01

    In 1999, the Chinese Academy of Sciences realized that there was a need for a better public understanding of science. For the public to have better accessibility and comprehension of China's significance to the world, the Computer Network Information Center (CNIC), under the direction of the Chinese Academy of Sciences, combined resources from thousands of experts across the world to develop online science exhibits housed within the Virtual Science Museum of China. Through an analysis of historical documents, this descriptive dissertation presents a research project that explores a dimension of the development of the Giant Panda Exhibit. This study takes the reader on a journey, first to China and then to a classroom within the United States, in order to answer the following questions: (1) What is the process of the development of a virtual science exhibit; and, (2) What role do public audiences play in the design and implementation of virtual science museums? The creation of a virtual science museum exhibition is a process that is not completed with just the building and design, but must incorporate feedback from public audiences who utilize the exhibit. To meet the needs of the museum visitors, the designers at CNIC took a user-centered approach and solicited feedback from six survey groups. To design a museum that would facilitate a cultural exchange of scientific information, the CNIC looked at the following categories: visitor insights, the usability of the technology, the educational effectiveness of the museum exhibit, and the cultural nuances that existed between students in China and in the United States. The findings of this study illustrate that the objectives of museum designers may not necessarily reflect the needs of the visitors and confirm previous research studies which indicate that museum exhibits need a more constructivist approach that fully engages the visitor in an interactive, media-rich environment. Even though the world has moved forwards with digital technology, classroom instruction in both China and in the United States continues to reflect traditional teaching methods. Students were shown to have a lack of experience with the Internet in classrooms and difficulty in scientific comprehension when using the virtual science museum---showing a separation between classroom technology and learning. Students showed a greater interest level in learning science with technology through online gaming and rich multimedia suggesting that virtual science museums can be educationally valuable and support an alternative to traditional teaching methods if designed with the end user in mind.

  19. A Comparison of the Effects of Classroom and Multi-User Virtual Environments on the Perceived Speaking Anxiety of Adult Post-Secondary English Language Learners

    ERIC Educational Resources Information Center

    Abal, Abdulaziz

    2013-01-01

    The population of English Language Learners (ELLs) globally has been increasing substantially every year. In the United States alone, adult ELLs are the fastest growing portion of learners in adult education programs (Yang, 2005). There is a significant need to improve the teaching of English to ELLs in the United States and other English-speaking…

  20. Isolation and measurement of the features of arrays of cell aggregates formed by dielectrophoresis using the user-specified Multi Regions Masking (MRM) technique

    NASA Astrophysics Data System (ADS)

    Yusvana, Rama; Headon, Denis; Markx, Gerard H.

    2009-08-01

    The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.

  1. Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks.

    PubMed

    Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young

    2016-04-18

    Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.

  2. Virtual button interface

    DOEpatents

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  3. Using crowdsourced web content for informing water systems operations in snow-dominated catchments

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero

    2016-12-01

    Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  4. The (human) science of medical virtual learning environments

    PubMed Central

    Stone, Robert J.

    2011-01-01

    The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the ‘ultimate’ in so-called ‘immersive’ hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation—the science that helps to guarantee the transfer of skills from the simulated to the real—is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity—the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications. PMID:21149363

  5. The GRIDView Visualization Package

    NASA Astrophysics Data System (ADS)

    Kent, B. R.

    2011-07-01

    Large three-dimensional data cubes, catalogs, and spectral line archives are increasingly important elements of the data discovery process in astronomy. Visualization of large data volumes is of vital importance for the success of large spectral line surveys. Examples of data reduction utilizing the GRIDView software package are shown. The package allows users to manipulate data cubes, extract spectral profiles, and measure line properties. The package and included graphical user interfaces (GUIs) are designed with pipeline infrastructure in mind. The software has been used with great success analyzing spectral line and continuum data sets obtained from large radio survey collaborations. The tools are also important for multi-wavelength cross-correlation studies and incorporate Virtual Observatory client applications for overlaying database information in real time as cubes are examined by users.

  6. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  7. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  8. Virtual reality based experiential cognitive treatment of anorexia nervosa.

    PubMed

    Riva, G; Bacchetta, M; Baruffi, M; Rinaldi, S; Molinari, E

    1999-09-01

    The treatment of a 22-year old female university student diagnosed with Anorexia Nervosa is described. In the study the Experiential Cognitive Therapy (ECT) was used: a relatively short-term, integrated, patient oriented approach that focuses on individual discovery. Main characteristic of this approach is the use of Virtual Reality, a new technology that allows the user to be immersed in a computer-generated virtual world. At the end of the in-patient treatment, the subject increased her bodily awareness joined to a reduction in her level of body dissatisfaction. Moreover, the patient presented a high degree of motivation to change. The results are discussed with regard to Vitousek, Watson and Wilson (1998, Clinical Psychology Review, 18(4), 391-420) proposal of using the Socratic Method to face denial and resistance of anorectic patients.

  9. Force Rendering and its Evaluation of a Friction-Based Walking Sensation Display for a Seated User.

    PubMed

    Kato, Ginga; Kuroda, Yoshihiro; Kiyokawa, Kiyoshi; Takemura, Haruo

    2018-04-01

    Most existing locomotion devices that represent the sensation of walking target a user who is actually performing a walking motion. Here, we attempted to represent the walking sensation, especially a kinesthetic sensation and advancing feeling (the sense of moving forward) while the user remains seated. To represent the walking sensation using a relatively simple device, we focused on the force rendering and its evaluation of the longitudinal friction force applied on the sole during walking. Based on the measurement of the friction force applied on the sole during actual walking, we developed a novel friction force display that can present the friction force without the influence of body weight. Using performance evaluation testing, we found that the proposed method can stably and rapidly display friction force. Also, we developed a virtual reality (VR) walk-through system that is able to present the friction force through the proposed device according to the avatar's walking motion in a virtual world. By evaluating the realism, we found that the proposed device can represent a more realistic advancing feeling than vibration feedback.

  10. A Driving Behaviour Model of Electrical Wheelchair Users

    PubMed Central

    Hamam, Y.; Djouani, K.; Daachi, B.; Steyn, N.

    2016-01-01

    In spite of the presence of powered wheelchairs, some of the users still experience steering challenges and manoeuvring difficulties that limit their capacity of navigating effectively. For such users, steering support and assistive systems may be very necessary. To appreciate the assistance, there is need that the assistive control is adaptable to the user's steering behaviour. This paper contributes to wheelchair steering improvement by modelling the steering behaviour of powered wheelchair users, for integration into the control system. More precisely, the modelling is based on the improved Directed Potential Field (DPF) method for trajectory planning. The method has facilitated the formulation of a simple behaviour model that is also linear in parameters. To obtain the steering data for parameter identification, seven individuals participated in driving the wheelchair in different virtual worlds on the augmented platform. The obtained data facilitated the estimation of user parameters, using the ordinary least square method, with satisfactory regression analysis results. PMID:27148362

  11. Optical CDMA components requirements

    NASA Astrophysics Data System (ADS)

    Chan, James K.

    1998-08-01

    Optical CDMA is a complementary multiple access technology to WDMA. Optical CDMA potentially provides a large number of virtual optical channels for IXC, LEC and CLEC or supports a large number of high-speed users in LAN. In a network, it provides asynchronous, multi-rate, multi-user communication with network scalability, re-configurability (bandwidth on demand), and network security (provided by inherent CDMA coding). However, optical CDMA technology is less mature in comparison to WDMA. The components requirements are also different from WDMA. We have demonstrated a video transport/switching system over a distance of 40 Km using discrete optical components in our laboratory. We are currently pursuing PIC implementation. In this paper, we will describe the optical CDMA concept/features, the demonstration system, and the requirements of some critical optical components such as broadband optical source, broadband optical amplifier, spectral spreading/de- spreading, and fixed/programmable mask.

  12. Army Logistician. Volume 38, Issue 6, November-December 2006

    DTIC Science & Technology

    2006-12-01

    functioning electrically, magnetically, or thermally; or performing self -diagnosis and self - healing actions)—will offer extraordinary capabilities for...receives sufficient information about a remote, real-world site (a battlefield) through a machine (a robot ) so that the user feels physically present at...collaborative planning. • Improved training and education because of ad- vances in virtual reality environments and perception capabilities. Robots have been

  13. Foreign Language Vocabulary Development through Activities in an Online 3D Environment

    ERIC Educational Resources Information Center

    Milton, James; Jonsen, Sunniva; Hirst, Steven; Lindenburn, Sharn

    2012-01-01

    On-line virtual 3D worlds offer the opportunity for users to interact in real time with native speakers of the language they are learning. In principle, this ought to be of great benefit to learners, and mimicking the opportunity for immersion that real-life travel to a foreign country offers. We have very little research to show whether this is…

  14. Measuring Presence in Virtual Environments

    DTIC Science & Technology

    1994-10-01

    viewpoint to change what they see, or to reposition their head to affect binaural hearing, or to search the environment haptically, they will experience a...increase presence in an alternate environment. For example a head mounted display that isolates the user from the real world may increase the sense...movement interface devices such as treadmills and trampolines , different gloves, and auditory equipment. Even as a low end technological implementation of

  15. LivePhantom: Retrieving Virtual World Light Data to Real Environments.

    PubMed

    Kolivand, Hoshang; Billinghurst, Mark; Sunar, Mohd Shahrizal

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.

  16. LivePhantom: Retrieving Virtual World Light Data to Real Environments

    PubMed Central

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera’s position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems. PMID:27930663

  17. Surface matching for correlation of virtual models: Theory and application

    NASA Technical Reports Server (NTRS)

    Caracciolo, Roberto; Fanton, Francesco; Gasparetto, Alessandro

    1994-01-01

    Virtual reality can enable a robot user to off line generate and test in a virtual environment a sequence of operations to be executed by the robot in an assembly cell. Virtual models of objects are to be correlated to the real entities they represent by means of a suitable transformation. A solution to the correlation problem, which is basically a problem of 3-dimensional adjusting, has been found exploiting the surface matching theory. An iterative algorithm has been developed, which matches the geometric surface representing the shape of the virtual model of an object, with a set of points measured on the surface in the real world. A peculiar feature of the algorithm is to work also if there is no one-to-one correspondence between the measured points and those representing the surface model. Furthermore the problem of avoiding convergence to local minima is solved, by defining a starting point of states ensuring convergence to the global minimum. The developed algorithm has been tested by simulation. Finally, this paper proposes a specific application, i.e., correlating a robot cell, equipped for biomedical use with its virtual representation.

  18. Facilitating Science Discoveries from NED Today and in the 2020s

    NASA Astrophysics Data System (ADS)

    Mazzarella, Joseph M.; NED Team

    2018-06-01

    I will review recent developments, work in progress, and major challenges that lie ahead as we enhance the capabilities of the NASA/IPAC Extragalactic Database (NED) to facilitate and accelerate multi-wavelength research on objects beyond our Milky Way galaxy. The recent fusion of data for over 470 million sources from the 2MASS Point Source Catalog and approximately 750 million sources from the AllWISE Source Catalog (next up) with redshifts from the SDSS and other data in NED is increasing the holdings to over a billion distinct objects with cross-identifications, providing a rich resource for multi-wavelength research. Combining data across such large surveys, as well as integrating data from over 110,000 smaller but scientifically important catalogs and journal articles, presents many challanges including the need to update the computing infrastructure and re-tool production and operations on a regular basis. Integration of the Firefly toolkit into the new user interface is ushering in a new phase of interative data visualization in NED, with features and capabilities familiar to users of IRSA and the emerging LSST science user interface. Graphical characterizations of NED content and estimates of completeness in different sky and spectral regions are also being developed. A newly implemented service that follows the Table Access Protocol (TAP) enables astronomers to issue queries to the NED object directory using Astronomical Data Language (ADQL), a standard shared in common with the NASA mission archives and other virtual observatories around the world. A brief review will be given of new science capabilities under development and planned for 2019-2020, as well as initiatives underway involving deployment of a parallel database, cloud technologies, machine learning, and first steps in bringing analysis capabilities close to the database in collaboration with IRSA. I will close with some questions for the community to consider in helping us plan future science capabilities and directions for NED in the 2020s.

  19. A Typology of Ethnographic Scales for Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boellstorff, Tom

    This chapter outlines a typology of genres of ethnographic research with regard to virtual worlds, informed by extensive research the author has completed both in Second Life and in Indonesia. It begins by identifying four confusions about virtual worlds: they are not games, they need not be graphical or even visual, they are not mass media, and they need not be defined in terms of escapist role-playing. A three-part typology of methods for ethnographic research in virtual worlds focuses on the relationship between research design and ethnographic scale. One class of methods for researching virtual worlds with regard to ethnographic scale explores interfaces between virtual worlds and the actual world, whereas a second examines interfaces between two or more virtual worlds. The third class involves studying a single virtual world in its own terms. Recognizing that all three approaches have merit for particular research purposes, ethnography of virtual worlds can be a vibrant field of research, contributing to central debates about human selfhood and sociality.

  20. Virtual reality hardware for use in interactive 3D data fusion and visualization

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher S.; Abidi, Mongi A.

    1997-09-01

    Virtual reality has become a tool for use in many areas of research. We have designed and built a VR system for use in range data fusion and visualization. One major VR tool is the CAVE. This is the ultimate visualization tool, but comes with a large price tag. Our design uses a unique CAVE whose graphics are powered by a desktop computer instead of a larger rack machine making it much less costly. The system consists of a screen eight feet tall by twenty-seven feet wide giving a variable field-of-view currently set at 160 degrees. A silicon graphics Indigo2 MaxImpact with the impact channel option is used for display. This gives the capability to drive three projectors at a resolution of 640 by 480 for use in displaying the virtual environment and one 640 by 480 display for a user control interface. This machine is also the first desktop package which has built-in hardware texture mapping. This feature allows us to quickly fuse the range and intensity data and other multi-sensory data. The final goal is a complete 3D texture mapped model of the environment. A dataglove, magnetic tracker, and spaceball are to be used for manipulation of the data and navigation through the virtual environment. This system gives several users the ability to interactively create 3D models from multiple range images.

  1. An efficient and scalable deformable model for virtual reality-based medical applications.

    PubMed

    Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann

    2004-09-01

    Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stansfield, S.; Shawver, D.; Sobel, A.

    This paper presents a prototype virtual reality (VR) system for training medical first responders. The initial application is to battlefield medicine and focuses on the training of medical corpsmen and other front-line personnel who might be called upon to provide emergency triage on the battlefield. The system is built upon Sandia`s multi-user, distributed VR platform and provides an interactive, immersive simulation capability. The user is represented by an Avatar and is able to manipulate his virtual instruments and carry out medical procedures. A dynamic casualty simulation provides realistic cues to the patient`s condition (e.g. changing blood pressure and pulse) andmore » responds to the actions of the trainee (e.g. a change in the color of a patient`s skin may result from a check of the capillary refill rate). The current casualty simulation is of an injury resulting in a tension pneumothorax. This casualty model was developed by the University of Pennsylvania and integrated into the Sandia MediSim system.« less

  3. The Immersive Virtual Reality Experience: A Typology of Users Revealed Through Multiple Correspondence Analysis Combined with Cluster Analysis Technique.

    PubMed

    Rosa, Pedro J; Morais, Diogo; Gamito, Pedro; Oliveira, Jorge; Saraiva, Tomaz

    2016-03-01

    Immersive virtual reality is thought to be advantageous by leading to higher levels of presence. However, and despite users getting actively involved in immersive three-dimensional virtual environments that incorporate sound and motion, there are individual factors, such as age, video game knowledge, and the predisposition to immersion, that may be associated with the quality of virtual reality experience. Moreover, one particular concern for users engaged in immersive virtual reality environments (VREs) is the possibility of side effects, such as cybersickness. The literature suggests that at least 60% of virtual reality users report having felt symptoms of cybersickness, which reduces the quality of the virtual reality experience. The aim of this study was thus to profile the right user to be involved in a VRE through head-mounted display. To examine which user characteristics are associated with the most effective virtual reality experience (lower cybersickness), a multiple correspondence analysis combined with cluster analysis technique was performed. Results revealed three distinct profiles, showing that the PC gamer profile is more associated with higher levels of virtual reality effectiveness, that is, higher predisposition to be immersed and reduced cybersickness symptoms in the VRE than console gamer and nongamer. These findings can be a useful orientation in clinical practice and future research as they help identify which users are more predisposed to benefit from immersive VREs.

  4. The use of virtual world-based cardiac rehabilitation to encourage healthy lifestyle choices among cardiac patients: intervention development and pilot study protocol.

    PubMed

    Brewer, LaPrincess C; Kaihoi, Brian; Zarling, Kathleen K; Squires, Ray W; Thomas, Randal; Kopecky, Stephen

    2015-04-08

    Despite proven benefits through the secondary prevention of cardiovascular disease (CVD) and reduction of mortality, cardiac rehabilitation (CR) remains underutilized in cardiac patients. Underserved populations most affected by CVD including rural residents, low socioeconomic status patients, and racial/ethnic minorities have the lowest participation rates due to access barriers. Internet-and mobile-based lifestyle interventions have emerged as potential modalities to complement and increase accessibility to CR. An outpatient CR program using virtual world technology may provide an effective alternative to conventional CR by overcoming patient access limitations such as geographics, work schedule constraints, and transportation. The objective of this paper is to describe the research protocol of a two-phased, pilot study that will assess the feasibility (Phase 1) and comparative effectiveness (Phase 2) of a virtual world-based (Second Life) CR program as an extension of a conventional CR program in achieving healthy behavioral change among post-acute coronary syndrome (ACS) and post-percutaneous coronary intervention (PCI) patients. We hypothesize that virtual world CR users will improve behaviors (physical activity, diet, and smoking) to a greater degree than conventional CR participants. In Phase 1, we will recruit at least 10 patients enrolled in outpatient CR who were recently hospitalized for an ACS (unstable angina, ST-segment elevation myocardial infarction, non-ST-segment elevation myocardial infarction) or who recently underwent elective PCI at Mayo Clinic Hospital, Rochester Campus in Rochester, MN with at least one modifiable, lifestyle risk factor target (sedentary lifestyle, unhealthy diet, and current smoking). Recruited patients will participate in a 12-week, virtual world health education program which will provide feedback on the feasibility, usability, and design of the intervention. During Phase 2, we will conduct a 2-arm, parallel group, single-center, randomized controlled trial (RCT). Patients will be randomized at a 1:1 ratio to adjunct virtual world-based CR with conventional CR or conventional CR only. The primary outcome is a composite including at least one of the following (1) at least 150 minutes of physical activity per week, (2) daily consumption of five or more fruits and vegetables, and (3) smoking cessation. Patients will be assessed at 3, 6, and 12 months. The Phase 1 feasibility study is currently open for recruitment which will be followed by the Phase 2 RCT. The anticipated completion date for the study is May 2016. While research on the use of virtual world technology in health programs is in its infancy, it offers unique advantages over current Web-based health interventions including social interactivity and active learning. It also increases accessibility to vulnerable populations who have higher burdens of CVD. This study will yield results on the effectiveness of a virtual world-based CR program as an innovative platform to influence healthy lifestyle behavior and self-efficacy.

  5. From Cognitive Capability to Social Reform? Shifting Perceptions of Learning in Immersive Virtual Worlds

    ERIC Educational Resources Information Center

    Savin-Baden, Maggi

    2008-01-01

    Learning in immersive virtual worlds (simulations and virtual worlds such as Second Life) could become a central learning approach in many curricula, but the socio-political impact of virtual world learning on higher education remains under-researched. Much of the recent research into learning in immersive virtual worlds centres around games and…

  6. a Framework for Low-Cost Multi-Platform VR and AR Site Experiences

    NASA Astrophysics Data System (ADS)

    Wallgrün, J. O.; Huang, J.; Zhao, J.; Masrur, A.; Oprean, D.; Klippel, A.

    2017-11-01

    Low-cost consumer-level immersive solutions have the potential to revolutionize education and research in many fields by providing virtual experiences of sites that are either inaccessible, too dangerous, or too expensive to visit, or by augmenting in-situ experiences using augmented and mixed reality methods. We present our approach for creating low-cost multi-platform virtual and augmented reality site experiences of real world places for education and research purposes, making extensive use of Structure-from-Motion methods as well as 360° photography and videography. We discuss several example projects, for the Mayan City of Cahal Pech, Iceland's Thrihnukar volcano, the Santa Marta informal settlement in Rio, and for the Penn State Campus, and we propose a framework for creating and maintaining such applications by combining declarative content specification methods with a central linked-data based spatio-temporal information system.

  7. User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory (SAUL) for Conducting Demonstrations

    DTIC Science & Technology

    2017-08-01

    ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...September 2017 4. TITLE AND SUBTITLE User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory

  8. On-line Geoscience Data Resources for Today's Undergraduates

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Ryan, W.; Carbotte, S.; Melkonian, A.; Coplan, J.; Arko, R.; O'Hara, S.; Ferrini, V.; Leung, A.; Bonckzowski, J.

    2008-12-01

    Broadening the experience of undergraduates can be achieved by enabling free, unrestricted and convenient access to real scientific data. With funding from the U.S. National Science Foundation, the Marine Geoscience Data System (MGDS) (http://www.marine-geo.org/) serves as the integrated data portal for various NSF-funded projects and provides free public access and preservation to a wide variety of marine and terrestrial data including rock, fluid, biology and sediment samples information, underway geophysical data and multibeam bathymetry, water column and multi-channel seismics data. Users can easily view the locations of cruise tracks, sample and station locations against a backdrop of a multi-resolution global digital elevation model. A Search For Data web page rapidly extracts data holdings from the database and can be filtered on data and device type, field program ID, investigator name, geographical and date bounds. The data access experience is boosted by the MGDS use of standardised OGC-compliant Web Services to support uniform programmatic interfaces. GeoMapApp (http://www.geomapapp.org/), a free MGDS data visualization tool, supports map-based dynamic exploration of a broad suite of geosciences data. Built-in land and marine data sets include tectonic plate boundary compilations, DSDP/ODP core logs, earthquake events, seafloor photos, and submersible dive tracks. Seamless links take users to data held by external partner repositories including PetDB, UNAVCO, IRIS and NGDC. Users can generate custom maps and grids and import their own data sets and grids. A set of short, video-style on-line tutorials familiarises users step- by-step with GeoMapApp functionality (http://www.geomapapp.org/tutorials/). Virtual Ocean (http://www.virtualocean.org/) combines the functionality of GeoMapApp with a 3-D earth browser built using the NASA WorldWind API for a powerful new data resource. MGDS education involvement (http://www.marine-geo.org/, go to Education tab) includes the searchable Media Bank of images and video; KML files for viewing several MGDS data sets in Google Earth (tm); support in developing undergraduate- level teaching modules using NSF-MARGINS data. Examples of many of these data sets will be shown.

  9. Continuous Three-Dimensional Control of a Virtual Helicopter Using a Motor Imagery Based Brain-Computer Interface

    PubMed Central

    Doud, Alexander J.; Lucas, John P.; Pisansky, Marc T.; He, Bin

    2011-01-01

    Brain-computer interfaces (BCIs) allow a user to interact with a computer system using thought. However, only recently have devices capable of providing sophisticated multi-dimensional control been achieved non-invasively. A major goal for non-invasive BCI systems has been to provide continuous, intuitive, and accurate control, while retaining a high level of user autonomy. By employing electroencephalography (EEG) to record and decode sensorimotor rhythms (SMRs) induced from motor imaginations, a consistent, user-specific control signal may be characterized. Utilizing a novel method of interactive and continuous control, we trained three normal subjects to modulate their SMRs to achieve three-dimensional movement of a virtual helicopter that is fast, accurate, and continuous. In this system, the virtual helicopter's forward-backward translation and elevation controls were actuated through the modulation of sensorimotor rhythms that were converted to forces applied to the virtual helicopter at every simulation time step, and the helicopter's angle of left or right rotation was linearly mapped, with higher resolution, from sensorimotor rhythms associated with other motor imaginations. These different resolutions of control allow for interplay between general intent actuation and fine control as is seen in the gross and fine movements of the arm and hand. Subjects controlled the helicopter with the goal of flying through rings (targets) randomly positioned and oriented in a three-dimensional space. The subjects flew through rings continuously, acquiring as many as 11 consecutive rings within a five-minute period. In total, the study group successfully acquired over 85% of presented targets. These results affirm the effective, three-dimensional control of our motor imagery based BCI system, and suggest its potential applications in biological navigation, neuroprosthetics, and other applications. PMID:22046274

  10. A digital atlas of breast histopathology: an application of web based virtual microscopy

    PubMed Central

    Lundin, M; Lundin, J; Helin, H; Isola, J

    2004-01-01

    Aims: To develop an educationally useful atlas of breast histopathology, using advanced web based virtual microscopy technology. Methods: By using a robotic microscope and software adopted and modified from the aerial and satellite imaging industry, a virtual microscopy system was developed that allows fully automated slide scanning and image distribution via the internet. More than 150 slides were scanned at high resolution with an oil immersion ×40 objective (numerical aperture, 1.3) and archived on an image server residing in a high speed university network. Results: A publicly available website was constructed, http://www.webmicroscope.net/breastatlas, which features a comprehensive virtual slide atlas of breast histopathology according to the World Health Organisation 2003 classification. Users can view any part of an entire specimen at any magnification within a standard web browser. The virtual slides are supplemented with concise textual descriptions, but can also be viewed without diagnostic information for self assessment of histopathology skills. Conclusions: Using the technology described here, it is feasible to develop clinically and educationally useful virtual microscopy applications. Web based virtual microscopy will probably become widely used at all levels in pathology teaching. PMID:15563669

  11. Development of virtual environment for treating acrophobia.

    PubMed

    Ku, J; Jang, D; Shin, M; Jo, H; Ahn, H; Lee, J; Cho, B; Kim, S I

    2001-01-01

    Virtual Reality (VR) is a new technology that makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. Virtual Reality Therapy (VRT), based on this sophisticated technology, has been recently used in the treatment of subjects diagnosed with acrophobia, a disorder that is characterized by marked anxiety upon exposure to heights, avoidance of heights, and a resulting interference in functioning. Conventional virtual reality system for the treatment of acrophobia has a limitation in scope that it is based on over-costly devices or somewhat unrealistic graphic scene. The goal of this study was to develop a inexpensive and more realistic virtual environment for the exposure therapy of acrophobia. We constructed two types virtual environment. One is constituted a bungee-jump tower in the middle of a city. It includes the open lift surrounded by props beside tower that allowed the patient to feel sense of heights. Another is composed of diving boards which have various heights. It provides a view of a lower diving board and people swimming in the pool to serve the patient stimuli upon exposure to heights.

  12. A Decade of Research on the Use of Three-Dimensional Virtual Worlds in Health Care: A Systematic Literature Review

    PubMed Central

    Ghapanchi, Amir Hossein; Blumenstein, Michael; Talaei-Khoei, Amir

    2014-01-01

    Background A three-dimensional virtual world (3DVW) is a computer-simulated electronic 3D virtual environment that users can explore, inhabit, communicate, and interact with via avatars, which are graphical representations of the users. Since the early 2000s, 3DVWs have emerged as a technology that has much to offer the health care sector. Objective The purpose of this study was to characterize different application areas of various 3DVWs in health and medical context and categorize them into meaningful categories. Methods This study employs a systematic literature review on the application areas of 3DVWs in health care. Our search resulted in 62 papers from five top-ranking scientific databases published from 1990 to 2013 that describe the use of 3DVWs for health care specific purposes. We noted a growth in the number of academic studies on the topic since 2006. Results We found a wide range of application areas for 3DVWs in health care and classified them into the following six categories: academic education, professional education, treatment, evaluation, lifestyle, and modeling. The education category, including professional and academic education, contains the largest number of papers (n=34), of which 23 are related to the academic education category and 11 to the professional education category. Nine papers are allocated to treatment category, and 8 papers have contents related to evaluation. In 4 of the papers, the authors used 3DVWs for modeling, and 3 papers targeted lifestyle purposes. The results indicate that most of the research to date has focused on education in health care. We also found that most studies were undertaken in just two countries, the United States and the United Kingdom. Conclusions 3D virtual worlds present several innovative ways to carry out a wide variety of health-related activities. The big picture of application areas of 3DVWs presented in this review could be of value and offer insights to both the health care community and researchers. PMID:24550130

  13. a Mobile Application for Virtual Heritage and UGC Public Sharing

    NASA Astrophysics Data System (ADS)

    Gongli, L.; Jin, S.; Huilian, C.

    2013-07-01

    Heritage documentation and representation is now a growing concern in the contemporary world, with unprecedentedly rapid technological development that pushes the frontier further every day. This ever growing means benefits both professionals and the general public, and the two can now be connected by this virtual bridge that channels heritage information from one end of the spectrum to the other, thus facilitating a dialogue never considered before. 4D virtual heritage with visualized tempo-spatial information can be easily shared across the continents and the story of heritage is told by a simple move of the thumb. Mobile LBS (Location-Based Service) enhances visitors' on-site experience and is readily available on the popular iOS platform. UGC (User Generated Content) on the internet provides interaction among users and managers, and brings the heritage site and the public into a live conversation. Although the above technological exploration is promising in itself, the question still remains as how it may be best implemented. The Re-yuangmingyuan program for the reconstruction and representation of an imperial garden in Beijing has made several attempts that deserve discussion, and contributes to heritage documentation and conservation in general.

  14. Integrating WorldWide Telescope with Wordpress

    NASA Astrophysics Data System (ADS)

    Sands, Mark; Luebbert, J.; Fay, J.; Gay, P. L.

    2010-01-01

    In this project we unite three major components of astronomy and new media: World Wide Telescope, Wordpress, and user supplied audio. Through an easy to use Wordpress plug-in users can create WorldWide Telescope sky tours that allow: a) astronomers and educators to spread the facts and awareness of astronomy, potentially bringing new and interested individuals into the astronomy community; b) bloggers/podcasters to create dynamic, virtual tours of the universe that are nearly boundless; and, c) readers to benefit from the alluring WorldWide Telescope tours by gaining a new and dramatic outlook on our universe. This software has the potential to augment, and in some cases replace, traditional methods of astronomy centered online lectures. With this plugin, it is possible to combine Wordpress-based website content with audio, and a sky tour that can be paused at any object. This ability to pause a sky tour allows the user to further explore the wealth of data provided within WWT. This fully customizable solution includes all of the necessary features required to reproduce a lecture in a more creative and appealing format then some of the standard, typically non-interactive, movies and podcasts currently found online. Through the creation of effective WorldWide Telescope tours, astronomers and educators can better extend astronomy content to astronomy-interested, but not yet engaged, members of the new media community. These tours will provide a better understanding and appreciation for what our universe has to offer. Through this new media approach of integrating WorldWide Telescope with blogs and podcasts, users can now extend their interest in astronomy by exploring the universe themselves, moving beyond provided content to gain a better understanding all on their own.

  15. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  16. A strategic map for high-impact virtual experience design

    NASA Astrophysics Data System (ADS)

    Faste, Haakon; Bergamasco, Massimo

    2009-02-01

    We have employed methodologies of human centered design to inspire and guide the engineering of a definitive low-cost aesthetic multimodal experience intended to stimulate cultural growth. Using a combination of design research, trend analysis and the programming of immersive virtual 3D worlds, over 250 innovative concepts have been brainstormed, prototyped, evaluated and refined. These concepts have been used to create a strategic map for the development of highimpact virtual art experiences, the most promising of which have been incorporated into a multimodal environment programmed in the online interactive 3D platform XVR. A group of test users have evaluated the experience as it has evolved, using a multimodal interface with stereo vision, 3D audio and haptic feedback. This paper discusses the process, content, results, and impact on our engineering laboratory that this research has produced.

  17. Teaching the Blind to Find Their Way by Playing Video Games

    PubMed Central

    Merabet, Lotfi B.; Connors, Erin C.; Halko, Mark A.; Sánchez, Jaime

    2012-01-01

    Computer based video games are receiving great interest as a means to learn and acquire new skills. As a novel approach to teaching navigation skills in the blind, we have developed Audio-based Environment Simulator (AbES); a virtual reality environment set within the context of a video game metaphor. Despite the fact that participants were naïve to the overall purpose of the software, we found that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building using audio based cues alone. This was confirmed by a series of behavioral performance tests designed to assess the transfer of acquired spatial information to a large-scale, real-world indoor navigation task. Furthermore, learning the spatial layout through a goal directed gaming strategy allowed for the mental manipulation of spatial information as evidenced by enhanced navigation performance when compared to an explicit route learning strategy. We conclude that the immersive and highly interactive nature of the software greatly engages the blind user to actively explore the virtual environment. This in turn generates an accurate sense of a large-scale three-dimensional space and facilitates the learning and transfer of navigation skills to the physical world. PMID:23028703

  18. Use of camera drive in stereoscopic display of learning contents of introductory physics

    NASA Astrophysics Data System (ADS)

    Matsuura, Shu

    2011-03-01

    Simple 3D physics simulations with stereoscopic display were created for a part of introductory physics e-Learning. First, cameras to see the 3D world can be made controllable by the user. This enabled to observe the system and motions of objects from any position in the 3D world. Second, cameras were made attachable to one of the moving object in the simulation so as to observe the relative motion of other objects. By this option, it was found that users perceive the velocity and acceleration more sensibly on stereoscopic display than on non-stereoscopic 3D display. Simulations were made using Adobe Flash ActionScript, and Papervison 3D library was used to render the 3D models in the flash web pages. To display the stereogram, two viewports from virtual cameras were displayed in parallel in the same web page. For observation of stereogram, the images of two viewports were superimposed by using 3D stereogram projection box (T&TS CO., LTD.), and projected on an 80-inch screen. The virtual cameras were controlled by keyboard and also by Nintendo Wii remote controller buttons. In conclusion, stereoscopic display offers learners more opportunities to play with the simulated models, and to perceive the characteristics of motion better.

  19. Direct manipulation of virtual objects

    NASA Astrophysics Data System (ADS)

    Nguyen, Long K.

    Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user's real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities -- proprioception, haptics, and audition -- and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum -- Immersive Virtual Environment (IVE) and Reality Environment (RE). This validated, linked, and extended several previous research findings, using one common test bed and participant pool. The results provided a proven method and solid reference points for further research. The second set of experiments leveraged the first to explore the full R-V spectrum and included additional, relevant sensory modalities. It consisted of two full-factorial experiments providing for rich data and key insights into the effect of each type of environment and each modality on accuracy and timeliness of virtual object interaction. The empirical results clearly showed that mean depth perception error in personal space was less than four millimeters whether the stimuli presented were real, virtual, or mixed. Likewise, mean error for the simple task of pushing a button was less than four millimeters whether the button was real or virtual. Mean task completion time was less than one second. Key to the high accuracy and quick task performance time observed was the correct presentation of the visual cues, including occlusion, stereoscopy, accommodation, and convergence. With performance results already near optimal level with accurate visual cues presented, adding proprioception, audio, and haptic cues did not significantly improve performance. Recommendations for future research include enhancement of the visual display and further experiments with more complex tasks and additional control variables.

  20. Bridging Media with the Help of Players

    NASA Astrophysics Data System (ADS)

    Nitsche, Michael; Drake, Matthew; Murray, Janet

    We suggest harvesting the power of multiplayer design to bridge content across different media platforms and develop player-driven cross-media experiences. This paper first argues to partially replace complex AI systems with multiplayer design strategies to provide the necessary level of flexibility in the content generation for cross-media applications. The second part describes one example project - the Next Generation Play (NGP) project - that illustrates one practical approach of such a player-driven cross-media content generation. NGP allows players to collect virtual items while watching a TV show. These items are re-used in a multiplayer casual game that automatically generates new game worlds based on the various collections of active players joining a game session. While the TV experience is designed for the single big screen, the game executes on multiple mobile phones. Design and technical implementation of the prototype are explained in more detail to clarify how players carry elements of television narratives into a non-linear handheld gaming experience. The system describes a practical way to create casual game adaptations based on players' personal preferences in a multi-user environment.

  1. Survey on Security Issues in Cloud Computing and Associated Mitigation Techniques

    NASA Astrophysics Data System (ADS)

    Bhadauria, Rohit; Sanyal, Sugata

    2012-06-01

    Cloud Computing holds the potential to eliminate the requirements for setting up of high-cost computing infrastructure for IT-based solutions and services that the industry uses. It promises to provide a flexible IT architecture, accessible through internet for lightweight portable devices. This would allow multi-fold increase in the capacity or capabilities of the existing and new software. In a cloud computing environment, the entire data reside over a set of networked resources, enabling the data to be accessed through virtual machines. Since these data-centers may lie in any corner of the world beyond the reach and control of users, there are multifarious security and privacy challenges that need to be understood and taken care of. Also, one can never deny the possibility of a server breakdown that has been witnessed, rather quite often in the recent times. There are various issues that need to be dealt with respect to security and privacy in a cloud computing scenario. This extensive survey paper aims to elaborate and analyze the numerous unresolved issues threatening the cloud computing adoption and diffusion affecting the various stake-holders linked to it.

  2. Google Sky: A Digital View of the Night Sky

    NASA Astrophysics Data System (ADS)

    Connolly, A. Scranton, R.; Ornduff, T.

    2008-11-01

    From its inception Astronomy has been a visual science, from careful observations of the sky using the naked eye, to the use of telescopes and photographs to map the distribution of stars and galaxies, to the current era of digital cameras that can image the sky over many decades of the electromagnetic spectrum. Sky in Google Earth (http://earth.google.com) and Google Sky (http://www.google.com/sky) continue this tradition, providing an intuitive visual interface to some of the largest astronomical imaging surveys of the sky. Streaming multi-color imagery, catalogs, time domain data, as well as annotating interesting astronomical sources and events with placemarks, podcasts and videos, Sky provides a panchromatic view of the universe accessible to anyone with a computer. Beyond a simple exploration of the sky Google Sky enables users to create and share content with others around the world. With an open interface available on Linux, Mac OS X and Windows, and translations of the content into over 20 different languages we present Sky as the embodiment of a virtual telescope for discovery and sharing the excitement of astronomy and science as a whole.

  3. 3D geospatial visualizations: Animation and motion effects on spatial objects

    NASA Astrophysics Data System (ADS)

    Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos

    2018-02-01

    Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.

  4. The Impact of Student Self-efficacy on Scientific Inquiry Skills: An Exploratory Investigation in River City, a Multi-user Virtual Environment

    NASA Astrophysics Data System (ADS)

    Ketelhut, Diane Jass

    2007-02-01

    This exploratory study investigated data-gathering behaviors exhibited by 100 seventh-grade students as they participated in a scientific inquiry-based curriculum project delivered by a multi-user virtual environment (MUVE). This research examined the relationship between students' self-efficacy on entry into the authentic scientific activity and the longitudinal data-gathering behaviors they employed while engaged in that process. Three waves of student behavior data were gathered from a server-side database that recorded all student activity in the MUVE; these data were analyzed using individual growth modeling. The study found that self-efficacy correlated with the number of data-gathering behaviors in which students initially engaged, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. Also, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender. However, by the end of their time in the MUVE, initial student self-efficacy no longer correlated with data gathering behaviors. In addition, students' level of self-efficacy did not affect how many different sources from which they chose to gather data. These results suggest that embedding science inquiry curricula in novel platforms like a MUVE might act as a catalyst for change in students' self-efficacy and learning processes.

  5. Working Group Reports and Presentations: Virtual Worlds and Virtual Exploration

    NASA Technical Reports Server (NTRS)

    LAmoreaux, Claudia

    2006-01-01

    Scientists and engineers are continually developing innovative methods to capitalize on recent developments in computational power. Virtual worlds and virtual exploration present a new toolset for project design, implementation, and resolution. Replication of the physical world in the virtual domain provides stimulating displays to augment current data analysis techniques and to encourage public participation. In addition, the virtual domain provides stakeholders with a low cost, low risk design and test environment. The following document defines a virtual world and virtual exploration, categorizes the chief motivations for virtual exploration, elaborates upon specific objectives, identifies roadblocks and enablers for realizing the benefits, and highlights the more immediate areas of implementation (i.e. the action items). While the document attempts a comprehensive evaluation of virtual worlds and virtual exploration, the innovative nature of the opportunities presented precludes completeness. The authors strongly encourage readers to derive additional means of utilizing the virtual exploration toolset.

  6. The ATLAS multi-user upgrade and potential applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustapha, B.; Nolen, J. A.; Savard, G.

    With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existingmore » ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~ 1 MeV/u and isotope production at ~ 6 MeV/u or at the full ATLAS energy of ~ 15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be presented. Future plans to enhance the flexibility of this upgrade will also be presented.« less

  7. The ATLAS multi-user upgrade and potential applications

    NASA Astrophysics Data System (ADS)

    Mustapha, B.; Nolen, J. A.; Savard, G.; Ostroumov, P. N.

    2017-12-01

    With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existing ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~1 MeV/u, isotope production and radiobiological studies at ~6 MeV/u and at the full ATLAS energy of ~15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be discussed. Future plans to enhance the flexibility of this upgrade will be presented.

  8. The use of Facebook for virtual asynchronous focus groups in qualitative research.

    PubMed

    Biedermann, Narelle

    2018-02-01

    The Internet and the development of more user-engaging applications have opened a whole new world for researchers as a means of recruitment and data collection source. This paper describes the methodological approach of a research study that explored the experiences of Australian military spouses who packed up their family and home to accompany their spouse on an overseas posting. The study used Facebook as a recruitment tool and then as a data source through the conduct of an asynchronous virtual focus group. This paper outlines the advantages and disadvantages of this unique data source as a means of capturing the voices of a hard-to-reach population.

  9. NASA's Hybrid Reality Lab: One Giant Leap for Full Dive

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco J.; Noyes, Matthew

    2017-01-01

    This presentation demonstrates how NASA is using consumer VR headsets, game engine technology and NVIDIA's GPUs to create highly immersive future training systems augmented with extremely realistic haptic feedback, sound, additional sensory information, and how these can be used to improve the engineering workflow. Include in this presentation is an environment simulation of the ISS, where users can interact with virtual objects, handrails, and tracked physical objects while inside VR, integration of consumer VR headsets with the Active Response Gravity Offload System, and a space habitat architectural evaluation tool. Attendees will learn how the best elements of real and virtual worlds can be combined into a hybrid reality environment with tangible engineering and scientific applications.

  10. How Do Virtual World Experiences Bring about Learning? A Critical Review of Theories

    ERIC Educational Resources Information Center

    Loke, Swee-Kin

    2015-01-01

    While students do learn real-world knowledge and skills in virtual worlds, educators have yet to adequately theorise how students' virtual world experiences bring about this learning. This paper critically reviewed theories currently used to underpin empirical work in virtual worlds for education. In particular, it evaluated how applicable these…

  11. Optoelectronics technologies for Virtual Reality systems

    NASA Astrophysics Data System (ADS)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  12. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  13. MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters.

    PubMed

    Abreu, Rui Mv; Froufe, Hugo Jc; Queiroz, Maria João Rp; Ferreira, Isabel Cfr

    2010-10-28

    Virtual screening of small molecules using molecular docking has become an important tool in drug discovery. However, large scale virtual screening is time demanding and usually requires dedicated computer clusters. There are a number of software tools that perform virtual screening using AutoDock4 but they require access to dedicated Linux computer clusters. Also no software is available for performing virtual screening with Vina using computer clusters. In this paper we present MOLA, an easy-to-use graphical user interface tool that automates parallel virtual screening using AutoDock4 and/or Vina in bootable non-dedicated computer clusters. MOLA automates several tasks including: ligand preparation, parallel AutoDock4/Vina jobs distribution and result analysis. When the virtual screening project finishes, an open-office spreadsheet file opens with the ligands ranked by binding energy and distance to the active site. All results files can automatically be recorded on an USB-flash drive or on the hard-disk drive using VirtualBox. MOLA works inside a customized Live CD GNU/Linux operating system, developed by us, that bypass the original operating system installed on the computers used in the cluster. This operating system boots from a CD on the master node and then clusters other computers as slave nodes via ethernet connections. MOLA is an ideal virtual screening tool for non-experienced users, with a limited number of multi-platform heterogeneous computers available and no access to dedicated Linux computer clusters. When a virtual screening project finishes, the computers can just be restarted to their original operating system. The originality of MOLA lies on the fact that, any platform-independent computer available can he added to the cluster, without ever using the computer hard-disk drive and without interfering with the installed operating system. With a cluster of 10 processors, and a potential maximum speed-up of 10x, the parallel algorithm of MOLA performed with a speed-up of 8,64× using AutoDock4 and 8,60× using Vina.

  14. Wood Utilization Research Dissemination on the World Wide Web: A Case Study

    Treesearch

    Daniel L. Schmoldt; Matthew F. Winn; Philip A. Araman

    1997-01-01

    Because many research products are informational rather than tangible, emerging information technologies, such as the multi-media format of the World Wide Web, provide an open and easily accessible mechanism for transferring research to user groups. We have found steady, increasing use of our Web site over the first 6-1/2 months of operation; almost one-third of the...

  15. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods

    DTIC Science & Technology

    2014-08-01

    Approved for public release; distribution is unlimited. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods...ABSTRACT A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods Report Title This experiment tests whether a virtual... PEDAGOGICAL EFFECTIVENESS OF VIRTUAL WORLDS AND OF TRADITIONAL TRAINING METHODS A Thesis by BENJAMIN PETERS

  16. GAIA virtual observatory - development and practices

    NASA Astrophysics Data System (ADS)

    Syrjäsuo, Mikko; Marple, Steve

    2010-05-01

    The Global Auroral Imaging Access, or GAIA, is a virtual observatory providing quick access to summary data from satellite and ground-based instruments that remote sense auroral precipitation (http://gaia-vxo.org). This web-based service facilitates locating data relevant to particular events by simultaneously displaying summary images from various data sets around the world. At the moment, there are GAIA server nodes in Canada, Finland, Norway and the UK. The development is an international effort and the software and metadata are freely available. The GAIA system is based on a relational database which is queried by a dedicated software suite that also creates the graphical end-user interface if such is needed. Most commonly, the virtual observatory is used interactively by using a web browser: the user provides the date and the type of data of interest. As the summary data from multiple instruments are displayed simultaneously, the user can conveniently explore the recorded data. The virtual observatory provides essentially instant access to the images originating from all major auroral instrument networks including THEMIS, NORSTAR, GLORIA and MIRACLE. The scientific, educational and outreach use is limited by creativity rather than access. The first version of the GAIA was developed at the University of Calgary (Alberta, Canada) in 2004-2005. This proof-of-concept included mainly THEMIS and MIRACLE data, which comprised of millions of summary plots and thumbnail images. However, it was soon realised that a complete re-design was necessary to increase flexibility. In the presentation, we will discuss the early history and motivation of GAIA as well as how the development continued towards the current version. The emphasis will be on practical problems and their solutions. Relevant design choices will also be highlighted.

  17. Temporal Issues in the Design of Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Bergeron, Bryan; Obeid, Jihad

    1995-01-01

    Describes design methods used to influence user perception of time in virtual learning environments. Examines the use of temporal cues in medical education and clinical competence testing. Finds that user perceptions of time affects user acceptance, ease of use, and the level of realism of a virtual learning environment. Contains 51 references.…

  18. Deploying Embodied AI into Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Burden, David J. H.

    The last two years have seen the start of commercial activity within virtual worlds. Unlike computer games where Non-Player-Character avatars are common, in most virtual worlds they are the exception — and until recently in Second Life they were non-existent. However there is real commercial scope for Als in these worlds — in roles from virtual sales staff and tutors to personal assistants. Deploying an embodied AI into a virtual world offers a unique opportunity to evaluate embodied Als, and to develop them within an environment where human and computer are on almost equal terms. This paper presents an architecture being used for the deployment of chatbot driven avatars within the Second Life virtual world, looks at the challenges of deploying an AI within such a virtual world, the possible implications for the Turing Test, and identifies research directions for the future.

  19. A virtual reality patient simulation system for teaching emergency response skills to U.S. Navy medical providers.

    PubMed

    Freeman, K M; Thompson, S F; Allely, E B; Sobel, A L; Stansfield, S A; Pugh, W M

    2001-01-01

    Rapid and effective medical intervention in response to civil and military-related disasters is crucial for saving lives and limiting long-term disability. Inexperienced providers may suffer in performance when faced with limited supplies and the demands of stabilizing casualties not generally encountered in the comparatively resource-rich hospital setting. Head trauma and multiple injury cases are particularly complex to diagnose and treat, requiring the integration and processing of complex multimodal data. In this project, collaborators adapted and merged existing technologies to produce a flexible, modular patient simulation system with both three-dimensional virtual reality and two-dimensional flat screen user interfaces for teaching cognitive assessment and treatment skills. This experiential, problem-based training approach engages the user in a stress-filled, high fidelity world, providing multiple learning opportunities within a compressed period of time and without risk. The system simulates both the dynamic state of the patient and the results of user intervention, enabling trainees to watch the virtual patient deteriorate or stabilize as a result of their decision-making speed and accuracy. Systems can be deployed to the field enabling trainees to practice repeatedly until their skills are mastered and to maintain those skills once acquired. This paper describes the technologies and the process used to develop the trainers, the clinical algorithms, and the incorporation of teaching points. We also characterize aspects of the actual simulation exercise through the lens of the trainee.

  20. Delay-based virtual congestion control in multi-tenant datacenters

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Zhu, Danhong; Zhang, Dong

    2018-03-01

    With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.

  1. Using virtual worlds for patient and public engagement

    PubMed Central

    Taylor, Michael J.; Kaur, Meerat; Sharma, Uvarshi; Taylor, Dave; Reed, Julie E.; Darzi, Ara

    2015-01-01

    Patient and public involvement is fundamental in healthcare and many methods attempt to facilitate this engagement. The present study investigated use of computer-generated environments known as ‘virtual worlds’ (VW) as an involvement method. The VW used in the present research was Second Life, which is 3-dimensional, publically accessible and internet-based. It is accessed using digital self-representations, or ‘avatars’, through which users navigate the virtual environment and communicate with one another. Participants were patients with long-term conditions, frequently involved in shaping health research and care. Some had mobility and communication difficulties, potentially making involvement through traditional face-to-face modes of engagement challenging. There were 2 stages to this study. Stage-1: Participants were introduced to VWs and Second Life. This was followed by a face-to-face focus group discussion (FGD) in order to gain their views on use of SL. Stage-2: An FGD attended by 8 people (4 patients, 3 researchers, 1 healthcare professional) was conducted in Second Life. Training and support on using Second Life had been provided for participants. The FGD took place successfully, although some technical and communication difficulties were experienced. Data was collected in the form of interviews and questionnaires from the patients about their experience of using the virtual world. Participants recognised the potential of VWs as a platform for patient engagement, especially for those who suffer from chronic conditions that impact severely upon their mobility and communication. Participant feedback indicated that potential barriers include technical problems with VW programs and potential user inexperience of using VWs, which may be counteracted by ensuring provision of continuous training and support. In conclusion, this study established the feasibility of using VWs for patient FGDs and indicates a potential of use of VWs for engagement in future, particularly for peer-led support and to engage people with particular long-term conditions. PMID:26543506

  2. Characterizing student navigation in educational multiuser virtual environments: A case study using data from the River City project

    NASA Astrophysics Data System (ADS)

    Dukas, Georg

    Though research in emerging technologies is vital to fulfilling their incredible potential for educational applications, it is often fraught with analytic challenges related to large datasets. This thesis explores these challenges in researching multiuser virtual environments (MUVEs). In a MUVE, users assume a persona and traverse a virtual space often depicted as a physical world, interacting with other users and digital artifacts. As students participate in MUVE-based curricula, detailed records of their paths through the virtual world are typically collected in event logs. Although many studies have demonstrated the instructional power of MUVEs (e.g., Barab, Hay, Barnett, & Squire, 2001; Ketelhut, Dede, Clarke, Nelson, & Bowman, 2008), none have successfully quantified these student paths for analysis in the aggregate. This thesis constructs several frameworks for conducting research involving student navigational choices in MUVEs based on a case study of data generated from the River City project. After providing a context for the research and an introduction to the River City dataset, the first part of this thesis explores the issues associated with data compression and presents a grounded theory approach (Glaser & Strauss, 1967) to the cleaning, compacting, and coding or MUVE datasets. In summary of this section, I discuss the implication of preparation choices for further analysis. Second, two conceptually different approaches to analyzing behavioral sequences are investigated. For each approach, a theoretical context, description of possible exploratory and confirmatory methods, and illustrative examples from River City are provided. The thesis then situates these specific analytic approaches within the constellation of possible research utilizing MUVE event log data. Finally, based on the lessons of River City and the investigation of a spectrum of possible event logs, a set of design heuristics for data collection in MUVEs is constructed and a possible future for research in these environments is envisioned.

  3. Mobile Applications and Multi-User Virtual Reality Simulations

    NASA Technical Reports Server (NTRS)

    Gordillo, Orlando Enrique

    2016-01-01

    This is my third internship with NASA and my second one at the Johnson Space Center. I work within the engineering directorate in ER7 (Software Robotics and Simulations Division) at a graphics lab called IGOAL. We are a very well-rounded lab because we have dedicated software developers and dedicated 3D artist, and when you combine the two, what you get is the ability to create many different things such as interactive simulations, 3D models, animations, and mobile applications.

  4. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  5. Chemistry in Second Life

    PubMed Central

    Lang, Andrew SID; Bradley, Jean-Claude

    2009-01-01

    This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students. PMID:19852781

  6. Spacecraft Guidance, Navigation, and Control Visualization Tool

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    G-View is a 3D visualization tool for supporting spacecraft guidance, navigation, and control (GN&C) simulations relevant to small-body exploration and sampling (see figure). The tool is developed in MATLAB using Virtual Reality Toolbox and provides users with the ability to visualize the behavior of their simulations, regardless of which programming language (or machine) is used to generate simulation results. The only requirement is that multi-body simulation data is generated and placed in the proper format before applying G-View.

  7. Chemistry in second life.

    PubMed

    Lang, Andrew S I D; Bradley, Jean-Claude

    2009-10-23

    This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students.

  8. STRIVE: Stress Resilience In Virtual Environments: a pre-deployment VR system for training emotional coping skills and assessing chronic and acute stress responses.

    PubMed

    Rizzo, Albert; Buckwalter, J Galen; John, Bruce; Newman, Brad; Parsons, Thomas; Kenny, Patrick; Williams, Josh

    2012-01-01

    The incidence of posttraumatic stress disorder (PTSD) in returning OEF/OIF military personnel is creating a significant healthcare challenge. This has served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. One emerging form of treatment for combat-related PTSD that has shown promise involves the delivery of exposure therapy using immersive Virtual Reality (VR). Initial outcomes from open clinical trials have been positive and fully randomized controlled trials are currently in progress to further validate this approach. Based on our research group's initial positive outcomes using VR to emotionally engage and successfully treat persons undergoing exposure therapy for PTSD, we have begun development in a similar VR-based approach to deliver stress resilience training with military service members prior to their initial deployment. The Stress Resilience In Virtual Environments (STRIVE) project aims to create a set of combat simulations (derived from our existing Virtual Iraq/Afghanistan exposure therapy system) that are part of a multi-episode narrative experience. Users can be immersed within challenging combat contexts and interact with virtual characters within these episodes as part of an experiential learning approach for training a range of psychoeducational and cognitive-behavioral emotional coping strategies believed to enhance stress resilience. The STRIVE project aims to present this approach to service members prior to deployment as part of a program designed to better prepare military personnel for the types of emotional challenges that are inherent in the combat environment. During these virtual training experiences users are monitored physiologically as part of a larger investigation into the biomarkers of the stress response. One such construct, Allostatic Load, is being directly investigated via physiological and neuro-hormonal analysis from specimen collections taken immediately before and after engagement in the STRIVE virtual experience.

  9. Librarians without Borders? Virtual Reference Service to Unaffiliated Users

    ERIC Educational Resources Information Center

    Kibbee, Jo

    2006-01-01

    The author investigates issues faced by academic research libraries in providing virtual reference services to unaffiliated users. These libraries generally welcome visitors who use on-site collections and reference services, but are these altruistic policies feasible in a virtual environment? This paper reviews the use of virtual reference…

  10. Effective Multi-Query Expansions: Collaborative Deep Networks for Robust Landmark Retrieval.

    PubMed

    Wang, Yang; Lin, Xuemin; Wu, Lin; Zhang, Wenjie

    2017-03-01

    Given a query photo issued by a user (q-user), the landmark retrieval is to return a set of photos with their landmarks similar to those of the query, while the existing studies on the landmark retrieval focus on exploiting geometries of landmarks for similarity matches between candidate photos and a query photo. We observe that the same landmarks provided by different users over social media community may convey different geometry information depending on the viewpoints and/or angles, and may, subsequently, yield very different results. In fact, dealing with the landmarks with low quality shapes caused by the photography of q-users is often nontrivial and has seldom been studied. In this paper, we propose a novel framework, namely, multi-query expansions, to retrieve semantically robust landmarks by two steps. First, we identify the top- k photos regarding the latent topics of a query landmark to construct multi-query set so as to remedy its possible low quality shape. For this purpose, we significantly extend the techniques of Latent Dirichlet Allocation. Then, motivated by the typical collaborative filtering methods, we propose to learn a collaborative deep networks-based semantically, nonlinear, and high-level features over the latent factor for landmark photo as the training set, which is formed by matrix factorization over collaborative user-photo matrix regarding the multi-query set. The learned deep network is further applied to generate the features for all the other photos, meanwhile resulting into a compact multi-query set within such space. Then, the final ranking scores are calculated over the high-level feature space between the multi-query set and all other photos, which are ranked to serve as the final ranking list of landmark retrieval. Extensive experiments are conducted on real-world social media data with both landmark photos together with their user information to show the superior performance over the existing methods, especially our recently proposed multi-query based mid-level pattern representation method [1].

  11. Virtual reality technique to assist measurement of degree of shaking of two minarets of an ancient building

    NASA Astrophysics Data System (ADS)

    Homainejad, Amir S.; Satari, Mehran

    2000-05-01

    VR is possible which brings users to the reality by computer and VE is a simulated world which takes users to any points and directions of the object. VR and VE can be very useful if accurate and precise data are sued, and allows users to work with realistic model. Photogrammetry is a technique which is able to collect and provide accurate and precise data for building 3D model in a computer. Data can be collected from various sensor and cameras, and methods of data collector are vary based on the method of image acquiring. Indeed VR includes real-time graphics, 3D model, and display and it has application in the entertainment industry, flight simulators, industrial design.

  12. Virtual Worlds? "Outlook Good"

    ERIC Educational Resources Information Center

    Kelton, AJ

    2008-01-01

    Many people believed that virtual worlds would end up like the eight-track audiotape: a memory of something no longer used (or useful). Yet today there are hundreds of higher education institutions represented in three-dimensional (3D) virtual worlds such as Active Worlds and Second Life. The movement toward the virtual realm as a viable teaching…

  13. Technical Problems Experienced in the Transformation of Virtual Worlds into an Education Environment and Coping Strategies

    ERIC Educational Resources Information Center

    Coban, Murat; Karakus, Turkan; Karaman, Asiye; Gunay, Fatma; Goktas, Yuksel

    2015-01-01

    Research into virtual worlds demonstrates that to successfully use virtual world platforms in different disciplines, certain limitations and potential difficulties of these platforms must be overcome. The current study extends previous research by investigating problems in integrating virtual worlds in education with a longitudinal observation of…

  14. [Quality assurance of a virtual simulation software: application to IMAgo and SIMAgo (ISOgray)].

    PubMed

    Isambert, A; Beaudré, A; Ferreira, I; Lefkopoulos, D

    2007-06-01

    Virtual simulation process is often used to prepare three dimensional conformal radiation therapy treatments. As the quality of the treatment is widely dependent on this step, it is mandatory to perform extensive controls on this software before clinical use. The tests presented in this work have been carried out on the treatment planning system ISOgray (DOSIsoft), including the delineation module IMAgo and the virtual simulation module SIMAgo. According to our experience, the most relevant controls of international protocols have been selected. These tests mainly focused on measuring and delineation tools, virtual simulation functionalities, and have been performed with three phantoms: the Quasar Multi-Purpose Body Phantom, the Quasar MLC Beam Geometry Phantom (Modus Medical Devices Inc.) and a phantom developed at Hospital Tenon. No major issues have been identified while performing the tests. These controls have emphasized the necessity for the user to consider with a critical eye the results displayed by a virtual simulation software. The contrast of visualisation, the slice thickness, the calculation and display mode of 3D structures used by the software are many factors of uncertainties. A virtual simulation software quality assurance procedure has been written and applied on a set of CT images. Similar tests have to be performed periodically and at minimum at each change of major version.

  15. [Use of hypertext as information and training tools in the prevention of occupational risk].

    PubMed

    Franco, G

    1998-01-01

    Modern medical education is based on a variety of teaching techniques, by means of which individuals learn most effectively. The availability of the new technologies together with the diffusion of personal computers is favouring the spreading of the use of hypertexts through the World Wide Web. This contribution describes 2 hypertexts ("Human Activities and Health Risk"; "Occupation, Risk and Disease. A Problem-Oriented Hypertext-Tool to Learn Occupational Medicine") and the prototype "Virtual Hospital". Assuming that prevention of health risks is based upon their knowledge, they have been created with the aim of providing users with problem-oriented tools, whose retorical aspects (content, information organization, user interface) are analysed. The "Human Activities and Health Risk" deals with the description of working activities and allows user to recognize health risks. The "Occupation, Risk and Disease. A Problem-Oriented Hypertext-Tool to Learn Occupational Medicine" embodies a case report containing the clustered information about the patient and the library including educational material (risk factors, symptoms and signs, organ system diseases, jobs, occupational risk factors, environment related diseases. The "Virtual Hospital" has been conceived assuming that an appropriate information can change workers' behaviour in hospital, where health risks can be often underevaluated. It consists of a variety of structured and unstructured information, which can be browsed by users, allowing the discovery of links and providing the awareness of the semantic relationship between related information elements (including environment, instruments, drugs, job analysis, situations at risk for health, preventive means). The "Virtual Hospital" aims making the understanding of the working situations at risk easier and more interesting, stimulating the awareness of the relationship between jobs and risks.

  16. Focus-based filtering + clustering technique for power-law networks with small world phenomenon

    NASA Astrophysics Data System (ADS)

    Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz

    2006-01-01

    Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.

  17. Brave New (Interactive) Worlds: A Review of the Design Affordances and Constraints of Two 3D Virtual Worlds as Interactive Learning Environments

    ERIC Educational Resources Information Center

    Dickey, Michele D.

    2005-01-01

    Three-dimensional virtual worlds are an emerging medium currently being used in both traditional classrooms and for distance education. Three-dimensional (3D) virtual worlds are a combination of desk-top interactive Virtual Reality within a chat environment. This analysis provides an overview of Active Worlds Educational Universe and Adobe…

  18. Controlling mechanisms over the internet

    NASA Astrophysics Data System (ADS)

    Lumia, Ronald

    1997-01-01

    The internet, widely available throughout the world, can be used to control robots, machine tools, and other mechanisms. This paper will describe a low-cost virtual collaborative environment (VCE) which will connect users with distant equipment. The system is based on PC technology, and incorporates off-line-programming with on-line execution. A remote user programs the systems graphically and simulates the motions and actions of the mechanism until satisfied with the functionality of the program. The program is then transferred from the remote site to the local site where the real equipment exists. At the local site, the simulation is run again to check the program from a safety standpoint. Then, the local user runs the program on the real equipment. During execution, a camera in the real workspace provides an image back to the remote user through a teleconferencing system. The system costs approximately 12,500 dollars and represents a low-cost alternative to the Sandia National Laboratories VCE.

  19. Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Shah, Fahad; Sukthankar, Gita

    Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.

  20. Radio data archiving system

    NASA Astrophysics Data System (ADS)

    Knapic, C.; Zanichelli, A.; Dovgan, E.; Nanni, M.; Stagni, M.; Righini, S.; Sponza, M.; Bedosti, F.; Orlati, A.; Smareglia, R.

    2016-07-01

    Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and data formats require new data archiving techniques in order to guarantee data preservation following the directives of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and publication. Currently, various formats (FITS, MBFITS, VLBI's XML description files and ancillary files) of data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art archiving system for radio astronomical data aims at delegating as much as possible to the software setting how and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready to be Virtual Observatory compliant and as much as possible user-friendly.

  1. Analyzing a multimodal biometric system using real and virtual users

    NASA Astrophysics Data System (ADS)

    Scheidat, Tobias; Vielhauer, Claus

    2007-02-01

    Three main topics of recent research on multimodal biometric systems are addressed in this article: The lack of sufficiently large multimodal test data sets, the influence of cultural aspects and data protection issues of multimodal biometric data. In this contribution, different possibilities are presented to extend multimodal databases by generating so-called virtual users, which are created by combining single biometric modality data of different users. Comparative tests on databases containing real and virtual users based on a multimodal system using handwriting and speech are presented, to study to which degree the use of virtual multimodal databases allows conclusions with respect to recognition accuracy in comparison to real multimodal data. All tests have been carried out on databases created from donations from three different nationality groups. This allows to review the experimental results both in general and in context of cultural origin. The results show that in most cases the usage of virtual persons leads to lower accuracy than the usage of real users in terms of the measurement applied: the Equal Error Rate. Finally, this article will address the general question how the concept of virtual users may influence the data protection requirements for multimodal evaluation databases in the future.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragan, Eric D; Bowman, Doug A; Scerbo, Siroberto

    Virtual reality (VR) systems have been proposed for use in numerous training scenarios, such as room clearing, which require the trainee to maintain spatial awareness. But many VR training systems lack a fully surrounding display, requiring trainees to use a combination of physical and virtual turns to view the environment, thus decreasing spatial awareness. One solution to this problem is to amplify head rotations, such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the surrounding environment with head movements alone. For example, in a multi-monitor system covering only a 90-degree field of regard, headmore » rotations could be amplified four times to allow the user to see the entire 360-degree surrounding environment. This solution is attractive because it can be used with lower-cost VR systems and does not require virtual turning. However, the effects of amplified head rotations on spatial awareness and training transfer are not well understood. We hypothesized that small amounts of amplification might be tolerable, but that larger amplifications might cause trainees to become disoriented and to have decreased task performance and training transfer. In this paper, we will present our findings from an experiment designed to investigate these hypotheses. The experiment placed users in a virtual warehouse and asked them to move from room to room, counting objects placed around them in space. We varied the amount of amplification applied during these trials, and also varied the type of display used (head-mounted display or CAVE). We measured task performance and spatial awareness. We then assessed training transfer in an assessment environment with a fully surrounding display and no amplification. The results of this study will inform VR training system developers about the potential negative effects of using head rotation amplification and contribute to more effective VR training system design.« less

  3. Dynamic provisioning of local and remote compute resources with OpenStack

    NASA Astrophysics Data System (ADS)

    Giffels, M.; Hauth, T.; Polgart, F.; Quast, G.

    2015-12-01

    Modern high-energy physics experiments rely on the extensive usage of computing resources, both for the reconstruction of measured events as well as for Monte-Carlo simulation. The Institut fur Experimentelle Kernphysik (EKP) at KIT is participating in both the CMS and Belle experiments with computing and storage resources. In the upcoming years, these requirements are expected to increase due to growing amount of recorded data and the rise in complexity of the simulated events. It is therefore essential to increase the available computing capabilities by tapping into all resource pools. At the EKP institute, powerful desktop machines are available to users. Due to the multi-core nature of modern CPUs, vast amounts of CPU time are not utilized by common desktop usage patterns. Other important providers of compute capabilities are classical HPC data centers at universities or national research centers. Due to the shared nature of these installations, the standardized software stack required by HEP applications cannot be installed. A viable way to overcome this constraint and offer a standardized software environment in a transparent manner is the usage of virtualization technologies. The OpenStack project has become a widely adopted solution to virtualize hardware and offer additional services like storage and virtual machine management. This contribution will report on the incorporation of the institute's desktop machines into a private OpenStack Cloud. The additional compute resources provisioned via the virtual machines have been used for Monte-Carlo simulation and data analysis. Furthermore, a concept to integrate shared, remote HPC centers into regular HEP job workflows will be presented. In this approach, local and remote resources are merged to form a uniform, virtual compute cluster with a single point-of-entry for the user. Evaluations of the performance and stability of this setup and operational experiences will be discussed.

  4. Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment.

    PubMed

    De Leo, Gianluca; Diggs, Leigh A; Radici, Elena; Mastaglio, Thomas W

    2014-02-01

    Virtual-reality solutions have successfully been used to train distributed teams. This study aimed to investigate the correlation between user characteristics and sense of presence in an online virtual-reality environment where distributed teams are trained. A greater sense of presence has the potential to make training in the virtual environment more effective, leading to the formation of teams that perform better in a real environment. Being able to identify, before starting online training, those user characteristics that are predictors of a greater sense of presence can lead to the selection of trainees who would benefit most from the online simulated training. This is an observational study with a retrospective postsurvey of participants' user characteristics and degree of sense of presence. Twenty-nine members from 3 Air Force National Guard Medical Service expeditionary medical support teams participated in an online virtual environment training exercise and completed the Independent Television Commission-Sense of Presence Inventory survey, which measures sense of presence and user characteristics. Nonparametric statistics were applied to determine the statistical significance of user characteristics to sense of presence. Comparing user characteristics to the 4 scales of the Independent Television Commission-Sense of Presence Inventory using Kendall τ test gave the following results: the user characteristics "how often you play video games" (τ(26)=-0.458, P<0.01) and "television/film production knowledge" (τ(27)=-0.516, P<0.01) were significantly related to negative effects. Negative effects refer to adverse physiologic reactions owing to the virtual environment experience such as dizziness, nausea, headache, and eyestrain. The user characteristic "knowledge of virtual reality" was significantly related to engagement (τ(26)=0.463, P<0.01) and negative effects (τ(26)=-0.404, P<0.05). Individuals who have knowledge about virtual environments and experience with gaming environments report a higher sense of presence that indicates that they will likely benefit more from online virtual training. Future research studies could include a larger population of expeditionary medical support, and the results obtained could be used to create a model that predicts the level of presence based on the user characteristics. To maximize results and minimize costs, only those individuals who, based on their characteristics, are supposed to have a higher sense of presence and less negative effects could be selected for online simulated virtual environment training.

  5. Status Report on the Development of Research Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.

    2013-06-30

    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specificmore » scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.« less

  6. An Approach for Autonomy: A Collaborative Communication Framework for Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren Russell, Jr.

    2005-01-01

    Research done during the last three years has studied the emersion properties of Complex Adaptive Systems (CAS). The deployment of Artificial Intelligence (AI) techniques applied to remote Unmanned Aerial Vehicles has led the author to investigate applications of CAS within the field of Autonomous Multi-Agent Systems. The core objective of current research efforts is focused on the simplicity of Intelligent Agents (IA) and the modeling of these agents within complex systems. This research effort looks at the communication, interaction, and adaptability of multi-agents as applied to complex systems control. The embodiment concept applied to robotics has application possibilities within multi-agent frameworks. A new framework for agent awareness within a virtual 3D world concept is possible where the vehicle is composed of collaborative agents. This approach has many possibilities for applications to complex systems. This paper describes the development of an approach to apply this virtual framework to the NASA Goddard Space Flight Center (GSFC) tetrahedron structure developed under the Autonomous Nano Technology Swarm (ANTS) program and the Super Miniaturized Addressable Reconfigurable Technology (SMART) architecture program. These projects represent an innovative set of novel concepts deploying adaptable, self-organizing structures composed of many tetrahedrons. This technology is pushing current applied Agents Concepts to new levels of requirements and adaptability.

  7. Implementation of Pass Through PPTP Relay System with Authentication at Each Gateway and Its Performance Evaluations

    NASA Astrophysics Data System (ADS)

    Saito, Shoichi; Uehara, Tetsutaro; Izumi, Yutaka; Kunieda, Yoshitoshi

    The VPN (Virtual Private Network) technique becomes more and more popular to protect contents of messages and to achieve secure communication from incidents, such as tapping. However, it grow in usage that a VPN server is used on a sub-network in part of an office-wide network. But, a PPTP system included in Windows operating systems cannot establish nested VPN links. Moreover encrypted communication by VPN hides a user of the VPN connection. Consequently, any administrators of network systems can’t find out the users of the VPN connection via firewall, moreover can’t decide whether if the user is legal or not. In order to solve this problem, we developed a multi step PPTP relay system on a firewall. This system solves all the problems of our previously developed PPTP relay system(1). The new relay system improves security by encrypting through the whole end-to-end communication and abolishing of prior registration of passwords for the next step. Furthermore, transport speed is accelerated, and the restriction of the number of steps on relay is also abolished. By these features the multi step PPTP relay system expands usability.

  8. Virtual Economies: Threats and Risks

    NASA Astrophysics Data System (ADS)

    Thorpe, Christopher; Hammer, Jessica; Camp, Jean; Callas, Jon; Bond, Mike

    In virtual economies, human and computer players produce goods and services, hold assets, and trade them with other in-game entities, in the same way that people and corporations participate in "real-world" economies. As the border between virtual worlds and the real world grows more and more permeable, privacy and security in virtual worlds matter more and more.

  9. Collective Action Situated in Virtual Worlds

    ERIC Educational Resources Information Center

    Blodgett, Bridget M.

    2011-01-01

    For the first time in the history of collective action, the offline world has experienced a virtually organized and enacted union strike. While this was the first publicly noticed political action in a virtual world, others have been going on for several years now. As virtual worlds continue to grow in popularity, this type of protest of action…

  10. Using Virtual Worlds to Identify Multidimensional Student Engagement in High School Foreign Language Learning Classrooms

    ERIC Educational Resources Information Center

    Jacob, Laura Beth

    2012-01-01

    Virtual world environments have evolved from object-oriented, text-based online games to complex three-dimensional immersive social spaces where the lines between reality and computer-generated begin to blur. Educators use virtual worlds to create engaging three-dimensional learning spaces for students, but the impact of virtual worlds in…

  11. Faculty Perspectives of Faculty Persona in a Virtual World

    ERIC Educational Resources Information Center

    Blackmon, Stephanie J.

    2013-01-01

    Immersive virtual worlds provide a new way to deliver online courses or parts of online and face-to-face courses. There is a growing body of research on online learning, and the data on virtual worlds is also increasing. However, literature concerning professors' experiences with specific aspects of virtual worlds is limited. For example,…

  12. Managing in the Virtual World: How Second Life is Rewriting the Rules of "Real Life" Business

    NASA Astrophysics Data System (ADS)

    Wyld, David C.

    In this paper, we will explore the growth of virtual worlds - one of the most exciting and fast-growing concepts in the Web 2.0 era. We will see that while there has been significant growth across all demographic groups, online gaming in MMOGs (Massively Multiplayer Online Games) are finding particular appeal in today's youth - the so-called "digital native" generation. We then overview the today's virtual world marketplace, both in the youth and adult-oriented markets. Second Life is emerging as the most important virtual world today, due to the intense interest amongst both large organizations and individual entrepreneurs to conduct real business in the virtual environment. Due to its prominence today and its forecasted growth over the next decade, we take a look at the unscripted world of Second Life, examining the corporate presence in-world, as well as the economic, technical, legal, ethical and security issues involved for companies doing business in the virtual world. In conclusion, we present an analysis of where we stand in terms of virtual world development today and a projection of where we will be heading in the near future. Finally, we present advice to management practitioners and academicians on how to learn about virtual worlds and explore the world of opportunities in them.

  13. The Creation of a global telemedical information society.

    PubMed

    Marsh, A

    1998-04-01

    Healthcare is a major candidate for improvement in any vision of the kinds of 'information highways' and 'information societies' that are now being visualized. The medical information management market is one of the largest and fastest growing segments of the healthcare device industry. The expected revenue by the year 2000 is US$21 billion. Telemedicine currently accounts for only a small segment but is expanding rapidly. In the USA more than 60% of federal telemedicine projects were initiated in the last 2 years. The concept of telemedicine captures much of what is developing in terms of technology implementations, especially if it is combined with the growth of the Internet and World Wide Web (WWW). It is foreseen that the World Wide Web (WWW) will become the most important communication medium of any future information society. If the development of such a society is to be on a global scale it should not be allowed to develop in an ad hoc manner. For this reason, the Euromed Project has identified 20 building blocks resulting in 39 steps requiring multi-disciplinary collaborations. Since, the organization of information is therefore critical especially when concerning healthcare the Euromed Project has also introduced a new (global) standard called 'Virtual Medical Worlds' which provides the potential to organize existing medical information and provide the foundations for its integration into future forms of medical information systems. Virtual Medical Worlds, based on 3D reconstructed medical models, utilizes the WWW as a navigational medium to remotely access multi-media medical information systems. The visualization and manipulation of hyper-graphical 3D 'body/organ' templates and patient-specific 3D/4D/and VR models is an attempt to define an information infrastructure in an emerging WWW-based telemedical information society.

  14. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. This virtual exploration is part of the NeMO web site and will be at this URL http://www.pmel.noaa.gov/vents/dive.html

  15. Wildcard: A wearable virtual reality storytelling tool for children with intellectual developmental disability.

    PubMed

    Gelsomini, Mirko; Garzotto, Franca; Montesano, Daniele; Occhiuto, Daniele

    2016-08-01

    Our research aims at supporting existing therapies for children with intellectual and developmental disorders (IDD). The personal and social autonomy is the desired end state to be achieved to enable a smooth integration in the real world. We developed and tested a framework for storytelling and learning activities that exploits an immersive virtual reality viewer to interact with target users. We co-designed our system with experts from the medical sector, identifying features that allow patients to stay focused on exercises to perform. Our approach triggers a learning process for a seamless assimilation of common behavioral skills useful in every day's life. This paper highlights the technologic challenges in healthcare and discusses cutting-edge interaction paradigms.

  16. Student Research Projects

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny A.

    1998-01-01

    Numerous FY1998 student research projects were sponsored by the Mississippi State University Center for Air Sea Technology. This technical note describes these projects which include research on: (1) Graphical User Interfaces, (2) Master Environmental Library, (3) Database Management Systems, (4) Naval Interactive Data Analysis System, (5) Relocatable Modeling Environment, (6) Tidal Models, (7) Book Inventories, (8) System Analysis, (9) World Wide Web Development, (10) Virtual Data Warehouse, (11) Enterprise Information Explorer, (12) Equipment Inventories, (13) COADS, and (14) JavaScript Technology.

  17. Virtual Global Magnetic Observatory - Concept and Implementation

    NASA Astrophysics Data System (ADS)

    Papitashvili, V.; Clauer, R.; Petrov, V.; Saxena, A.

    2002-12-01

    The existing World Data Centers (WDC) continue to serve excellently the worldwide scientific community in providing free access to a huge number of global geophysical databases. Various institutions at different geographic locations house these Centers, mainly organized by a scientific discipline. However, population of the Centers requires mandatory or voluntary submission of locally collected data. Recently many digital geomagnetic datasets have been placed on the World Wide Web and some of these sets have not been even submitted to any data center. This has created an urgent need for more sophisticated search engines capable of identifying geomagnetic data on the Web and then retrieving a certain amount of data for the scientific analysis. In this study, we formulate a concept of the virtual global magnetic observatory (VGMO) that currently uses a pre-set list of the Web-based geomagnetic data holders (including WDC) as retrieving a requested case-study interval. Saving the retrieved data locally over the multiple requests, a VGMO user begins to build his/her own data sub-center, which does not need to search the Web if the newly requested interval will be within a span of the earlier retrieved data. At the same time, this self-populated sub-center becomes available to other VGMO users down on the requests chain. Some aspects of the Web``crawling'' helping to identify the newly ``webbed'' digital geomagnetic data are also considered.

  18. KML Tours: A New Platform for Exploring and Sharing Geospatial Data

    NASA Astrophysics Data System (ADS)

    Barcay, D. P.; Weiss-Malik, M.

    2009-12-01

    Google Earth and other virtual globes have allowed millions of people to explore the world from their own home. This technology has also raised the bar for professional visualizations: enabling interactive 3D visualizations to be created from massive data-sets, and shared using the KML language. For academics and professionals alike, an engaging presentation of your geospatial data is generally expected and can be the most effective form of advertisement. To that end, we released 'Touring' in Google Earth 5.0: a new medium for cinematic expression, visualized in Google Earth and written as extensions to the KML language. In a KML tour, the author has fine-grained control over the entire visual experience: precisely moving the virtual camera through the world while dynamically modifying the content, style, position, and visibility of the displayed data. An author can synchronize audio to this experience, bringing further immersion to a visualization. KML tours can help engage a broad user-base and conveying subtle concepts that aren't immediately apparent in traditional geospatial content. Unlike a pre-rendered video, a KML Tour maintains the rich interactivity of Google Earth, allowing users to continue exploring your content, and to mash-up other content with your visualization. This session will include conceptual explanations of the Touring feature in Google Earth, the structure of the touring KML extensions, as well as examples of compelling tours.

  19. Collaborative Aerial-Drawing System for Supporting Co-Creative Communication

    NASA Astrophysics Data System (ADS)

    Osaki, Akihiro; Taniguchi, Hiroyuki; Miwa, Yoshiyuki

    This paper describes the collaborative augmented reality (AR) system with which multiple users can handwrite 3D lines in the air simultaneously and manipulate the lines directly in the real world. In addition, we propose a new technique for co-creative communication utilizing the 3D drawing activity. Up to now, the various 3D user interfaces have been proposed. Although most of them aim to solve the specific problems in the virtual environments, the possibility of the 3D drawing expression has not been explored yet. Accordingly, we paid special attention to the interaction with the real objects in daily life, and considered to manipulate real objects and 3D lines without any distinctions by the same action. The developed AR system consists of a stereoscopic head-mounted display, a drawing tool, 6DOF sensors measuring three-dimensional position and Euler angles, and the 3D user interface, which enables to push, grasp and pitch 3D lines directly by use of the drawing tool. Additionally users can pick up desired color from either a landscape or a virtual line through the direct interaction with this tool. For sharing 3D lines among multiple users at the same place, the distributed-type AR system has been developed that mutually sends and receives drawn data between systems. With the developed system, users can proceed to design jointly in the real space through arranging each 3D drawing by direct manipulation. Moreover, a new application to the entertainment has become possible to play sports like catch, fencing match, or the like.

  20. A multi-group and preemptable scheduling of cloud resource based on HTCondor

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaowei; Zou, Jiaheng; Cheng, Yaodong; Shi, Jingyan

    2017-10-01

    Due to the features of virtual machine-flexibility, easy controlling and various system environments, more and more fields utilize the virtualization technology to construct the distributed system with the virtual resources, also including high energy physics. This paper introduce a method used in high energy physics that supports multiple resource group and preemptable cloud resource scheduling, combining virtual machine with HTCondor (a batch system). It makes resource controlling more flexible and more efficient and makes resource scheduling independent of job scheduling. Firstly, the resources belong to different experiment-groups, and the type of user-groups mapping to resource-groups(same as experiment-group) is one-to-one or many-to-one. In order to make the confused group simply to be managed, we designed the permission controlling component to ensure that the different resource-groups can get the suitable jobs. Secondly, for the purpose of elastically allocating resources for suitable resource-group, it is necessary to schedule resources like scheduling jobs. So this paper designs the cloud resource scheduling to maintain a resource queue and allocate an appropriate amount of virtual resources to the request resource-group. Thirdly, in some kind of situations, because of the resource occupied for a long time, resources need to be preempted. This paper adds the preemption function for the resource scheduling that implement resource preemption based on the group priority. Additionally, the way to preempting is soft that when virtual resources are preempted, jobs will not be killed but also be held and rematched later. It is implemented with the help of HTCondor, storing the held job information in scheduler, releasing the job to idle status and doing second matcher. In IHEP (institute of high energy physics), we have built a batch system based on HTCondor with a virtual resources pool based on Openstack. And this paper will show some cases of experiment JUNO and LHAASO. The result indicates that multi-group and preemptable resource scheduling is efficient to support multi-group and soft preemption. Additionally, the permission controlling component has been used in the local computing cluster, supporting for experiment JUNO, CMS and LHAASO, and the scale will be expanded to more experiments at the first half year, including DYW, BES and so on. Its evidence that the permission controlling is efficient.

  1. Evaluating change in virtual reality adoption for brain injury rehabilitation following knowledge translation.

    PubMed

    Glegg, Stephanie M N; Holsti, Liisa; Stanton, Sue; Hanna, Steven; Velikonja, Diana; Ansley, Barbara; Sartor, Denise; Brum, Christine

    2017-04-01

    To evaluate the impact of knowledge translation (KT) on factors influencing virtual reality (VR) adoption and to identify support needs of therapists. Intervention will be associated with improvements in therapists' perceived ease of use and self-efficacy, and an associated increase in intentions to use VR. Single group mixed-methods pre-test-post-test evaluation of convenience sample of physical, occupational and rehabilitation therapists (n=37) from two brain injury rehabilitation centres. ADOPT-VR administered pre/post KT intervention, consisting of interactive education, clinical manual, technical and clinical support. Increases in perceived ease of use (p=0.000) and self-efficacy (p=0.001), but not behavioural intention to use VR (p=0.158) were found following KT, along with decreases in the frequency of perceived barriers. Post-test changes in the frequency and nature of perceived facilitators and barriers were evident, with increased emphasis on peer influence, organisational-level supports and client factors. Additional support needs were related to clinical reasoning, treatment programme development, technology selection and troubleshooting. KT strategies hold potential for targeting therapists' perceptions of low self-efficacy and ease of use of this technology. Changes in perceived barriers, facilitators and support needs at post-test demonstrated support for repeated evaluation and multi-phased training initiatives to address therapists' needs over time. Implications for Rehabilitation Therapists' learning and support needs in integrating virtual reality extend beyond technical proficiency to include clinical decision-making and application competencies spanning the entire rehabilitation process. Phased, multi-faceted strategies may be valuable in addressing therapists' changing needs as they progress from novice to experienced virtual reality users. The ADOPT-VR is a sensitive measure to re-evaluate the personal, social, environmental, technology-specific and system-level factors influencing virtual reality adoption over time.

  2. Web GIS in practice X: a Microsoft Kinect natural user interface for Google Earth navigation

    PubMed Central

    2011-01-01

    This paper covers the use of depth sensors such as Microsoft Kinect and ASUS Xtion to provide a natural user interface (NUI) for controlling 3-D (three-dimensional) virtual globes such as Google Earth (including its Street View mode), Bing Maps 3D, and NASA World Wind. The paper introduces the Microsoft Kinect device, briefly describing how it works (the underlying technology by PrimeSense), as well as its market uptake and application potential beyond its original intended purpose as a home entertainment and video game controller. The different software drivers available for connecting the Kinect device to a PC (Personal Computer) are also covered, and their comparative pros and cons briefly discussed. We survey a number of approaches and application examples for controlling 3-D virtual globes using the Kinect sensor, then describe Kinoogle, a Kinect interface for natural interaction with Google Earth, developed by students at Texas A&M University. Readers interested in trying out the application on their own hardware can download a Zip archive (included with the manuscript as additional files 1, 2, &3) that contains a 'Kinnogle installation package for Windows PCs'. Finally, we discuss some usability aspects of Kinoogle and similar NUIs for controlling 3-D virtual globes (including possible future improvements), and propose a number of unique, practical 'use scenarios' where such NUIs could prove useful in navigating a 3-D virtual globe, compared to conventional mouse/3-D mouse and keyboard-based interfaces. PMID:21791054

  3. Web GIS in practice X: a Microsoft Kinect natural user interface for Google Earth navigation.

    PubMed

    Boulos, Maged N Kamel; Blanchard, Bryan J; Walker, Cory; Montero, Julio; Tripathy, Aalap; Gutierrez-Osuna, Ricardo

    2011-07-26

    This paper covers the use of depth sensors such as Microsoft Kinect and ASUS Xtion to provide a natural user interface (NUI) for controlling 3-D (three-dimensional) virtual globes such as Google Earth (including its Street View mode), Bing Maps 3D, and NASA World Wind. The paper introduces the Microsoft Kinect device, briefly describing how it works (the underlying technology by PrimeSense), as well as its market uptake and application potential beyond its original intended purpose as a home entertainment and video game controller. The different software drivers available for connecting the Kinect device to a PC (Personal Computer) are also covered, and their comparative pros and cons briefly discussed. We survey a number of approaches and application examples for controlling 3-D virtual globes using the Kinect sensor, then describe Kinoogle, a Kinect interface for natural interaction with Google Earth, developed by students at Texas A&M University. Readers interested in trying out the application on their own hardware can download a Zip archive (included with the manuscript as additional files 1, 2, &3) that contains a 'Kinnogle installation package for Windows PCs'. Finally, we discuss some usability aspects of Kinoogle and similar NUIs for controlling 3-D virtual globes (including possible future improvements), and propose a number of unique, practical 'use scenarios' where such NUIs could prove useful in navigating a 3-D virtual globe, compared to conventional mouse/3-D mouse and keyboard-based interfaces.

  4. Putting humans in the loop: Using crowdsourced snow information to inform water management

    NASA Astrophysics Data System (ADS)

    Fedorov, Roman; Giuliani, Matteo; Castelletti, Andrea; Fraternali, Piero

    2016-04-01

    The unprecedented availability of user generated data on the Web due to the advent of online services, social networks, and crowdsourcing, is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatio-temporally dense, possibly contributing to our ability of making better decisions. In this work, we contribute a novel crowdsourcing procedure for computing virtual snow indexes from public web images, either produced by users or generated by touristic webcams, which is based on a complex architecture designed for automatically crawling content from multiple web data sources. The procedure retains only geo-tagged images containing a mountain skyline, identifies the visible peaks in each image using a public online digital terrain model, and classifies the mountain image pixels as snow or no-snow. This operation yields a snow mask per image, from which it is possible to extract time series of virtual snow indexes representing a proxy of the snow covered area. The value of the obtained virtual snow indexes is estimated in a real world water management problem. We consider the snow-dominated catchment of Lake Como, a regulated lake in Northern Italy, where snowmelt represents the most important contribution to seasonal lake storage, and we used the virtual snow indexes for informing the daily operation of the lake's dam. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  5. [The virtual university applied to telesurgery: from tele-education to telemanipulation].

    PubMed

    Marescaux, J; Mutter, D; Soler, L; Vix, M; Leroy, J

    1999-06-01

    The advent of new computer technologies can appear as a revolution in surgical teaching, as well as in the planing and realization of surgical procedures. The introduction of a camera into the body of a patient, allowing the visual display of the operative procedure through the use of a miniaturized camera, constitutes the greatest change that the surgical world has experienced at the end of this century: mini-invasive surgery is born. This revolution also predicts further changes: the development of telecommunication devices applied to medicine (tele-education, tele-training, tele-mentoring, tele-proctoring and tele-accreditation), constitutes the basis of cybersurgery or virtual reality allowing the merging of the concepts of tele-presence and telemanipulation. These new concepts were developed at the European Institute of TeleSurgery at Strasbourg. The TESUS project developed the use of surgical images and data transmission through the realization of international multi-site video conferences between surgeons. The WEBS project created the first virtual university concept by placing surgical techniques at the surgeon's disposal through the Internet. The HESSOS project uses virtual reality as a surgical simulation system. The MASTER project allows the development of the concept of distant telemanipulation. It is now possible to face surgical teaching outside of the restricted University framework, and to conceive teaching on a world-wide level, offering the practitioner unimaginable possibilities of formation, training and the planning of surgical procedures.

  6. [The Virtual University applied to telesurgery: from tele-education to tele-manipulation].

    PubMed

    Marescaux, J; Mutter, D; Soler, L; Vix, M; Leroy, J

    1999-01-01

    The advent of new computer technologies appears as a revolution of surgical teaching, as well as the planning and realisation of surgical procedures. The introduction of a camera into the body of a patient, allowing the visual display of the operative procedure through the use of miniaturised camera constitutes the greatest alteration that the surgical world has experienced at the end of this century: mini-invasive surgery is born. This revolution was announces further changes: the development of telecommunication devices applied to medicine (tele-education, teletraining, telementoring, teleproctoring and tele-accreditation) constitutes the basis of cybersurgery or virtual reality allowing the merging of the concepts of telepresence and telemanipulation. These new concepts were developed at the European Institute of TeleSurgery of Strasbourg. The TESUS project developed the use of surgical images and data transmission through the realisation of international multi-site video conferences between surgeons. The WEBS project created the first Virtual University concept placing surgical techniques at the surgeon's disposal through Internet. The HESSOS project uses virtual reality as a surgical simulation system. The MASTER project allows to develop the concept of distant telemanipulation. It is now possible to face surgical teaching outside of the restricted University frame and to conceive teaching on a world level, offering to the practitioner unimaginable possibilities of formation, training and planning of surgical procedures.

  7. Teachers' Perceptions of the Benefits and Challenges of Three-Dimensional Virtual Worlds for Social Skills Practice

    ERIC Educational Resources Information Center

    Nussli, Natalie; Oh, Kevin

    2016-01-01

    This case study describes how a systematic 7-Step Virtual Worlds Teacher Training Workshop guided the enculturation of 18 special education teachers into three-dimensional virtual worlds. The main purpose was to enable these teachers to make informed decisions about the usability of virtual worlds for students with social skills challenges, such…

  8. In-World Behaviors and Learning in a Virtual World

    ERIC Educational Resources Information Center

    Nadolny, Larysa; Childs, Mark

    2014-01-01

    Educational virtual worlds can give students opportunities that would not otherwise be possible in face-to-face settings. The SciEthics Interactive simulations allow learners to conduct scientific research and practice ethical decision-making within a virtual world. This study examined the in-world behaviors that identify students who perceive…

  9. Developing interprofessional health competencies in a virtual world

    PubMed Central

    King, Sharla; Chodos, David; Stroulia, Eleni; Carbonaro, Mike; MacKenzie, Mark; Reid, Andrew; Torres, Lisa; Greidanus, Elaine

    2012-01-01

    Background Virtual worlds provide a promising means of delivering simulations for developing interprofessional health skills. However, developing and implementing a virtual world simulation is a challenging process, in part because of the novelty of virtual worlds as a simulation platform and also because of the degree of collaboration required among technical and subject experts. Thus, it can be difficult to ensure that the simulation is both technically satisfactory and educationally appropriate. Methods To address this challenge, we propose the use of de Freitas and Oliver's four-dimensional framework as a means of guiding the development process. We give an overview of the framework and describe how its principles can be applied to the development of virtual world simulations. Results We present two virtual world simulation pilot projects that adopted this approach, and describe our development experience in these projects. We directly connect this experience to the four-dimensional framework, thus validating the framework's applicability to the projects and to the context of virtual world simulations in general. Conclusions We present a series of recommendations for developing virtual world simulations for interprofessional health education. These recommendations are based on the four-dimensional framework and are also informed by our experience with the pilot projects. PMID:23195649

  10. A 3D virtual reality simulator for training of minimally invasive surgery.

    PubMed

    Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin

    2014-01-01

    For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.

  11. Automatic 3D virtual scenes modeling for multisensors simulation

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Le Goff, Alain; Cathala, Thierry; Larive, Mathieu

    2006-05-01

    SEDRIS that stands for Synthetic Environment Data Representation and Interchange Specification is a DoD/DMSO initiative in order to federate and make interoperable 3D mocks up in the frame of virtual reality and simulation. This paper shows an original application of SEDRIS concept for research physical multi sensors simulation, when SEDRIS is more classically known for training simulation. CHORALE (simulated Optronic Acoustic Radar battlefield) is used by the French DGA/DCE (Directorate for Test and Evaluation of the French Ministry of Defense) to perform multi-sensors simulations. CHORALE enables the user to create virtual and realistic multi spectral 3D scenes, and generate the physical signal received by a sensor, typically an IR sensor. In the scope of this CHORALE workshop, French DGA has decided to introduce a SEDRIS based new 3D terrain modeling tool that enables to create automatically 3D databases, directly usable by the physical sensor simulation CHORALE renderers. This AGETIM tool turns geographical source data (including GIS facilities) into meshed geometry enhanced with the sensor physical extensions, fitted to the ray tracing rendering of CHORALE, both for the infrared, electromagnetic and acoustic spectrum. The basic idea is to enhance directly the 2D source level with the physical data, rather than enhancing the 3D meshed level, which is more efficient (rapid database generation) and more reliable (can be generated many times, changing some parameters only). The paper concludes with the last current evolution of AGETIM in the scope mission rehearsal for urban war using sensors. This evolution includes indoor modeling for automatic generation of inner parts of buildings.

  12. Feasibility of incorporating functionally relevant virtual rehabilitation in sub-acute stroke care: perception of patients and clinicians.

    PubMed

    Demers, Marika; Chan Chun Kong, Daniel; Levin, Mindy F

    2018-03-11

    To determine user satisfaction and safety of incorporating a low-cost virtual rehabilitation intervention as an adjunctive therapeutic option for cognitive-motor upper limb rehabilitation in individuals with sub-acute stroke. A low-cost upper limb virtual rehabilitation application incorporating realistic functionally-relevant unimanual and bimanual tasks, specifically designed for cognitive-motor rehabilitation was developed for patients with sub-acute stroke. Clinicians and individuals with stroke interacted with the intervention for 15-20 or 20-45 minutes, respectively. The study had a mixed-methods convergent parallel design that included a focus group interview with clinicians working in a stroke program and semi-structured interviews and standardized assessments (Borg Perceived Exertion Scale, Short Feedback Questionnaire) for participants with sub-acute stroke undergoing rehabilitation. The occurrence of adverse events was also noted. Three main themes emerged from the clinician focus group and patient interviews: Perceived usefulness in rehabilitation, satisfaction with the virtual reality intervention and aspects to improve. All clinicians and the majority of participants with stroke were highly satisfied with the intervention and perceived its usefulness to decrease arm motor impairment during functional tasks. No participants experienced major adverse events. Incorporation of this type of functional activity game-based virtual reality intervention in the sub-acute phase of rehabilitation represents a way to transfer skills learned early in the clinical setting to real world situations. This type of intervention may lead to better integration of the upper limb into everyday activities. Implications for Rehabilitation • Use of a cognitive-motor low-cost virtual reality intervention designed to remediate arm motor impairments in sub-acute stroke is feasible, safe and perceived as useful by therapists and patients for stroke rehabilitation.    • Input from end-users (therapists and individuals with stroke) is critical for the development and implementation of a virtual reality intervention.

  13. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users?

    PubMed

    Lewis, Gwyn N; Rosie, Juliet A

    2012-01-01

    To review quantitative and qualitative studies that have examined the users' response to virtual reality game-based interventions in people with movement disorders associated with chronic neurological conditions. We aimed to determine key themes that influenced users' enjoyment and engagement in the games and develop suggestions as to how future systems could best address their needs and expectations. There were a limited number of studies that evaluated user opinions. From those found, seven common themes emerged: technology limitations, user control and therapist assistance, the novel physical and cognitive challenge, feedback, social interaction, game purpose and expectations, and the virtual environments. Our key recommendations derived from the review were to avoid technology failure, maintain overt therapeutic principles within the games, encompass progression to promote continuing physical and cognitive challenge, and to provide feedback that is easily and readily associated with success. While there have been few studies that have evaluated the users' perspective of virtual rehabilitation games, our findings indicate that canvassing these experiences provides valuable information on the needs of the intended users. Incorporating our recommendations may enhance the efficacy of future systems to optimize the rehabilitation benefits of virtual reality games.

  14. This is Not a Game - Social Virtual Worlds, Fun, and Learning

    NASA Astrophysics Data System (ADS)

    Bell, Mark W.; Smith-Robbins, Sarah; Withnail, Greg

    This chapter asks a simple question: what is required to make learning fun in social virtual worlds? Several scholars have connected fun with learning but most of these have centered on the function of games in learning. Studies of learning in massive multiplayer online role playing games connect the game mechanics to how learning occurs. However, few have asked whether learning in a virtual world can be fun if there is no game. In a social virtual world, like Second Life (SL) there are no game mechanics (unlike game worlds like World of Warcraft [WoW]). There are no quests, challenges, rewards or other game elements in SL. So can a virtual world that has no game-content provided be a place where fun learning can take place? We define fun and explore how fun has been related to learning. We explore theories of fun from Koster, Crawford, Csíkszentmihályi and others as well as views of the ways fun is explored as related to the learning experience. With these models in mind, we explore how fun is different in a social virtual world. Drawing on definitions of fun from Castronova and others, we see game structures in virtual worlds may not be needed to have fun. These fun activities include game creation, business interactions, and most importantly, identity play and socialization in a social virtual world. Finally, we propose that if learning is to be successful and fun in a social virtual world it should pay close attention to these two activities.

  15. Intelligent Motion and Interaction Within Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)

    2007-01-01

    What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.

  16. Empowering radiologic education on the Internet: a new virtual website technology for hosting interactive educational content on the World Wide Web.

    PubMed

    Frank, M S; Dreyer, K

    2001-06-01

    We describe a virtual web site hosting technology that enables educators in radiology to emblazon and make available for delivery on the world wide web their own interactive educational content, free from dependencies on in-house resources and policies. This suite of technologies includes a graphically oriented software application, designed for the computer novice, to facilitate the input, storage, and management of domain expertise within a database system. The database stores this expertise as choreographed and interlinked multimedia entities including text, imagery, interactive questions, and audio. Case-based presentations or thematic lectures can be authored locally, previewed locally within a web browser, then uploaded at will as packaged knowledge objects to an educator's (or department's) personal web site housed within a virtual server architecture. This architecture can host an unlimited number of unique educational web sites for individuals or departments in need of such service. Each virtual site's content is stored within that site's protected back-end database connected to Internet Information Server (Microsoft Corp, Redmond WA) using a suite of Active Server Page (ASP) modules that incorporate Microsoft's Active Data Objects (ADO) technology. Each person's or department's electronic teaching material appears as an independent web site with different levels of access--controlled by a username-password strategy--for teachers and students. There is essentially no static hypertext markup language (HTML). Rather, all pages displayed for a given site are rendered dynamically from case-based or thematic content that is fetched from that virtual site's database. The dynamically rendered HTML is displayed within a web browser in a Socratic fashion that can assess the recipient's current fund of knowledge while providing instantaneous user-specific feedback. Each site is emblazoned with the logo and identification of the participating institution. Individuals with teacher-level access can use a web browser to upload new content as well as manage content already stored on their virtual site. Each virtual site stores, collates, and scores participants' responses to the interactive questions posed on line. This virtual web site strategy empowers the educator with an end-to-end solution for creating interactive educational content and hosting that content within the educator's personalized and protected educational site on the world wide web, thus providing a valuable outlet that can magnify the impact of his or her talents and contributions.

  17. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  18. Young Children's Literacy Practices in a Virtual World: Establishing an Online Interaction Order

    ERIC Educational Resources Information Center

    Marsh, Jackie

    2011-01-01

    This study examined the literacy practices of children ages 5-11 as they engaged in out-of-school use of virtual worlds. The purpose of the study was to explore the nature, purpose, and role of literacy in children's use of a virtual world. In this article, I reflect on how children's use of literacy practices in the virtual world constructed and…

  19. An Interactive Immersive Serious Game Application for Kunyu Quantu World Map

    NASA Astrophysics Data System (ADS)

    Peng, S.-T.; Hsu, S.-Y.; Hsieh, K.-C.

    2015-08-01

    In recent years, more and more digital technologies and innovative concepts are applied on museum education. One of the concepts applied is "Serious game." Serious game is not designed for entertainment purpose but allows users to learn real world's cultural and educational knowledge in the virtual world through game-experiencing. Technologies applied on serious game are identical to those applied on entertainment game. Nowadays, the interactive technology applications considering users' movement and gestures in physical spaces are developing rapidly, which are extensively used in entertainment games, such as Kinect-based games. The ability to explore space via Kinect-based games can be incorporated into the design of serious game. The ancient world map, Kunyu Quantu, from the collection of the National Palace Museum is therefore applied in serious game development. In general, the ancient world map does not only provide geological information, but also contains museum knowledge. This particular ancient world map is an excellent content applied in games as teaching material. In the 17th century, it was first used by a missionary as a medium to teach the Kangxi Emperor of the latest geologic and scientific spirits from the West. On this map, it also includes written biological knowledge and climate knowledge. Therefore, this research aims to present the design of the interactive and immersive serious game based installation that developed from the rich content of the Kunyu Quantu World Map, and to analyse visitor's experience in terms of real world's cultural knowledge learning and interactive responses.

  20. Virtual reality as a human factors design analysis tool: Macro-ergonomic application validation and assessment of the Space Station Freedom payload control area

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1994-01-01

    A virtual reality (VR) Applications Program has been under development at MSFC since 1989. Its objectives are to develop, assess, validate, and utilize VR in hardware development, operations development and support, missions operations training, and science training. A variety of activities are under way within many of these areas. One ongoing macro-ergonomic application of VR relates to the design of the Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed. Several preliminary conceptual PCA layouts have been developed and modeled in VR. Various managers and potential end users have virtually 'entered' these rooms and provided valuable feedback. Before VR can be used with confidence in a particular application, it must be validated, or calibrated, for that class of applications. Two associated validation studies for macro-ergonomic applications are under way to help characterize possible distortions of filtering of relevant perceptions in a virtual world. In both studies, existing control rooms and their 'virtual counterparts will be empirically compared using distance and heading estimations to objects and subjective assessments. Approaches and findings of the PCA activities and details of the studies are presented.

Top