Science.gov

Sample records for multi-wavelength erbium-doped fiber

  1. Multi-wavelength erbium-doped fiber laser based on random distributed feedback

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyang; Dong, Xinyong; Jiang, Meng; Yu, Xia; Shum, Ping

    2016-09-01

    We experimentally demonstrated a multi-wavelength erbium-doped fiber laser based on random distributed feedback via a 20-km-long single-mode fiber together with a Sagnac loop mirror. The number of channels can be modulated from 2 to 8 at room temperature when the pump power is changed from 30 to 180 mW, indicating that wavelength competition caused by homogenous gain broadening of erbium-doped fiber is significantly suppressed. Other advantages of the laser include low cost, low-threshold pump power and simple fabrication.

  2. Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber.

    PubMed

    Ahmad, H; Shahi, S; Harun, S W

    2009-01-05

    A multi-wavelength laser comb is demonstrated using a nonlinear effect in a backward pumped Bismuth-based Erbium-doped fiber (Bi-EDF) for the first time. It uses a ring cavity resonator scheme containing a 215 cm long highly nonlinear Bi-EDF, optical isolators, polarisation controller and 10 dB output coupler. The laser generates more than 10 lines of optical comb with a line spacing of approximately 0.41 nm at 1615.5 nm region using 146 mW of 1480 nm pump power.

  3. A multi-wavelength LIDAR system based on an erbium-doped fiber MOPA-system

    NASA Astrophysics Data System (ADS)

    Töws, Albert; Kurtz, Alfred

    2014-10-01

    A multi-wavelength fiber based MOPA-system is proposed to increase performance of coherent Doppler lidar systems. The setup of the four-wavelength lidar system is described and characterized. We show that the speckle patterns of each wavelength are uncorrelated. The measured Goodman's M-parameter is 3.8 for four wavelengths, using hard target reflections. Atmospheric measurements show uncorrelated speckle patterns as well. Consequently, the precision of the measured wind velocity can be improved by a factor of two.

  4. Switchable multi-wavelength erbium-doped fiber ring laser based on cascaded polarization maintaining fiber Bragg gratings in a Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng

    2008-12-01

    A switchable multi-wavelength erbium-doped fiber (EDF) ring laser based on cascaded polarization maintaining fiber Bragg gratings (PMFBGs) in a Sagnac loop interferometer as the wavelength-selective filter at room temperature is proposed. Due to the polarization hole burning (PHB) enhanced by the PMFBGs, stable single-, dual-, three- and four-wavelength lasing operations can be obtained. The laser can be switched among the stable single-, dual-, three- and four-wavelength lasing operations by adjusting the polarization controllers (PCs). The optical signal-to-noise ratio (OSNR) is over 50 dB.

  5. Topological insulator: Bi{sub 2}Se{sub 3}/polyvinyl alcohol film-assisted multi-wavelength ultrafast erbium-doped fiber laser

    SciTech Connect

    Guo, Bo; Yao, Yong Yang, Yan-Fu; Yuan, Yi-Jun; Wang, Rui-Lai; Wang, Shu-Guang; Ren, Zhong-Hua; Yan, Bo

    2015-02-14

    We experimentally demonstrate a multi-wavelength ultrafast erbium-doped fiber laser incorporating a μm-scale topological insulator: Bi{sub 2}Se{sub 3}/Polyvinyl Alcohol film as both an excellent saturable absorber for mode-locking and a high-nonlinear medium to induce a giant third order optical nonlinear effect for mitigating the mode competition of erbium-doped fiber laser and stabilizing the multi-wavelength oscillation. By properly adjusting the pump power and the polarization state, the single-, dual-, triple-, four-wavelength mode-locking pulse could be stably initiated. For the four-wavelength operation, we obtain its pulse width of ∼22 ps and a fundamental repetition rate of 8.83 MHz. The fiber laser exhibits the maximum output power of 9.7 mW with the pulse energy of 1.1 nJ and peak power of 50 W at the pump power of 155 mW. Our study shows that the simple, stable, low-cost multi-wavelength ultrafast fiber laser could be applied in various potential fields, such as optical communication, biomedical research, and radar system.

  6. Erbium Doped Fiber Optic Gravimeter

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, G. G.; Pérez-Torres, J. R.; Flores-Bravo, J. A.; Álvarez-Chávez, J. A.; Martínez-Piñón, F.

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor.

  7. Cladding-pumped erbium-doped multicore fiber amplifier.

    PubMed

    Abedin, K S; Taunay, T F; Fishteyn, M; DiGiovanni, D J; Supradeepa, V R; Fini, J M; Yan, M F; Zhu, B; Monberg, E M; Dimarcello, F V

    2012-08-27

    A cladding pumped multicore erbium-doped fiber amplifier for simultaneous amplification of 6 channels is demonstrated. Peak gain over 32 dB has been obtained at a wavelength of 1560 nm and the bandwidth measured at 20-dB gain was about 35 nm. Numerical modeling of cladding pumped multicore erbium-doped amplifier was also performed to study the properties of the amplifier. The results of experiment and simulation are found to be in good agreement.

  8. Erbium-doped fiber amplifier elements for structural analysis sensors

    NASA Technical Reports Server (NTRS)

    Hanna-Hawver, P.; Kamdar, K. D.; Mehta, S.; Nagarajan, S.; Nasta, M. H.; Claus, R. O.

    1992-01-01

    The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed.

  9. Combining comb-filters based on tapered fibers for selective lasing performance in erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Nuñez-Gomez, R. E.; Anzueto-Sanchez, G.; Martinez-Rios, A.; Basurto-Pensado, M. A.; Castrellon-Uribe, J.; Camas-Anzueto, J.

    2016-12-01

    In this work, we report a new method to make a selection between tunable and multi-wavelength switchable operation in an erbium-doped fiber laser. The selective lasing performance is based on two concatenated comb-filters built on tapered optical fibers. By properly adjusting curvature applied to the comb-filters, the lasing wavelength can be selective in two ways: continuous tuning or generating multi-wavelength laser oscillation. The laser exhibits an optical signal to noise ratio of ~30 dB and power stability below 1 dB at room temperature. The main achievement of this proposal is that the laser can be operating independently between tuning and multi-wavelength lasing with a high stability employing a reliable and low-cost comb filters.

  10. A higher-order-mode erbium-doped-fiber amplifier.

    PubMed

    Nicholson, J W; Fini, J M; DeSantolo, A M; Monberg, E; DiMarcello, F; Fleming, J; Headley, C; DiGiovanni, D J; Ghalmi, S; Ramachandran, S

    2010-08-16

    We demonstrate the first erbium-doped fiber amplifier operating in a single, large-mode area, higher-order mode. A high-power, fundamental-mode, Raman fiber laser operating at 1480 nm was used as a pump source. Using a UV-written, long-period grating, both pump and 1564 nm signal were converted to the LP(0,10) mode, which had an effective area of 2700 microm(2) at 1550 nm. A maximum output power of 5.8 W at 1564 nm with more than 20 dB of gain in a 2.68 m long amplifier was obtained. The mode profile was undistorted at the highest output power.

  11. Tungsten diselenide Q-switched erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Bohua; Zhang, Xiaoyan; Guo, Chaoshi; Wu, Kan; Chen, Jianping; Wang, Jun

    2016-08-01

    We report a tungsten diselenide (WSe2) polyvinyl alcohol (PVA)-based, saturable absorber and related experiment results of a Q-switched fiber laser. WSe2-PVA film is synthesized by liquid phase exfoliation method, and its saturable absorption is measured via a nonlinear transmission experiment. The result shows that WSe2-PVA saturable absorber has a modulation depth of 3.5%, which means it has potential for generating an ultrafast pulse laser. We apply this absorber into a ring-cavity erbium-doped fiber laser and obtain Q-switched pulses under appropriate pump power. Our work demonstrates the reliable nonlinear optical characteristics of WSe2 and the feasibility for this two-dimensional material to be applied in the field of nonlinear optics.

  12. Performance analysis of a concatenated erbium-doped fiber amplifier supporting four mode groups

    NASA Astrophysics Data System (ADS)

    Qin, Zujun; Fan, Di; Zhang, Wentao; Xiong, Xianming

    2016-05-01

    An erbium-doped fiber amplifier (EDFA) supporting four mode groups has been theoretically designed by concatenating two sections of erbium-doped fibers (EDFs). Each EDF has a simple erbium doping profile for the purpose of reducing its fabrication complexity. We propose a modified genetic algorithm (GA) to provide detailed investigations on the concatenated amplifier. Both the optimal fiber length and erbium doping radius in each EDF have been found to minimize the gain difference between signal modes. Results show that the parameters of the central-doped EDF have a greater impact on the amplifier performance compared to those of the annular-doped one. We then investigate the influence of the small deviations of the erbium fiber length, doping radius and doping concentration of each EDF from their optimal values upon the amplifier performance, and discuss their design tolerances in obtaining a desirable amplification characteristics.

  13. Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Shahi, S.; Harun, S. W.

    2010-03-01

    Bismuth-based erbium-doped fiber (Bi-EDF) is demonstrated as an alternative medium for optical amplification and nonlinear applications. The bismuth glass host provides the opportunity to be doped heavily with erbium ions to allow a compact optical amplifier design. The bismuth-based erbium-doped fiber amplifier (Bi-EDFA) is demonstrated to operate at wavelength region from 1570 to 1620 nm using only a 215 cm long of gain medium. The maximum gain of 15.8 dB is obtained at signal wavelength of 1610 nm with the corresponding noise figure of about 6.3 dB. A multi-wavelength laser comb is also demonstrated using a stimulated Brillouin scattering in the 215 cm long Bi-EDF assisted by the 1480 nm pumping. The laser generates more than 40 lines of optical comb with a line spacing of approximately 0.08 at 1612.5 nm region using 152 mW of 1480 nm pump power.

  14. Erbium-doped photonic crystal fiber chaotic laser

    NASA Astrophysics Data System (ADS)

    Martín, Juan C.; Used, Javier; Sánchez-Martín, José A.; Berdejo, Víctor; Vallés, Juan A.; Álvarez, José M.; Rebolledo, Miguel A.

    2011-09-01

    An erbium-doped photonic crystal fiber laser has been designed, constructed and characterized in order to examine the feasibility of this kind of devices for secure communications applications based on two identical chaotic lasers. Inclusion of a tailored photonic crystal fiber as active medium improves considerably the security of the device because it allows customization of the mode transversal profile, very influential on the laser dynamics and virtually impossible to be cloned by undesired listeners. The laser design has been facilitated by the combination of characterization procedures and models developed by us, which allow prediction of the most suitable laser features (losses, length of active fiber, etc.) to a given purpose (in our case, a laser that emits chaotically for a wide assortment of pump modulation conditions). The chaotic signals obtained have been characterized by means of topological analysis techniques. The underlying chaotic attractors found present topological structures belonging to classes of which very scarce experimental results have been reported. This fact is interesting from the point of view of the study of nonlinear systems and, besides, it is promising for secure communications: the stranger the signals, the more difficult for an eavesdropper to synthesize another system with similar dynamics.

  15. Advanced experiments with an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Marques, Paulo V. S.; Marques, Manuel B.; Rosa, Carla C.

    2014-07-01

    This communication describes an optical hands-on fiber laser experiment aimed at advanced college courses. Optical amplifiers and laser sources represent very important optical devices in numerous applications ranging from telecommunications to medicine. The study of advanced photonics experiments is particularly relevant at undergraduate and master level. This paper discusses the implementation of an optical fiber laser made with a cavity built with two tunable Bragg gratings. This scheme allows the students to understand the laser working principles as a function of the laser cavity set-up. One or both of the gratings can be finely tuned in wavelength through applied stress; therefore, the degree of spectral mismatch of the two gratings can be adjusted, effectively changing the cavity feedback. The impact of the cavity conditions on the laser threshold, spectrum and efficiency is analyzed. This experiment assumes that in a previous practice, the students should had already characterized the erbium doped fiber in terms of absorption and fluorescent spectra, and the spectral gain as a function of pump power.

  16. Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers.

    PubMed

    Gorjan, Martin; Marincek, Marko; Copic, Martin

    2009-10-26

    We investigate diode pump absorption and temperature distribution in three erbium-doped double-clad fluoride fibers. Absorption is measured via fluorescence intensity and temperature distribution is measured with thermal imaging. Ray-tracing calculations of absorption and heat-equation modeling of temperature distribution are also conducted. We found excellent agreement between measurements and calculations for all fibers. Results indicate that erbium-doped fluoride fiber lasers have already reached maximum output powers allowed under natural convection cooling, with fiber end being the most critical. We propose cooling and fiber design optimizations that may allow an order-of-magnitude further power-scaling.

  17. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications.

    PubMed

    Thomas, Jérémie; Myara, Mikhaël; Troussellier, Laurent; Burov, Ekaterina; Pastouret, Alain; Boivin, David; Mélin, Gilles; Gilard, Olivier; Sotom, Michel; Signoret, Philippe

    2012-01-30

    We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.

  18. Widely tunable erbium-doped fiber laser based on multimode interference effect.

    PubMed

    Castillo-Guzman, A; Antonio-Lopez, J E; Selvas-Aguilar, R; May-Arrioja, D A; Estudillo-Ayala, J; LiKamWa, P

    2010-01-18

    A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

  19. Reflection L-band erbium-doped fiber-amplifier-based fiber loop mirror

    NASA Astrophysics Data System (ADS)

    Meng, Hongyun; Liu, Songhao; Dong, Xiaoyi

    2005-01-01

    We constructed a reflection L-band erbium-doped fiber amplifier based on fiber loop mirror, which reflects the backward ASE to the EDF as a secondary pumping source. A gain of 30 dB increased 6 dB compared to the forward end-pumped EDFA has been achieved in the wavelength region from 1570 to 1603 nm. In order to improve the gain and NF further, we constructed a novel configuration for reflection L-band erbium-doped fiber amplifier via inserting a 980 nm LD in the input part. Adjusting the ratio of power of the two LDs, the gain and NF are greatly improved in different degree in the region from 1565 to 1615 nm. Compared to the configuration pumped by only 1480 nm LD with given power, the gain enhanced 1.5-9.9 dB and the NF decreases 1.3-9.4 dB.

  20. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  1. Self-similar erbium-doped fiber laser with large normal dispersion.

    PubMed

    Liu, Hui; Liu, Zhanwei; Lamb, Erin S; Wise, Frank

    2014-02-15

    We report a large normal dispersion erbium-doped fiber laser with self-similar pulse evolution in the gain fiber. The cavity is stabilized by the local nonlinear attractor in the gain fiber through the use of a narrow filter. Experimental results are accounted for by numerical simulations. This laser produces 3.5 nJ pulses, which can be dechirped to 70 fs with an external grating pair.

  2. Observation of central wavelength dynamics in erbium-doped fiber ring laser.

    PubMed

    Xu, Huiwen; Lei, Dajun; Wen, Shuangchun; Fu, Xiquan; Zhang, Jinggui; Shao, Yufeng; Zhang, Lifu; Zhang, Hua; Fan, Dianyuan

    2008-05-12

    We report on the observation of central wavelength dynamics in an erbium-doped fiber ring laser by using the nonlinear polarization rotating technique. The evolution of central wavelength with the laser operation state was observed experimentally. Numerical simulations confirmed the experimental observation and further demonstrated that the dynamics of wavelength evolution is due to the combined effects of fiber birefringence, fiber nonlinearity, and cavity filter.

  3. Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers

    NASA Astrophysics Data System (ADS)

    Maurice, Eric; Monnom, Gérard; Dussardier, Bernard; Ostrowsky, D. B.

    1995-12-01

    Nonsaturable absorption experiments in heavily erbium-doped fibers demonstrate that the behavior of the absorption with pump power cannot be interpreted with an ion-pair model but requires that the presence of larger clusters be taken into account. Numerical modeling permits the determination of the percentage of ions organized in clusters, as much as 52% of the dopants in the tested fiber, and the intracluster transfer rate, up to 2 \\times 106s -1 .

  4. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  5. C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser.

    PubMed

    Zhang, Kang; Kang, Jin U

    2008-09-01

    A wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser capable of operating at sweeping frequency in the order of a few kHz is designed and demonstrated by using a fiber Fabry-Perot tunable filter and a Sagnac loop incorporated with a 3.5-meter unpumped erbium-doped fiber. The laser operates in continuous-wave (CW) mode and can sweep approximately 45 nm over the entire C-band (1520nm-1570nm) window with linewidth less than 0.7 kHz. The optimum wavelength sweeping frequency in order to achieve the best output power stability was found to be approximately20Hz with sweeping-induced power fluctuation of only 0.1%.

  6. Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Chen, H.; Leblanc, M.; Schinn, G. W.

    2003-02-01

    We report on the experimental investigation of gain enhanced L-band erbium-doped fiber amplifiers (EDFA) by either recycling residual ASE or using a second C-band wavelength pump laser and on the experimental demonstration of L-band tunable erbium-doped fiber ring lasers. We observed that by reflecting ASE from pumped erbium-doped fiber (EDF) the L-band EDFA gain can be enhanced of 2-15 dB depending on amplifier designs. We also studied wavelength and power dependence of second pump laser on the gain enhanced L-band EDFA and found that an optimum wavelength for second pump laser was between 1550 and 1560 nm. Finally, a L-band tunable erbium-doped fiber laser was also constructed in which lazing oscillation was observed closed to 1624 nm by recycling residual ASE. This L-band tunable laser has a line-width of about 300 MHz, an output power of 1 mW, and a signal to source spontaneous emission ratio of 60 dB.

  7. Dual wavelength erbium-doped fiber laser using a tapered fiber

    NASA Astrophysics Data System (ADS)

    Harun, S. W.; Lim, K. S.; Jasim, A. A.; Ahmad, H.

    2010-12-01

    A tapered fiber is fabricated by heating and stretching a piece of optical fiber after the polymer protective cladding has been removed. An equidistant comb-like transmission spectrum, with a spacing of 1.6 nm and an extinction ratio of more than 5 dB, was obtained by the tapered fiber due to the multibeam interferences of the cladding modes. The tapered fiber was applied in a ring erbium-doped fiber laser (EDFL) to generate dual-wavelength lasing oscillations. The EDFL operates at wavelengths of 1557.0 nm and 1558.6 nm with a stable peak power and a signal-to-noise ratio of more than 40 dB.

  8. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2012-03-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  9. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2011-11-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  10. Erbium-doped CW and Q-switched fiber ring laser with fiber grating Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Anting; Ming, Hai; Xie, Jianping; Xu, Lixin; Huang, Wencai; Lv, Liang; Chen, Xiyao; Li, Feng; Wu, Yunxia; Xing, Meishu

    2003-01-01

    The band-pass characteristic of fiber grating Michelson interferometer is analyzed, which acts as both band-pass filter and Q-switch. An erbium-doped fiber ring laser based on fiber grating Michelson interferometer is implemented for producing single longitudinal mode CW operation with 5 MHz spectral linewidth and up to 6 mW output power. In Q-switched operation, stable fiber laser output pulses with repetition rate of 800 Hz, pulse width of 0.6 ?s, average power of 1.8 mW and peak power of 3.4 W are demonstrated. The peak power and average power of the Q-switched pulses are varied with the repetitionrate.

  11. Single-longitudinal-mode erbium-doped fiber laser with multiple linear cavity

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ren, Wenhua; Jian, Shuisheng

    2008-12-01

    An improved stable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-linear short cavity is demonstrated. Three fiber Bragg gratings (FBGs) with the same parameters directly written in a homemade photosensitive EDF (PEDF) in a single step are used as the wavelength-selective and mode-selective component in a 14 cm long linear laser cavity. The optical signal-to-noise ratio (OSNR) is over 50 dB. The amplitude variation in nearly one hour is less than 0.3 dB. The proposed laser has the advantages such as simple fabrication and compact all-optical fiber configuration.

  12. Latest results and future perspectives on Few-Mode Erbium Doped Fiber Amplifiers

    NASA Astrophysics Data System (ADS)

    Trinel, Jean-Baptiste; Le Cocq, Guillaume; Andresen, Esben Ravn; Quiquempois, Yves; Bigot, Laurent

    2017-02-01

    Space division multiplexing has generated a lot of interest during the last five years and motivated intensive work on multicore and few-mode fibers. Whereas some concepts like multimode waveguides and mode coupling have been re-visited for mode-division multiplexing, some new problems have been addressed, as is the case for multimode optical amplifiers. This paper recalls the general context of the work on Few-Mode Erbium-Doped Fiber Amplifiers and reviews the main results reported so far on this topic.

  13. Tradeoff on gain-flatness and gain-stabilization of erbium doped fiber amplifier with FBGs

    NASA Astrophysics Data System (ADS)

    Buyin, Garidi; OuYang, Yunlun; Ma, Yu; Chang, Jinlong; Liu, Changxing; Yang, Jiuru

    2014-07-01

    It is a challenge to get gain-stabilization and gain-flatness of erbium doped fiber amplifier (EDFA) in C-band, simultaneously. In this article, we establish a gain-clamped EDFA model based uniform fiber grating-pair and optimize the reflectivity of grating by the designed targets. The tradeoff between stabilization and flatness can be obtained when an ideal reflectivity is adopted. The numerical results show that the gain-stabilization is controlled in +/-0.1dB and gain-flatness is less than +/-1.41dB in the range from 1535nm to 1565nm.

  14. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Mou, Chengbo; Arif, Raz; Lobach, Anatoly S.; Khudyakov, Dmitry V.; Spitsina, Nataliya G.; Kazakov, Valery A.; Turitsyn, Sergei; Rozhin, Aleksey

    2015-02-01

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  15. Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser.

    PubMed

    Thomas, Sebastian; Holzwarth, Ronald; Hommelhoff, Peter

    2012-06-18

    We demonstrate a simple setup capable of generating four-cycle pulses at a center wavelength of 1700 nm for nanoscale photoemission. Pulses from an amplified erbium-doped fiber laser are spectrally broadened by propagation through a highly non-linear fiber. Subsequently, we exploit dispersion in two different types of glass to compress the pulses. The pulse length is estimated by measuring an interferometric autocorrelation trace and comparing it to a numerical simulation. We demonstrate highly non-linear photoemission of electrons from a nanometric tungsten tip in a hitherto unexplored pulse parameter range.

  16. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    SciTech Connect

    Mou, Chengbo E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey E-mail: a.rozhin@aston.ac.uk; Arif, Raz; Lobach, Anatoly S.; Spitsina, Nataliya G.; Khudyakov, Dmitry V.; Kazakov, Valery A.

    2015-02-09

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  17. Two simultaneous operating regimes in an Erbium doped-fiber laser

    NASA Astrophysics Data System (ADS)

    Demori, C. B. S.; Thoroh de Souza, E. A.

    2015-06-01

    This work presents an Erbium doped fiber laser operating simultaneously in two distinct regimes, active mode-locking and continuous wave (CW), by introducing two arrayed waveguide gratings (AWG) paired inside ring cavity. Active phase modulator operating at 10 GHz and a single mode fiber were introduced between the two AWGs to allow the two operating regimes. The mode-locking was able to generated pulses with 30 ps simultaneous with the CW line. Both lasers could be tunable independent and simultaneously from 1530 nm to 1565 nm.

  18. High-sensitivity sucrose erbium-doped fiber ring laser sensor

    NASA Astrophysics Data System (ADS)

    Khaleel, Wurood Abdulkhaleq; Al-Janabi, Abdul Hadi M.

    2017-02-01

    We investigate a high-sensitivity sucrose sensor based on a standard erbium-doped fiber ring laser incorporating a coreless fiber (CF). A single-mode-coreless-single mode (SCS) structure with a very low insertion loss has been constructed. The SCS fiber structure performed dual function as an intracavity fiber filter and/or a sensing element. The gain medium (erbium-doped fiber) is pumped by a 975-nm wavelength fiber coupled diode laser. Laser emission around 1537 nm with -2 dBm peak output power is obtained when a CF in SCS structure has a diameter of 125 μm. The 3-dB line-width of the laser is <0.14 nm, which is beneficial to high precision sensing. The sucrose concentration varied from 0% to 60%, and the relationship between the lasing wavelength and the sucrose concentration exhibited linear behavior (R2=0.996), with sensitivity of 0.16 nm/% was obtained. To improve the measurement sensitivity, the CF is etched by hydrofluoric acid. The splice joint of etched CF with SMF is a taper, which improves its sensitivity to sucrose changes. An average sensitivity of 0.57 nm/% and a high signal-to-noise ratio of 50 dB make the proposed sensor suitable for potential applications.

  19. S- plus C-band erbium-doped fiber amplifier in parallel structure

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lee, Chien-Chung; Chi, Sien

    2004-11-01

    A new S- plus C-band erbium-doped fiber amplifier (EDFA) module with coupled structure over 96 nm gain bandwidth of 1480-1576 nm has been experimentally investigated and demonstrated. For this proposed configuration, 30 and 36.2 dB peak gains are observed at 1506 and 1532 nm, respectively, when the input signal power is -25 dBm. In addition, this proposed amplifier module also can provide a broadband amplified spontaneous emission (ASE) light source from 1480 to 1572 nm.

  20. Erbium-doped all-fiber laser at 2.94 microm.

    PubMed

    Faucher, Dominic; Bernier, Martin; Caron, Nicolas; Vallée, Réal

    2009-11-01

    We report what we believe is the first demonstration of laser emission at 2.94 microm in an erbium-doped fluoride fiber laser. The low-loss all-fiber Fabry-Perot laser cavity was formed by two fiber Bragg gratings of 90% and 15% reflectivities in a 6.6 m, 7 mol.% Er-doped double-clad fiber. A maximum cw output power of 5.2 W was measured, which is to our knowledge the highest reported to date for a diode-pumped laser at this wavelength. A coreless endcap was fused at the output fiber end to prevent its deterioration at high output powers. Our results, including the slope efficiency of 26.6% with respect to launched pump power, suggest that erbium could be a better alternative than holmium in the search for a replacement for the flashlamp-pumped Er:YAG at 2.94 microm.

  1. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  2. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    SciTech Connect

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.; Emami, S. D.; Abdul-Rashid, H. A.; Yusoff, Z.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths compared to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.

  3. Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.

    PubMed

    Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K

    2013-02-11

    In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.

  4. All-fiber frequency-stabilized erbium doped ring laser.

    PubMed

    Marty, Patrick Thomas; Morel, Jacques; Feurer, Thomas

    2010-12-20

    We present an all-fiber frequency-stabilized ring laser system with an integrated reference gas cell consisting of a hollow core fiber filled with acetylene. Through nonlinear absorption spectroscopy the laser frequency is stabilized to a specific absorption line of acetylene. Three different stabilization schemes are investigated and the minimum Allan deviation obtained after 100 s is 4.4 · 10(-11).

  5. 91-km attenuation-free transmission with low noise accumulation by use of distributed erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Lester, Christian; Rottwitt, Karsten; Povlsen, Jørn H.; Varming, Poul; Newhouse, Mark A.; Antos, A. J.

    1995-06-01

    Transparency of a 91-km distributed erbium-doped fiber is achieved with 0.46 mW / km of pump power at a signal power of -12dBm . The accumulation of amplifier noise is measured to be smaller than the minimum noise accumulation that can be achieved in a 91-km link with two lumped amplifiers separated by 45 km.

  6. Characterization of the coherence properties of a multilongitudinal-mode erbium-doped fiber ring laser using a Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Roy, Vincent; Piche, Michel; Babin, Francois; Schinn, Gregory W.

    2000-12-01

    The coherence properties of a widely tunable, multilongitudinal-mode erbium-doped fiber ring laser are investigated by means of an extremely long-arm scanning Michelson interferometer. A return of the coherence is observed at each integer multiple ofthe cavity length with a slowly decaying envelope over several kilometres.

  7. Slow light propagation in a ring erbium-doped fiber.

    PubMed

    Bencheikh, K; Baldit, E; Briaudeau, S; Monnier, P; Levenson, J A; Mélin, G

    2010-12-06

    Slow light propagation is demonstrated by implementing Coherent Population Oscillations in a silica fiber doped with erbium ions in a ring surrounding the single mode core. Though only the wings of the mode interact with erbium ions, group velocities around 1360 m/s are obtained without any spatial distortion of the propagating mode.

  8. Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)

    NASA Astrophysics Data System (ADS)

    Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.

    2016-11-01

    We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.

  9. Stability of short, single-mode erbium-doped fiber lasers.

    PubMed

    Svalgaard, M; Gilbert, S L

    1997-07-20

    We conducted a detailed study of the stability of short, erbium-doped fiber lasers fabricated with two UV-induced Bragg gratings written into the doped fiber. We find that the relative intensity noise of single-longitudinal-mode fiber grating lasers is approximately 3 orders of magnitude lower than that of a single-frequency 1.523-mum helium-neon laser. The frequency noise spectrum contains few resonances, none of which exceeds 0.6 kHz/Hz(1/2) rms; the integrated rms frequency noise from 50 Hz to 63 kHz is 36 kHz. We also demonstrate a simple method for monitoring the laser power and number of oscillating modes during laser fabrication.

  10. 70-fs mode-locked erbium-doped fiber laser with topological insulator

    PubMed Central

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi

    2016-01-01

    Femtosecond optical pulses have applications in optical communication, astronomical frequency combs, and laser spectroscopy. Here, a hybrid mode-locked erbium-doped fiber (EDF) laser with topological insulator (TI) is proposed, for the first time to our best knowledge. The pulsed laser deposition (PLD) method is employed to fabricate the fiber-taper TI saturable absorber (TISA). By virtue of the fiber-taper TISA, the hybrid EDF laser is passively mode-locked using the nonlinear polarization evolution (NPE), and emits 70 fs pulses at 1542 nm, whose 3 dB spectral width is 63 nm with a repetition rate and transfer efficiency of 95.4 MHz and 14.12%, respectively. Our experiments indicate that the proposed hybrid mode-locked EDF lasers have better performance to achieve shorter pulses with higher power and lower mode-locking threshold in the future. PMID:26813439

  11. Novel intra-cavity self-organization coherent erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Xiu-Jie; Liu, Feng-Nian; Fu, Sheng-Gui; Zhang, Jian; Liu, Yan-Ge; Guo, Zhan-Cheng; Yuan, Shu-Zhong; Kai, Gui-Yun; Dong, Xiao-Yi

    2007-03-01

    A novel all-fiber self-organization coherent Erbium-doped fiber laser is proposed and demonstrated. The laser system is composed of two independent lasers. When each of the two branch lasers operates independently, the output power is 10. 41mW and 8.69 mW respectively. By adjusting a polarization controller (PC), the two lasers achieve coherent coupling, and the output power is 24.4 mW, which is more than two times that the single laser yields. Furthermore, we bring forward and discuss the factor estimating the effect of coherent combination—coherent coupling factor. The value of growth factor to evaluate the effect of coherent combining is 1.27. The coherent fiber laser has the advantages of simple structure, high efficiency and single frequency, which conduce to coherent coupling easily.

  12. Broadband erbium-doped fiber sources for the fiber-optic gyroscope

    SciTech Connect

    Wysocki, P.F.

    1992-01-01

    The sensitivity of early fiber-optic gyroscopes (FOG) fell short of the theoretical limit. The use of certain configurations, fiber components, and well designed optical sources can help the FOG reach this limit. Sources for the FOG must be broadband, spatially coherent and high power. They must produce a mean wavelength which is stable with respect to temperature and feedback from system components. Additionally, they must emit at long wavelengths, where silica fibers are insensitive to radiation induced losses. Two approaches to broadband, 1.55 [mu]m, erbium-doped fiber sources for the FOG are considered. The most promising approach is the superfluorescent fiber source (SFS), which utilizes amplification of spontaneous emission in a single pass or in two passes through the fiber, without a resonant cavity. Such sources have produced more than 50% conversion of pump photons near 980 nm or 1.48 [mu]m to source photons. Laser diode pumping in these pump bands is explored in detail. Depending on fiber length, pump power, pump wavelength, and SFS configuration, emission bandwidths between 8 and 27 nm are measured. The thermal coefficient of the mean wavelength of the SFS is consistently below 10 ppm/[degrees]C, and near 0 ppm/[degrees]C for certain design choices. The detrimental effects of feedback are reduced through optical isolation and the proper choice of FOG configuration. Issues such as the effect of multiple pump modes and loss mechanisms are treated by use of computer simulations. The broadband Er-doped wavelength-swept fiber laser (WSFL) is presented as an alternative to the SFS. This source utilizes an intracavity acousto-optic modulator to sweep the emission of an Er-doped laser across the gain curve of erbium. Theoretical and measured characteristics of such sources are discussed. The dynamic response of the WSFL and its coherence in an integrating system has been measured.

  13. Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer.

    PubMed

    Chernykh, D S; Krylov, A A; Levchenko, A E; Grebenyukov, V V; Arutunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2014-10-10

    A soliton-type erbium-doped all-fiber ring laser hybrid mode-locked with a co-action of arc-discharge single-walled carbon nanotubes (SWCNTs) and nonlinear polarization evolution (NPE) is demonstrated. For the first time, to the best of our knowledge, boron nitride-doped SWCNTs were used as a saturable absorber for passive mode-locking initiation. Moreover, the NPE was introduced through the implementation of the short-segment polarizing fiber. Owing to the NPE action in the laser cavity, significant pulse length shortening as well as pulse stability improvement were observed as compared with a SWCNTs-only mode-locked laser. The shortest achieved pulse width of near transform-limited solitons was 222 fs at the output average power of 9.1 mW and 45.5 MHz repetition frequency, corresponding to the 0.17 nJ pulse energy.

  14. Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks

    NASA Astrophysics Data System (ADS)

    Choi, H. B.; Oh, J. M.; Lee, D.; Ahn, S. J.; Park, B. S.; Lee, S. B.

    2002-11-01

    The performance of L-band erbium-doped fiber amplifier (EDFA) of a simple structure with a fiber Bragg grating (FBG) was investigated. The injected C-band ASE by the FBG offers low-cost amplification and greatly improves the efficiency of the EDFA. There are 9 and 4 dB improvements with the FBG at 1587 nm, at low and high input, respectively. The flat gain of 18 dB, up to a total input of -5 dBm at 150 mW of 980 nm pump, is obtained over 30 nm with less than ±0.5 dB gain variations without any gain equalizer. The proposed EDFA provides a cost-effective solution for wavelength division multiplexing systems.

  15. N-order bright and dark rogue waves in a resonant erbium-doped fiber system.

    PubMed

    He, Jingsong; Xu, Shuwei; Porsezian, K; Porseizan, K

    2012-12-01

    The rogue waves in a resonant erbium-doped fiber system governed by a coupled system of the nonlinear Schrödinger equation and the Maxwell-Bloch equation (NLS-MB equations) are given explicitly by a Taylor series expansion about the breather solutions of the normalized slowly varying amplitude of the complex field envelope E, polarization p, and population inversion η. The n-order breather solutions of the three fields are constructed using a Darboux transformation (DT) by assuming periodic seed solutions. Moreover, the n-order rogue waves are given by determinant forms with n+3 free parameters. Furthermore, the possible connection between our rouge waves and the generation of supercontinuum generation is discussed.

  16. N-order bright and dark rogue waves in a resonant erbium-doped fiber system

    NASA Astrophysics Data System (ADS)

    He, Jingsong; Xu, Shuwei; Porseizan, K.

    2012-12-01

    The rogue waves in a resonant erbium-doped fiber system governed by a coupled system of the nonlinear Schrödinger equation and the Maxwell-Bloch equation (NLS-MB equations) are given explicitly by a Taylor series expansion about the breather solutions of the normalized slowly varying amplitude of the complex field envelope E, polarization p, and population inversion η. The n-order breather solutions of the three fields are constructed using a Darboux transformation (DT) by assuming periodic seed solutions. Moreover, the n-order rogue waves are given by determinant forms with n+3 free parameters. Furthermore, the possible connection between our rouge waves and the generation of supercontinuum generation is discussed.

  17. Simplified ASE correction algorithm for variable gain-flattened erbium-doped fiber amplifier.

    PubMed

    Mahdi, Mohd Adzir; Sheih, Shou-Jong; Adikan, Faisal Rafiq Mahamd

    2009-06-08

    We demonstrate a simplified algorithm to manifest the contribution of amplified spontaneous emission in variable gain-flattened Erbium-doped fiber amplifier (EDFA). The detected signal power at the input and output ports of EDFA comprises of both signal and noise. The generated amplified spontaneous emission from EDFA cannot be differentiated by photodetector which leads to underestimation of the targeted gain value. This gain penalty must be taken into consideration in order to obtain the accurate gain level. By taking the average gain penalty within the dynamic gain range, the targeted output power is set higher than the desired level. Thus, the errors are significantly reduced to less than 0.15 dB from 15 dB to 30 dB desired gain values.

  18. Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Yiqin; Li, Lei; Zhao, Luming

    2017-03-01

    Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier is presented. Wavelength dependent amplification is examined. It is found that gain dispersion limits the spectral profile of the amplified pulse. If the central wavelength of the seed pulse is far away from that of the gain profile of the amplifier, the gain profile partially shapes the spectrum of the amplified pulse while maintaining the characteristic steep spectral edge at one side. If the optical spectrum of the seed pulse is most covered by the gain profile, the characteristic steep spectral edges will be both maintained. The amplified pulse becomes deformed ultimately with increasing pump power, no matter whether the seed pulse is a transform-limited pulse or a chirped pulse.

  19. Modeling and analysis of overmodulation in erbium-doped fiber amplifiers including amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Sharma, Reena; Raghuwanshi, Sanjeev Kumar

    2017-02-01

    Line surveillance and management information in erbium-doped fiber amplifiers (EDFAs) can be broadcast by modulating the amplitude of the low-frequency lightwave information signal, the process termed as overmodulation in the literature. This paper presents systematic solutions for the overmodulated pump and information signal transfer functions for EDFA. It includes amplified spontaneous emission (ASE) that has an impact on outcomes in the high-gain system. To the extent of our belief, the methodical model simulated with the current approach leads to a distinct perspective of an outcome in the respective field. The test bed described here is realistic. It specifically represents the overmodulation behavior in an EDFA under the influence of ASE.

  20. Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers.

    PubMed

    Lim, Ee-Leong; Alam, Shaif-ul; Richardson, David J

    2012-06-18

    A highly efficient (~80%), high power (18.45 W) in-band, core pumped erbium/ytterbium co-doped fiber laser is demonstrated. To the best of our knowledge, this is the highest reported efficiency from an in-band pumped 1.5 µm fiber laser operating in the tens of watts regime. Using a fitted simulation model, we show that the significantly sub-quantum limit conversion efficiency of in-band pumped erbium doped fiber amplifiers observed experimentally can be explained by concentration quenching. We then numerically study and experimentally validate the optimum pumping configuration for power scaling of in-band, cladding pumped erbium doped fiber amplifiers. Our simulation results indicate that a ~77% power conversion efficiency with high output power should be possible through cladding pumping of current commercially available pure Erbium doped active fibers providing the loss experienced by the cladding guided 1535 nm pump due to the coating absorption can be reduced to an acceptable level by better coating material choice. The power conversion efficiency has the potential to exceed 90% if concentration quenching of erbium ions can be reduced via improvements in fiber design and fabrication.

  1. Self-Q-switching behavior of erbium-doped tellurite microstructured fiber lasers

    SciTech Connect

    Jia, Zhi-Xu; Yao, Chuan-Fei; Kang, Zhe; Qin, Guan-Shi Qin, Wei-Ping; Ohishi, Yasutake

    2014-06-14

    We reported self-Q-switching behavior of erbium-doped tellurite microstructured fiber (EDTMF) lasers and further demonstrated a self-Q-switched EDTMF laser with a high repetition rate of more than 1 MHz. A 14 cm EDTMF was used as the gain medium. Upon a pump power of ∼705 mW at 1480 nm, output pulses with a lasing wavelength of ∼1558 nm, a repetition rate of ∼1.14 MHz, and a pulse width of ∼282 ns were generated from the fiber by employing a linear cavity. The maximum output power was ∼316 mW and the slope efficiency was about 72.6% before the saturation of the laser power. Moreover, the influence of the fiber length on laser performances was investigated. The results showed that self-Q-switching behavior in our experiments was caused by the re-absorption originated from the ineffectively pumped part of the active fiber.

  2. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-04-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.

  3. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser.

    PubMed

    Luo, Zhengqian; Zhou, Min; Weng, Jian; Huang, Guoming; Xu, Huiying; Ye, Chenchun; Cai, Zhiping

    2010-11-01

    We demonstrate a compact Q-switched dual-wavelength erbium-doped fiber (EDF) laser based on graphene as a saturable absorber (SA). By optically driven deposition of graphene on a fiber core, the SA is constructed and inserted into a diode-pumped EDF laser cavity. Also benefiting from the strong third-order optical nonlinearity of graphene to suppress the mode competition of EDF, a stable dual-wavelength Q-switching operation has been achieved using a two-reflection peak fiber Bragg grating as the external cavity mirror. The Q-switched EDF laser has a low pump threshold of 6.5 mW at 974 nm and a wide range of pulse-repetition rate from 3.3 to 65.9 kHz. The pulse duration and the pulse energy have been characterized. This is, to the best of our knowledge, the first demonstration of a graphene-based Q-switched laser.

  4. Erbium-Doped Hole-Assisted Optical Fiber Amplifier: Design and Optimization

    NASA Astrophysics Data System (ADS)

    Prudenzano, Francesco

    2005-01-01

    An erbium-doped hole-assisted optical fiber amplifier, to be employed in the third band of the optical communications, is designed and optimized via a tailor made computer code. The finite element method is used for the electromagnetic investigation of the microstructured fiber section. The simulation model takes into account all the rare earth physical phenomena, i.e., the pump and signal propagation, the amplified spontaneous emission,the secondary transitions pertaining to the ion-ion interactions, and so on. The device feasibility is tested via a number of simulations, realistically performed by taking into account the actual parameters pertaining to the dispersion of the germania/silica glass, the erbium emission and absorption cross sections,the propagation losses. By simulation, in the small signal operation, a gain close to 42.8 dB is demonstrated for a fiber 13-m long, using a pump power of 50 mW at the signal wavelength lambdas =1536 nm, the pump and the signal being copropagating.

  5. Single-longitudinal-mode erbium-doped fiber laser with the fiber-Bragg-grating-based asymmetric two-cavity structure

    NASA Astrophysics Data System (ADS)

    Xu, Ou; Lu, Shaohua; Feng, Suchun; Tan, Zhongwei; Ning, Tigang; Jian, Shuisheng

    2009-03-01

    We present a simple and stable single-longitudinal-mode (SLM) erbium-doped fiber linear-type laser. It consists of three FBGs directly written in a photosensitive erbium-doped fiber (PEDF) to form asymmetric two cavities with different cavity lengths, which can effectively increase the longitudinal mode spacing and suppress mode hopping, experimentally compared with symmetric two cavities and single-cavity structures. The stable SLM operation is conveniently achieved without accurate control of cavity length, and the laser linewidth of less than 5 kHz is acquired.

  6. Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings.

    PubMed

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Mao, Xiangqiao; Ning, Tigang; Jian, Shuisheng

    2008-08-04

    An improved erbium-doped fiber laser configuration for achieving single-polarization, switchable dual-wavelength of orthogonal polarizations oscillations at room temperature is proposed. For the first time, two fiber Bragg gratings (FBGs) directly written in a polarization-maintaining (PM) and photosensitive erbium-doped fiber (PMPEDF) as the wavelength-selective component are used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining FBG (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). Each lasing line shows a single polarization with a polarization extinction ratio of >25 dB under different pump levels. The optical signal-to-noise ratio (OSNR) is greater than 50 dB. The amplitude variation with 16 times scans in nearly one and half an hour is less than 0.5 dB at both operating wavelength.

  7. Low noise gain-clamped L-band erbium-doped fiber amplifier by utilizing fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Guo, Yubin; Yan, Hongwei; Wang, Yuhang; Wang, Ke

    2006-11-01

    A novel gain-clamped long wavelength band (L-band) erbium-doped fiber amplifier (EDFA) is proposed and experimented by using a fiber Bragg grating (FBG) at the input end of the amplifier. This design provides a good gain clamping and decreases noise effectively. It uses two sections of erbium-doped fiber (EDF) pumped by a 1480-nm laser diode (LD) for higher efficiency and lower noise figure (NF). The gain is clamped at 23 dB with a variation of 0.5 dB from input signal power of -30 to -8 dBm for 1589 nm and NF below 5 dB is obtained. At the longer wavelength in L-band higher gain is also obtained and the gain is clamped at 16 dB for 1614 nm effectively. Because the FBG injects a portion of backward amplified spontaneous emission (ASE) back into the system, the gain enhances 5 dB with inputting small signal.

  8. High-energy, in-band pumped erbium doped fiber amplifiers.

    PubMed

    Lim, Ee-Leong; Shaif-ul Alam; Richardson, David J

    2012-08-13

    We have demonstrated and compared high-energy, in-band pumped erbium doped fiber amplifiers operating at 1562.5 nm under both a core pumping scheme (CRS) and a cladding pumping scheme (CLS). The CRS/CLS sources generated smooth, single-peak pulses with maximum pulse energies of ~1.53/1.50 mJ, and corresponding pulse widths of ~176/182 ns respectively, with an M2 of ~1.6 in both cases. However, the conversion efficiency for the CLS was >1.5 times higher than the equivalent CRS variant operating at the same pulse energy due to the lower pump intensity in the CLS that mitigates the detrimental effects of ion concentration quenching. With a longer fiber length in a CLS implementation a pulse energy of ~2.6 mJ is demonstrated with a corresponding M2 of ~4.2. Using numerical simulations we explain that the saturation of pulse energy observed in our experiments is due to saturation of the pump absorption.

  9. Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Harun, S. W.

    2016-09-01

    We experimentally demonstrate a passive mode-locked erbium-doped fiber laser (EDFL) using a multi-layer black phosphorus saturable absorber (BPSA). The BPSA is fabricated by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto scotch tape. A small piece of the tape is then placed between two ferrules and integrated into an EDFL cavity to achieve a self-started soliton mode-locked pulse operation at 1560.7 nm wavelength. The 3 dB bandwidth, pulse width, and repetition rate of the laser are 6.4 nm, 570 fs, and 6.88 MHz, respectively. The average output power is 5.1 mW at pump power of 140 mW and thus, the pulse energy and peak power are estimated at 0.74 nJ and 1.22 kW, respectively. The BPSA was constructed in a simple fabrication process and has a modulation depth of 7% to successfully produce the stable mode-locked fiber laser.

  10. Treatment of dilated pores with 1410-nm fractional erbium-doped fiber laser.

    PubMed

    Suh, Dong-Hye; Chang, Ka-Yeun; Lee, Sang-Jun; Song, Kye-Yong; Choi, Jeong Hwee; Shin, Min Kyung; Jeong, Ki-Heon

    2015-04-01

    Dilated pores can be an early sign of skin aging and are a significant cosmetic concern. The 1410-nm wavelength is optimal for superficial dermal treatments up to 650 μm deep. The aim of the present study was to evaluate the clinical effectiveness and safety of the fractional erbium-doped fiber 1410-nm laser in the treatment of dilated pores. Fifteen patients with dilated facial pores underwent three laser treatments at 3-week intervals. Posttreatment skin responses and side effects were assessed at treatment and follow-up visits by study physicians. Clinical effectiveness of treatment was assessed by both study physicians and patients 3 months after the final laser treatment using a quartile grading scale. Histological examination was performed using biopsy samples taken at baseline (pretreatment) and 3 months after the last treatment. This study showed that greater than 51 % improvement in dilated pores was demonstrated in 14 of 15 patients after three sessions of laser treatments. Improvements in skin texture, tone, and smoothness were reported in all patients. Treatment was well tolerated in all patients, with no unanticipated side effects. This study demonstrates that the 1410-nm fractional erbium fiber laser is effective and safe for treatment of dilated facial pores in Fitzpatrick skin types III-IV.

  11. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating.

    PubMed

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turitsyn, Sergei

    2013-11-18

    We demonstrate generation of sub-100 fs pulses at 1.5 µm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from mode-locked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations.

  12. Broadly tunable dual-wavelength erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror

    NASA Astrophysics Data System (ADS)

    Sun, H. B.; Liu, X. M.; Gong, Y. K.; Li, X. H.; Wang, L. R.

    2010-02-01

    A broadly tunable dual-wavelength erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror (HiBi-FLM) and a polarization controller is demonstrated experimentally. The measured transmission spectrum of HiBi-FLM covers a wide range from 1525 to 1575 nm. The wavelength of proposed laser can be flexibly tunable during this range of ˜50 nm by adjusting the polarization controller. In addition, the spacing of two wavelengths is adjustable by changing the length of HiBi fiber. The dual-wavelength lasers with the HiBi fiber length of 1 and 2 m are experimentally demonstrated and compared. The experimental results show that the proposed laser can stably operate on two wavelengths simultaneously at room temperature, and the output peak power variation is about 0.5 dB during 40 min.

  13. Amplification of 12 OAM Modes in an air-core erbium doped fiber.

    PubMed

    Kang, Qiongyue; Gregg, Patrick; Jung, Yongmin; Lim, Ee Leong; Alam, Shaif-ul; Ramachandran, Siddharth; Richardson, David J

    2015-11-02

    We theoretically propose an air-core erbium doped fiber amplifier capable of providing relatively uniform gain for 12 orbital angular momentum (OAM) modes (|L| = 5, 6 and 7, where |L| is the OAM mode order) over the C-band. Amplifier performance under core pumping conditions for a uniformly doped core for each of the supported pump modes (110 in total) was separately assessed. The differential modal gain (DMG) was found to vary significantly depending on the pump mode used, and the minimum DMG was found to be 0.25 dB at 1550 nm provided by the OAM (8,1) pump mode. A tailored confined doping profile can help to reduce the pump mode dependency for core pumped operation and help to increase the number of pump modes that can support a DMG below 1 dB. For the more practical case of cladding-pumped operation, where the pump mode dependency is almost removed, a DMG of 0.25 dB and a small signal gain of >20 dB can be achieved for the 12 OAM modes across the full C-band.

  14. Mode-locking and Q-switching in multi-wavelength fiber ring laser using low frequency phase modulation.

    PubMed

    Jun, Chang Su; Kim, Byoung Yoon

    2011-03-28

    We describe experimental investigation of pulsed output from a multi-wavelength fiber ring laser incorporating low frequency phase modulation with large modulation amplitude. The Erbium-doped fiber (EDF) ring laser generated more than 8 wavelength channels with the help of a phase modulator operating at 26.2 kHz and a periodic intra-cavity filter. For most cases, the laser output is pulsed in the form of mode-locking at 5.62 MHz and/or Q-switching at harmonic and sub-harmonic of the phase modulation frequency. Chaotic pulse output is also observed. The behavior of the output pulses are described as functions of pump power and phase modulation amplitude. The relative intensity noise (RIN) value of a single wavelength channel is measured to be under -100 dB/Hz (-140 dB/Hz beyond 1.5 GHz).

  15. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier.

    PubMed

    Pan, Shilong; Zhao, Xiaofan; Lou, Caiyun

    2008-04-15

    We propose and demonstrate a novel single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier. The SOA biased in its low-gain regime greatly reduces the gain competition of the two wavelengths. The stable SLM operation is guaranteed by a passive triple-ring cavity and a fiber Fabry-Perot filter. The dual-wavelength output with a 40 GHz wavelength spacing is switchable in the range of 1533-1565.4 nm.

  16. Temperature and strain discrimination based on a temperature-insensitive birefringent interferometer incorporating an erbium-doped fiber.

    PubMed

    Han, Young-Geun; Chung, Youngjoo; Lee, Sang Bae; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki

    2009-04-20

    A simple configuration for simultaneous measurement of temperature and strain exploiting a temperature-insensitive birefringent interferometer based on a photonic crystal fiber incorporating an erbium-doped fiber (EDF) is investigated. The transmission peak power of the birefringent interferometer incorporating the EDF is changed by the temperature variation because the amplified spontaneous emission of the EDF strongly depends on temperature. The applied strain changes the peak wavelength of the birefringent interferometer connecting with the EDF, which can make it possible to discriminate concurrent sensitivities like temperature and strain. The temperature and strain sensitivities were -0.04 dB/ degrees C and 1.3 pm/microepsilon, respectively.

  17. Utilizing ytterbium- and erbium-doped fibers for a selectable and stable single-longitudinal-mode fiber ring laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong

    2016-05-01

    In this paper, a stable and wavelength-tunable C-band erbium-doped fiber (EDF) ring laser is experimentally demonstrated. Here, utilizing an unpumped ytterbium-doped fiber with a length of 0.6 m inside the ring cavity serving as a spatial multi-mode interference is proposed to suppress the multi-longitudinal-mode for single-longitudinal-mode output. Therefore, the output powers and optical signal-to-noise ratios of the proposed EDF ring laser are between  -11.74 and  -4.65 dBm and 34.3 and 26.9 dB, respectively. Moreover, the output performance of stability is also analyzed and discussed.

  18. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    PubMed

    Olivier, Michel; Piché, Michel

    2016-02-08

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber.

  19. Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers

    SciTech Connect

    Guo, Rui Hao, Hui-Qin

    2014-05-15

    In nonlinear erbium doped fibers, the Hirota–Maxwell–Bloch system with higher order effects usually governs the propagation of ultrashort pulses. New soliton solutions for this system are constructed on the constant backgrounds including one and two breathers and first and higher order localized soliton solutions. Considering the influence of higher order effects, propagation properties of those soliton solutions are discussed. -- Highlights: •The AB and Ma-breathers are derived on the constant backgrounds. •Dynamic features of two-breathers are discussed. •Localized solutions are generated from two different ways.

  20. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tausenev, A. V.; Obraztsova, E. D.; Lobach, A. S.; Chernov, A. I.; Konov, V. I.; Kryukov, P. G.; Konyashchenko, A. V.; Dianov, E. M.

    2008-04-01

    A mode-locked soliton erbium-doped fiber laser generating 177fs pulses is demonstrated. The laser pumped by a 85mW, 980nm laser diode emits 7mW at 1.56μm at a pulse repetition rate of 50MHz. Passive mode locking is achieved with a saturable absorber made of a high-optical quality film based on cellulose derivative with dispersed carbon single-wall nanotubes. The film is prepared with the original technique by using carbon nanotubes synthesized by the arc-discharge method.

  1. Self-contained eye-safe laser radar using an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Driscoll, Thomas A.; Radecki, Dan J.; Tindal, Nan E.; Corriveau, John P.; Denman, Richard

    2003-07-01

    An Eye-safe Laser Radar has been developed under White Sands Missile Range sponsorship. The SEAL system, the Self-contained Eyesafe Autonomous Laser system, is designed to measure target position within a 0.5 meter box. Targets are augmented with Scotchlite for ranging out to 6 km and augmented with a retroreflector for targets out to 20 km. The data latency is less than 1.5 ms, and the position update rate is 1 kHz. The system is air-cooled, contained in a single 200-lb, 6-cubic-foot box, and uses less than 600 watts of prime power. The angle-angle-range data will be used to measure target dynamics and to control a tracking mount. The optical system is built around a diode-pumped, erbium-doped fiber laser rated at 1.5 watts average power at 10 kHz repetition rate with 25 nsec pulse duration. An 8 inch-diameter, F/2.84 telescope is relayed to a quadrant detector at F/0.85 giving a 5 mrad field of view. Two detectors have been evaluated, a Germanium PIN diode and an Intevac TE-IPD. The receiver electronics uses a DSP network of 6 SHARC processors to implement ranging and angle error algorithms along with an Optical AGC, including beam divergence/FOV control loops.Laboratory measurements of the laser characteristics, and system range and angle accuracies will be compared to simulations. Field measurements against actual targets will be presented.

  2. Stable dual-wavelength single-longitudinal-mode ring erbium-doped fiber laser for optical generation of microwave frequency

    NASA Astrophysics Data System (ADS)

    Wang, T.; Liang, G.; Miao, X.; Zhou, X.; Li, Q.

    2012-05-01

    We demonstrate a simple dual-wavelength ring erbium-doped fiber laser operating in single-longitudinal-mode (SLM) at room temperature. A pair of reflection type short-period fiber Bragg gratings (FBGs), which have two different center wavelengths of 1545.072 and 1545.284 nm, are used as the wavelength-selective component of the laser. A segment of unpumped polarization maintaining erbium-doped fiber (PM-EDF) is acted as a narrow multiband filter. By turning the polarization controller (PC) to enhance the polarization hole burning (PHB), the single-wavelength and dual-wavelength laser oscillations are observed at 1545.072 and 1545.284 nm. The output power variation is less than 0.6 dB for both wavelengths over a five-minute period and the optical signal to noise ratio (OSNR) is greater than 50 dB. By beating the dual-wavelengths at a photodetector (PD), a microwave signal at 26.44 GHz is demonstrated.

  3. Mode-locking of thulium-doped and erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Nelson, Lynn Elizabeth

    This thesis reports work on passive mode-locking of thulium-doped and erbium-doped fiber ring lasers using the technique of polarization additive pulse mode-locking (P-APM). A self-starting, mode-locked Tm+3-doped fiber laser was demonstrated with 360 to 500 fsec pulses tunable from 1.8 to 1.9 μm, the largest tuning range demonstrated from a rare-earth doped fiber. This laser operated in the soliton regime due to the large negative group-velocity dispersion (GVD) of the fiber at 1.8 μm. A possible application to optical coherence tomography on biomedical tissue was explored. A stretched-pulse Er+3-doped laser at 1.55 μm was optimized for the application of frequency-doubling to 775 nm where the pulses can be used as a seed for a Ti:Sapphire regenerative amplifier. This laser incorporated segments of fiber with positive and negative GVD to avoid operation in the soliton regime. Compressed fundamental pulses of 100 fsec and 2.7 nJ were obtained, and three nonlinear crystals, β- BaB2O4 (BBO), KNbO3 (potassium niobate), and LiB3O5 (LBO), were evaluated for frequency doubling. Near transform-limited pulses at 771 nm with average powers of 8.7 mW were obtained with a 1-cm BBO crystal, corresponding to conversion efficiencies of up to 10%. Frequency resolved optical gating (FROG) measurements were performed on both the fundamental and doubled pulses to better characterize the laser. The effect of linear birefringence on P-APM was explored through numerical simulations for the case of standard fibers, where the two are of the same order. Although reduced by the birefringence, pulse shaping still occurred and there was no inherent periodicity due to the fiber beat-length. Measurements of birefringence and temperature sensitivity of both standard and polarization maintaining (PM) fibers were also performed. Experimental work toward an environmentally stable Er+3-doped fiber laser included two different schemes. The first design was comprised of only PM-fiber, but stable

  4. Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities.

    PubMed

    Shambat, Gary; Gong, Yiyang; Lu, Jesse; Yerci, Selçuk; Li, Rui; Dal Negro, Luca; Vucković, Jelena

    2010-03-15

    Optical fiber tapers are used to collect photoluminescence emission at approximately 1.5 microm from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. In the experiment, photoluminescence collection via one arm of the fiber taper is enhanced 2.5 times relative to free space collection, corresponding to a net collection efficiency of 4%. Theoretically, the collection efficiency into one arm of the fiber-taper with this material system and cavity design can be as high as 12.5%, but the degradation of the experimental coupling efficiency relative to this value mainly comes from scattering loss within the short taper transition regions. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength and collection efficiency is obtained. This material system combined with fiber taper collection is promising for building on-chip optical amplifiers.

  5. A Novel Erbium-Doped Fiber Amplifier Simulator for Gain Excursion Estimation in Multi-Channel Dynamic Optical Network

    NASA Astrophysics Data System (ADS)

    Roy, Sharbani; Priye, Vishnu

    2012-01-01

    A novel erbium-doped fiber amplifier simulator designed using the SIMULINK toolbox of MATLAB 7.0 (The MathWorks, Natick, MA, USA) is reported in this article. The present simulator has an ability to incorporate multi-channel amplification simultaneously in both the C- and L-bands. It is realized by defining new FUNCTION block sets and replacing the MATLAB FUNCTION block set reported earlier for multi-channel amplification. Spectral variation of gain for an erbium-doped fiber amplifier simulator is first verified in both the C- and L-bands. Next, the simulator is employed to study gain excursion in a multi-channel dynamic optical network, where the change in the gain excursion by varying the pump power has also been estimated. The present approach to estimate the gain excursion will find applications in quantifying inter-channel cross-talk due to cross-gain saturation among co-propagating multi-channels in a dynamic optical network.

  6. Watt-level erbium-doped all-fiber laser at 3.44 μm.

    PubMed

    Fortin, Vincent; Maes, Frédéric; Bernier, Martin; Bah, Souleymane Toubou; D'Auteuil, Marc; Vallée, Réal

    2016-02-01

    We demonstrate a 3.44 μm all-fiber laser emitting a maximum of 1.5 W at room temperature, the highest continuous power ever generated from a mid-IR fiber oscillator clearly beyond 3 μm. The laser operates on the 4F(9/2)→4I(9/2) transition of erbium-doped fluoride glasses and relies on a dual pumping scheme at 974 and 1976 nm. By combining a dichroic mirror deposited on the input fiber tip and a fiber Bragg grating as an output coupler, a stable laser emission is produced with a FWHM bandwidth of less than 0.6 nm. The laser cavity has an efficiency of 19% with respect to the launched pump power at 1976 nm and no saturation is observed provided 974 nm co-pumping is sufficient. The joint effect of the two pumps is also investigated.

  7. Discrimination of strain and temperature based on a polarization-maintaining photonic crystal fiber incorporating an erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Chung, Youngjoo; Lee, Sang Bae

    2009-06-01

    A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.

  8. Transform-limited pulse generation in normal cavity dispersion erbium doped single-walled carbon nanotubes mode-locked fiber ring laser.

    PubMed

    Chernysheva, M A; Krylov, A A; Ogleznev, A A; Arutyunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2012-10-08

    We demonstrate an erbium doped fiber ring laser mode-locked with a carboxymetylcellulose high-optical quality film with dispersed single-walled carbon nanotubes (SWCNT). The laser with large normal net cavity dispersion generates near bandwidth-limited picosecond inverse modified soliton pulses at 1.56 µm.

  9. Switchable dual-wavelength erbium-doped fiber laser based on the photonic crystal fiber loop mirror and chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng

    2010-03-01

    The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.

  10. Observation of self-mode-locked noise-like pulses from a net normal dispersion erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Kexuan; Tian, Jinrong; Guoyu, Heyang; Xu, Runqin; Song, Yanrong

    2017-04-01

    Self-mode-locked noise-like pulses (NLPs) were experimentally investigated from a normal dispersion erbium-doped fiber laser. Different from noise-like pulses with a broadband spectrum, the self-mode-locked NLPs have a narrow optical spectrum of 1–2 nm and hundreds of nanoseconds duration. However, the intra-cavity maximum energy of NLPs is up to 560 nJ without pulse breaking. The higher pulse energy output is promising in the proposed fiber laser. To confirm whether self-mode-locked NLPs are caused by an invisible nonlinear polarization rotation (NPR) mechanism owing to slight residual polarization asymmetry of the fiber and components used, we compared the output characteristics between self-mode-locked NLPs and NPR mode-locked pulses in the same cavity. The experimental results show that the formation mechanism of such self-mode-locked NLPs could be related to a weak NPR effect.

  11. Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Pérez Maciel, M.; Montenegro Orenday, J. A.; Estudillo Ayala, J. M.; Jáuregui-Vázquez, D.; Sierra-Hernandez, J. M.; Hernandez-Garcia, J. C.; Rojas-Laguna, R.

    2016-09-01

    Tunable wavelength erbium doped fiber linear cavity laser, based on mechanically induced long-period fiber gratings (MLPFG) is presented. The laser was tuned applying pressure over the MLPFG, in order to monitor this, pressure is applied over a plate with periodic grooves that has a short length, this pressure is controlled by a digital torque tester as a result tunable effect is observed. The grooves have a period of 620µm and the maximal pressure without breakpoint fiber is around 0.80lb-in2. Furthermore, the MLPFG used can be erased, reconfigured and exhibit a transmission spectra with termal stability, similar to high cost photoinduced long period gratings. In this work, by pressure increment distributed over the MLPFG from 0.40 lb-in2 to 0. 70 lb-in 2, tuned operation range of 14nm was observed and single line emission was tuned in the C telecommunication band. According to the stability analysis the signal to noise ratio was 29 dB and minimal wavelength oscillations of 0.29nm.

  12. A tunable wavelength erbium doped fiber ring laser based on mechanically induced long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Pérez Maciel, M.; López Dieguez, Y.; Montenegro Orenday, J. A.; Jáuregui Vázquez, D.; Sierra Hernández, J. M.; Huerta Masscote, E. H.; Rojas Laguna, R.; Estudillo Ayala, J. M.

    2015-08-01

    A tunable wavelength erbium doped fiber ring laser, based on mechanically induced long-period fiber gratings (MLPFG) is presented. The laser was tuned applying pressure over the MLPFG, in order to control this, pressure is applied over a plate with periodic grooves that has a short length, this pressure is applied by a digital torque tester, as a result tunable effect is observed. The grooves have a period of 630μm and the maximal pressure without breakpoint fiber is around 0.80lb-in2. Furthermore, the MLPFG used can be erased, reconfigured and exhibit a transmission spectra with thermal stability, similar to high cost photoinduced long period gratings. In this work, by pressure increment distributed over the MLPFG from 0.20 lb-in2 to 0.50 lb-inμ, tuned operation range of 10nm was observed and single line emission was tuned between C and L telecommunications bands. According to the stability analysis the signal to noise ratio and linewidth observed were 35dB and 0.2nm respectively.

  13. Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Gutierrez-Gutierrez, J.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Sierra-Hernández, J. M.; Jauregui-Vazquez, D.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Grajales-Coutiño, R.

    2016-09-01

    In this manuscript, switchable and multi-wavelength erbium-doped fiber laser arrangement, based on Fabry-Perot (FPI) and Mach-Zehnder (MZI) interferometers is presented. Here, the FPI is composed by two air-microcavities set into the tip of conventional single mode fiber, this one is used as a partially reflecting mirror and lasing modes generator. And the MZI fabricated by splicing a segment of photonic crystal fiber (PCF) between a single-mode fiber section, was set into an optical fiber loop mirror that acts as full-reflecting and wavelength selective filter. Both interferometers, promotes a cavity oscillation into the fiber laser configuration, besides by curvature applied over the MZI, the fiber laser generates: single, double, triple and quadruple laser emissions with a signal to noise ratio (SNR) of 30 dB. These laser emissions can be switching between them from 1525 nm to 1534 nm by adjusting the curvature radius over the MZI. This laser fiber offers a wavelength and power stability at room temperature, compactness and low implementation cost. Moreover the linear laser proposed can be used in several fields such as spectroscopy, telecommunications and fiber optic sensing systems.

  14. Rational harmonic mode-locked laser using a bismuth-oxide-based highly nonlinear erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Fukuchi, Yutaka; Hirata, Kouji; Muraguchi, Masahiro; Maeda, Joji

    2017-01-01

    We report a rational harmonic mode-locked fiber laser employing a bismuth-oxide-based highly nonlinear erbium-doped fiber (Bi-HNL-EDF) with a length of 1.5 m. The Bi-HNL-EDF is used as a broadband gain medium and as a noise suppressor based on self-phase modulation. The amplitude of the rational harmonic mode-locked pulses can be regulated by properly tuning the modulation parameters of the intracavity modulator. The cavity length as short as 6 m enables generation of stable and clean short pulses with a repetition frequency up to 40 GHz over the wavelength range covering both the conventional and the longer bands.

  15. A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong

    2013-10-01

    A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.

  16. Demonstration of a stable and uniform single-wavelength erbium-doped fiber laser based on microfiber knot resonator

    NASA Astrophysics Data System (ADS)

    Xu, Yiping; Ren, Liyong; Ma, Chengju; Kong, Xudong; Ren, Kaili

    2016-12-01

    We propose and demonstrate an application of microfiber knot resonator (MKR) in the generation of a stable and uniform single-wavelength erbium-doped fiber laser (EDFL). An MKR was fabricated using a microfiber a few micrometers in diameter. By embedding the MKR to the ring cavity of the EDFL, a laser with a wavelength of 1558.818 nm and a 3-dB linewidth of 0.0149 nm is demonstrated. The side mode suppression ratio of the laser is about 30 dB, and the maximum power fluctuation is about 0.85 dB. The results demonstrate that the MKR can be employed as a high-performance comb filter to realize a stable and uniform fiber laser.

  17. Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations

    NASA Astrophysics Data System (ADS)

    Ding, Mingjie; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2013-05-01

    Brillouin Stokes power in erbium-doped optical fibers (EDFs) can be potentially controlled by pumping, but no report has been provided on its detailed characterization. In this study, as the first step toward this goal, the Brillouin gain spectra in EDFs with three different erbium concentrations (0.72, 1.20, and 2.28 wtppt) are measured at 1.55 μm without pumping, and the Brillouin frequency shifts (BFSs) and their dependences on strain, temperature, and erbium concentration are fully investigated. In the EDF with 0.72-wtppt concentration, the BFS was 11.42 GHz, and its temperature and strain coefficients were 0.87 MHz/K and 479 MHz/%, respectively.

  18. The evaluation of various designs for a C and L band superfluorescent source based erbium doped fiber

    NASA Astrophysics Data System (ADS)

    Kanani Jazi, M.; Shahi, S.; Hekmat, M. J.; Saghafifar, H.; Khuzani, A. T.; Khalilian, H.; Baghi, M. D.

    2013-06-01

    An efficient erbium doped superfluorescent fiber source (SFS) is proposed by comparing the different configurations in the C and L band regions. The flat spectrum of the source over a wide range is examined in various arrangements. The suggested array employed is based on loop mirror and double-pass bidirectional sources for making a flat and stable amplified spontaneous emission power. The maximum power of each of the two 980 nm laser diodes was optimized at 180 mW. Furthermore, the place effect of the laser diode’s power near the output port was demonstrated for the first time. Finally, the optimum flattening manner of this ASE source was achieved in 185-50 mW pump powers and 32 mW total power over the 1525-1605 nm region (C+L band).

  19. Design of an all-fiber erbium-doped laser system for simulating power load in backbone networks

    NASA Astrophysics Data System (ADS)

    Pobořil, Radek; Bednárek, Lukáš; Vanderka, Aleš; Hájek, Lukáš; Zbořil, Ondřej; Vašinek, Vladimír

    2016-12-01

    This article is focused on the design of an all-fiber laser that was supposed to be used for simulating power load similar to the power load in backbone networks. The first part of the article is a brief introduction to the topic of lasers and erbium doped fiber amplifiers. The following parts present design of a fiber laser with ring cavity, and measuring the ideal length of a doped fiber and the split ratio of the output coupler. After proposing the first stage -a laser- we focused on the construction of the two following stages -EDFA preamplifier and EDFA amplifier. There were used fibers with various levels of erbium ion density, namely ISO-GAIN I6, and Liekki ER110-4/125. The resulting output power of the whole system was 320 mW. This value is sufficient when we take into account that we used only single-mode fibers with energy pumped directly to the fiber core. The output wavelength of the whole laser system was 1559 nm.

  20. Dual-wavelength erbium-doped fiber ring laser based on one polarization maintaining fiber Bragg grating in a Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Li, Honglei; Xu, Ou; Lu, Shaohua; Mao, Xiangqiao; Ning, Tigang; Jian, Shuisheng

    2008-11-01

    Dual-wavelength with orthogonal polarizations erbium-doped fiber ring laser at room temperature is proposed. One polarization-maintaining fiber Bragg grating (PMFBG) in a Sagnac loop interferometer is used as the wavelength-selective filter. Due to the polarization hole burning (PHB) enhanced by the PMFBG, the laser can operate in stable dual-wavelength operation with wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The optical signal-to-noise ratio (OSNR) is over 52 dB. The amplitude variation in nearly one and half an hour is less than 0.6 dB for both wavelengths.

  1. Optimum configuration and characteristic comparisons of multiwavelength erbium-doped fiber amplifier for hybrid digital/analog WDM systems

    NASA Astrophysics Data System (ADS)

    Liang, Tsair-Chung; Chang, Chia-Hsiung; Chen, Yung-Kuang

    2000-04-01

    We theoretically investigate various configurations of erbium-doped fiber amplifier (EDFA) for simultaneously amplifying AM-VSB analog CATV signal and multiple optical digital baseband signals in hybrid wavelength-division multiplexing (H-WDM) systems. The design criterion of H-WDM EDFA is to keep the differential channel output power among digital channels at ≤0.2 dB while providing a high saturated output power of ≥60 mW and a low noise figure of ≤4 dB for the analog channel. A total of nine EDFA configurations are examined and compared in this work, including the dual-forward, dual-backward, and different bidirectional pumping schemes, each with and without the midway optical isolator. The investigation provides the optimum EDFA configuration to design both power and in-line amplifiers for hybrid analog/digital WDM lightwave systems. Such H-WDM technology allows direct transmission of AM-VSB/QAM video traffic from the fiber backbone supertrunking networks to the hybrid-fiber-coaxial (HFC), fiber-to-the-curb (FTTC), or fiber-to-the-home (FTTH) broadband access networks without the complicated and costly signal format conversion at the CATV head-end and hubs.

  2. Two-wavelength pump-probe technique using single distributed feedback laser array to probe gain recovery of an erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Kuroda, Keiji; Yoshikuni, Yuzo

    2017-03-01

    We propose a two-wavelength pump-probe technique to probe the gain recovery characteristics of an erbium-doped fiber amplifier. The two-wavelength pulse pairs are generated through the direct modulation of a single distributed feedback laser array. The proposed technique allows us to measure the wavelength dependence of the recovery time after gain saturation is induced by a signal of the same wavelength.

  3. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    PubMed Central

    Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-01-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032

  4. Multi-wavelength fiber laser based on a fiber Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Estudillo-Ayala, J. M.; Jauregui-Vazquez, D.; Haus, J. W.; Perez-Maciel, M.; Sierra-Hernandez, J. M.; Avila-Garcia, M. S.; Rojas-Laguna, R.; Lopez-Dieguez, Y.; Hernandez-Garcia, J. C.

    2015-12-01

    In this work we report experimental studies of an erbium-doped fiber laser design that simultaneously emits up to three wavelengths. The laser cavity configuration has an all-fiber, Fabry-Perot interferometer, based on the insertion of air cavities in the fiber, near one end of a conventional single-mode fiber. The laser emissions have a side-mode suppression ratio over 25 dB, wavelength variations around 0.04 nm, and 2 dB power fluctuations. By using a simple, controlled fiber curvature technique cavity losses are varied over a section of convectional single-mode fiber and the laser output is switched between single-, dual-, and triple-wavelength emission. Moreover, by applying a refractive index change over the fiber filter the emission wavelengths are shifted. The fiber laser offers a compact, simple, and low-cost design for a multiple wavelength outputs that can be adopted in future applications.

  5. Switchable dual-wavelength erbium-doped fiber-ring laser based on one polarization maintaining fiber Bragg grating in a Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Mao, Xiangqiao; Ning, Tigang; Jian, Shuisheng

    2009-04-01

    A switchable erbium-doped fiber-ring laser providing dual-wavelength outputs with orthogonal polarizations when operating at room temperature is proposed. One polarization-maintaining fiber Bragg grating (PMFBG) in a Sagnac loop interferometer is used as the wavelength-selective filter. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The optical signal-to-noise ratio (OSNR) is over 42 dB. The amplitude variation over 90 min is less than 0.6 dB for both wavelengths.

  6. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets

    PubMed Central

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-01-01

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics. PMID:27010509

  7. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets.

    PubMed

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-03-24

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics.

  8. Theoretical Analysis and Experiment on a Novel Kind of Single Mode Large-Mode Erbium-Doped Fiber

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Liu, Lisong; Wei, Huai; Sun, Jiang; Kang, Zexin; Jian, Shuisheng

    A kind of large-mode-area (LMA) erbium-doped fiber (EDF) is required to get high output power with good beam quality. This new LMA EDF has a multi-layer-core structure which makes the mode area bigger. The key process is deposition of multi-layer-core structure by using modified MCVD to make every layer of the core with different refractive index. Furthermore, the key optical specifications of the fiber are measured. The absorption peak is 10.6 dB/m at 980 nm and 20 dB/m at 1550 nm. The cutoff wavelength is about 1300 nm. The mode field diameter (MFD) is 12.6 μm and 13.2 μm at 1550 nm according to Petermann-2 and Gaussian definitions, respectively. The core diameter is about 12 μm. The MFD of conventional standard EDFs is in a limited range ~5-8 μm, so the experimental result has made a big progress for MFD. Especially, we can improve the parameters of the multi-layer-core structure to get single mode EDF with larger mode area for high power fiber laser.

  9. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets

    NASA Astrophysics Data System (ADS)

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-03-01

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics.

  10. Isolator-free switchable uni- and bidirectional hybrid mode-locked erbium-doped fiber laser.

    PubMed

    Chernysheva, Maria; Araimi, Mohammed Al; Kbashi, Hani; Arif, Raz; Sergeyev, Sergey V; Rozhin, Aleksey

    2016-07-11

    An Erbium-doped fibre ring laser hybrid mode-locked with single-wall carbon nanotubes (SWNT) and nonlinear polarisation evolution (NPE) without an optical isolator has been investigated for various cavity conditions. Precise control of the state of polarisation (SOP) in the cavity ensures different losses for counter-propagating optical fields. As the result, the laser operates in quasi-unidirectional regime in both clockwise (CW) and counter-clockwise (CCW) directions with the emission strengths difference of the directions of 22 dB. Furthermore, by adjusting the net birefringence in the cavity, the laser can operate in a bidirectional generation. In this case, a laser pumped with 75 mW power at 980 nm generates almost identical 790 and 570 fs soliton pulses with an average power of 1.17 and 1.11 mW. The operation stability and pulse quality of the soliton pulses in both unidirectional regimes are highly competitive with those generated in conventional ring fibre lasers with isolator in the cavity. Demonstrated bidirectional laser operation can find vital applications in gyroscopes or precision rotation sensing technologies.

  11. Suppression of continuous lasing in a carbon nanotube polyimide film mode-locked erbium-doped fiber laser.

    PubMed

    Gui, Lili; Yang, Xin; Zhao, Guangzhen; Yang, Xu; Xiao, Xiaosheng; Zhu, Jinsong; Yang, Changxi

    2011-01-01

    We demonstrated an erbium-doped mode-locked fiber laser using a single-walled carbon nanotube-dispersed polyimide (SWNT-PI) film. Different mode-locking operations were compared and analyzed utilizing SWNT-PI films with different concentrations (2, 1, and 0.25 wt.%, respectively). It was found that the continuous single-pulse mode-locking operation was often accompanied by a continuous wave oscillation part for the 1 and 0.25 wt.% SWNT-PI films, whereas the 2 wt.% SWNT-PI film presented the most excellent mode-locking performance, thanks to sufficient modulation depth. Using the 2 wt.% SWNT-PI film, a stable pulse train with a pulse width of 840 fs and a repetition rate of 15.3 MHz was achieved. The average output power was 0.33 mW at the pump power of 155 mW under an output coupling ratio of 10%. Operational performance of the laser cavity when employing the 2 wt.% SWNT-PI film was also demonstrated.

  12. Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers.

    PubMed

    Lin, Yung-Hsiang; Lo, Jui-Yung; Tseng, Wei-Hsuan; Wu, Chih-I; Lin, Gong-Ru

    2013-10-21

    With the intra-cavity nano-scale charcoal powder based saturable absorber, the 455-fs passive mode-locking of an L-band erbium-doped fiber laser (EDFL) is demonstrated. The size reduction of charcoal nano-particle is implemented with a simple imprinting-exfoliation-wiping method, which assists to increase the transmittance up to 0.91 with corresponding modulation depth of 26%. By detuning the power gain from 17 to 21 dB and cavity dispersion from -0.004 to -0.156 ps² of the EDFL, the shortening of mode-locked pulsewidth from picosecond to sub-picosecond by the transformation of the pulse forming mechanism from self-amplitude modulation (SAM) to the combining effect of self-phase modulation (SPM) and group delay dispersion (GDD) is observed. A narrower spectrum with 3-dB linewidth of 1.83-nm is in the SAM case, whereas the spectral linewidth broadens to 5.86 nm with significant Kelly sideband pair can be observed if the EDFL enters into the SPM regime. The mode-locking mechanism transferred from SAM to SPM/GDD dominates the pulse shortening procedure in the EDFL, whereas the intrinsic defects in charcoal nano-particle only affect the pulse formation at initial stage. The minor role of the saturable absorber played in the EDFL cavity with strongest SPM is observed.

  13. Femtosecond mode-locked erbium-doped fiber laser based on MoS2-PVA saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Ahmad, H.; Harun, S. W.

    2016-08-01

    We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a soliton mode-locked Erbium-doped fiber laser (EDFL). A stable self-started mode-locked soliton pulse is generated by fine-tuning the rotation of the polarization controller at a low threshold pump power of 25 mW. Its solitonic behavior is verified by the presence of Kelly sidebands in the output spectrum. The central wavelength, pulse width, and repetition rate of the laser are 1573.7 nm, 630 fs, and 27.1 MHz, respectively. The maximum pulse energy is 0.141 nJ with peak power of 210 W at pump power of 170 mW. This result contributes to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.

  14. Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi(2)Se(3) deposited fiber taper.

    PubMed

    Gao, Lei; Huang, Wei; Zhang, Jing Dong; Zhu, Tao; Zhang, Han; Zhao, Chu Jun; Zhang, Wei; Zhang, Hua

    2014-08-10

    We have demonstrated the passive Q-switching mode-locking operation in an erbium-doped fiber (EDF) laser by using topological insulator Bi(2)Se(3) deposited on fiber taper, whose damage threshold can be further increased by the large evanescent field interacting length. Due to the low saturation intensity, stable Q-switched mode-locked fiber lasers centered at 1562 nm can be generated at a pump power of 10 mW. The temporal and spectral characteristics for different pump strengths have also been investigated. To the best of our knowledge, it is the first time a Q-switched mode-locked EDF laser based on the fiber taper deposited by Bi(2)Se(3) was generated.

  15. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng

    2009-08-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.

  16. Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared

    NASA Astrophysics Data System (ADS)

    Cousin, J.; Masselin, P.; Chen, W.; Boucher, D.; Kassi, S.; Romanini, D.; Szriftgiser, P.

    2006-05-01

    Development of a continuous-wave tunable fiber laser-based spectrometer for applied spectroscopy is reported. Wide wavelength tunability of an erbium-doped fiber laser (EDFL) was investigated in the near-infrared region of 1543-1601 nm. Continuous mode-hop free fine frequency tuning has been accomplished by temperature tuning in conjunction with mechanical tuning. The overall spectroscopic performance of the EDFL was evaluated in terms of frequency tunability along with its suitability for molecular spectroscopy. High-resolution absorption spectra of acetylene (C2H2) were recorded near 1544 nm with a minimum measurable absorption coefficient of about 3.5×10-7 cm-1/Hz1/2 for direct absorption spectroscopy associated with a 100-m long multipass cell. Detections of C2H2 at different concentration levels were performed as well with high dynamic detection range varying from 100% purity to sub ppmv using cavity ring down spectroscopy. A 3σ-detection-limited minimum detectable concentration (MDC) of 400 ppbv has been obtained by using the transition line Pe(22) of the ν1+ν3+ν5 1(Πg)-ν5 1(Πu) hot band near 1543.92 nm with a detection bandwidth of 2.3 Hz. This corresponds to a minimum detectable absorption coefficient of 6.6×10-11 cm-1/Hz1/2. The sensitivity limit could be further improved by almost one order of magnitude (down to ˜60 ppbv) by use of the Pe(27) line of the ν1+ν3(Σu +)-0(Σg +)combination band near 1543.68 nm.

  17. Performance comparison of pre-, boost-, and inline-multimode erbium-doped fiber amplifier configurations to boost mode-division multiplexed multimode fiber link

    NASA Astrophysics Data System (ADS)

    Gupta, Rajan; Kaler, Rajinder Singh

    2016-05-01

    The performance of 3×3, 4×4, 5×5, and 6×6 optical multi-input multioutput (MIMO) mode-division multiplexed multimode fiber (MMF) systems has been investigated using pre-, boost-, and inline-multimode erbium-doped fiber amplifier configuration methods with LPlm (linearly polarized) modes. The outcome of these configurations has been compared in terms of quality factor (Q-factor) and bit error rate (BER). It is reported that inline-configuration provides best results for all MIMO mode-division multiplexing (MDM) systems covering transmission distance of 100 km with acceptable BER (<10-9) and Q-factor (>10 dB) over MMF link to boost performance of MDM system.

  18. Mode-locked femtosecond all polarization-maintaining erbium-doped dispersion managed fiber laser based on a nonlinear amplifying loop mirror

    NASA Astrophysics Data System (ADS)

    Wu, Wenjue; Zhou, Yue; Sun, Ji; Dai, Yitang; Yin, Feifei; Dai, Jian; Xu, Kun

    2016-11-01

    We proposed a mode-locked all-polarization-maintaining erbium-doped fiber laser base on a nonlinear amplifying loop mirror (NALM). The laser can generate 1.6 ps pulses at 1550 nm with the energy of 1 nJ that can be compressed down to 100 fs with the compressor outside the cavity. The repetition rate of the output pulse is 12MHz. Such configuration of laser is easier controlled and self starting long term operation, and is highly desirable for industrial applications, such as micro-machining.

  19. Broadband amplifier and high performance tunable laser with an extinction ratio of higher than 60 dB using bismuth oxide-based erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Moghaddam, M. R. A.; Harun, S. W.; Shahi, S.; Ahmad, H.

    2012-07-01

    A Bi2O3-based erbium-doped fiber (Bi-EDF) ring laser with a 70 nm tunable range is demonstrated with a 49 cm long Bi-EDF in which tuning range can be extended to larger than 100 nm using an optical switch to alter the length of Bi-EDF in the laser cavity. With an extinction ratio of better than 60 dB throughout the entire tuning range, the measured FWHM of laser lines are measured to be 0.09 nm. In addition, the common amplification parameters are measured and studied in detail for various pumping configurations.

  20. Experimental investigation of high energy noise-like pulses from a long cavity erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Kexuan; Guoyu, Heyang; Tian, Jinrong; Song, Yanrong

    2016-11-01

    The high energy noise-like pulses (NLPs) were experimentally investigated in a passively mode-locked erbium-doped fiber laser with a long ring cavity by using nonlinear polarization rotation technique. Large net normal group-velocity dispersion of the cavity is estimated as high as 6.46 ps2, which is beneficial to formation of high-energy pulses. With the total pump power of 970 mW (the pump powers of forward pump and backward pump are set at the value of 455 mW and 515 mW, respectively), a stable ultrahigh energy rectangular-shape pulse emission with the pulse duration of 35 ns was observed. The energy of square packet with a fundamental repetition rate of 141.6 kHz is as high as 840 nJ. The signal-to-noise is higher than 60 dB in RF spectrum. The feature of NLPs is confirmed by the coherent spike of autocorrelation trace. When the pump power is beyond 970 mW, the mode locking operation with fundamental repetition rate cannot be achieved despite of the large range variation of polarization controller (PC) settings. However, the forthorder harmonic mode locking can be observed, the square pulse packet duration still remains at ˜ 35 ns. The experimental results demonstrated that the ultrahigh energy NLPs is only realized at the condition of special physical parameters and it is restricted by the number and intensity of ultra short pulses within the envelope to some extent.

  1. Development of Femtosecond Laser Based on an Erbium-Doped Fiber

    NASA Astrophysics Data System (ADS)

    Zagorulko, K. A.; Fatyanova, M. S.; Gordeev, A. O.

    A high-power femtosecond Er-doped fiber ring laser is developed and investigated. Self-starting passive mode locking is obtained with nonlinear polarization evolution in optical fibers. The spectral width of the output pulses is about 53 nm at a mean wavelength of 1545 nm; the minimum pulse width is about 97 fs at a pulse repetition rate of 76.65 MHz. We use a 976 nm pump diode laser with ex-fiber power of 935 mW to obtain an average output power of 261 mW with a 27.9% pump-to-signal conversion efficiency.

  2. Selection of energy optimized pump concepts for multi core and multi mode erbium doped fiber amplifiers.

    PubMed

    Krummrich, Peter M; Akhtari, Simon

    2014-12-01

    The selection of an appropriate pump concept has a major impact on amplifier cost and power consumption. The energy efficiency of different pump concepts is compared for multi core and multi mode active fibers. In preamplifier stages, pump power density requirements derived from full C-band low noise WDM operation result in superior energy efficiency of direct pumping of individual cores in a multi core fiber with single mode pump lasers compared to cladding pumping with uncooled multi mode lasers. Even better energy efficiency is achieved by direct pumping of the core in multi mode active fibers. Complexity of pump signal combiners for direct pumping of multi core fibers can be reduced by deploying integrated components.

  3. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  4. Development of erbium-doped silica sensor probe for fiber-optic fluorescence thermometer

    NASA Astrophysics Data System (ADS)

    Aizawa, H.; Takei, K.; Katsumata, T.; Komuro, S.; Morikawa, T.; Ishizawa, H.; Toba, E.

    2005-09-01

    A fabrication process of the erbium (Er)-doped silica sensor probe, in which the sensor head is directly coupled with silica glass fiber, has been developed for the fiber-optic thermometer application. In this fabrication process, a droplet of slurry of Er-doped silica powders are formed on the end of the silica glass fiber, and are dried, sintered, and then melted and solidified in a LPG-O2 gas furnace. The temperature dependence of the photoluminescence (PL) lifetime from the Er-doped silica senor probe with various dopant concentrations has been evaluated for the fiber-optic thermometer application. An Er-doped silica sensor probe with an Er density above 10000ppm and aluminum (Al) content about Al /Er=20 is considered to be suitable for a fiber-optic thermometer because of the strong PL intensity and long PL lifetime. The PL lifetimes of the Er sensor head decreases from 9.9msto8.1ms at temperatures from 273Kto473K. An Er-doped silica sensor probe, which is fabricated by a modified process, is considered to be potentially useful for a fiber-optic fluorescence thermometer.

  5. Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40x pulse compression using air-core fiber and conventional erbium-doped fiber amplifier.

    PubMed

    de Matos, C; Taylor, J

    2004-02-09

    We present a totally fiber integrated chirped-pulse amplification system using air-core photonic bandgap fiber and a conventional erbium-doped fiber amplifier. ~40-ps input pulses, generated in a Mach-Zehnder modulator, were stretched and spectrally broadened in a dispersion-shifted fiber before being amplified and subsequently compressed in 10 m of anomalously-dispersive photonic bandgap fiber to yield ~960 fs pulses. The system gives multi-kilowatt peak powers while the amplifier nonlinearity threshold is as low as ~150 W. Higher peak powers could be obtained by the use of an amplifier with higher nonlinearity threshold.

  6. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    PubMed

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  7. 1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser.

    PubMed

    Tan, Fangzhou; Shi, Hongxing; Sun, Ruoyu; Wang, Peng; Wang, Pu

    2016-10-03

    We present a compact thulium-doped chirped pulse amplifier producing 241 fs pulses with 1 μJ energy. The system is seeded with the Raman shifted soliton generated by the combination of an erbium-doped femtosecond laser and a nonlinear fiber. The Tm-doped large mode area fiber yields output power of 71 W, corresponding to pulse energy of 2.04 μJ, with a slope efficiency of 52.2%. The amplified pulses have been compressed to a duration time of 241 fs, using a folded Treacy grating setup. The pulse energy is measured to be 1.02 μJ, corresponding to a peak power of ~3 MW. To the best of our knowledge, this is the highest average power and pulse energy generated from an all-fiber, Raman shifted soliton seeded thulium-doped chirped pulse amplifier system.

  8. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity

    SciTech Connect

    Shen, Xuling; He, Boqu; Zhao, Jian; Liu, Yang; Bai, Dongbi; Wang, Chao; Liu, Geping; Luo, Daping; Liu, Fengjiang; Li, Wenxue; Zeng, Heping; Yang, Kangwen; Hao, Qiang

    2015-01-19

    We present a method for stabilizing the repetition rate of an erbium-doped all-fiber laser by inserting an electronic polarization controller (EPC) in the fiber laser cavity. The device exhibited good integration, low cost, and convenient operation. Such a repetition rate stabilization may facilitate an all-fiber laser comb system with high integration. The repetition rate was phase-locked to a Rb reference more than 72 h with a low feedback voltage applied to one channel of the EPC. The repetition rate was 74.6 MHz. The standard deviation and the repetition rate linewidth were 1.4 and 1.7 mHz, respectively.

  9. Passively Q-switched mode-locking Erbium-doped fiber laser with net-normal dispersion using nonlinear polarization rotation technique

    NASA Astrophysics Data System (ADS)

    Wang, L. Y.; Xu, W. C.; Luo, Z. C.; Cao, W. J.; Luo, A. P.; Dong, J. L.; Wang, H. Y.

    2011-10-01

    We experimentally demonstrate a passively Q-switched mode-locking (QML) operation in an Erbium-doped fiber ring laser with net normal dispersion by using nonlinear polarization rotation technique. A 2 m long section of dispersion compensating fiber (DCF) with extra large positive dispersion was inserted into the cavity to ensure the fiber laser working in the region of net positive dispersion. By carefully adjusting the polarization controller, both uniform dissipative mode-locking pulses with fundamental repetition rate and QML pulse trains with tunable repetition rate from 71.58 to 98.83 kHz are achieved. It is found that the QML operation is caused by the interaction between the polarization state of the pulse and the intracavity polarizer.

  10. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber

    SciTech Connect

    Gu, Jian; Yang, Yanfu Zhang, Jianyu; Wang, Xiaorui; Yuan, Yijun; Yao, Yong; Liu, Meng

    2015-09-14

    We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that with the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.

  11. Experimental study of a symmetrically-pumped distributed feed-back Erbium-doped fiber laser with a tunable phase shift

    NASA Astrophysics Data System (ADS)

    Barmenkov, Yu O.; Kir'yanov, A. V.; Pérez-Millán, P.; Cruz, J. L.; Andrés, M. V.

    2008-05-01

    We report an experimental study of a symmetrically-pumped distributed feed-back (DFB) Erbium-doped fiber laser (EFL) with a tunable phase shift induced in the center of the laser cavity. The tunable phase shift is produced using a magnetostrictive transducer. We demonstrate that lasing is observed in our experimental arrangement at any value of the phase shift that is owing to a noticeable birefringence induced by the latter. The laser wavelength is shown to periodically change with increasing pump power due to the fiber heating, which stems from the Stokes loss, the excited state absorption and Auger up-conversion in Erbium, and high thermal expansion coefficient of the magnetostrictive transducer.

  12. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber.

    PubMed

    Xia, Handing; Li, Heping; Lan, Changyong; Li, Chun; Zhang, Xiaoxia; Zhang, Shangjian; Liu, Yong

    2014-07-14

    We demonstrate an erbium-doped fiber laser passively mode-locked by a multilayer molybdenum disulfide (MoS(2)) saturable absorber (SA). The multilayer MoS(2) is prepared by the chemical vapor deposition (CVD) method and transferred onto the end-face of a fiber connector. Taking advantage of the excellent saturable absorption of the fabricated MoS(2)-based SA, stable mode locking is obtained at a pump threshold of 31 mW. Resultant output soliton pulses have central wavelength, spectral width, pulse duration, and repetition rate of 1568.9 nm, 2.6 nm, 1.28 ps, and 8.288 MHz, respectively. The experimental results show that multilayer MoS(2) is a promising material for ultrafast laser systems.

  13. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    PubMed

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.

  14. Observation of Fine Distribution of Minor Dopants in an Erbium-Doped Fiber Core using a Sample Thinning Technique for Field Emission Electron Probe Microanalysis.

    PubMed

    Kubo, Yugo; Kuramochi, Koji

    2015-12-01

    To observe the fine distribution of minor aluminum and germanium dopants in the erbium-doped fiber (EDF) core of an optical amplifier, a sample thinning technique was applied for field emission electron probe microanalysis (FE-EPMA) together with wavelength-dispersive X-ray spectrometry. This technique significantly improved the spatial resolution without much degradation of the minimum detection limit for FE-EPMA. As such, this enabled us to observe the distribution of minor dopants in EDF. Moreover, we propose a very simple sample preparation to prevent electron-beam radiation damage, a problem involved with FE-EPMA of low-conductivity materials such as SiO2 glass, which is the main component of EDF.

  15. Passively mode-locking erbium-doped fiber lasers with 0.3 nm Single-Walled Carbon Nanotubes

    PubMed Central

    Xu, Xintong; Zhai, Jianpang; Li, Ling; Chen, Yanping; Yu, Yongqin; Zhang, Min; Ruan, Shuangchen; Tang, Zikang

    2014-01-01

    We demonstrate a passively mode-locked erbium-doped fiber laser (EDFL) by using the smallest single-walled carbon nanotubes (SWNTs) with a diameter of 0.3 nm as the saturable absorber. These ultrasmall SWNTs are fabricated in the elliptical nanochannels of a ZnAPO4-11 (AEL) single crystal. By placing an AEL crystal into an EDFL cavity pumped by a 980 nm laser diode, stable passive mode-locking is achieved for a threshold pump power of 280 mW, and 73 ps pulses at 1563.2 nm with a repetition rate of 26.79 MHz. PMID:25342292

  16. Suppression of phase and supermode noise in a harmonic mode-locked erbium-doped fiber laser with a semiconductor-optical-amplifier-based high-pass filter.

    PubMed

    Lin, Gong-Ru; Wu, Ming-Chung; Chang, Yung-Cheng

    2005-07-15

    By operating an intracavity semiconductor-optical-amplifier- (SOA-) based high-pass filter at the nearly transparent current condition, the supermode noise (SMN), the relaxation oscillation, and the single-sideband (SSB) phase noise can be simultaneously suppressed in an actively mode-locked erbium-doped fiber laser (EDFL). The SOA at the nearly transparent condition enhances the SMN suppression ratio of the EDFL from 32 to 76 dB at the cost of the phase noise degrading from -114 to -104.2 dBc/Hz and broadening the pulse width from 36 to 61 ps. With an optical bandpass filter, the SSB phase noise and the SMN suppression ratio can be further improved to -110 dBc/Hz and 81 dB, respectively. The EDFL pulse can be further shortened to 3.1 ps with a time-bandwidth product of 0.63 after compression.

  17. Selectable dual-wavelength erbium-doped fiber laser with stable single-longitudinal-mode utilizing eye-type compound-ring configuration

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chen, Jhih-Yu; Chen, Hone-Zhang; Chow, Chi-Wai

    2016-08-01

    In this paper, a tunable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) under a tuning range of 1530.0-1560.0 nm is proposed and demonstrated. Here, the mode spacing of lasing dual-wavelength from 1.0 to 30.0 nm can be selected arbitrarily in any wavelength position. To accomplish the SLM output, the eye-type compound-ring scheme is proposed inside ring cavity for suppressing the multi-longitudinal-mode (MLM) highly. The entire measured output power and optical signal to noise ratio (OSNR) of each dual-wavelength are larger than -13.3 dBm and 60 dB respectively. In addition, the output stability measurement of proposed EDF laser is also performed and analyzed.

  18. Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: Experimental results

    NASA Astrophysics Data System (ADS)

    Vazquez-Zuniga, Luis Alonso; Jeong, Yoonchan

    2013-10-01

    We present rigorous experimental studies on the spectral and temporal behaviors of an erbium-doped frequency-shifted-feedback fiber laser (FSFL), with respect to various parameters of the laser cavity, including the direction of the frequency-shift mechanism, the quantity of frequency-shift, and the output coupling ratio (OCR) of the cavity. We show that if the filter bandwidth is much broader than the laser linewidth, the laser spectrum tends to split and form a secondary spectral band (SSB) on the shorter or longer wavelength side of the primary spectrum, depending on whether the direction of the frequency-shift mechanism is upward or downward, respectively. We found that the SSB forms a parasitic pulse with much lower peak power traveling on the leading or trailing edge of the primary pulse, which leads to a significant asymmetry in the whole pulse formation in the time domain.

  19. Explaining simultaneous dual-band carbon nanotube mode-locking Erbium-doped fiber laser by net gain cross section variation.

    PubMed

    Rosa, Henrique G; Steinberg, David; Thoroh de Souza, Eunézio A

    2014-11-17

    In this paper we report the pulse evolution of a simultaneously mode-locked Erbium-doped fiber laser at 1556-nm-band and 1533-nm-band. We explain the dual wavelength laser operation by means of net gain cross section variations caused by the population inversion rate dependence on the pump power. At 1556-nm-band, we observed pulse duration of 370 fs with bandwidth of 8.50 nm and, for pump power higher than 150 mW, we observe the rise of a CW and mode-locked laser, sequentially, at 1533-nm-band. We show that both bands are simultaneously mode-locked and operate at different repetition rates.

  20. Passively mode-locked erbium-doped fiber laser via a D-shape-fiber-based MoS2 saturable absorber with a very low nonsaturable loss

    NASA Astrophysics Data System (ADS)

    Li-Na, Duan; Yu-Long, Su; Yong-Gang, Wang; Lu, Li; Xi, Wang; Yi-Shan, Wang

    2016-02-01

    We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide (MoS2) thin film. The MoS2 film is fabricated by depositing the MoS2 water-ethanol mixture on a D-shape-fiber (DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm2, and 3.4% respectively. Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics. Project supported by the National Natural Science Foundation of China (Grant No. 61378024).

  1. An optical amplifier having 5 cm long silica-clad erbium doped phosphate glass fiber fabricated by "core-suction" technique

    NASA Astrophysics Data System (ADS)

    Goel, Nitin K.; Pickrell, Gary; Stolen, Roger

    2014-08-01

    We have fabricated an erbium-doped phosphate glass fiber with a silica cladding and used 5 cm length of it to form an optical amplifier. A bulk erbium phosphate glass called MM2 was used as a core glass in a silica cladding tube to prepare a preform using "core-suction" technique. This MM2 glass preform was drawn to a fiber and the resultant fiber was of good optical quality, free from air bubbles and major defects. The fiber was mechanically strong enough to allow for ease of handling and could be spliced to conventional silica fiber using commercial fusion splicer. This fiber was then used to setup an EDFA. Our work demonstrates the potential to form silica clad optical fibers with phosphate cores doped with very high levels of rare-earth ions. It is demonstrated that the core suction technique can be used to make a high-gain erbium phosphate fiber amplifier that is compatible with conventional silica fibers.

  2. Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier.

    PubMed

    Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Tang, Dingyuan; Hao, Jianzhong; Dong, Bo; Liang, Sheng

    2010-12-20

    We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector.

  3. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-05-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm-1 and the disappearance of the 2D-band peak at 2700 cm-1. The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth.

  4. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    PubMed

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  5. Generation of dual-wavelength square pulse in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion.

    PubMed

    Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan

    2015-08-01

    A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.

  6. Solitons and Rogue Waves for a Higher-Order Nonlinear Schrödinger-Maxwell-Bloch System in an Erbium-Doped Fiber

    NASA Astrophysics Data System (ADS)

    Su, Chuan-Qi; Gao, Yi-Tian; Xue, Long; Yu, Xin

    2015-10-01

    Under investigation in this article is a higher-order nonlinear Schrödinger-Maxwell-Bloch (HNLS-MB) system for the optical pulse propagation in an erbium-doped fiber. Lax pair, Darboux transformation (DT), and generalised DT for the HNLS-MB system are constructed. Soliton solutions and rogue wave solutions are derived based on the DT and generalised DT, respectively. Properties of the solitons and rogue waves are graphically presented. The third-order dispersion parameter, fourth-order dispersion parameter, and frequency detuning all influence the characteristic lines and velocities of the solitons. The frequency detuning also affects the amplitudes of solitons. The separating function has no effect on the properties of the first-order rogue waves, except for the locations where the first-order rogue waves appear. The third-order dispersion parameter affects the propagation directions and shapes of the rogue waves. The frequency detuning influences the rogue-wave types of the module for the measure of polarization of resonant medium and the extant population inversion. The fourth-order dispersion parameter impacts the rogue-wave interaction range and also has an effect on the rogue-wave type of the extant population inversion. The value of separating function affects the spatial-temporal separation of constituting elementary rogue waves for the second-order and third-order rogue waves. The second-order and third-order rogue waves can exhibit the triangular and pentagon patterns under different choices of separating functions.

  7. Utilizing dual-pass composite-ring architecture for a stabilized and wavelength-selectable single-longitudinal-mode erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Zhuang, Yuan-Hong; Tsai, Ning; Chen, Jing-Heng; Chow, Chi-Wai

    2016-10-01

    In this paper, we propose using a dual-pass composite-ring construction for a stable and wavelength-tunable erbium-doped fiber (EDF) laser with a single-longitudinal-mode (SLM) output. According to the proposed laser architecture, a flattened output power spectrum within a 0.57 dB power variation can be obtained in the tuning range of 1530 to 1560 nm. In addition, the measured optical signal-to-noise ratio (OSNR) of each output wavelength can be larger than 62.1 dB. Furthermore, a stable and tunable dual-wavelength output of the proposed EDF laser scheme can also be achieved in the same operation range by using two optical filters inside a ring cavity. Here, the maximum and minimum mode spacing of dual-wavelength lasing in the proposed EDF laser are 28.01 and 1.04 nm, respectively. In this measurement, the SLM performance and output stability of the proposed EDF laser are analyzed and discussed experimentally.

  8. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng

    2009-06-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.

  9. Performance analysis and comparison of multipump Raman and hybrid erbium-doped fiber amplifier + Raman amplifiers using nondominated sorting genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Helder R. de O.; Benincá, Matheus O. L.; Castellani, Carlos E. S.; Pontes, Maria J.; Segatto, Marcelo E. V.; Silva, Jair A. L.

    2016-08-01

    This paper presents a performance analysis and comparison of optimized multipump Raman and hybrid erbium-doped fiber amplifier (EDFA) + Raman amplifiers, operating simultaneously at conventional (C) and long (L) bands, using multiobjective optimization based on evolutionary elitist nondominated sorting genetic algorithm. The amplifiers performance was measured in terms of on-off gain, ripple, optical signal-to-noise ratio (OSNR) and noise figure (NF), after propagating over 90 and 180 km of single-mode fiber (SMF). Numerical simulation results of the first analysis show that only three pumps are necessary to generate optimal gains in both amplifiers. Comparing the results of the second performance analysis, we conclude that, after 90 km SMF, the two amplifiers has the same on-off gain, if the total pump power (1807.1 mW) of the Raman amplifier is approximately double (100+994.7 mW) of the hybrid amplifier, when the EDFA is operating at 1480 nm with 5 m of doped fiber. Furthermore, the Raman amplifier needs a single laser with at most 741.1 mW, against 343.9 mW of the distributed Raman amplifier (DRA) pump in the hybrid system. Finally, the results of the last analysis, which considers only the EDFA + Raman amplifier, shows that with on-off gain of 26.14 dB, ripple close to 1.54 dB over a bandwidth of 66 nm and using three pumps lasers in the DRA the achieved OSNR was 39.6 dB with an NF lower than 3.3 dB, after 90 km of SMF.

  10. Stable multi-wavelength fiber lasers for temperature measurements using an optical loop mirror.

    PubMed

    Diaz, Silvia; Socorro, Abian Bentor; Martínez Manuel, Rodolfo; Fernandez, Ruben; Monasterio, Ioseba

    2016-10-10

    In this work, two novel stable multi-wavelength fiber laser configurations are proposed and demonstrated by using a spool of a single-mode fiber as an optical loop mirror and one or two fiber ring cavities, respectively. The lasers are comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The influence of the length of the spool of fiber on the laser stability both in terms of wavelength and laser output power was investigated. An application for temperature measurement is also shown.

  11. Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmed, M. H. M.; Ali, N. M.; Salleh, Z. S.; Rahman, A. A.; Harun, S. W.; Manaf, M.; Arof, H.

    2015-01-01

    A passive, stable and low cost Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), which are embedded in polyethylene oxide (PEO) film as a saturable absorber (SA). The film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation operating at wavelength of 1533.6 nm. With SWCNTs, the laser produces a stable pulse train with repetition rate and pulse width ranging from 9.52 to 33.33 kHz and 16.8 to 8.0 μs while varying the 980 nm pump power from 48.5 mW to 100.4 mW. On the other hand, with MWCNTs, the repetition rate and pulse width can be tuned in a wider range of 6.12-33.62 kHz and 9.5- 4.2 μs, respectively as the pump power increases from 37.9 to 120.6 mW. The MWCNTs produce the pulse train at a lower threshold and attain a higher repetition rate compared to the SWCNTs. This is due to thicker carbon nanotubes layer of the MWCNTs which provides more absorption and consequently higher damage threshold. The Q-switched EDFL produces the highest pulse energy of 531 nJ at pump power of 37.9 mW with the use of MWCNTs-PEO SA.

  12. Space-Based Erbium-Doped Fiber Amplifier Transmitters for Coherent, Ranging, 3D-Imaging, Altimetry, Topology, and Carbon Dioxide Lidar and Earth and Planetary Optical Laser Communications

    NASA Astrophysics Data System (ADS)

    Storm, Mark; Engin, Doruk; Mathason, Brian; Utano, Rich; Gupta, Shantanu

    2016-06-01

    This paper describes Fibertek, Inc.'s progress in developing space-qualified Erbium-doped fiber amplifier (EDFA) transmitters for laser communications and ranging/topology, and CO2 integrated path differential absorption (IPDA) lidar. High peak power (1 kW) and 6 W of average power supporting multiple communications formats has been demonstrated with 17% efficiency in a compact 3 kg package. The unit has been tested to Technology Readiness Level (TRL) 6 standards. A 20 W EDFA suitable for CO2 lidar has been demonstrated with ~14% efficiency (electrical to optical [e-o]) and its performance optimized for 1571 nm operation.

  13. Tunable and switchable multi-wavelength fiber laser based on semiconductor optical amplifier and twin-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Han, Jihee; Chung, Youngjoo

    2012-02-01

    Multi-wavelength fiber lasers have attracted a lot of interest, recently, because of their potential applications in wavelength-division-multiplexing (WDM) systems, optical fiber sensing, and fiber-optics instruments, due to their numerous advantages such as multiple wavelength operation, low cost, and compatibility with the fiber optic systems. Semiconductor optical amplifier (SOA)-based multi-wavelength fiber lasers exhibit stable operation because of the SOA has the property of primarily inhomogeneous broadening and thus can support simultaneous oscillation of multiple lasing wavelengths. In this letter, we propose and experimentally demonstrate a switchable multi-wavelength fiber laser employing a semiconductor optical amplifier and twin-core photonic crystal fiber (TC-PCF) based in-line interferometer comb filter. The fabricated two cores are not symmetric due to the associated fiber fabrication process such as nonuniform heat gradient in furnace and asymmetric microstructure expansion during the gas pressurization which results in different silica strut thickness and core size. The induced asymmetry between two cores considerably alters the linear power transfer, by seriously reducing it. These nominal twin cores form effective two optical paths and associated effective refractive index difference. The in-fiber comb filter is effectively constructed by splicing a section of TC-PCF between two single mode fibers (SMFs). The proposed laser can be designed to operate in stable multi-wavelength lasing states by adjusting the states of the polarization controller (PC). The lasing modes are switched by varying the state of PC and the change is reversible. In addition, we demonstrate a tunable multi-wavelength fiber laser operation by applying temperature changes to TC-PCF in the multi-channel filter.

  14. Switchable multi-wavelength fiber ring laser using a side-leakage photonic crystal fiber based filter

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Zou, Hui; Lu, Wenliang; Jian, Shuisheng

    2012-04-01

    A switchable multi-wavelength fiber ring laser is proposed and experimentally demonstrated with a novel side-leakage photonic crystal fiber (SLPCF) based filter incorporated into the ring cavity at room temperature. Stable multi-wavelength laser operations can be achieved due to the spatial mode beating, polarization hole burning and spectral hole burning effects. By adjusting the polarization controller appropriately, the laser can be switched among the single-, dual- and triple-wavelength lasing oscillations whose signal-to-noise ratio is up to 50 dB. In addition, the lasing wavelength can be also tuned and switched by applying the strain to the filter.

  15. Effect of temperature on the active properties of erbium-doped optical fibres

    SciTech Connect

    Kotov, L V; Ignat'ev, A D; Bubnov, M M; Likhachev, M E

    2016-03-31

    We have studied the effect of heating on the performance of erbium-doped fibre based devices and determined temperaturedependent absorption and emission cross sections of the erbium ion in silica glass. The results demonstrate that heating of fibres in claddingpumped high-power (∼100 W) erbium-doped fibre lasers causes no significant decrease in their efficiency. In contrast, superluminescent sources operating in the long-wavelength region (1565 – 1610 nm) are extremely sensitive to temperature changes. (fiber optics)

  16. 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.

    PubMed

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E

    2013-07-01

    Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.

  17. Switchable multi-wavelength Tm-doped mode-locked fiber laser.

    PubMed

    Yan, Zhiyu; Tang, Yulong; Sun, Biao; Liu, Tao; Li, Xiaohui; Ping, Perry Shum; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-05-01

    We propose and demonstrate for the first time a switchable tri-wavelength Tm-doped ultra-fast fiber laser based on nonlinear polarization evolution (NPE) technique. The NPE effect induces wavelength-dependent loss in the cavity that changes the homogeneous broadening of the effective gain to become inhomogeneous. This inhomogeneous effective gain spectral profile enables the multi-wavelength mode locking. Binary control of three bits can be realized by controlling the polarization in the compact fiber ring cavity. Such switchable laser has potential applications in optical signal processing and communication.

  18. Two-wave mixing by means of dynamic Bragg gratings recorded by saturation of absorption in erbium-doped fibers.

    PubMed

    Stepanov, S; Hernández, E; Plata, M

    2004-06-15

    We present experimental results of two-wave mixing in single-mode Er-doped optical fibers for which dynamic Bragg reflectance gratings are formed as a result of saturation of fiber-optic absorption (i.e., by means of the effect of spatial hole burning). The gratings are probed by the same recording waves at lambda approximately = 1549 nm and are detected as periodic changes of the intensity of light reflected from a Sagnac interferometer (with a piece of the doped fiber included) observed when periodic phase modulation is induced in one of the waves. Both rectangular and sinusoidal modulation were used, which permitted evaluation of the grating recording time (tau(g) approximately = 3 ms for OFS-Fitel EDF-HG980 fiber) and the grating amplitude, which proved to be approximately 6-7 times lower than expected from measurements of saturation of fiber-optic absorption by one wave only.

  19. Two-wave mixing by means of dynamic Bragg gratings recorded by saturation of absorption in erbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Hernández, E.; Plata, M.

    2004-06-01

    We present experimental results of two-wave mixing in single-mode Er-doped optical fibers for which dynamic Bragg reflectance gratings are formed as a result of saturation of fiber-optic absorption (i.e., by means of the effect of spatial hole burning). The gratings are probed by the same recording waves at lambda almost equal to 1549 nm and are detected as periodic changes of the intensity of light reflected from a Sagnac interferometer (with a piece of the doped fiber included) observed when periodic phase modulation is induced in one of the waves. Both rectangular and sinusoidal modulation were used, which permitted evaluation of the grating recording time (Tau_g almost equal to 3 ms for OFS-Fitel EDF-HG980 fiber) and the grating amplitude, which proved to be approximately 6-7 times lower than expected from measurements of saturation of fiber-optic absorption by one wave only.

  20. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.

    PubMed

    Xiao, Feng; Alameh, Kamal; Lee, Yong Tak

    2009-12-07

    A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.

  1. Two-wave mixing of orthogonally polarized waves via anisotropic dynamic gratings in erbium-doped optical fiber

    NASA Astrophysics Data System (ADS)

    Stepanov, Serguei; Hernández, Eliseo; Plata, Marcos

    2005-06-01

    We report on observations of transient two-wave mixing (TWM) of orthogonally polarized waves counterpropagating through an Er-doped single-mode optical fiber. Experiments were performed in a 2-m-long moderately birefringent (with beat length ~2 cm) Er-doped fiber without optical pumping at the laser wavelength 1549 nm. The transient TWM signal observed for crossed linear polarizations of the recording waves oriented along two orthogonal birefringence axes of the fiber (i.e., for the interference pattern with spatially modulated state of light polarization only) proved to be approximately half of that observed for parallel polarizations. Direct measurements of the transient polarization hole-burning effect (i.e., that observed for fast switching of the input light linear polarization between two orthogonal orientations of the doped fiber birefringence axes) allow us to attribute formation of the corresponding anisotropic dynamic grating to this effect.

  2. Passively Q-switched erbium doped fiber laser based on double walled carbon nanotubes-polyvinyl alcohol saturable absorber

    NASA Astrophysics Data System (ADS)

    Mohammed, D. Z.; Al-Janabi, A. H.

    2016-11-01

    A passively Q-switched Er-doped fiber laser with a ring cavity operating at 1568.6 nm is demonstrated using a saturable absorber based on a double walled carbon nanotubes film, which is prepared using polyvinyl alcohol as a host polymer. The Q-switching operation is achieved at a low pump threshold of 40 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 14.7 KHz to 47 KHz as the pump power increases from threshold to 203 mW. The minimum recorded pulse width was 4.6 µs at 203 mW, while the highest energy obtained was 102.1 nJ.

  3. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator.

    PubMed

    Mescia, Luciano; Bia, Pietro; De Sario, Marco; Di Tommaso, Annalisa; Prudenzano, Francesco

    2012-03-26

    A dedicated 3D numerical model based on coupled mode theory and solving the rate equations has been developed to analyse, design and optimize an optical amplifier obtained by using a tapered fiber and a Er³⁺-doped chalcogenide microsphere. The simulation model takes into account the main transitions among the erbium energy levels, the amplified spontaneous emission and the most important secondary transitions pertaining to the ion-ion interactions. The taper angle of the optical fiber and the fiber-microsphere gap have been designed to efficiently inject into the microsphere both the pump and the signal beams and to improve their spatial overlapping with the rare earth doped region. In order to reduce the computational time, a detailed investigation of the amplifier performance has been carried out by changing the number of sectors in which the doped area is partitioned. The simulation results highlight that this scheme could be useful to develop high efficiency and compact mid-infrared amplifiers.

  4. Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization.

    PubMed

    Verly, Pierre G

    2002-06-01

    Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.

  5. Optical decoherence and spectral diffusion in an erbium-doped silica glass fiber featuring long-lived spin sublevels

    NASA Astrophysics Data System (ADS)

    Veissier, Lucile; Falamarzi, Mohsen; Lutz, Thomas; Saglamyurek, Erhan; Thiel, Charles W.; Cone, Rufus L.; Tittel, Wolfgang

    2016-11-01

    Understanding decoherence in cryogenically cooled rare-earth-ion doped glass fibers is of fundamental interest and a prerequisite for applications of these material in quantum information applications. Here we study the coherence properties in a weakly doped erbium silica glass fiber motivated by our recent observation of efficient and long-lived Zeeman sublevel storage in this material and by its potential for applications at telecommunication wavelengths. We analyze photon echo decays as well as the potential mechanisms of spectral diffusion that can be caused by coupling with dynamic disorder modes that are characteristic for glassy hosts, and by the magnetic dipole-dipole interactions between Er3 + ions. We also investigate the effective linewidth as a function of magnetic field, temperature, and time, and then present a model that describes these experimental observations. We highlight that the operating conditions (0.6 K and 0.05 T) at which we previously observed efficient spectral hole burning coincide with those for narrow linewidths (1 MHz)—an important property for applications that has not been reported before for a rare-earth-ion doped glass.

  6. A C IIH II frequency-stabilized erbium-doped fiber laser and its application to coherent communication

    NASA Astrophysics Data System (ADS)

    Yoshida, Masato; Kasai, Keisuke; Hongo, Jumpei; Nakazawa, Masataka

    2007-02-01

    We have described a frequency-stabilized, polarization-maintained erbium fiber ring laser. This laser has no frequency modulation at the output beam. A tunable single-mode laser has also been newly developed by simultaneously controlling a tunable FBG with a 1.5 GHz bandwidth and a PZT in the cavity. The frequency stability reached as high as 1.3 x 10 -11 for an integration time of 1 s and the linewidth was as narrow as 4 kHz. Using this coherent laser as a light source, we successfully transmitted a 20 Msymbol/s coherent quadrature amplitude modulation (QAM) signal over 525 km and achieved error free transmission.

  7. Double spacing multi-wavelength L-band Brillouin erbium fiber laser with Raman pump

    NASA Astrophysics Data System (ADS)

    Ahmad, B. A.; Al-Alimi, A. W.; Abas, A. F.; Mokhtar, M.; Harun, S. W.; Mahdi, M. A.

    2012-11-01

    A new multi-wavelength Brillouin erbium fiber laser (BEFL), which operates in the L-band region with double frequency Brillouin spacing, is demonstrated. This design uses a Raman pump (RP) and a piece of 2 km highly nonlinear fiber as a gain medium. The double frequency spacing is achieved by employing a dual ring configuration, which is formed by utilizing a four-port circulator that removes the odd-order Stoke signals. Twenty Stokes and seventeen anti-Stokes lines, which have optical signal to noise ratio (OSNR) greater than 15 dB, are generated simultaneously with a spacing of 0.16 nm when Brillouin pump and RP powers were fixed at the optimum values of 8 dBm and 40 mW, respectively. The BEFL can be tuned in the range between 1591 nm to 1618 nm. The proposed configuration increases the number of lines generated and the OSNR, and thus allows a compact multi-wavelength laser source to be realized.

  8. Tunable multi-wavelength SOA based linear cavity dual-output port fiber laser using Lyot-Sagnac loop mirror.

    PubMed

    Ummy, M A; Madamopoulos, N; Joyo, A; Kouar, M; Dorsinville, R

    2011-02-14

    We propose and demonstrate a simple dual port tunable from the C- to the L-band multi-wavelength fiber laser based on a SOA designed for C-band operation and fiber loop mirrors. The laser incorporates a polarization maintaining fiber in one of the fiber loop mirrors and delivers multi-wavelength operation at 9 laser lines with a wavelength separation of ~2.8 nm at room temperature. We show that the number of lasing wavelengths increases with the increase of the bias current of the SOA. Wavelength tunability from the C to L-band is achieved by exploiting the gain compression of a SOA. Stable multi-wavelength operation is achieved at room temperature without temperature compensation techniques, with measured power and the wavelength stability within < ±0.5 dB and 
±0.1 nm, respectively.

  9. Erbium-doped aluminophosphosilicate optical fibres

    SciTech Connect

    Likhachev, M E; Bubnov, M M; Zotov, K V; Medvedkov, O I; Lipatov, D S; Yashkov, M V; Gur'yanov, Aleksei N

    2010-09-10

    We have studied the active properties of erbium-doped aluminophosphosilicate (APS) core fibres in wide ranges of erbia, alumina and phosphorus pentoxide concentrations. The absorption and luminescence spectra of the P{sub 2}O{sub 5}- or Al{sub 2}O{sub 3}-enriched erbium-doped APS fibres are shown to be similar to those of the erbium-doped fibres singly doped with phosphorus pentoxide or alumina, respectively. The formation of AlPO{sub 4} in APS fibres leads not only to a reduction in the refractive index of the glass but also to a marked increase in Er{sub 2}O{sub 3} solubility in silica. (optical fibres)

  10. Temporal characterization of a multi-wavelength Brillouin-erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Lambin Iezzi, Victor; Büttner, Thomas F. S.; Tehranchi, Amirhossein; Loranger, Sébastien; Kabakova, Irina V.; Eggleton, Benjamin J.; Kashyap, Raman

    2016-05-01

    This paper provides the first detailed temporal characterization of a multi-wavelength-Brillouin-erbium fiber laser (MWBEFL) by measuring the optical intensity of the individual frequency channels with high temporal resolution. It is found that the power in each channel is highly unstable due to the excitation of several cavity modes for typical conditions of operation. Also provided is the real-time measurements of the MWBEFL output power for two configurations that were previously reported to emit phase-locked picosecond pulse trains, concluded from their autocorrelation measurements. Real-time measurements reveal a high degree of instability without the formation of a stable pulse train. Finally, we model the MWBEFL using coupled wave equations describing the evolution of the Brillouin pump, Stokes and acoustic waves in the presence of stimulated Brillouin scattering, and the optical Kerr effect. A good qualitative consistency between the simulation and experimental results is evident, in which the interference signal at the output shows strong instability as well as the chaotic behavior due to the dynamics of participating pump and Stokes waves.

  11. Surface roughness prediction model and experimental results based on multi-wavelength fiber optic sensors.

    PubMed

    Zhu, Nan-Nan; Zhang, Jun

    2016-10-31

    The surface roughness prediction model based on a support vector machine was proposed and the multi-wavelength fiber optic sensor was established. The specimens with different surface roughness selected as the test samples were analyzed by using the prediction model when the incident wavelengths were 650 nm and 1310 nm, respectively. The working distance of 2.5 mm ~3.5 mm was chosen as the optimum measurement distance. The experimental results indicate that the error range of surface roughness is 0.74% ~7.56% at 650 nm, and the error range of surface roughness is 1.03% ~5.92% at 1310 nm. The average relative error is about 2.669% at 650 nm, while it is about 2.431% at 1310 nm. The error of roughness measurement is less than 3% by using the model, which is acceptable. The error of surface roughness based on the prediction model is smaller than that by using the characteristic curves between surface roughness and the scattering intensity ratio.

  12. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  13. Single Brillouin frequency shifted S-band multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier in ring cavity

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Hambali, N. A. M. Ahmad; Shahimin, M. M.; Wahid, M. H. A.; Anwar, Nur Elina; Alahmed, Zeyad A.; Chyský, J.

    2016-10-01

    This paper is focusing on simulation and analyzing of S-band multi-wavelength Brillouin-Raman fiber laser performance utilizing fiber Bragg grating and Raman amplifier in ring cavity. Raman amplifier-average power model is employed for signal amplification. This laser system is operates in S-band wavelength region due to vast demanding on transmitting the information. Multi-wavelength fiber lasers based on hybrid Brillouin-Raman gain configuration supported by Raman scattering effect have attracted significant research interest due to its ability to produced multi-wavelength signals from a single light source. In multi-wavelength Brillouin-Raman fiber, single mode fiber is utilized as the nonlinear gain medium. From output results, 90% output coupling ratio has ability to provide the maximum average output power of 43 dBm at Brillouin pump power of 20 dBm and Raman pump power of 14 dBm. Furthermore, multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier is capable of generated 7 Brillouin Stokes signals at 1480 nm, 1510 nm and 1530 nm.

  14. Tunable C- and L-band erbium-doped fiber ring lasers for performance testing of a wavelength-division multiplexing access network with injection-locked Fabry-Pérot laser diodes

    NASA Astrophysics Data System (ADS)

    Lin, Zih-Rong; Liu, Cheng-Kuang; Keiser, Gerd; Tseng, Chih-Lung; Chiu, Chia-Ming

    2010-10-01

    A widely wavelength-tunable erbium-doped-fiber laser (T-EDFL) located at a central office is proposed for the bidirectional high-speed performance testing of wavelength-division-multiplexing access networks in which injection-locked Fabry-Pérot laser diodes located at optical network units are used for upstream transmissions. The T-EDFL not only generates laser light for downstream transmission testing, but also serves as the injection source for upstream transmission testing. It has a wide tunable range of 64 nm (1540 to 1604 nm), a high output power of 2.2 dBm, and a good signal-to-noise ratio above 46 dB. For 10-Gb/s downstream and 1.25-Gb/s upstream transmissions over a 10-km single-mode fiber (SMF), power penalties at a bit error rate of 10-9 are less than 0.94 dB and 0.76 dB (1.26 dB and 1.68 dB) for downstream and upstream transmissions at C-band (at L-band) wavelengths, respectively. In the transmissions over a 25-km SMF, the penalties are 2.24 dB and 2.36 dB (3.66 dB and 4.18 dB) at C-band (at L-band) for downstream and upstream transmissions, respectively.

  15. Measurement of nonlinear refractive index based on multiple configuration of FBG in generating multi wavelength

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Nizam; Shaari, Sahbudin; Ehsan, Abang Annuar; Menon, Susthitha; Zakaria, Osman

    2015-06-01

    A reliable method for measurement of the nonlinear refractive index through application of multi wavelength phenomenon. Multi wavelength realisation based on Erbium doped fibre laser (EDFL) is proposed and experimentally demonstrated. A combination of 15 m high efficiency Erbium doped fibre (EDF) and a 20 m Photonic Crystal Fibre (PCF) as main catalyst to suppress the homogenous broadening of EDF and to obtain highly stability of multi wavelength through insertion of a set of fibre Bragg gratings (FBGs) in the cavity. This PCF has zero dispersion of 1040 nm which mismatch from transmission window of 1550 nm. A reliable repeatability of multi wavelength based on multiple configuration of FBGs less than 0.2% obtained. This consistent results influence in determination of nonlinear refractive index by relation of four wave mixing (FWM).

  16. Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.

    2009-11-01

    Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  17. Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Lv, Jingsheng; Qi, Haifeng; Song, Zhiqiang; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding

    2016-09-01

    A narrow linewidth laser configuration based on distributed feedback fiber lasers (DFB-FL) with eight wavelengths in the international telecommunication union (ITU) grid is presented and realized. In this laser configuration, eight phase-shifted gratings in series are bidirectionally pumped by two 980-nm laser diodes (LDs). The final laser output with over 10-mW power for each wavelength can be obtained, and the maximum power difference within eight wavelengths is 1.2 dB. The laser configuration with multiple wavelengths and uniform power outputs can be very useful in large scaled optical fiber hydrophone fields.

  18. High sensitive micro-displacement intensity fiber sensor by using a multiwavelength erbium doped fiber ring laser based on optical add-drop multiplexers

    NASA Astrophysics Data System (ADS)

    Perez-Herrera, R. A.; Leandro, D.; Lopez-Amo, M.

    2014-05-01

    In this work, a wavelength division multiplexed fiber ring laser, based on optical add-drop multiplexers to interconnect intensity sensors has been experimentally demonstrated. Three different laser lines were obtained simultaneously all with an optical signal to noise ratio higher than 30dB. This proposed configuration is based on commercial devices and is adapted to the ITU channels normative. By using this configuration each sensor was associated with a different wavelength directly offered by each OADM and a reference wavelength was also included in order to distinguish between power variations induced by the transducer or to detect a fiber failure. This sensor system has been experimentally verified by using microbending sensors obtaining experimental slope sensitivity as good as -0.327dB/μm.

  19. Tunable multi-wavelength thulium-doped fiber laser incorporating two-stage cascaded Sagnac loop comb filter

    NASA Astrophysics Data System (ADS)

    Zhu, Lianqing; He, Wei; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2016-08-01

    A tunable multi-wavelength narrow-linewidth thulium-doped fiber laser employing two-stage cascaded Sagnac loop mirrors is proposed and experimentally demonstrated. The designed fiber laser is composed of a pump source, wavelength division multiplex, circulator, thulium-doped fiber, polarization controllers (PCs), couplers and polarization-maintaining fibers (PMFs). Two cascaded Sagnac loops are used as the cavity reflector and filter, and the proposed filter is fabricated using two sections of PMFs with 2-m and 1-m lengths, respectively. In the experiment, the laser threshold is 110 mW, and laser can emit single, double, triple, quadruple and quintuple wavelengths in the spectral range of 1873-1901 nm through the simultaneous adjustment of the two PCs. The power fluctuations and 3-dB linewidth are less than 2.1 dB and 0.2 nm, respectively, over 10 min at room temperature, and the side-mode suppression ratio is greater than 20 dB. The proposed laser will be useful in various fields, such as spectral analysis, fiber sensing and optical communication.

  20. The thermoluminescence glow curve and the deconvoluted glow peak characteristics of erbium doped silica fiber exposed to 70-130 kVp x-rays.

    PubMed

    Alawiah, A; Bauk, S; Marashdeh, M W; Nazura, M Z N; Abdul-Rashid, H A; Yusoff, Z; Gieszczyk, W; Noramaliza, M N; Adikan, F R Mahamd; Mahdiraji, G A; Tamchek, N; Muhd-Yassin, S Z; Mat-Sharif, K A; Zulkifli, M I; Omar, N; Wan Abdullah, W S; Bradley, D A

    2015-10-01

    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF.

  1. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Jagiello, J.; Lipinska, L.

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  2. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber.

    PubMed

    Huang, Yizhong; Luo, Zhengqian; Li, Yingyue; Zhong, Min; Xu, Bin; Che, Kaijun; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian

    2014-10-20

    We propose and demonstrate a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼ 2% and the saturable optical intensity of ∼ 10 MW/cm(2). By further inserting the filmy MoS2-SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μs and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser.

  3. All-fiber multi-wavelength passive Q-switched Er/Yb fiber laser based on a Tm-doped fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Alaniz-Baylón, J.; Ibarra-Escamilla, B.; López-Estopier, R.; Kuzin, E. A.

    2017-03-01

    We report on a ring cavity, multi-wavelength, passive Q-switched erbium–ytterbium double cladding fiber laser based on the use of an unpumped segment of Tm-doped fiber acting as a saturable absorber for passive Q-switched pulse generation and a wavelength filter for multi-wavelength laser generation. By performing pump power variations from 1.6 to 9.8 W, stable Q-switched laser pulses are observed in a repetition rate from 135.8 to 27.5 kHz at room temperature. With a maximal repetition rate of 135.8 kHz, the minimum pulse duration of 430 ns is obtained. The maximal average output power of 2.2 W is reached with a pump power of 9.8 W. The maximum pulse energy was 16.4 µJ and the average output power slope efficiency is ~24.8%. The obtained results demonstrate a laser performance with extended range of high repetition rate and improved stability.

  4. Wavelength-tunable actively mode-locked erbium-doped fiber ring laser using a distributed feedback semiconductor laser as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-07-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a distributed feedback semiconductor laser as an intensity mode locker and a tunable optical filter. Very stable optical pulse trains at gigabit repetition rates were generated using harmonica mode locking. The supermode noise was suppressed to 60 dB below the signal level and the root-mean-square timing jitter (0.45 kHz-1 MHz) was found to be about 1% of the pulse duration. A continuous wavelength tuning range of 1.8 nm was achieved by changing the semiconductor laser temperature from 11.4 to 30 °C.

  5. Comparisons of multi-wavelength oscillations using Sagnac loop mirror and Mach-Zehnder interferometer for ytterbium doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Moghaddam, M. R. A.; Harun, S. W.; Shahi, S.; Lim, K. S.; Ahmad, H.

    2010-02-01

    A multiwavelength Ytterbium-doped fiber ring laser operating at 1030 nm region is demonstrated using a Sagnac loop mirror and a Mach-Zehnder interferometer. We report the Performance comparisons of multi-wavelength oscillations in Yb3+ doped fiber lasers (YDFL) with typical commercial ytterbium doped silica fibers. By adjusting the polarization controller (PC), a widely tunable laser range of 22 nm from 1030 nm to 1050 nm is obtained. The Mach-Zehnder interferometer (MZI) design has exhibited simplicity in the operation for controlling the smallest wavelength spacing compared to Sagnac loop mirror method. In our observations, the smallest achieved stable wavelength spacing in Sagnac loop mirror setup and MZI setup were 2.1 nm and 0.7 nm, respectively. In case of nine-wavelength operation with a MZI setup, the stability, Full Width at Half Maximum (FWHM) and side mode suppression ratio (SMSR) of laser lines are not affected by increasing pump power, While for above four wavelength operation, the laser stability with Sagnac loop mirror becomes worse specially for higher input pump power and the power fluctuation among the wave-lengths would be also slightly larger.

  6. Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb{sub 2}Te{sub 3} topological insulator

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Grodecki, K.

    2014-06-23

    In this Letter, we demonstrate a mode-locked Er-doped fiber laser incorporating antimony telluride (Sb{sub 2}Te{sub 3}) topological insulator (TI) as a saturable absorber (SA). The laser was capable of generating 270 fs-short soliton pulses at 1560 nm wavelength, which are the shortest solitons generated with a TI-based saturable absorber so far. In order to form a saturable absorber, a bulk piece of Sb{sub 2}Te{sub 3} was deposited on a side-polished single-mode fiber with the presence of a low refractive index polymer. Such saturable absorber exhibits modulation depth at the level of 6% with less than 3 dB of non-saturable losses. Our study shows that TI-based saturable absorbers with evanescent field interaction might compete with SAs based on carbon nanomaterials, like graphene or nanotubes. Additionally, thanks to the interaction with the evanescent field, the material is not exposed to high optical power, which allows to avoid optical or thermal damage.

  7. Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures

    NASA Astrophysics Data System (ADS)

    Bravo Acha, M.; DeMiguel-Soto, V.; Ortigosa, A.; Lopez-Amo, M.

    2014-05-01

    A novel interrogation system for multiple fiber optic sensor technologies and based on a fully-switchable multiwavelength fiber laser (MWFL) is proposed and experimentally demonstrated. The MWFL can generate any wavelength combination with a minimum emission line distance up to 50 GHz fitting the ITU grid specifications. On the other hand, as proof of concept sensor network, two different networks were multiplexed by using a remote powered by light fiber optic switch. They are based on two different sensor technologies. One of them based on PCF intensity sensors and multiplexed by using an 8 port WDM and the other one based on wavelength temperature/strain FBG sensors.

  8. Compact Mach-Zehnder interferometer based on photonic crystal fiber and its application in switchable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-08-01

    The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  9. Infrared luminescence from spark-processed silicon and erbium-doped spark-processed silicon

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghoon

    Spark-processed silicon has substantial potential as an optical material. In the past 15 years, our group has investigated a multitude of properties of this unique material, concentrating mostly on the visible and near UV spectral region. The present study expands our endeavors to infrared photoluminescence (PL) of undoped spark-processed silicon. A broad infrared photoluminescence peak at around 945 nm under Ar ion laser excitation was observed at room temperature when investigating a spark-processed layer on a silicon wafer. This light emission is interpreted to be the result of energy transfers between certain energy levels involving the spark-processed silicon matrix. The infrared PL intensity of spark-processed silicon was found to be proportional to the excitation energy. However, telecommunication requires presently a light emission near 1.54 mum (because fiber-optics "conductors" have a minimum in absorption at this wavelength). This cannot be achieved with pure spark-processed silicon. Therefore spark-processed silicon needs to be doped with a rare-earth element such as erbium to shift the emission to longer wavelengths. It is known that erbium has a light emission from intrashell energy transition, that is, from 4I13/2 →4I15/2. Erbium was deposited on a silicon wafer followed by spark-processing, which enables diffusion of some erbium into the SiOx matrix, thus achieving opto-electronically active spark-processed silicon. Rapid thermal annealing enhances the 1.54 mum wavelength intensity from erbium-doped spark-processed silicon. The processing conditions that result in the most efficient photoluminescence have been established and will be presented in this dissertation. In contrast to erbium-doped crystalline silicon, whose light emission is highly affected by temperature (103 times reduction in intensity when heating from 12 K to 150 K), the intensity of erbium-doped spark-processed silicon decreases by only a factor of 4 when heated from 15 K to room

  10. Numerical Modelling of C-Band Bismuth-Based Erbium Doped Amplifier

    NASA Astrophysics Data System (ADS)

    Parvizi, R.; Ali, N. M.; Harun, S. W.; Ahmad, H.

    2011-03-01

    Multi A performance of the Bismuth-based Erbium-doped fiber amplifier (Bi-EDFA) is experimentally and theoretically investigated using 1480 nm forward pumping scheme. In the theoretical analysis, the rate and power propagation equations are solved to examine the effect of fiber length on the bandwidth of the gain spectra. At C-band region, the small signal gain of the Bi-EDFA varies from 20 to 23 dB with 49 cm long Bi-EDF and 150 mW of 1480 nm pump power. It is shown that the calculated gain and noise figure are in good agreement with the experimental results, verifying the feasibility of our theoretical model. However, the experimental result shows a relatively lower gain and higher noise figure compared to the theoretical result due to the spurious reflection in the cavity and insertion loss of the Bi-EDF which was neglected in our theoretical model.

  11. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    SciTech Connect

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Lipatov, D S; Vechkanov, N N; Guryanov, Aleksei N

    2012-05-31

    We report cladding-pumped erbium-doped fibre laser and amplifier configurations. Through fibre design optimisation, we have achieved a record-high laser slope efficiency, 40 % with respect to absorbed pump power ({lambda} = 976 nm), and an output power of 7.5 W. The erbium-doped fibre amplifier efficiency reaches 32 %.

  12. Erbium-doped silicon-oxycarbide materials for advanced optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Gallis, Spyros

    As a novel silicon based material, amorphous silicon oxycarbide (a-SiC xOyHz) has found many important applications (e.g. as a low-k material for interconnects) in Si microelectronics. This Ph.D. thesis work has explored another potential application of amorphous silicon oxycarbide: as a silicon-based host material for planar erbium-doped waveguide amplifiers (EDWAs) that operate at the telecommunications wavelength of 1540 nm. Such EDWAs are an important component of planar photonic integrated circuits being developed for implementation of the fiber-to-the-home (FTTH) technology. Furthermore, these Si-based EDWAs could be combined with other Si photonic devices (e.g. light sources, detectors, modulators) for achieving opto-electronic integration on Si chips, or silicon micro/nanophotonics. This thesis will start with basics about Er-doped systems and material challenges in the design of EDWAs. A detailed study of the structural and optical properties of a-SiCxOyHz materials under various deposition and processing conditions, concerning several aspects, such as thin film composition, chemical bonding, refractive index and optical gap, will be presented and discussed. Lastly, this work will focus on the photoluminescence (PL) properties of erbium-doped amorphous silicon oxycarbides (a-SiCxOyHz:Er). Results of both Er-related (near infrared ˜1540 nm) and matrix-related (visible) luminescence properties will be presented, and mechanisms leading to efficient excitation of Er ions in the materials will be discussed. This work indicates that a-SiC xOyHz:Er can be a promising matrix for realizing high-performance EDWAs using inexpensive broadband light sources.

  13. Erbium-doped zinc-oxide waveguide amplifiers for hybrid photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    O'Neal, Lawrence; Anthony, Deion; Bonner, Carl; Geddis, Demetris

    2016-02-01

    CMOS logic circuits have entered the sub-100nm regime, and research is on-going to investigate the quantum effects that are apparent at this dimension. To avoid some of the constraints imposed by fabrication, entropy, energy, and interference considerations for nano-scale devices, many have begun designing hybrid and/or photonic integrated circuits. These circuits consist of transistors, light emitters, photodetectors, and electrical and optical waveguides. As attenuation is a limiting factor in any communications system, it is advantageous to integrate a signal amplifier. There are numerous examples of electrical amplifiers, but in order to take advantage of the benefits provided by optically integrated systems, optical amplifiers are necessary. The erbium doped fiber amplifier is an example of an optical amplifier which is commercially available now, but the distance between the amplifier and the device benefitting from amplification can be decreased and provide greater functionality by providing local, on-chip amplification. Zinc oxide is an attractive material due to its electrical and optical properties. Its wide bandgap (≍3.4 eV) and high refractive index (≍2) make it an excellent choice for integrated optics systems. Moreover, erbium doped zinc oxide (Er:ZnO) is a suitable candidate for optical waveguide amplifiers because of its compatibility with semiconductor processing technology, 1.54 μm luminescence, transparency, low resistivity, and amplification characteristics. This research presents the characterization of radio frequency magnetron sputtered Er:ZnO, the design and fabrication of integrated waveguide amplifiers, and device analysis.

  14. Efficiency and tuning of the erbium-doped glass lasers

    NASA Astrophysics Data System (ADS)

    Fromzel, Victor A.; Kuchma, Igor G.; Lunter, Sergei G.; Mak, Artur A.; Petrov, Aleksey A.

    1992-11-01

    Erbium-doped glass lasers operated near by 1 5 mm wavelength are helpful for medicine and biology optical communication and eye-safe range finder systems. Advances in erbium-doped glass especially phosphate glass and lasers based on it have been extensive in recent years. Nowadays we can approve that erbium glass lasers are not worse compared with the neodymium ones by many spectroscopic and laser properties. Developments of the energy spectral and temporal characteristics and tuning near the 1500 nm wavelength of the erbium - doped phosphate glass lasers are reported. 2. SPECTROSCOPIC PECULIARITIES OF THE ERBIUM DOPED GLASS Phosphate erbium-doped glass possess a number of spectroscopic peculiarities as a laser active medium. Energy level diagrams of Er3 ions and two other its co-doped ions -Yb3 and Cr3 and the actual transitions (radiate and nonradiate) between them are shown in Fig. 1 (a). Absorption spectrum of that phosphate glass is also shown in Fig. 1 (b) . One can see that the whole pum energy is absorbed only by coactivators - Yb Cr - Yb E r and Cr3 - and then quickly and efficiently transferred from them to Er3 ions. Thus ''7 lasing and pumping of the erbium glass are ''4 realized by means of quite different ions. 4 Thanks to that one can get a low laser threshold t1/2 usin a small doping of Er3 ions (about 1019 I3/2 cm ) and the same time have a high efficient 4T pumoing by using the big concentration of ions 15/2 Yb3 and Cr3 in them (1021 cm3 and 1020 b cm3 accordingly). Obstacles for high efficiency of the lasers may be connected with either increase of the back pump energy transfer from Yb3 ions to Cr3 ones by too large concentration of Cr3 ions or thermal distortions of the active medium. Optimal pumping conditions for lamp pumped Er - doped glass laser differ from neodymium ones. It is explained by the important role of pump energy transfer processes in Er - doped glass. In order to have of high efficient pumping it is necessary that energy transfer

  15. Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser assisted by multiple four-wave mixing processes in a ring cavity

    NASA Astrophysics Data System (ADS)

    Shirazi, M. R.; Mohamed Taib, J.; De La Rue, R. M.; Harun, S. W.; Ahmad, H.

    2015-03-01

    Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser (MBRFL) assisted by four-wave mixing have been investigated through the development of Stokes and anti-Stokes lines under different combinations of Brillouin and Raman pump power levels and different Raman pumping schemes in a ring cavity. For a Stokes line of order higher than three, the threshold power was less than the saturation power of its last-order Stokes line. By increasing the Brillouin pump power, the nth order anti-Stokes and the (n+4)th order Stokes power levels were unexpectedly increased almost the same before the Stokes line threshold power. It was also found out that the SBS threshold reduction (SBSTR) depended linearly on the gain factor for the 1st and 2nd Stokes lines, as the first set. This relation for the 3rd and 4th Stokes lines as the second set, however, was almost linear with the same slope before SBSTR -6 dB, then, it approached to the linear relation in the first set when the gain factor was increased to 50 dB. Therefore, the threshold power levels of Stokes lines for a given Raman gain can be readily estimated only by knowing the threshold power levels in which there is no Raman amplification.

  16. Stable power multi-wavelength fibre laser based on four-wave mixing in a short length of highly non-linear fibre

    NASA Astrophysics Data System (ADS)

    Awang, N. A.; Zulkifli, M. Z.; Latif, A. A.; Harun, S. W.; Ahmad, H.

    2011-07-01

    A multi-wavelength fibre laser utilizing the four-wave mixing (FWM) effect in a 100 m long highly non-linear fibre (HNLF) is proposed and demonstrated. The multi-wavelength fibre laser is configured in a ring cavity and only needs a low power erbium doped fibre amplifier (EDFA) as the gain medium to generate 11 lines in the range of 1582-1600 nm with a signal-to-noise ratio (SNR) of 43 dB. The proposed system is very stable, with only minor fluctuations of 0.1 dB in the output power of the generated multi-wavelengths observed for a test period of more than an hour. The multi-wavelength fibre laser has many potential applications in optical communications and optical sensing systems.

  17. Spectroscopic Properties of Neodymium and Erbium-Doped Magnesium Oxide Ceramics

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7441 ● SEPT 2015 US Army Research Laboratory Spectroscopic Properties of Neodymium and Erbium-Doped Magnesium Oxide...Laboratory Spectroscopic Properties of Neodymium and Erbium-Doped Magnesium Oxide Ceramics by T Sanamyan and M Dubinskii Sensors and...REPORT DATE (DD-MM-YYYY) Sep 2015 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Spectroscopic Properties of Neodymium

  18. Erbium doped ceramic nanofiber synthesis for thermophotovoltaic selective emitter applications

    NASA Astrophysics Data System (ADS)

    Trifon, George Sebastian

    This thesis explored the development of isothermal selective emitters for harvesting thermal energy to be used in conjunction with photovoltaic cells. The selective emitters were Erbium doped Titania nanofibers and Erbium and Yttrium doped Titania nanofibers that may be used with a Gallium Antimonide photovoltaic cell. The ultimate aim of this research was to develop Erbium doped Yttrium Titanate nanofibers. This research is of importance in recovering heat from a number of resources including power plant boilers. The thermal energy lost in the boilers can be as high as 20% of the input fuel energy and a recovery of this energy would boost the thermal performance of the power plants. It has been observed that the temperatures of the flue gas reaching the heat recovery region may be higher than 1600K and the radiation and convective losses in the burner occurs at even higher temperatures. Thermophotovoltaics (TPV) offer a solution in terms of converting the thermal energy to electricity without any moving parts. The efficiencies of conventional TPVs are very small (10-20%) and thus not a solution as the primary electric generator. However, in the field of the harvesting of waste energy, TPVs have tremendous potential. In order to improve efficiencies, Erbia (which can absorb thermal energy and convert it to electromagnetic radiation with a narrow wavelength spectrum with mean wavelength of 1500nm) can be used as a selective emitter with GaSb PV cells (which have its maximum efficiency in the same wavelength range) as the collector. In order to further improve its performance, the Erbia was proposed to be supported by Titania, which is transparent to IR in this range. However, past research has shown that the Erbia doped Titania nanofibers essentially have Erbium in the form of pyrochlore Erbium Titanate. Thus the research focused on a way to synthesize ErxY2-xTi 2O7 pyrochlore structure to act as the selective emitter. The self-supporting composite was designed to

  19. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  20. Photo-annealing effect of gamma-irradiated erbium-doped fibre by femtosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Hsiung Chang, Sheng; Liu, Ren-Young; Lin, Chu-En; Chou, Fong-In; Tai, Chao-Yi; Chen, Chii-Chang

    2013-12-01

    In this work, a photo-annealing effect of gamma-irradiated erbium-doped glass fibre is investigated. Two commercial erbium-doped fibres (EDFs) with different doping concentrations were sealed inside a chamber with a cobalt-60 gamma source for 6 h to give an accumulated dose of 3.18 kGy. A tunable femtosecond pulsed laser with a repetition rate of 80 MHz was then used to pump EDF to generate 1550 nm fluorescence and green up-conversion emission, resulting in the annealing effect of the gamma-irradiated EDF. The fluorescence power of gamma-irradiated EDF with a moderate level of doping was almost returned to the initial state by photo-annealing, unlike that of a heavily doped EDF. This finding may facilitate the development of anti-irradiated superfluorescence fibre source for space navigation.

  1. Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass.

    PubMed

    Fernandez, T Toney; Della Valle, G; Osellame, R; Jose, G; Chiodo, N; Jha, A; Laporta, P

    2008-09-15

    We report on fs-laser micromachining of active waveguides in a new erbium-doped phospho-tellurite glass by means of a compact cavity-dumped Yb-based writing system. The spectroscopic properties of the glass were investigated, and the fs-laser written waveguides were characterized in terms of passive as well as active performance. In particular, internal gain was demonstrated in the whole C+L band of optical communications (1530- 1610 nm).

  2. Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators

    SciTech Connect

    Lei, Fuchuan; Peng, Bo; Özdemir, Şahin Kaya Yang, Lan; Long, Gui Lu

    2014-09-08

    We report Fano-like asymmetric resonances modulated by optical gain in a whispering-gallery-mode resonator fabricated from erbium-doped silica. A time-dependent gain profile leads to dynamically varying sharp asymmetric resonances with features similar to Fano resonances. Depending on the scan speed of the frequency of the probe laser and the pump-probe power ratio, transmission spectra of the active microcavity exhibit a resonance dip, a resonance peak, or a Fano-like resonance.

  3. Multi-wavelength fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Lo, Pei-An; Cho, Jaedu; Nouizi, Farouk; Chiang, Huihua K.; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    The strong scattering and absorption of light in biological tissue makes it challenging to model the propagation of light, especially in deep tissue. This is especially true in fluorescent tomography, which aims to recover the internal fluorescence source distribution from the measured light intensities on the surface of the tissue. The inherently ill-posed and underdetermined nature of the inverse problem along with strong tissue scattering makes Fluorescence Tomography (FT) extremely challenging. Previously, multispectral detection fluorescent tomography (FT) has been shown to improve the image quality of FT by incorporating the spectral filtering of biological tissue to provide depth information to overcome the inherent absorption and scattering limitations. We investigate whether multi-wavelength fluorescent tomography can be used to distinguish the signals from multiple fluorophores with overlapping fluorescence spectrums using a unique near-infrared (NIR) swept laser. In this work, a small feasibility study was performed to see whether multi-wavelength FT can be used to detect subtle shifts in the absorption spectrum due to differences in fluorophore microenvironment.

  4. A simple theoretical model for erbium doped PCF ring lasers design

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, J. A.; Álvarez, J. M.; Rebolledo, M. A.; Andrés, M. V.; Vallés, J. A.; Martín, J. C.; Berdejo, V.; Díez, A.

    2011-09-01

    In this paper a simple theoretical model is presented where the energy conservation principle is used. The model is based on semi-analytical equations describing the behaviour of an erbium-doped photonic crystal fibre (PCF) inside a ring laser. These semi-analytical equations allow the characterisation of the erbium-doped PCF. Spectral absorption and emission coefficients can be determined through the measurement of the gain in the PCF as a function of pump power attenuation for several fibre lengths by means of a linear fitting. These coefficients are proportional to the erbium concentration and to the corresponding absorption or emission cross section. So if the concentration is known the erbium cross sections can be immediately determined. The model was successfully checked by means of two different home-made erbium doped PCFs. Once the fibres were characterised the values of the spectral absorption and emission coefficients were used to simulate the behaviour of a back propagating ring laser made of each fibre. Passive losses of the components in the cavity were previously calibrated. A good agreement was found between simulated and experimental values of efficiency, pump power threshold and output laser power for a wide set of experimental situations (several values of the input pump power, output coupling factor, laser wavelength and fibre length).

  5. Implementation of Lean System on Erbium Doped Fibre Amplifier Manufacturing Process to Reduce Production Time

    NASA Astrophysics Data System (ADS)

    Maneechote, T.; Luangpaiboon, P.

    2010-10-01

    A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.

  6. New Types of Rogue Wave in an Erbium-Doped Fibre System

    NASA Astrophysics Data System (ADS)

    He, Jingsong; Xu, Shuwei; Porsezian, Kuppuswamy

    2012-03-01

    We report a novel and new types of rogue optical wave propagation in an erbium-doped fibre system governed by the nonlinear Schrödinger and the Maxwell--Bloch equation. The breather solutions of the three fields, namely field envelop, polarization and population inversion, are used to generate the rogue waves. For the first time, we report bright and, in particular, dark rogue waves in a coupled nonlinear optical systems. The distinction between bright and dark rogue waves are discussed in detail through figures. The rogue wave formation in our model can also be connected to the generation of supercontinuum generation in resonant optical fibre.

  7. Erbium-doped yttrium aluminium garnet ablative laser treatment for endogenous ochronosis.

    PubMed

    Chaptini, Cassandra; Huilgol, Shyamala C

    2015-08-01

    Ochronosis is a rare disease characterised clinically by bluish-grey skin discolouration and histologically by yellow-brown pigment deposits in the dermis. It occurs in endogenous and exogenous forms. Endogenous ochronosis, also known as alkaptonuria, is an autosomal recessive disease of tyrosine metabolism, resulting in the accumulation and deposition of homogentisic acid in connective tissue. We report a case of facial endogenous ochronosis and coexistent photodamage, which was successfully treated with erbium-doped yttrium aluminium garnet laser resurfacing and deep focal point treatment to remove areas of residual deep pigment.

  8. Erbium Doping Effects on the Conduction Band Edge in Germanium Nanocrystals

    SciTech Connect

    Meulenberg, Robert W.; Willey, Trevor M.; Lee, Jonathan R.; Terminello, Louis J.; Van Buren, T.

    2011-05-16

    We have produced erbium-doped germanium nanocrystals (NCs) using a new two cell physical vapor deposition system. Using element specific x-ray techniques (absorption and photoemission), we are able to probe the chemical environment of Er in the Ge NCs. Evidence for the optically active Er3+ state is seen at low Er concentrations, with a disruption of NC formation at high Er concentrations. The x-ray absorption measurements suggest that the Er occupies lattice sites near the surface of the NC. Analysis of the quantum confinement effect with Er doping suggests that the native quantum properties of the Ge NC are maintained at low Er concentrations.

  9. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon.

    PubMed

    Vázquez-Córdova, Sergio A; Dijkstra, Meindert; Bernhardi, Edward H; Ay, Feridun; Wörhoff, Kerstin; Herek, Jennifer L; García-Blanco, Sonia M; Pollnau, Markus

    2014-10-20

    Spiral-waveguide amplifiers in erbium-doped aluminum oxide on a silicon wafer are fabricated and characterized. Spirals of several lengths and four different erbium concentrations are studied experimentally and theoretically. A maximum internal net gain of 20 dB in the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations with waveguide lengths of 12.9 cm and 24.4 cm and concentrations of 1.92 × 10(20) cm(-3) and 0.95 × 10(20) cm(-3), respectively. The noise figures of these samples are reported. Gain saturation as a result of increasing signal power and the temperature dependence of gain are studied.

  10. Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths

    SciTech Connect

    Kotov, L V; Koptev, M Yu; Anashkina, E A; Muravyev, S V; Andrianov, A V; Kim, A V; Bubnov, M M; Likhachev, M E; Ignat'ev, A D; Lipatov, D S; Gur'yanov, A N

    2014-05-30

    We have demonstrated a femtosecond erbium-doped fibre laser system built in the master oscillator/power amplifier (MOPA) approach. The final amplifier stage utilises a specially designed large mode area active fibre cladding-pumped by multimode laser diodes. The system is capable of generating submicrojoule pulses at a wavelength near 1.6 μm. We have obtained 530-fs pulses with an energy of 400 nJ. The output of the system can be converted to wavelengths shorter than 1 μm through the generation of dispersive waves in passive nonlinear fibre. We have obtained ultra-short 7-nJ pulses with a spectral width of ∼100 nm and a centre wavelength of 0.9 μm, which can be used as a seed signal in parametric amplifiers in designing petawatt laser systems. (lasers)

  11. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN).

    PubMed

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er(2)O(3) particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.

  12. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Yan, Feng-Ping; Li, Jian; Wang, Lin; Ning, Ti-Gang; Gong, Tao-Rong; Jian, Shui-Sheng

    2008-12-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate.

  13. Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source.

    PubMed

    Al Tal, Faleh; Dimas, Clara; Hu, Juejun; Agarwal, Anu; Kimerling, Lionel C

    2011-06-20

    The feasibility of mid-infrared (MIR) lasing in erbium-doped gallium lanthanum sulfide (GLS) micro-disks was examined. Lasing condition at 4.5 µm signal using 800 nm pump source was simulated using rate equations, mode propagation and transfer matrix formulation. Cavity quality (Q) factors of 1.48 × 10(4) and 1.53 × 10(6) were assumed at the pump and signal wavelengths, respectively, based on state-of-the-art chalcogenide micro-disk resonator parameters. With an 80 µm disk diameter and an active erbium concentration of 2.8 × 10(20) cm(-3), lasing was shown to be possible with a maximum slope efficiency of 1.26 × 10(-4) and associated pump threshold of 0.5 mW.

  14. Multi-wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Miller, N. A.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, we optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, we derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  15. Multi-Wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and ab- sorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, I optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, I derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  16. Detecting Thermal Barrier Coating Delamination Using Visible and Near-Infrared Luminescence from Erbium-Doped Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bencic, T. J.; Martin, R. E.; Singh, J.; Wolfe, D. E.

    2007-01-01

    Nondestructive diagnostic tools are needed to monitor early stages of delamination progression in thermal barrier coatings (TBCs) because the risk of delamination induced coating failure will compromise engine performance and safety. Previous work has demonstrated that for TBCs composed of yttria-stabilized zirconia (YSZ), luminescence from a buried europium-doped sublayer can be utilized to identify the location of TBC delamination from the substantially higher luminescence intensity observed from the delaminated regions of the TBC. Luminescence measurements from buried europium-doped layers depend on sufficient transmittance of the 532 nm excitation and 606 nm emission wavelengths through the attenuating undoped YSZ overlayer to produce easily detected luminescence. In the present work, improved delamination indication is demonstrated using erbium-doped YSZ sublayers. For visible-wavelength luminescence, the erbium-doped sublayer offers the advantage of a very strong excitation peak at 517 nm that can be conveniently excited a 514 nm Ar ion laser. More importantly, the erbium-doped sublayer also produces near-infrared luminescence at 1550 nm that is effectively excited by a 980 nm laser diode. Both the 980 nm excitation and the 1550 nm emission are transmitted through the TBC with much less attenuation than visible wavelengths and therefore show great promise for delamination monitoring through thicker or more highly scattering TBCs. The application of this approach for both electron beam physical vapor deposited (EB-PVD) and plasma-sprayed TBCs is discussed.

  17. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    SciTech Connect

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-03-31

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  18. Active Q-switching of a fiber laser using a modulated fiber Fabry-Perot filter and a fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Martínez Manuel, Rodolfo; Kaboko, J. J. M.; Shlyagin, M. G.

    2016-02-01

    We propose and demonstrate a simple and robust actively Q-switched erbium-doped fiber ring cavity laser. The Q-switching is based on dynamic spectral overlapping of two filters, namely a fiber Bragg grating-based filter and a fiber Fabry-Perot tunable filter. Using 3.5 m of erbium-doped fiber and a pump power of only 60 mW, Q-switched pulses with a peak power of 9.7 W and a pulse duration of 500 ns were obtained. A pulse repetition rate can be continuously varied from a single shot to a few KHz.

  19. Multi-Wavelength Observations of Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Williams, B.

    2012-01-01

    Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.

  20. Development of an erbium-doped fibre laser as a deep-sea hydrophone

    NASA Astrophysics Data System (ADS)

    Bagnoli, P. E.; Beverini, N.; Falciai, R.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-07-01

    The present work deals with the development of a prototype of a hydrophone for deep-sea acoustic detection. The base sensitive element is a single mode fibre laser, realized within an optically pumped erbium-doped fibre. It was obtained by inducing an index modulation within the fibre core by illuminating it with ultra-violet coherent light through a phase-mask grating; in this way a couple of Bragg reflectors delimiting an optical cavity were realized. The emission wavelength depends on the cavity length and on the Bragg gratings' optical characteristics. The environmental conditions, in terms of temperature and static and dynamic pressure, modify these geometrical factors and optical parameters, inducing a wavelength shift of the optical signal. Fibre laser sensors were characterized both optically and acoustically within a closed tub in the laboratory, using a Mach-Zender interferometer and an electronic lock-in system allowing the transformation of the wavelength shift into amplitude variations, in order to greatly increase the sensitivity. The high sensitivity makes these sensors very suitable for a wide range of deep-sea acoustic applications, including geological surveys, marine mammal surveys and overall as acoustic sensors in the high energy cosmic neutrino underwater telescopes.

  1. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  2. Formation of hollow microcylinders from sputtered erbium-doped glass films

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Madhu; McMullin, James N.; Keyworth, B. P.; Broughton, James N.

    1997-05-01

    A planar sputter-deposited erbium-doped glass ridge was re- shaped into a hollow microcylinder using only photolithography, wet-etching and annealing. It is believed that selective build-up of gas is primarily responsible for this phenomenon, which is similar to glass-blowing. Other factors, such as the width and depth of the original ridge, the adhesion of the ridge to the underlying surface and the duration of the anneal, influence the eventual shape of the hollow microcylinder. By varying the processing parameters, a wide range of microcylinder shapes and sizes were obtained: circular and semi-circular profiles with 9.0 micrometers diameter or flatter 'tunnel-shaped' profiles ranging u pt o 25 micrometers in height and 100 micrometers in width. Microcylinders up to 1 cm long were fabricated. Water was sen to enter these hollow devices through capillary action. He-Ne light propagation through the hollow portion of the device was observed. These observations confirm that the microcylinders are hollow over their entire length. Hollow microcylinders or microchannels may find application in microfluidics and micro-optics.

  3. Surface-directed synthesis of erbium-doped yttrium oxide nanoparticles within organosilane zeptoliter containers.

    PubMed

    Englade-Franklin, Lauren E; Morrison, Gregory; Verberne-Sutton, Susan D; Francis, Asenath L; Chan, Julia Y; Garno, Jayne C

    2014-09-24

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis.

  4. Multi-wavelength fluorometry for anaerobic digestion process monitoring.

    PubMed

    Morel, E; Santamaria, K; Perrier, M; Guiot, S R; Tartakovsky, B

    2005-01-01

    Applicability of multi-wavelength fluorometry for anaerobic digestion process monitoring was investigated in a 3.5 L upflow anaerobic sludge bed (UASB) lab-scale reactor. Both off-line and on-line monitoring of key process parameters was tested. Off-line emission spectra were measured at an angle of 90 degrees to the excitation beam using a cuvette. On-line measurements were carried out using a fiber optic probe in the external recirculation line of the digester. Fluorescence spectra were correlated to available analytical measurements to obtain partial least square regression models. An independent set of measurements was used to validate the regression models. Model estimations showed reasonable agreement with analytical measurements with multiple determination coefficients (R2) between 0.6 and 0.95. Results showed that offline fluorescence measurements can be used for fast estimation of anaerobic digestor effluent quality. At the same time, the on-line implementation of multi-wavelength fluorescence measurements can be used for realtime process monitoring and, potentially, for on-line process control.

  5. Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications

    NASA Technical Reports Server (NTRS)

    Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.

    1998-01-01

    Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.

  6. Control over the performance characteristics of a passively mode-locked erbium-doped fibre ring laser

    SciTech Connect

    Chernysheva, M A; Krylov, A A; Dianov, E M; Ogleznev, A A; Arutyunyan, N R; Pozharov, A S; Obraztsova, E D

    2013-08-31

    We report an all-fibre ultrashort pulse erbium-doped ring laser passively mode-locked by single-wall carbon nanotubes dispersed in carboxymethylcellulose-based polymer films. Owing to intracavity dispersion management and controlled absorption in the polymer films, the laser is capable of generating both femto- and picosecond pulses of various shapes in the spectral range 1.53 – 1.56 μm. We have demonstrated and investigated the generation of almost transform- limited, inversely modified solitons at a high normal cavity dispersion. (control of laser radiation parameters)

  7. [Solid-state multi-wavelength lasers equipment for retina treatment].

    PubMed

    Liu, Wenlu; Zhou, Chuanqing; Ren, Qiushi

    2012-09-01

    Solid-state multi-wavelength laser equipment is the treatment device with selected wavelength Nd: YAG laser frequency technology, integrated red (659 nm), yellow (589 nm) and green (532 nm) of three solid-state lasers. The device is designed by the accurate controlled laser output system, precision optical and electronic control through the optical coupler into the optical fiber transmission system. It's combined with an eye slit lamp integration of high precision, good stability stability for all solid-state multi-wavelength lasers equipment.

  8. Spectral characteristics of high-power 1. 5. mu. m broad-band superluminescent fiber sources

    SciTech Connect

    Wysocki, P.F.; Digonnet, M.J.F.; Kim, B.Y. . Edward L. Ginzton Lab.)

    1990-03-01

    The authors study the spectral variation of spontaneous emission from erbium-doped single-mode fibers with the aim of producing high-power (more than 5 mW), broad-band (in excess of 10 nm) amplified spontaneous emission sources for fiber gyroscope applications. In particular, they demonstrate the evolution of spectral shape and center wavelength with fiber length and output power in the previously unstudied high-power regime where saturation effects dominate. Also presented is a visibility curve for a potential twin-peaked nonresonant erbium-doped fiber gyroscope source with a short (210 {mu}m) coherence length.

  9. Actively mode-locked fiber laser using acousto-optic modulator

    NASA Astrophysics Data System (ADS)

    Nikodem, Michal P.; Sergeant, Hendrik; Kaczmarek, Pawel; Abramski, Krzysztof M.

    2008-12-01

    In recent years we have observed growing interest in mode-locked fiber lasers. Development of erbium doped fiber (EDF) amplifiers and WDM technique made 3rd telecommunication window extremely interesting region for ultrafast optics. The main advantages of fiber lasers i.e. narrow linewidth and wide gain bandwidth make them very attractive sources in various applications. In this paper we present an actively mode-locked erbium doped fiber ring laser. Modelocking is obtained using an acousto-optic modulator (AOM) coupled into the laser cavity. The impact of different parameters (e.g. light polarization, modulation frequency) is investigated. We study mechanisms of controlling the wavelength of the laser.

  10. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber.

    PubMed

    Song, Yufeng; Chen, Si; Zhang, Qian; Li, Lei; Zhao, Luming; Zhang, Han; Tang, Dingyuan

    2016-11-14

    We report on the optical saturable absorption of few-layer black phosphorus nanoflakes and demonstrate its application for the generation of vector solitons in an erbium-doped fiber laser. By incorporating the black phosphorus nanoflakes-based saturable absorber (SA) into an all-fiber erbium-doped fiber laser cavity, we are able to obtain passive mode-locking operation with soliton pulses down to ~670 fs. The properties and dynamics of the as-generated vector solitons are experimentally investigated. Our results show that BP nanoflakes could be developed as an effective SA for ultrashort pulse fiber lasers, particularly for the generation of vector soliton pulses in fiber lasers.

  11. Multi-wavelength applications of gravitational lensing

    NASA Astrophysics Data System (ADS)

    Fadely, Ross

    2010-12-01

    Using an array of multi-wavelength data, we examine a variety of astrophysical problems with gravitational lensing. First, we seek to understand the mass distribution of an early-type galaxy with an analysis of the lens Q0957+561. We dissect the lens galaxy into luminous and dark components, and model the environment using results from weak lensing. Combining constraints from newly-discovered lensed images and stellar population models, we find the lens has a density profile which is shallower than isothermal, unlike those of typical early-type galaxies. Finally, using the measured time delay between the quasar images we find the Hubble constant to be H 0 = 79.3+6.7-8.5 km s-1 Mpc-1 . One intriguing application of lensing is to exploit the lens magnification boost to study high-redshift objects in greater detail than otherwise possible. Here, we analyze the mid-infrared properties of two lensed z ˜ 2 star-forming galaxies, SDSS J120602.09+514229.5 and SDSS J090122.37+181432.3, using Spitzer /IRS spectra to study their rest-frame ˜ 5-12 μm emission. Both systems exhibit strong polycyclic aromatic hydrocarbon (PAH) features in the spectra, indicating strong star formation and the absence of significant AGN activity. For SDSS J090122.37+181432.3, this detection belies that inferred from optical measurements, indicating mid-IR spectroscopy provides key information needed to understand the properties of high-redshift star-forming galaxies. While lensing provides measurements of the macroscopic properties of lens systems, it can also shed light on small-scale structure of galaxies. To identify and understand lens substructure, we examine the multi-wavelength properties of flux ratios for six lenses. Variations of the flux ratios with wavelength can be used to study the lensed quasars and the small-scale mass distribution of lens galaxies. We detect strong multi-wavelength variations in the lenses HE 0435-1223 and SDSS 0806+2006. For HE 0435-1223, we study its

  12. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications

    NASA Astrophysics Data System (ADS)

    Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.

    2016-08-01

    Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.

  13. Multi-Wavelength Optical Code-Division-Multiplexing Based on Passive, Linear, Unitary Filters

    DTIC Science & Technology

    2007-11-02

    EG) Prescribed by ANSI Std. 238.18 Designed using Perform Pro, WHS/DIOR, Oct 94 Multi-Wavelength Optical Code-Division-Multiplexing Based on... FTTH ) and fiber to the desk (FTTD) a reality. Every hertz of bandwidth available in optical fiber is now valuable for carrying data traffic in...contemporary communication systems. A different paradigm is required in designing multiple access optical communication systems to meet the challenges in

  14. Generation of tunable multi-wavelength EDFL by using graphene thin film as nonlinear medium and stabilizer

    NASA Astrophysics Data System (ADS)

    Ahmad, Harith; Hassan, Nor Ahya; Aidit, Siti Nabila; Tiu, Zian Cheak

    2016-07-01

    The applications of graphene thin film as a nonlinear medium and stabilizer to generate a stable multi-wavelength is proposed and demonstrated. A 50 m long highly nonlinear photonic crystal fiber (PCF) is incorporated into the cavity to achieve unstable multi-wavelength based on nonlinear polarization rotation (NPR) effect. By introducing the graphene thin film into the cavity, a stable multi-wavelength oscillation is obtained. The laser generates more than 7 lasings with constant spacing of 0.47 nm. The output is highly stable with power fluctuation of less than 3 dB within a period of 30 min. The multi-wavelength EDFL exhibits a tunability from the center wavelength of 1550 nm to 1560 nm.

  15. Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions.

    PubMed

    Shehata, Nader; Meehan, Kathleen; Hassounah, Ibrahim; Hudait, Mantu; Jain, Nikhil; Clavel, Michael; Elhelw, Sarah; Madi, Nabil

    2014-01-01

    This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce(3+) ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons. This opens new opportunities for applications where emission of light via both up- and down-conversions from a single nanomaterial is desired such as solar cells and bio-imaging.

  16. Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films

    PubMed Central

    2013-01-01

    The energy transfer mechanism between luminescent centers (LCs) and Er3+ in erbium-doped silicon-rich oxide (SROEr) films prepared by electron beam evaporation is investigated. Intense photoluminescence of the LCs (weak oxygen bonds, neutral oxygen vacancies, and Si=O states) within the active matrixes is obtained. Fast energy transfer from Si=O states to Er3+ takes advantage in the SROEr film and enhances the light emission from Er3+. The introduction of Si nanoclusters, which induces the Si=O states and facilitates the photon absorption of the Si=O states, is essential to obtain intense photoluminescence from both Si=O states and Er3+. PMID:23981444

  17. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform.

    PubMed

    Belt, Michael; Huffman, Taran; Davenport, Michael L; Li, Wenzao; Barton, Jonathon S; Blumenthal, Daniel J

    2013-11-15

    We demonstrate an array of erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss Si(3)N(4) platform. Sidewall gratings providing the lasing feedback are defined in the silicon-nitride layer using 248 nm stepper lithography, while the gain is provided by a reactive co-sputtered erbium-doped aluminum-oxide layer. We observe lasing output over a 12 nm wavelength range (1531-1543 nm) from the array of five separate lasers. Output powers of 8 μW and lasing linewidths of 501 kHz are obtained. Single-mode operation is confirmed, with side-mode suppression ratios over 35 dB for all designs.

  18. Management of dispersion, nonlinearity and polarization-dependent effects in high-speed reconfigurable WDM fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Luo, Ting

    As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical

  19. A 532 nm Chaotic Fiber Laser Transmitter for Underwater Lidar

    DTIC Science & Technology

    2013-04-23

    cooling to deal with the heat. There are no direct solid-state blue-green transitions, but neodymium -doped YAG crystal lasers (Nd:YAG)) is commonly...dopants include neodymium , thulium, praseodymium, yt- terbium, and erbium, but the latter two are by far the most common. Erbium-doped fiber lasers

  20. Evaluation of the optical switching characteristics of erbium-doped fibres for the development of a fibre Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Rigas, Evangelos; Correia, R.; Stathopoulos, N. A.; Savaidis, S. P.; James, S. W.; Bhattacharyya, D.; Kirby, P. B.; Tatam, R. P.

    2014-05-01

    A polling topology that employs optical switching based on the properties of erbium-doped fibres (EDFs) is used to interrogate an array of FBGs. The properties of the EDF are investigated in its pumped and un-pumped states and the EDFs' switching properties are evaluated by comparing them with a high performance electronically controlled MEM optical switch. Potential advantages of the proposed technique are discussed.

  1. Multi-wavelength Observations of Microflares Near an Active Region

    NASA Astrophysics Data System (ADS)

    Bein, B.; Veronig, A.; Rybak, J.; Gömöry, P.; Berkebile-Stoiser, S.; Sütterlin, P.

    We study the multi-wavelength characteristics of a microflaring active region (AR 10898) near disc centre. The analysed data were from the 4^{th} of July 2006, and were recorded by DOT (Hα, Ca II H), RHESSI (X-rays), TRACE (EUV) and SOHO/MDI (magnetograms). The identified microflare events were studied with respect to their magnetic field configuration and their multi-wavelength time evolution.

  2. Sub-Nanosecond Infrared Optical Parametric Pulse Generation in Periodically Poled Lithium Niobate Pumped by a Seeded Fiber Amplifier

    DTIC Science & Technology

    2008-02-01

    element, such as erbium or ytterbium, to act as a gain medium. Erbium Doped Fiber Amplifiers ( EDFAs ) have been used by the telecommunications industry...FIBER AMPLIFIER Matthew D. Cocuzzi Electro-Optical Countermeasures Technology Branch Electro-Optical Sensor Technology Division...BRIAN C. FORD, Col, USAF Chief, EO Sensor Technology Division Sensors Directorate This report is published in the interest of

  3. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes.

    PubMed

    Wang, Q; Chen, T; Zhang, B; Heberle, A P; Chen, K P

    2011-10-01

    This Letter presents an all-fiber mode-locked thulium-doped fiber ring oscillator based on nonlinear polarization evolution (NPE). Pumped by an erbium-doped fiber amplified spontaneous emission source, the construction of the laser cavity consisting of only fiber optic components can operate under two different regimes of solitary and noiselike (NL) pulses. Autocorrelation measurements are performed to extract features of these two regimes.

  4. Photocatalytic activity of erbium-doped TiO{sub 2} nanoparticles immobilized in macro-porous silica films

    SciTech Connect

    Castaneda-Contreras, J.; Maranon-Ruiz, V.F.; Chiu-Zarate, R.; Perez-Ladron de Guevara, H.; Rodriguez, R.; Michel-Uribe, C.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Erbium-doped TiO{sub 2} nanoparticles were immobilized on macro-porous silica films. Black-Right-Pointing-Pointer The films were obtained by a phase separation process. Black-Right-Pointing-Pointer The samples exhibited photo-catalytic activity under visible light. Black-Right-Pointing-Pointer The sensitization of TiO{sub 2} was attributed to a red shift in the TiO{sub 2} band-gap. -- Abstract: A macro-porous silica film served as mechanical support to immobilize TiO{sub 2} nanoparticles, which were doped with erbium. The films and the nanoparticles were prepared by sol-gel route. The nanoparticles exhibited photocatalytic activity under visible light. We obtained a degradation rate of methylene blue that followed first order kinetics. The sensitization of the nanoparticles to visible light was attributed to a red shift in the band-gap of the TiO{sub 2} due to the addition of erbium ions.

  5. Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator.

    PubMed

    Kemal, Juned N; Pfeifle, Joerg; Marin-Palomo, Pablo; Pascual, M Deseada Gutierrez; Wolf, Stefan; Smyth, Frank; Freude, Wolfgang; Koos, Christian

    2016-10-31

    Steadily increasing data rates of optical interfaces require spectrally efficient coherent transmission using higher-order modulation formats in combination with scalable wavelength-division multiplexing (WDM) schemes. At the transmitter, optical frequency combs (OFC) lend themselves to particularly precise multi-wavelength sources for WDM transmission. In this work we demonstrate that these advantages can also be leveraged at the receiver by using an OFC as a highly scalable multi-wavelength local oscillator (LO) for coherent detection. In our experiments, we use a pair of OFC that rely on gain switching of injection-locked semiconductor lasers both for WDM transmission and intradyne reception. We synchronize the center frequency and the free spectral range of the receiver comb to the transmitter, keeping the intradyne frequencies for all data channels below 15 MHz. Using 13 WDM channels, we transmit an aggregate line rate (net data rate) of 1.104 Tbit/s (1.032 Tbit/s) over a 10 km long standard single mode fiber at a spectral efficiency of 5.16 bit/s/Hz. To the best of our knowledge, this is the first demonstration of coherent WDM transmission using synchronized frequency combs as light source at the transmitter and as multi-wavelength LO at the receiver.

  6. Dark pulse emission of a fiber laser

    SciTech Connect

    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X.

    2009-10-15

    We report on the dark pulse emission of an all-normal dispersion erbium-doped fiber laser with a polarizer in cavity. We found experimentally that apart from the bright pulse emission, under appropriate conditions the fiber laser could also emit single or multiple dark pulses. Based on numerical simulations we interpret the dark pulse formation in the laser as a result of dark soliton shaping.

  7. Optical links for detector instrumentation: on-detector multi-wavelength silicon photonic transmitters

    NASA Astrophysics Data System (ADS)

    Karnick, D.; Skwierawski, P.; Schneider, M.; Eisenblätter, L.; Weber, M.

    2017-03-01

    We report on our recent progress in developing an optical transmission system based on wavelength division multiplexing (WDM) to enhance the read-out data rate of future particle detectors. The design and experimental results of the prototype of a monolithically integrated multi-wavelength transmitter are presented as well as temperature studies of electro-optic modulators. Furthermore, we show the successful permanent coupling of optical fibers to photonic chips, which is an essential step towards packaging of the opto-electronic components.

  8. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference.

    PubMed

    Park, Hyoung-Jun; Song, Minho

    2008-10-29

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  9. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    PubMed Central

    Park, Hyoung-Jun; Song, Minho

    2008-01-01

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method. PMID:27873898

  10. LASERS: Study of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser at 1678 nm

    NASA Astrophysics Data System (ADS)

    Kalachev, Yu L.; Mikhailov, Viktor A.; Podreshetnikov, V. V.; Shcherbakov, Ivan A.

    2010-06-01

    The lasing, spectral, and luminescent characteristics of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser (λ = 1678 nm) into the 1682-nm absorption line of the 3H6-3F4 transition of the Tm3+ ion are studied. It is shown that the total (with respect to the absorbed power) and slope laser efficiencies upon pulsed pumping reach 46% and 50%, respectively. The output radiation power in the cw regime is 400 mW. The comparative measurements showed that pumping by a fibre laser at 1678 nm is more efficient than diode pumping at 792 nm.

  11. 21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser

    NASA Astrophysics Data System (ADS)

    Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi

    2001-10-01

    A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.

  12. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  13. [Measurement of multi-wavelength pulse oxygen saturation based on dynamic spectroscopy].

    PubMed

    Wang, Xiao-Fei; Zhao, Wen-Jun

    2014-05-01

    The present paper puts forward multi-wavelength pulse oxygen saturation measurement based on dynamic spectroscopy to do the non-invasive determination of oxygen saturation. Compared to conventional ways, the new method makes full use of more wavelengths light and improves the measurement accuracy. During the experiment, the in-vivo measurements were carried out on 60 patients and their spectroscopic data were collected by the high sensitivity type fiber optic spectrometer. Singletrial estimation method was used to extract the dynamic spectroscopy at the wavelengths of 606. 44 approximately 987. 55 nm. Oxygen saturation obtained from arterial blood gas analysis is regarded as the true value. Synergy interval partial least square (siPLS) was used to establish the calibration model of subjects' oxygen saturation values against dynamic spectroscopy data. The relative error of prediction is +/-0. 017 6, but the relative error of the subjects in the same set measured by the patient monitor which was two-wavelength measure system is +/-0. 116 4. Measurement results show that the use of the high sensitivity type fiber optic spectrometer to collect multi-wavelength spectroscopic data and dynamic spectroscopy method to process data can do better in improving the accuracy of the oxygen saturation measurement.

  14. Study on the Multi-wavelength Emissivity of GCr15 Steel and its Application on Temperature Measurement for Continuous Casting Billets

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xie, Zhi; Hu, Zhenwei

    2016-12-01

    A method for measuring the multi-wavelength emissivity of a steel surface is proposed, and an applicable experimental apparatus is designed. Multi-wavelength radiant energy emitted from a sample was measured using a fiber-optic spectrometer and its temperature measured using a NiCrSi/NiSiMg thermocouple. Utilizing the unique vacuum control and background noise-shielding systems, we investigated the multi-wavelength emissivity of GCr15 steel at three different degrees of surface oxidation at temperatures ranging from 1000°C to 1100°C. The experimental results show that the multi-wavelength (0.7 μ m-0.9 μ m) emissivity increased substantially, from 0.409-0.565 to 0.609-0.702, once the steel was oxidized. In addition, the emissivity increased slightly with increasing temperature, but the trends for emissivity and wavelength were similar. To measure the surface temperature of casting billets based on multi-wavelength thermometry, the functional relationships between emissivity and wavelength at different extents of oxidation were determined. Temperature measurements based on our technique were compared with those from common colorimetric thermometry. Our approach reduced the temperature fluctuation from ± 23°C to ± 3.5°C, indicating that a reliable measurement of the multi-wavelength emissivity of GCr15 steel is obtained using this experimental apparatus.

  15. Oscillation signature from multi-wavelength analysis on solar chromosphere

    SciTech Connect

    Mumpuni, Emanuel Sungging; Herdiwijaya, Dhani; Djamal, Mitra

    2014-03-24

    In this work, we investigate how the solar chromosphere responds to the photospheric dynamics by using tomography study, implementing multiwavelength analysis observations obtained from Dutch Open Telescope. By using high resolution, high-quality, simultaneous image sequences of multi-wavelength data, we try to obtain the oscillation signature that might play important role on chromospheric dynamic by using H-alpha (Hα) as primary diagnostic tool.

  16. Swift Multi-wavelength Observing Campaigns: Strategies and Outcomes

    NASA Technical Reports Server (NTRS)

    Krimm, Hans A.

    2007-01-01

    The Swift gamma-ray burst explorer has been operating since December 2004 as both a gamma-ray burst (GRB) monitor and telescope and a multi-wavelength observatory, covering the energy range from V band and near UV to hard X rays above 150 keV. It is designed to rapidly repoint to observe newly discovered GRBs, and this maneuverability, combined with an easily changed observing program, allows Swift to also be an effective multiwavelength observatory for non-GRB targets, both as targets of opportunity and pre-planned multi-wavelength observing campaigns. Blazars are particularly attractive targets for coordinated campaigns with TeV experiments since many blazars are bright in both the hard X-ray and TeV energy ranges. Successful coordinated campaigns have included observations of 3C454.3 during its 2005 outburst. The latest Swift funding cycles allow for non- GRB related observations to be proposed. The Burst Alert Telescope on Swift also serves as a hard X-ray monitor with a public web page that includes light curves for over 400 X-ray sources and is used to alert the astronomical community about increased activity from both known and newly discovered sources. This presentation mill include Swift capabilities, strategies and policies for coordinated multi-wavelength observations as well as discussion of the potential outcomes of such campaigns.

  17. Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions

    NASA Astrophysics Data System (ADS)

    Manna, S.; Aluguri, R.; Bar, R.; Das, S.; Prtljaga, N.; Pavesi, L.; Ray, S. K.

    2015-01-01

    Photo-physical processes in Er-doped silica glass matrix containing Ge nanocrystals prepared by the sol-gel method are presented in this article. Strong photoluminescence at 1.54 μm, important for fiber optics telecommunication systems, is observed from the different sol-gel derived glasses at room temperature. We demonstrate that Ge nanocrystals act as strong sensitizers for Er3+ ions emission and the effective Er excitation cross section increases by almost four orders of magnitude with respect to the one without Ge nanocrystals. Rate equations are considered to demonstrate the sensitization of erbium luminescence by Ge nanocrystals. Analyzing the erbium effective excitation cross section, extracted from the flux dependent rise and decay times, a Dexter type of short range energy transfer from a Ge nanocrystal to erbium ion is established.

  18. Fiber cavity ring down and gain amplification effect

    NASA Astrophysics Data System (ADS)

    Silva, Susana; Magalhães, Regina; Pérez-Herrera, Rosa Ana; Lopez-Amo, Manuel; Marques, M. B.; Frazão, O.

    2016-12-01

    The effect of an erbium-doped fiber amplifier (EDFA) placed inside the fiber ring of a cavity ring down (CRD) configuration is studied. The limitations and advantages of this configuration are discussed, and the study of the ring-down time as a function of the current applied and gain to the EDFA is also presented. In this case, the power fluctuations in the output signal are strongly dependent on the cavity ring-down time with the EDFA gain.

  19. Silica fibers doped with erbium ions obtained by the sol gel method

    NASA Astrophysics Data System (ADS)

    Pawlik, Elzbieta; Strek, Wieslaw; Wojcik, Jan; Wojciechowski, C.; Malashkevich, G. E.; Melnichenko, I. M.; Poddenezhny, E. N.

    1997-08-01

    The paper presents the optical properties of glasses and optical fibers from quartz glass, obtained by the sol-gel method. A new technique of sol-gel glass preparation is described. Rods were formed from the glass thus produced from which PCS-type fibers were next drawn. Using the same sol-gel technology, the erbium-doped quartz glasses were obtained. The transmission and luminescence characteristics were measured for the glasses as well as for fibers drawn from them.

  20. Performance capabilities of fiber optic components and photonic devices

    NASA Astrophysics Data System (ADS)

    Jha, Asu R.

    2001-09-01

    This paper reveals performance capabilities of critical fiber optic components and photonic devices, which have potential applications in industrial, commercial and military systems and equipment. These devices are widely used in battlefield, space surveillance, medical diagnosis, crime fighting, and detection of terrorist activities. Performance capabilities of fiber optic components for possible applications in WDM and DWDM systems are summarized. Photonic devices and sensor for forward battlefield applications are identified with emphasis on performance and reliability. Performance parameters of Erbium-doped fiber amplifiers, Erbium doped waveguide amplifiers, and optical hybrid amplifiers comprising of EDFAs and Raman amplifiers are discussed withe emphasis on bandwidth, gain-flatness, data handling capability, channel capacity and cost-effectiveness.

  1. Multi-wavelength multi-level optical storage

    NASA Astrophysics Data System (ADS)

    Wullert, John R., II

    Current digital information storage technologies offer rapid access and seemingly ever-increasing capacities. New storage techniques that improve the data rate of high-density storage technologies are attractive, particularly for cost-sensitive services such as video on demand. Wavelength multiplexing of optical information storage has the potential to increase storage capacity, density and data rate. This dissertation addresses the design, simulation and fabrication of a multi-wavelength, multi-level optical storage structure that has the potential to increase the capacity, density and data rate of optical storage. Multi-wavelength, multi-layer optical storage is a technique for storing data in many separate layers in a medium, where each layer responds to a unique optical wavelength. This approach builds on the strengths of current optical storage technologies and addresses some of their limitations. Multiple layers of storage increase the high storage density possible with optical techniques and the parallelism of wavelength multiplexing improves the relatively low data rate. Multi-wavelength, multi-level optical storage has been investigated theoretically and experimentally. The experimental results provide the first demonstration of optical storage using three wavelengths to read three separate layers of information. These read-only optical memories were based on dielectric mirrors of silicon dioxide, magnesium oxide and aluminum oxide. The layers were designed to be read with semiconductor lasers of 635, 780 and 980 nanometers. The prototype devices exhibited open margins between the on and off states for all eight combinations of the presence and absence of the three mirrors. Theoretical simulations were employed to assess the dynamic operation of multi-wavelength storage devices. Through systematic simulations, variations in the thickness and refractive index of the layers in the structure were identified as the primary noise mechanism and a critical

  2. Characteristics of a cascaded grating multi wavelength dye laser

    NASA Astrophysics Data System (ADS)

    Rana, Paramjit; Sridhar, G.; Manohar, K. G.

    2016-12-01

    Characteristics of a multi wavelength dye laser in two cascaded grating resonator configurations are presented. DCM dye dissolved in ethanol, was transversely pumped by second harmonic of Nd:YAG laser and four wavelength, independently tunable, collinear dye laser operation was obtained in Cascaded Grazing Incidence Grating cavity (CGIG) and Hybrid CGIG with fourth grating in Littrow angle (HCGIG) configuration. Gain competition effect of all the sub-cavities was fully characterized and wavelength zones of operation were identified for each cavity for sustaining four wavelength operation. Overall efficiency of the oscillator was measured to be around 2% in CGIG and 7% in HCGIG.

  3. Multi-wavelength Accretion Studies of Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Coppejans, Deanne

    2016-10-01

    Recent developments in the field of Cataclysmic Variable stars (CVs) have highlighted the need for large (more unbiased) samples of CVs with known properties, as well as the need for multi- wavelength studies to determine the accretion-outflow connection. In this thesis I have presented radio observations of non-magnetic CVs, proving them to be significant radio emitters. I have also presented optical follow-up studies of CVs, and developed an algorithm that automatically classifies these objects based on photometric data from large surveys. This was applied to the Catalina Real-time Transient Survey to produce a catalogue of accretion properties for 1031 CVs.

  4. Multi-wavelength optical storage of diarylethene PMMA film

    NASA Astrophysics Data System (ADS)

    Guo, Haobo; Zhang, Fushi; Wu, Guo-shi; Sun, Fan; Pu, Shouzhi; Mai, Xuesong; Qi, Guosheng

    2003-05-01

    Current commercial optical storage technologies are all based on the heat effect of the recording laser, i.e., heat-mode optical storage. In the present work, photon-mode optical storage using photochromic diarylethene materials was investigated. Two diarylethene derivatives were dispersed into PMMA solution, and spin-coated on a glass substrate with Al reflective layer as the recording layer. Two laser beams of 532 and 650 nm were used in recording and readout simultaneously, and signals with high S/ N ratio were detected. Multi-wavelength optical storage was realized with the diarylethene PMMA film.

  5. Molecular transport network security using multi-wavelength optical spins.

    PubMed

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  6. Multi-wavelength photoplethysmography method for skin arterial pulse extraction

    PubMed Central

    Liu, Jing; Yan, Bryan Ping-Yen; Dai, Wen-Xuan; Ding, Xiao-Rong; Zhang, Yuan-Ting; Zhao, Ni

    2016-01-01

    In this work, we present a multi-wavelength (MW) PPG method exploiting the wavelength dependence of light penetration in skin tissue to provide depth resolution of skin blood pulsation. The MW PPG system requires two to three light sources in different wavelengths and extracts the arterial blood pulsation through a multi-wavelength multi-layer light-skin interaction model, which removes the capillary pulsation (determined from the short-wavelength PPG signal) from the long-wavelength PPG signal using absorption weighting factors that are quasi-analytically calibrated. The extracted pulsations are used to calculate blood pressure (BP) through pulse transit time (PTT), and the results are compared with those obtained from the single wavelength PPG method. The comparative study is clinically performed on 20 subjects including 10 patients diagnosed with cardiovascular diseases and 10 healthy subjects. The result demonstrates that the MW PPG method significantly improves the measurement accuracy of systolic BP (SBP), reducing the mean absolute difference between the reference and the estimated SBP values from 5.7 mmHg (for single-wavelength PPG) to 2.9 mmHg (for three-wavelength PPG). PMID:27867733

  7. Explaining Multi-wavelength Photometric Variability in Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora; Whitney, B.; Wood, K.; Plavchan, P.; Terebey, S.; Stauffer, J. R.; Morales-Calderon, M.; YSOVAR

    2013-01-01

    We explore a variety of radiation transfer models to explain multi-wavelength photometric variability of young stellar objects in the Orion Nebula Cluster (Morales-Calderon et al. (2011). Our models include hotspots, warps in the accretion disk, and spiral arms. Variability comes in different types, which have been categorized as periodic or quasi-periodic, narrow or broad dips in the light curves, and rapid flux variations or “wild type” stars. Our models can successfully reproduce these. The optical and near-infrared light curves are sensitive to the stellar variations and obscurations from the circumstellar material. The mid-infrared provides an additional diagnostic because it is sensitive to emission from the inner disk and the inner wall height. Our models make specific predictions as to the shapes and phasing of optical through mid-infrared photometry that can be tested with multi-wavelength time-series data. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech and was partially supported by the National Science Foundation's REU program through NSF Award AST-1004881.

  8. RETRACTED: Performance Study of Pulse Reshaping in a Normally Dispersive Erbium doped Fiber Amplifier with Multi-cladded Index Profile

    NASA Astrophysics Data System (ADS)

    Bose, Navonil; Ghosh, Dipankar; Mukherjee, Sampad; Basu, Mousumi

    2013-06-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the Editor-in-Chief.A referee's report on which the editorial decision was made was found to be falsified. The referee's report was submitted under the name of an established scientist who was not aware of the paper or the report, via a fictitious EES account. Because of the submission of a fake, but well-written and positive referee's report, the Editor was misled into accepting the paper based upon the positive advice of what he assumed was a well-known expert in the field. This represents a clear violation of the fundamentals of the peer-review process, our publishing policies, and publishing ethics standards. The authors of this paper have been offered the option to re-submit their paper for legitimate peer review..

  9. Study of a high output coupling ratio Q-switched erbium-doped fibre laser using MoS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Chong, W. Y.; Yap, Y. K.; Behameen, S.; Ahmad, H.

    2017-02-01

    In the work here, the performance of a Q-switched erbium-doped fibre laser using a MoS2 saturable absorber and operating with a high output coupling ratio has been studied. It is found that the pump conversion efficiency for the higher output coupling ratio is higher in the current setup. Q-switched laser oscillation is observed over the set wavelength range from 1525-1565 nm with a maximum pulse energy of ~0.50 µJ achieved at a pump power of ~83 mW, corresponding to a maximum peak power of ~186 mW. With lower intra-cavity laser intensity achieved using the higher output coupling ratio, the second order absorption of the MoS2 is mitigated. However, scaling of the peak power and pulse energy seems to be limited by the interplay between the pulse duration, pulse energy and repetition rate.

  10. Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber

    NASA Astrophysics Data System (ADS)

    Haris, H.; Harun, S. W.; Muhammad, A. R.; Anyi, C. L.; Tan, S. J.; Ahmad, F.; Nor, R. M.; Zulkepely, N. R.; Arof, H.

    2017-02-01

    This paper portrays a simple Q-switched Erbium-doped fibre (EDF) and Ytterbium doped fibre (YDF) lasers by using topological insulator (TI) Bismuth Selenide (Bi2Se3) as saturable absorber. The modulation depth of the fabricated Bi2Se3 is about 39.8% while its saturating intensity is about 90.2 MW/cm2. By depositing the TI Bi2Se3 SA onto fibre ferrules and incorporate it inside the proposed cavity, a stable Q-switching operation was achieved at 1 μm and 1.5 μm. The fabricated Bismuth Selenide (Bi2Se3) as saturable absorber (SA) is a broadband SA where it offers a compact and low cost fabrication which is beneficial in various photonic applications.

  11. Study of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser at 1678 nm

    SciTech Connect

    Kalachev, Yu L; Mikhailov, Viktor A; Podreshetnikov, V V; Shcherbakov, Ivan A

    2010-06-23

    The lasing, spectral, and luminescent characteristics of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser ({lambda} = 1678 nm) into the 1682-nm absorption line of the {sup 3}H{sub 6}-{sup 3}F{sub 4} transition of the Tm{sup 3+} ion are studied. It is shown that the total (with respect to the absorbed power) and slope laser efficiencies upon pulsed pumping reach 46% and 50%, respectively. The output radiation power in the cw regime is 400 mW. The comparative measurements showed that pumping by a fibre laser at 1678 nm is more efficient than diode pumping at 792 nm. (lasers)

  12. Application of multi-wavelength fluorometry for on-line monitoring of an anaerobic digestion process.

    PubMed

    Morel, E; Santamaria, K; Perrier, M; Guiot, S R; Tartakovsky, B

    2004-01-01

    This work examined the use of multi-wavelength fluorometry for on-line monitoring of an anaerobic digestion process. Experiments were carried out in a laboratory-scale anaerobic digestor fed with either synthetic or agricultural (cheese factory) wastewater. An in-line fiber optic probe installed in the external recirculation loop of the reactor was used to acquire fluorescence spectra with an interval of 5-10 min. The spectra were compared with analytical measurements taken at the same time to develop regression models, which were then used to predict concentrations of chemical oxygen demand, volatile fatty acids, and other key process parameters. A comparison of partial least squares (PLS), nonlinear principal components regression, and step-wise regression models on an independent set of data showed that the PLS model gave the best prediction accuracy.

  13. All-fiber polarization locked vector soliton laser using carbon nanotubes.

    PubMed

    Mou, C; Sergeyev, S; Rozhin, A; Turistyn, S

    2011-10-01

    We report an all-fiber mode-locked erbium-doped fiber laser (EDFL) employing carbon nanotube (CNT) polymer composite film. By using only standard telecom grade components, without any complex polarization control elements in the laser cavity, we have demonstrated polarization locked vector solitons generation with duration of ~583 fs, average power of ~3 mW (pulse energy of 118 pJ) at the repetition rate of ~25.7 MHz.

  14. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    DTIC Science & Technology

    2010-07-27

    noise performance, optical gain bandwidth, and power efficiency. An interesting alternative to the mature Erbium-doped fiber amplifier ( EDFA ) is the...fibers (HNLF) and high power booster EDFAs . The FOPA can provide a very wide gain bandwidth [2], very high gain (70 dB was demonstrated in [3]), and...amplified spontaneous emission (ASE) noise in EDFAs is also generated. It is sometimes referred to as amplified quantum noise. Maximum gain (at the gain

  15. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here preliminary results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8m Perkins telescope at Lowell Observatory. The K-band data presented herein provide the first long-term well-sampled IR light curve of GRS 1915+105. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  16. Preselecting AGN candidates from multi-wavelength data by ADTree

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxia; Zheng, Hongwen; Zhao, Yongheng

    2005-03-01

    With the information era in astronomy coming, this "data avalanche" may provide many answers to important problems in contemporary astrophysics. The most important problem is sifting through massive amounts of data to mine knowledge. In this paper, we positionally cross-identify multi-wavelength data from optical, near-infrared, and x-ray bands, and then employ alternating decision trees (adtree) to quickly and robustly separate AGN candidates to a high degree of accuracy. We emphasise the application of the method due to the development of large survey projects and the establishment of the virtual observatory, and conclude that the application of data mining algorithms in astronomy is of great importance to discover new knowledge impossible to obtain before, and promote the development of astronomy.

  17. Advances from Recent Multi-wavelength Campaigns on Sgr A*

    NASA Astrophysics Data System (ADS)

    Haggard, Daryl

    2017-01-01

    Sagittarius A* is the closest example of a supermassive black hole and our proximity allows us to detect emission from its accretion flow in the radio, submillimeter, near IR, and X-ray regimes. Ambitious monitoring campaigns have yielded rich multi-wavelength, time-resolved data that have the power to probe the physical processes underlying Sgr A*'s quiescent and flare emission. Here, I review the status of Sgr A* X-ray monitoring campaigns from the Chandra X-ray Observatory (also XMM Newton, and Swift), and efforts to coordinate these with observations across the electromagnetic spectrum. I also discuss how these observations constrain models for Sgr A*'s variability, which range from tidal disruption of asteroids to gravitational lensing to collimated outflows to magnetic reconnection.

  18. Rules of Emissivity Sample Choice in Multi-wavelength Pyrometry

    NASA Astrophysics Data System (ADS)

    Liang, M.; Sun, B.; Sun, X.; Xie, J.; Yu, C.

    2017-03-01

    Since the theory for emissivity sample (example) is not clear, there exists unavoidable blindness in the sample choice for the true temperature determination (create emissivity samples using an assumption to calculate the true temperature according to brightness temperature and wavelength) in multi-wavelength pyrometry, resulting in considerable computational complexity and slow computing speed. In this article, the rules of the emissivity sample were first discovered through the theoretical analysis of the relationship between brightness temperature and emissivity, which provide a theoretical basis for the emissivity sample choice. Furthermore, the rules can reduce the sample size (amount) and improve the calculation speed. The effectiveness of the proposed rules was verified by measuring the true temperature of a solid rocket engine plume, in which the rules were applied to effectively select emissivity samples. The experimental results demonstrate that the computing speed of the true temperature determination can be improved by 5.73% to 48.64%.

  19. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here first results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8 m Perkins telescope at Lowell Observatory. The first long-term well-sampled IR light curve of GRS 1915+105 is presented herein and is consistent with the interpretation of this source as a long-period binary. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  20. Multi-wavelength probes of distant lensed galaxies

    NASA Astrophysics Data System (ADS)

    Serjeant, Stephen

    2012-08-01

    I summarise recent results on multi-wavelength properties of distant lensed galaxies, with a particular focus on Herschel. Submm surveys have already resulted in a breakthrough discovery of an extremely efficient selection technique for strong gravitational lenses. Benefitting from the gravitational magnification boost, blind mm-wave redshifts have been demonstrated on IRAM, SMA and GBT, and follow-up emission line detections have been made of water, [Oiii], [Cii] and other species, revealing the PDR/XDR/CRDR conditions. I also discuss HST imaging of submm lenses, lensed galaxy reconstruction, the prospects for ALMA and e-Merlin and the effects of differential magnification. Many emission line diagnostics are relatively unaffected by differential magnification, but SED-based estimates of bolometric fractions in lensed infrared galaxies are so unreliable as to be useless, unless a lens mass model is available to correct for differential amplification.

  1. Multi-wavelength analysis from tomography study on solar chromosphere

    SciTech Connect

    Mumpuni, Emanuel Sungging; Herdiwijaya, Dhani; Djamal, Mitra

    2015-04-16

    The Sun as the most important star for scientific laboratory in astrophysics as well as encompassing all living aspect on Earth, still holds scientific mystery. As the established model that the Sun’s energy fueled by the nuclear reaction, along with transport process to the typical Solar surface on around 6000-K temperature, many aspects still left as an open questions, such as how the chromosphere responded to the photospheric dynamics. In this preliminary work, we try to analyze the Solar chromosphere respond to the Photospheric dynamics using tomography study implementing multi-wavelength analysis observation obtained from Dutch Open Telescope. Using the Hydrogen-alpha Doppler signal as the primary diagnostic tool, we try to investigate the inter-relation between the magnetic and gas pressure dynamics that occur in the chromosphere.

  2. Multi-wavelength study of MGRO J2019+37

    NASA Astrophysics Data System (ADS)

    Hou, Chao; Chen, Song-Zhan; Yuan, Qiang; Cao, Zhen; He, Hui-Hai; Sheng, Xiang-Dong

    2014-08-01

    MGRO J2019+37, within the Cygnus region, is a bright extended source revealed by Milagro at 12-35 TeV. This source is almost as bright as the Crab Nebula in the northern sky, but is not confirmed by ARGO-YBJ around the TeV scale. Up to now, no obvious counterpart at low energy wavelengths has been found. Hence, MGRO J2019+37 is a rather mysterious object and its VHE γ-ray emission mechanism is worth investigating. In this paper, a brief summary of the multi-wavelength observations from radio to γ-rays is presented. All the available data from XMM-Newton and INTEGRAL at X-ray, and Fermi-LAT at γ-ray bands, are used to get constraints on its emission flux at low energy wavelengths. Then, its possible counterparts and the VHE emission mechanism are discussed.

  3. Multi-wavelength analysis of Ellerman Bomb Light Curves

    NASA Astrophysics Data System (ADS)

    Herlender, M.; Berlicki, A.

    We present the results of a multi-wavelength photometric analysis of Ellerman Bomb (EB) observations obtained from the Dutch Open Telescope. In our data we have found 6 EBs located in the super-penumbra of the main spot in the active region NOAA 10781. We present light curves of EB observed in the Hα line centre and wing +0.7 Å, in the Ca II H line centre and wing~+2.35 Å, in the G-band and in the TRACE 1600 Å filter. We have shown that EBs were visible in the G-band and moreover, there was a good correlation between the light curves in the G-band and in the Hα line wings. We also found quasi-periodic oscillations of EBs brightness in the G-band, CaII H line and TRACE 1600 Å filter.

  4. Experimental and numerical evaluation of freely spacing-tunable multiwavelength fiber laser based on two seeding light signals

    SciTech Connect

    Yuan, Yijun; Yao, Yong Guo, Bo; Yang, Yanfu; Tian, JiaJun; Yi, Miao

    2015-03-28

    A model of multiwavelength erbium-doped fiber laser (MEFL), which takes into account the impact of fiber attenuation on the four-wave-mixing (FWM), is proposed. Using this model, we numerically study the output characteristics of the MEFL based on FWM in a dispersion shift fiber with two seeding light signals (TSLS) and experimentally verify these characteristics. The numerical and experimental results show that the number of output channels can be increased with the increase of the erbium-doped fiber pump power. In addition, by decreasing the spacing of TSLS and increasing the power of TSLS, the number of output channels can be increased. However, when the power of TSLS exceeds a critical value, the number of output channels decreases. The results by numerical simulation are consistent with experimental observations from the MEFL.

  5. C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter.

    PubMed

    Wang, Xiaozhen; Li, Yi; Bao, Xiaoyi

    2010-10-15

    A stable C- and L-band tunable fiber ring laser, using a two-taper Mach-Zehnder interferometer (MZI) as a filter, is proposed and demonstrated experimentally. One of the two taper waists is mechanically bent to tune the laser wavelength. Being amplified by an L-band erbium-doped fiber amplifier and an erbium-doped fiber, respectively, the fiber ring laser has a full L-band (1564-1605nm) and C-band (1550-1565nm) tuning range with a side-mode suppression ratio as high as 50dB. The laser linewidth and the minimum tuning step are related to the MZI's cavity length. It was also found that thermal annealing relieved the internal stresses of the tapers and greatly improved the laser performance.

  6. Multiplexing of six micro-displacement suspended-core Sagnac interferometer sensors with a Raman-Erbium fiber laser.

    PubMed

    Bravo, Mikel; Fernández-Vallejo, Montserrat; Echapare, Mikel; López-Amo, Manuel; Kobelke, J; Schuster, K

    2013-02-11

    This work experimentally demonstrates a long-range optical fiber sensing network for the multiplexing of fiber sensors based on photonic crystal fibers. Specifically, six photonic crystal fiber sensors which are based on a Sagnac interferometer that includes a suspended-core fiber have been used. These sensors offer a high sensitivity for micro-displacement measurements. The fiber sensor network presents a ladder structure and its operation mode is based on a fiber ring laser which combines Raman and Erbium doped fiber amplification. Thus, we show the first demonstration of photonic crystal fiber sensors for remote measurement applications up to 75 km.

  7. Understanding Grb Physics With Multi-Wavelength Data

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    The study of Gamma-ray bursts (GRBs) has entered a full multi-wavelength era. A rich trove of data from NASA GRB missions and ground-based follow up observations have been collected. Careful data mining with well-defined scientific objectives holds the key to address open questions in GRB physics, such as jet composition, radiation mechanism, progenitor and central engine physics. We propose to perform data analyses in the following three directions. 1. The time resolved GRB spectra have a dominant component that can be fit with a phenomenological ``Band'' function. The physical meaning of this function remains unclear. Recently we made a breakthrough in theoretical modeling, and showed that fast-cooling synchrotron radiation of electrons in a decreasing magnetic field can mimic the Band function in detector's bandpass, but differs from Band function slightly. We propose to apply this physically-motivated model to systematically fit the GRB prompt emission data collected by Fermi GBM and LAT, and test whether the dominant GRB emission mechanism is fast cooling synchrotron radiation. We will also fit time-dependent spectra with a time-dependent model to investigate whether a quasi- thermal "photosphere'' emission component is indeed needed to fit the observed spectra. This would shed light onto the unknown composition of GRB jets. By fitting the time resolved spectra, we will also constrain important physical parameters of GRB prompt emission, such as the emission site of GRBs, the strength of magnetic fields, as well as their evolution with radius. 2. Recent GRB multi-wavelength observations suggest that it is not straightforward to define the physical category of a GRB based on the traditional classification in the "duration''-"hardness'' domain. Some long-duration GRBs may not have a massive star origin, while some short-duration GRBs may instead have a massive star origin. We propose to systematically study the gamma-ray Swift/BAT, Fermi/GBM- LAT), X-ray (Swift

  8. Single-longitudinal-mode DBR fiber laser based on the self-made photosensitive Er-doped fiber

    NASA Astrophysics Data System (ADS)

    Ren, Wen-hua; Zheng, Jing-jing; Wang, Yan-hua; Tao, Pei-lin; Tan, Zhong-wei; Jian, Shui-sheng

    2008-12-01

    Two fiber Bragg gratings with ~35mm spatial interval are written in the self-made photosensitive Erbium-doped fiber (PEDF) to form a fiber Bragg grating Fabry-Perot (FBG F-P) cavity. A distributed Bragg reflector (DBR) fiber laser is built up based on the FBG F-P cavity. 1.8mW laser output is achieved with 63mW pump power. By calculating the mode-spacing using the effective length of the FBG F-P cavity, the output of the DBR fiber laser is proved to be singlelongitudinal- mode (SLM).

  9. Multi-wavelength analysis of young pulsars: an overview.

    NASA Astrophysics Data System (ADS)

    Maritz, J. M.; Meintjes, P. J.; Buchner, S. J.

    Young pulsars emit a broad spectrum of radiation that range from radio to gamma ray energies. These pulsars are considered as rotation powered pulsars that spin rapidly and are strongly magnetized. Following the discovery of pulsars nearly four decades ago, the population of known pulsars already reached a number of roughly two thousand. This known population of pulsars includes both millisecond and normal pulsars that were discovered by several telescopes. We analyze both HartRAO radio data and Fermi gamma ray data of the Vela pulsar. We also explore a proposed method of probing the electron column density of the instellar gas through analyzing the gamma ray diffuse data associated with the Fermi two-year observation. This paper serves as an overview of gamma ray and radio timing analysis of bright young pulsars with respect to the use of open source timing analysis tools (Tempo2, Psrchive, Enrico and the Fermi tools). We reason that the multi-wavelength picture of pulsars can help clarify questions regarding the origin of pulsed radiation emission mechanisms in several energy bands, but that radio observations will prove adequate for timing noise analysis, given the accurate and long radio data sets. The process of identifying gravitational waves in timing data, rests on gaining a deeper insight into the timing noise phenomena.

  10. Multi-wavelength high efficiency laser system for lidar applications

    NASA Astrophysics Data System (ADS)

    Willis, Christina C. C.; Culpepper, Charles; Burnham, Ralph

    2015-09-01

    Motivated by the growing need for more efficient, high output power laser transmitters, we demonstrate a multi-wavelength laser system for lidar-based applications. The demonstration is performed in two stages, proving energy scaling and nonlinear conversion independently for later combination. Energy scaling is demonstrated using a 1064 nm MOPA system which employs two novel ceramic Nd:YAG slab amplifiers, the structure of which is designed to improve the amplifier's thermal performance and energy extraction via three progressive doping stages. This structure improved the extraction efficiency by 19% over previous single-stage dopant designs. A maximum energy of 34 mJ was produced at 500 Hz with a 10.8 ns pulse duration. High efficiency non-linear conversion from 1064 nm to 452 nm is demonstrated using a KTP ring OPO with a BBO intra-cavity doubler pumped with 50 Hz, 16 ns 1064 nm pulses. The OPO generates 1571 nm signal which is frequency doubled to 756 nm by the BBO. Output 786 nm pulses are mixed with the 1064 nm pump pulses to generate 452 nm. A conversion efficiency of 17.1% was achieved, generating 3 mJ of 452 nm pulses of 7.8 ns duration. Pump power was limited by intra-cavity damage thresholds, and in future experiments we anticipate >20% conversion efficiency.

  11. Multi-wavelength follow-up of ANTARES neutrino alerts

    NASA Astrophysics Data System (ADS)

    Mathieu, Aurore

    2015-10-01

    Transient sources are often associated with the most violent phenomena in the Universe, where the acceleration of hadrons may occur. Such sources include gamma-ray bursts (GRBs), active galactic nuclei (AGN) or core-collapse supernovae (CCSNe), and are promising candidates for the production of high energy cosmic rays and neutrinos. The ANTARES telescope, located in the Mediterranean sea, aims at detecting these high energy neutrinos, which could reveal the presence of a cosmic ray accelerator. However, to enhance the sensitivity to transient sources, a method based on multi-wavelength follow-up of neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes and the Swift-XRT with a delay of only a few seconds after a neutrino detection. The telescopes start an observation program of the corresponding region of the sky in order to detect a possible electromagnetic counterpart to the neutrino event. The work presented in this thesis covers the development and implementation of an optical image analysis pipeline, as well as the analysis of optical and X-ray data to search for fast transient sources, such as GRB afterglows, and slowly varying transient sources, such as CCSNe.

  12. Multi-wavelength imaging system for the Dutch Open Telescope

    NASA Astrophysics Data System (ADS)

    Bettonvil, Felix C.; Suetterlin, Peter; Hammerschlag, Robert H.; Jagers, Aswin P.; Rutten, Robert J.

    2003-02-01

    The Dutch Open Telescope (DOT) is an innovative solar telescope, completely open, on an open steel tower, without a vacuum system. The aim is long-duration high resolution imaging and in order to achieve this the DOT is equipped with a diffraction limited imaging system in combination with a data acquisition system designed for use with the speckle masking reconstruction technique for removing atmospheric aberrations. Currently the DOT is being equipped with a multi-wavelength system forming a high-resolution tomographic imager of magnetic fine structure, topology and dynamics in the photosphere and low- and high chromosphere. Finally the system will contain 6 channels: G-band (430.5 nm), Ca II H (K) (396.8 nm), H-α (656.3 nm), Ba II (455.4 nm), and two continuum channels (432 and 651 nm). Two channels are in full operation now and observations show that the DOT produces real diffraction limited movies (with 0.2" resolution) over hours in G-band (430.5 nm) and continuum (432 nm).

  13. A Multi-wavelength Ozone Lidar for the EASOE Experiment

    NASA Technical Reports Server (NTRS)

    Godin, S.; Ancellet, G.; David, C.; Porteneuve, J.; Leroy, C.; Mitev, V.; Emery, Y.; Flesia, C.; Rizi, V.; Visconti, G.

    1992-01-01

    The study of the ozone layer during winter and springtime in high latitude regions is a major issue in atmospheric research. For a better understanding of these problems, an important experimental campaign called EASOE (European Arctic Stratospheric Ozone Experiment) was organized by the European Community during the winter 1991-1992. Its main objective was to establish a budget of the ozone destruction processes on the whole northern hemisphere. This implied the simultaneous operation of different types of instruments located in both high and mid-latitude regions in order to study the destruction processes as well as the evolution of the ozone layer during the period of the campaign. A description will be given here of a mobile ozone lidar instrument specially designed for operation during the EASOE campaign. This system, which performs ozone measurements in the 5 to 40 km altitude range was located in Sodankyla, Finland as part of the ELSA experiment which also includes operation of another multi-wavelength lidar designed for polar stratospheric cloud measurements.

  14. Multi-Wavelength Spectroscopy of Super-Earth Atmospheres

    NASA Astrophysics Data System (ADS)

    Dragomir, Diana; Benneke, Björn; Crossfield, Ian; Lothringer, Joshua; Knutson, Heather

    2017-01-01

    The Kepler mission has revealed that super-Earths (planets with radii between 1 and 4 R_Earth) are the most common class of planets in the Galaxy, though none are known in our own Solar System. These planets can theoretically have a wide range of compositions which we are just beginning to explore observationally. While studies based on Kepler data have revolutionized many areas of exoplanet research, the relative faintness of most of the host stars in the Kepler field means that atmospheric characterization of these super-Earths with currently available instruments is extremely challenging. However, a handful of transiting super-Earths are within reach of existing facilities. We have pointed both the HST and Spitzer toward these systems in an effort to paint a thorough picture of their atmospheres. Our transmission spectroscopy observations explore the transition region between terrestrial planets and miniature gas giants, and contribute to distinguishing between low-density hydrogen-dominated atmospheres and compact high-metallicity atmospheres. Transmission spectroscopy over a wide wavelength range is also essential to understanding the properties and effects of clouds in these atmospheres. The results of this program will inform the direction to be taken by future multi-wavelength studies of these worlds, in particular those enabled when the HST joins forces with the upcoming JWST.

  15. All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror.

    PubMed

    Ahmad, Harith; Dernaika, Mohamad; Harun, Sulaiman Wadi

    2014-09-22

    This paper describes a proposal and successful demonstration of a dual wavelength all-fiber passively Q-switched erbium-doped fiber ring laser. The Q-switch operation was realized by using a nonlinear loop mirror that incorporated an unbalanced dispersion-decreasing taper fiber to act as a saturable absorber without additional elements. This setup enabled a fiber ring laser to achieve a performance of 48.7 kHz repetition rate with pulse duration of around 3.2 μs and approximate pulse energy of 20 nJ.

  16. Multi-wavelength studies of wind driving cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Witherick, Dugan Kenneth

    This thesis presents several case studies of disc winds from high-state cataclysmic variable stars, based on multi-wavelength time-series spectroscopy. The research presented here primarily focuses on three low-inclination, nova-like systems: RW Sextansis, V592 Cassiopeiae and BZ Camelopardalis. The aim was to derive and compare key spectral line diagnostics of the outflows, spanning a wide range of ionisation and excitation using (new) FUSE, HST, IUE and optical data. Analysis of the far-UV time-series of RW Sex reveals the wind to be highly variable but generally confined to between ~ -1000 and ~ 0 km/s for all ionisation states; no evidence of the wind at red-shifted velocities is found. This wind is modulated on the orbital period of the system and it is argued that the observed variability is due to changes in the blue-shifted absorption rather than a variable velocity emission. The Balmer profiles observed in the optical time-series of V592 Cas were found to be characterised by three components: a broad, shallow absorption trough, a narrow central emission and a blue-shifted absorption from the disc wind. The wind is also found to be modulated on the systems orbital period, although this modulation is slightly out of phase with the Balmer emission radial velocities. The wind of BZ Cam was found to behave very differently to that of RW Sex and V592 Cas. At times, it was seen (in the Balmer lines and some of the He I lines) to be extremely strong and variable but at other times is was seemingly not present; there was no evidence to suggest that it is modulated on the orbital or any other period. This study is an immense source of data on CV disc winds and importantly tries to parameterise three nova-like CVs to understand the similarities and differences between them and their winds.

  17. Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser.

    PubMed

    Meng, Yichang; Zhang, Shumin; Li, Xingliang; Li, Hongfei; Du, Juan; Hao, Yanping

    2012-03-12

    Multiple-soliton dynamic patterns have been observed experimentally in an erbium-doped fiber ring laser with graphene as a saturable absorber. Under relatively low pumping power we have obtained disordered multiple-solitons, bunched solitons and high order harmonic mode locking by adjusting the orientation of the polarization controllers. With increased pumping power, we have also observed flow of solitons. We have experimentally investigated in detail the conditions under which these patterns form.

  18. Dynamics and Synchronization of Nonlinear Oscillators with Time Delays: A Study with Fiber Lasers

    DTIC Science & Technology

    2007-07-19

    10. Erbium-Doped Fiber Amplifiers: Basic Physics and Characteristics, pages 531– 582. Marcel Dekker, New York, 2nd revised and expanded edition, 2001...broad area semiconductor lasers and its characterization. Chaos, Solitons & Fractals, 10(4-5):845–850, 1999. [60] Ortwin Hess and Eckehard Schöll...Eigenmodes of the dynamically coupled twin-stripe semiconductor laser. Phys. Rev. A, 50(1):787–792, July 1994. [61] Ortwin Hess . Spatio-temporal complexity

  19. Long-Distance Repeaterless Duplex Fiber-Optic Demonstration System. Update

    DTIC Science & Technology

    1991-02-01

    bandwidth. This change in bandwidth gave an additional 2-dB gain . An erbium-doped fiber amplifier ( EDFA ) was purchased and will be installed into the system...sensitive. The relative flatness of the APD sensitivity as a function of gain is one indication that the preamplifier noise is too large. For the second...employ a transimpedance amplifier. The latter is composed of a for- sard gain block with resistive feedback to provide flat shunt feedback. The high

  20. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  1. Self-mode-locking in erbium-doped fibre lasers with saturable polymer film absorbers containing single-wall carbon nanotubes synthesised by the arc discharge method

    NASA Astrophysics Data System (ADS)

    Tausenev, Anton V.; Obraztsova, Elena D.; Lobach, A. S.; Chernov, A. I.; Konov, Vitalii I.; Konyashchenko, Aleksandr V.; Kryukov, P. G.; Dianov, Evgenii M.

    2007-03-01

    We studied the ring and linear schemes of erbium-doped fibre lasers in which passive mode locking was achieved with the help of saturable absorbers made of high-optical quality films based on cellulose derivatives with dispersed single-wall carbon nanotubes. The films were prepared by the original method with the use of nanotubes synthesised by the arc discharge method. The films exhibit nonlinear absorption at a wavelength of 1.5 μm. Pulses in the form of optical solitons of duration 1.17 ps at a avelength of 1.56 μm were generated in the ring scheme of the erbium laser. The average output power was 1.1 mW at a pulse repetition rate of 20.5 MHz upon pumping by the 980-nm, 25-mW radiation from a laser diode. The pulse duration in the linear scheme was reduced to 466 fs for the output power up to 4 mW and a pulse repetition rate of 28.5 MHz. The specific feature of these lasers is a low pump threshold in the regime of generation of ultrashort pulses.

  2. LASERS: Ultrashort-pulse erbium-doped fibre laser using a saturable absorber based on single-wall carbon nanotubes synthesised by the arc-discharge method

    NASA Astrophysics Data System (ADS)

    Tausenev, A. V.; Obraztsova, E. D.; Lobach, A. S.; Konov, V. I.; Konyashchenko, A. V.; Kryukov, P. G.; Dianov, E. M.

    2007-09-01

    An erbium-doped fibre laser operating in self-mode-locked regime achieved with the help of a saturable absorber based on single-wall carbon nanotubes synthesised by the arc-discharge method is fabricated and studied. Due to the development of an original method for preparing samples, films of the optical quality containing individual single-wall carbon nanotubes were synthesised. The study of the dependence of resonance absorption at a wavelength of 1.5 μm on the laser radiation intensity transmitted through a film showed that these films have nonlinear transmission and can be used in fibre lasers as saturable absorbers to provide self-mode locking. Stable transform-limited pulses having the shape of optical solitons were generated at a wavelength of 1557.5 nm in the laser with a ring resonator. The pulse duration was 1.13 ps at a pulse repetition rate of 20.5 MHz. The continuous output power achieved 1.1 mW upon pumping by a 25-mW laser diode at 980 nm.

  3. All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element.

    PubMed

    Mou, Chengbo; Wang, Hua; Bale, Brandon G; Zhou, Kaiming; Zhang, Lin; Bennion, Ian

    2010-08-30

    We report on the demonstration of an all-fiber femtosecond erbium doped fiber laser passively mode-locked using a 45º tilted fiber grating as an in-fiber polarizer in the laser cavity. The laser generates 600 fs pulses with output pulse energies ~1 nJ. Since the 45° tilted grating has a broad polarization response, the laser output has shown a tunabilty in wavelength from 1548 nm to 1562 nm by simply adjusting the polarization controllers in the cavity.

  4. Fiber-optic CATV system performance improvement by using split-band technique and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Han; Tzeng, Shah-Jye; Chuang, Yao-Wei; Chen, Guan-Lin; Peng, Hsiang-Chun

    2007-03-01

    A directly-modulated amplitude modulation-vestigial sideband (AM-VSB) cable television (CATV) erbium-doped fiber amplifier (EDFA)-repeated system that uses split-band technique and photonic crystal fiber (PCF) as a broadband dispersion compensation device is proposed and demonstrated. In contrast to a conventional externally-modulated fiber-optic CATV system, good performance of carrier-to-noise ratio (CNR), composite second order (CSO) and composite triple beat (CTB) were obtained in our proposed systems over a combination of 100-km single-mode fiber (SMF) and 3.6 km PCF.

  5. Multiwavelength fiber laser for the fiber link monitoring system

    NASA Astrophysics Data System (ADS)

    Peng, Peng-Chun; Lee, Wei-Yun; Wu, Shin-Shian; Hu, Hsuan-Lun

    2013-10-01

    This work proposes a novel fiber link monitoring system that uses a multiwavelength fiber laser for wavelength-division-multiplexed (WDM) passive optical network (PON). The multiwavelength fiber laser is based on an erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA). Experimental results show the feasibility using the system to monitor a fiber link with a high and stable signal-to-noise ratio (SNR) of over 26 dB. The link quality of downstream signals as well as the fiber link on WDM channels can be monitored in real time. Favorable carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple beat (CTB) performance metrics were obtained for cable television (CATV) signals that were transported through 25 km of standard single-mode fiber (SMF).

  6. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium-doped

  7. Mid-Infrared Fiber Laser Based on Super-Continuum

    DTIC Science & Technology

    2007-01-31

    the pump wavelength. The gain fiber comprises a.lm of highly doped, large mode area ( LMA ) erbium-doped fiber amplifier (EDFA). Two 1480nm pump laser...amplified stimulation emission. In addition, the LMA EDFA can be incorporated and spliced into the pump laser set-up, and up to several Omni Sciences...Outputnput from 5m Nufern Er/Yb ~2SF ~0mL# gain fiber 71125 pm 6W 976nm pump Figure 4. Detailed lay-out for power amplifier stage using cladding

  8. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  9. V404 Cygni: coordination of multi-wavelength observations and request for coverage during HST visits

    NASA Astrophysics Data System (ADS)

    Knigge, C.; Marsh, T. R.; Sivakoff, G. R.; Altamirano, D.; Hernández Santisteban, J. V.; Shaw, A.; Charles, P. A.; Gandhi, P.

    2015-06-01

    In an effort to coordinate the multi-wavelength observations covering the ongoing outburst of the black hole X-ray transient V404 Cygni, we have set up a mailing list to facilitate communication between observers.

  10. Use of fiber helical coils to obtain polarization insensitive fiber devices

    NASA Astrophysics Data System (ADS)

    Tentori, Diana; Garcia-Weidner, A.; Rodriguez-Garcia, J. A.

    2016-09-01

    Using a new model for the description of the birefringence of a helical coil, it is shown that the birefringence effect on the signal polarization introduced by a fiber device can be canceled out by introducing two helical coils at the required orientation. Experimental results obtained using this modification in a polarization insensitive device (optical isolator) and in a non-polarization insensitive device working at two different wavelengths (wavelength division multiplexer) are presented and discussed. Such modified devices were used in the construction of an erbium-doped fiber amplifier (EDFA) with a full control of the input signal and pump states of polarization.

  11. Switchable dual-wavelength fiber laser based on semiconductor optical amplifier and polarization-maintaining fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ren, Wenhua; Jian, Shuisheng

    2008-12-01

    Switchable dual-wavelength with orthogonal polarizations fiber laser based on semiconductor optical amplifier (SOA) and polarization-maintaining fiber Bragg grating (PMFBG) at room temperature is proposed. Owing to the polarization dependent loss of the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting the polarization controller (PC). The amplitude variation in nearly half an hour is less than 0.1 dB for both wavelengths, which is more stable than that of erbium doped fiber (EDF)-based laser with similar configuration.

  12. Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation.

    PubMed

    Yeh, C-H; Huang, T T; Chien, H-C; Ko, C-H; Chi, S

    2007-01-22

    We propose and demonstrate a tunable and stable single-longitudinal-mode (SLM) erbium fiber laser with a passive triple-ring cavity structure in S-band operation. The proposed laser is fundamentally structured by using three different lengths of ring cavities, which serve as the mode filters. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable and stable SLM laser oscillation. Moreover, the performances of the output power, wavelength stability, tuning range, and side-mode suppression ratio (SMSR) are studied.

  13. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    NASA Astrophysics Data System (ADS)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  14. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    PubMed Central

    Mishra, Mitul Kumar; Prakash, Shobha

    2013-01-01

    Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG) laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface, but removed more

  15. Multiplexed fiber-ring laser sensors for ultrasonic detection.

    PubMed

    Liu, Tongqing; Hu, Lingling; Han, Ming

    2013-12-16

    We propose and demonstrate a multiplexing method for ultrasonic sensors based on fiber Bragg gratings (FBGs) that are included inside the laser cavity of a fiber-ring laser. The multiplexing is achieved using add-drop filters to route the light signals, according to their wavelengths, into different optical paths, each of which contains a separate span of erbium-doped fiber (EDF) as the gain medium. Because a specific span of EDF only addresses a single wavelength channel, mode completion is avoided and the FBG ultrasonic sensors can be simultaneously demodulated. The proposed method is experimentally demonstrated using a two-channel system with two sensing FBGs in a single span of fiber.

  16. A compact, multi-wavelength, and high frequency response light source for diffuse optical spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoungsu; Lee, Minseok; Lee, Seung-ha; Cerussi, Albert E.; Chung, Phil-sang; Kim, Sehwan

    2015-03-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources. In this paper, we present a compact six-channel combiner of optical sub-assembly type that couples the output of independent solid-state light sources into a single 400 μm diameter optical fiber. It is equipped with six discrete laser diodes, 658, 690, 705, 785, 830, and 850 nm for the measurement of the tissue optical properties from optical spectroscopy and imaging. We demonstrate coupling efficiencies ≥ 77% and output optical power ≥ 20 mW for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity modulated laser diodes (with bandwidth ≥ 3 GHz). The developed light source could be used to construct custom multi-wavelength sources for tissue oximeters, diffuse optical imaging, and molecular imaging technologies.

  17. High-speed multi-wavelength Fresnel diffraction imaging.

    PubMed

    Noom, Daniel W E; Boonzajer Flaes, Dirk E; Labordus, Elias; Eikema, Kjeld S E; Witte, Stefan

    2014-12-15

    We demonstrate a compact lensless microscope which can capture video-rate phase contrast images of moving objects and allows numerical scanning of the focal distance after recording. Using only an RGB-detector and illumination from a single mode fiber, diffraction patterns at three wavelengths are recorded simultaneously, enabling high-speed data collection and reconstruction of phase and amplitude. The technique is used for imaging of a moving test target, beads in a flow cell, and imaging of Caenorhabditis elegans moving in a droplet of liquid.

  18. Linear dissipative soliton in an anomalous-dispersion fiber laser.

    PubMed

    Wang, Ruixin; Dai, Yitang; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong

    2014-12-01

    We report on the generation of linear dissipative soliton (LDS) from an erbium-doped actively mode-locked fiber laser. We show that depending on the down-chirping effect of quadratic phase modulation, instead of the fiber nonlinear Kerr effect in an all-normal-dispersion (ANDi) cavity, stable LDS can be realized in the linear dissipative system. The DS operation of ANDi laser and LDS operation of anomalous dispersion laser are experimentally investigated and compared, and the formation mechanisms of the DS and LDS are discussed. Finally, optical frequency comb generated by the LDS laser is demonstrated.

  19. Multi-wavelength laser tuning based on cholesteric liquid crystals with nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Chieh; Lin, Jia-De; Lee, Chia-Rong; Hwang, Shug-June

    2016-04-01

    A controllable multi-wavelength laser from a dye-doped cholesteric liquid crystal (DDCLC) cell is demonstrated by incorporating self-assembled polyhedral oligomeric silsesquioxane (POSS) nanoparticles (NPs). Multi-wavelength lasing emission is achieved by formation of multiple planar domains; this formation is dominantly influenced by the vertical alignment of NP clusters adsorbed on the substrate surface through a rapid thermal annealing process. The multi-wavelength lasing peaks are generated through the resultant effect of multiple longitudinal resonant modes of a Fabry-Pérot etalon between the cell substrates and the amplification of fluorescence photons with the resonant wavelengths within the broadening long-wavelength edge of the reflection band of the multi-domain CLC. The amount of multi-wavelength lasing peaks can be controlled by changing the POSS NP concentration and the cooling rate of the cell. Furthermore, thermo-reversible control of the multi-wavelength lasing emission can be attained by controlling the thermally induced phase separation process of the POSS/DDCLC cell via a heating/cooling cyclic process.

  20. Touch the Invisible Sky: A multi-wavelength Braille book featuring NASA images

    NASA Astrophysics Data System (ADS)

    Steel, S.; Grice, N.; Daou, D.

    2008-06-01

    Multi-wavelength astronomy - the study of the Universe at wavelengths beyond the visible, has revolutionised our understanding and appreciation of the cosmos. Hubble, Chandra and Spitzer are examples of powerful, space-based telescopes that complement each other in their observations spanning the electromagnetic spectrum. While several Braille books on astronomical topics have been published, to this point, no printed material accessible to the sight disabled or Braille reading public has been available on the topic of multi-wavelength astronomy. Touch the Invisible Sky presents the first printed introduction to modern, multi-wavelength astronomy studies to the disabled sight community. On a more fundamental level, tactile images of a Universe that had, until recently, been invisible to all, sighted or non-sighted, is an important learning message on how science and technology broadens our senses and our understanding of the natural world.

  1. Observation of mode instability and coherence collapse in a single-frequency polarization-maintaining fiber ring laser

    NASA Astrophysics Data System (ADS)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Hu, Yongming

    2014-06-01

    Mode instability acts as a common feature in single-frequency fiber ring lasers. The mechanism of coherence collapse by mode instability is theoretically analyzed and demonstrated with an unbalanced fiber Michelson interferometer utilizing phase modulation, which is illuminated by a single-frequency erbium-doped fiber ring laser. Multiform mode instability phenomena accompanied with coherence collapse are observed and discussed in detail by tracing the dynamics of the interference fringe visibility. The results show that mode instability would introduce extra phase noises like a false alarm to interferometric fiber optic sensing systems.

  2. Quantum dot SOA/silicon external cavity multi-wavelength laser.

    PubMed

    Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael

    2015-02-23

    We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.

  3. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber.

    PubMed

    de Matos, C; Taylor, J; Hansen, T; Hansen, K; Broeng, J

    2003-11-03

    We show, for the first time to our knowledge, all-fiber chirped pulse amplification using an air-core photonic bandgap fiber. Pulses from a wavelength- and duration-tunable femtosecond/picosecond source at 10 GHz were dispersed in 100 m of dispersion compensating fiber before being amplified in an erbium-doped fiber amplifier and subsequently recompressed in 10 m of the anomalously dispersive photonic bandgap fiber. Pulses as short as 1.1 ps were obtained. As air-core fibers present negligible nonlinearity, the presented configuration can potentially be used to obtain ultra-high pulse peak powers. A study of the air-core fiber dispersion and dispersion slope is also presented.

  4. Multi-wavelength observations of the peculiar red giant HR 3126

    NASA Technical Reports Server (NTRS)

    Pesce, Joseph E.; Stencel, Robert E.; Walter, Frederick M.; Doggett, Jesse; Dachs, Joachim; Whitelock, Patricia A.; Mundt, Reinhard

    1988-01-01

    Ultraviolet observations of the red giant HR 3126 are combined with multi-wavelength data in order to provide a firmer basis for explaining the arc-minute sized nebula surrounding the object. Possibilities as to the location of HR 3126 on the Hertzsprung-Russel diagram, and to the formation mechanisms of the reflection nebula IC 2220 associated with it, are summarized.

  5. Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator.

    PubMed

    Cuadrado-Laborde, C; Bello-Jiménez, M; Díez, A; Cruz, J L; Andrés, M V

    2014-01-01

    We demonstrate low-frequency active mode locking of an erbium-doped all-fiber ring laser. As the mode locker, we used a new in-fiber bandpass acousto-optic modulator showing 74% modulation depth, 3.7 dB power insertion losses, 4.5 nm of optical bandwidth, and 20 dB of nonresonant light suppression. The laser generates 330 ps mode-locked pulses over a 10 ns pedestal, at a 1.538 MHz frequency, with 130 mW of pump power.

  6. 100 GB/S Time Division Multiplex (TDM) Access Nodes and Regenerators Based on Novel Loop Mirrors with High Nonlinearity Fibers

    DTIC Science & Technology

    2002-07-01

    Insensitive Demultiplexer,” (submitted to Journal of Lightwave Technology ). 9. J.Kim, J.H. Lim, O. Boyraz, and M.N. Islam, “ Gain Enhancement in cascaded Fiber...profile, particularly its “ flatness ” due to third and fourth order dispersion values[1], dictates the parametric gain required to phase-match a...SMF-28 fiber pigtails and a polarization controller. An erbium-doped fiber amplifier ( EDFA ) consisting of 1.5m of 2000ppm-doped Er gain fiber

  7. Optical fiber synaptic sensor

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  8. Sub-picosecond ultra-low frequency passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Cuadrado-Laborde, Christian; Cruz, José L.; Díez, Antonio; Andrés, Miguel V.

    2016-11-01

    We developed a nonlinear polarization rotation all-fiber mode-locked erbium-doped fiber laser, with the purpose to reach a sub-picosecond and sub-megahertz light pulse emission. In the process, we observed three different emission regimes as the net birefringence is changed, namely high-power dissipative soliton resonance, low-power soliton regime, and a mixed combination of both. In the pure solitonic regime, a 0.961 MHz train of chirp-free Gaussian pulses was obtained, with a time width of 0.919 ps at 1564.3 nm.

  9. Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Abshire, James B.

    2010-01-01

    A fiber-based laser transmitter has been designed for active remote-sensing spectroscopy. The transmitter uses a master-oscillator-power-amplifier (MOPA) configuration with a distributed feedback diode-laser master oscillator and an erbium-doped fiber amplifier. The output from the MOPA is frequency-doubled with a periodically poled nonlinear crystal. The utility of this single-frequency, wavelength-tunable, power-scalable laser has been demonstrated in a spectroscopic measurement of the diatomic oxygen A-band.

  10. Performance Analysis of an EDFA Utilizing a Partially Doped Core Fiber (PDCF)

    NASA Astrophysics Data System (ADS)

    Ahad, M. A.; Paul, M. C.; Muhd-Yassin, S. Z.; Mansoor, A.; Abdul-Rashid, H. A.

    2016-09-01

    The effect of transversal design in Erbium-doped fiber amplifiers' gain and noise figure performance is illustrated in this work. In this work, we investigate experimentally a single pass 980 nm pumped EDFA with partially doped Erbium core fiber (PDCF), which has the core partially doped with Erbium ions. Later, the enumerated results for PDCF are compared with a standard fully doped EDF, having similar Erbium ion doping concentration. The PDCF Amplifier gain and noise figure performance is studied against different pump power and signal power at different operating wavelengths. The noise figure indicates improvement due to reduced spontaneous emission from un-doped region of the core.

  11. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: Structure identification and quantification

    SciTech Connect

    Wu, Zili

    2014-10-20

    Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure - catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In our review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between the oxide clusters and the support. Moreover, the qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.

  12. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: Structure identification and quantification

    DOE PAGES

    Wu, Zili

    2014-10-20

    Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure - catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In our review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between themore » oxide clusters and the support. Moreover, the qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.« less

  13. Novel multi wavelength sensor concept to detect total hemoglobin concentration, methemoglobin and oxygen saturation

    NASA Astrophysics Data System (ADS)

    Timm, Ulrich; Gewiss, Helge; Kraitl, Jens; Stuepmann, Kirstin; Hinz, Michael; Koball, Sebastian; Ewald, Hartmut

    2015-03-01

    The paper will describe the novel multi-wavelength photometric device OxyTrue Hb® which is capable to measure the hemoglobin (Hb) and methemoglobin (MetHb) concentration non-invasively. Clinic trails in blood donation centers and during the dialysis are done to prove and demonstrate the performance of the system. The results are compared to the gold standard, the BGA measurement.

  14. Focus detection criterion for refocusing in multi-wavelength digital holography.

    PubMed

    Xu, Li; Mater, Mike; Ni, Jun

    2011-08-01

    The majority of focus detection criteria reported is based on amplitude contrast. Due to phase wrapping, phase contrast was previously reported unsuitable for focus finding tasks. By taking the advantage of multi-wavelength digital holography, we propose a new focus detection criterion based on phase contrast. Experimental results are presented to prove the feasibility of the developed criterion. Possible applications of the developed technology include inspecting machined surfaces in the auto industry.

  15. A New Multi-Wavelength Synoptic Network for Solar Physics and Space Weather

    NASA Astrophysics Data System (ADS)

    Hill, Frank; Roth, Markus; Thompson, Michael

    2013-04-01

    Continuous solar observations are important for many research topics in solar physics, such as magnetic field evolution, flare and CME characteristics, and p-mode oscillation measurements. In addition, space weather operations require constant streams of solar data as input. The deployment of a number of identical instruments around the world in a network has proven to be a very effective strategy for obtaining nearly continuous solar observations. The financial costs of a network are 1-2 orders of magnitude lower than space-based platforms; network instrumentation can be easily accessed for maintenance and upgrades; and telemetry bandwidth is readily available. Currently, there are two solar observing networks with consistent instruments: BiSON and GONG, both designed primarily for helioseismology. In addition, GONG has been augmented with continual magnetic field measurements and H-alpha imagery, with both being used for space weather operational purposes. However, GONG is now 18 years old and getting increasingly more challenging to maintain. There are also at least three scientific motivations for a multi-wavelength network: Recent advances in helioseismology have demonstrated the need for multi-wavelength observations to allow more accurate interpretation of the structure and dynamics below sunspots. Vector magnetometry would greatly benefit from multi-wavelength observations to provide height information and resolve the azimuthal ambiguity. Finally, space weather operations always need a consistent reliable source of continual solar data. This presentation will outline the scientific need for a multi-wavelength network, and discuss some concepts for the design of the instrumentation. A workshop on the topic will be held in Boulder this April.

  16. Tea quality and classification evaluation using multi-wavelength light-emitting diodes induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Xuan; Yan, Chunsheng; He, Sailing; Mei, Liang

    2013-03-01

    In this paper, we demonstrated a detective system to evaluate the quality and classification of different tea samples based on multi-wavelength LED-induced fluorescence spectroscopy. By utilizing multiple excitation wavelengths, we obtained much more physical and chemical information from the detected samples than single excitation wavelength. By utilizing principal component analysis (PCA), we extracted the dominant features of the samples to classify and characterize the tea samples.

  17. Observation of wavelength-switchable solitons in an all-polarization-maintaining erbium-doped fiber cavity based on graphene saturable absorber reflector

    NASA Astrophysics Data System (ADS)

    Meng, Kuo; Zhu, Lian-Qing; Luo, Fei

    2017-01-01

    Not Available Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. PCSIRT: 1212), the Key Grant Science and Technology Planning Project of Beijing, China (Grant Nos. PXM2013_014224_000077 and PXM2012_014224_000019), and the Science and Technology Planning Project of Beijing Municipal Commission of Education, China (Grant No. KM201611232008).

  18. HELP: The Herschel Extragalactic Legacy Project and The Coming of Age of Multi-wavelength Astrophysics

    NASA Astrophysics Data System (ADS)

    Vaccari, M.

    How did galaxies form and evolve? This is one of the most challenging questions in astronomy today. Answering it requires a careful combination of observational and theoretical work to reliably determine the observed properties of cosmic bodies over large portions of the distant Universe on the one hand, and accurately model the physical processes driving their evolution on the other. Most importantly, it requires bringing together disparate multi-wavelength and multi-resolution spectro-photometric datasets in an homogeneous and well-characterized manner so that they are suitable for a rigorous statistical analysis. The Herschel Extragalactic Legacy Project (HELP) funded by the EC FP7 SPACE program aims to achieve this goal by combining the expertise of optical, infrared and radio astronomers to provide a multi-wavelength database for the distant Universe as an accessible value-added resource for the astronomical community. It will do so by bringing together multi-wavelength datasets covering the 1,000 deg2 mapped by Herschel extragalactic surveys in an homogeneous and well-characterized manner, creating a joint lasting legacy from several ambitious sky surveys.

  19. Multi-Wavelength Observations of 3C 273 in 1993-1995

    NASA Technical Reports Server (NTRS)

    vonMontigny, C.; Aller, H.; Aller, M.; Bruhweiler, F.; Collmar, W.; Courvoisier, T. J.-L.; Edwards, P. G.; Fichtel, C. E.; Fruscione, A.; Ghisellini, G.

    1997-01-01

    We present the results of the multi-wavelength campaigns on 3C 273 in 1993-1995. During the observations in late 1993 this quasar showed an increase of its flux for energies >= 100 MeV from about 2.1 x 10(exp -7) photons/sq cm.s to approximately 5.6 x 10(exp -7) photons/sq cm.s during a radio outburst at 14.5, 22 and 37 GHz. However, no one-to-one correlation of the gamma-ray radiation with any frequency could be found. The photon spectral index of the high energy spectrum changed from GAMMA(sub gamma) = (3.20 +/- 0.54) to GAMMA(sub gamma) = (2.20 +/- 0.22) in the sense that the spectrum flattened when the gamma-ray flux increased. Fits of the three most prominent models (synchrotron self-Comptonization, external inverse Comptonization and the proton initiated cascade model) for the explanation of the high gamma-ray emission of active galactic nuclei were performed to the multi-wavelength spectrum of 3C 273 . All three models are able to represent the basic features of the multi-wavelength spectrum. Although there are some differences the data are still not decisive enough to discriminate between the models.

  20. Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber.

    PubMed

    Gauthier, Jean-Christophe; Fortin, Vincent; Carrée, Jean-Yves; Poulain, Samuel; Poulain, Marcel; Vallée, Réal; Bernier, Martin

    2016-04-15

    A mid-infrared supercontinuum extending up to 5.4 μm is generated in a low-loss fluoroindate fiber. It is pumped with an erbium-doped fluoride fiber amplifier seeded with 400 ps pulses at 2.75 μm. Both fibers are fusion spliced to increase the robustness and long-term stability of the system. With more than 82% of the total power beyond 3 μm, this approach is promising for efficient mid-IR light generation.

  1. Research of radiation resistant Er doped fiber for space detection

    NASA Astrophysics Data System (ADS)

    Huang, Jian-ping; Zhang, Ge; Wang, Pu-pu; Li, Run-dong; Jiang, Cong; Xiao, Chun

    2016-11-01

    In this paper, erbium doped fibers for space detection are researched for feature of radiation resistance. Fibers with different coated carbon are hydrogen loaded and radiated, and too thick of carbon layer around fiber would not bring best radiation-resistant performance, since thick carbon layer would make the entering of hydrogen difficult. We also research the duration of saturated hydrogen loading under the high and low temperature respectively, and it's found that the fibers' photo sensitivities tend to be flat after some days. Hydrogen is reloaded into the fibers which have been loaded once, this help us to deep understand the mechanism of hydrogen loading for the fiber gratings. Loss and wave width changes are also researched under different radiation dose.

  2. Mode-locked Er:Yb-doped double-clad fiber laser with 75-nm tuning range.

    PubMed

    Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Semaan, Georges; Sanchez, Francois

    2015-04-01

    We demonstrate a widely tunable Er:Yb-doped double-clad multiple-soliton fiber laser based on nonlinear polarization rotation (NPR). Based on both an artificial birefringent filtering effect of the cavity and population inversion related gain variation, the central wavelength can be continuously tuned over 75 nm range (1545-1620 nm). Wavelength tunability is achieved by controlling both the linear loss of the cavity and the polarization controllers (PCs). This is the widest tunable range yet reported in tunable passively mode-locked erbium-doped fiber lasers.

  3. Optical parametric oscillator based on degenerate four-wave mixing in suspended core tellurite microstructured optical fiber.

    PubMed

    Zhang, Lei; Tuan, Tong Hoang; Kawamura, Harutaka; Suzuki, Takenobu; Ohishi, Yasutake

    2015-10-05

    We report on a suspended core tellurite microstructured optical fiber (TMOF) based optical parametric oscillator (OPO). The intracavity gain is provided by the degenerate four-wave mixing (DFWM) occurred in a 1.5-m-long TMOF synchronously pumped by a mode-locked picosecond erbium-doped fiber laser. The oscillated signal can be generated from 1606 nm to 1743.5 nm, and the idler can be emited from 1526.8 nm to 1395 nm by adjusting the pump wavelength from 1565.4 nm to 1551 nm. A total intenal conversion efficiency of -17.2 dB has been achieved.

  4. Wavelength-codified fiber laser hydrogen detector

    NASA Astrophysics Data System (ADS)

    Ortigosa-Blanch, A.; Díez, A.; González-Segura, A.; Cruz, J. L.; Andrés, M. V.

    2005-11-01

    We report a scheme for an optical hydrogen detector that codifies the information in wavelength. The system is based on an erbium-doped fiber laser with two coupled cavities and a Palladium-coated tapered fiber within one of the laser cavities. The tapered fiber acts as the hydrogen-sensing element. When the sensing element is exposed to a hydrogen atmosphere, its attenuation decreases changing the cavity losses. This change leads the system to switch lasing from the wavelength of the auxiliary cavity to the characteristic wavelength of the cavity which contains the sensing element. The detection level can be shifted by adjusting the reflective elements of the cavity containing the sensing element.

  5. Generation of an octave-spanning supercontinuum in highly nonlinear fibers pumped by noise-like pulses

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming

    2014-09-01

    A supercontinuum generation system is developed, which consists of an erbium-doped fiber ring laser, an erbium-doped fiber amplifier, and a 100-m highly nonlinear fiber. Through nonlinear polarization rotation, the fiber ring laser generates a train of noise-like pulses in the form of repetitive picosecond pulse packets consisting of femtosecond noise-like fine temporal structures. The noise-like pulses are amplified before being sent into the highly nonlinear fiber. As a result, an octave-spanning supercontinuum from 1177 nm to 2449 nm is obtained, which has a 20-dB spectral width of 980 nm. Because of the nonlinearity of the fiber amplifier, the duration of the noise-like pulses is shortened while their average power is enhanced. However, the enhanced pulse energy makes the key contribution to the spectral broadening of the resulting spuercontinuum in this study since the highly nonlinear fiber is so long that the effect of the pulse compression on supercontinuum generation is weak.

  6. Brillouin-Erbium fiber laser with enhanced feedback coupling using common Erbium gain section.

    PubMed

    Samsuri, N M; Zamzuri, A K; Al-Mansoori, M H; Ahmad, A; Mahdi, M A

    2008-10-13

    We demonstrate an enhanced architecture of Brillouin-Erbium fiber laser utilizing the reverse-S-shaped fiber section as the coupling mechanism. The enhancement is made by locating a common section of Erbium-doped fiber next to the single-mode fiber to amplify the Brillouin pumps and the oscillating Stokes lines. The requirement of having two Erbium gain sections to enhance the multiple Brillouin Stokes lines generation is neglected by the proposed fiber laser structure. The mode competitions arise from the self-lasing cavity modes of the fiber laser are efficiently suppressed by the stronger pre-amplified Brillouin pump power before entering the single mode fiber section. The maximum output power of 20 mW is obtained from the proposed fiber laser with 10 laser lines that equally separated by 0.089 nm spacing.

  7. Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Sakata, Hajime; Yoshimi, Hitoshi; Otake, Yuki

    2009-03-01

    We report on oscillation wavelength control in erbium-doped fiber ring lasers by adjusting the period of a mechanically induced long-period fiber grating (LPFG) inserted into the fiber ring resonator. Pump light is provided by a 974 nm laser diode (LD), the emission of which is coupled into the fiber ring resonator through a wavelength-division multiplexing coupler. Laser oscillation occurs with a threshold pump LD current of 40 mA, corresponding to a threshold pump power of 5 mW. When a periodic pressure of 0.81 N/mm is applied to form the LPFG, the fiber ring laser exhibits the tunable range of 40.9 nm, i.e., from 1563.1 to 1604 nm, by changing the grating period.

  8. Ce(3+)/Yb(3+)/Er(3+) triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers.

    PubMed

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-09-20

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er(3+) can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce(3+) and its effects on the luminescence properties of Er(3+) are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce(3+)/Yb(3+)/Er(3+) triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers.

  9. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-09-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers.

  10. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    PubMed Central

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  11. Reliability of temperature determination from curve-fitting in multi-wavelength pyrometery

    SciTech Connect

    Ni, P. A.; More, R. M.; Bieniosek, F. M.

    2013-08-04

    Abstract This paper examines the reliability of a widely used method for temperature determination by multi-wavelength pyrometry. In recent WDM experiments with ion-beam heated metal foils, we found that the statistical quality of the fit to the measured data is not necessarily a measure of the accuracy of the inferred temperature. We found a specific example where a second-best fit leads to a more realistic temperature value. The physics issue is the wavelength-dependent emissivity of the hot surface. We discuss improvements of the multi-frequency pyrometry technique, which will give a more reliable determination of the temperature from emission data.

  12. Integrated 10 Gb/s AWG-based correlator for multi-wavelength optical header recognition.

    PubMed

    Aljada, Muhsen; Alameh, Kamal E

    2008-03-31

    In this paper we experimentally demonstrate a novel optical correlator employing dual integrated Arrayed Waveguide Grating (AWG) in conjunction with variable delay lines. The variable delay lines provide wavelength-dependent time delays and generate a wavelength profile that matches arbitrary bit patterns, whereas the AWGs are used to demultiplex and multiplex the wavelength components of the multi-wavelength header bit pattern. The recognition of 4-bit optical patterns at different wavelengths is experimentally demonstrated at 10 Gb/s by showing that the correlator produces an autocorrelation waveform of high peak whenever the input bit pattern matches the wavelengths profile, and a low-amplitude cross-correlation function otherwise.

  13. Novel multi wavelength sensor concept to measure carboxy- and methemoglobin concentration non-invasively

    NASA Astrophysics Data System (ADS)

    Timm, Ulrich; Kraitl, Jens; Gewiss, Helge; Kamysek, Svend; Brock, Beate; Ewald, Hartmut

    2016-03-01

    This paper will describe a novel multi-wavelength photometric method to measure carboxyhemoglobin (COHb) and methemoglobin (MetHb) concentration non-invasively. COHb and MetHb are so called dysfunctional hemoglobin derivatives and they are not able to carry oxygen. Standard pulse oximeters are only able to measure two derivatives, namely oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) but the presence of other derivatives in the blood may distort the readings. The paper presents a new approach of a noninvasive sensor system to measure COHb and MetHb and the validation in vivo and in vitro.

  14. Multi-wavelength generation based on cascaded Raman scattering and self-frequency-doubling in KTA

    NASA Astrophysics Data System (ADS)

    Zhong, K.; Li, J. S.; Xu, D. G.; Ding, X.; Zhou, R.; Wen, W. Q.; Li, Z. Y.; Xu, X. Y.; Wang, P.; Yao, J. Q.

    2010-04-01

    A multi-wavelength laser is developed based on cascaded stimulated Raman scattering (SRS) and self-frequency-doubling in an x-cut KTA crystal pumped by an A-O Q-switched Nd:YAG laser. The generation of 1178 nm from cascaded SRS of 234 and 671 cm-1 Raman modes is observed. The six wavelengths, including the fundamental 1064 nm, four Stokes waves at 1091, 1120, 1146, 1178 nm, and the second harmonic generation (SHG) of 1146 nm, are tens to hundreds of millwatts for each at 10 kHz, corresponding to a total conversion efficiency of 8.72%.

  15. High-bandwidth transfer of phase stability through a fiber frequency comb.

    PubMed

    Scharnhorst, Nils; Wübbena, Jannes B; Hannig, Stephan; Jakobsen, Kornelius; Kramer, Johannes; Leroux, Ian D; Schmidt, Piet O

    2015-07-27

    We demonstrate phase locking of a 729 nm diode laser to a 1542 nm master laser via an erbium-doped-fiber frequency comb, using a transfer-oscillator feedforward scheme which suppresses the effect of comb noise in an unprecedented 1.8 MHz bandwidth. We illustrate its performance by carrying out coherent manipulations of a trapped calcium ion with 99 % fidelity even at few-μs timescales. We thus demonstrate that transfer-oscillator locking can provide sufficient phase stability for high-fidelity quantum logic manipulation even without pre-stabilization of the slave diode laser.

  16. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser.

    PubMed

    Song, Yu Feng; Li, Lei; Zhang, Han; Shen, De Yuan; Tang, Ding Yuan; Loh, Kian Ping

    2013-04-22

    We experimentally investigated the vector multi-soliton operation and vector soliton interaction in an erbium doped fiber laser passively mode locked by atomic layer graphene. It is found that the vector multi-soliton operation exhibited several characteristic modes. These are the random static distribution of vector solitons, stable bunches of vector solitons, restless oscillations of vector solitons, rain of vector solitons, and emission of a so-called "giant vector soliton". The formation mechanisms of the operation modes were also experimentally investigated.

  17. Polarization dynamic patterns of vector solitons in a graphene mode-locked fiber laser.

    PubMed

    Han, Mengmeng; Zhang, Shumin; Li, Xingliang; Zhang, Huaxing; Yang, Hong; Yuan, Ting

    2015-02-09

    Multiple polarization dynamic patterns of vector solitons, including fundamental solitons, bunched solitons, loosely or tightly bound states and harmonic mode locking have been observed experimentally in an erbium-doped fiber ring laser with graphene as a saturable absorber. By carefully adjusting the pump power and the orientation of the intra-cavity polarization controller, either polarization rotation or polarization locked operation have all been achieved for the above vector solitons. This is the first time that high order harmonic mode locking of polarization rotation vector solitons has been achieved. The signal to noise ratio of our system was ~51 dB, which indicates that the laser operated with high stability.

  18. High-speed ultrashort pulse fiber ring laser using charcoal nanoparticles.

    PubMed

    Li, Wenbo; Hu, Hongyu; Zhang, Xiang; Zhao, Shuai; Fu, Kan; Dutta, Niloy K

    2016-03-20

    A mode-locked erbium-doped fiber ring laser that is easy to set up is proposed and experimentally demonstrated to generate a high-repetition-rate optical pulse train with an ultrashort pulse width. The laser combines a rational harmonic mode-locking technique and charcoal nanoparticles as saturable absorbers. Compared to a solely active mode-locking scheme, the scheme with charcoal nanoparticles can remove the supermodes and narrow the pulse width by a factor of 0.57 at a repetition rate of 20 GHz. Numerical simulation of the laser performance is also provided, which shows good agreement with the experimental results.

  19. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  20. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  1. High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator.

    PubMed

    Dvoretskiy, Dmitriy A; Lazarev, Vladimir A; Voropaev, Vasiliy S; Rodnova, Zhanna N; Sazonkin, Stanislav G; Leonov, Stanislav O; Pnev, Alexey B; Karasik, Valeriy E; Krylov, Alexander A

    2015-12-28

    We report on ultra-short stretched pulse generation in an all-fiber erbium-doped ring laser with a highly-nonlinear germanosilicate fiber inside the resonator with a slightly positive net-cavity group velocity dispersion (GVD). Stable 84 fs pulses were obtained with a 12 MHz repetition rate at a central wavelength of 1560 nm with a 48.1 nm spectral pulse width (full width at half maximum, FWHM) and 30 mW average output power; this corresponds to the 29.7 kW maximum peak power and 2.5 nJ pulse energy obtained immediately from the oscillator.

  2. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  3. Modelling the multi-wavelength emission of flat-spectrum radio quasar 3C 279

    NASA Astrophysics Data System (ADS)

    Zheng, Y. G.; Yang, C. Y.

    2016-04-01

    We employ a length-dependent conical jet model for the jet structure and emission properties of flat-spectrum radio quasar 3C 279 in the steady state. In the model, ultra-relativistic leptons are injected at the base of the jet and propagate along the jet structure. Non-thermal photons are produced by both synchrotron emission and inverse Compton scattering off synchrotron photons and external soft photons at each segment of the jet. We derive the total energy spectra contribution through integrating every segment. We apply the model to the quasi-simultaneous multi-wavelength observed data of two quiescent epochs. Using the observed radio data of the source, we determine the length of the jet L ˜ 100 pc and the magnetic field B0 ˜ 0.1-1 G at the base of the jet. Assuming a steady geometry of the jet structure and suitable physical parameters, we reproduce the multi-wavelength spectra during two quiescent observed epochs. Our results show that the initial γ-ray emission site is ˜0.5 pc from the black hole.

  4. Multi-wavelength Monitoring of Lensed Quasars: Deciphering Quasar Structure at Micro-arcseconds Scales

    NASA Astrophysics Data System (ADS)

    Mosquera, Ana; Morgan, Christopher W.; Kochanek, Christopher S.; Dai, Xinyu; Chen, Bin; MacLeod, Chelsea Louise; Chartas, George

    2016-01-01

    Microlensing in multiply imaged gravitationally lensed quasars provides us with a unique tool to zoom in on the structure of AGN and explore their physics in more detail. Microlensing magnification, caused primarily by stars and white dwarfs close to the line of sight towards the lensed quasar images, is seen as uncorrelated flux variations due to the relative motions of the quasar, the lens, its stars, and the observer, and it depends on the structural and dynamical properties of the source and the lens. Since the magnification depends upon the size of the source, we can use microlensing to measure the size of quasar emission regions. In essence, the amplitude of the microlensing variability encodes the source size, with smaller sources showing larger variability amplitudes. Using state of the art microlensing techniques, our team has performed pioneering research in the field based on multi-wavelength space and ground-based observations. Among the most remarkable results, using Chandra observations we have set the first quantitative constraints on the sizes of the X-ray emission regions of quasars. In this work l briefly describe the methodology, the results from our previous multi-wavelength monitoring programs, and the next frontier of exploring the dependence of the structure of the X-ray emission regions on black hole mass and X-ray energy.

  5. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  6. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. I. SIM LITE OBSERVATIONS OF INTERACTING BINARIES

    SciTech Connect

    Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.; Ciardi, David R.; Hoard, D. W.; Wachter, Stefanie; Benedict, G. Fritz; McArthur, Barbara E.; Howell, Steve B.

    2010-07-10

    Interacting binaries (IBs) consist of a secondary star that fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code to allow us to model the flux-weighted reflex motions of IBs, in a code we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of IB. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright IBs where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.

  7. MODELING MULTI-WAVELENGTH PULSE PROFILES OF THE MILLISECOND PULSAR PSR B1821–24

    SciTech Connect

    Du, Yuanjie; Shuai, Ping; Bei, Xiaomin; Chen, Shaolong; Fu, Linzhong; Huang, Liangwei; Lin, Qingqing; Meng, Jing; Wu, Yaojun; Zhang, Hengbin; Zhang, Qian; Zhang, Xinyuan; Qiao, Guojun

    2015-03-10

    PSR B1821–24 is a solitary millisecond pulsar that radiates multi-wavelength pulsed photons. It has complex radio, X-ray, and γ-ray pulse profiles with distinct peak phase separations that challenge the traditional caustic emission models. Using the single-pole annular gap model with a suitable magnetic inclination angle (α = 40°) and viewing angle (ζ = 75°), we managed to reproduce its pulse profiles of three wavebands. It is found that the middle radio peak originated from the core gap region at high altitudes, and the other two radio peaks originated from the annular gap region at relatively low altitudes. Two peaks of both X-ray and γ-ray wavebands basically originated from the annular gap region, while the γ-ray emission generated from the core gap region contributes somewhat to the first γ-ray peak. Precisely reproducing the multi-wavelength pulse profiles of PSR B1821–24 enables us to understand emission regions of distinct wavebands and justify pulsar emission models.

  8. Multi-wavelength polarimetry: a powerful tool to study the physics of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.

    2009-11-01

    Accreting supermassive black holes reside in a very complex environment and the inner structure and dynamics of active galactic nuclei (AGN) are not well understood yet. In this note, I point out the important role that multi-wavelength polarimetry can play in understanding AGN. In addition to spectroscopy, the measurement of the polarization percentage and position angle provides two more observables that are sensitive to the geometry and kinematics of emission and scattering regions. Furthermore, time-dependent polarimetry allows to measure spatial distances between emission regions and scattering mirrors by applying a reverberation technique. For radiation coming from the direct vicinity of the black hole, the polarization also contains information about the space-time metric. Spectropolarimetry observations of AGN are obtained in the radio, the infrared, the optical, and the ultraviolet wave bands and in the future they are going be available also in the X-ray range. To interpret these observations in a coherent way, it is necessary to study models that do not only reproduce the broad-band spectroscopy properties of AGN but also their multi-wavelength polarization signature. I present a first step towards such models for the case of radio-quiet AGN. The modeling reveals the optical/UV and X-ray polarization properties of the reprocessed radiation coming from the obscuring torus. The discussion about the implications of such models includes prospects for the up-coming technique of X-ray (spectro-)polarimetry.

  9. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-02-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10‑9 and a relative accuracy of 1.4 × 10‑9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision.

  10. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    PubMed Central

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-01-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148

  11. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  12. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  13. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, Mark M.

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  14. Ultrashort pulses from an all-fiber ring laser incorporating a pair of chirped fiber Bragg gratings.

    PubMed

    Duval, Simon; Olivier, Michel; Bernier, Martin; Vallée, Réal; Piché, Michel

    2014-02-15

    By incorporating two linearly chirped ultrabroadband fiber Bragg gratings of opposite dispersion in an all-fiber ring laser, we demonstrate a mode-locking regime in which a femtosecond pulse evolving in the normal dispersion gain segment is locally transformed into a highly chirped picosecond pulse that propagates in the remaining section of the cavity. By minimizing nonlinear effects and avoiding soliton pulse shaping in this anomalous-dispersion section, low repetition rate fiber lasers can be made to produce high-energy ultrashort pulses. Using this approach, 98 fs pulses with 0.96 nJ of energy are obtained from an erbium-doped fiber laser operated in the highly anomalous dispersion regime at a repetition rate of 9.4 MHz.

  15. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  16. [Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis].

    PubMed

    Li, Jing; Lu, Xu-Tao; Yang, Ze-Hui

    2014-05-01

    In order to be able to quickly, to a wide range of natural gas pipeline leakage monitoring, the remote detection system for concentration of methane gas was designed based on static Fourier transform interferometer. The system used infrared light, which the center wavelength was calibrated to absorption peaks of methane molecules, to irradiated tested area, and then got the interference fringes by converging collimation system and interference module. Finally, the system calculated the concentration-path-length product in tested area by multi-wavelength characteristics spectrum analysis algorithm, furthermore the inversion of the corresponding concentration of methane. By HITRAN spectrum database, Selected wavelength position of 1. 65 microm as the main characteristic absorption peaks, thereby using 1. 65 pm DFB laser as the light source. In order to improve the detection accuracy and stability without increasing the hardware configuration of the system, solved absorbance ratio by the auxiliary wave-length, and then get concentration-path-length product of measured gas by the method of the calculation proportion of multi-wavelength characteristics. The measurement error from external disturbance is caused by this innovative approach, and it is more similar to a differential measurement. It will eliminate errors in the process of solving the ratio of multi-wavelength characteristics, and can improve accuracy and stability of the system. The infrared absorption spectrum of methane is constant, the ratio of absorbance of any two wavelengths by methane is also constant. The error coefficients produced by the system is the same when it received the same external interference, so the measured noise of the system can be effectively reduced by the ratio method. Experimental tested standards methane gas tank with leaking rate constant. Using the tested data of PN1000 type portable methane detector as the standard data, and were compared to the tested data of the system

  17. Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker.

    PubMed

    Zhao, Chujun; Zou, Yanhong; Chen, Yu; Wang, Zhiteng; Lu, Shunbin; Zhang, Han; Wen, Shuangchun; Tang, Dingyuan

    2012-12-03

    Based on the open-aperture Z-scan measurement, we firstly uncovered the saturable absorption property of the topological insulator (TI): Bi2Se3. A high absolute modulation depth up to 98% and a saturation intensity of 0.49 GWcm(-2) were identified. By incorporating this novel saturable absorber material into an erbium-doped fiber laser, wavelength tunable soliton operation was experimentally demonstrated. Our result indicates that like the atomic layer graphene, the topological insulator Bi2Se3 could also operate as an effective saturable absorber for the passive mode locking of lasers at the telecommunication band.

  18. Sub-kHz lasing of a CaF₂ whispering gallery mode resonator stabilized fiber ring laser.

    PubMed

    Collodo, M C; Sedlmeir, F; Sprenger, B; Svitlov, S; Wang, L J; Schwefel, H G L

    2014-08-11

    We utilize a high quality calcium fluoride whispering-gallery-mode resonator to passively stabilize a simple erbium doped fiber ring laser with an emission frequency of 196THz (wavelength 1530nm) to an instantaneous linewidth below 650Hz. This corresponds to a relative stability of 3.3 × 10(-12) over 16μs. In order to characterize the linewidth we use two identical self-built lasers and a commercial laser to determine the individual lasing linewidth via the three-cornered-hat method. We further show that the lasers are finely tunable throughout the erbium gain region.

  19. Widely tunable mode-locked fiber laser using carbon nanotube and LPG W-shaped filter.

    PubMed

    Wang, Jie; Zhang, A Ping; Shen, Yong Hang; Tam, Hwa-yaw; Wai, P K A

    2015-09-15

    A widely tunable mode-locked fiber laser using a carbon nanotube absorber and a fiber-optic W-shaped spectral filter is presented. The W-shaped filter is constructed by sandwiching a phase-shifted long-period grating between two LPGs of different periods. By adjusting the temperature of the W-shaped filter from 23°C to 100°C, the central wavelength of the mode-locked fiber laser can be continuously tuned from 1597 to 1553 nm. The tuning range is further extended to 1531.6 nm when a shorter erbium-doped fiber is used in the fiber oscillator. The experimental results reveal that the large thermal tunability of the proposed LPG filter provides an effective approach to achieve compact widely tunable mode-locked fiber lasers covering both C and L bands.

  20. Cable television monitoring system based on fiber laser and FBG sensor

    NASA Astrophysics Data System (ADS)

    Peng, Peng-Chun; Huang, Jun-Han; Wu, Shin-Shian; Yang, Wei-Yuan; Shen, Po-Tso

    2015-05-01

    We propose and experimentally demonstrate a cable television monitoring system based on a linear-cavity fiber laser and fiber Bragg grating (FBG) sensors. The linear-cavity fiber laser comprises a hybrid amplifier with an erbium-doped fiber amplifier and a semiconductor optical amplifier, a fiber loop mirror with a polarization controller and an optical coupler as a cavity mirror, and the FBG sensors acting as another cavity mirrors. Experimental results showed the feasibility of the monitoring system with sufficient of signal-to-noise ratio over 30 dB and stable output power, and the link of cable television signals on fiber link can monitored in real time. Excellent performances of carrier-to-noise ratio after long-distance transmission are obtained for cable television applications.

  1. Refinement of Er3+-doped hole-assisted optical fiber amplifier.

    PubMed

    D'Orazio, A; De Sario, M; Mescia, L; Petruzzelli, V; Prudenzano, F

    2005-12-12

    This paper deals with design and refinement criteria of erbium doped hole-assisted optical fiber amplifiers for applications in the third band of fiber optical communication. The amplifier performance is simulated via a model which takes into account the ion population rate equations and the optical power propagation. The electromagnetic field profile of the propagating modes is carried out by a finite element method solver. The effects of the number of cladding air holes on the amplifier performance are investigated. To this aim, four different erbium doped hole-assisted lightguide fiber amplifiers having a different number of cladding air holes are designed and compared. The simulated optimal gain, optimal length, and optimal noise fig. are discussed. The numerical results highlight that, by increasing the number of air holes, the gain can be improved, thus obtaining a shorter amplifier length. For the erbium concentration NEr=1.8x1024 ions/m3, the optimal gain G(Lopt) increases up to ~2dB by increasing the number of the air holes from M=4 to M=10.

  2. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  3. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser.

    PubMed

    Wang, Guochao; Jang, Yoon-Soo; Hyun, Sangwon; Chun, Byung Jae; Kang, Hyun Jay; Yan, Shuhua; Kim, Seung-Woo; Kim, Young-Jin

    2015-04-06

    A multi-wavelength interferometer utilizing the frequency comb of a femtosecond laser as the wavelength ruler is tested for its capability of ultra-precision positioning for machine axis control. The interferometer uses four different wavelengths phase-locked to the frequency comb and then determines the absolute position through a multi-channel scheme of detecting interference phases in parallel so as to enable fast, precise and stable measurements continuously over a few meters of axis-travel. Test results show that the proposed interferometer proves itself as a potential candidate of absolute-type position transducer needed for next-generation ultra-precision machine axis control, demonstrating linear errors of less than 61.9 nm in peak-to-valley over a 1-meter travel with an update rate of 100 Hz when compared to an incremental-type He-Ne laser interferometer.

  4. Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Shao, Yufeng; Chi, Nan

    2012-09-24

    We propose and experimentally demonstrate a novel scheme to generate optical frequency-locked multi-channel multi-carriers (MCMC), using a recirculating frequency shifter (RFS) loop based on multi-wavelength frequency shifting single side band (MWFS-SSB) modulation. In this scheme, optical subcarriers with multiple wavelengths can be generated each round. Furthermore, the generated MCMC are frequency- and phase-locked within each channel, and therefore can be effectively used for WDM superchannel. Dual-wavelength frequency shifting SSB modulation is carried out with dual-wavelength optical seed source in our experimental demonstration. Using this scheme, we successfully generate dual-channel multi-carriers, and one channel has 28 subcarriers while the other has 29 ones with 25-GHz subcarrier spacing. We also experimentally demonstrate that this kind of source can be used to carry 50-Gb/s optical polarization-division-multiplexing quadrature phase shift keying (PDM-QPSK) signal.

  5. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Casella, Piergiorgio; Marsh, Tom; Gandhi, Poshak; Fender, Rob; Littlefair, Stuart; Eikenberry, Steve; Garner, Alan; Stelter, Deno; Dhillon, Vik; Mooley, Kunal

    2016-07-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  6. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Dallilar, Yigit; Garner, Alan; Deno Stelter, R.; Gandhi, Poshak; Dhillon, Vik; Littlefair, Stuart; Marsh, Thomas; Fender, Rob P.; Mooley, Kunal

    2016-04-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  7. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate.

    PubMed

    Zhai, Tianrui; Wang, Yonglu; Chen, Li; Zhang, Xinping

    2015-08-07

    Tunable multi-wavelength polymer lasers based on two-dimensional distributed feedback structures are fabricated on a transparent flexible substrate using interference ablation. A scalene triangular lattice structure was designed to support stable tri-wavelength lasing emission and was achieved through multiple exposure processes. Three wavelengths were controlled by three periods of the compound cavity. Mode competition among different cavity modes was observed by changing the pump fluence. Both a redshift and blueshift of the laser wavelength could be achieved by bending the soft substrate. These results not only provide insight into the physical mechanisms behind co-cavity polymer lasers but also introduce new laser sources and laser designs for white light lasers.

  8. The astrocosmic databases for multi-wavelength and cosmological properties of extragalactic sources

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Ivashchenko, G. Yu.; Babyk, Yu. V.; Sergijenko, O.; Dobrycheva, D. V.; Torbaniuk, O. O.; Vasylenko, A. A.; Pulatova, N. G.

    2015-12-01

    The article briefly describes the new specially-oriented Astro Space databases obtained with ground-based telescopes and space observatories. As a result, multi-wavelength spectral and physical properties of galaxies and galaxy clusters were analyzed in more details, particularly 1) to study the spectral properties of quasars and the distribution of matter in intergalactic scales using Lyman-alpha forest; 2) to study galaxies (including with active nuclei), especially for the formation of large-scale structures in the Universe and influence of the environment on the internal parameters of galaxies; 3) to estimate a visible and dark matter content in galaxy clusters and to test cosmological parameters and the evolution of matter in a wide range of age of the Universe.

  9. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    SciTech Connect

    Russo, V.; Ghidelli, M.; Gondoni, P.

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  10. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.

    PubMed

    Blanchard, Romain; Boriskina, Svetlana V; Genevet, Patrice; Kats, Mikhail A; Tetienne, Jean-Philippe; Yu, Nanfang; Scully, Marlan O; Dal Negro, Luca; Capasso, Federico

    2011-10-24

    We propose and demonstrate a novel photonic-plasmonic antenna capable of confining electromagnetic radiation at several mid-infrared wavelengths to a single sub-wavelength spot. The structure relies on the coupling between the localized surface plasmon resonance of a bow-tie nanoantenna with the photonic modes of surrounding multi-periodic particle arrays. Far-field measurements of the transmission through the central bow-tie demonstrate the presence of Fano-like interference effects resulting from the interaction of the bow-tie antenna with the surrounding nanoparticle arrays. The near-field of the multi-wavelength antenna is imaged using an aperture-less near-field scanning optical microscope. This antenna is relevant for the development of near-field probes for nanoimaging, spectroscopy and biosensing.

  11. Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition

    NASA Astrophysics Data System (ADS)

    Kunapareddy, Nagapratima; Grun, Jacob; Lunsford, Robert; Gillis, David; Nikitin, Sergei; Wang, Zheng

    2012-06-01

    We will examine the use of multi-wavelength UV resonance-Raman signatures to identify the effects of growth phase on different types of bacteria. Gram positive and gram-negative species, Escherichia coli, Bacillus cereus, Citrobacter koseri and Citrobacter braakii were grown to logarithmic and stationary phases in different culture media. Raman spectra of bacteria were obtained by sequential illumination of samples between 220 and 260 nm; a range which encompasses the resonance frequencies of cellular components. In addition to the information contained in the single spectrum, this two-dimensional signature contains information reflecting variations in resonance cross sections with illumination wavelength. Results of our algorithms in identifying the differences between these germs are discussed. Preliminary results indicate that growth affects the Raman signature, but not to an extent that would negate identification of the species.

  12. Aerosol Properties over Southeastern China from Multi-Wavelength Raman and Depolarization Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Heese, Birgit; Althausen, Dietrich; Baars, Holger; Bohlmann, Stephanie; Deng, Ruru

    2016-06-01

    A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.

  13. Initiation of coronal mass ejection event observed on 2010 November 3: multi-wavelength perspective

    SciTech Connect

    Mulay, Sargam; Subramanian, Srividya; Tripathi, Durgesh; Isobe, Hiroaki; Glesener, Lindsay

    2014-10-10

    One of the major unsolved problems in solar physics is that of coronal mass ejection (CME) initiation. In this paper, we have studied the initiation of a flare-associated CME that occurred on 2010 November 3 using multi-wavelength observations recorded by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the Reuven Ramaty High Energy Solar Spectroscopic Imager. We report an observation of an inflow structure initially in the 304 Å and the 1600 Å images a few seconds later. This inflow structure was detected as one of the legs of the CME. We also observed a non-thermal compact source concurrent and near co-spatial with the brightening and movement of the inflow structure. The appearance of this compact non-thermal source, brightening, and movement of the inflow structure and the subsequent outward movement of the CME structure in the corona led us to conclude that the CME initiation was caused by magnetic reconnection.

  14. Multi-wavelength Raman Spectroscopic Study of Silica-supported Vanadium Oxide Catalysts

    SciTech Connect

    Wu, Zili; Dai, Sheng; Overbury, Steven {Steve} H

    2010-01-01

    The molecular structure of silica-supported vanadium oxide (VOx) catalysts over wide range of surface VOx density (0.0002 8 V/nm2) has been investigated in detail under dehydrated condition by in situ multi-wavelength Raman spectroscopy (laser excitations at 244, 325, 442, 532, and 633 nm) and in situ UV-Vis diffuse reflectance spectroscopy. Resonance Raman scattering is clearly observed using 244 and 325-nm excitations while normal Raman scattering occurs using excitation at the three visible wavelengths. The observation of strong fundamentals, overtones and combinational bands due to selective resonance enhancement effect helps clarify assignments of some of the VOx Raman bands (920, 1032, and 1060 cm-1) whose assignments have been controversial. The resonance Raman spectra of dehydrated VOx/SiO2 show V=O band at smaller Raman shift than that in visible Raman spectra, an indication of the presence of two different surface VOx species on dehydrated SiO2 even at sub-monolayer VOx loading. Quantitative estimation shows that the two different monomeric VOx species coexist on silica surface from very low VOx loadings and transform to crystalline V2O5 at VOx loadings above monolayer. It is postulated that one of the two monomeric VOx species has pyramidal structure and the other is in partially hydroxylated pyramidal mode. The two VOx species show similar reduction-oxidation behavior and may both participate in redox reactions catalyzed by VOx/SiO2 catalysts. This study demonstrates the advantages of multi-wavelength Raman spectroscopy over conventional single-wavelength Raman spectroscopy in structural characterization of supported metal oxide catalysts.

  15. The Herschel-ATLAS Data Release 1 - II. Multi-wavelength counterparts to submillimetre sources

    NASA Astrophysics Data System (ADS)

    Bourne, N.; Dunne, L.; Maddox, S. J.; Dye, S.; Furlanetto, C.; Hoyos, C.; Smith, D. J. B.; Eales, S.; Smith, M. W. L.; Valiante, E.; Alpaslan, M.; Andrae, E.; Baldry, I. K.; Cluver, M. E.; Cooray, A.; Driver, S. P.; Dunlop, J. S.; Grootes, M. W.; Ivison, R. J.; Jarrett, T. H.; Liske, J.; Madore, B. F.; Popescu, C. C.; Robotham, A. G.; Rowlands, K.; Seibert, M.; Thompson, M. A.; Tuffs, R. J.; Viaene, S.; Wright, A. H.

    2016-10-01

    This paper is the second in a pair of papers presenting data release 1 (DR1) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), the largest single open-time key project carried out with the Herschel Space Observatory. The H-ATLAS is a wide-area imaging survey carried out in five photometric bands at 100, 160, 250, 350 and 500 μm covering a total area of 600 deg2. In this paper, we describe the identification of optical counterparts to submillimetre sources in DR1, comprising an area of 161 deg2 over three equatorial fields of roughly 12 × 4.5 deg centred at 9h, 12h and 14{^h.}5, respectively. Of all the H-ATLAS fields, the equatorial regions benefit from the greatest overlap with current multi-wavelength surveys spanning ultraviolet (UV) to mid-infrared regimes, as well as extensive spectroscopic coverage. We use a likelihood ratio technique to identify Sloan Digital Sky Survey counterparts at r < 22.4 for 250-μm-selected sources detected at ≥4σ (≈28 mJy). We find `reliable' counterparts (reliability R ≥ 0.8) for 44 835 sources (39 per cent), with an estimated completeness of 73.0 per cent and contamination rate of 4.7 per cent. Using redshifts and multi-wavelength photometry from GAMA and other public catalogues, we show that H-ATLAS-selected galaxies at z < 0.5 span a wide range of optical colours, total infrared (IR) luminosities and IR/UV ratios, with no strong disposition towards mid-IR-classified active galactic nuclei in comparison with optical selection. The data described herein, together with all maps and catalogues described in the companion paper, are available from the H-ATLAS website at www.h-atlas.org.

  16. Emissivity measurements of shocked tin using a multi-wavelength integrating sphere

    SciTech Connect

    Seifter, A; Holtkamp, D B; Iverson, A J; Stevens, G D; Turley, W D; Veeser, L R; Wilke, M D; Young, J A

    2011-11-01

    Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed” scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.

  17. Multi-wavelength fibril dynamics and oscillations above sunspot - I. morphological signature

    NASA Astrophysics Data System (ADS)

    Sungging Mumpuni, Emanuel; Herdiwijaya, Dhani; Djamal, Mitra; Djamaluddin, Thomas

    2015-11-01

    In this work we selected one particular fibril from a high resolution observation of the solar chromosphere with the Dutch Open Telescope, and tried to obtain a broad picture of the intricate mechanism that might be operating in the multiple layers of the solar atmosphere visible in high cadence multi-wavelength observations. We analyzed the changing fibril pattern using multi-wavelength tomography, which consists of both the Hα line center and the blue wing, Doppler signal, Ca II H, and the G-band. We have found that the intermittent ejected material through the fibril from Doppler images has clearly shown an oscillation mode, as seen in the Hα blue wing. The oscillations in the umbrae and penumbrae magnetic field lines that are above the sunspot cause a broadening and the area forms a ring shape from 3 to 15 minute oscillations as a function of height. These made a distinct boundary between the umbrae and penumbrae which suggests a comb structure, and indicates that the oscillations could propagate along the inclined magnetic flux tubes from below. The 3 minute oscillations strongly appeared in the broadly inclined penumbrae magnetic field lines and showed a clear light bridge. The well known 5 minute oscillations were dominant in the umbrae-penumbrae region boundary. The long 7 minute oscillations were transparent in the Hα blue wing, as well as the 10 and 15 minute oscillations. They were concentrated in the inner-penumbrae, as seen in the Hα line center. From these findings we propose that the fibril acts as a fabric for interaction between the layers, as well as related activities around the active region under investigation.

  18. Probabilistic classification method on multi wavelength chromatographic data for photosynthetic pigments identification

    NASA Astrophysics Data System (ADS)

    Prilianti, K. R.; Setiawan, Y.; Indriatmoko, Adhiwibawa, M. A. S.; Limantara, L.; Brotosudarmo, T. H. P.

    2014-02-01

    Environmental and health problem caused by artificial colorant encourages the increasing usage of natural colorant nowadays. Natural colorant refers to the colorant that is derivate from living organism or minerals. Extensive research topic has been done to exploit these colorant, but recent data shows that only 0.5% of the wide range of plant pigments in the earth has been exhaustively used. Hence development of the pigment characterization technique is an important consideration. High-performance liquid chromatography (HPLC) is a widely used technique to separate pigments in a mixture and identify it. In former HPLC fingerprinting, pigment characterization was based on a single chromatogram from a fixed wavelength (one dimensional) and discard the information contained at other wavelength. Therefore, two dimensional fingerprints have been proposed to use more chromatographic information. Unfortunately this method leads to the data processing problem due to the size of its data matrix. The other common problem in the chromatogram analysis is the subjectivity of the researcher in recognizing the chromatogram pattern. In this research an automated analysis method of the multi wavelength chromatographic data was proposed. Principal component analysis (PCA) was used to compress the data matrix and Maximum Likelihood (ML) classification was applied to identify the chromatogram pattern of the existing pigments in a mixture. Three photosynthetic pigments were selected to show the proposed method. Those pigments are β-carotene, fucoxanthin and zeaxanthin. The result suggests that the method could well inform the existence of the pigments in a particular mixture. A simple computer application was also developed to facilitate real time analysis. Input of the application is multi wavelength chromatographic data matrix and the output is information about the existence of the three pigments.

  19. Multi-wavelength Raman Lidar Measurements For CALIPSO Validation At CNR-IMAA EARLINET Station

    NASA Astrophysics Data System (ADS)

    Amodeo, A.; D'Amico, G.; Mona, L.; Pappalardo, G.

    2006-12-01

    A Raman/elastic lidar for tropospheric aerosol study is operational at CNR-IMAA (40° 36'N, 15° 44'E, 760 m above sea level) since May 2000 in the framework of EARLINET (European Aerosol Research LIdar NETwork), the first lidar network for tropospheric aerosol study on continental scale. This system provides aerosol backscatter coefficient profiles at 1064 nm, and independent measurements of aerosol extinction and backscatter coefficient profiles at 355 and 532 nm. In this way, lidar ratio (i.e. extinction to backscatter ratio) profiles at 355 and 532 nm are also obtained. In addition, the detection of components of backscattered light polarized perpendicular and parallel to the direction of the linearly polarized transmitted laser beam at 532 nm allows the measurements of the aerosol depolarization ratio vertical profiles. High quality multi-wavelength measurements (3 backscatter + 2 extinction) allow the determination of microphysical aerosol properties (refractive index, single-scattering albedo and effective particles radii), while depolarization ratio measurements give information about shape and orientation of aerosolic particles and lidar ratio measurements are important for aerosol characterization. This multi-wavelength system is optimal for the validation of CALIPSO data products: it provides a reference point for depolarization ratio and aerosol backscatter at 532 and 1064 nm measurements with the direct comparison of measurements derived from CALIPSO and our lidar system, furthermore aerosol extinction measurements at 532 nm and 355 nm and backscatter measurements at 355 nm add useful information about microphysical aerosol properties that can be used to improve the retrieval of aerosol backscatter coefficient from pure backscatter lidar. Since 14 June 2006, devoted measurements are performed at CNR-IMAA in coincidence of CALIPSO overpasses (maximum 80 km and 2 hours of spatial and temporal distance). First results of the CNR-IMAA observations for

  20. Broadly tunable multiwavelength fiber laser with bismuth-oxide EDF using large effective area fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Mahdi, M. A.

    2011-02-01

    A multiwavelength laser comb using 2.49 m Bismuth-oxide erbium-doped fiber (Bi-EDF) with different lengths of large effective area fiber (LEAF) in a ring cavity configuration is realized. The Bi-EDF is used as the linear gain medium and LEAF is used as the non-linear gain medium for stimulated Brillouin scattering. Out of the four different lengths, the longest length of 25 km LEAF exhibits the widest tuning range of 44 nm (1576 to 1620 nm) in the L-band at 264 mW pump power and 5 mW Brillouin pump power. In addition, a total of 15 output channels are achieved with total average output power of -8 dBm from this laser structure. All Brillouin Stokes signals exhibit high peak power of above -20 dBm per signal and their optical signal-to-noise ratio of greater than 15 dB.

  1. Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity

    SciTech Connect

    Sidler, Meinrad; Rauter, Patrick; Blanchard, Romain; Métivier, Pauline; Capasso, Federico; Mansuripur, Tobias S.; Wang, Christine; Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D.; Faist, Jérôme

    2014-02-03

    We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.

  2. Supercontinuum generated in a dispersion-flattened photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Li, Xingliang; Zhang, Shumin; Han, Mengmeng; Zhang, Huaxing; Yang, Hong; Yuan, Ting

    2014-11-01

    We have experimentally investigated supercontinuum generated by using different pulse dynamics patterns as the pump pulses. These patterns, which include conventional mode-locked single pulse, condensed phase pulses and pulsed bunches, were all directly produced from a mode-locked erbium-doped fiber laser based on a multi-layer graphene saturable absorber. The strong third-order optical nonlinearity of graphene and all fiber cavity configuration led to the multi-pulses operation states at a low pump power. A flat supercontinuum with 20-dB width of 550 nm from 1200 nm to 1750 nm have all been obtained by seeding the amplified conventional mode-locked single pulse and condensed phase pulses into a segment of photonic crystal fiber. On the other hand, experimental results also show that the pulsed bunches was not conducive to form a flat supercontinuum.

  3. Subhertz linewidth laser by locking to a fiber delay line.

    PubMed

    Dong, Jing; Hu, Yongqi; Huang, Junchao; Ye, Meifeng; Qu, Qiuzhi; Li, Tang; Liu, Liang

    2015-02-10

    An ultralow-noise, subhertz 1.55 μm erbium-doped fiber laser that is locked on an all-fiber-based Michelson interferometer is presented in this paper. The interferometer uses 500 m SMF-28 optical fiber and an acousto-optic modulator to allow heterodyne detection. By comparing two identical laser systems, a 0.67 (0.21) Hz linewidth beat-note signal is achieved and we obtain fractional frequency instability of 7×10(-15) at short timescales (0.1-1 s). The frequency noise power spectral density of two identical lasers is below -1  dB Hz(2)/Hz at 1 Hz and it reaches -18  dB Hz(2)/Hz from 200 Hz to 1 kHz.

  4. Compact noise-like pulse fiber laser and its application for supercontinuum generation in highly nonlinear fiber.

    PubMed

    Xia, Handing; Li, Heping; Deng, Guanglei; Li, Jianfeng; Zhang, Shangjian; Liu, Yong

    2015-11-10

    We report on supercontinuum generation in a highly nonlinear fiber (HNLF) pumped by noise-like pulses (NLPs) emitted from a compact fiber ring laser. The compact erbium-doped fiber ring laser is constructed by using an optical integrated component and mode-locked by the nonlinear polarization rotation technique. The laser produces NLPs with a 3-dB spectral bandwidth of 60.2 nm, repetition rate of 9.36 MHz, and pulse energy of 2.8 nJ. Numerical simulations reproduce the generation of NLPs in the experiment. The NLPs are then launched into a 110-m-long HNLF and a supercontinuum with a 20-dB spectral width over 500 nm is obtained. Such a simple and inexpensive supercontinuum-generation system is a potential alternative for various practical applications.

  5. Stabilized and tunable single-longitudinal-mode erbium fiber laser employing ytterbium-doped fiber based interference filter

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng

    2017-02-01

    In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.

  6. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    PubMed

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  7. Triple-wavelength erbium fiber ring laser based on compound-ring scheme.

    PubMed

    Yeh, Chien Hung; Shih, Fu Yuan; Chen, Chang Tai; Chi, Sien

    2007-12-24

    .A triple-wavelength erbium-doped compound ring fiber laser using the fiber-based triple-ring filter (TRF) is proposed and experimentally investigated. Using the fiber-based TRF laser scheme, the proposed laser can lase three wavelengths simultaneously. The fiber laser retrieve the optical side-mode suppression ratios (SMSRs) of 40.2, 40.4 and 41.6 dB and the output powers of -9, -8.8 and -7.6 dBm at the wavelengths 1555.89, 1556.77 and 1557.66 nm, respectively. The mode spacing of the triple-wavelength fiber laser is nearly 0.9 nm. Moreover, the output power stability of the ring laser has also been measured and analyzed.

  8. Fiber laser as the pulse source for a laser rangefinder system

    NASA Astrophysics Data System (ADS)

    Nissilae, Seppo M.; Kostamovaara, Juha T.

    1993-05-01

    Active fibers, i.e. optically pumped doped fibers, have been developed and studied intensively during the last few years, and an optical amplifier based mainly on erbium-doped fibers has just been launched on the expanding telecommunications market. Fiber lasers have a market of their own in the sensor applications. The use of fiber lasers as pulse sources in laser rangefinder applications is studied here. The main advantages with respect to high energy pulses and a small emitting area are listed, the problems and disadvantages are discussed and some practical solutions to these problems are given. Possible Q-switching techniques for obtaining short, powerful pulses (> 10 W) of about 10 ns are studied as are liquid-crystal, PLZT crystal, acousto-optic and Pockels Cell modulators. Finally, the practicability of these modulators for laser pulsing in industrial environments is discussed.

  9. Applications of compound fiber Bragg grating structures in lightwave communications

    NASA Astrophysics Data System (ADS)

    Chen, Lawrence R.

    Photonic networks have been identified as one solution that can satisfy the growing demand for bandwidth due to increased Internet traffic and the information superhighway. New enabling photonic technologies will be required in order to successfully implement, operate, and manage these all-photonic networks. In this thesis, we develop fiber Bragg grating technology for realizing photonic components that can perform a wide variety of optical signal processing functions for aggressive network management and performance requirements. First, we show how to tailor the spectral response of chirped moiré fiber Bragg gratings so that they can be used as transmission passband filters. We have fabricated filters having near ideal filter response which will be useful for providing wavelength selectivity in wavelength-division-multiplexed and wavelength routing networks. Second, we demonstrate the first hybrid wavelength- encodingt/time-spreading optical code-division multiple- access system using chirped moiré fiber Bragg gratings for encoding/decoding. Limitations imposed by the electronic bottleneck due to optical-to-electrical and electrical-to-optical conversions are overcome since all encoding/decoding operations are performed all- optically. Third, we realize a simple and cost-effective means using serial fiber Bragg grating arrays for performing power equalization among different wavelength channels in an erbium-doped fiber amplifier module. Such a module will be critical for compensating the deleterious effects of gain nonuniformity and transients in wavelength-division- multiplexed or wavelength routing networks. Finally, we demonstrate two different actively mode- locked erbium-doped fiber lasers that simultaneously emit two wavelengths with stable room-temperature operation. Wavelength spacings of 1.8 nm and 0.7 nm have been achieved-the closest reported to date. These lasers will find applications in high-performance transmission systems seeking to exploit

  10. Effects of refractive index changes on four-wave mixing bands in Er-doped photonic crystal fibers pumped at 976 nm.

    PubMed

    Velázquez-Ibarra, L; Díez, A; Andrés, M V; Lucio, J L

    2012-04-01

    An experimental study of the effects of an auxiliary 976 nm pump signal on the four-wave mixing parametric bands generated with a 1064 nm pump in a normal dispersion Er-doped photonic crystal fiber is presented. The four-wave mixing signal and idler bands shift to shorter and longer wavelengths, respectively, with increasing 976 nm pump power. It is shown that the wavelength-dependent resonant refractive index change in the erbium-doped core under 976 nm pumping is at the origin of the effect.

  11. Multi-wavelength fine structure and mass flows in solar microflares

    NASA Astrophysics Data System (ADS)

    Berkebile-Stoiser, S.; Gömöry, P.; Veronig, A. M.; Rybák, J.; Sütterlin, P.

    2009-10-01

    Aims: We study the multi-wavelength characteristics at high spatial resolution, as well as chromospheric evaporation signatures of solar microflares. To this end, we analyze the fine structure and mass flow dynamics in the chromosphere, transition region and corona of three homologous microflares (GOES class multi-wavelength analysis using temporally and spatially highly resolved imaging data from the Dutch open telescope (Hα, Ca ii H), the transition region and coronal explorer (17.1 nm), the extreme-ultraviolet imaging telescope (19.5 nm), and the Reuven Ramaty high energy solar spectroscopic imager (≳3 keV) was carried out. EUV line spectra provided by the coronal diagnostic spectrometer are searched for Doppler shifts in order to study associated plasma flows at chromospheric (He i, T˜3.9× 104 K), transition region (e.g. O v, T˜ 2.6× 105 K), and coronal temperatures (Si xii, T˜ 2× 106 K). RHESSI X-ray spectra provide information about non-thermal electrons. Results: The multi-wavelength appearance of the microflares is in basic agreement with the characteristics of large flares. For the first event, a complex flare sequence is observed in TRACE 17.1 nm images (T≈ 1 MK), which show several brightenings, narrow loops of enhanced emission, and an EUV jet. EIT 19.5 nm data (T≈ 1.5 MK) exhibit similar features for the third event. DOT measurements show finely structured chromospheric flare brightenings for all three events, loop-shaped fibrils of increased emission between Hα brightenings, as well as a similar feature in Ca ii. For all three events, a RHESSI X-ray source (3-8 keV, T ≳ 10 MK) is located in between two chromospheric brightenings situated in magnetic flux of opposite polarity. We find the flow dynamics associated with the events to be very complex. In the chromosphere and transition region, CDS observed downflows for the first (v ≲ 40 km s-1), and

  12. A multi-wavelength database of water vapor in planet-forming regions

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus

    The inner few astronomical units of gas-rich protoplanetary disk are environments characterized by a rich and active gaseous chemistry. Primitive material left over from the formation of our own Solar System has for a long time yielded tantalizing clues to a heterogenous nebula with intricate dynamical, thermal and chemical structure that ultimately led to a great diversity in the planets and planetesimals of the Solar System. The discovery of a rich chemistry in protoplanetary disks via a forest of strong 3-40 micron molecular emission lines (H2O, OH, CO2, HCN, C2H2,...) allows us for the first time to investigate chemical diversity in other planet-forming environmments (Salyk et al. 2008; Carr & Najita 2008). Further efforts, supported by the Origins program, has established that this molecular forest is seen in the disks surrounding most young solar- type stars (Pontoppidan et al. 2010). We propose a 3-year program to analyze our growing multi-wavelength database of observations of water, OH and organic molecules in the surfaces of protoplanetary disks. The database includes high (R~25,000-100,000) and medium resolution (R~600-3000) 3- 200 micron spectra from a wide range of facilities (Keck-NIRSPEC, VLT-CRIRES, Spitzer-IRS, VLT-VISIR, Gemini-Michelle and Herschel-PACS). Our previous efforts have focused on demonstrating feasibility for observing water and other molecules in planet-forming regions, building statistics to show that the molecular forest is ubiquitous in disks around low-mass and solar-type stars and taking the first steps in understanding the implied chemical abundances. Now, as the next logical step, we will combine multi- wavelength data from our unique multi-wavelength database to map the radial distribution of, in particular, water and its derivatives. 1) We will use both line profile information from the high-resolution spectra, as well as line strengths, from a combination of high and low temperature lines to constrain the radial abundance

  13. A multi-wavelength database of water vapor in planet-forming regions

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus

    The inner few astronomical units of gas-rich protoplanetary disk are environments characterized by a rich and active gaseous chemistry. Primitive material left over from the formation of our own Solar System has for a long time yielded tantalizing clues to a heterogenous nebula with intricate dynamical, thermal and chemical structure that ultimately led to a great diversity in the planets and planetesimals of the Solar System. The discovery of a rich chemistry in protoplanetary disks via a forest of strong 3-40 micron molecular emission lines (H2O, OH, CO2, HCN, C2H2,...) allows us for the first time to investigate chemical diversity in other planet-forming environmments (Salyk et al. 2008; Carr & Najita 2008). Further efforts, supported by the Origins program, has established that this molecular forest is seen in the disks surrounding most young solar- type stars (Pontoppidan et al. 2010). We propose a 3-year program to analyze our growing multi-wavelength database of observations of water, OH and organic molecules in the surfaces of protoplanetary disks. The database includes high (R~25,000-100,000) and medium resolution (R~600-3000) 3- 200 micron spectra from a wide range of facilities (Keck-NIRSPEC, VLT-CRIRES, Spitzer-IRS, VLT-VISIR, Gemini-Michelle and Herschel-PACS). Our previous efforts have focused on demonstrating feasibility for observing water and other molecules in planet-forming regions, building statistics to show that the molecular forest is ubiquitous in disks around low-mass and solar-type stars and taking the first steps in understanding the implied chemical abundances. Now, as the next logical step, we will combine multi- wavelength data from our unique multi-wavelength database to map the radial distribution of, in particular, water and its derivatives. 1) Â We will use both line profile information from the high-resolution spectra, as well as line strengths, from a combination of high and low temperature lines to constrain the radial

  14. Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser

    SciTech Connect

    Yuan, Yijun; Yao, Yong Xiao, Jun Jun; Yang, Yanfu; Tian, Jiajun; Liu, Chao

    2014-01-28

    We experimentally study the dependences of high-order Stokes lines on the erbium-doped fiber (EDF) pump power P{sub EDF}, the Brillouin pump (BP) power P{sub BP}, and its working wavelength in a multiwavelength Brillouin erbium-doped fiber laser (MBEFL). By using the rate and propagation equations, and the coupled wave equations of stimulated Brillouin scattering, we establish a lumped model to describe the MBEFL. Numerical simulations show that the number of Stokes lines can be increased by decreasing the spacing between the BP wavelength and the EDF peak gain or P{sub BP} as long as it is larger than a critical value P{sub BP}{sup (cr)}=1.7 mW, or by increasing P{sub EDF} without reaching a saturation value P{sub EDF}{sup (cr)}=250 mW. However, when P{sub BP} and P{sub EDF} are varied beyond P{sub BP}{sup (cr)} and P{sub EDF}{sup (cr)}, respectively, the number of Stokes lines is reduced, accompanied by some self-lasing cavity modes. These results by numerical simulation are consistent with experimental observations from the MBEFL.

  15. Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yuan, Yijun; Yao, Yong; Xiao, Jun Jun; Yang, Yanfu; Tian, Jiajun; Liu, Chao

    2014-01-01

    We experimentally study the dependences of high-order Stokes lines on the erbium-doped fiber (EDF) pump power PEDF, the Brillouin pump (BP) power PBP, and its working wavelength in a multiwavelength Brillouin erbium-doped fiber laser (MBEFL). By using the rate and propagation equations, and the coupled wave equations of stimulated Brillouin scattering, we establish a lumped model to describe the MBEFL. Numerical simulations show that the number of Stokes lines can be increased by decreasing the spacing between the BP wavelength and the EDF peak gain or PBP as long as it is larger than a critical value PBP(cr)=1.7 mW, or by increasing PEDF without reaching a saturation value PEDF(cr)=250 mW. However, when PBP and PEDF are varied beyond PBP(cr) and PEDF(cr), respectively, the number of Stokes lines is reduced, accompanied by some self-lasing cavity modes. These results by numerical simulation are consistent with experimental observations from the MBEFL.

  16. Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser

    NASA Astrophysics Data System (ADS)

    Zhao, Junqing; Ruan, Shuangchen; Yan, Peiguang; Zhang, Han; Yu, Yongqin; Wei, Huifeng; Luo, Jie

    2013-10-01

    We demonstrate a saturable absorber (SA) based on cladding-filled graphene in a specially designed and manufactured photonic crystal fiber (PCF) for the first time. The saturation absorption property is achieved through the evanescent coupling between the guided light and the cladding-filled graphene layers. To boost the mutual interaction, the PCF is designed to contain five large air holes in the cladding and small-core region. Employing this graphene-PCF SA device, we construct an erbium-doped all-fiber laser oscillator and achieve mode-locked operation. This device can pave the way for high power and all-fiber applications of photonics with graphene with some unique advantages, such as single-mode operation, nonlinearity enhancement, high-power tolerance, environmental robustness, all-fiber configuration, and easy fabrication.

  17. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Bo; He, Xiaoying; Wang, D. N.

    2011-08-01

    We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable absorber can be successfully fabricated. The output pulses obtained have a center wavelength, pulse width, and repetition rate of 1561.2nm, 4.85ns, and 7.68MHz, respectively. This method provides a simple and efficient approach to integrate the graphene into the optical fiber system.

  18. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.

    PubMed

    Liu, Zhi-Bo; He, Xiaoying; Wang, D N

    2011-08-15

    We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable absorber can be successfully fabricated. The output pulses obtained have a center wavelength, pulse width, and repetition rate of 1561.2 nm, 4.85 ns, and 7.68 MHz, respectively. This method provides a simple and efficient approach to integrate the graphene into the optical fiber system.

  19. Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier.

    PubMed

    Lin, Gong-Ru; Lin, Ying-Tsung; Lee, Chao-Kuei

    2007-03-19

    A large-mode-area Erbium-doped fiber amplifier (LMA-EDFA) based all-fiber-integrated amplified compressor with ultrashort length of 5.37 m and ultralow pumping power (260 mW) is proposed. The LMAEDFA suppresses nonlinear soliton-self-frequency-shift effect happened during femtosecond pulse amplification, in which the fiber laser pulse is reshaped to a low-pedestal hyperbolic-second shape with nearly 100% energy confinement. The pre-chirped amplification from 0.96 to 104 mW and the simultaneous compression of a passively mode-locked fiber laser pulse from 300 to 56 fs is demonstrated. The input pulse energy of 24 pJ is amplified up to 2.6 nJ with shortened pulsewidth of 56 fs and peak power as high as 46 kW.

  20. Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants

    NASA Astrophysics Data System (ADS)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Drake, Stephen; Richards, Anita M. S.

    2013-10-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of α Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength flux measurements.

  1. MULTI-WAVELENGTH RADIO CONTINUUM EMISSION STUDIES OF DUST-FREE RED GIANTS

    SciTech Connect

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Drake, Stephen; Richards, Anita M. S.

    2013-10-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of α Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength flux measurements.

  2. Virtual Sky Surveys and Multi-wavelength Investigations of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Nord, Brian D.

    2010-12-01

    The advent of large and overlapping sky surveys brings promise of a new era in the study of galaxy clusters and dark energy. Clusters have been used for decades as faithful buoys of space-time, tracing cosmic evolution through their matter content and spatial distribution. High-fidelity tracking relies on a robust connection between observable cluster signatures and the underlying dark matter content, which is otherwise invisible. Until now, clusters have been mostly viewed through independent signals in distinct wavebands. The next era of cluster cosmology may be led by multi-variate, cross-waveband detections and analyses of clusters, where different facets of clusters can be cross-correlated to develop a more complete, unified picture of cluster populations. To these ends, in this dissertation, I perform multi-variate analyses of galaxy cluster populations and develop a simulated sky survey, with which to prepare for the next generation of multi-wavelength cluster observations. First, in a new multi-variate framework, I quantify the effects of observational biases on measures of the cluster distribution function and on cosmological constraints derived from X-ray cluster populations. I also demonstrate the indispensability of the multi-variate approach in measuring the evolution of X-ray galaxy clusters; without it, we find that the combination of scatter, intrinsic correlation and irrevocable survey flux limits substantially confuses any measure of redshift evolution. Next, I construct the Millennium Gas Simulation-Virtual Sky Survey (MGSVSS), a multi-wavelength mock sky derived from an N-body gas-dynamic simulation. The MGSVSS contains both sub-mm and optical wavelength sky signals to redshift, z = 1., in a 5 x 5deg2 field of view, with O (103) halos, O (104) optically selected clusters, and O (102) clusters selected via the Sunyaev-Zel'dovich (SZ) signature. The SZ sky also includes a minimal level of sky and instrumental noise, which nearly mimics that of

  3. Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants

    NASA Technical Reports Server (NTRS)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Dranke, Stephen; Richards, Anita M. S.

    2013-01-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for alpha Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of alpha Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For alpha Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of alpha Boo. Finally, we develop a simple analytical wind model for alpha Boo based on our new long-wavelength flux measurements.

  4. The new MQ/AAO/Strasbourg multi-wavelength and spectroscopic PNe database: MASPN

    NASA Astrophysics Data System (ADS)

    Parker, Quentin Andrew; Bojicic, Ivan; Frew, David; Acker, Agnes; Ochsenbein, Francois; MASPN Database Team

    2015-01-01

    We are in a new golden age of PN discovery. This is thanks in particular to high sensitivity, wide-field, narrow-band surveys of the Galactic plane undertaken on the UKST in Australia and the Isaac Newton telescope on La Palma. Together these telescopes and their H-alpha surveys have provided very significant Planetary Nebulae (PNe) discoveries that have more than doubled the totals accrued by all telescopes over the previous 250 years. However, these PNe are not simply more of the same found in previous catalogues. Most new PNe are more obscured, evolved and of lower surface brightness than previous compilations while others are faint but compact and more distant. This has required an extensive and time-consuming programme of spectroscopic confirmation on a variety of 2m and 4m telescopes that is now largely complete. The scope of any future large-scale PNe studies, particularly those of a statistical nature or undertaken to understand true PNe diversity and evolution should now reflect this fresh PN population landscape of the combined sample of ~3500 Galactic PNe now available. Such studies should be coloured and nuanced by these recent major discoveries and the massive, high sensitivity, high resolution, multi-wavelength imaging surveys now available across much of the electromagnetic spectrum.Following this motivation we provide, for the first time, an accessible, reliable, on-line "one-stop" SQL database for essential, up-to date information for all known Galactic PN. We have attempted to: i) Reliably remove the many PN mimics/false ID's that have biased previous compilations and subsequent studies; ii) Provide accurate, updated positions, sizes, morphologies, radial velocities, fluxes, multi-wavelength imagery and spectroscopy; iii) Link to CDS/Vizier and hence provide archival history for each object; iv) Provide an interface to sift, select, browse, collate, investigate, download and visualise the complete currently known Galactic PNe diaspora and v

  5. Aerosol Optical Properties Characterization By Means Of The CNR-IMAA Multi-Wavelength Raman Lidar

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

    2007-12-01

    A Raman/elastic lidar for tropospheric aerosol study is operational at CNR-IMAA (40°36'N, 15°44'E, 760 m above sea level) since May 2000 in the framework of EARLINET. Since August 2005, this system provides aerosol backscatter coefficient profiles at 1064 nm, and independent measurements of aerosol extinction and backscatter coefficient profiles at 355 and 532 nm. In this way, lidar ratio (i.e. extinction to backscatter ratio) profiles at 355 and 532 nm are also obtained. In addition, depolarization ratio measurements at 532 nm are obtained by means of detection of components of backscattered light polarized perpendicular and parallel to the direction of the linearly polarized transmitted laser beam. Depolarization ratio measurements provide information about shape and orientation of aerosolic particles, while lidar ratio measurements and wavelength dependences of both backscatter and extinction are important for aerosol characterization in terms of aerosol type and size. In addition, high quality multi-wavelength measurements (3 backscatter + 2 extinction) can allow the determination of microphysical aerosol properties (refractive index, single-scattering albedo and effective particles radii). Systematic measurements are performed three times per week according to the EARLINET schedule since May 2000, and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. This extended dataset allows the optical characterization of aerosol located close to the surface, namely in the Planetary Boundary Layer, as well as in the free troposphere. In the free troposphere, an high occurrence of Saharan dust intrusions at CNR-IMAA (about 1 day of Saharan dust intrusion every 10 days) has been identified by means of back-trajectory analysis and in accordance with satellite images, because of the short distance from the Sahara region. In addition, CNR-IMAA is pretty close to Etna, the largest European

  6. A Multi-Wavelength Census of Dust and Star Formation in Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Shivaei, Irene; Reddy, Naveen; MOSDEF Collaboration

    2017-01-01

    Redshift of z ~ 2 is an important era in the history of the universe, as it contains the peak of star formation rate density and quasar activity. We study the galaxy properties during this era from two different, yet complementary, aspects: by studying formation of stars and mass assembly, and exploring the properties of galactic dust. We use a wealth of multi-wavelength data, from UV to far-IR, to obtain a complete census of obscured and unobscured star formation in galaxies. Our data consists of rest-frame optical spectra from the MOSDEF survey, rest-frame UV and optical photometric data from the 3D-HST survey, and mid- and far-IR data obtained by the Spitzer and Herschel telescopes. In the MOSDEF survey, we acquired rest-frame optical spectra of ~ 1500 galaxies with the MOSFIRE spectrograph on the Keck I telescope. MOSDEF is currently the largest survey of the rest-frame optical properties of galaxies at 1.37 ≤ z ≤ 3.80. Using the multi-wavelength data sets, we show that Hα SFRs, corrected for dust attenuation using the Hβ line, accurately trace SFRs up to ~ 300 M⊙ yr-1, when compared with panchromatic (UV-to-far-IR) SED models. Using Hα SFRs for a large sample of ~ 200 galaxies at z ~ 2, we explore the SFR-M* relation and show that the slope of this relation is shallower than previously measured. We conclude that the scatter in the SFR-M* relation is dominated by uncertainties in dust correction and cannot be used to measure the star formation stochasticity. Furthermore, we investigate the robustness of Spitzer/MIPS 24 micron flux as an SFR indicator and its variation with ISM physical parameters. We find that 24 micron flux, which at z ~ 2 traces the emission from the PAH grains, significantly depends on metallicity, such that there is a PAH deficiency in metal-poor galaxies. We demonstrate that commonly-used conversions of 24 micron flux to IR luminosity underestimate the IR luminosity of low-mass galaxies by more than a factor of 2. Our results

  7. Multi-wavelength polarimetric studies of relativistic jets in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Casadio, Carolina

    This Thesis is focussed on the study of relativistic jets, commonly present in multiple astrophysical sites, from active galactic nuclei (AGN), to micro- quasars or gamma-ray bursts (GRBs). In the case of AGN, huge amounts of energy across the whole electromagnetic spectrum are released as a conse- quence of the accretion of material onto a supermassive back hole (SMBH) lurking at their centers. The accretion leads to the formation of a pair of very powerful and highly collimated jets extending far beyond the size of the host galaxy. We analyzed the correlation between the multi-wavelength emission and the radio jet in three powerful AGN, the radio galaxies 3C 120 and M 87, and the quasar CTA 102. The main goal of this Thesis is to obtain a better understanding of the jet dynamics and the role played by the magnetic field, and to determine what are the sites and mechanisms for the production of the γ-ray emission observed in these sources. We have performed multi-wavelength studies of the radio galaxy 3C 120 and the blazar CTA 102 during unprecedented γ-ray flares for both sources. The NASA satellite Fermi registered in September-October 2012 a bright γ-ray flare in CTA 102, and between December 2012 and October 2014 a prolonged γ-ray activity in the radio galaxy 3C 120. In both studies, to determine where the γ-ray emission is produced, the analysis of Fermi data has been compared with a detailed study of the morphology and evolution of the parsec scale jet through a series of extremely-high angular resolution Very Long Baseline Array (VLBA) images at 43 GHz from the Boston University blazar monitoring program, in which our research group is actively participating. In the case of 3C 120 we have also collected 15 GHz VLBA data from the MOJAVE monitoring program, extending our study of the radio jet from June 2008 to May 2014. For the study of CTA 102 a total of 80 VLBA images at 43 GHz have been analyzed and compared with observations across the whole

  8. Cosmic rays from multi-wavelength observations of the Galactic diffuse emission

    NASA Astrophysics Data System (ADS)

    Orlando, Elena

    2016-05-01

    Cosmic rays (CRs) generate diffuse emission while interacting with the Galactic magnetic field (B-field), the interstellar gas and the radiation field. This diffuse emission extends from radio, microwaves, through X-rays, to high-energy gamma rays. Diffuse emission has considerably increased the interest of the astrophysical community due to recent detailed observations by Planck, Fermi-LAT, and by very-high energy Cherenkov telescopes. Observations of this diffuse emission and comparison with detailed predictions are used to gain information on the properties of CRs, such as their density, spectra, distribution and propagation in the Galaxy. Unfortunately disentangling and characterizing this diffuse emission strongly depends on uncertainties in the knowledge of unresolved sources, gas, radiation fields, and B-fields, other than CRs throughout the Galaxy. We discuss here the diffuse emission produced by CRs and its uncertainties, and the comparison of this predicted emission with recent multi-wavelength observations. We show insights on CR spectra and intensities. Then we address the importance for forthcoming telescopes, especially for the Square Kilometre Array telescope (SKA) and the Cherencov Telescope Array (CTA), and for missions at MeV.

  9. Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Massabò, D.; Caponi, L.; Bernardoni, V.; Bove, M. C.; Brotto, P.; Calzolai, G.; Cassola, F.; Chiari, M.; Fedi, M. E.; Fermo, P.; Giannoni, M.; Lucarelli, F.; Nava, S.; Piazzalunga, A.; Valli, G.; Vecchi, R.; Prati, P.

    2015-05-01

    In this paper, a new way to apportion the absorption coefficient (babs) of carbonaceous atmospheric aerosols starting from a multi-wavelength optical analysis is shown. This methodology can disentangle and quantify the contribution to total absorption of equivalent black carbon (EBC) emitted by wood burning (EBCWB) and fossil fuel (EBCFF) as well as brown carbon (BrC) due to incomplete combustion. The method uses the information gathered at five different wavelengths in a renewed and upgraded version of the approach usually referred to as Aethalometer model. Moreover, we present the results of an apportionment study of carbonaceous aerosol sources performed in a rural area and in a coastal city, both located in the North-West of Italy. Results obtained by the proposed approach are validated against independent measurements of levoglucosan and radiocarbon. At the rural site the EBCWB and EBCFF relative contributions are about 40% and 60% in winter and 15% and 85% in summer, respectively. At the coastal urban site, EBCWB and EBCFF are about 15% and 85% during fall. The OC contribution to the wood burning source at the rural site results approximately 50% in winter and 10% in summer and about 15% at the coastal urban site in fall. The new methodology also provides a direct measurement of the absorption Ångström exponent of BrC (αBrC) which resulted αBrC = 3.95 ± 0.20.

  10. CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOS Survey Field

    NASA Astrophysics Data System (ADS)

    Nayyeri, H.; Hemmati, S.; Mobasher, B.; Ferguson, H. C.; Cooray, A.; Barro, G.; Faber, S. M.; Dickinson, M.; Koekemoer, A. M.; Peth, M.; Salvato, M.; Ashby, M. L. N.; Darvish, B.; Donley, J.; Durbin, M.; Finkelstein, S.; Fontana, A.; Grogin, N. A.; Gruetzbauch, R.; Huang, K.; Khostovan, A. A.; Kocevski, D.; Kodra, D.; Lee, B.; Newman, J.; Pacifici, C.; Pforr, J.; Stefanon, M.; Wiklind, T.; Willner, S. P.; Wuyts, S.; Castellano, M.; Conselice, C.; Dolch, T.; Dunlop, J. S.; Galametz, A.; Hathi, N. P.; Lucas, R. A.; Yan, H.

    2017-01-01

    We present a multi-wavelength photometric catalog in the COSMOS field as part of the observations by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The catalog is based on Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) and Advanced Camera for Surveys observations of the COSMOS field (centered at R.A.: {10}{{h}}{00}{{m}}{28}{{s}}, Decl.: +02^\\circ 12\\prime {21}\\prime\\prime ). The final catalog has 38671 sources with photometric data in 42 bands from UV to the infrared (∼ 0.3{--}8 μ {{m}}). This includes broadband photometry from HST, CFHT, Subaru, the Visible and Infrared Survey Telescope for Astronomy, and Spitzer Space Telescope in the visible, near-infrared, and infrared bands along with intermediate- and narrowband photometry from Subaru and medium-band data from Mayall NEWFIRM. Source detection was conducted in the WFC3 F160W band (at 1.6 μm) and photometry is generated using the Template FITting algorithm. We further present a catalog of the physical properties of sources as identified in the HST F160W band and measured from the multi-band photometry by fitting the observed spectral energy distributions of sources against templates.

  11. MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS)

    SciTech Connect

    Yang, Bin; Keane, Jacqueline; Meech, Karen; Owen, Tobias; Wainscoat, Richard

    2014-04-01

    The dynamically new comet C/2011 L4 (Pan-STARRS) is one of the brightest comets observed since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner solar system. A strong absorption band of water ice at 2.0 μm was detected in the near-infrared spectra, obtained with the 8 m Gemini-North and 3 m Infrared Telescope Facility Telescopes. The companion 1.5 μm band of water ice, however, was not observed. Spectral modeling shows that the absence of the 1.5 μm feature can be explained by the presence of sub-micron-sized fine ice grains. No gas lines (i.e., CN, HCN, or CO) were observed pre-perihelion in either the optical or the submillimeter. We derived 3σ upper limits for the CN and CO production rates. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio >4.

  12. Comparative Analysis of Oscillations of a Solar Quiet Region Using Multi-Wavelength Observations

    NASA Astrophysics Data System (ADS)

    Kontogiannis, I.; Tsiropoula, G.; Tziotziou, K.

    2010-07-01

    We analyze the temporal behavior of a solar quiet region using a set of multi-wavelength observations obtained during a coordinated campaign. The observations were acquired by the ground-based Dutch Open Telescope (DOT), the Michelson Doppler Imager (MDI) on-board SOHO and the UV filters of the Transition Region and Coronal Explorer (TRACE). A large range of height in the solar atmosphere, from the deep photosphere to the upper chromosphere is covered by these instruments. We investigate the oscillation properties of the intensities and velocities in distinct regions of the quiet Sun, i.e. internetwork, bright points (NBP) defining the network boundaries and dark mottles forming a well-defined rosette, as observed by the different instruments and in the different heights. The variations of the intensities and velocities are studied with wavelet analysis. The aim of our work is to find similarities and/or differences in the oscillatory phenomena observed in the different examined regions, as well as comprehensive information on the interaction of the oscillations and the magnetic field.

  13. Multi-wavelength modeling of globular clusters–the millisecond pulsar scenario

    SciTech Connect

    Kopp, A.; Venter, C.; Büsching, I.; De Jager, O. C.

    2013-12-20

    The potentially large number of millisecond pulsars (MSPs) in globular cluster (GC) cores makes these parent objects ideal laboratories for studying the collective properties of an ensemble of MSPs. Such a population is expected to radiate several spectral components in the radio through γ-ray waveband. First, pulsed emission is expected via curvature and synchrotron radiation (CR and SR) and possibly even via inverse Compton (IC) scattering inside the pulsar magnetospheres. Second, unpulsed emission should transpire through the continuous injection of relativistic leptons by the MSPs into the ambient region, which in turn produce SR and IC emission when they encounter the cluster magnetic field, as well as several background photon components. In this paper we continue to develop the MSP scenario for explaining the multi-wavelength properties of GCs by considering the entire modeling chain, including the full transport equation, refined emissivities of stellar and Galactic background photons, integration of the flux along the line of sight, and comparison with observations. As an illustration, we apply the model to Terzan 5, where we can reasonably fit both the (line-of-sight-integrated) X-ray surface flux and spectral energy density data, using the first to constrain the leptonic diffusion coefficient within the GC. We lastly discuss possible future extensions to and applications of this maturing model.

  14. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae

    PubMed Central

    Jia, Fei; Kacira, Murat; Ogden, Kimberly L.

    2015-01-01

    A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L−1 (1.51 × 108 cells·mL−1) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency. PMID:26364640

  15. Multi-Wavelength Study of the 2008-2009 Outburst of V1647 Ori

    NASA Astrophysics Data System (ADS)

    García-Alvarez, D.; Wright, N. J.; Drake, J. J.; Abraham, P.; Anandarao, B. G.; Kashyap, V.; Kospal, A.; Kun, M.; Marengo, M.; Moor, A.; Peneva, S.; Semkov, E.; Venkat, V.; Sanz-Forcada, J.

    2011-12-01

    V1647 Ori is a young eruptive variable star, illuminating a reflection nebula (McNeil's Nebula). It underwent an outburst in 2003 before fading back to its pre-outburst brightness in 2006. In 2008, V1647 Ori underwent a new outburst. The observed properties of the 2003-2006 event are different in several respects from both the EXor and FUor type outbursts, and suggest that this star might represent a new class of eruptive young stars, younger and more deeply embedded than EXors, and exhibiting variations on shorter time scales than FUors. In outburst, the star lights up the otherwise invisible McNeil's nebular -- a conical cloud likely accumulated from previous outbursts. We present follow-up photometric as well as optical and near-IR spectroscopy of the nebula obtainted during the 2008-2009 outburst. We will also present results from contemporaneous X-ray observations. These multi-wavelength observations of V1647 Ori, obtained at this key early stage of the outburst, provide a snapshot of the "lighting up" of the nebula, probe its evolution through the event, and enable comparison with the 2003-2006 outburst.

  16. Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen

    2016-08-01

    A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits.

  17. Notes on the apparent discordance of pulse oximetry and multi-wavelength haemoglobin photometry.

    PubMed

    Nijland, R; Jongsma, H W; Nijhuis, J G; Oeseburg, B; Zijlstra, W G

    1995-01-01

    Multi-wavelength photometers, blood gas analysers and pulse oximeters are widely used to measure various oxygen-related quantities. The definitions of these quantities are not always correct. This paper gives insight in the various definitions for oxygen quantities. Furthermore, the possible influences of dyshaemoglobins and fetal haemoglobin on the accuracy of pulse oximetry are discussed. As pulse oximeters are constructed for the determination of arterial oxygen saturation, they should be validated with sample oxygen saturation values and not with the oxyhaemoglobin fraction. The influence of carboxyhaemoglobin is insubstantial over an oxygen saturation range of 0% to 100%. Through the presence of methaemoglobin, pulse oximetry will give an underestimation above 70% and an overestimation below 70% oxygen saturation. The influence of fetal haemoglobin is insignificant in the neonatal use of pulse oximetry, in the range of 75% to 100% arterial oxygen saturation. However, a pulse oximeter underestimates the arterial oxygen saturation at the 25% level with 5%, if the pulse oximeter has been calibrated in human adults. Such a low level of arterial oxygen saturation can be present in the fetus during labor.

  18. A Multi-Wavelength View of the Environments of Extreme Clustered Star Formation

    NASA Astrophysics Data System (ADS)

    De Buizer, James M.

    2017-01-01

    It is believed that the vast majority of, if not all, stars form within OB clusters. Most theories of star formation assume a star forms in isolation and ignore the fact that the cluster environment and, especially, the presence of extremely energetic and high mass young stellar objects nearby, may have a profound impact on the formation process of a typical cluster member. Giant HII (GHII) regions are Galactic analogs to starburst regions seen in external galaxies, hosting the most active areas of clustered star formation. As such, GHII regions represent a population of objects that can reveal a wealth of information on the environment of the earliest stages of clustered star formation and how it is affected by feedback from the most massive cluster members. This study employs new mid-infrared imaging data obtained from the airborne observatory, SOFIA, as well as archival imaging data from the near-infrared to cm radio wavelengths to create a rich multi-wavelength dataset of a dozen galactic GHII regions. These data allow quantification of the detailed physical conditions within GHII regions individually and as a population on both global and small scales.

  19. Multi-wavelength Characterization of Exoplanet Host Stars with the MUSCLES Treasury Survey

    NASA Astrophysics Data System (ADS)

    France, Kevin; Youngblood, Allison; Parke Loyd, R. O.; Schneider, Christian

    2017-01-01

    High-energy photons (X-ray to NUV) from exoplanet host stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the long-term stability of planetary atmospheres and the production of potential “biomarker” gases. However, relatively few observational and theoretical constraints exist on the high-energy irradiance from typical (i.e., weakly active) M and K dwarf exoplanet host stars. In this talk, I will describe results from a panchromatic survey (Chandra/XMM/Hubble/ground) of M and K dwarf exoplanet hosts. The MUSCLES Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) combines UV, X-ray, and optical observations with reconstructed Lyman-alpha and EUV (100-900 Ang) radiation to create 5 Angstrom to 5 micron stellar irradiance spectra that are available as a High-Level Science Product on STScI/MAST. I will discuss how we use multi-wavelength observations to study possible abiotic production of the suggested biomarkers O2 and O3, develop scaling relations to infer the high-energy particle fluxes from these stars based on solar UV flare/particle flux measurements, calibrate visible-wavelength proxies for the high-energy irradiance, and characterize the UV variability and flare frequency of “optically inactive” M dwarfs.

  20. A multi-scale, multi-wavelength source extraction method: getsources

    NASA Astrophysics Data System (ADS)

    Men'shchikov, A.; André, Ph.; Didelon, P.; Motte, F.; Hennemann, M.; Schneider, N.

    2012-06-01

    We present a multi-scale, multi-wavelength source extraction algorithm called getsources. Although it has been designed primarily for use in the far-infrared surveys of Galactic star-forming regions with Herschel, the method can be applied to many other astronomical images. Instead of the traditional approach of extracting sources in the observed images, the new method analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands. It cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. Sources are detected in the combined detection images by following the evolution of their segmentation masks across all spatial scales. Measurements of the source properties are done in the original background-subtracted images at each wavelength; the background is estimated by interpolation under the source footprints and overlapping sources are deblended in an iterative procedure. In addition to the main catalog of sources, various catalogs and images are produced that aid scientific exploitation of the extraction results. We illustrate the performance of getsources on Herschel images by extracting sources in sub-fields of the Aquila and Rosette star-forming regions. The source extraction code and validation images with a reference extraction catalog are freely available.

  1. Multi-Wavelength Observations of an Unusual Impulsive Flare Associated with Cme

    NASA Astrophysics Data System (ADS)

    Uddin, Wahab; Jain, Rajmal; Yoshimura, Keiji; Chandra, Ramesh; Sakao, T.; Kosugi, T.; Joshi, Anita; Despande, M. R.

    2004-12-01

    We present the results of a detailed analysis of multi-wavelength observations of a very impulsive solar flare 1B/M6.7, which occurred on 10 March, 2001 in NOAA AR 9368 (N27 W42). The observations show that the flare is very impulsive with a very hard spectrum in HXR that reveal that non-thermal emission was most dominant. On the other hand, this flare also produced a type II radio burst and coronal mass ejections (CME), which are not general characteristics for impulsive flares. In Hα we observed bright mass ejecta (BME) followed by dark mass ejecta (DME). Based on the consistency of the onset times and directions of BME and CME, we conclude that these two phenomena are closely associated. It is inferred that the energy build-up took place due to photospheric reconnection between emerging positive parasitic polarity and predominant negative polarity, which resulted as a consequence of flux cancellation. The shear increased to >80° due to further emergence of positive parasitic polarity causing strongly enhanced cancellation of flux. It appears that such enhanced magnetic flux cancellation in a strongly sheared region triggered the impulsive flare.

  2. A new multi-wavelength model-based method for determination of enzyme kinetic parameters.

    PubMed

    Sorouraddin, Mohammad-Hossein; Amini, Kaveh; Naseri, Abdolhossein; Vallipour, Javad; Hanaee, Jalal; Rashidi, Mohammad-Reza

    2010-09-01

    Lineweaver-Burk plot analysis is the most widely used method to determine enzyme kinetic parameters. In the spectrophotometric determination of enzyme activity using the Lineweaver-Burk plot, it is necessary to find a wavelength at which only the substrate or the product has absorbance without any spectroscopic interference of the other reaction components. Moreover, in this method, different initial concentrations of the substrate should be used to obtain the initial velocities required for Lineweaver-Burk plot analysis. In the present work, a multi-wavelength model-based method has been developed and validated to determine Michaelis-Menten constants for some enzyme reactions. In this method, a selective wavelength region and several experiments with different initial concentrations of the substrate are not required. The absorbance data of the kinetic assays are fitted by non-linear regression coupled to the numeric integration of the related differential equation. To indicate the applicability of the proposed method, the Michaelis-Menten constants for the oxidation of phenanthridine, 6-deoxypenciclovir and xanthine by molybdenum hydroxylases were determined using only a single initial concentration of the substrate, regardless of any spectral overlap.

  3. CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Yan, Haojing; Mobasher, Bahram; Barro, Guillermo; Donley, Jennifer L.; Fontana, Adriano; Hemmati, Shoubaneh; Koekemoer, Anton M.; Lee, BoMee; Lee, Seong-Kook; Nayyeri, Hooshang; Peth, Michael; Pforr, Janine; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn; Ashby, Matthew L. N.; Castellano, Marco; Conselice, Christopher J.; Cooper, Michael C.; Cooray, Asantha R.; Dolch, Timothy; Ferguson, Henry; Galametz, Audrey; Giavalisco, Mauro; Guo, Yicheng; Willner, Steven P.; Dickinson, Mark E.; Faber, Sandra M.; Fazio, Giovanni G.; Gardner, Jonathan P.; Gawiser, Eric; Grazian, Andrea; Grogin, Norman A.; Kocevski, Dale; Koo, David C.; Lee, Kyoung-Soo; Lucas, Ray A.; McGrath, Elizabeth J.; Nandra, Kirpal; Newman, Jeffrey A.; van der Wel, Arjen

    2017-04-01

    We present a 0.4–8 μm multi-wavelength photometric catalog in the Extended Groth Strip (EGS) field. This catalog is built on the Hubble Space Telescope (HST) WFC3 and ACS data from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), and it incorporates the existing HST data from the All-wavelength Extended Groth strip International Survey (AEGIS) and the 3D-HST program. The catalog is based on detections in the F160W band reaching a depth of F160W = 26.62 AB (90% completeness, point sources). It includes the photometry for 41,457 objects over an area of ≈ 206 arcmin2 in the following bands: HST/ACS F606W and F814W; HST WFC3 F125W, F140W, and F160W; Canada–France–Hawaii Telescope (CFHT)/Megacam u*, g\\prime , r\\prime , i\\prime and z\\prime ; CFHT/WIRCAM J, H, and K S; Mayall/NEWFIRM J1, J2, J3, H1, H2, and K; Spitzer IRAC 3.6, 4.5, 5.8, and 8.0 μm. We are also releasing value-added catalogs that provide robust photometric redshifts and stellar mass measurements. The catalogs are publicly available through the CANDELS repository.

  4. Compact Galaxy Groups: A Multi-wavelength Perspective Into Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Konstantopoulos, Iraklis; HCG Collaboration

    2011-01-01

    Galaxies are seldom found in isolation. As a small unit of large clusters, individual members are subject to the volition of their groupings and evolve most commonly through interactions and mergers. In the parameter-space between too many friends and none at all lie compact galaxy groups. The ones classified by Hickson (1982; Hickson compact groups, or HCGs) share the distinctive characteristics of low membership, isolation and high density. They exhibit low velocity dispersions, which which lead to prolonged interactions, when such events occur, or quasi-secular evolution, when they do not. They are also HI-deficient, to a very intriguing extent. I will be discussing multi-wavelength observations of a sample of 12 HCGs in the context of galaxy evolution in general. For example, in HCG 7 we observed the strengthening of interactions due to the complexity of the tidal field, in a system that is likely headed toward a dry merger. In the low mass grouping of HCG 31 we recorded morphological transformation reminiscent of the intermediate redshift universe, with multiple simultaneous interactions leading to the build-up of a gaseous intra-group medium. These results, along with many more, allow us to examine the overall themes that arise from the study of the aforementioned dozen: the usage of gas; the possibility of rapid morphological transformation of compact group galaxies; and the role of groups as the tail end of the galaxy clustering N-distribution.

  5. Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Lin, Jie; Liu, Huan; Ma, Yuan; Yan, Lei; Jin, Peng

    2017-01-01

    A diaphragm based long cavity Fabry-Perot interferometric fiber acoustic sensor is proposed. The Fabry-Perot cavity is formed by a flat fiber facet and an ultra-thin silver diaphragm with a 6-meter long fiber inserted in the cavity. A narrow-linewidth ring-cavity erbium-doped fiber laser is applied to demodulate the sensing signal in the phase generated carrier algorithm. Experimental results have demonstrated that the phase sensitivity is about -140 dB re 1 rad/μPa at 2 kHz. The noise equivalent acoustic signal level is 60.6 μPa/Hz1/2 and the dynamic range is 65.1 dB-SPL at 2 kHz. The sensor is suitable for sensing of weak acoustic signals.

  6. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification

    PubMed Central

    Hochreiner, Armin; Bauer-Marschallinger, Johannes; Burgholzer, Peter; Jakoby, Bernhard; Berer, Thomas

    2013-01-01

    In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications contact with the tissue should be avoided. As alternatives to contacting transducers interferometric means can be used to acquire photoacoustic signals remotely. In this paper we report on non-contact three and two dimensional photoacoustic imaging using an optical fiber-based Mach-Zehnder interferometer. A detection beam is transmitted through an optical fiber network onto the surface of the specimen. Back reflected light is collected and coupled into the same optical fiber. To achieve a high signal/noise ratio the reflected light is amplified by means of optical amplification with an erbium doped fiber amplifier before demodulation. After data acquisition the initial pressure distribution is reconstructed by a Fourier domain reconstruction algorithm. We present remote photoacoustic imaging of a tissue mimicking phantom and on chicken skin. PMID:24298397

  7. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification.

    PubMed

    Hochreiner, Armin; Bauer-Marschallinger, Johannes; Burgholzer, Peter; Jakoby, Bernhard; Berer, Thomas

    2013-01-01

    In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications contact with the tissue should be avoided. As alternatives to contacting transducers interferometric means can be used to acquire photoacoustic signals remotely. In this paper we report on non-contact three and two dimensional photoacoustic imaging using an optical fiber-based Mach-Zehnder interferometer. A detection beam is transmitted through an optical fiber network onto the surface of the specimen. Back reflected light is collected and coupled into the same optical fiber. To achieve a high signal/noise ratio the reflected light is amplified by means of optical amplification with an erbium doped fiber amplifier before demodulation. After data acquisition the initial pressure distribution is reconstructed by a Fourier domain reconstruction algorithm. We present remote photoacoustic imaging of a tissue mimicking phantom and on chicken skin.

  8. High power L-band mode-locked fiber laser based on topological insulator saturable absorber.

    PubMed

    Meng, Yichang; Semaan, Georges; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2015-09-07

    We demonstrate a passive mode-locked Er:Yb doped double-clad fiber laser using a microfiber-based topological insulator (Bi(2)Se(3)) saturable absorber (TISA). By optimizing the cavity loss and output coupling ratio, the mode-locked fiber laser can operate in L-band with high average output power. With the highest pump power of 5 W, 91st harmonic mode locking of soliton bunches with average output power of 308 mW was obtained. This is the first report that the TISA based erbium-doped fiber laser operating above 1.6 μm and is also the highest output power yet reported in TISA based passive mode-locked fiber laser.

  9. Theoretical and experimental study of multifunction C+L band hybrid fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hsu, Hai-Yin; Yu, Yi-Lin; Liaw, Shien-Kuei; Liu, Ren-Yang; Shin, Chow-Shing

    2014-03-01

    We proposed and demonstrated a 100 km hybrid C+L band fiber amplifier in the bridge-type scheme. It is composed of a C-band erbium-doped fiber amplifier (EDFA) and an L-band Raman fiber amplifier (RFA) using double-pass dispersion compensators in a loop-back scheme. Dispersion slope mismatch is compensated precisely for all C+L band channels by writing fiber Bragg gratings (FBGs) at appropriate locations. Gain variation among multiple channels can be reduced to ±0.2 dB. The pump efficiency is improved by recycling the residual pump power. The C/L band WDM coupler which at merged point rejects C band amplified spontaneous emission (ASE) using L band coupler and vice versa. Both the simulation results and experimental measurements are realized in this paper. The hybrid EDFA/RFA may find vast applications in WDM long-haul systems and optical networks.

  10. Dual-kind Q-switching of erbium fiber laser

    SciTech Connect

    Barmenkov, Yuri O. Kir'yanov, Alexander V.; Cruz, Jose L.; Andres, Miguel V.

    2014-03-03

    Two different regimes of Q-switching in the same implementation of an actively Q-switched erbium-doped fiber laser are demonstrated. Depending on the active fiber length and repetition rate of an intracavity Q-cell (acousto-optic modulator), the laser operates either in the regime of common, rather long and low-power, pulses composed of several sub-pulses or in the one of very short and powerful stimulated Brillouin scattering-induced pulses. The basic physical reason of the laser system to oscillate in one of these two regimes is the existence or absence of CW narrow-line “bad-cavity” lasing in the intervals when the Q-cell is blocked.

  11. Flexible pulses from carbon nanotubes mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Yang, Ling-Zhen; Yang, Yi; Wang, Juan-Fen

    2016-12-01

    We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of ˜ 20 nm and from ˜ 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance. Project supported by the National Natural Science Foundation of China (Grant No. 61575137) and the Program on Social Development by Department of Science and Technology of Shanxi Province, China (Grant No. 20140313023-3).

  12. Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser

    NASA Astrophysics Data System (ADS)

    Francke, Ricardo E.; Pöschel, Thorsten; Gallas, Jason A. C.

    2013-04-01

    We report numerical evidence showing that periodic oscillations can produce unexpected and wide-ranging zig-zag parameter networks embedded in chaos in the control space of nonlinear systems. Such networks interconnect shrimplike windows of stable oscillations and are illustrated here for a tunnel diode, for an erbium-doped fiber-ring laser, and for the Hénon map, a proxy of certain CO2 lasers. Networks in maps can be studied without the need for solving differential equations. Tuning parameters along zig-zag networks allows one to continuously modify wave patterns without changing their chaotic or periodic nature. In addition, we report convenient parameter ranges where such networks can be detected experimentally.

  13. Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser.

    PubMed

    Francke, Ricardo E; Pöschel, Thorsten; Gallas, Jason A C

    2013-04-01

    We report numerical evidence showing that periodic oscillations can produce unexpected and wide-ranging zig-zag parameter networks embedded in chaos in the control space of nonlinear systems. Such networks interconnect shrimplike windows of stable oscillations and are illustrated here for a tunnel diode, for an erbium-doped fiber-ring laser, and for the Hénon map, a proxy of certain CO(2) lasers. Networks in maps can be studied without the need for solving differential equations. Tuning parameters along zig-zag networks allows one to continuously modify wave patterns without changing their chaotic or periodic nature. In addition, we report convenient parameter ranges where such networks can be detected experimentally.

  14. Characteristics of rational harmonic mode‑locked short‑cavity fiber ring laser using a bismuth‑oxide-based erbium‑doped fiber and a bismuth‑oxide‑based highly nonlinear fiber.

    PubMed

    Fukuchi, Yutaka; Maeda, Joji

    2011-11-07

    We demonstrate a rational harmonic mode-locked fiber ring laser employing a 151-cm-long bismuth-oxide-based erbium-doped fiber (Bi-EDF) and a 250-cm-long bismuth-oxide-based highly nonlinear fiber (Bi-HNLF). Continuous wavelength tuning covering both the conventional wavelength band and the longer wavelength band can be achieved by utilizing the wide gain bandwidth of the Bi-EDF. The pulse amplitude can also be equalized by adjusting the modulation parameters of the intracavity modulator. Ultra-high nonlinearity of the Bi-HNLF collaborates with spectral filtering by an optical bandpass filter to suppress the supermode noise quite effectively. The total cavity length is as short as 10 m. Stable and amplitude equalized pulses up to 40 GHz can be successfully generated over the entire wavelength tuning range.

  15. C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 microm.

    PubMed

    Nakazawa, Masataka; Kasai, Keisuke; Yoshida, Masato

    2008-11-15

    We have succeeded in the simultaneous stabilization of the optical frequency and repetition rate of a regeneratively mode-locked picosecond erbium-doped fiber ring laser. The optical frequency was locked to the molecular absorption of C2H2 in the 1.5 microm band, and the repetition rate was stabilized to a 40 GHz synthesizer by using a microwave phase-locked loop. The optical frequency stability of the pulse train reached 2x10(-11) for tau=10-100 s. The key to success is the independent control of the repetition rate without disturbing the optical cavity condition.

  16. Multi-wavelength observations of Jupiter's aurora coordinated with Hisaki and other space telescopes

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Badman, S. V.; Tao, C.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Bonfond, B.; Steffl, A. J.; Kraft, R.; Branduardi-Raymont, G.; Elsner, R.; Ezoe, Y.; Fujimoto, M.

    2014-12-01

    From January to April 2014, two observing campaigns by multi-wavelength remote sensing from X-ray to radio were performed to uncover energy transport process in Jupiter's plasma environment using space telescopes and ground-based facilities. These campaigns were triggered by the new Hisaki spacecraft launched in September 2013, which is an extremely ultraviolet (EUV) space telescope of JAXA designed for planetary observations. In the first campaign in January, Hubble Space Telescope (HST) made imaging of far ultraviolet (FUV) aurora with a high special resolution (0.08") through two weeks while Hisaki continuously monitored aurora and plasma torus emissions in EUV wavelength with a high temporal resolution (1 min<). We discovered new magnetospheric activities from the campaign data: e.g., internally-driven type auroral brightening associated with hot plasma injection, and plasma and electromagnetic filed modulations in the inner magnetosphere externally driven by the solar wind modulation. The second campaign in April was performed by Chandra X-ray Observatory (CXO), XMM newton, and Suzaku satellite simultaneously with Hisaki. Relativistic auroral accelerations in the polar region and hot plasma in the inner magnetosphere were captured by the X-ray space telescopes simultaneously with EUV monitoring of aurora and plasma torus. Auroral intensity in EUV indicated a clear periodicity of 45 minutes whereas the periodicity was not evident in X-ray intensity although previous observations by CXO indicated clear 40-minute periodicity in the polar cap X-ray aurora. In this presentation, we show remarkable scientific results obtained these campaigns.

  17. Multi-wavelength solar activity complexes evolution from Solar Dynamic Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Korolkova, Olga; Benevolenskaya, Elena

    The main problem of the solar physics is to understand a nature of the solar magnetic activity. New space missions and background observations provide us by data describing solar activity with a good space and time resolution. Space missions data observe the solar activity in multi-wavelength emissions come from photosphere to corona. The complex of the solar activity has roots in inte-rior and extends to the solar corona. Thus, modern data give an opportunity to study the activity on the Sun at different levels simultaneously. Solar Dynamics Observatory (SDO) [1] which launched at the beginning of 2010, looks at Sun in different wavelengths such as coronal lines 171Å & 335Å. Also SDO measures photospheric magnetic flux (line-of-sight component of the magnetic field strength) and gives images in continuum. We have studied a stable complexes of the solar activity (about 30 com-plexes) during 6 hours from 10 March 2013 to 14 October 2013 using 720s ca-dence of HMI (Helioseismic and Magnetic Imager) [2] and AIA (Atmospheric Imaging Assembly) [3] instruments of SDO. We have found a good relationship between the magnetic flux and coronal emissions. Here we discuss properties of the complexes in the different levels from photosphere to corona. References 1. W. Dean Pesnell, B.J. Thompson, P.C. Chamberlin // Solar Phys., v. 275, p. 3-15, (2012). 2. P.H. Scherrer, J. Schou, R.I. Bush et al. // Solar Phys., v. 275, p. 207-227, (2012). 3. James R. Lemen • Alan M. Title • David J. Akin et al. // Solar Phys., v. 275, p. 17-40, (2012).

  18. Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada; Pacucci, Fabio; Ferrara, Andrea; Agarwal, Bhaskar; Ricarte, Angelo; Zackrisson, Erik; Cappelluti, Nico

    2017-04-01

    Growing supermassive black holes (∼ {10}9 {M}ȯ ) that power luminous z> 6 quasars from light seeds—the remnants of the first stars—within a Gyr of the Big Bang poses a timing challenge. The formation of massive black hole seeds via direct collapse with initial masses ∼ {10}4{--}{10}5 {M}ȯ alleviates this problem. Viable direct-collapse black hole formation sites, the satellite halos of star-forming galaxies, merge and acquire stars to produce a new, transient class of high-redshift objects, obese black hole galaxies (OBGs). The accretion luminosity outshines that of the stars in OBGs. We predict the multi-wavelength energy output of OBGs and growing Pop III remnants at z = 9 for standard and slim disk accretion, as well as high and low metallicities of the associated stellar population. We derive robust selection criteria for OBGs—a pre-selection to eliminate blue sources, followed by color–color cuts ([{F}090W-{F}220W]> 0;-0.3< [{F}200W-{F}444W]< 0.3) and the ratio of X-ray flux to rest-frame optical flux ({F}X/{F}444W\\gg 1). Our cuts sift out OBGs from other bright, high- and low-redshift contaminants in the infrared. OBGs with predicted {M}{AB}< 25 are unambiguously detectable by the Mid-Infrared Instrument (MIRI), on the upcoming James Webb Space Telescope (JWST). For parameters explored here, growing Pop III remnants with predicted {M}{AB}< 30 will likely be undetectable by JWST. We demonstrate that JWST has the power to discriminate between initial seeding mechanisms.

  19. Multi-wavelength dual polarisation lidar for monitoring precipitation process in the cloud seeding technique

    NASA Astrophysics Data System (ADS)

    Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana

    2016-05-01

    In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.

  20. The Swift/UVOT Blazar Image Processing For Multi-Wavelength Campaigns And OJ287

    NASA Astrophysics Data System (ADS)

    Verrecchia, Francesco; Leto, C.; Giommi, P.; Ciprini, S.; et al.

    2016-10-01

    In the last years the Swift mission monitoring of non-GRB sources has become an essential tool in multi-frequencies time- domain studies. The ASI Science Data Center (ASDC), which hosts one of the three official Swift data archives and was deputy for the X-ray Telescope (XRT) Deep and Serendipitous surveys, has a long experience on Blazar multi-wavelength campaigns and has recently participated to various campaigns contemporary to observations of new space missions, such as Planck and NuSTAR (Balokovic et al 2016, Furniss et al. 2015, Giommi et al 2012). Since 2006 at the ASDC we have started an activity of UltraViolet Optical Telescope (UVOT) Blazar image processing. The dedicated standard processing procedure of UVOT images, using official software and calibrations, has the goal to add UVOT fluxes to source Spectral Energy Distributions (SEDs) and also support variability studies with comparison to X and gamma-ray data, even on the intra-observation time-scale. Currently data of about 430 sources have been processed, and results have been used in recent papers, such as those on Mkn 421 (Balokovic et al.2016) and OJ 287. The OJ287 UVOT image complete data processing is updated at each observation campaign and results have been published in some survey papers. The 2015 observations have been included in the internal long-term monitoring of the source and considered in the recent multi-frequency study Valtonen et al.(2016) of the new optical-UV outburst of the 12 years cycle, with comparison to the ground optical data and the contemporaneous Swift X-ray ones. We will report the results obtained with UVOT data.

  1. On designing a SWIR multi-wavelength facial-based acquisition system

    NASA Astrophysics Data System (ADS)

    Bourlai, Thirimachos; Narang, Neeru; Cukic, Bojan; Hornak, Lawrence

    2012-06-01

    In harsh environmental conditions characterized by unfavorable lighting and pronounced shadows, human recognition based on Short-Wave Infrared (0.9-1.7 microns) images may be advantageous. SWIR imagery (i) is more tolerant to low levels of obscurants like fog and smoke; (ii) the active illumination source can be eye-safe and (iii) the active illumination source is invisible to the human eye making it suitable for surveillance applications. The key drawback of current SWIR-based acquisition systems is that they lack the capability of real-time simultaneous acquisition of multiple SWIR wavelengths. The contributions of our work are four-fold. First, we constructed a SWIR multi-wavelength acquisition system (MWAS) that can capture face images at 5 different wavelengths (1150, 1250, 1350, 1450, 1550 nm) in rapid succession using a 5-filter rotating filter wheel. Each filter has a band pass of 100 nm and all 5 images are acquired within 260 milliseconds. The acquisition system utilizes a reflective optical sensor to generate a timing signal corresponding to the filter wheel position that is used to trigger each camera image acquisition when the appropriate filter is in front of the camera. The timing signal from the reflective sensor transmits to a display panel to confirm the synchronization of the camera with the wheel. Second, we performed an empirical optimization on the adjustment of the exposure time of the camera and speed of the wheel when different light sources (fluorescent, tungsten, both) were used. This improved the quality of the images acquired. Third, a SWIR spectrometer was used to measure the response from the different light sources and was used to evaluate which one provides better images as a function of wavelength. Finally, the selection of the band pass filter, to focus the camera to acquire the good quality SWIR images was done by using a number of image quality and distortion metrics (e.g. universal quality index and Structural index method).

  2. LIVAS: a 3-D multi-wavelength aerosol/cloud climatology based on CALIPSO and EARLINET

    NASA Astrophysics Data System (ADS)

    Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.

    2015-01-01

    We present LIVAS, a 3-dimentional multi-wavelength global aerosol and cloud optical climatology, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. LIVAS database provides averaged profiles of aerosol optical properties for the potential space-borne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global climatology is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent spectral conversion factors for backscatter and extinction, derived from EARLINET ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversion factors are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO extinction and backscatter data correspondingly to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud climatology based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for space-borne lidar performance assessments. The final global climatology includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO data on a uniform grid of 1×1 degree with the original high vertical resolution of CALIPSO in order to ensure realistic simulations of the atmospheric variability in lidar end-to-end simulations.

  3. Multi-wavelength Lens Reconstruction of a Planck and Herschel-detected Star-bursting Galaxy

    NASA Astrophysics Data System (ADS)

    Timmons, Nicholas; Cooray, Asantha; Riechers, Dominik A.; Nayyeri, Hooshang; Fu, Hai; Jullo, Eric; Gladders, Michael D.; Baes, Maarten; Bussmann, R. Shane; Calanog, Jae; Clements, David L.; da Cunha, Elisabete; Dye, Simon; Eales, Stephen A.; Furlanetto, Cristina; Gonzalez-Nuevo, Joaquin; Greenslade, Joshua; Gurwell, Mark; Messias, Hugo; Michałowski, Michał J.; Oteo, Iván; Pérez-Fournon, Ismael; Scott, Douglas; Valiante, Elisabetta

    2016-09-01

    We present a source-plane reconstruction of a Herschel and Planck-detected gravitationally lensed dusty star-forming galaxy (DSFG) at z = 1.68 using Hubble, Submillimeter Array (SMA), and Keck observations. The background submillimeter galaxy (SMG) is strongly lensed by a foreground galaxy cluster at z = 0.997 and appears as an arc with a length of ˜15″ in the optical images. The continuum dust emission, as seen by SMA, is limited to a single knot within this arc. We present a lens model with source-plane reconstructions at several wavelengths to show the difference in magnification between the stars and dust, and highlight the importance of multi-wavelength lens models for studies involving lensed DSFGs. We estimate the physical properties of the galaxy by fitting the flux densities to model spectral energy distributions leading to a magnification-corrected star-formation rate (SFR) of 390 ± 60 M {}⊙ yr-1 and a stellar mass of 1.1+/- 0.4× {10}11 {M}⊙ . These values are consistent with high-redshift massive galaxies that have formed most of their stars already. The estimated gas-to-baryon fraction, molecular gas surface density, and SFR surface density have values of 0.43 ± 0.13, 350 ± 200 {M}⊙ pc-2, and ˜ 12+/- 7 M {}⊙ yr-1 kpc-2, respectively. The ratio of SFR surface density to molecular gas surface density puts this among the most star-forming systems, similar to other measured SMGs and local ULIRGs.

  4. Rapid multi-wavelength optical assessment of circulating blood volume without a priori data

    NASA Astrophysics Data System (ADS)

    Loginova, Ekaterina V.; Zhidkova, Tatyana V.; Proskurnin, Mikhail A.; Zharov, Vladimir P.

    2016-03-01

    The measurement of circulating blood volume (CBV) is crucial in various medical conditions including surgery, iatrogenic problems, rapid fluid administration, transfusion of red blood cells, or trauma with extensive blood loss including battlefield injuries and other emergencies. Currently, available commercial techniques are invasive and time-consuming for trauma situations. Recently, we have proposed high-speed multi-wavelength photoacoustic/photothermal (PA/PT) flow cytometry for in vivo CBV assessment with multiple dyes as PA contrast agents (labels). As the first step, we have characterized the capability of this technique to monitor the clearance of three dyes (indocyanine green, methylene blue, and trypan blue) in an animal model. However, there are strong demands on improvements in PA/PT flow cytometry. As additional verification of our proof-of-concept of this technique, we performed optical photometric CBV measurements in vitro. Three label dyes—methylene blue, crystal violet and, partially, brilliant green—were selected for simultaneous photometric determination of the components of their two-dye mixtures in the circulating blood in vitro without any extra data (like hemoglobin absorption) known a priori. The tests of single dyes and their mixtures in a flow system simulating a blood transfusion system showed a negligible difference between the sensitivities of the determination of these dyes under batch and flow conditions. For individual dyes, the limits of detection of 3×10-6 M‒3×10-6 M in blood were achieved, which provided their continuous determination at a level of 10-5 M for the CBV assessment without a priori data on the matrix. The CBV assessment with errors no higher than 4% were obtained, and the possibility to apply the developed procedure for optical photometric (flow cytometry) with laser sources was shown.

  5. Multi-wavelength properties and SMBH's masses of the isolated AGNs in the Local Universe

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Vasylenko, A. A.; Babyk, Iu. V.; Pulatova, N. G.

    2016-08-01

    The sample of 36 nearest isolated AGNs was cross-matched by 2MIG and Veron-Cetty catalogues and limited to Ks ≤ 12.0m and Vr < 15 000 km/s in the northern sky (δ ≥ -15°). These objects were in isolation during ~ 3 Gyrs. For revealing their multi-wavelength properties we used all the available databases obtained with ground-based and space observatories (from radio to X-ray ranges). It is allowed us to separate the internal evolution mechanisms from the environment influence and consider them as two separate processes related to fueling nuclear activity and accretion on the SMBHs outside of the environment. In this report we present briefly main results, which were already published (Pulatova N., Vavilova I., Sawangwit U. et al. The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky, MNRAS, 447, Issue 3, p. 2209-2223 (2015)). We accentuate that for the first time we revealed that the host isolated galaxies with AGNs of Sy1 type (without faint companions) appear to possess the bar morphological features (e.g., the interaction with neighboring galaxies is not necessary condition for broad-line region formation). We give also current results as concerns with more detail X-ray analysis, emission features and spectral models for several AGNs for which a cumulative soft and hard energy spectrum was reconstructed. The estimates of SMBH masses show that are systematically lower than the SMBH masses of AGNs located in a dense environment.

  6. THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS

    SciTech Connect

    Laag, Edward; Croft, Steve; Canalizo, Gabriela; Lacy, Mark

    2010-12-15

    This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels) on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.

  7. Programmable Illumination and High-Speed, Multi-Wavelength, Confocal Microscopy Using a Digital Micromirror

    PubMed Central

    Martial, Franck P.; Hartell, Nicholas A.

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium

  8. Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results

    NASA Technical Reports Server (NTRS)

    Clark, Beth Ellen; Shepard, M.; Bus, S. J.; Vilas, F.; Rivkin, A. S.; Lim, L.; Lederer, S.; Jarvis, K.; Shah, S.; McConnochie, T.

    2004-01-01

    The August 2003 apparition of asteroid 2100 Ra-Shalom brought together a collaboration of observers with the goal of obtaining rotationally resolved multiwavelength spectra at each of 5 facilities: infrared spectra at the NASA Infrared Telescope Facility (Clark and Shepard), radar images at Arecibo (Shepard and Clark), thermal infrared spectra at Palomar (Lim, McConnochie and Bell), visible spectra at McDonald Observatory (Vilas, Lederer and Jarvis), and visible lightcurves at Ondrojev Observatory (Pravec). The radar data was to be used to develop a high spatial resolution physical model to be used in conjunction with spectral data to investigate compositional and textural properties on the near surface of Ra Shalom as a function of rotation phase. This was the first coordinated multi-wavelength investigation of any Aten asteroid. There are many reasons to study near-Earth asteroid (NEA) 2100 Ra-Shalom: 1) It has a controversial classification (is it a C- or K-type object)? 2) There would be interesting dynamical ramifications if Ra-Shalom is a K-type because most K-types come from the Eos family and there are no known dynamical pathways from Eos to the Aten population. 3) The best available spectra obtained previously may indicate a heterogeneous surface (most asteroids appear to be fairly homogeneous). 4) Ra-Shalom thermal observations obtained previously indicated a lack of regolith, minimizing the worry of space weathering effects in the spectra. 5) Radar observations obtained previously hinted at interesting surface structures. 6) Ra-Shalom is one of the largest Aten objects. And 7) Ra-Shalom is on a short list of proposed NEAs for spacecraft encounters and possible sample returns. Preliminary results from the visible, infrared, and thermal spectroscopy measurements will be presented here.

  9. A Multi-wavelength Study of Star Formation Activity in the S235 Complex

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Ojha, D. K.; Luna, A.; Anandarao, B. G.; Ninan, J. P.; Mallick, K. K.; Mayya, Y. D.

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having AV > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated 12CO and 13CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3 data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  10. Multi-wavelength Study of Transition Region Penumbral Subarcsecond Bright Dots Using IRIS and NST

    NASA Astrophysics Data System (ADS)

    Deng, Na; Yurchyshyn, Vasyl; Tian, Hui; Kleint, Lucia; Liu, Chang; Xu, Yan; Wang, Haimin

    2016-10-01

    Using high-resolution transition region (TR) observations taken by the Interface Region Imaging Spectrograph (IRIS) mission, Tian et al. revealed numerous short-lived subarcsecond bright dots (BDs) above sunspots (mostly located in the penumbrae), which indicate yet unexplained small-scale energy releases. Moreover, whether or not these subarcsecond TR brightenings have any signature in the lower atmosphere and how they are formed are still not fully resolved. This paper presents a multi-wavelength study of the TR penumbral BDs using a coordinated observation of a near disk center sunspot with IRIS and the 1.6 m New Solar Telescope (NST) at the Big Bear Solar Observatory. NST provides high-resolution chromospheric and photospheric observations with narrowband Hα imaging spectroscopy and broadband TiO images, respectively, complementary to IRIS TR observations. A total of 2692 TR penumbral BDs are identified from a 37 minute time series of IRIS 1400 Å slit-jaw images. Their locations tend to be associated more with downflowing and darker fibrils in the chromosphere, and weakly associated with bright penumbral features in the photosphere. However, temporal evolution analyses of the BDs show that there is no consistent and convincing brightening response in the chromosphere. These results are compatible with a formation mechanism of the TR penumbral BDs by falling plasma from coronal heights along more vertical and dense magnetic loops. The BDs may also be produced by small-scale impulsive magnetic reconnection taking place sufficiently high in the atmosphere that has no energy release in the chromosphere.

  11. A MULTI-WAVELENGTH STUDY OF STAR FORMATION ACTIVITY IN THE S235 COMPLEX

    SciTech Connect

    Dewangan, L. K.; Luna, A.; Mayya, Y. D.; Ojha, D. K.; Ninan, J. P.; Mallick, K. K.; Anandarao, B. G.

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having A{sub V} > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated {sup 12}CO and {sup 13}CO intensity maps and by Bolocam 1.1 mm continuum emission. The position–velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH{sub 3} data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  12. Multi-wavelength Polarimetry and Spectral Study of the M87 Jet During 2002-2008

    NASA Astrophysics Data System (ADS)

    Avachat, Sayali S.; Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Owen, Frazer; Sparks, William B.; Georganopoulos, Markos

    2016-11-01

    We present a multi-wavelength polarimetric and spectral study of the M87 jet obtained at sub-arcsecond resolution between 2002 and 2008. The observations include multi-band archival VLA polarimetry data sets along with Hubble Space Telescope (HST) imaging polarimetry. These observations have better angular resolution than previous work by factors of 2-3 and in addition, allow us to explore the time domain. These observations envelop the huge flare in HST-1 located 0.″86 from the nucleus. The increased resolution enables us to view more structure in each knot, showing several resolved sub-components. We also see apparent helical structure in the polarization vectors in several knots, with polarization vectors turning either clockwise or counterclockwise near the flux maxima in various places as well as showing filamentary undulations. Some of these characteristics are correlated with flux and polarization maxima while others are not. We also examine the total flux and fractional polarization and look for changes in both radio and optical since the observations of Perlman et al. (1999) and test them against various models based on shocks and instabilities in the jet. Our results are broadly consistent with previous spine-sheath models and recollimation shock models; however, they require additional combinations of features to explain the observed complexity, e.g., shearing of magnetic field lines near the jet surface and compression of the toroidal component near shocks. In particular, in many regions we find apparently helical features both in total flux and polarization. We discuss the physical interpretation of these features. Based on the observations made with the Karl G. Jansky Very Large Array (VLA), operated by the National Radio Astronomy Observatory (NRAO), and Hubble Sapce Telescope (HST), obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc.

  13. Multi-wavelength Study of Blazars Using Variability as a Tool

    NASA Astrophysics Data System (ADS)

    Baliyan, Kiran S.; Kaur, Navpreet; Chandra, Sunil; Sameer, Sameer; Ganesh, Shashikiran

    2016-09-01

    Active galactic nuclei (AGN) are too compact to be resolved by any existing optical telescope facility, making it difficult to understand their structure and the emission processes responsible for their huge energy output. However, variability, one of their characteristic properties, provides a tool to probe the inner regions of AGN. Blazars are the best candidates for such a study, and hence a considerable amount of effort is being made to investigate variability in these sources across the electromagnetic spectrum. Here, using the Mt. Abu infrared observatory (MIRO) blazar monitoring program, we present intra-night, inter-night, and long term aspects of the variability in S5 0716+71, 3C66A, and OJ 287. These stars show significant variability on short (a few tens of mins, to a few hours, to a few days) to long term (months to years) timescales. Based on the light travel time argument, the shortest variability timescales (micro-variability) provide upper limits to the size of the emission region. While S5 0716 shows a very high duty cycle of variability (> 80 %), 3C66A shows a much lower intra day variability (IDV) duty cycle (< 20 %). All three show rapid variations within 2.5 to 3.5 hr, which, perhaps, are generated near the vicinity of black holes. Assuming this, estimates of the masses of the black holes are made at 10^{9} , 8×10^{8}, and 2.7×10^{9} M⨀ for S5 0716+71, 3C66A, and OJ 287, respectively. Multi-wavelength light-curves for the blazar PKS 1510-089 are discussed to infer the emission processes responsible for the recent flaring episodes in this source.

  14. Multi-wavelength study of the opposition effect on Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Degiorgio, K.; Ferrari, C. C.; Rodriguez, S.

    2012-12-01

    The opposition effect manifests itself as an important surge of the radiance factor when the phase angle approaches 0°. Since its discovery on Saturn's rings (1), several effects have been proposed to explain it, such as the Ring-Shadow Hiding Opposition Effect (R-SHOE), the Coherent Backscattering Opposition Effect (CBOE) or the SHOE within the regolith that may cover ring particles. The relative importance of all these effects is still badly constraint (2). It is usually assumed that the R-SHOE cannot provide such a narrow peak as observed and is therefore considered as negligible. We will show that if the full viewing and lighting geometry are considered, this effect has to be taken into account, therefore providing a very good probe to measure the thickness and the filling factor of Saturn's Rings. Furthermore, the regolith contributions to the effect, i.e. CBOE and SHOE, depend on its absorption coefficient and its mean free path (3) and therefore should then depend on the wavelength. This is not the case for the R-SHOE because it mostly depends on the filling factor, the thickness and the particle size. We will present a multi-wavelength study of Saturn's rings opposition effect supported by the data of the VIMS-CASSINI instrument (Visual and Infrared Mapping Spectrometer) and show if our understanding of those effects is incomplete as proposed by (4) or not. (1) H,Abhandl.Bayer.Akad.Wiss.K1.II18,172,188 (2) Salo and French, Icarus, 2010 (3) Hapke, Icarus, 2002, (4) Hapke et al., Journal of Geophysical Reasearch, Vol 117, 2012

  15. A multi-wavelength survey of obscured and reddened quasars at the peak of galaxy formation

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael

    2017-01-01

    While in the nearby universe the unification model seems firmly established, we are now seeing hints that at the peak of quasar activity and black hole growth (z~2.5) both obscured and reddened quasars may represent not just a specific quasar orientation but instead a unique stage of quasar evolution. Our group has developed several observational techniques to identify obscured and highly reddened quasars at z~2.5 using a combination of the SDSS spectroscopy and WISE photometry. Our sample contains objects with some of the most extreme ionized gas velocities observed (> 5000 km/s), indicating wind speeds too large to be contained by the galaxy potential though they are radio quiet. I will present both our sample selection and initial results from multi-wavelength follow-up of this sample using near-infrared spectroscopy, Keck spectropolarimentry and the VLA to test the AGN unification model and search for evidence of galaxy-wide quasar winds. High levels of polarized light (reaching ~20% of the total continuum emission in some cases) and changes in the polarization fraction and position angle across emission lines may argue for the presence of dusty outflows in our objects. This is supported by evidence from stacking analysis in the radio that presents a correlation between the observed outflow speeds in ionized gas (as measured by [OIII]) and the radio luminosity—arguing for a wind origin for the radio emission in these objects as well. The most extreme of these objects may thus represent the “blowout phase” of AGN evolution that proceeds or accompanies the cessation of star formation in the host galaxy due to the effects of radiatively-driven quasar driven winds.

  16. Synthetic 3D modeling of active regions and simulation of their multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory; Kuznetsov, Alexey A.; Loukitcheva, Maria A.; Viall, Nicholeen M.; Klimchuk, James A.; Gary, Dale E.

    2015-04-01

    To facilitate the study of solar active regions, we have created a synthetic modeling framework that combines 3D magnetic structures obtained from magnetic extrapolations with simplified 1D thermal models of the chromosphere, transition region, and corona. To handle, visualize, and use such synthetic data cubes to compute multi-wavelength emission maps and compare them with observations, we have undertaken a major enhancement of our simulation tools, GX_Simulator (ftp://sohoftp.nascom.nasa.gov/solarsoft/packages/gx_simulator/), developed earlier for modeling emission from flaring loops. The greatly enhanced, object-based architecture, which now runs on Windows, Mac, and UNIX platform, offers important new capabilities that include the ability to either import 3D density and temperature distribution models, or to assign to each individual voxel numerically defined coronal or chromospheric temperature and densities, or coronal Differential Emission Measure distributions. Due to these new capabilities, the GX_Simulator can now apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel volume, as well as compute and investigate the spatial and spectral properties of radio (to be compared with VLA or EOVSA data), (sub-)millimeter (ALMA), EUV (AIA/SDO), and X-ray (RHESSI) emission calculated from the model. The application integrates shared-object libraries containing fast free-free, gyrosynchrotron, and gyroresonance emission codes developed in FORTRAN and C++, and soft and hard X-ray and EUV codes developed in IDL. We use this tool to model and analyze an active region and compare the synthetic emission maps obtained in different wavelengths with observations.This work was partially supported by NSF grants AGS-1250374, AGS-1262772, NASA grant NNX14AC87G, the Marie Curie International Research Staff Exchange Scheme "Radiosun" (PEOPLE-2011-IRSES-295272), RFBR grants 14-02-91157, 15-02-01089, 15-02-03717, 15

  17. Multi-Wavelength Near Infrared Observations of Marum and Yasur Volcanoes, Vanuatu

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Radebaugh, Jani; Lopes, Rosaly M.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2014-11-01

    To help understand and test models of thermal emission from planetary volcanoes, we obtained in May 2014 a variety of near-infrared observations of the very active Marum lava lake on Ambrym, Vanuatu, as well as the Strombolian activity at Yasur on Tanna. Our observations include high resolution images and movies made with standard and modified cameras and camcorders. In addition, to test the planetary emission models, which typically rely on multi-wavelength observations, we developed a small inexpensive prototype imager named "Kerby", which consists of three simultaneously active near-infrared cameras operating at 0.860, 0.775, and 0.675 microns, as well as a fourth visible wavelength RGB camera. This prototype is based on the Raspberry Pi and Pi-NoIR cameras. It can record full high definition video, and is light enough to be carried by backpack and run from batteries. To date we have concentrated on the analysis of the Marum data. During our observations of the 40 m diameter lava lake, convection was so vigorous that areas of thin crust formed only intermittently and persisted for tens of seconds to a few minutes at most. The convection pattern primarily consisted of two upwelling centers located about 8 m in from the margins on opposite sides of the lake. Horizontal velocities away from the upwelling centers were approximately 4 m/s. A hot bright margin roughly 0.4 m wide frequently formed around parts of the lake perimeter. We are in the process of establishing the absolute photometry calibration to obtain temperatures, temperature distributions, and magma cooling rates.

  18. Structure of vanadium oxide supported on ceria by multi-wavelength Raman spectroscopy

    SciTech Connect

    Wu, Zili; Rondinone, Adam Justin; Overbury, Steven {Steve} H

    2011-01-01

    ABSTRACT The structure of vanadium oxide species supported on ceria (VOx/CeO2) was investigated under various conditions by in situ multi-wavelength Raman spectroscopy, IR spectroscopy, isotopic labeling and temperature programmed reduction (TPR). For the first time, the detailed structure of dehydrated VOx species was revealed on the polycrystalline ceria support. VOx species can co-exist on ceria surface in the structure of monomer, dimer, trimer, polymer, crystalline V2O5 and CeVO4 as a function of VOx loading. These species interact strongly with both the defect sites and labile surface oxygen of ceria, passivating the redox property of ceria. Under ambient condition, the dispersed VOx species are hydrated into polyvanadate species which can be reversibly dehydrated back to the original structure forms. The ceria support with defect sites facilitates the interaction between water (H218O) and V16Ox species, leading to very facile isotopic oxygen exchange between the two even at room temperature. During H2 reduction, both the VOx species and the ceria support can be reduced with ceria surface being more reducible. The reducibility of various dispersed VOx species scales with their polymerization degree, i.e., polymer > trimer > dimer > monomer. The reoxidation of reduced VOx species is found to proceed via ceria lattice oxygen instead of the gas phase oxygen where ceria acts as an oxygen buffer. The revealed structure evolution of surface VOx species on ceria under hydrated, dehydrated, reduced, and regenerated conditions provides a basis for understanding the vanadia-ceria catalysis.

  19. Effects of two erbium-doped yttrium aluminum garnet lasers and conventional treatments as composite surface abrasives on the shear bond strength of metal brackets bonded to composite resins

    PubMed Central

    Sobouti, Farhad; Dadgar, Sepideh; Sanikhaatam, Zahra; Nateghian, Nazanin; Saravi, Mahdi Gholamrezaei

    2016-01-01

    Background: Bonding brackets to dental surfaces restored with composites are increasing. No studies to date have assessed the efficacy of laser irradiation in roughening of composite and the resulted shear bond strength (SBS) of the bonded bracket. We assessed, for the 1st time, the efficacy of two laser beams compared with conventional methods. Materials and Methods: Sixty-five discs of light-cured composite resin were stored in deionized distilled water for 7 days. They were divided into five groups of 12 plus a group of five for scanning electron microscopy (SEM): Bur-abrasion followed by phosphoric acid etching (bur-PA), hydrofluoric acid conditioning (HF), sandblasting, 3 W and 2 W erbium-doped yttrium aluminum garnet laser irradiation for 12 s. After bracket bonding, specimens were water-stored (24 h) and thermocycled (500 cycles), respectively. SBS was tested at 0.5 mm/min crosshead speed. The adhesive remnant index (ARI) was scored under ×10 magnification. SEM was carried out as well. Data were analyzed using analysis of variance (ANOVA), Kruskal–Wallis, Tukey, Dunn, one-sample t-test/Wilcoxon tests, and Weibull analysis (α =0.05). Results: The SBS values (megapascal) were bur-PA (11.07 ± 1.95), HF (19.70 ± 1.91), sandblasting (7.75 ± 1.10), laser 2 W (15.38 ± 1.38), and laser 3 W (20.74 ± 1.73) (compared to SBS = 6, all P = 0.000). These differed significantly (ANOVA P = 0.000) except HF versus 3 W laser (Tukey P > 0.05). ARI scores differed significantly (Kruskal–Wallis P = 0.000), with sandblasting and 2 W lasers having scores inclined to the higher end (safest debonding). Weibull analysis implied successful clinical outcome for all groups, except for sandblasting with borderline results. Conclusion: Considering its high efficacy and the lack of adverse effects bound with other methods, the 3 W laser irradiation is recommended for clinical usage. PMID:26998473

  20. Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Chang, C. C.; Chen, Y. F.

    2015-01-01

    We develop a theoretical model for designing a compact efficient multi-wavelength laser with dual gain media in a shared resonator. The developed model can be used to analyze the optimal output reflectivity for each wavelength to achieve maximum output power for multi-wavelength emission. We further demonstrate a dual-wavelength laser at 946 nm and 1064 nm with Nd:YAG and Nd:YVO4 crystals to confirm the numerical analysis. Under optimum conditions and at incident pump power of 17 W, output power at 946 nm and 1064 nm was up to 2.51 W and 2.81 W, respectively.

  1. Study on high coupling efficiency Er-doped fiber laser for femtosecond optical frequency comb

    NASA Astrophysics Data System (ADS)

    Pang, Lihui; Liu, Wenjun; Han, Hainian; Wei, Zhiyi

    2016-09-01

    The femtosecond laser is crucial to the operation of the femtosecond optical frequency comb. In this paper, a passively mode-locked erbium-doped fiber laser is presented with 91.4 fs pulse width and 100.8 MHz repetition rate, making use of the nonlinear polarized evolution effect. Using a 976 nm pump laser diode, the average output power is 16 mW from the coupler and 27 mW from the polarization beam splitter at the pump power of 700 mW. The proposed fiber laser can offer excellent temporal purity in generated pulses with high power, and provide a robust source for fiber-based frequency combs and supercontinuum generation well suited for industrial applications.

  2. Infrared pulsed fiber lasers employing 2D nanomaterials as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Li, Heping; Li, Jianfeng

    2016-11-01

    We demonstrate that two kinds of 2D nanomaterials are employed as saturable absorbers to realize infrared pulsed fiber lasers at 1.5 μm and 3 μm, respectively. Mode-locked optical pulses are achieved at 1.5 μm erbium-doped fiber lasers by using multilayer molybdenum disulfide (MoS2). In addition, Q-switched fiber lasers are realized at 3 μm region by using topological insulator: Bi2Te3. Experimental proofs are provided. Our work reveals that 2D nanomaterials like MoS2 and TI: Bi2Te3 are absolutely a class of promising and reliable saturable absorbers for optical pulse generation at infrared waveband.

  3. Doubly active Q switching and mode locking of an all-fiber laser.

    PubMed

    Cuadrado-Laborde, Christian; Díez, Antonio; Cruz, Jose L; Andrés, Miguel V

    2009-09-15

    Simultaneous and independent active Q switching and active mode locking of an erbium-doped fiber laser is demonstrated using all-fiber modulation techniques. A magnetostrictive rod attached to the output fiber Bragg grating modulates the Q factor of the Fabry-Perot cavity, whereas active mode locking is achieved by amplitude modulation with a Bragg-grating-based acousto-optic device. Fully modulated Q-switched mode-locked trains of optical pulses were obtained for a wide range of pump powers and repetition rates. For a Q-switched repetition rate of 500 Hz and a pump power of 100 mW, the laser generates trains of 12-14 mode-locked pulses of about 1 ns each, within an envelope of 550 ns, an overall energy of 0.65 microJ, and a peak power higher than 250 W for the central pulses of the train.

  4. Mode locking of an all-fiber laser by acousto-optic superlattice modulation.

    PubMed

    Cuadrado-Laborde, C; Diez, A; Delgado-Pinar, M; Cruz, J L; Andrés, M V

    2009-04-01

    Active mode locking of an erbium-doped all-fiber laser with a Bragg-grating-based acousto-optic modulator is demonstrated. The fiber Bragg grating was acoustically modulated by a standing longitudinal elastic wave, which periodically modulates the sidebands at twice the acoustic frequency. The laser has a Fabry-Perot configuration in which cavity loss modulation is achieved by tuning the output fiber Bragg grating to one of the acoustically induced sidebands. Optical pulses at 9 MHz repetition rate, 120 mW peak power, and 780 ps temporal width were obtained. The output results to be stable and has a timing jitter below 40 ps. The measured linewidth, 2.8 pm, demonstrates that these pulses are transform limited.

  5. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  6. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  7. Compact two wavelength Brillouin fiber laser sensor with double Brillouin frequency spacing

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Mingjiang; Zhang, Jianzhong; Han, Hong; Yi, Xiaogang; Zhang, Jianguo; Wang, Yuncai

    2016-12-01

    A compact two wavelength Brillouin fiber laser (BFL) sensor with double Brillouin frequency spacing is proposed and demonstrated. In the experiment, 20 m polarization maintaining fiber is used as the sensing element and Brillouin gain medium. This short cavity configuration not only guarantees single longitudinal mode operation of two Stokes wavelengths, but also can effectively reduce external perturbations, complexity and noise of BFL in the absence of an erbium-doped fiber amplifier in intra-cavity. In experiment, about 2 MHz/°C sensitivity of beat frequency between the pump and the 2nd-order Stokes wavelength keep in good agreement with the theoretical value. Meanwhile, 0.2 °C temperature stability and  ±0.1 dB power fluctuation are better than the traditional structure. The system is simple and stable, making it convenient for more applications.

  8. Experimental investigation of bidirectional hybrid fiber amplifiers in a recycling-pump mechanism

    NASA Astrophysics Data System (ADS)

    Liaw, S. K.; Wang, Y.-C.; Yu, Y.-L.; Liu, R.-Y.; Payne, F. P.

    2012-09-01

    A bidirectional hybrid fiber amplifier is proposed and experimentally demonstrated. It is composed of a C-band erbium-doped fiber amplifier (EDFA) and an L-band Raman fiber amplifier (RFA). A single-wavelength pump source is used to pump both the EDFA and the RFA. Using 500 mW pump power at 1595 nm, the average gains are 11.35 dB for the EDFA and 10.08 dB for the RFA, respectively, with a launched signal power of -10 dBm. The power penalties are less than 0.38 and 0.88 dB, respectively, for 50 and 75 km unidirectional and bidirectional transmission.

  9. Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser.

    PubMed

    Zhang, Xianming; Gu, Chun; Chen, Guoliang; Sun, Biao; Xu, Lixin; Wang, Anting; Ming, Hai

    2012-04-15

    We report the generation of ultrawide tunable square-wave pulse in an erbium-doped mode-locked fiber laser. The pulse width can be tuned in an ultrawide range of more than 1700 ns by simply increasing the pump power. The pulse-width tuning is 5.1 ns/mW. To the best of our knowledge, this is the widest pulse-width tuning range of any square-wave pulse in an all-fiber passively mode-locked fiber laser. Experimental results show that the fiber nonlinearity plays an important role in the tuning range of the output pulse width. The high nonlinearity helps to increase the tuning range of the pulse width.

  10. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating.

    PubMed

    Sun, Ruoyu; Jin, Dongchen; Tan, Fangzhou; Wei, Shouyu; Hong, Chang; Xu, Jia; Liu, Jiang; Wang, Pu

    2016-10-03

    We report a high-power all-fiber-integrated femtosecond chirped pulse amplification system operating at 1064 nm, which consists of a dispersive wave source, a fiber stretcher, a series of ytterbium-doped amplifiers and a chirped volume Bragg grating (CVBG) compressor. The dispersive wave is generated by an erbium-doped mode-locked fiber laser with frequency shifted to the 1 μm region in a highly nonlinear fiber. With three stages of ytterbium-doped amplification, the average output power is scaled up to 125 W. Through CVBG, the pulse duration is compressed from 525 ps to 566 fs, the average output power of 107 W with a high compression efficiency of 86% is achieved, and the measured repetition rate is 17.57 MHz, corresponding to the peak power of 10.8 MW.

  11. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.

    PubMed

    Kéfélian, Fabien; Jiang, Haifeng; Lemonde, Pierre; Santarelli, Giorgio

    2009-04-01

    We report the frequency stabilization of an erbium-doped fiber distributed-feedback laser using an all-fiber-based Michelson interferometer of large arm imbalance. The interferometer uses a 1 km SMF-28 optical fiber spool and an acousto-optic modulator allowing heterodyne detection. The frequency-noise power spectral density is reduced by more than 40 dB for Fourier frequencies ranging from 1 Hz to 10 kHz, corresponding to a level well below 1 Hz2/Hz over the entire range; it reaches 10(-2) Hz2/Hz at 1 kHz. Between 40 Hz and 30 kHz, the frequency noise is shown to be comparable to the one obtained by Pound-Drever-Hall locking to a high-finesse Fabry-Perot cavity. Locking to a fiber delay line could consequently represent a reliable, simple, and compact alternative to cavity stabilization for short-term linewidth reduction.

  12. LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET

    NASA Astrophysics Data System (ADS)

    Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Proestakis, E.; Kottas, M.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.

    2015-07-01

    We present LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies), a 3-D multi-wavelength global aerosol and cloud optical database, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The LIVAS database provides averaged profiles of aerosol optical properties for the potential spaceborne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global database is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent backscatter- and extinction-related Ångström exponents, derived from EARLINET (European Aerosol Research Lidar Network) ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversions are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO backscatter and extinction data corresponding to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud optical database based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for spaceborne lidar performance assessments. The final global data set includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) data on a uniform grid of 1

  13. Quantified H I morphology - I. Multi-wavelength analysis of the THINGS galaxies

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Pirzkal, N.; de Blok, W. J. G.; Bouchard, A.; Blyth, S.-L.; van der Heyden, K. J.; Elson, E. C.

    2011-10-01

    Galaxy evolution is driven to a large extent by interactions and mergers with other galaxies and the gas in galaxies is extremely sensitive to the interactions. One method to measure such interactions uses the quantified morphology of galaxy images. Well-established parameters are Concentration, Asymmetry, Smoothness, Gini and M20 of a galaxy image. Thus far, the application of this technique has mostly been restricted to rest-frame ultraviolet and optical images. However, with the new radio observatories being commissioned [South African Karoo Array Telescope (MeerKAT), Australian SKA Pathfinder (ASKAP), Extended Very Large Array (EVLA), Westerbork Synthesis Radio Telescope/APERture Tile In Focus instrument (WSRT/APERTIF) and ultimately the Square Kilometer Array (SKA)], a new window on the neutral atomic hydrogen gas (H I) morphology of large numbers of galaxies will open up. The quantified morphology of gas discs of spirals can be an alternative indicator of the level and frequency of interaction. The H I in galaxies is typically spatially more extended and more sensitive to low-mass or weak interactions. In this paper, we explore six morphological parameters calculated over the extent of the stellar (optical) disc and the extent of the gas disc for a range of wavelengths spanning ultraviolet (UV), optical, near- and far-infrared and 21 cm (H I) of 28 galaxies from The H I Nearby Galaxy Survey (THINGS). Although the THINGS sample is small and contains only a single ongoing interaction, it spans both non-interacting and post-interacting galaxies with a wealth of multi-wavelength data. We find that the choice of area for the computation of the morphological parameters is less of an issue than the wavelength at which they are measured. The signal of interaction is as good in the H I as at any of the other wavelengths at which morphology has been used to trace the interaction rate to date, mostly star formation dominated ones (near- and far-ultraviolet). The

  14. SIMULTANEOUS MULTI-WAVELENGTH OBSERVATIONS OF Sgr A* DURING 2007 APRIL 1-11

    SciTech Connect

    Yusef-Zadeh, F.; Bushouse, H.; Wardle, M.; Heinke, C.; Roberts, D. A.; Dowell, C. D.; Brunthaler, A.; Reid, M. J.; Martin, C. L.; Marrone, D. P.; Porquet, D.; Grosso, N.; Dodds-Eden, K.; Gillessen, S.; Bower, G. C.; Wiesemeyer, H.; Miyazaki, A.; Pal, S.; Goldwurm, A.

    2009-11-20

    We report the detection of variable emission from Sgr A* in almost all wavelength bands (i.e., centimeter, millimeter, submillimeter, near-IR, and X-rays) during a multi-wavelength observing campaign. Three new moderate flares are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray to near-IR flux in the flares is consistent with inverse Compton scattering of near-IR photons by submillimeter emitting relativistic particles which follow scaling relations obtained from size measurements of Sgr A*. We also find that the flare statistics in near-IR wavelengths is consistent with the probability of flare emission being inversely proportional to the flux. At millimeter wavelengths, the presence of flare emission at 43 GHz (7 mm) using the Very Long Baseline Array with milliarcsecond spatial resolution indicates the first direct evidence that hourly timescale flares are localized within the inner 30 x 70 Schwarzschild radii of Sgr A*. We also show several cross-correlation plots between near-IR, millimeter, and submillimeter light curves that collectively demonstrate the presence of time delays between the peaks of emission up to 5 hr. The evidence for time delays at millimeter and submillimeter wavelengths are consistent with the source of emission initially being optically thick followed by a transition to an optically thin regime. In particular, there is an intriguing correlation between the optically thin near-IR and X-ray flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4. This would be the first evidence of a radio flare emission at 43 GHz delayed with respect to the near-IR and X-ray flare emission. The time delay measurements support the expansion of hot self-absorbed synchrotron plasma blob and weaken the hot spot model of flare emission. In addition, a simultaneous fit to 43 and 84 GHz light curves, using an adiabatic expansion model of hot plasma, appears to support a power law rather than a relativistic

  15. Multi-wavelength SEDs of Herschel-selected Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Scoville, N. Z.; Hung, Chao-Ling; Le Floc'h, Emeric; Ilbert, Olivier; Aussel, Hervé; Capak, Peter; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Salvato, Mara; Aravena, M.; Berta, S.; Bock, J.; Oliver, S. J.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg2 Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L IR/L ⊙) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λpeak) decreases and the dust mass (M dust) increases with increasing total infrared luminosity (L IR). In the lowest infrared luminosity galaxies (log(L IR/L ⊙) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ~ 7-9 μm), while in the highest infrared luminosity galaxies (L IR > 1012 L ⊙) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M * "main sequence" as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L IR/L 8, and find that galaxies with L IR >~ 1011.3 L ⊙ tend to systematically lie above (× 3-5) the IR8 "infrared main sequence," suggesting either suppressed PAH emission or an increasing contribution from AGN heating.

  16. Multi-wavelength seds of Herschel-selected galaxies in the cosmos field

    SciTech Connect

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Hung, Chao-Ling; Scoville, N. Z.; Capak, Peter; Bock, J.; Le Floc'h, Emeric; Aussel, Hervé; Ilbert, Olivier; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Oliver, S. J.; Salvato, Mara; Aravena, M.; Berta, S.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from

  17. CANDELS Multi-wavelength Catalogs: Source Detection and Photometry in the GOODS-South Field

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng; Ferguson, Henry C.; Giavalisco, Mauro; Barro, Guillermo; Willner, S. P.; Ashby, Matthew L. N.; Dahlen, Tomas; Donley, Jennifer L.; Faber, Sandra M.; Fontana, Adriano; Galametz, Audrey; Grazian, Andrea; Huang, Kuang-Han; Kocevski, Dale D.; Koekemoer, Anton M.; Koo, David C.; McGrath, Elizabeth J.; Peth, Michael; Salvato, Mara; Wuyts, Stijn; Castellano, Marco; Cooray, Asantha R.; Dickinson, Mark E.; Dunlop, James S.; Fazio, G. G.; Gardner, Jonathan P.; Gawiser, Eric; Grogin, Norman A.; Hathi, Nimish P.; Hsu, Li-Ting; Lee, Kyoung-Soo; Lucas, Ray A.; Mobasher, Bahram; Nandra, Kirpal; Newman, Jeffery A.; van der Wel, Arjen

    2013-08-01

    We present a UV to mid-infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W band. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5σ limiting depth (within an aperture of radius 0.''17) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34,930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 μm) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zero-point offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 1010 M ⊙ at a 50% completeness level to z ~ 3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z ~ 2-4 via the Balmer break. It is also used to study the color-magnitude diagram of galaxies at 0 < z < 4.

  18. CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD

    SciTech Connect

    Guo Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C.; Giavalisco, Mauro; Willner, S. P.; Ashby, Matthew L. N.; Donley, Jennifer L.; Fontana, Adriano; Galametz, Audrey; Grazian, Andrea; Kocevski, Dale D.; McGrath, Elizabeth J.; Peth, Michael; Salvato, Mara; Wuyts, Stijn; and others

    2013-08-15

    We present a UV to mid-infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W band. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5{sigma} limiting depth (within an aperture of radius 0.''17) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34,930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 {mu}m) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zero-point offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10{sup 10} M{sub Sun} at a 50% completeness level to z {approx} 3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z {approx} 2-4 via the Balmer break. It is also used to study the color-magnitude diagram of galaxies at 0 < z < 4.

  19. Gamma-Ray Bursts and Afterglows: a Multi-Wavelength Study in the Swift Era

    NASA Astrophysics Data System (ADS)

    Yu, Y. W.

    2010-01-01

    Gamma-ray bursts (GRBs), which are generally followed by long-lasting low-frequency afterglow emission, are short and intense pulses of gamma-rays observed from the sky in arbitrary directions. In order to observe the multi-wavelength emission at the early afterglow phase and even the prompt emission phase, NASA launched the Swift satellite on Nov. 20th 2004. Swift can localize GRBs within about 10 seconds. A brief review on the recent progress in observations and theories in the Swift era is given in Chapter 1. This paper focuses on the features of the early afterglows and the multi-wavelength prompt emission. In Chapters 2 and 3, we try to explain the shallow-decaying X-ray afterglows and X-ray flares, both of which are unaccountable in the standard afterglow model. (1) It is widely accepted that the shallow decay phase indicates a continuous energy injection into the GRB blast wave, and this energy could be released from the central engine after the burst. Based on the knowledge of the evolution of a pulsar wind, we argue that the injected flow interacting with the GRB blast wave is an ultra-relativistic kinetic-energy flow (i.e., wind) rather than pure electromagnetic waves. Therefore, a relativistic wind bubble (RWB) including a pair of shocks will be formed. Our numerical calculations and the fitting results show that the emission from an RWB can well account for the X-ray shallow decay phase. (2) For the X-ray flares that are attributed to some intermediate late activities of the central engine, we analyze the detailed dynamics of late internal shocks which directly produce the flare emission. Comparing the theoretical results with the lower limits of the observational luminosities and the profiles of the flare light curves, we find some constraints on the properties of the pre-collision shells, which are directly determined by the central object. In Chapter 4, we investigate the high-energy afterglow emission during the shallow decay phase in two models, i

  20. Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter.

    PubMed

    Pan, Shilong; Yao, Jianping

    2009-07-06

    A wavelength-switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser (EDFL) incorporating a novel high-finesse ring filter is proposed and demonstrated. The ring filter consists of two optical couplers and a section of pumped erbium-doped fiber (EDF). Thanks to the gain generated by the EDF, the ring filter has spectral response with a high finesse. The incorporation of the ring filter leads to the suppression of undesirable modes in the dual-wavelength EDFL. An experiment is carried out. Two SLM wavelengths are generated. The side mode suppression ratio is greater than 50 dB. The wavelength spacing of the two wavelengths is tunable with a tuning step of approximately 10 GHz. A frequency switchable microwave signal from approximately 10 to approximately 40 GHz is thus generated by beating the two wavelengths at a photodetector (PD). The spectral width of the generated microwave signal is measured to be less than 5 kHz.