Fan, Wei; Shi, Wen; Zhang, Wenting; Jia, Yinnong; Zhou, Zhengyuan; Brusnahan, Susan K; Garrison, Jered C
2016-10-01
This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that exploitation of the cathepsin S activity in MPS tissues can be utilized to substantially lower non-target accumulation, suggesting this is a promising approach for the development of diagnostic and radiotherapeutic nanomedicine platforms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung
2014-04-23
Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.
Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.
2011-01-01
In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373
Pan, Huaizhong; Yang, Jiyuan; Kopecková, Pavla; Kopecek, Jindrich
2011-01-10
Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.
Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes
Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM
2012-02-07
Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.
Xu, Zhanwen; Lin, Jiaping; Zhang, Liangshun; Wang, Liquan; Wang, Gengchao; Tian, Xiaohui; Jiang, Tao
2018-06-14
We applied a multi-scale approach coupling dissipative particle dynamics method with a drift-diffusion model to elucidate the photovoltaic properties of multiblock copolymers consisting of alternating electron donor and acceptor blocks. A series of hierarchical lamellae-in-lamellar structures were obtained from the self-assembly of the multiblock copolymers. A distinct improvement in photovoltaic performance upon the morphology transformation from lamella to lamellae-in-lamella was observed. The hierarchical lamellae-in-lamellar structures significantly enhanced exciton dissociation and charge carrier transport, which consequently contributed to the improved photovoltaic performance. Based on our theoretical calculations, the hierarchical nanostructures can achieve a much enhanced energy conversion efficiency, improved by around 25% compared with that of general ones, through structure modulation on number and size of the small-length-scale domains. Our findings are supported by recent experimental evidence and yield guidelines for designing hierarchical materials with improved photovoltaic properties.
Wu, Chi; Xie, Zuowei; Zhang, Guangzhao; Zi, Guofu; Tu, Yingfeng; Yang, Yali; Cai, Ping; Nie, Ting
2002-12-07
A combination of polymer physics and synthetic chemistry has enabled us to develop self-assembly assisted polymerization (SAAP), leading to the preparation of long multi-block copolymers with an ordered chain sequence and controllable block lengths.
Xiao, Lifen; Zhu, Wen; Chen, Jiqiang; Zhang, Ke
2017-02-01
Cyclic multiblock polymers with high-order blocks are synthesized via the combination of single-electron transfer living radical polymerization (SET-LRP) and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The linear α,ω-telechelic multiblock copolymer is prepared via SET-LRP by sequential addition of different monomers. The SET-LRP approach allows well control of the block length and sequence as A-B-C-D-E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1 H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microphase separation in random multiblock copolymers
NASA Astrophysics Data System (ADS)
Govorun, E. N.; Chertovich, A. V.
2017-01-01
Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.
Adjustable bridge blocks make huge difference to the self-assembly of multiblock copolymers
NASA Astrophysics Data System (ADS)
Li, Weihua
We present theoretical studies on two types of multiblock copolymers, whose self-assemblies lead to a lot of novel ordered nanostructures. The first example is BABCB multiblock terpolymer, where A- and C-blocks separately aggregate into isolated domains and the three B-blocks with adjustable lengths form the matrix. As a result, the middle B-block forms a natural bridge connecting A- and C-domains. In contrast to ABC, the BABCB can form many binary spherical and cylindrical phases with tunable coordination numbers. In addition, the ABCB solution can form a lot of planet-satellite micellar superstructures with tunable number of satellites that varies from 3 to 20. The another system is AB-type multiblock copolymers. In contrast to the above system, there is no natural bridge. Accordingly, we introduce multiple arms into the architecture which tend to partition themselves into different domains to maximize their configurational entropy, thus forming effective bridges. Furthermore, each arm is devised as BAB triblock to enable adjustable length of bridges. With this copolymer, we predict a few non-classical ordered phases, including a square array cylinder. Our study opens the possibilities of fabricating desired nanostructures using designed block copolymers. National Natural Science Foundation of China (No. 21322407, 21574026).
NASA Astrophysics Data System (ADS)
Gajendiran, Mani; Balashanmugam, Pannerselvam; Kalaichelvan, P. T.; Balasubramanian, Sengottuvelan
2016-06-01
The effect of π-back-bonding between AuNPs and the carbonyl group of multiblock copolyester on tuberculosis multi-drug delivery has been investigated. The carbonyl group of copolyester has vacant p orbitals and these vacant orbitals accept electron clouds from the filled d orbitals of Au0 to form π-back-bonding, which enhances the electron density for the carbonyl oxygen. This high electron density results in the strong binding of drug molecules with multiblock copolyesters and hence sustained drug release is achieved for a longer duration when compared to polymer systems without AuNPs. A new series of tartarate-linked poly(lactic-co-glycolic acid) (PLGA)—polyethylene glycol (PEG)-based multiblock copolymers has been synthesized using a solvent-free melt reaction. The biocompatibility of multiblock copolyesters and AuNP nanoconjugates was investigated with an in vitro cytotoxicity study on the Vero cell line. Three major tuberculosis drugs, namely, rifampicin-, isoniazid- and pyrazinamide-loaded AuNP multiblock copolymer NPs were prepared by probe sonication followed by the self-assembly method. An in vitro drug release experiment was carried out and the amount of the three drugs released at various time intervals was determined simultaneously by the HPLC technique. The nanoconjugates exhibit 33%-40% RIF, 71%-95% INH, 77%-99% PYZ loading efficiencies, while the polymer NPs exhibit relatively lesser values. The nanoconjugates show sustained drug release for up to 264 h.
Huang, Lihong; Zhuang, Xiuli; Hu, Jun; Lang, Le; Zhang, Peibiao; Wang, Yu; Chen, Xuesi; Wei, Yen; Jing, Xiabin
2008-03-01
To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly( l-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%. We systematically studied the compatibility of PLAAP copolymer in vitro and proved that the electroactive PLAAP copolymer was innocuous, biocompatible, and helpful for the adhesion and proliferation of rat C6 cells. Moreover, the PLAAP copolymer stimulated by electrical signals was demonstrated as accelerating the differentiation of rat neuronal pheochromocytoma PC-12 cells. This biodegradable and electroactive PLAAP copolymer thus possessed the properties in favor of the long-time application in vivo as nerve repair scaffold materials in tissue engineering.
Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Rissanou, Anastassia N.; Tzeli, Despoina S.; Anastasiadis, Spiros H.; Bitsanis, Ioannis A.
2014-05-01
Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (AnBn)m consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 500-5000 units) and very differing energetic conditions for the two blocks (very good—almost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks.
2017-01-01
We report the preparation and structural and mechanical characterization of a tough supramolecular hydrogel, based exclusively on hydrophobic association. The system consists of a multiblock, segmented copolymer of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dimer fatty acid (DFA) building blocks. A series of copolymers containing 2K, 4K, and 8K PEG were prepared. Upon swelling in water, a network is formed by self-assembly of hydrophobic DFA units in micellar domains, which act as stable physical cross-link points. The resulting hydrogels are noneroding and contain 75–92 wt % of water at swelling equilibrium. Small-angle neutron scattering (SANS) measurements showed that the aggregation number of micelles ranges from 2 × 102 to 6 × 102 DFA units, increasing with PEG molecular weight. Mechanical characterization indicated that the hydrogel containing PEG 2000 is mechanically very stable and tough, possessing a tensile toughness of 4.12 MJ/m3. The high toughness, processability, and ease of preparation make these hydrogels very attractive for applications where mechanical stability and load bearing features of soft materials are required. PMID:28469284
Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang
2015-02-01
It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.
Effect of chain structure on hydrogen bonding in vinyl acetate - vinyl alcohol copolymers
NASA Astrophysics Data System (ADS)
Merekalova, Nadezhda D.; Bondarenko, Galina N.; Denisova, Yuliya I.; Krentsel, Liya B.; Litmanovich, Arkadiy D.; Kudryavtsev, Yaroslav V.
2017-04-01
FTIR spectroscopy and semi-empirical AM1 method are used to study hydrogen bonding in multiblock and random equimolar copolymers of vinyl acetate and vinyl alcohol. An energetically beneficial zip-holder complex, built on multiple inter- and intrachain hydroxyl-hydroxyl bonds and an intrachain hydroxyl-acetyloxy bond, can be formed between two vinyl alcohol sequences. As a result, multiblock copolymers reveal stronger degree of association that affects crystallinity, as well as various rheological and relaxation properties discussed in the literature. Macromolecular complexes in random copolymers are weak and tend to be destroyed in the presence of residual DMF solvent and adsorbed water. Nevertheless, a rather stable interchain quaternary complex can be formed that includes vinyl alcohol and vinyl acetate units and DMF and water molecules. For a single chain it is shown that an H-bond between neighboring vinyl alcohol and vinyl acetate monomer units mostly engages a carbonyl oxygen atom of the vinyl acetate, if the vinyl alcohol belongs to a short (<5 units) sequence, and an ether oxygen atom in the other case. On the whole, the quantum chemistry calculations shed much light on the origin of distinctions in the copolymer FTIR spectra, which may seem subtle when considered standalone.
Hofman, Anton H; Reza, Mehedi; Ruokolainen, Janne; Ten Brinke, Gerrit; Loos, Katja
2017-09-01
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery.
Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao
2014-01-01
Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.
Czarnecki, Sebastian; Bertin, Annabelle
2018-03-07
Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of multiblock copolymers by chromatographic techniques.
N'Goma, Patrick Yoba; Radke, Wolfgang; Malz, Frank; Ziegler, Hans Jörg; Zierke, Michael; Behl, Marc; Lendlein, Andreas
2011-02-01
Multiblock copolymers (MBC) composed of blocks of poly(1,4-dioxanone) (PPDO) and poly(e-caprolactone) (PCL) were investigated in order to gain information on the extend of chemical heterogeneity of the samples. A gradient chromatographic method was established allowing separation of purely PPDO- from purely PCL-containing chains. Application of the gradient to MBC made of PPDO- and PCL-diols connected by trimethylhexamethylene diisocyanate (TMDI) resulted in two well separated peaks which were analyzed by means of FTIR, 1H-NMR and pyrolysis GC-MS. It was shown that the first peak was composed to a large extent of PPDO and only lower amounts of PCL were incorporated. Conversely, the second peak consisted predominantly of PCL with only a minor fraction of PPDO. Thus, the MBCs having PPDO and PCL segments show an unexpected broad chemical heterogeneity.
Li, Zibiao; Zhang, Zhongxing; Liu, Kerh Li; Ni, Xiping; Li, Jun
2012-12-10
This paper reports the synthesis and characterization of new hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), and polycaprolactone (PCL) segments as in situ thermogels. The hyperbranched poly(PPG/PEG/PCL urethane)s, termed as HBPEC copolymers, were synthesized from PPG-diol, PEG-diol, and PCL-triol by using 1,6-hexamethylene diisocyanate (HMDI) as a coupling agent. The compositions and structures of HBPEC copolymers were determined by GPC and 1H NMR spectroscopy. We carried out comparative studies of the new hyperbranched copolymers with their linear counterparts, the linear poly(PPG/PEG/PCL urethane) (LPEC) copolymer and Pluronic F127 PEG-PPG-PEG block copolymer, in terms of their self-assembly and aggregation behaviors and thermoresponsive properties. HBPEC copolymers were found to show thermoresponsive micelle formation and aggregation behaviors. Particularly, the lower critical solution temperature (LCST) of the copolymers was significantly affected by the copolymer architecture. HBPEC copolymers showed much lower LCST than LPEC, the linear counterpart. Our studies revealed that the effect of hyperbranch architecture was more prominent in the gelation of the copolymers. The aqueous solutions of HBPEC copolymers exhibited thermogelling behaviors at critical gelation concentrations (CGCs) ranging from 4.3 to 7.4 wt %. These values are much lower than those reported on other PCL-contained linear thermogelling copolymers and Pluronic F127 copolymer. In addition, the CGC of HBPEC copolymers is much lower than the control LPEC copolymer. More interestingly, at high temperatures, while LPEC and other linear thermogelling copolymers formed turbid sol, HBPEC formed a dehydrated gel. Our data suggest that these phenomena are caused by the hyperbranched structure of HBPEC copolymers, which could increase the interaction of copolymer branches and enhance the chain association through synergetic hydrogen bonding effect. The thermogelling behavior of HBPEC block copolymers was further evidenced by the 1H NMR molecular dynamic study and rheological study, which further support the above hypothesis. The hydrolytic degradation study showed that the HBPEC copolymer hydrogels are biodegradable under physiological conditions. Together with the good cell biocompatibility demonstrated by the cytotoxicity study, the new thermogelling copolymers reported in this paper could potentially be used as in situ-forming hydrogels for biomedical applications.
Pan, Huaizhong; Sima, Monika; Miller, Scott C.; Kopečková, Pavla; Yang, Jiyuan; Kopeček, Jindřich
2013-01-01
Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by post-polymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone-targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate. PMID:23731780
Phase diagrams of block copolymer melts by dissipative particle dynamics simulations
NASA Astrophysics Data System (ADS)
Gavrilov, Alexey A.; Kudryavtsev, Yaroslav V.; Chertovich, Alexander V.
2013-12-01
Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D/N1/2 ˜ (χN)1/6, whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.
A Review of Shock Mitigation Techniques (Briefing Charts)
2015-04-01
Public Release; Distribution Unlimited (PA# 96TW- 2014-0154). 6 Viscoelastic • Polyurea – energy dissipation from hard and soft...Response of Coarse-Grained Models of Multiblock versus Diblock Copolymers: Insights into Dissipative Properties of Polyurea ”, Macromolecules, 2012, 45 (7
NASA Astrophysics Data System (ADS)
Cho, Junhan
2014-03-01
Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.
Assumma, Luca; Nguyen, Huu-Dat; Iojoiu, Cristina; Lyonnard, Sandrine; Mercier, Régis; Espuche, Eliane
2015-07-01
Perfluorosulfonated poly(arylene ether sulfone) multiblock copolymers have been shown to be promising as proton exchange membranes. The commonly used approach for preparation of the membrane is solvent casting; the properties of the resulting membranes are very dependent on the membrane processing conditions. In this paper, we study the effects of block length, selectivity of the solvent, and thermal treatment on the membrane properties such as morphology, water uptake, and ionic conductivity. DiMethylSulfOxide (DMSO), and DiMethylAcetamide (DMAc) were selected as casting solvents based on the Flory-Huggins parameter calculated by inversion gas chromatography (IGC). It was found that the solvent selectivity has a mild impact on the mean size of the ionic domains and the expansion upon swelling, while it dramatically affects the supramolecular ordering of the blocks. The membranes cast from DMSO exhibit more interconnected ionic clusters yielding higher conductivities and water uptake as compared to membranes cast from DMAc. A 10-fold increase in proton conductivity was achieved after thermal annealing of membranes at 150 °C, and the ionomers with longer block lengths show conductivities similar to Nafion at 80 °C and low relative humidity (30%).
Small domain-size multiblock copolymer electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistorino, Jonathan; Eitouni, Hany Basam
2016-09-20
New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.
Microphase Separation Controlled Beta Sheet Crystallization Kinetics in Silk Fibroin Protein.
NASA Astrophysics Data System (ADS)
Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy
2009-03-01
We investigate the mechanism of isothermal crystallization kinetics of beta-sheet crystals in silk multiblock fibrous proteins. The Avrami analysis kinetic theory, for studies of synthetic polymer crystal growth, is for the first time extended to investigate protein self-assembly in beta-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy, differential scanning calorimetry and synchrotron real-time wide-angle X-ray scattering. Results indicate formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic homopolymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to synthetic block copolymers. This model could be widely applicable in other proteins with multiblock (i.e., crystallizable and non-crystallizable) domains.
Inverse design of bulk morphologies in block copolymers using particle swarm optimization
NASA Astrophysics Data System (ADS)
Khadilkar, Mihir; Delaney, Kris; Fredrickson, Glenn
Multiblock polymers are a versatile platform for creating a large range of nanostructured materials with novel morphologies and properties. However, achieving desired structures or property combinations is difficult due to a vast design space comprised of parameters including monomer species, block sequence, block molecular weights and dispersity, copolymer architecture, and binary interaction parameters. Navigating through such vast design spaces to achieve an optimal formulation for a target structure or property set requires an efficient global optimization tool wrapped around a forward simulation technique such as self-consistent field theory (SCFT). We report on such an inverse design strategy utilizing particle swarm optimization (PSO) as the global optimizer and SCFT as the forward prediction engine. To avoid metastable states in forward prediction, we utilize pseudo-spectral variable cell SCFT initiated from a library of defect free seeds of known block copolymer morphologies. We demonstrate that our approach allows for robust identification of block copolymers and copolymer alloys that self-assemble into a targeted structure, optimizing parameters such as block fractions, blend fractions, and Flory chi parameters.
Development of mass production technology for block copolymer lithographic materials
NASA Astrophysics Data System (ADS)
Himi, Toshiyuki; Matsuki, Ryota; Kosaka, Terumasa; Ogaki, Ryosuke; Kawaguchi, Yukio; Shimizu, Tetsuo
2017-03-01
We have successfully synthesized various and over wide range molecular weight block copolymers (BCPs): these are polystyrene(PS)-polymethylmethacrylate(PMMA) as general components and poly(4-trimethylsilylstyrene)(PTMSS)- poly(4-hydroxystyrene)(PHS) system as very strong segregated components (high chi) and multiblock type of those copolymers which form the microphase-separated structure pattern using living anionic polymerizing method by which the size of polymer can be precisely controlled. In addition, we were able to observe alternating lamellar and cylinder structures which were formed by our various BCPs using small angle X-ray scattering (SAXS). Moreover, we have successfully developed new apparatus for high volume manufacturing including our original technologies such as purification of monomer, improvement of wetted surface, and mechanical technology for high vacuum. And we have successfully synthesized all the BCPs with narrow molecular weight distribution (PDI <1.1) with large-scale apparatus.
Chintapalli, Mahati; Timachova, Ksenia; Olson, Kevin R; Banaszak, Michał; Thelen, Jacob L; Mecham, Sue J; DeSimone, Joseph M; Balsara, Nitash P
2017-06-07
Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, R g . Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm -1 ) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu
Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less
Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; ...
2016-11-01
Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
Silk-based delivery systems of bioactive molecules
Numata, Keiji; Kaplan, David L
2010-01-01
Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729
Silk-based delivery systems of bioactive molecules.
Numata, Keiji; Kaplan, David L
2010-12-30
Silks are biodegradable, biocompatible, self-assembling proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes is reviewed. Copyright © 2010 Elsevier B.V. All rights reserved.
Mineart, Kenneth P.; Dickerson, Joshua D.; Love, Dillon M.; ...
2017-01-24
Since nanostructured amphiphilic macromolecules capable of affording high ion and water transport are becoming increasingly important in a wide range of contemporary energy and environmental technologies, the swelling kinetics and temperature dependence of water uptake are investigated in a series of midblock-sulfonated thermoplastic elastomers. Upon self-assembly, these materials maintain a stable hydrogel network in the presence of a polar liquid. In this study, real-time water-sorption kinetics in copolymer films prepared by different casting solvents are elucidated by synchrotron small-angle X-ray scattering and gravimetric measurements, which directly correlate nanostructural changes with macroscopic swelling to establish fundamental structure-property behavior. By monitoring themore » equilibrium swelling capacity of these materials over a range of temperatures, an unexpected transition in the vicinity of 50 degrees C has been discovered. Furthermore, depending on copolymer morphology and degree of sulfonation, hydrothermal conditioning of specimens to temperatures above this transition permits retention of superabsorbent swelling at ambient temperature.« less
Leroy, Adrien; Nottelet, Benjamin; Bony, Claire; Pinese, Coline; Charlot, Benoît; Garric, Xavier; Noël, Danièle; Coudane, Jean
2015-04-01
The treatment of anterior cruciate ligament (ACL) failures remains a current clinical challenge. The present study aims at providing suitable degradable scaffolds for ligament tissue engineering. First, we focus on the design and the evaluation of poly(lactide)/poloxamer or poly(lactide)/poloxamine multiblock copolymers selected and developed to have suitable degradation and mechanical properties to match ACL repair. In the second part, it is shown that the copolymers can be processed in the form of microfibers and scaffolds consisting of a combination of twisted/braided fibers to further modulate the mechanical properties and prepare scaffold prototypes suitable for ligament application. Finally, after assessment of their cytocompatibility, the polymer scaffolds are associated with mesenchymal stem cells (MSCs). MSC differentiation toward a ligament fibroblast phenotype is promoted by a dual stimulation including an inductive culture medium and cyclic mechanical loads. RT-qPCR analyses confirm the potential of our scaffolds and MSCs for ACL regeneration with upregulation of some differentiation markers including Scleraxis, Tenascin-C and Tenomodulin.
Mathew, Simi; Baudis, Stefan; Neffe, Axel T; Behl, Marc; Wischke, Christian; Lendlein, Andreas
2015-09-01
In this study, the effect of three aliphatic diisocyanate linkers, L-lysine diisocyanate ethyl ester (LDI), hexamethylene diisocyanate (HDI), and racemic 2,2,4-/2,4,4-trimethyl hexamethylene diisocyanate (TMDI), on the degradation of oligo[(rac-lactide)-co-glycolide] (64:36 mol%) based polyester urethanes (PEU) was examined. Samples were characterized for their molecular weight, mass loss, water uptake, sequence structure, and thermal and mechanical properties. Compared to non-segmented PLGA, the PEU showed higher water uptake and generally degraded faster. Interestingly, the rate of degradation was not directly correlating with the hydrophilicity of the diisocyanate moieties; instead, competing intra-/intermolecular hydrogen bonds in between urethane moieties appear to substantially decrease the rate of degradation for LDI-derived PEU. By comparing microparticles (μm) and films (mm) as matrices of different dimensions, it was shown that autocatalysis remains a contributor to degradation of the larger-sized PEU matrices as it is typical for non-segmented lactide/glycolide copolymers. The shown capacity of lactide/glycolide-based multiblock copolymers to degrade faster than PLGA and exhibit improved elastic properties could be of interest for medical implants and drug release systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-01
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
(Electro)Mechanical Properties of Olefinic Block Copolymers
NASA Astrophysics Data System (ADS)
Spontak, Richard
2014-03-01
Conventional styrenic triblock copolymers (SBCs) swollen with a midblock-selective oil have been previously shown to exhibit excellent electromechanical properties as dielectric elastomers. In this class of electroactive polymers, compliant electrodes applied as active areas to opposing surfaces of an elastomer attract each other, and thus compress the elastomer due to the onset of a Maxwell stress, upon application of an external electric field. This isochoric process is accompanied by an increase in lateral area, which yields the electroactuation strain (measuring beyond 300% in SBC systems). Performance parameters such as the Maxwell stress, transverse strain, dielectric breakdown, energy density and electromechanical efficiency are determined directly from the applied electric field and resulting electroactuation strain. In this study, the same principle used to evaluate SBC systems is extended to olefinic block copolymers (OBCs), which can be described as randomly-coupled multiblock copolymers that consist of crystallizable polyethylene hard segments and rubbery poly(ethylene-co-octene) soft segments. Considerations governing the development of a methodology to fabricate electroresponsive OBC systems are first discussed for several OBCs differing in composition and bulk properties. Evidence of electroactuation in selectively-solvated OBC systems is presented and performance metrics measured therefrom are quantitatively compared with dielectric elastomers derived from SBC and related materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee
2015-05-13
Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less
Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee; ...
2015-04-02
Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Lastly, multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less
Poly(phenylene)-based anion exchange membrane
Hibbs, Michael [Albuquerque, NM; Cornelius, Christopher J [Albuquerque, NM; Fujimoto, Cy H [Albuquerque, NM
2011-02-15
A poly(phenylene) compound of copolymers that can be prepared with either random or multiblock structures where a first polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 2 pendant phenyl groups and 4 pendant tolyl groups and the second polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 6 pendant phenyl groups. The second polymer has chemical groups attached to some of the pendant phenyl groups selected from CH.sub.3, CH.sub.2Br, and CH.sub.2N(CH.sub.3).sub.3Br groups. When at least one group is CH.sub.2N(CH.sub.3).sub.3Br, the material functions as an anion exchange membrane.
Wang, Xiaowen; Hu, Huawen; Wang, Wenyi; Lee, Ka I; Gao, Chang; He, Liang; Wang, Yuanfeng; Lai, Chuilin; Fei, Bin; Xin, John H
2016-07-01
Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers. Copyright © 2016 Elsevier B.V. All rights reserved.
Association of a multifunctional ionic block copolymer in a selective solvent
Etampawala, Thusitha N.; Aryal, Dipak; Osti, Naresh C.; ...
2016-11-14
The self-assembly of multiblock copolymers in solutions is controlled by a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interaction of the individual blocks with the solvent. The current study elucidates the association of pentablock copolymers in a mixture of selective solvents which are good for the hydrophobic segments and poor for the hydrophilic blocks using small angle neutron scattering (SANS). The pentablock consists of a center block of randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability. We find that the pentablock forms ellipsoidal core-shellmore » micelles with the sulfonated polystyrene in the core and Gaussian decaying chains of swollen poly-ethylene-r-propylene and poly-t-butyl styrene tertiary in the corona. With increasing solution concentration, the size of the micelle, the thickness of the corona, and the aggregation number increase, while the solvent fraction in the core decreases. As a result, in dilute solution the micelle increases in size as the temperature is increased, however, temperature effects dissipate with increasing solution concentration.« less
Compressed multi-block local binary pattern for object tracking
NASA Astrophysics Data System (ADS)
Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao
2018-04-01
Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.
NASA Astrophysics Data System (ADS)
Guo, Tongqing; Chen, Hao; Lu, Zhiliang
2018-05-01
Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
An installed nacelle design code using a multiblock Euler solver. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
An efficient multiblock Euler design code was developed for designing a nacelle installed on geometrically complex airplane configurations. This approach employed a design driver based on a direct iterative surface curvature method developed at LaRC. A general multiblock Euler flow solver was used for computing flow around complex geometries. The flow solver used a finite-volume formulation with explicit time-stepping to solve the Euler Equations. It used a multiblock version of the multigrid method to accelerate the convergence of the calculations. The design driver successively updated the surface geometry to reduce the difference between the computed and target pressure distributions. In the flow solver, the change in surface geometry was simulated by applying surface transpiration boundary conditions to avoid repeated grid generation during design iterations. Smoothness of the designed surface was ensured by alternate application of streamwise and circumferential smoothings. The capability and efficiency of the code was demonstrated through the design of both an isolated nacelle and an installed nacelle at various flow conditions. Information on the execution of the computer program is provided in volume 2.
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.
2000-01-01
A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.
Multiblock thermoplastic polyurethanes for biomedical and shape memory applications
NASA Astrophysics Data System (ADS)
Gu, Xinzhu
Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications. In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase morphology during the shape memory cycle. Then, in Chapter 5, the role of Polyhedral oligosilsesquioxane (POSS) in suppressing enzymatic degradation of PCL-PEG TPUs is investigated. In vitro enzymatic hydrolytic biodegradation revealed that POSS incorporation significantly suppressed degradation of PCL-PEG TPUs. All TPUs were surface-eroded by enzymatic attack in which the chemical composition and the bulk mechanical properties exhibited little changes. A surface passivation mechanism is proposed to explain the protection of POSS-containing TPUs from enzymatic degradation. Finally, Chapter 6 presents another POSS-based TPUs system with PLA-based polyol as the glassy soft block. Manipulation of the final thermal and mechanical properties is discussed in terms of different polyols and POSS used. The free recovery and the constrained recovery responses of the polymer films were demonstrated as a function of the prior "fixing" deformation temperature. In addition, this family of materials was capable of memorizing their T g., where optimal recovery breadth and recovery stress were achieved when pre-deformation occurred right at Tg.
Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M
2011-10-01
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).
Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan
2017-06-05
Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.
A multi-block adaptive solving technique based on lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao
2018-05-01
In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.
Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.
Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony; Farmer, James; Martinelli, Luigi; Saunders, David
1996-01-01
This work describes the implementation of optimization techniques based on control theory for complex aircraft configurations. Here control theory is employed to derive the adjoint differential equations, the solution of which allows for a drastic reduction in computational costs over previous design methods (13, 12, 43, 38). In our earlier studies (19, 20, 22, 23, 39, 25, 40, 41, 42) it was shown that this method could be used to devise effective optimization procedures for airfoils, wings and wing-bodies subject to either analytic or arbitrary meshes. Design formulations for both potential flows and flows governed by the Euler equations have been demonstrated, showing that such methods can be devised for various governing equations (39, 25). In our most recent works (40, 42) the method was extended to treat wing-body configurations with a large number of mesh points, verifying that significant computational savings can be gained for practical design problems. In this paper the method is extended for the Euler equations to treat complete aircraft configurations via a new multiblock implementation. New elements include a multiblock-multigrid flow solver, a multiblock-multigrid adjoint solver, and a multiblock mesh perturbation scheme. Two design examples are presented in which the new method is used for the wing redesign of a transonic business jet.
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
Structural Interplay - Tuning Mechanics in Peptide-Polyurea Hybrids
NASA Astrophysics Data System (ADS)
Korley, Lashanda
Utilizing cues from natural materials, we have been inspired to explore the hierarchical arrangement critical to energy absorption and mechanical enhancement in synthetic systems. Of particular interest is the soft domain ordering proposed as a contributing element to the observed toughness in spider silk. Multiblock copolymers, are ideal and dynamic systems in which to explore this approach via variations in secondary structure of nature's building blocks - peptides. We have designed a new class of polyurea hybrids that incorporate peptidic copolymers as the soft segment. The impact of hierarchical ordering on the thermal, mechanical, and morphological behavior of these bio-inspired polyurethanes with a siloxane-based, peptide soft segment was investigated. These peptide-polyurethane/urea hybrids were microphase segregated, and the beta-sheet secondary structure of the soft segment was preserved during polymerization and film casting. Toughness enhancement at low strains was achieved, but the overall extensibility of the peptide-incorporated systems was reduced due to the unique hard domain organization. To decouple the secondary structure influence in the siloxane-peptide soft segment from mechanics dominated by the hard domain, we also developed non-chain extended peptide-polyurea hybrids in which the secondary structure (beta sheet vs. alpha helix) was tuned via choice of peptide and peptide length. It was shown that this structural approach allowed tailoring of extensibility, toughness, and modulus. The sheet-dominant hybrid materials were typically tougher and more elastic due to intermolecular H-bonding facilitating load distribution, while the helical-prevalent systems generally exhibited higher stiffness. Recently, we have explored the impact of a molecular design strategy that overlays a covalent and physically crosslinked architecture in these peptide-polyurea hybrids, demonstrating that physical constraints in the network hybrids influences peptide hydrogen bonding and morphology. These structural features correlated well with systematic changes in modulus, extensibility, and hysteresis. Complementary to this effort is the design of PEG-based peptide-polyurea hybrids with tunable and responsive as structural and injectable hydrogels. The authors acknowledge funding support from the National Science Foundation (CAREER DMR-0953236).
Iterative weighting of multiblock data in the orthogonal partial least squares framework.
Boccard, Julien; Rutledge, Douglas N
2014-02-27
The integration of multiple data sources has emerged as a pivotal aspect to assess complex systems comprehensively. This new paradigm requires the ability to separate common and redundant from specific and complementary information during the joint analysis of several data blocks. However, inherent problems encountered when analysing single tables are amplified with the generation of multiblock datasets. Finding the relationships between data layers of increasing complexity constitutes therefore a challenging task. In the present work, an algorithm is proposed for the supervised analysis of multiblock data structures. It associates the advantages of interpretability from the orthogonal partial least squares (OPLS) framework and the ability of common component and specific weights analysis (CCSWA) to weight each data table individually in order to grasp its specificities and handle efficiently the different sources of Y-orthogonal variation. Three applications are proposed for illustration purposes. A first example refers to a quantitative structure-activity relationship study aiming to predict the binding affinity of flavonoids toward the P-glycoprotein based on physicochemical properties. A second application concerns the integration of several groups of sensory attributes for overall quality assessment of a series of red wines. A third case study highlights the ability of the method to combine very large heterogeneous data blocks from Omics experiments in systems biology. Results were compared to the reference multiblock partial least squares (MBPLS) method to assess the performance of the proposed algorithm in terms of predictive ability and model interpretability. In all cases, ComDim-OPLS was demonstrated as a relevant data mining strategy for the simultaneous analysis of multiblock structures by accounting for specific variation sources in each dataset and providing a balance between predictive and descriptive purpose. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
NASA Astrophysics Data System (ADS)
Zhang, Han
The bioorthogonal trans-cyclooctene-tetrazine ligation has emerged into a powerful tool in the field of biomedical research. The development and the versatile applications of tetrazine ligation was made possible by the advancement of trans-cyclooctene synthesis. Based on the previous art of photoisomerization methods in Fox group, I carried out the first practical photosynthesis of trans-cycloheptene derivatives that were stabilized as silver(I) complexes form, as well as the photoisomerization of silicon-containing hetero- trans-cycloheptene derivatives. The reactivity of both the trans-cycloheptene silver(I) complexes and the hetero-trans-cycloheptene derivatives were investigated. Based on the rapid trans-cyclooctene-tetrazine ligation, first example of interfacial crosslinking will be described in Chapter 2. Bioocompatible hyaluronic acid-based hydrogel microspheres and channels were generated in a diffusion controlled fashion. These hydrogels can be covalently tagged with 3D resolution without the help of any external stimulus or triggers. An in vitro tumor model was achieved by 3D encapsulation and culture of LNCaP prostate cancer cells. Also included in Chapter 2 will be a novel interfacial polymerization strategy developed for the synthesis of hybrid multiblock copolymer. Meter-long copolymer fibers were pulled out of interface of two immiscible solutions. The unique modular approach enables the facile incorporation of functional peptides into the copolymer to fine-tune its biological properties. A fibronectin-derived peptide was successfully introduced onto the fibers during the polymerization and dramatically promoted the attachment and alignment of fibroblasts and myoepithelial-like cells. In Chapter 3, a novel method to activate rapid bioorthogonal reactivity catalytically will be described. This was achieved by catalytic conversion of an unreactive, latent dihydrotetrazine to reaction-ready tetrazine functionality. Series of long wavelength photosensitizers were found to catalyze the oxidation of DHTz to Tz effieciently in the presence of light and air. Horseradish peroxidase (HRP) was found to catalyze the oxidation at nanomolar concentrations in absence of peroxide. These methods can provide a milder and more physiology-friendly way to "turn-on" rapid tetrazine ligation reactivity with great promise in extending to a wide range of applications in materials, cellular, and in vivo systems. Moreover, based on the previous bioorthogonal interfacial polymerization developed from our group, DHTz functionality can be successfully incorporated onto the copolymer fibers, which can be activated postsynthetically by either light or an HRP enzyme. Conjugations with small molecule fluorophores, cell-instructive peptide sequences and fluorescent proteins were accomplished, providing a new tool for modulating the cell adhesive properties of a biomaterial. TCO-tetrazine ligation has emerged as a multifaceted strategy in polymer and biomaterials discovery, bringing promising results and exhilarating progress. The versatile materials we developed here will prove useful and become indispensable elements in the tissue engineering toolbox.
A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.
Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-03-01
Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydroperoxide Traces in Common Cyclic Ethers as Initiators for Controlled RAFT Polymerizations.
Eggers, Steffen; Abetz, Volker
2018-04-01
Herein, a reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced for reactive monomers like N-acryloylpyrrolidine or N,N-dimethylacrylamide working without a conventional radical initiator. As a very straightforward proof of principle, the method takes advantage of the usually inconvenient radical-generating hydroperoxide contaminations in cyclic ethers like tetrahydrofuran or 1,4-dioxane, which are very common solvents in polymer sciences. The polymerizations are surprisingly well controlled and the polymers can be extended with a second block, indicating their high livingness. "Solvent-initiated" RAFT polymerizations hence prove to be a feasible access to tailored materials with minimal experimental effort and standard laboratory equipment, only requiring the following ingredients: hydroperoxide-contaminated solvent, monomer, and RAFT agent. In other respects, however, the potential coinitiating ability of the used solvent is to be considered when investigating the kinetics of RAFT polymerizations or aiming for the synthesis of high-livingness polymers, e.g., multiblock copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Algorithms for the automatic generation of 2-D structured multi-block grids
NASA Technical Reports Server (NTRS)
Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.
1995-01-01
Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Ash, Robert L.
1992-01-01
A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.
A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.
Hertrampf, A; Sousa, R M; Menezes, J C; Herdling, T
2016-05-30
Quality control (QC) in the pharmaceutical industry is a key activity in ensuring medicines have the required quality, safety and efficacy for their intended use. QC departments at pharmaceutical companies are responsible for all release testing of final products but also all incoming raw materials. Near-infrared spectroscopy (NIRS) and Raman spectroscopy are important techniques for fast and accurate identification and qualification of pharmaceutical samples. Tablets containing two different active pharmaceutical ingredients (API) [bisoprolol, hydrochlorothiazide] in different commercially available dosages were analysed using Raman- and NIR Spectroscopy. The goal was to define multivariate models based on each vibrational spectroscopy to discriminate between different dosages (identity) and predict their dosage (semi-quantitative). Furthermore the combination of spectroscopic techniques was investigated. Therefore, two different multiblock techniques based on PLS have been applied: multiblock PLS (MB-PLS) and sequential-orthogonalised PLS (SO-PLS). NIRS showed better results compared to Raman spectroscopy for both identification and quantitation. The multiblock techniques investigated showed that each spectroscopy contains information not present or captured with the other spectroscopic technique, thus demonstrating that there is a potential benefit in their combined use for both identification and quantitation purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
An electrostatic Particle-In-Cell code on multi-block structured meshes
NASA Astrophysics Data System (ADS)
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; Vernon, Louis J.; Moulton, J. David
2017-12-01
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. Despite the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where an arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma-material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. Compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.
An electrostatic Particle-In-Cell code on multi-block structured meshes
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; ...
2017-09-14
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less
An electrostatic Particle-In-Cell code on multi-block structured meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less
Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao
2017-07-25
Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.
Regularized Generalized Canonical Correlation Analysis
ERIC Educational Resources Information Center
Tenenhaus, Arthur; Tenenhaus, Michel
2011-01-01
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
Internal Passage Heat Transfer Prediction Using Multiblock Grids and a Kappa-Omega Turbulence Model
NASA Technical Reports Server (NTRS)
Rigby, David L.; Ameri, Ali A.; Steinthorsson, Erlendur
1996-01-01
Numerical simulations of the three-dimensional flow and heat transfer in a rectangular duct with a 180 C bend were performed. Results are presented for Reynolds numbers of 17,000 and 37,000 and for aspect ratios of 0.5 and I.O. A kappa-omega turbulence model with no reference to distance to a wall is used. Direct comparison between single block and multiblock grid calculations are made. Heat transfer and velocity distributions are compared to available literature with good agreement. The multi-block grid system is seen to produce more accurate results compared to a single-block grid with the same number of cells.
Plane Smoothers for Multiblock Grids: Computational Aspects
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane
1999-01-01
Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.
TopMaker: Technique Developed for Automatic Multiblock Topology Generation Using the Medial Axis
NASA Technical Reports Server (NTRS)
Rigby, David L.
2004-01-01
The TopMaker technique was developed in an effort to reduce the time required for grid generation in complex numerical studies. Topology generation accounts for much of the man-hours required for structured multiblock grids. With regard to structured multiblock grids, topology refers to how the blocks are arranged and connected. A two-dimensional multiblock topology generation technique has been developed at the NASA Glenn Research Center. Very general configurations can be addressed by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, a multiblock topology can be generated without user intervention. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns, where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in computational fluid dynamics, where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid-generation process.
An installed nacelle design code using a multiblock Euler solver. Volume 2: User guide
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
This is a user manual for the general multiblock Euler design (GMBEDS) code. The code is for the design of a nacelle installed on a geometrically complex configuration such as a complete airplane with wing/body/nacelle/pylon. It consists of two major building blocks: a design module developed by LaRC using directive iterative surface curvature (DISC); and a general multiblock Euler (GMBE) flow solver. The flow field surrounding a complex configuration is divided into a number of topologically simple blocks to facilitate surface-fitted grid generation and improve flow solution efficiency. This user guide provides input data formats along with examples of input files and a Unix script for program execution in the UNICOS environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Geveci, Berk
The FY18Q1 milestone of the ECP/VTK-m project includes the implementation of a multiblock data set, the completion of a gradients filtering operation, and the release of version 1.1 of the VTK-m software. With the completion of this milestone, the new multiblock data set allows us to iteratively schedule algorithms on composite data structures such as assemblies or hierarchies like AMR. The new gradient algorithms approximate derivatives of fields in 3D structures with finite differences. Finally, the release of VTK-m version 1.1 tags a stable release of the software that can more easily be incorporated into external projects.
A general multiblock Euler code for propulsion integration. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.
FANS-3D Users Guide (ESTEP Project ER 201031)
2016-08-01
governing laminar and turbulent flows in body-fitted curvilinear grids. The code employs multi-block overset ( chimera ) grids, including fully matched...governing incompressible flow in body-fitted grids. The code allows for multi-block overset ( chimera ) grids, which can be fully matched, arbitrarily...interested reader may consult the Chimera Overset Structured Mesh-Interpolation Code (COSMIC) Users’ Manual (Chen, 2009). The input file used for
Shape-designed single-polymer micelles: a proof-of-concept simulation
NASA Astrophysics Data System (ADS)
Moths, Brian; Witten, Thomas A.
Much effort has been directed towards self-assembling nanostructures. Strong, local interactions between specific building blocks often determine these structures (e.g., globular proteins). We seek to produce designed structures that are instead determined by collective effects of weak interactions (e.g., surfactant self-assembly). Such structures may reversibly change conformation or disassemble in response to changing solvent conditions, and, being soft, have potential to adapt to fluctuating or unknown application-imposed shape requirements. Concretely, we aim to realize such a structure in the form of a single polymer micelle--an amphiphilic polymer exhibiting a condensed, phase-segregated conformation when immersed in solvent. Connecting all amphiphiles into a single chain provides geometric constraints controlling the surface curvature profile, thus dictating a non-trivial shape. We present 2D Monte Carlo simulation results demonstrating the feasibility of such soft, shape-designed micelles. Preliminary results demonstrate a stable concave ``dimple'' in a micelle composed of a single A-B multiblock linear copolymer. We discuss both current limitations on shape robustness and effects of block asymmetry, block molecular weights and overall chain length on micelle shape. This work was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR-1420709.
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
An interactive multi-block grid generation system
NASA Technical Reports Server (NTRS)
Kao, T. J.; Su, T. Y.; Appleby, Ruth
1992-01-01
A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.
MAG3D and its application to internal flowfield analysis
NASA Technical Reports Server (NTRS)
Lee, K. D.; Henderson, T. L.; Choo, Y. K.
1992-01-01
MAG3D (multiblock adaptive grid, 3D) is a 3D solution-adaptive grid generation code which redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. The code is applicable to structured grids with a multiblock topology. It is independent of the original grid generator and the flow solver. The code uses the coordinates of an initial grid and the flow solution interpolated onto the new grid. MAG3D uses a numerical mapping and potential theory to modify the grid distribution based on properties of the flow solution on the initial grid. The adaptation technique is discussed, and the capability of MAG3D is demonstrated with several internal flow examples. Advantages of using solution-adaptive grids are also shown by comparing flow solutions on adaptive grids with those on initial grids.
Euler solutions for an unbladed jet engine configuration
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1991-01-01
A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation.
Protein based Block Copolymers
Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.
2011-01-01
Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251
Boccard, Julien; Rudaz, Serge
2016-05-12
Many experimental factors may have an impact on chemical or biological systems. A thorough investigation of the potential effects and interactions between the factors is made possible by rationally planning the trials using systematic procedures, i.e. design of experiments. However, assessing factors' influences remains often a challenging task when dealing with hundreds to thousands of correlated variables, whereas only a limited number of samples is available. In that context, most of the existing strategies involve the ANOVA-based partitioning of sources of variation and the separate analysis of ANOVA submatrices using multivariate methods, to account for both the intrinsic characteristics of the data and the study design. However, these approaches lack the ability to summarise the data using a single model and remain somewhat limited for detecting and interpreting subtle perturbations hidden in complex Omics datasets. In the present work, a supervised multiblock algorithm based on the Orthogonal Partial Least Squares (OPLS) framework, is proposed for the joint analysis of ANOVA submatrices. This strategy has several advantages: (i) the evaluation of a unique multiblock model accounting for all sources of variation; (ii) the computation of a robust estimator (goodness of fit) for assessing the ANOVA decomposition reliability; (iii) the investigation of an effect-to-residuals ratio to quickly evaluate the relative importance of each effect and (iv) an easy interpretation of the model with appropriate outputs. Case studies from metabolomics and transcriptomics, highlighting the ability of the method to handle Omics data obtained from fixed-effects full factorial designs, are proposed for illustration purposes. Signal variations are easily related to main effects or interaction terms, while relevant biochemical information can be derived from the models. Copyright © 2016 Elsevier B.V. All rights reserved.
Grieshaber, Sarah E.; Farran, Alexandra J. E.; Lin-Gibson, Sheng; Kiick, Kristi L.; Jia, Xinqiao
2009-01-01
We are interested in developing elastin–mimetic hybrid polymers (EMHPs) that capture the multiblock molecular architecture of tropoelastin as well as the remarkable elasticity of mature elastin. In this study, multiblock EMHPs containing flexible synthetic segments based on poly(ethylene glycol) (PEG) alternating with alanine-rich, lysine-containing peptides were synthesized by step-growth polymerization using α,ω-azido-PEG and alkyne-terminated AKA3KA (K = lysine, A = alanine) peptide, employing orthogonal click chemistry. The resulting EMHPs contain an estimated three to five repeats of PEG and AKA3KA and have an average molecular weight of 34 kDa. While the peptide alone exhibited α-helical structures at high pH, the fractional helicity for EMHPs was reduced. Covalent cross-linking of EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residue in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 MPa when hydrated. The mechanical properties of xEMHP are comparable to a commercial polyurethane elastomer (Tecoflex SG80A) under the same conditions. In vitro toxicity studies showed that while the soluble EMHPs inhibited the growth of primary porcine vocal fold fibroblasts (PVFFs) at concentrations ≥0.2 mg/mL, the cross-linked hybrid elastomers did not leach out any toxic reagents and allowed PVFFs to grow and proliferate normally. The hybrid and modular approach provides a new strategy for developing elastomeric scaffolds for tissue engineering. PMID:19763157
Singularity classification as a design tool for multiblock grids
NASA Technical Reports Server (NTRS)
Jones, Alan K.
1992-01-01
A major stumbling block in interactive design of 3-D multiblock grids is the difficulty of visualizing the design as a whole. One way to make this visualization task easier is to focus, at least in early design stages, on an aspect of the grid which is inherently easy to present graphically, and to conceptualize mentally, namely the nature and location of singularities in the grid. The topological behavior of a multiblock grid design is determined by what happens at its edges and vertices. Only a few of these are in any way exceptional. The exceptional behaviors lie along a singularity graph, which is a 1-D construct embedded in 3-D space. The varieties of singular behavior are limited enough to make useful symbology on a graphics device possible. Furthermore, some forms of block design manipulation that appear appropriate to the early conceptual-modeling phase can be accomplished on this level of abstraction. An overview of a proposed singularity classification scheme and selected examples of corresponding manipulation techniques is presented.
A multiblock multigrid three-dimensional Euler equation solver
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.
1990-01-01
Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.
2009-01-01
Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonatedmore » poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.« less
ERIC Educational Resources Information Center
Williams, Lynne J.; Abdi, Herve; French, Rebecca; Orange, Joseph B.
2010-01-01
Purpose: In communication disorders research, clinical groups are frequently described based on patterns of performance, but researchers often study only a few participants described by many quantitative and qualitative variables. These data are difficult to handle with standard inferential tools (e.g., analysis of variance or factor analysis)…
The three-dimensional Multi-Block Advanced Grid Generation System (3DMAGGS)
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, Kenneth J.
1993-01-01
As the size and complexity of three dimensional volume grids increases, there is a growing need for fast and efficient 3D volumetric elliptic grid solvers. Present day solvers are limited by computational speed and do not have all the capabilities such as interior volume grid clustering control, viscous grid clustering at the wall of a configuration, truncation error limiters, and convergence optimization residing in one code. A new volume grid generator, 3DMAGGS (Three-Dimensional Multi-Block Advanced Grid Generation System), which is based on the 3DGRAPE code, has evolved to meet these needs. This is a manual for the usage of 3DMAGGS and contains five sections, including the motivations and usage, a GRIDGEN interface, a grid quality analysis tool, a sample case for verifying correct operation of the code, and a comparison to both 3DGRAPE and GRIDGEN3D. Since it was derived from 3DGRAPE, this technical memorandum should be used in conjunction with the 3DGRAPE manual (NASA TM-102224).
Muppalla, Ravikumar; Jewrajka, Suresh K; Prasad, Kamalesh
2013-06-01
Polysaccharide-based copolymers are promising biomaterials due to their biocompatibility and biodegradability. For potential biomedical applications the copolymer as a whole and all the degraded species must be biocompatible and easily removable from the system. In this regards, new model pH-responsive seaweed agarose (Agr) grafted with weak polyelectrolyte-based well-defined amphiphilic block copolymers ca. poly[(methyl methacrylate)-b-(2-dimethylamino)ethyl methacrylate)] (PMMA-b-PDMA) were designed and synthesized to study the self-assembly, degradation, and in vitro hydrophobic/hydrophilic drug release behavior. The graft copolymer solutions display extremely low critical micelle concentration (CMC) and form pH responsive stable micelles. The degradation study of the graft copolymer reveals that the entire degraded components are well soluble/dispersible in water due to formation of mixed micelles. The micelles are also strongly adsorbed on the mica surface owing to electrostatic interaction. One application of the graft copolymer micelles is that it can entrap both hydrophilic and poorly water soluble hydrophobic drugs effectively and exhibit slow release kinetics. The release kinetics of both the hydrophilic and poorly water soluble hydrophobic drugs change with pH as well as with the composition of the graft copolymer. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jasti, Amaranadh; Shahi, Vinod K.
2014-12-01
Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.
Tao, Lingyan; Lin, Zhonglin; Chen, Jiashan; Wu, Yongjiang; Liu, Xuesong
2017-10-25
Gardeniae Fructus is widely used in the pharmaceutical industry, and many studies have confirmed its medical and economic value. In this study, samples collected from different liquid-liquid extraction batches of Gardeniae Fructus were detected by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Seven analytes, neochlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), chlorogenic acid (3-CQA), geniposidic acid (GEA), deacetyl-asperulosidic acid methyl ester (DAAME), genipin-gentiobioside (GGB), and gardenoside (GA), were chosen as quality property indexes of Gardeniae Fructus. The two kinds of spectra were each used to build models by single partial least squares (PLS). Additionally, both spectral data were combined and modeled by multiblock PLS. For single spectroscopy modeling results, NIR had a better prediction for high-concentration analytes (3-CQA, DAAME, GGB, and GA) whereas MIR performed better for low-concentration analytes (5-CQA, 4-CQA, and GEA). The multiblock methodology was found to be better compared to single spectroscopy models for all seven analytes. Specifically, the coefficients of determination (R 2 ) of the NIR, MIR, and multiblock PLS calibration models of all seven components were higher than 0.95. Relative standard errors of prediction (RSEP) were all less than 7%, except for models of GGB, which were 10.36%, 13.24%, and 8.15% for the NIR-PLS, MIR-PLS, and multiblock models, respectively. These results indicate that MIR and NIR spectrographic techniques could provide a new choice for quality control in industrial production of Gardeniae Fructus. Copyright © 2017 Elsevier B.V. All rights reserved.
McGrath, James E [Blacksburg, VA; Park, Ho Bum [Austin, TX; Freeman, Benny D [Austin, TX
2011-10-04
The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.
NASA Astrophysics Data System (ADS)
Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain
2014-11-01
Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.
Multiblock grid generation with automatic zoning
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1995-01-01
An overview will be given for multiblock grid generation with automatic zoning. We shall explore the many advantages and benefits of this exciting technology and will also see how to apply it to a number of interesting cases. The technology is available in the form of a commercial code, GridPro(registered trademark)/az3000. This code takes surface geometry definitions and patterns of points as its primary input and produces high quality grids as its output. Before we embark upon our exploration, we shall first give a brief background of the environment in which this technology fits.
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.
1991-01-01
A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.
Li, Weikun; Kanyo, Istvan; Kuo, Chung-Hao; Thanneeru, Srinivas; He, Jie
2015-01-21
We report a general strategy to conceptualize a new design for the pH-programmable self-assembly of plasmonic gold nanoparticles (AuNPs) tethered by random copolymers of poly(styrene-co-acrylic acid) (P(St-co-AA)). It is based on using pH as an external stimulus to reversibly change the surface charge of polymer tethers and to control the delicate balance of interparticle attractive and repulsive interactions. By incorporating -COOH moieties locally within PSt hydrophobic segments, the change in the ionization degree of -COOH moieties can dramatically disrupt the hydrophobic attraction within a close distance. pH acts as a key parameter to control the deprotonation of -COOH moieties and "programs" the assembled nanostructures of plasmonic nanoparticles in a stepwise manner. At a higher solution pH where -COOH groups of polymer tethers became highly deprotonated, electrostatic repulsion dominated the self-assembly and favored the formation of end-to-end, anisotropic assemblies, e.g. 1-D single-line chains. At a lower pH, the less deprotonated -COOH groups led to the decrease of electrostatic repulsion and the side-to-side aggregates, e.g. clusters and multi-line chains of AuNPs, became favorable. The pH-programmable self-assembly allowed us to engineer a "manual" program for a sequential self-assembly by changing the pH of the solution. We demonstrated that the two-step pH-programmable assembly could generate more sophisticated "multi-block" chains using two differently sized AuNPs. Our strategy offers a general means for the programmable design of plasmonic nanoparticles into the specific pre-ordained nanostructures that are potentially useful for the precise control over their plasmon coupling.
Probing charge transfer complex states in organic solar cells using photocurrent spectroscopy
NASA Astrophysics Data System (ADS)
Moghe, Dhanashree; Adil, Danish; Kanimozhi, Catherine; Dutta, Gitesh; Patil, Satish; Guha, Suchismita
2013-03-01
Diketopyrrolopyrrole (DPP) containing copolymers-fullerene blends have gained a lot of interest in organic optoelectronics with a great potential in organic photovoltaics (OPVs). The interfacial charge transfer complex (CTC) states formed in donor-acceptor blended OPVs play a major role in the overall efficiency of the device. We investigate the spectral photocurrent characteristics of five DPP based copolymers; two of them being benzothiadiazole and carbazole -based statistical copolymers of DPP. These systems provide a wide range of bandgap energies ranging from ~ 1.4 to 1.7 eV. We use Fourier transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) to identify the CTC states in these DPP copolymer -fullerene blends. The stability of the CTC state is found to be dependent on the band gap energy difference between the donor copolymer and the acceptor. We support our inferences from theoretical results obtained using density-functional theory (DFT) and time-dependent DFT for two DPP based copolymers The theoretical calculations reveal a higher contribution of the CTC states to the lowest excited state in the phenyl-based DPP monomer, which has a larger bandgap energy compared to the thiophene-based DPP system, in the presence of a fullerene molecule.
Preparation of cashew gum-based flocculants by microwave- and ultrasound-assisted methods.
Klein, Jalma Maria; de Lima, Vanessa Silva; da Feira, José Manoel Couto; Camassola, Marli; Brandalise, Rosmary Nichele; Forte, Maria Madalena de Camargo
2018-02-01
In this work, copolymers based on cashew gum (CG) grafted with polyacrylamide (PAM) were synthesized by microwave- and ultrasound-assisted methods, using potassium persulfate as an initiator in aqueous medium. The graft copolymers were characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The efficiency of the graft copolymers (CG-g-PAM) in flocculation of a kaolin suspension was studied. Results indicated that the graft copolymers synthesized by ultrasound energy had better flocculation properties than the ones synthesized by the microwave-assisted method. The biodegradability of the graft copolymers was tested by inoculation with the basidiomycete Trametes villosa in liquid medium. The higher formation of biomass than that observed with the commercial flocculant Flonex-9045 indicated that the graft copolymer was accessible to enzymatic attack. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, CaiBing; Qian, ZhiYong; Jia, WenJuan; Huang, MeiJuan; Chao, GuoTao; Gong, ChangYang; Deng, HongXin; Wen, YanJun; Yang, JinLiang; Gou, MaLing; Tu, MingJing
2007-10-01
In this paper, a new kind of biodegradable aliphatic polyetheresteramide copolymers (PEEA) based on epsilon-caprolactone, 6-aminocaproic acid, and poly(ethylene glycol) (PEG) were synthesized by melt polymerization method. The obtained copolymers were characterized by 1H-NMR. The thermal properties of PEEA copolymers were studied by DSC and TGA/DTA under nitrogen atmosphere. The water absorption and hydrolytic degradation behavior was also studied in detail. With the increase in PEG content or the decrease in caprolactone content, the water absorption of the copolymers increased accordingly. For the hydrolytic degradation behavior, with the increase in PEG content or caprolactone content, the degradation rate increased then.
Soft hydrogel materials from elastomeric gluten-mimetic proteins
NASA Astrophysics Data System (ADS)
Bagheri, Mehran; Scott, Shane; Wan, Fan; Dick, Scott; Harden, James; Biomolecular Assemblies Team
2014-03-01
Elastomeric proteins are ubiquitous in both animal and plant tissues, where they are responsible for the elastic response and mechanical resilience of tissues. In addition to fundamental interest in the molecular origins of their elastic behaviour, this class of proteins has great potential for use in biomaterial applications. The structural and elastomeric properties of these proteins are thought to be controlled by a subtle balance between hydrophobic interactions and entropic effects, and in many cases their characteristic properties can be recapitulated by multi-block protein polymers formed from repeats of short, characteristic polypeptide motifs. We have developed biomimetic multi-block protein polymers based on variants of several elastomeric gluten consensus sequences. These proteins include constituents designed to maximize their solubility in aqueous solution and minimize the formation of extended secondary structure. Thus, they are examples of elastic intrinsically disordered proteins. In addition, the proteins have distributed tyrosine residues which allow for inter-molecular crosslinking to form hydrogel networks. In this talk, we present experimental and simulation studies of the molecular and materials properties of these proteins and their assemblies.
Fatigue Life Estimation under Cumulative Cyclic Loading Conditions
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; McGaw, Michael A; Halford, Gary R.
1999-01-01
The cumulative fatigue behavior of a cobalt-base superalloy, Haynes 188 was investigated at 760 C in air. Initially strain-controlled tests were conducted on solid cylindrical gauge section specimens of Haynes 188 under fully-reversed, tensile and compressive mean strain-controlled fatigue tests. Fatigue data from these tests were used to establish the baseline fatigue behavior of the alloy with 1) a total strain range type fatigue life relation and 2) the Smith-Wastson-Topper (SWT) parameter. Subsequently, two load-level multi-block fatigue tests were conducted on similar specimens of Haynes 188 at the same temperature. Fatigue lives of the multi-block tests were estimated with 1) the Linear Damage Rule (LDR) and 2) the nonlinear Damage Curve Approach (DCA) both with and without the consideration of mean stresses generated during the cumulative fatigue tests. Fatigue life predictions by the nonlinear DCA were much closer to the experimentally observed lives than those obtained by the LDR. In the presence of mean stresses, the SWT parameter estimated the fatigue lives more accurately under tensile conditions than under compressive conditions.
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.
1992-01-01
About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.
Fabrication routes for one-dimensional nanostructures via block copolymers
NASA Astrophysics Data System (ADS)
Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav
2017-05-01
Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.
McCorquodale, Peter; Ullrich, Paul; Johansen, Hans; ...
2015-09-04
We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.
TopMaker: A Technique for Automatic Multi-Block Topology Generation Using the Medial Axis
NASA Technical Reports Server (NTRS)
Heidmann, James D. (Technical Monitor); Rigby, David L.
2004-01-01
A two-dimensional multi-block topology generation technique has been developed. Very general configurations are addressable by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, the multiblock topology is generated with no user intervention required. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in the area of computational fluid dynamics where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid generation process.
Qi, Yudong; Li, Yan; Bunker, Shana P.; Costeux, Stephane; Morgan, Ted A.
2017-12-12
Polymer foam bodies are made from phosphorus-containing thermoplastic random copolymers of a dialkyl (meth)acryloyloxyalkyl phosph(on)ate. Foam bodies made from these copolymers exhibit increased limiting oxygen indices and surprisingly have good properties. In certain embodiments, the phosphorus-containing thermoplastic copolymer is blended with one or more other polymers and formed into nanofoams.
Dawlee, S; Jayakrishnan, A; Jayabalan, M
2009-12-01
A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.
Van Overstraeten-Schlögel, Nancy; Shim, Yong-Ho; Tevel, Virginie; Piel, Géraldine; Piette, Jacques; Dubois, Philippe; Raes, Martine
2012-02-01
Skin carcinomas are among the most commonly diagnosed tumors in the world. In this study, we investigated the transfection of immortalized keratinocytes, used as an in vitro model for skin carcinoma, using the antisense technology and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)-based copolymers. In order to improve the transfection efficiency of the classic PDMAEMA polymers, copolymers were synthesized including a poly(N-morpholino)ethylmethacrylate) (PMEMA) moiety for an improved proton-sponge effect, intended to favour the release of the oligonucleotide from the acidic endosome. These copolymers were synthesized either statistically (with alternating PDMAEMA and PMEMA fragments) or in blocks (one PDMAEMA block followed by one PMEMA block). MTT assays were performed using the PDMAEMA-PMEMA copolymers and revealed no significant cytotoxicity of these polymers at an N/P ratio of 7.3. Using fluorescent oligonucleotides and analyzing transfection efficiency by flow cytometry, we noticed no significant differences between the two kinds of copolymers. However copolymers with a higher DMAEMA content and a higher Mn were also those displaying the highest vectorization efficiency. Confocal microscopy showed that these copolymers induced a fine granular distribution of the transfected antisense oligonucleotides inside the cells. We also assessed the functionality of the transfected antisense oligonucleotide by transfecting immortalized GFP expressing keratinocytes with a GFP antisense oligonucleotide using these copolymers. A significant silencing was achieved with a PDMAEMA-PMEMA in block copolymer (Mn=41,000, 89 % PDMAEMA). Together, these results suggest that PDMAEMA-PMEMA copolymers combining low toxicity, vectorization and proton sponge properties, can be efficiently used to transfect immortalized keratinocytes and so open new perspectives in the therapy of skin carcinomas as well as of other skin diseases of genetic or immunological origin. © 2012 Informa Healthcare USA, Inc.
Louage, Benoit; Zhang, Qilu; Vanparijs, Nane; Voorhaar, Lenny; Vande Casteele, Sofie; Shi, Yang; Hennink, Wim E; Van Bocxlaer, Jan; Hoogenboom, Richard; De Geest, Bruno G
2015-01-12
Low solubility of potent (anticancer) drugs is a major driving force for the development of noncytotoxic, stimuli-responsive nanocarriers, including systems based on amphiphilic block copolymers. In this regard, we investigated the potential of block copolymers based on 2-hydroxyethyl acrylate (HEA) and the acid-sensitive ketal-containing monomer (2,2-dimethyl-1,3-dioxolane-4-yl)methyl acrylate (DMDMA) to form responsive drug nanocarriers. Block copolymers were successfully synthesized by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization, in which we combined a hydrophilic poly(HEA)x block with a (responsive) hydrophobic poly(HEAm-co-DMDMAn)y copolymer block. The DMDMA content of the hydrophobic block was systematically varied to investigate the influence of polymer design on physicochemical properties and in vitro biological performance. We found that a DMDMA content higher than 11 mol % is required for self-assembly behavior in aqueous medium. All particles showed colloidal stability in PBS at 37 °C for at least 4 days, with sizes ranging from 23 to 338 nm, proportional to the block copolymer DMDMA content. Under acidic conditions, the nanoparticles decomposed into soluble unimers, of which the decomposition rate was inversely proportional to the block copolymer DMDMA content. Flow cytometry and confocal microscopy showed dose-dependent, active in vitro cellular uptake of the particles loaded with hydrophobic octadecyl rhodamine B chloride (R18). The block copolymers showed no intrinsic in vitro cytotoxicity, while loaded with paclitaxel (PTX), a significant decrease in cell viability was observed comparable or better than the two commercial PTX nanoformulations Abraxane and Genexol-PM at equal PTX dose. This systematic approach evaluated and showed the potential of these block copolymers as nanocarriers for hydrophobic drugs.
NASA Astrophysics Data System (ADS)
Song, Liqing
Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL affected cardiovascular differentiation of embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.
Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung
2018-02-27
Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.
Huong, Kai-Hee; Azuraini, Mat Junoh; Aziz, Nursolehah Abdul; Amirul, Al-Ashraf Abdullah
2017-07-01
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] copolymer receives attention as next generation biomaterial in medical application. However, the exploitation of the copolymer is still constrained since such copolymer has not yet successfully been performed in industrial scale production. In this work, we intended to establish pilot production system of the copolymer retaining the copolymer quality which has recently discovered to have novel characteristic from lab scale fermentation. An increase of agitation speed has significantly improved the copolymer accumulation efficiency by minimizing the utilization of substrates towards cell growth components. This is evidenced by a drastic increase of PHA content from 28 wt% to 63 wt% and PHA concentration from 3.1 g/L to 6.5 g/L but accompanied by the reduction of residual biomass from 8.0 g/L to 3.8 g/L. Besides, fermentations at lower agitation and aeration have resulted in reduced molecular weight and mechanical strength of the copolymer, suggesting the role of sufficient oxygen supply efficiency in improving the properties of the resulting copolymers. The K L a-based scale-up fermentation was performed successfully in maintaining the yield and the quality of the copolymers produced without a drastic fluctuation. This suggests that the scale-up based on the K L a values supported the fermentation system of P(3HB-co-4HB) copolymer production in single-stage using mixed-substrate cultivation strategy. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Aiqin; Yang, Yamin; Zhai, Guangmei; Jia, Husheng; Xu, Bingshe
2016-02-01
In this work, a method of tuning the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions based on colorimetric principle was proposed. The technological route from coordination to copolymerization was employed to obtain the white light macromolecular phosphor. The three primary color monomers have been synthesized and their Commission Internationale de L'Eclairage (CIE) coordinates are respectively (0.540, 0.314), (0.231, 0.463), and (0.161, 0.054). The molar feed ratios of the three primary color monomers were calculated from the CIE coordinates based on colorimetric principle. Serial copolymers have been synthesized by free radical copolymerization of the three primary color monomers and methyl methacrylate. The quantum efficiency of the copolymers was higher than that of the complex monomers. The complexes were directly boned to the polymer chain, in which the energy transfer was reduced significantly compared to the doped-polymers. The experimental values of copolymers' CIE coordinates were located in the white light region in good agreement with theoretical values. The results indicate that the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions could be tuned by theoretical calculation based on colorimetric principle.
NASA Astrophysics Data System (ADS)
Han, Junwon
The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a gravity column. The second part of this thesis is focused on the liquid chromatography analysis and fractionation of RAFT-polymerized PS-b -PMMA diblock copolymers and AFM studies. In this study, PS- b-PMMA block copolymers were synthesized by a RAFT free radical polymerization process---the PMMA block with a phenyldithiobenzoate end group was synthesized first. The contents of unreacted PS and PMMA homopolymers in as-synthesized PS-b-PMMA block copolymers were quantitatively analyzed by solvent gradient interaction chromatography (SGIC) technique employing bare silica and C18-bonded silica columns, respectively. In addition, by 2-dimensional large-scale IC fractionation method, atomic force microscopy (AFM) study of these fractionated samples revealed various morphologies with respect to the chemical composition of each fraction. The third part of this thesis is to analyze random copolymers with tunable monomer sequence distributions using interaction chromatography. Here, IC was used for characterizing the composition and monomer sequence distribution in statistical copolymers of poly(styrene-co-4-bromostyrene) (PBrxS). The PBrS copolymers were synthesized by the bromination of monodisperse polystyrenes; the degree of bromination (x) and the sequence distribution were adjusted by varying the bromination time and the solvent quality, respectively. Both normal-phase (bare silica) and reversed-phase (C18-bonded silica) columns were used at different combinations of solvents and non-solvents to monitor the content of the 4-bromostyrene units in the copolymer and their average monomer sequence distribution. The fourth part of this thesis is to analyze and fractionate highly branched polymers such as dendronized polymers and star-shaped homo and copolymers. I have developed an interaction chromatography technique to separate polymers with nonlinear chain architecture. Specifically, the IC technique has been used to separate dendronized polymers and PS-based highly branched copolymers and to ultimately obtain well-defined dendronized or branched copolymers with a low polydispersity. The effects of excess arm-polymers on (1) the micellar self-assembly of dendronized polymers and (2) the regularity of the pore morphology in the low-k applications by the sol-gel process have been studied.
Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile
NASA Astrophysics Data System (ADS)
Grishin, D. F.; Grishin, I. D.
2015-07-01
Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.
Houang, Evelyne M; Bates, Frank S; Sham, Yuk Y; Metzger, Joseph M
2017-11-30
An all-atom phospholipid bilayer and triblock copolymer model was developed for molecular dynamics (MD) studies. These were performed to investigate the mechanism of interaction between membrane-stabilizing triblock copolymer P188 and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayers under applied lateral surface tension (γ) to model membrane mechanical stress. Results showed that P188 insertion is driven by the hydrophobic poly(propylene oxide) (PPO) core and dependent on bilayer area per lipid. Moreover, insertion of P188 increased the bilayer's resistance to mechanical rupture, as observed by a significant increase in the absolute lateral pressure required to disrupt the bilayer. To further investigate the specific chemical features of P188 underlying membrane stabilizer function, a series of MD simulations with triblock copolymers of the same class as P188 but of varying chemical composition and sizes were performed. Results showed that triblock copolymer insertion into the lipid bilayer is dependent on overall copolymer hydrophobicity, with higher copolymer hydrophobicity requiring a reduced bilayer area per lipid ratio for insertion. Further analysis revealed that the effect of copolymer insertion on membrane mechanical integrity was also dependent on hydrophobicity. Here, P188 insertion significantly increased the absolute apparent lateral pressure required to rupture the POPC bilayer, thereby protecting the membrane against mechanical stress. In marked contrast, highly hydrophobic copolymers decreased the lateral pressure necessary for membrane rupture and thus rendering the membrane significantly more susceptible to mechanical stress. These new in silico findings align with recent experimental findings using synthetic lipid bilayers and in muscle cells in vitro and mouse models in vivo. Collectively, these data underscore the importance of PEO-PPO-PEO copolymer chemical composition in copolymer-based muscle membrane stabilization in vitro and in vivo. All-atom modeling with MD simulations holds promise for investigating novel copolymers with enhanced membrane interacting properties.
Sustainable Elastomers from Renewable Biomass.
Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing
2017-07-18
Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were further explored to enhance the overall sustainability. Isoprene polymers were grafted from a cellulosic backbone to afford Cell-g-polyisoprene copolymers. Via cross-linking of these graft copolymers, human-skin-mimic elastomers and high resilient elastomers with a well-defined network structure were achieved. The mechanical properties of these resilient elastomers could be finely controlled by tuning the cellulose content. As isoprene can be produced by engineering of microorganisms, these elastomers could be a renewable alternative to petroleum products. In summary, triblock copolymer and graft copolymer TPEs with biomass components, skin-mimic elastomers, high resilient biobased elastomers, and engineering of macromolecular architectures for elastomers are discussed. These approaches and design provide us knowledge on the potential to make sustainable elastomers for various applications to compete with petroleum-based counterparts.
Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery
Alami-Milani, Mitra; Zakeri-Milani, Parvin; Valizadeh, Hadi; Salehi, Roya; Salatin, Sara; Naderinia, Ali; Jelvehgari, Mitra
2017-01-01
Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity, prolonged and localized drug delivery, lower systemic toxicity, and capability to deliver both hydrophobic and hydrophilic drugs. Self-assembling block copolymers (such as diblock, triblock, and pentablock copolymers) with large solubility variation between hydrophilic and hydrophobic segments are capable of making temperature-dependent micellar assembles, and with further increase in the temperature, of jellifying due to micellar aggregation. In general, molecular weight, hydrophobicity, and block arrangement have a significant effect on polymer crystallinity, micelle size, and in vitro drug release profile. The limitations of creature triblock copolymers as initial burst release can be largely avoided using micelles made of pentablock copolymers. Moreover, formulations based on pentablock copolymers can sustain drug release for a longer time. The present study aims to provide a concise overview of the initial and recent progresses in the design of hydrogel-based ocular drug delivery systems. PMID:28507933
Morphology and conductivity of PEO-based polymers having various end functional groups
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong
Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.
Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.
2016-01-01
We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298
NASA Astrophysics Data System (ADS)
Morita, Kazuyo; Yamamoto, Kimiko
2017-03-01
Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.
Light-emitting block copolymers composition, process and use
Ferraris, John P.; Gutierrez, Jose J.
2006-11-14
Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.
Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance
NASA Astrophysics Data System (ADS)
Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando
2017-10-01
A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.
A finite element approach to self-consistent field theory calculations of multiblock polymers
NASA Astrophysics Data System (ADS)
Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.; Ganapathysubramanian, Baskar
2017-02-01
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.
A finite element approach to self-consistent field theory calculations of multiblock polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibriummore » polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.« less
Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate
NASA Astrophysics Data System (ADS)
Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu
2017-03-01
A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.
Level-Set Simulation of Viscous Free Surface Flow Around a Commercial Hull Form
2005-04-15
Abstract The viscous free surface flow around a 3600 TEU KRISO Container Ship is computed using the finite volume based multi-block RANS code, WAVIS...developed at KRISO . The free surface is captured with the Level-set method and the realizable k-ε model is employed for turbulence closure. The...computations are done for a 3600 TEU container ship of Korea Research Institute of Ships & Ocean Engineering, KORDI (hereafter, KRISO ) selected as
Optimal domain decomposition strategies
NASA Technical Reports Server (NTRS)
Yoon, Yonghyun; Soni, Bharat K.
1995-01-01
The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.
Load Balancing Strategies for Multi-Block Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak; Lopez-Benitez, Noe; Biegel, Bryan (Technical Monitor)
2002-01-01
The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficient high performance computations of large-scale realistic applications using this methodology, the individual grids must be properly partitioned among the parallel processors. Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we present three different load balancing strategies far overset grids and analyze their effects on the parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.
Numerical study of supersonic combustors by multi-block grids with mismatched interfaces
NASA Technical Reports Server (NTRS)
Moon, Young J.
1990-01-01
A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.
NASA Astrophysics Data System (ADS)
Chiriac, Aurica P.; Nita, Loredana E.; Nistor, Manuela T.
2011-12-01
This study refers to the synthesis of a nano-network with dual temperature and pH responsiveness based on the 2-hydroxyethyl methacrylate (HEMA) copolymers with a comonomer with spiroacetal moiety and crosslinking capacity, namely 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]-undecane (U). The copolymers were synthesized by radical emulsion polymerization, using 4,4'-azobis(cyanopentanoic acid) as initiator, in the presence of sodium lauryl sulfate as tensioactive agent and poly(vinyl alcohol) as protective colloid. Three copolymer variants were taken into study resulted from the different ratio between the comonomers (HEMA/U), which was about 98/2, 95/5, and 90/10, respectively. The copolymers were characterized by FTIR and thermal analysis. The copolymers sensitivity was evidenced by studying the evolution of the hydrodynamic radius and zeta potential of the polymeric particles as a function of pH. Thus, the particles size increases with the comonomer amount, from 193 nm in case of the homopolymer up to 253 nm for the copolymer with maximum content of the comonomer (10%). The increase of the particle hydrodynamic radius with the growth of temperature was also put into evidence.
High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes
NASA Astrophysics Data System (ADS)
Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew
Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.
Rajan, Kalavathy; Mann, Jeffrey K; English, Eldon; Harper, David P; Carrier, Danielle Julie; Rials, Timothy G; Labbé, Nicole; Chmely, Stephen C
2018-04-12
Synthesizing lignin-based copolymers would valorize a major coproduct stream from pulp and paper mills and biorefineries as well as reduce the dependence on petrochemical-based consumer goods. In this study, we used organosolv lignin isolated from hybrid poplar ( Populus trichocarpa × P. deltoides) to generate lignin-containing methacrylate hydrogels. The copolymer hydrogels were synthesized by first grafting 2-hydroxyethyl methacrylate (HEMA) onto lignin (OSLH) via esterification and then by free radical polymerization of OSLH with excess HEMA. The copolymer hydrogels were prepared with different stoichiometric ratios of OSLH (e.g., 0, 10, 20, and 40 wt %) with respect to HEMA. Copolymerization with OSLH led to an increase in cross-linking density, which in turn enhanced the hydrogel's material properties; we report up to 39% improvement in water retention, 20% increase in thermostability, and up to a 3 order increase in magnitude of the storage modulus ( G'). The copolymer's properties, such as water retention and glass transition temperature, could be tuned by altering the percent functionalization of lignin OH groups and the ratio of OSLH to HEMA.
Huo, Lijun; Liu, Tao; Fan, Bingbing; Zhao, Zhiyuan; Sun, Xiaobo; Wei, Donghui; Yu, Mingming; Liu, Yunqi; Sun, Yanming
2015-11-18
A novel 2D benzodifuran (BDF)-based copolymer (PBDF-T1) is synthesized. Polymer solar cells fabricated with PBDF-T1 show high power conversion efficiency of 9.43% and fill factor of 77.4%, which is higher than the performance of its benzothiophene (BDT) counterpart (PBDT-T1). These results provide important progress for BDF-based copolymers and demonstrate that BDF-based copolymers can be competitive with the well-studied BDT counterparts via molecular structure design and device optimization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marja-Leena Kosonen; Bo Wang; Gerard T. Caneba; Douglas J. Gardner; Tim G. Rials
2000-01-01
The combination of synthetic thermoplastic polymers and wood is normally problematic because wood surfaces are hydrophilic while typical thermoplastic polymers are hydrophobic. A possible solution is to use block copolymer coupling agents. In this work we show the use of a potentially useful synthetic method of producing hydrophilic-hydrophobic block copolymers as...
Ammari, Faten; Bassel, Léna; Ferrier, Catherine; Lacanette, Delphine; Chapoulie, Rémy; Bousquet, Bruno
2016-10-01
In this study, multi-block analysis was applied for the first time to LIBS spectra provided by a portable LIBS system (IVEA Solution, France) equipped with three compact Czerny-Turner spectrometers covering the spectral ranges 200-397nm, 398-571nm and 572-1000nm. 41 geological samples taken from a laboratory-cave situated in the "Vézère valley", an area rich with prehistoric sites and decorated caves listed as a UNESCO world heritage in the south west of France, were analyzed. They were composed of limestone and clay considered as underlying supports and of two types of alterations referred as moonmilk and coralloid. Common Components and Specific Weights Analysis (CCSWA) allowed sorting moonmilk and coralloid samples. The loadings revealed higher amounts of magnesium, silicon, aluminum and strontium in coralloids and the saliences emphasized that among the three spectrometers installed in the LIBS instrument used in this work; that covering the range 572-1000nm was less contributive. This new approach for processing LIBS data not only provides good results for sorting geological materials but also clearly reveals which spectral range contains most of the information. This specific advantage of multi-block analysis could lead for some applications to simplify the design and to reduce the size of LIBS instruments. Copyright © 2016 Elsevier B.V. All rights reserved.
Kumar, Sonu; Acharya, Rituparna; Chatterji, Urmi; De, Priyadarsi
2013-12-10
Developing safe and effective nanocarriers for multitype of delivery system is advantageous for several kinds of successful biomedicinal therapy with the same carrier. In the present study, we have designed amino acid biomolecules derived hybrid block copolymers which can act as a promising vehicle for both drug delivery and gene transfer. Two representative natural chiral amino acid-containing (l-phenylalanine and l-alanine) vinyl monomers were polymerized via reversible addition-fragmentation chain transfer (RAFT) process in the presence of monomethoxy poly(ethylene glycol) based macro-chain transfer agents (mPEGn-CTA) for the synthesis of well-defined side-chain amino-acid-based amphiphilic block copolymers, monomethoxy poly(ethylene glycol)-b-poly(Boc-amino acid methacryloyloxyethyl ester) (mPEGn-b-P(Boc-AA-EMA)). The self-assembled micellar aggregation of these amphiphilic block copolymers were studied by fluorescence spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Potential applications of these hybrid polymers as drug carrier have been demonstrated in vitro by encapsulation of nile red dye or doxorubicin drug into the core of the micellar nanoaggregates. Deprotection of side-chain Boc- groups in the amphiphilic block copolymers subsequently transformed them into double hydrophilic pH-responsive cationic block copolymers having primary amino groups in the side-chain terminal. The DNA binding ability of these cationic block copolymers were further investigated by using agarose gel retardation assay and AFM. The in vitro cytotoxicity assay demonstrated their biocompatible nature and these polymers can serve as "smart" materials for promising bioapplications.
Yu, Juan; Lu, Chuanwei; Wang, Chunpeng; Wang, Jifu; Fan, Yimin; Chu, Fuxiang
2017-11-15
Cellulose-based thermoplastic elastomers (TPEs) have attracted considerable attention because of their rigid backbone, good mechanical properties, renewable nature and abundance. In the present study, sustainable TPEs based on ethyl cellulose (EC), fatty acid and furfural were generated by the combination of ATRP and "click chemistry". To fabricate sustainable TPEs with higher toughness, a range of polymers, including mono random-copolymer poly(tetrahydrofurfuryl methacrylate-co-lauryl methacrylate) (P(THFMA-co-LMA), dual polymer side chains PTHFMA and PLMA, and mono-block copolymer PTHFMA-b-PLMA, were designed as side chains to fabricate EC brush copolymers with random, dual or block side chain architectures using the "grafting from" and "grafting onto" methods. The multi-armed structures, chemical compositions and phase separation of these EC brush copolymers were confirmed by FT-IR, 1 H NMR, GPC, DSC, TEM and SEM. Overall, three types of EC brush copolymers all exhibited the desired mechanical properties of TPEs. In addition, the EC brush copolymers with dual/block side chain architectures showed higher tensile strength than that of the random polymers with similar compositions. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Tarannum, Nazia; Singh, Meenakshi; Yadav, Anil K.
2017-10-01
Here, we have explored the antibacterial activity, thermal stability and theoretical study of two copolymers that contain sulfobetaine and carboetaine moiety. Copolymers were synthesized based on Schiff base chemistry with generation of zwitterionic centres by nucleophilic addition of sultone/lactone. To predict and confirm the molecular structure of zwitterionic polyelectrolyte molecule, the theoretical study of structural features and other thermodynamic characteristics of copolymer constituents was obtained by ab initio calculations. Various parameters such as geometry optimization, energy calculations, frequency calculations and intrinsic reaction coefficient (IRC) are simulated using Hartree Fock (HF) method. The geometry optimizations are analyzed at HF/3-21 G default level of theory. The vibrational frequency is calculated via density functional theory (DFT)/B3LYP 6-31G*(d) level whose values are in accord with the experimental observed frequency. Both copolymers have been successfully assessed for antibacterial activity against Staphylococcus aureus and Pseudomonas aeuroginosa bacterial strains by disc diffusion method. The antibacterial study helped in evaluating zone of inhibition, minimum inhibitory concentration and minimum bactericidal concentration. Sulfobetaine copolymer is found to be more effective in curtailing the infection caused by bacteria as compared to carbobetaine.
Defining donor and acceptor strength in conjugated copolymers
NASA Astrophysics Data System (ADS)
Hedström, Svante; Wang, Ergang; Persson, Petter
2017-03-01
The progress in efficiency of organic photovoltaic devices is largely driven by the development of new donor-acceptor (D-A) copolymers. The number of possible D-A combinations escalates rapidly with the ever-increasing number of donor and acceptor units, and the design process often involves a trial-and-error approach. We here present a computationally efficient methodology for the prediction of optical and electronic properties of D-A copolymers based on density functional theory calculations of donor- and acceptor-only homopolymers. Ten donors and eight acceptors are studied, as well as all of their 80 D-A copolymer combinations, showing absorption energies of 1.3-2.3 eV, and absorption strengths varying by up to a factor of 2.5. Focus lies on exhibited trends in frontier orbital energies, optical band gaps, and absorption intensities, as well as their relation to the molecular structure. Based on the results, we define the concept of donor and acceptor strength, and calculate this quantity for all investigated units. The light-harvesting capabilities of the 80 D-A copolymers were also assessed. This gives a valuable theoretical guideline to the design of D-A copolymers with the potential to reduce the synthesis efforts in the development of new polymers.
Highly conductive side chain block copolymer anion exchange membranes.
Wang, Lizhu; Hickner, Michael A
2016-06-28
Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.
Preparation and infrared/raman classification of 630 spectroscopically encoded styrene copolymers.
Fenniri, Hicham; Chun, Sangki; Terreau, Owen; Bravo-Vasquez, Juan-Pablo
2008-01-01
The barcoded resins (BCRs) were introduced recently as a platform for encoded combinatorial chemistry. One of the main challenges yet to be overcome is the demonstration that a large number of BCRs could be generated and classified with high confidence. Here, we describe the synthesis and classification of 630 polystyrene-based copolymers prepared from the combinatorial association of 15 spectroscopically active styrene monomers. Each of the 630 copolymers displayed a unique vibrational fingerprint (infrared and Raman), which was converted into a spectral vector. To each of the 630 copolymers, a vector of the known (reference) composition was assigned. Unknown (prediction) vectors were decoded using multivariate data analysis. From the inner product of the reference and prediction vectors, a correlation map comparing 396 900 copolymer pairs (630 x 630) was generated. In 100% of the cases, the highest correlation was obtained for polymer pairs in which the reference and prediction vectors correspond to copolymers prepared from identical styrene monomers, thus demonstrating the high reliability of this encoding strategy. We have also established that the spectroscopic barcodes generated from the Raman and infrared spectra are independent of the copolymers' morphology (beaded versus bulk polymers). Besides the demonstration of the generality of the polymer barcoding strategy, the analytical methods developed here could in principle be extended to the investigation of the composition and purity of any other synthetic polymer and biopolymer library, or even scaffold-based combinatorial libraries.
Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.
Yang, Jia-Liang; Cao, Xiao-Han; Zhang, Cheng-Jian; Wu, Hai-Lin; Zhang, Xing-Hong
2018-01-31
A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h -1 ), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights ( M n s) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.
Gallei, Markus; Tockner, Stefan; Klein, Roland; Rehahn, Matthias
2010-05-12
Well-defined diblock copolymers have been prepared in which three different ferrocene-based monomers are combined with 1,1-dimethylsilacyclobutane (DMSB) and 1-methylsilacyclobutane, respectively, as their carbosilane counterparts. Optimized procedures are reported for the living anionic chain growth following sequential monomer addition protocols, ensuring narrow polydispersities and high blocking efficiencies. The DMSB-containing copolymers show phase segregation in the bulk state, leading to micromorphologies composed of crystalline DMSB phases and amorphous polymetallocene phases. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Determan, Michael Duane
The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated.more » This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.« less
Wu, Sangwook
2009-03-01
We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.
Highly filled biocomposites based on ethylene-vinyl acetate copolymer and wood flour
NASA Astrophysics Data System (ADS)
Shelenkov, P. G.; Pantyukhov, P. V.; Popov, A. A.
2018-05-01
Recently, there is a great interest in the world to biodegradable materials based on synthetic polymers in a composition with natural fillers. Highly filled polymer composite materials based on various grades of synthetic block copolymer of ethylene vinyl acetate with wood flour were under investigation. Five grades of ethylene-vinyl acetate copolymer differing in the content of vinyl acetate groups and a melt flow index were used in this work in order to find the best one for highly filled biocomposites. Wood flour content in biocomposites was 50, 60, 70 weight %. The rheological and physico-mechanical characteristics of the resulting biocomposites were studied.
NASA Technical Reports Server (NTRS)
St. Clair, Terry L. (Inventor); Maudgal, Shubha (Inventor); Pratt, J. Richard (Inventor)
1987-01-01
A novel series of polymers and copolymers based on a polyimide backbone with the incorporation of carbonate moieties along the backbone. The process for preparing these polymers and copolymers is also disclosed as is a novel series of dinitrodiphenyl carbonates and diaminodiphenyl carbonates. The novel polymers and copolymers exhibit high temperature capability and because of the carbonate unit, many exhibit a high degree of order and/or crystallinity.
NASA Technical Reports Server (NTRS)
St.clair, T. L. (Inventor); Maudgal, S. (Inventor); Pratt, J. R. (Inventor)
1986-01-01
A novel series of polymers and copolymers based on a polymide backbone with the incorporation of carbonate moieties along the backbone is presented. The preparation process for the polymers and copolymers is disclosed together with a novel series of dinitrodiphenyl carbonates and diaminodiphenyl carbonates. The novel polyners and copolymers exhibit high temperature capability and because of the carbonate unit, many exhibit a high degree of order and/or crystallinity.
Ho, Dean; Chang, Stacy; Montemagno, Carlo D
2006-06-01
Fabrication of next-generation biologically active materials will involve the integration of proteins with synthetic membrane materials toward a wide spectrum of applications in nanoscale medicine, including high-throughput drug testing, energy conversion for powering medical devices, and bio-cloaking films for mimicry of cellular membrane surfaces toward the enhancement of implant biocompatibility. We have used ABA triblock copolymer membranes (PMOXA-PDMS-PMOXA) of varied thicknesses as platform materials for Langmuir film-based functionalization with the OmpF pore protein from Escherichia coli by fabricating monolayers of copolymer amphiphile-protein complexes on the air/water interface. Here we demonstrate that the ability for protein insertion at the air/water interface during device fabrication is dependent upon the initial surface coverage with the copolymer as well as copolymer thickness. Methacrylate-terminated block copolymer structures that were 4 nm (4METH) and 8 nm (8METH) in length were used as the protein reconstitution matrix, whereas a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid (~4 nm thickness) was used as a comparison to demonstrate the effects of copolymer length on protein integration capabilities. Wilhemy surface pressure measurements (mN/m) revealed a greater protein insertion in the 4METH and POPC structures compared with the 8METH structure, indicating that shorter copolymer chains possess enhanced biomimicry of natural lipid-based membranes. In addition, comparisons between the isothermal characteristics of the 4METH, 8METH, and POPC membranes reveal that phase transitions of the 4METH resemble a blend of the 8METH and POPC materials, indicating that the 4METH chain may possess hybrid properties of both copolymers and lipids. Furthermore, we have shown that following the deposition of the amphiphilic materials on the air/water interface, the OmpF can be deposited directly on top of the amphiphiles (surface addition), thus effectively further enhancing protein insertion because of the buoying effects of the membranes. These characteristics of Langmuir-Blodgett-based fabrication of copolymer-biomolecule hybrids represent a synthesis strategy for next-generation biomedical materials.
Counteranion-Mediated Intrinsic Healing of Poly(ionic liquid) Copolymers.
Guo, Panlong; Zhang, Houyu; Liu, Xiaokong; Sun, Junqi
2018-01-17
Fabrication of self-healing/healable materials using reversible interactions that are governed by their inherent chemical features is highly desirable because it avoids the introduction of extra groups that may present negative effects on their functions. The present study exploits the inherently featured electrostatic interactions of the ion pairs in polymeric ionic liquids (PILs) as the driving force to fabricate healable PIL copolymers. The healable PIL copolymers are fabricated through the copolymerization of the IL monomers with ethyl acrylate followed by the replacement of Br - counteranions with bulkier ones such as bis(trifluoromethanesulfonyl)imide (TFSI - ). Without modifying the chemical structures of the PIL moieties, the healing performance of the as-prepared PIL copolymers can be effectively mediated by their counteranions. The PIL copolymers that do not possess healability when paired with Br - counteranions become healable after exchanging the Br - counteranions with larger-sized ones (e.g., TFSI - ). The PIL copolymers paired with bulky counteranions exhibit enhanced chain mobility and highly reversible ion-pair interactions, which facilitate the healing process. The PIL copolymers paired with TFSI - anions can completely heal the damage/cut upon heating at 55 °C for 7.5 h. Meanwhile, the counteranions with larger sizes not only benefit the healing performance of the PIL copolymers but also enhance their ion conductivity. The ion conductivity of the PIL copolymers paired with TFSI - is an order of magnitude higher than that of the PIL copolymers paired with Br - . Therefore, the as-prepared healable PIL copolymers are potentially useful as solid electrolytes in PIL-based energy devices to improve their safety and reliability.
Güney, Aysun; Malda, Jos; Dhert, Wouter J A; Grijpma, Dirk W
2017-05-09
Biodegradable PCL-b-PTMC-b-PCL triblock copolymers based on trimethylene carbonate (TMC) and ε-caprolactone (CL) were prepared and used in the 3D printing of tissue engineering scaffolds. Triblock copolymers of various molecular weights containing equal amounts of TMC and CL were prepared. These block copolymers combine the low glass transition temperature of amorphous PTMC (approximately -20°C) and the semi-crystallinity of PCL (glass transition approximately -60°C and melting temperature approximately 60°C). PCL-b-PTMC-b-PCL triblock copolymers were synthesized by sequential ring opening polymerization (ROP) of TMC and ε-CL. From these materials, films were prepared by solvent casting and porous structures were prepared by extrusion-based 3D printing. Films prepared from a polymer with a relatively high molecular weight of 62 kg/mol had a melting temperature of 58°C and showed tough and resilient behavior, with values of the elastic modulus, tensile strength and elongation at break of approximately 120 MPa, 16 MPa and 620%, respectively. Porous structures were prepared by 3D printing. Ethylene carbonate was used as a crystalizable and water-extractable solvent to prepare structures with microporous strands. Solutions, containing 25 wt% of the triblock copolymer, were extruded at 50°C then cooled at different temperatures. Slow cooling at room temperature resulted in pores with widths of 18 ± 6 μm and lengths of 221 ± 77 μm, rapid cooling with dry ice resulted in pores with widths of 13 ± 3 μm and lengths of 58 ± 12 μm. These PCL-b-PTMC-b-PCL triblock copolymers processed into porous structures at relatively low temperatures may find wide application as designed degradable tissue engineering scaffolds. In this preliminary study we prepared biodegradable triblock copolymers based on 1,3-trimethylene carbonate and ε-caprolactone and assessed their physical characteristics. Furthermore, we evaluated their potential as melt-processable thermoplastic elastomeric biomaterials in 3D printing of tissue engineering scaffolds.
Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji
2017-07-01
Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu
2016-12-01
Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single-body, the interference effects of the multi-bodies tend to be negligible. The computing practice has confirmed that it is feasible for the present method to compute the aerodynamics and reveal flow mechanism around complex multi-body vehicles covering all flow regimes from the gas-kinetic point of view of solving the unified Boltzmann model velocity distribution function equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.B.; Hogen-Esch, T.E.
1982-01-01
Annual progress reports are presented for the following tasks: (1) synthesis and structural characterization of polysaccharide-based graft copolymers for use in tertiary oil recovery; (2) determination of physical properties of the polymers and their solutions, and screening of the polymers to determine their utility in oil recovery. Over the past year synthesis and characterization studies have continued in the following five areas: (1) starch-g-polyacrylamide (ST-g-PAM) copolymers; (2) graft copolymers of other polysaccharides (gum arabic, yellow dextrin, pectin, okra polysaccharide, and guar gum) and acrylamides; (3) a naturally occurring polysaccharide extracted from okra (Akro); (4) graft copolymers of Schardinger-..beta..-dextrin and acrylamidemore » (SD-g-PAM); (5) chemical degradation of ST-g-PAM and SD-g-PAM copolymers. For physical properties studies, the following areas were investigated: (1) characterization of copolymers by ultracentrifugation, size exclusion chromatography and nucleophore membrane filtration; (2) rheological studies on copolymers; and (3) statistical analysis of variables in graft copolymerization. (ATT)« less
Hybrid Grid Techniques for Propulsion Applications
NASA Technical Reports Server (NTRS)
Koomullil, Roy P.; Soni, Bharat K.; Thornburg, Hugh J.
1996-01-01
During the past decade, computational simulation of fluid flow for propulsion activities has progressed significantly, and many notable successes have been reported in the literature. However, the generation of a high quality mesh for such problems has often been reported as a pacing item. Hence, much effort has been expended to speed this portion of the simulation process. Several approaches have evolved for grid generation. Two of the most common are structured multi-block, and unstructured based procedures. Structured grids tend to be computationally efficient, and have high aspect ratio cells necessary for efficently resolving viscous layers. Structured multi-block grids may or may not exhibit grid line continuity across the block interface. This relaxation of the continuity constraint at the interface is intended to ease the grid generation process, which is still time consuming. Flow solvers supporting non-contiguous interfaces require specialized interpolation procedures which may not ensure conservation at the interface. Unstructured or generalized indexing data structures offer greater flexibility, but require explicit connectivity information and are not easy to generate for three dimensional configurations. In addition, unstructured mesh based schemes tend to be less efficient and it is difficult to resolve viscous layers. Recently hybrid or generalized element solution and grid generation techniques have been developed with the objective of combining the attractive features of both structured and unstructured techniques. In the present work, recently developed procedures for hybrid grid generation and flow simulation are critically evaluated, and compared to existing structured and unstructured procedures in terms of accuracy and computational requirements.
Buonerba, Antonio; Noschese, Annarita; Grassi, Alfonso
2014-04-25
The selective aerobic oxidation of cinnamyl alcohol to cinnamaldehyde, as well as direct oxidative esterification of this alcohol with primary and secondary aliphatic alcohols, were achieved with high chemoselectivity by using gold nanoparticles supported in a nanoporous semicrystalline multi-block copolymer matrix, which consisted of syndiotactic polystyrene-co-cis-1,4-polybutadiene. The cascade reaction that leads to the alkyl cinnamates occurs through two oxidation steps: the selective oxidation of cinnamyl alcohol to cinnamaldehyde, followed by oxidation of the hemiacetal that results from the base-catalysed reaction of cinnamaldehyde with an aliphatic alcohol. The rate constants for the two steps were evaluated in the temperature range 10-45 °C. The cinnamyl alcohol oxidation is faster than the oxidative esterification of cinnamaldehyde with methanol, ethanol, 2-propanol, 1-butanol, 1-hexanol or 1-octanol. The rate constants of the latter reaction are pseudo-zero order with respect to the aliphatic alcohol and decrease as the bulkiness of the alcohol is increased. The activation energy (Ea) for the two oxidation steps was calculated for esterification of cinnamyl alcohol with 1-butanol (Ea = 57.8±11.5 and 62.7±16.7 kJ mol(-1) for the first and second step, respectively). The oxidative esterification of cinnamyl alcohol with 2-phenylethanol follows pseudo-first-order kinetics with respect to 2-phenylethanol and is faster than observed for other alcohols because of fast diffusion of the aromatic alcohol in the crystalline phase of the support. The kinetic investigation allowed us to assess the role of the polymer support in the determination of both high activity and selectivity in the title reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Jun; Guo, Baohua; Zhang, Zengmin; Wu, Qiong; Zhou, Quan; Chen, Jinchun; Chen, Guoqiang; Li, Guodong
2005-06-30
A mathematical model is proposed for predicting the copolymer composition of the microbially synthesized polyhydroxyalkanoate (PHA) copolymers. Based on the biochemical reactions involved in the precursor formation and polymerization pathways, the model correlates the copolymer composition with the cultivation conditions, the enzyme levels and selectivity, and the metabolic pathways. It suggests the following points: (1) in the case of a sole carbon source, the copolymer composition depends mainly on the topology of the metabolic pathways and the selectivity of both the enzymes involved in the precursor formation and the polymerization route; (2) the copolymer composition can be varied in a wide range via alteration of the flux ratio of different types of monomers channeled from two or more independent and simultaneous pathways; (3) the enzymes which should be over-expressed or inhibited to obtain the desired copolymer composition can be predicted. For example, inhibition of the beta-oxidation pathway will increase the content of the monomer units with longer chain length. To test the model, various experiments were envisaged by varying cultivation time, concentration and chain length of the sole carbon source, and molar ratio of the cosubstrates. The predictions from the model agree well with the experimental results. Therefore, the proposed model will be useful in predicting the PHA copolymer composition under different biochemical reaction conditions. In other words, it can provide a guide for the synthesis of desired PHA copolymers.
Ma, Guilei; Zhang, Chao; Zhang, Linhua; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling
2016-01-01
Star-shaped block copolymers based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(ethylene glycol) (PEG) (st-PLGA-PEG) were synthesized with structural variation on arm numbers in order to investigate the relationship between the arm numbers of st-PLGA-PEG copolymers and their micelle properties. st-PLGA-PEG copolymers with arm numbers 3, 4 and 6 were synthesized by using different cores such as trimethylolpropane, pentaerythritol and dipentaerythritol, and were characterized by nuclear magnetic resonance and gel permeation chromatography. The critical micelle concentration decreased with increasing arm numbers in st-PLGA-PEG copolymers. The doxorubicin-loaded st-PLGA-PEG micelles were prepared by a modified nanoprecipitation method. Micellar properties such as particle size, drug loading content and in vitro drug release behavior were investigated as a function of the number of arms and compared with each other. The doxorubicin-loaded 4-arm PLGA-PEG micelles were found to have the highest cellular uptake efficiency and cytotoxicity compared with 3-arm PLGA-PEG micelles and 6-arm PLGA-PEG micelles. The results suggest that structural tailoring of arm numbers from st-PLGA-PEG copolymers could provide a new strategy for designing drug carriers of high efficiency. Structural tailoring of arm numbers from star shaped-PLGA-PEG copolymers (3-arm/4-arm/6-arm-PLGA-PEG) could provide a new strategy for designing drug carriers of high efficiency.
NASA Astrophysics Data System (ADS)
Solovskii, M. V.; Tarabukina, E. B.; Amirova, A. I.; Zakharova, N. V.; Smirnova, M. Yu.; Gavrilova, I. I.
2014-03-01
The complexation of aminoglycoside antibiotics neomycin, gentamicin, kanamycin, and amikacin in the form of free bases with carboxyl- and sulfo-containing copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide (HPMA) in water and water-salt solutions is studied by means of viscometry, equilibrium dialysis, potentiometric titration, and molecular hydrodynamics. Factors influencing the stability of formed copolymer-antibiotic complexes and determinations of their toxicity are established.
Flame resistant fibrous materials. [developed from chlorofluoropolymers
NASA Technical Reports Server (NTRS)
1973-01-01
Four chlorofluoropolymer systems were developed that satisfactorily met the criteria for classification as self-extinguishing. Three of these systems consisted of Halar (a copolymer of chlorotrifluoroethylene and ethylene) and tin-based flame retardants. The fourth system was a copolymer of chlorotrifluoroethylene and tetrafluoroethylene with no flame retardants added. Production of fibers from all four candidates, by melt extrusion, was demonstrated. Fibers produced from the chlorotrifluoroethylene tetrafluoroethylene copolymer showed the most promise.
Li, Di; Ding, Jian Xun; Tang, Zhao Hui; Sun, Hai; Zhuang, Xiu Li; Xu, Jing Zhe; Chen, Xue Si
2012-01-01
Four monomethoxy poly(ethylene glycol)-poly(L-lactide-co-glycolide)2 (mPEG-P( LA-co-GA)2) copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with double hydroxyl functionalized mPEG (mPEG-(OH)2) as macroinitiator and stannous octoate as catalyst. The copolymers self-assembled into nanoscale micellar/vesicular aggregations in phosphate buffer at pH 7.4. Doxorubicin (DOX), an anthracycline anticancer drug, was loaded into the micellar/vesicular nanoparticles, yielding micellar/vesicular nanomedicines. The in vitro release behaviors could be adjusted by content of hydrophobic polyester and pH of the release medium. In vitro cell experiments showed that the intracellular DOX release could be adjusted by content of P(LA-co-GA), and the nanomedicines displayed effective proliferation inhibition against Henrietta Lacks’s cells with different culture times. Hemolysis tests indicated that the copolymers were hemocompatible, and the presence of copolymers could reduce the hemolysis ratio of DOX significantly. These results suggested that the novel anticancer nanomedicines based on DOX and amphiphilic Y-shaped copolymers were attractive candidates as tumor tissular and intracellular targeting drug delivery systems in vivo, with enhanced stability during circulation and accelerated drug release at the target sites. PMID:22701317
NASA Astrophysics Data System (ADS)
Neumann, Katharina; Thelakkat, Mukundan
2012-09-01
The synthesis and analysis of solution processable polymers for organic solar cells is crucial for innovative solar cell technologies such as printing processes. In the field of donor materials for photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole conducting materials. Here, we synthesized two conjugated TPA containing copolymers via Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-((4-(2-ethylhexyloxy)phenyl)(paratolyl) amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-acceptor concept by synthesizing a copolymer with alternating electron donating TPA and electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and electrochemical properties of the polymers were analyzed.
Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s.
Hoogenboom, Richard; Leenen, Mark A M; Huang, Haiying; Fustin, Charles-André; Gohy, Jean-François; Schubert, Ulrich S
2006-01-01
Polymers based on renewable resources are promising candidates for replacing common organic polymers, and thus, for reducing oil consumption. In this contribution we report the microwave-assisted synthesis of block and statistical copolymers from 2-ethyl-2-oxazoline and 2-"soy alkyl"-2-oxazoline via a cationic ring-opening polymerization mechanism. The synthesized copolymers were characterized by gel permeation chromatography and 1 H-NMR spectroscopy. The micellization of these amphiphilic copolymers was investigated by dynamic light scattering and atomic force microscopy to examine the effect of hydrophobic block length and monomer distribution on the resulting micellar characteristics.
NASA Technical Reports Server (NTRS)
Sjogreen, Bjoern; Yee, H. C.
2007-01-01
Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.
Simulations of Turbine Cooling Flows Using a Multiblock-Multigrid Scheme
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Ameri, Ali A.; Rigby, David L.
1996-01-01
Results from numerical simulations of air flow and heat transfer in a 'branched duct' geometry are presented. The geometry contains features, including pins and a partition, as are found in coolant passages of turbine blades. The simulations were performed using a multi-block structured grid system and a finite volume discretization of the governing equations (the compressible Navier-Stokes equations). The effects of turbulence on the mean flow and heat transfer were modeled using the Baldwin-Lomax turbulence model. The computed results are compared to experimental data. It was found that the extent of some regions of high heat transfer was somewhat under predicted. It is conjectured that the underlying reason is the local nature of the turbulence model which cannot account for upstream influence on the turbulence field. In general, however, the comparison with the experimental data is favorable.
Kong, Yong; Shan, Xueling; Ma, Jianfeng; Chen, Meilan; Chen, Zhidong
2014-01-27
A molecularly imprinted copolymer, poly(o-phenylenediamine-co-o-aminophenol) (PoPDoAP), was prepared as a new ascorbic acid (AA) sensor. The copolymer was synthesized by incorporation of AA as template molecules during the electrochemical copolymerization of o-phenylenediamine and o-aminophenol, and complementary sites were formed after the copolymer was electrochemically reduced in ammonium aqueous solution. The molecularly imprinted copolymer sensor exhibited a high sensitivity and selectivity toward AA. Differential pulse voltammograms (DPVs) showed a linear concentration range of AA from 0.1 to 10 mM, and the detection limit was calculated to be 36.4 μM. Compared to conventional polyaniline-based AA sensors, the analytical performance of the imprinted copolymer sensor was improved due to the broadened usable pH range of PoPDoAP (from pH 1.0 to pH 8.0). The sensor also exhibited a good reproducibility and stability. And it has been successfully applied in the determination of AA in real samples, including vitamin C tablet and orange juices, with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong
2011-01-01
Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457
21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.
Code of Federal Regulations, 2012 CFR
2012-04-01
... or both sides of a base film produced from polycarbonate resins complying with § 177.1580 of this... vinylidene chloride with acrylonitrile, methyl acrylate, and acrylic acid. The finished copolymers contain at...
21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.
Code of Federal Regulations, 2011 CFR
2011-04-01
... or both sides of a base film produced from polycarbonate resins complying with § 177.1580 of this... vinylidene chloride with acrylonitrile, methyl acrylate, and acrylic acid. The finished copolymers contain at...
21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.
Code of Federal Regulations, 2013 CFR
2013-04-01
... or both sides of a base film produced from polycarbonate resins complying with § 177.1580 of this... vinylidene chloride with acrylonitrile, methyl acrylate, and acrylic acid. The finished copolymers contain at...
Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong
2018-02-13
The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Işıklan, Nuran; Tokmak, Şeyma
2018-07-01
The functionalization of polysaccharides with synthetic polymers has attracted great attention owing to its application in many industrial fields. The aim of this work was to study the impact of pectin functionalization with N,N-diethylacrylamide (DEAAm). Pectin was modified via microwave-induced graft copolymerization of DEAAm using ceric ammonium nitrate (CAN) and N,N,N',N'-tetramethylethylenediamine (TEMED). FTIR, 13 C NMR, DSC/TGA, XRD, and SEM techniques were used to verify the structure of graft copolymers. Various reaction conditions such as microwave irradiation time, temperature, microwave power, monomer, initiator, and TEMED concentrations were investigated to get a maximum grafting yield of 192%. Lower critical solution temperatures (LCST) of graft copolymers were determined by UV spectroscopy. Graft copolymers were found to be thermo-sensitive, with LCST of 31°C and high thermal resistance. Biocompatibility test of copolymers showed that copolymers were not cytotoxic to L929 fibroblasts cells and can be used as a biomaterial. Copyright © 2018 Elsevier B.V. All rights reserved.
High-Molecular Compounds (Selected Articles).
1987-10-15
us ions The method of potentiometric titration in dimethylformamide was used to study the structure of macro molecular chain of copolymers based on...macromolecular chain we used the method of potential metric titration . The objects of the study uere alpha chloroacrylic acid (KO)K) in monomer...homopolymer, and copolymer (with methylmethacrylate) form 131. I e d* r. I%0 I 0 12 # z Curves of potential metric titration of solutions of copolymers of KjAK
NASA Astrophysics Data System (ADS)
Yılmaz, Onur; Özkan, ćiǧdem Kılıçarislan; Yılmaz, Catalina N.; Yorgancıoǧlu, Ali; Özgünay, Hasan; Karavana, Hüseyin Ata
2017-12-01
Copolymers bearing reactive functional groups with controlled molecular weights are of importance since they can be used in many fields such as composites, coatings, membranes, catalysis, biology, optoelectronics, pharmaceuticals, etc. In the present study low molecular weight copolymers based on butyl acrylate (BA) and methyl methacrylate (MMA) in combination with reactive functional monomers of vinyl trietoxysilane (VTES), 3-trimetoxysilylpropyl methacrylate (TMSPMA) and glycidyl methacrylate (GMA) were synthesized via RAFT mini-emulsion technique using 2-cyano 2-propyldodecyldithiocarbonate as CTA agent. The results showed that the average molecular weights of copolymers were close to the theoretical values. On the other hand, PDI values were found to be higher than conventional RAFT polymers. The particle sizes of the latexes were small with very homogenous distributions and good stability. FTIR, H-NMR and TGA results verified the success of copolymer syntheses.
Engineering topochemical polymerizations using block copolymer templates.
Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M
2014-09-24
With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials.
Comparison of Boltzmann and Gibbs entropies for the analysis of single-chain phase transitions
NASA Astrophysics Data System (ADS)
Shakirov, T.; Zablotskiy, S.; Böker, A.; Ivanov, V.; Paul, W.
2017-03-01
In the last 10 years, flat histogram Monte Carlo simulations have contributed strongly to our understanding of the phase behavior of simple generic models of polymers. These simulations result in an estimate for the density of states of a model system. To connect this result with thermodynamics, one has to relate the density of states to the microcanonical entropy. In a series of publications, Dunkel, Hilbert and Hänggi argued that it would lead to a more consistent thermodynamic description of small systems, when one uses the Gibbs definition of entropy instead of the Boltzmann one. The latter is the logarithm of the density of states at a certain energy, the former is the logarithm of the integral of the density of states over all energies smaller than or equal to this energy. We will compare the predictions using these two definitions for two polymer models, a coarse-grained model of a flexible-semiflexible multiblock copolymer and a coarse-grained model of the protein poly-alanine. Additionally, it is important to note that while Monte Carlo techniques are normally concerned with the configurational energy only, the microcanonical ensemble is defined for the complete energy. We will show how taking the kinetic energy into account alters the predictions from the analysis. Finally, the microcanonical ensemble is supposed to represent a closed mechanical N-particle system. But due to Galilei invariance such a system has two additional conservation laws, in general: momentum and angular momentum. We will also show, how taking these conservation laws into account alters the results.
NASA Astrophysics Data System (ADS)
El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Pispas, Stergios; Riziotis, Christos
2014-03-01
A low cost and low complexity optical detection method of proteins is presented by employing a detection scheme based on electrostatic interactions, and implemented by sensitization of a polymer optical fibers' (POF) surface by thin overlayers of properly designed sensitive copolymer materials with predesigned charges. This method enables the fast detection of proteins having opposite charge to the overlayer, and also the effective discrimination of differently charged proteins like lysozyme (LYS) and bovine serum albumin (BSA). As sensitive materials the block and the random copolymers of the same monomers were employed, namely the block copolymer poly(styrene-b-2vinylpyridine) (PS-b- P2VP) and the corresponding random copolymer poly(styrene-r-2vinylpyridine) (PS-r-P2VP), of similar composition and molecular weights. Results show systematically different response between the block and the random copolymers, although of the same order of magnitude, drawing thus important conclusions on their applications' techno-economic aspects given that they have significantly different associated manufacturing method and costs. The use of the POF platform, in combination with those adaptable copolymer sensing materials could lead to efficient low cost bio-detection schemes.
Andjelkovic, Dejan D; Larock, Richard C
2006-03-01
Novel thermosetting copolymers, ranging from tough and ductile to very soft rubbers, have been prepared by the cationic copolymerization of regular (SOY) and 100% conjugated soybean oils (C(100)SOY) with dicyclopentadiene (DCP) catalyzed by Norway fish oil (NFO)-modified and SOY- and C(100)SOY-diluted boron trifluoride diethyl etherate (BFE). The gelation time of the reactions varies from 4 to 991 min at 110 degrees C. The yields of the bulk copolymers are essentially quantitative, while the yields of the cross-linked copolymers remaining after Soxhlet extraction with methylene chloride range from 69% to 88%, depending on the monomer stoichiometry and the catalyst used. (1)H NMR spectroscopy and Soxhlet extraction data indicate that these copolymers consist of a cross-linked soybean oil-DCP network plasticized by certain amounts of methylene chloride-soluble linear or less cross-linked soybean oil-DCP copolymers, unreacted oil, and some low molecular weight hydrolyzed oil. The molecular weights of these soluble fractions are in the range from 400 to 10,000 g/mol based on polystyrene standards. The bulk copolymers have glass transition temperatures ranging from -22.6 to 56.6 degrees C, while their tan delta peak values range from 0.7 to 1.2. Thermogravimetric analysis (TGA) indicates that these soybean oil-DCP copolymers are thermally stable below 200 degrees C, with 10% and 50% weight loss temperatures ranging from 280 to 372 degrees C and 470-554 degrees C, respectively. These properties suggest that these biobased thermosets may prove useful alternatives to current petroleum-based plastics and find widespread utility.
NASA Astrophysics Data System (ADS)
Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van
2016-03-01
Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.
Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less
Heat Capacity of Spider Silk-like Block Copolymers
Huang, Wenwen; Krishnaji, Sreevidhya; Hu, Xiao; Kaplan, David; Cebe, Peggy
2012-01-01
We synthesized and characterized a new family of di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk, having the form HABn and HBAn (n=1–3), comprising an alanine-rich hydrophobic block, A, a glycine-rich hydrophilic block, B, and a histidine tag, H. The reversing heat capacities, Cp(T), for temperatures below and above the glass transition, Tg, were measured by temperature modulated differential scanning calorimetry. For the solid state, we then calculated the heat capacities of our novel block copolymers based on the vibrational motions of the constituent poly(amino acid)s, whose heat capacities are known or can be estimated from the ATHAS Data Bank. For the liquid state, the heat capacity was estimated by using the rotational and translational motions in the polymer chain. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this method can serve as a standard by which to assess the Cp for other biologically inspired block copolymers. The fraction of beta sheet crystallinity of spider silk block copolymers was also determined by using the predicted Cp, and was verified by wide angle X-ray diffraction and Fourier transform infrared spectroscopy. The glass transition temperatures of spider silk block copolymer were fitted by Kwei’s equation and the results indicate that attractive interaction exists between the A-block and B-block. PMID:23869111
Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.; ...
2018-04-10
Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less
21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.
Code of Federal Regulations, 2014 CFR
2014-04-01
... conditions: (a) The coating is applied as a continuous film over one or both sides of a base film produced... acrylate, and acrylic acid. The finished copolymers contain at least 50 weight-percent of polymer units...
Ryno, Lisa M; Reese, Cassandra; Tolan, McKenzie; O'Brien, Jeffrey; Short, Gabriel; Sorriano, Gerardo; Nettleton, Jason; Fulton, Kayleen; Iovine, Peter M
2014-08-11
End-functionalized macromolecular starch reagents, prepared by reductive amination, were grafted onto a urethane-linked polyester-based backbone using copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to produce novel amphiphilic hybrid graft copolymers. These copolymers represent the first examples of materials where the pendant chains derived from starch biopolymers have been incorporated into a host polymer by a grafting-to approach. The graft copolymers were prepared in good yields (63-90%) with high grafting efficiencies (66-98%). Rigorous quantitative spectroscopic analyses of both the macromolecular building blocks and the final graft copolymers provide a comprehensive analytical toolbox for deciphering the reaction chemistry. Due to the modular nature of both the urethane-linked polyester synthesis and the postpolymerization modification, the starch content of these novel hybrid graft copolymers was easily tuned from 28-53% (w/w). The uptake of two low molecular weight guest molecules into the hybrid polymer thin films was also studied. It was found that binding of 1-naphthol and pterostilbene correlated linearly with amount of starch present in the hybrid polymer. The newly synthesized graft copolymers were highly processable and thermally stable, therefore, opening up significant opportunities in film and coating applications. These results represent a proof-of-concept system for not only the construction of starch-containing copolymers, but also the loading of these novel polymeric materials with active agents.
Qiu, Feng; Wang, Dali; Zhu, Qi; Zhu, Lijuan; Tong, Gangsheng; Lu, Yunfeng; Yan, Deyue; Zhu, Xinyuan
2014-04-14
Chemotherapy is one of the major systemic treatments for cancer, in which the drug release kinetics is a key factor for drug delivery. In the present work, a versatile fluorescence-based real-time monitoring system for intracellular drug release has been developed. First, two kinds of star-conjugated copolymers with different connections (e.g., pH-responsive acylhydrazone and stable ether) between a hyperbranched conjugated polymer (HCP) core and many linear poly(ethylene glycol) (PEG) arms were synthesized. Owing to the amphiphilic three-dimensional architecture, the star-conjugated copolymers could self-assemble into multimicelle aggregates from unimolecular micelles with excellent emission performance in the aqueous medium. When doxorubicin (DOX) as a model drug was encapsulated into copolymer micelles, the emission of star-conjugated copolymer and DOX was quenched. In vitro biological studies revealed that fluorescent intensities of both star-conjugated copolymer and DOX were activated when the drug was released from copolymeric micelles, resulting in the enhanced cellular proliferation inhibition against cancer cells. Importantly, pH-responsive feature of the star-conjugated copolymer with acylhydrazone linkage exhibited accelerated DOX release at a mildly acidic environment, because of the fast breakage of acylhydrazone in endosome or lysosome of tumor cells. Such fluorescent star-conjugated copolymers may open up new perspectives to real-time study of drug release kinetics of polymeric drug delivery systems for cancer therapy.
Numerical Boundary Condition Procedures
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.
Polar order in nanostructured organic materials
NASA Astrophysics Data System (ADS)
Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.
2003-02-01
Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.
NASA Technical Reports Server (NTRS)
Janus, J. Mark; Whitfield, David L.
1990-01-01
Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misichronis, Konstantinos; Wang, Weiyu; Cheng, Shiwang
2018-01-29
Multigraft copolymer superelastomers consisting of a poly(n-butyl acrylate) backbone and polystyrene side chains were synthesized and the viscoelastic properties of the non-sulfonated and sulfonated final materials were investigated using extensional rheology (SER3). The non-linear viscoelastic experiments revealed significantly increased true stresses (up to 10 times higher) after sulfonating only 2–3% of the copolymer while the materials maintained high elongation (<700%). The linear viscoelastic experiments showed that the storage and loss modulus are increased by sulfonation and that the copolymers can be readily tuned and further improved by increasing the number of branching points and the molecular weight of the backbone.more » Here, in this way, we show that by tuning not only the molecular characteristics of the multigraft copolymers but also their architecture and chemical interaction, we can acquire thermoplastic superelastomer materials with desired viscoelastic properties.« less
Gou, Peng-Fei; Zhu, Wei-Pu; Shen, Zhi-Quan
2010-04-12
Novel drug-conjugated amphiphilic A(14)B(7) miktoarm star copolymers composed of 14 poly(epsilon-caprolactone) (PCL) arms and 7 poly(ethylene glycol) (PEG) arms with beta-cyclodextrin (beta-CD) as core moiety were synthesized by the combination of controlled ring-opening polymerization (CROP) and "click" chemistry. (1)H NMR, FT-IR, and SEC-MALLS analyses confirmed the well-defined A(14)B(7) miktoarm star architecture. These amphiphilic miktoarm star copolymers could self-assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Moreover, the drug-loading efficiency and drug-encapsulation efficiency of the drug-conjugated miktoarm star copolymers were higher than those of the corresponding non-drug-conjugated miktoarm star copolymers.
BODIPY-Based Donor-Acceptor Pi-Conjugated Alternating Copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popere, Bhooshan C.; Della Pelle, Andrea M.; Thayumanavan, S.
2011-06-28
Four novel π-conjugated copolymers incorporating 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) core as the “donor” and quinoxaline (Qx), 2,1,3-benzothiadiazole (BzT), N,N'-di(2'-ethyl)hexyl-3,4,7,8-naphthalenetetracarboxylic diimide (NDI), and N,N'-di(2'-ethyl)hexyl-3,4,9,10-perylene tetracarboxylic diimide (PDI) as acceptors were designed and synthesized via Sonogashira polymerization. The polymers were characterized by ¹H NMR spectroscopy, gel permeation chromatography (GPC), UV–vis absorption spectroscopy, and cyclic voltammetry. Density functional theory (DFT) calculations were performed on polymer repeat units, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were estimated from the optimized geometry using B3LYP functional and 6-311g(d,p) basis set. Copolymers with Qx and BzT possessed HOMO and LUMOmore » energy levels comparable to those of BODIPY homopolymer, while PDI stabilized both HOMO and LUMO levels. Semiconductor behavior of these polymers was estimated in organic thin-film transistors (OTFT). While the homopolymer, Qx, and BzT-based copolymers showed only p-type semiconductor behavior, copolymers with PDI and NDI showed only n-type behavior.« less
Lo, Kin Cheung; Hau, King In; Chan, Wai Kin
2018-04-05
Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.
New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.
Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun
2016-07-18
The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)
Lee, Jae Won; Cho, Hye Jin; Chun, Jinsung; Kim, Kyeong Nam; Kim, Seongsu; Ahn, Chang Won; Kim, Ill Won; Kim, Ju-Young; Kim, Sang-Woo; Yang, Changduk; Baik, Jeong Min
2017-01-01
A robust nanogenerator based on poly(tert-butyl acrylate) (PtBA)–grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of the ester functional groups in the PtBA, resulting in the increase of dielectric constant values by approximately twice, supported by Kelvin probe force microscopy measurements. This increase in the dielectric constant significantly increased the density of the charges that can be accumulated on the copolymer during physical contact. The nanogenerator generates output signals of 105 V and 25 μA/cm2, a 20-fold enhancement in output power, compared to pristine PVDF–based nanogenerator after tuning the surface potential using a poling method. The markedly enhanced output performance is quite stable and reliable in harsh mechanical environments due to the high flexibility of the films. On the basis of these results, a much faster charging characteristic is demonstrated in this study. PMID:28560339
Kanimozhi, Catherine; Balraju, P; Sharma, G D; Patil, Satish
2010-03-11
The diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as a donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with a maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620-800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.68% (as cast PDPP-BBT:PCBM), 1.51% (annealed PDPP-BBT:PCBM), 1.57% (as cast TDPP-BBT:PCBM), and 2.78% (annealed TDPP-BBT:PCBM), under illumination of AM 1.5 (100 mW/cm(2)). The higher PCE for TDPP-BBT-based polymer solar cells has been attributed to the low band gap of this copolymer as compared to PDPP-BBT, which increases the numbers of photogenerated excitons and corresponding photocurrent of the device. These results indicate that PDPP-BBT and TDPP-BBT act as excellent electron donors for bulk heterojunction devices.
Block copolymer adhesion promoters via ring-opening metathesis polymerization
Kent, M.S.; Saunders, R.
1997-02-18
Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.
Block copolymer adhesion promoters via ring-opening metathesis polymerization
Kent, Michael S.; Saunders, Randall
1997-01-01
Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.
Mebarek, Naila; Aubert-Pouëssel, Anne; Gérardin, Corine; Vicente, Rita; Devoisselle, Jean-Marie; Bégu, Sylvie
2013-10-01
Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance. Copyright © 2013 Elsevier B.V. All rights reserved.
Micellar Packing in Aqueous Solutions of As-Received and Pure Pluronic Block Copolymers
NASA Astrophysics Data System (ADS)
Ryu, Chang; Park, Han Jin
2013-03-01
Pluronic block copolymers (Pluronics) are produced on a commercial scale to enable wide range of novel applications from emulsification and colloidal stabilization as nonionic surfactants. While the Pluronic block copolymers offer the advantages of being readily available for such applications, it contains non-micellizable low molecular weight (MW) impurities that would interfere with the self-assembly and micellar packing of PEO-PPO-PEO triblock copolymers in aqueous solutions. The impacts of the low MW impurities will be discussed on the micellar packing of Pluronics F108 and F127 solutions, which form BCC and FCC. While as-received Pluronic samples typically contain about 20 wt.% low MW impurities, we were able to reduce the impurity level to less than 2 wt.% using our large scale purification technique. Comparative studies on small angle x-ray scattering (SAXS) experiments on as-received and purified Pluronics solutions revealed that the contents of triblock copolymers in solutions essentially governs the inter-micellar distance of Pluronic cubic structures. A universal relationship between triblock copolymer concentration and SAXS-based domain spacing has been finally discussed. Funding from Agency for Defense Development, Korea.
Wang, Zhen; Cao, Yuanyuan; Song, Jiaqi; Xie, Zhigang; Wang, Yapei
2016-09-20
Tuning the amphiphilicity of block copolymers has been extensively exploited to manipulate the morphological transition of aggregates. The introduction of crystallizable moieties into the amphiphilic copolymers also offers increasing possibilities for regulating self-assembled structures. In this work, we demonstrate a detailed investigation of the self-assembly behavior of amphiphilic poly(ethylene glycol)-block-poly(l-lactic acid) (PEG-b-PLLA) diblock copolymers with the assistance of a common solvent in aqueous solution. With a given length of the PEG block, the molecular weight of the PLA block has great effect on the morphologies of self-assembled nanoaggregates as a result of varying molecular amphiphilicity and polymer crystallization. Common solvents including N,N-dimethylformamide, dioxane, and tetrahydrofuran involved in the early stage of self-assembly led to the change in chain configuration, which further influences the self-assembly of block copolymers. This study expanded the scope of PLA-based copolymers and proposed a possible mechanism of the sphere-to-lozenge and platelet-to-cylinder morphological transitions.
Heat resistant polymers of oxidized styrylphosphine
NASA Technical Reports Server (NTRS)
Paciorek, K. J. L. (Inventor)
1978-01-01
Homopolymers, copolymers and terpolymers of a styrene based monomer are prepared by polymerizing at least one oxidized styrylphosphine monomer or by polymerizing p-diphenylphosphinestyrene and then oxidizing the polymerized monomer with an organoazide. Copolymers can also be prepared by copolymerizing styrene with at least one oxidized styrylphosphine monomer. Flame resistant vinyl based polymers whose degradation products are non toxic and non corrosive are obtained.
NASA Astrophysics Data System (ADS)
de la Llave Plata, M.; Couaillier, V.; Le Pape, M.-C.; Marmignon, C.; Gazaix, M.
2013-03-01
This paper reports recent work on the extension of the multiblock structured solver elsA to deal with hybrid grids. The new hybrid-grid solver is called elsA-H (elsA-Hybrid), is based on the investigation of a new unstructured-grid module has been built within the original elsA CFD (computational fluid dynamics) system. The implementation benefits from the flexibility of the object-oriented design. The aim of elsA-H is to take advantage of the full potential of structured solvers and unstructured mesh generation by allowing any type of grid to be used within the same simulation process. The main challenge lies in the numerical treatment of the hybrid-grid interfaces where blocks of different type meet. In particular, one must pay attention to the transfer of information across these boundaries, so that the accuracy of the numerical scheme is preserved and flux conservation is guaranteed. In this paper, the numerical approach allowing to achieve this is presented. A comparison between the hybrid and the structured-grid methods is also carried out by considering a fully hexahedral multiblock mesh for which a few blocks have been transformed into unstructured. The performance of elsA-H for the simulation of internal flows will be demonstrated on a number of turbomachinery configurations.
NASA Astrophysics Data System (ADS)
Nouri-Borujerdi, Ali; Moazezi, Arash
2018-01-01
The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In the thick wall, the energy equation is obtained by Laplace equation. A multi-block approach is used to perform parallel computing to reduce the CPU time. Each block is modeled separately by sharing boundary conditions with neighbors. The developed program for modeling was written in FORTRAN language with OpenMP API. The obtained results showed that using of the multi-block parallel computing method is a simple robust scheme with high performance and high-order accurate. Moreover, the obtained results demonstrated that the increment of Reynolds number and obstacle height as well as decrement of horizontal distance between the obstacle and the step improve the heat transfer.
NASA Astrophysics Data System (ADS)
Rassamesard, Areefen; Pengpan, Teparksorn
2017-02-01
This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ < Z < D < TPD < OXD < TP < BT < TD. The TD is indicated as the most effective acceptor among those that were simulated. However, the small energy gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar spectrum. Hence, the BT acceptor functional group provides a compromise in the characteristics of a donor-acceptor copolymer, useful in a polymeric candidate material for the photoactive layer in a polymer solar cell.
Nagarajan, Ramanathan
2015-07-01
Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to obtain different micelle sizes for the same block copolymer, by the choices we can make of the common solvent and the mode of solvent substitution. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Besada, Lucas N.; Peruzzo, Pablo; Cortizo, Ana M.; Cortizo, M. Susana
2018-03-01
Polymersomes are polymer-based vesicles that form upon hydration of amphiphilic block copolymers and display high stability and durability, due to their mechanical and physical properties. They have hydrophilic reservoirs as well as thick hydrophobic membranes; allowing to encapsulate both water-soluble bioactive agent and hydrophobic drugs. In this study, poly ethylene glycol (PEG3350 and PEG6000) were used as hydrophilic part and poly(vinyl benzoate) (PVBz) as hydrophobic block to synthesize amphiphilic triblock copolymers (PVBz- b-PEG- b-PVBz). Different proportions of hydrophilic/hydrophobic part were assayed in order to obtain polymersomes by solvent injection method. For the synthesis of the copolymers, the initial block of PEG was derived to obtain a macroinitiator through a xanthate functional group (PEGX3 or PEGX6) and the polymerization of vinyl benzoate was carried out through reversible addition-fragmentation chain transfer polymerization (RAFT). The structure of PEGX and copolymers was confirmed by Infrared, 1H-NMR and UV-Vis spectrometry, while the average molecular weight (Mw) and polydispersity index (PI) were determined by size exclusion chromatography (SEC). The structures adopted by the copolymers in aqueous solution by self-assembly were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Both techniques confirm that polymersomes were obtained for a fraction of hydrophilic block ( f) ≈ 35 ± 10%, with a diameter of 38.3 ± 0.3 nm or 22.5 ± 0.7 nm, as determined by TEM and according to the M w of the precursor block copolymer. In addition, we analyzed the possible cytotoxicity in view of its potential application as biomedical nanocarrier. The results suggest that polymersomes seem not induce cytotoxicity during the periods of time tested.
Boufflet, Pierre; Wood, Sebastian; Wade, Jessica; Fei, Zhuping; Kim, Ji-Seon
2016-01-01
Summary The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophene)s and poly(3-octylthiophene) (F-P3OT-b-P3OT). Two block co-polymers with varying block lengths were prepared via sequential monomer addition under Kumada catalyst transfer polymerisation (KCTP) conditions. We compare the behavior of the block copolymer to that of the corresponding homopolymer blends. In both types of system, we find the fluorinated segments tend to dominate the UV–visible absorption and molecular vibrational spectral features, as well as the thermal behavior. In the block copolymer case, non-fluorinated segments appear to slightly frustrate the aggregation of the more fluorinated block. However, in situ temperature dependent Raman spectroscopy shows that the intramolecular order is more thermally stable in the block copolymer than in the corresponding blend, suggesting that such materials may be interesting for enhanced thermal stability of organic photovoltaic active layers based on similar systems. PMID:27829922
Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure.
Koga, Tomoyuki; Aso, Eri; Higashi, Nobuyuki
2016-11-29
Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser) ester -b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.
Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying
2015-04-14
Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.
Photodegradable neutral-cationic brush block copolymers for nonviral gene delivery.
Hu, Xianglong; Li, Yang; Liu, Tao; Zhang, Guoying; Liu, Shiyong
2014-08-01
We report on the fabrication of a photodegradable gene-delivery vector based on PEO-b-P(GMA-g-PDMAEMA) neutral-cationic brush block copolymers that possess cationic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brushes for DNA compaction, poly(ethylene oxide) (PEO) as a hydrophilic block, and poly(glycidyl methacrylate) (PGMA) as the backbone. The PEO-b-P(GMA-g-PDMAEMA) copolymers were synthesized through the combination of reversible addition-fragmentation transfer (RAFT) polymerization and postmodification. A photocleavable PEO-based macroRAFT agent was first synthesized; next, the PEO-b-PGMA block copolymer was prepared by RAFT polymerization of GMA; this was followed by a click reaction to introduce the RAFT initiators on the side chains of the PGMA block; then, RAFT polymerization of DMAEMA afforded the PEO-b-P(GMA-g-PDMAEMA) copolymer. The obtained neutral-cationic brush block copolymer could effectively complex plasmid DNA (pDNA) into nanoparticles at an N/P ratio (i.e., the number of nitrogen residues per DNA phosphate) of 4. Upon UV irradiation, pDNA could be released owing to cleavage of the pDNA-binding cationic PDMAEMA side chains as well as the nitrobenzyl ester linkages at the diblock junction point. In addition, in vitro gene transfection results demonstrated that the polyplexes could be effectively internalized by cells with good transfection efficiency, and the UV irradiation protocol could considerably enhance the efficiency of gene transfection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rod-Coil Block Polyimide Copolymers
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)
2005-01-01
This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.
1982-01-01
The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.
NASA Astrophysics Data System (ADS)
Wu, Chuanjian; Yu, Zhong; Sokolov, Alexander S.; Yu, Chengju; Sun, Ke; Jiang, Xiaona; Lan, Zhongwen; Harris, Vincent G.
2018-05-01
Discussed is a novel self-biased hexaferrite gelling system based on a nontoxic and water-soluble copolymer of isobutylene and maleic anhydride. This copolymer simultaneously acts as a dispersant and gelling agent, and recently received much attention from the ceramics community. Herein its effects on the rheological conditions throughout magnetic-field pressing, and consequently, orientation, density and magnetic properties of textured hexaferrites were investigated. Ka-band FMR linewidths were measured, and the crystalline anisotropy and porosity induced linewidth broadening were estimated according to Schlömann's theory. The copolymer allowed to reduce the friction between micron-sized magnetic particulates, resulting in higher density and degree of crystalline orientation, and lower FMR linewidth.
Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry
NASA Astrophysics Data System (ADS)
Pederson, Erik Norman
Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.
Maity, Sudhangshu; Jana, Tushar
2014-05-14
A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.
A new method to analyze copolymer based superplasticizer traces in cement leachates.
Guérandel, Cyril; Vernex-Loset, Lionel; Krier, Gabriel; De Lanève, Michel; Guillot, Xavier; Pierre, Christian; Muller, Jean François
2011-03-15
Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste leachates. Copyright © 2011 Elsevier B.V. All rights reserved.
Turabee, Md Hasan; Thambi, Thavasyappan; Lym, Jae Seung; Lee, Doo Sung
2017-03-28
Stimuli-responsive polypeptides are a promising class of biomaterials due to their tunable physicochemical and biological properties. Herein, a series of novel pH- and thermo-responsive block copolymers based on polypeptides were synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in the presence of poly(ethylene glycol)-diamine macroinitiator followed by aminolysis. The resulting polypeptide-based triblock copolymer, poly[(2-(dibutylamino)ethyl-l-glutamate)-co-(γ-benzyl-l-glutamate)]-poly(ethylene glycol)-b-poly[(2-(dibutylamino)ethyl-l-glutamate)-co-(γ-benzyl-l-glutamate)] (PNLG-co-PBLG-b-PEG-b-PBLG-co-PNLG), exists as a low viscous sol at low pH and temperature (≤pH 6.4, 25 °C) but it transforms to a soft gel under physiological conditions (pH 7.4 and 37 °C). The physical properties of the polypeptide gel can be tuned by controlling the ratio between hydrophobic PBLG and pH-sensitive PNLG blocks. The polypeptide-based copolymer did not show any noticeable cytotoxicity to fibroblast cells in vitro. It was found that subcutaneous injection of the polypeptide copolymer solution into the dorsal region of Sprague-Dawley (SD) rats formed a gel instantly without major inflammation. The gels were completely biodegraded in six weeks and found to be bioresorbable. Human growth hormone (hGH)-loaded polypeptide-based biodegradable copolymer sols readily formed a viscoelastic gel that inhibited an initial burst and prolonged the hGH release for one week. Overall, due to their bioresorbable and sustained release protein characteristics, polypeptide hydrogels may serve as viable platforms for therapeutic protein delivery and the surface tunable properties of polypeptide hydrogels can be exploited for other potential therapeutic proteins.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.;
2016-01-01
This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.;
2017-01-01
This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.;
2015-01-01
This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.;
2015-01-01
This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.;
2014-01-01
This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.;
2015-01-01
This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.;
2014-01-01
This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.;
2017-01-01
This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.;
2016-01-01
This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.;
2018-01-01
This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
Cheng, Fei; Bonder, Edward M; Jäkle, Frieder
2013-11-20
Luminescent triarylborane homo and block copolymers with well-defined chain architectures were synthesized via reversible addition-fragmentation chain transfer polymerization of a vinyl-functionalized borane monomer. The Lewis acid properties of the polymers were exploited in the luminescent detection of fluoride ions. A dual-responsive fluoride sensor was developed by taking advantage of the reversible self-assembly of a PNIPAM-based amphiphilic block copolymer. Anion detection in aqueous solution was realized by introducing positively charged pyridinium moieties along the polymer chain.
Glutathione-mediated biodegradable polyurethanes derived from L-arabinitol.
de Paz, M Violante; Zamora, Francisca; Begines, Belén; Ferris, Cristina; Galbis, Juan A
2010-01-11
The synthesis, characterization, and some properties of new glutathione-mediated biodegradable sugar-based copolyurethanes are described. These copolyurethanes were obtained by polyaddition reaction of mixtures of 2,2'-dithiodiethanol (DiT) and 2,3,4-tri-O-benzyl-L-arabinitol (ArBn) or 2,3,4-tri-O-methyl-L-arabinitol (ArMe) to 1,6-hexamethylene diisocyanate (HMDI). The copolymer compositions were studied by elemental microanalyses and (1)H NMR, revealing that the content of the copolymer units is in all cases very similar to that of their corresponding feed. The PU(DiT-HMDI) homopolymer exhibited a high crystallinity, but the introduction of the arabinitol-based diols led to a reduction in the crystallinity of the copolymers. In their TG curves, the copolymers exhibited a mixed trend of the related homopolymers, and all of them were thermally stable, with degradation temperatures above 220 degrees C. The degradation properties of the macromolecules under physiological conditions in the presence of glutathione were tested. All the copolyurethanes proved to be biodegradable under the experimental conditions (pH = 7.02 and 37 degrees C). The degradation pattern of the copolymers depended not only on the dithiodiethanol (DiT) reactive units ratio in the polymer backbone, but also on the crystallinity of the macromolecule.
Bashir, Mubasher A; Radke, Wolfgang
2012-02-17
The retention behavior of a range of statistical poly(styrene/ethylacrylate) copolymers is investigated, in order to determine the possibility to predict retention volumes of these copolymers based on a suitable chromatographic retention model. It was found that the composition of elution in gradient chromatography of the copolymers is closely related to the eluent composition at which, in isocratic chromatography, the transition from elution in adsorption to exclusion mode occurs. For homopolymers this transition takes place at a critical eluent composition at which the molar mass dependence of elution volume vanishes. Thus, similar critical eluent compositions can be defined for statistical copolymers. The existence of a critical eluent composition is further supported by the narrower peak width, indicating that the broad molar mass distribution of the samples does not contribute to the retention volume. It is shown that the existing retention model for homopolymers allows for correct quantitative predictions of retention volumes based on only three appropriate initial experiments. The selection of these initial experiments involves a gradient run and two isocratic experiments, one at the composition of elution calculated from first gradient run and second at a slightly higher eluent strength. Copyright © 2011 Elsevier B.V. All rights reserved.
A novel acrylamide-free flocculant and its application for sludge dewatering.
Lu, Lianghua; Pan, Zhida; Hao, Nan; Peng, Wenqing
2014-06-15
In the present research, copolymers of methyl acrylate (MA) with anionic or cationic monomers were synthesized via emulsion polymerization, and used as sludge dewatering aids in wastewater treatment. The copolymerization of different stoichiometry of two monomers afforded a variety of water soluble copolymers with charge densities ranging from 40% to 80%, which align with the charge density of current flocculant products. These copolymers resemble current commercial products, but provide a greener solution by eliminating acrylamide monomer, which is a suspected carcinogen. High molecular weight copolymers were achieved by applying powder-like synthesis process with intrinsic viscosity of final products as high as 12.98 dl/g for anionic flocculant and 10.74 dl/g for cationic flocculant. The copolymers of methyl acrylate and [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) with 55% charge density exhibited comparable performance in clay settling test, real water jar test, and sludge dewatering, when compared to AM-based commercial product in the real wastewater treatment application. Copyright © 2014 Elsevier Ltd. All rights reserved.
Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M
2014-10-01
Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers were synthesized and used to prepare polymersomes loaded separately by the hydrophobic and hydrophilic model drugs, atorvastatin and lisinopril, respectively. The resulting nanostructures were characterized by various techniques such as FTIR, DSC, PCS and AFM. The polymersomes exhibited high encapsulation efficiencies of almost 78% and 70.8% for atorvastatin and lisinopril, respectively. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between atorvastatin and the copolymer. The impact of drug/copolymer ratio and copolymer composition on drug-loading efficiency and drug release behavior were also studied. The results showed that in case of lisinopril, polymersomes exhibited a triphasic drug release, while for atorvastatin a biphasic release profile was obtained. Overall, the results indicated that PLA-PEG-PLA polymersomes can be considered as a promising carrier for both hydrophilic and hydrophobic drugs.
NASA Astrophysics Data System (ADS)
Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin
2012-02-01
Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.
Wang, Jia-Yu; Marks, Jeremy; Lee, Ka Yee C.
2013-01-01
PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity- they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompany study on dynamic nuclear polarization (DNP)-derived hydration dynamics1. PMID:22808900
Fast assembly of ordered block copolymer nanostructures through microwave annealing.
Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M
2010-11-23
Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy.
Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal
2015-01-01
Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573
Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...
2015-05-15
The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less
Separator for alkaline batteries and method of making same
NASA Technical Reports Server (NTRS)
Hoyt, H. E.; Pfluger, H. L. (Inventor)
1970-01-01
The preparation of membranes suitable for use as separators in concentrated alkaline battery cells by selective solvolysis of copolymers of methacrylate esters with acrylate esters followed by addition of a base and to the resultant products is described. The method of making copolymers by first copolymerizing a methacrylate ester (or esters) with a more readily hydrolyzable ester, followed by a selective saponification whereby the methacrylate ester moieties remain essentially intact and the readily hydrolyzable ester moiety is suponified and to the partial or complete neutralization of the relatively brittle copolymer acid with a base to make membranes which are sufficiently flexible in the dry state so that they may be wrapped around electrodes without damage by handling is described.
Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.
Morgese, Giulia; Ramakrishna, Shivaprakash N; Simic, Rok; Zenobi-Wong, Marcy; Benetti, Edmondo M
2018-02-12
Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a "lying down" conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, "standing up" structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.
Copolymers from photochemical thiol-ene polycondensation of fatty dienes with alkyl dithiols
USDA-ARS?s Scientific Manuscript database
Photochemical thiol-ene polycondensation of unsaturated monomers based on renewable 9-decenoic acid with various alkyl dithiols readily afforded copolymers in high yield. Monomers were prepared by acid-catalyzed condensation of 9-decenoic acid with diols such as ethylene glycol, 1,2-propylene glycol...
Single-layer electroluminescent devices based on fluorene-1H-pyrazolo[3,4-b]quinoxaline co-polymers
NASA Astrophysics Data System (ADS)
Pokladko-Kowar, Monika; Danel, Andrzej; Chacaga, Łukasz
2013-11-01
A fluorene based copolymer was synthesized for electroluminescent application. To the main chain of polymer the nitrogen heterocyclic, 1H-pyrazolo[3,4-b]quinoxaline, unit was introduced. The incorporation of this derivative tuned the emission from the blue to yellow-green one. A simple, single layered device was fabricated with the configuration ITO/PEDOT/co-poly-FLU-PQX/Ca/Mg.
Improved Tumor Targeting of Polymer-based Nanovesicles Using Polymer-Lipid Blends
Cheng, Zhiliang; Elias, Drew R.; Kamat, Neha P.; Johnston, Eric D.; Poloukhtine, Andrei; Popik, Vladimir; Hammer, Daniel A.; Tsourkas, Andrew
2011-01-01
Block copolymer-based vesicles have recently garnered a great deal of interest as nanoplatforms for drug delivery and molecular imaging applications due to their unique structural properties. These nanovesicles have been shown to direct their cargo to disease sites either through enhanced permeability and retention or even more efficiently via active targeting. Here we show that the efficacy of nanovesicle targeting can be significantly improved when prepared from polymer-lipid blends compared with block copolymer alone. Polymer-lipid hybrid nanovesicles were produced from the aqueous co-assembly of the diblock copolymer, poly(ethylene oxide)-block-polybutadiene (PEO-PBD), and the phospholipid, hydrogenated soy phosphatidylcholine (HSPC). The PEG-based vesicles, 117 nm in diameter, were functionalized with either folic acid or anti-HER2/neu affibodies as targeting ligands to confer specificity for cancer cells. Our results revealed that nanovesicles prepared from polymer-lipid blends led to significant improvement in cell binding compared to nanovesicles prepared from block copolymer alone in both in vitro cell studies and murine tumor models. Therefore, it is envisioned that nanovesicles composed of polymer-lipid blends may constitute a preferred embodiment for targeted drug delivery and molecular imaging applications. PMID:21899335
A Theoretically Informed Model for the Rheology of Entangled Block Copolymer Nanocomposites
NASA Astrophysics Data System (ADS)
Su, Yongrui; Ramirez-Hernandez, Abelardo; Peters, Brandon; de Pablo, Juan J.
2014-03-01
The addition of nanoparticles to block copolymer systems has been shown to have important effects on their equilibrium structure and properties. Less is known about the non-equilibrium behavior of block polymer nanocomposites. A new particle-based, theoretically informed coarse-grained model for multicomponent nanocomposites is proposed to examine the effects of nanoparticles on the rheology of entangled block copolymer melts. Entanglements are treated at the two-molecule level, through slip-springs that couple the dynamics of neighboring pairs of chains. The inclusion of slip-springs changes the polymer dynamics from unentangled to entangled. The nanoparticles are functionalized with short polymer chains that can entangle with the copolymers. We study the nonlinear rheology of the resulting nanocomposites under shear flow with a dissipative particle dynamics (DPD) thermostat.
NASA Astrophysics Data System (ADS)
Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang
2016-08-01
Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block. Electronic supplementary information (ESI) available: Detailed experimental procedures, additional schemes and supplementary data including NMR, FTIR, TEM, DLS, UV-Vis, FCS, and fluorescence microscopy images. See DOI: 10.1039/c6nr04290b
Hehn, Mathias; Wagner, Thomas; Hiller, Wolf
2014-01-07
Online LCCC-NMR and SEC-NMR are compared regarding the determination of molar masses of block copolymers. Two different direct referencing methods are particularly demonstrated in LCCC-NMR for a detailed characterization of diblock copolymers and their co-monomers. First, an intramolecular reference group was used for the direct determination of block lengths and molar masses. For the first time, it was shown that LCCC-NMR can be used for an accurate determination of Mw and Mn of copolymers. These data were in perfect agreement with SEC-NMR measurements using the same intramolecular referencing method. In contrast, the determination of molar masses with common relative methods based on calibrations with homopolymers delivered inaccurate results for all investigated diblock copolymers due to different hydrodynamic volumes of the diblock copolymer compared to their homopolymers. The intramolecular referencing method provided detailed insights in the co-monomer behavior during the chromatographic separation of LCCC. Especially, accurate chain lengths and chemical compositions of the "invisible" and "visible" blocks were quantified during the elution under critical conditions and provided new aspects to the concept of critical conditions. Second, an external reference NMR signal was used to directly determine concentrations and molar masses of the block copolymers from the chromatographic elution profile. Consequently, the intensity axes of the resulting chromatograms were converted to molar amounts and masses, allowing for determination of the amount of polymer chains with respect to elution volume, the evaluation of the limiting magnitude of concentration for LCCC-NMR, and determination of the molar masses of copolymers.
Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip
2010-01-01
Molecular dynamics (MD) simulation was used to investigate the solubility of two hydrophobic drugs Cucurbitacin B (CuB) and Cucurbitacin I (CuI) in poly(ethylene oxide)-b-poly(alpha-benzyl carboxylate epsilon-caprolactone) (PEO-b-PBCL) block copolymers with different tacticities. In particular, di-block copolymer with three different tacticities viz. PEO-b-iPBCL, PEO-b-sPBCL, and PEO-b-aPBCL were used. The solubility was quantified by calculating the corresponding Flory-Huggins interaction parameters (chi) using random binary mixture models with 10wt% of drug. The tacticity of the di-block copolymer was found to influence significantly the solubility of two drugs in it. In particular, based on MD simulation results, only PEO-b-sPBCL exhibited solubility while the other two did not. Given the fact that the drugs were shown to be soluble in PEO-b-PBCL experimentally, it is predicted that the tacticity of the di-block copolymer synthesized in experiment is syndiotactic. This predication matches well with the dominant ring opening polymerization of cyclic lactones to syndiotactic polymers by stannous octoate as catalyst used to prepare PEO-b-PBCL block copolymers in our previous experiments. The simulation results showed that the solubility of the drugs in PEO-b-sPBCL is attributed to the favorable intra-molecular interaction of the di-block copolymer and favorable intermolecular interaction between the di-block copolymer and the drugs. Radial distribution function analysis provides useful insights into the nature and type of the intermolecular interactions.
A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers
NASA Technical Reports Server (NTRS)
Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)
1997-01-01
The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.
NASA Astrophysics Data System (ADS)
Kim, S. C.; Hayter, E. J.; Pruhs, R.; Luong, P.; Lackey, T. C.
2016-12-01
The geophysical scale circulation of the Mid Atlantic Bight and hydrologic inputs from adjacent Chesapeake Bay watersheds and tributaries influences the hydrodynamics and transport of the James River estuary. Both barotropic and baroclinic transport govern the hydrodynamics of this partially stratified estuary. Modeling the placement of dredged sediment requires accommodating this wide spectrum of atmospheric and hydrodynamic scales. The Geophysical Scale Multi-Block (GSMB) Transport Modeling System is a collection of multiple well established and USACE approved process models. Taking advantage of the parallel computing capability of multi-block modeling, we performed one year three-dimensional modeling of hydrodynamics in supporting simulation of dredged sediment placements transport and morphology changes. Model forcing includes spatially and temporally varying meteorological conditions and hydrological inputs from the watershed. Surface heat flux estimates were derived from the National Solar Radiation Database (NSRDB). The open water boundary condition for water level was obtained from an ADCIRC model application of the U. S. East Coast. Temperature-salinity boundary conditions were obtained from the Environmental Protection Agency (EPA) Chesapeake Bay Program (CBP) long-term monitoring stations database. Simulated water levels were calibrated and verified by comparison with National Oceanic and Atmospheric Administration (NOAA) tide gage locations. A harmonic analysis of the modeled tides was performed and compared with NOAA tide prediction data. In addition, project specific circulation was verified using US Army Corps of Engineers (USACE) drogue data. Salinity and temperature transport was verified at seven CBP long term monitoring stations along the navigation channel. Simulation and analysis of model results suggest that GSMB is capable of resolving the long duration, multi-scale processes inherent to practical engineering problems such as dredged material placement stability.
Park, Jong Baek; Isik, Mehmet; Park, Hea Jung; Jung, In Hwan; Mecerreyes, David; Hwang, Do-Hoon
2018-02-07
Interfacial layers play a critical role in building up the Ohmic contact between electrodes and functional layers in organic photovoltaic (OPV) solar cells. These layers are based on either inorganic oxides (ZnO and TiO 2 ) or water-soluble organic polymers such as poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)] and polyethylenimine ethoxylated (PEIE). In this work, we have developed a series of novel poly(ionic liquid) nonconjugated block copolymers for improving the performance of inverted OPV cells by using them as work function modifiers of the indium tin oxide (ITO) cathode. Four nonconjugated polyelectrolytes (n-CPEs) based on polystyrene and imidazolium poly(ionic liquid) (PSImCl) were synthesized by reversible addition-fragmentation chain transfer polymerization. The ratio of hydrophobic/hydrophilic block copolymers was varied depending on the ratio of polystyrene to the PSImCl block. The ionic density, which controls the work function of the electrode by forming an interfacial dipole between the electrode and the block copolymers, was easily tuned by simply changing the PSImCl molar ratio. The inverted OPV device with the ITO/PS 29 -b-PSImCl 60 cathode achieved the best power conversion efficiency (PCE) of 7.55% among the synthesized block copolymers, exhibiting an even higher PCE than that of the reference OPV device with PEIE (7.30%). Furthermore, the surface properties of the block copolymers films were investigated by contact angle measurements to explore the influence of the controlled hydrophobic/hydrophilic characters on the device performances.
Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Maji, Samarendra; Hoogenboom, Richard; Rohner, Nathan A; Thomas, Susan N; Román, Julio San
2016-12-01
Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poloxamer-188 reduces muscular edema after tourniquet-induced ischemia-reperfusion injury in rats.
Walters, Thomas J; Mase, Vincent J; Roe, Janet L; Dubick, Michael A; Christy, Robert J
2011-05-01
Skeletal muscle injury can result in significant edema, which can in turn lead to the development of acute extremity compartment syndrome (CS). Poloxamer-188 (P-188), a multiblock copolymer surfactant, has been shown to decrease edema by sealing damaged membranes in a number of tissues after a variety of injury modalities. The objective is to determine whether the administration of P-188 significantly reduces skeletal muscle edema associated with ischemia/reperfusion injury (I-R). Male Sprague-Dawley rats underwent 180 minutes of tourniquet-induced ischemia. Five minutes before tourniquet release, rats received either a bolus of (1) P-188 (150 mg/kg; P-188 group) or (2) vehicle (Vehicle group) via a jugular catheter (n=10 per group). After 240 minutes reperfusion, both groups received a second bolus of either P-188 (P-188) or vehicle (Vehicle) via a tail vein catheter. Sixteen hours later, rats were killed; muscle weights were determined, infarct size (2,3,5-triphenyltetrazolium chloride method), and blinded histologic analysis (hematoxylin and eosin) were performed on the gastrocnemius and tibialis anterior muscles, as well as indices of antioxidant status. P-188 resulted in significantly less edema (wet weight) and reduced an index of lipid peroxidation compared with Vehicle (p<0.05). Wet:dry weight ratios were less in the P-188 group (indicating less edema). Muscle viability as indicated by 2,3,5-triphenyltetrazolium chloride staining or routine histology did not reveal statistically significant differences between groups. P-188 significantly reduced ischemia-reperfusion-related muscle edema and lipid peroxidation but did not impact muscle viability. Excess edema can lead to acute extremity CS, which is associated with significant morbidity and mortality. P-188 may provide a potential adjunctive treatment for the reduction of CS.
High temperature polymers for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Einsla, Brian Russel
Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect.
Kinetics Modeling of Hypergolic Propellants
2013-07-01
comprehensive preconditioning and employs the line Gauss Seidel algorithm for the solution of the linear system. A multi-block unstructured mesh is...Explosives, Pyrotechnics, 33(3):209–212, 2008. 24Wei-Guang Liu, Shiqing Wang, Siddharth Dasgupta, Stefan T Thynell, William A Goddard III, Sergey Zybin
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine
2017-01-18
Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.
Gök, Mehmet Koray; Özgümüş, Saadet; Demir, Kamber; Cirit, Ümüt; Pabuccuoğlu, Serhat; Cevher, Erdal; Özsoy, Yıldız; Bacınoğlu, Süleyman
2016-01-20
The aim of this study was to prepare and evaluate the mucoadhesive, biocompatible and biodegradable progesterone containing vaginal tablets based on modified starch copolymers for the estrus synchronization of ewes. Starch-graft-poly(acrylic acid) copolymers (S-g-PAA) were synthesized and characterized. The vaginal tablets were fabricated with S-g-PAA and their equilibrium swelling degree (Qe) and matrix erosion (ME%) were determined in lactate buffer solution. In vitro, mucoadhesive properties of the tablets were investigated by using ewe vaginal mucosa and in vivo residence time were also investigated. In vitro and in vivo progesterone release profiles from the tablets were compared with two commercial products. Tablet formulation containing wheat starch based grafted copolymer (WS-g-PAA)gc indicated promising results and might be convenient as an alternative product to the commercial products in veterinary medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Yong; Zhao, Yajun; Ye, Yunsheng; Peng, Haiyan; Zhou, Xingping; Xie, Xiaolin; Wang, Xianhong; Wang, Fosong
2018-03-26
The one-step synthesis of well-defined CO 2 -based diblock copolymers was achieved by simultaneous ring-opening copolymerization (ROCOP) of CO 2 /epoxides and RAFT polymerization of vinyl monomers using a trithiocarbonate compound bearing a carboxylic group (TTC-COOH) as the bifunctional chain transfer agent (CTA). The double chain-transfer effect allows for independent and precise control over the molecular weight of the two blocks and ensures narrow polydispersities of the resultant block copolymers (1.09-1.14). Notably, an unusual axial group exchange reaction between the aluminum porphyrin catalyst and TTC-COOH impedes the formation of homopolycarbonates. By taking advantage of the RAFT technique, it is able to meet the stringent demand for functionality control to well expand the application scopes of CO 2 -based polycarbonates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Random benzotrithiophene-based donor-acceptor copolymers for efficient organic photovoltaic devices.
Nielsen, Christian B; Ashraf, Raja Shahid; Schroeder, Bob C; D'Angelo, Pasquale; Watkins, Scott E; Song, Kigook; Anthopoulos, Thomas D; McCulloch, Iain
2012-06-14
A series of benzotrithiophene-containing random terpolymers for polymer solar cells is reported. Through variations of the two other components in the terpolymers, the absorption profile and the frontier energy levels are optimized and maximum power conversion efficiencies are nearly doubled (5.14%) relative to the parent alternating copolymer.
USDA-ARS?s Scientific Manuscript database
Graft copolymers of waxy maize starch and sodium lignosulfonate (SLS) were prepared by Trametes Versicolor laccase catalysis in aqueous solution. Amount of SLS grafted based on phenol analysis was 0.5% and 1.0% in the absence and presence of 1-hydroxybenzotriazole (HBT), respectively. Starch-SLS gra...
Synthesis of Eugenol–Lauryl Methacrylate Copolymers via Cationic Polymerization
NASA Astrophysics Data System (ADS)
Fajrin, A.; Marliana, SD; Handayani, D. S.
2018-04-01
Eugenol is one of the most abundant natural resources in Indonesia. The recently bio-based polymer resin is created based on eugenol because eugenol is functionalized with the polymerizable group. In order to improve the functional properties of eugenol, in this research Eugenol–Lauryl Methacrylate copolymers (co-poly(Eg-LMA)) were synthesized by cationic polymerization using H2SO4 as an initiator under the nitrogen atmosphere. Structure identification of the copolymer showed the absorption of the vinyl group from the monomers disappear at the analysis through FTIR at the wave number 1637-1639 and 985-995 cm-1 and also 1H-NMR on the chemical shift 5,97 and 5,08 ppm. The resulting copolymers obtained brown powder in 32.03 % yieldsand melting point at 96 – 97 °C. Solubility test of the co-poly(Eg-LMA) showed that the polymer couldnot soluble in water but soluble in chloroform, diethyl ether, and benzene. Average molecular weight of co-poly(Eg-LMA) Led Ostwald viscometry was obtained 42020 with the degree of polymerization by 200.
Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study.
Samanta, Susruta; Roccatano, Danilo
2013-03-21
Curcumin, a naturally occurring drug molecule, has been extensively investigated for its various potential usages in medicine. Its water insolubility and high metabolism rate require the use of drug delivery systems to make it effective in the human body. Among various types of nanocarriers, block copolymer based ones are the most effective. These polymers are broadly used as drug-delivery systems, but the nature of this process is poorly understood. In this paper, we propose a molecular dynamics simulation study of the interaction of Curcumin with block copolymer based on polyethylene oxide (PEO) and polypropylene oxide (PPO). The study has been conducted considering the smallest PEO and PPO oligomers and multiple chains of the block copolymer Pluronic P85. Our study shows that the more hydrophobic 1,2-dimethoxypropane (DMP) molecules and PPO block preferentially coat the Curcumin molecule. In the case of the Pluronic P85, simulation shows formation of a drug-polymer aggregate within 50 ns. This process leaves exposed the PEO part of the polymers, resulting in better solvation and stability of the drug in water.
Timberman, Anthony; Yang, Rongfang; Papantones, Alex; Seitz, W. Rudolf
2018-01-01
A new type of biomimetic templated copolymer has been prepared by reverse addition fragmentation chain transfer polymerization (RAFT) in dioxane. The initial formulation includes the template fluorescein, N-isopropylacrylamide (NIPAM, 84 mol %), methacrylic acid (MAA, 5-mol %), 4-vinylpyridine (4-VP, 9 mmol %), and N,N′-methylenebis(acrylamide) (MBA, 2 mol %). PolyNIPAM is a thermosensitive polymer that comes out of aqueous solution above its lower critical solution temperature forming hydrophobic ‘crosslinks’. MAA and 4-VP interact in dioxane forming acid–base crosslinks. The excess 4-VP serves as a recognition monomer organizing around the template fluorescein to form a binding site that is held in place by the noncovalent and covalent crosslinks. The MBA is a covalent crosslinker. The RAFT agent in the resulting copolylmer was reduced to a thiol and attached to gold nanoparticles. The gold nanoparticle bound copolymer binds fluorescein completely in less than two seconds with an affinity constant greater than 108 M−1. A reference copolymer prepared with the same monomers by the same procedure binds fluorescein much more weakly. PMID:29693601
Cycloolefin/cyanoacrylate (COCA) copolymers for 193-nm and 157-nm lithography
NASA Astrophysics Data System (ADS)
Dammel, Ralph R.; Sakamuri, Raj; Lee, Sang-Ho; Rahman, Dalil; Kudo, Takanori; Romano, Andrew R.; Rhodes, Larry F.; Lipian, John-Henry; Hacker, Cheryl; Barnes, Dennis A.
2002-07-01
The copolymerization reaction between methyl cyanoacrylate (MCA) and a variety of cycloolefins (CO) was investigated. Cycololefin/cyanoacrylate (COCA) copolymers were obtained in good yields and with lithographically interesting molecular weights for all cycoolefins studied. Anionic MCA homopolymerization could be largely suppressed using acetic acid. Based on NMR data, the copolymerization may tend to a 1:1 CO:MCA incorporation ratio but further work with better suppression of the anionic component is needed to confirm this. Lithographic tests on copolymers of appropriately substituted norbornenes and MCA showed semi-dense and isolated line performance down to 90 nm.
NASA Astrophysics Data System (ADS)
Hadade, Ioan; di Mare, Luca
2016-08-01
Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.
Description of the F-16XL Geometry and Computational Grids Used in CAWAPI
NASA Technical Reports Server (NTRS)
Boelens, O. J.; Badcock, K. J.; Gortz, S.; Morton, S.; Fritz, W.; Karman, S. L., Jr.; Michal, T.; Lamar, J. E.
2009-01-01
The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory NLR. Although the algorithms used by NLR had become available just before CAWAPI and thus only a limited experience with their application to such a complex configuration had been gained, a grid of good quality was generated well within four weeks. This time compared favourably with that required to produce the unstructured grids in CAWAPI. The baseline all-tetrahedral and hybrid unstructured grids has been generated at NASA Langley Research Center and the USAFA, respectively. To provide more geometrical resolution, trimmed unstructured grids have been generated at EADS-MAS, the UTSimCenter, Boeing Phantom Works and KTH/FOI. All grids generated within the framework of CAWAPI will be discussed in the article. Both results obtained on the structured grids and the unstructured grids showed a significant improvement in agreement with flight test data in comparison with those obtained on the structured multi-block grid used during CAWAP.
Wei, Jing; Shuai, Xiaoyu; Wang, Rui; He, Xueling; Li, Yiwen; Ding, Mingming; Li, Jiehua; Tan, Hong; Fu, Qiang
2017-11-01
Targeted delivery of therapeutics and diagnostics using nanotechnology holds great promise to minimize the side effects of conventional chemotherapy and enable specific and real-time detection of diseases. To realize this goal, we report a clickable and imageable nanovehicle assembled from multiblock polyurethanes (MPUs). The soft segments of the polymers are based on detachable poly(ethylene glycol) (PEG) and degradable poly(ε-caprolactone) (PCL), and the hard segments are constructed from lysine- and cystine-derivatives bearing reduction-responsive disulfide linkages and click-active alkynyl moieties, allowing for post-conjugation of targeting ligands via a click chemistry. It was found that the cleavage of PEG corona bearing a pH-sensitive benzoic-imine linkage (BPEG) could act as an on-off switch, which is capable of activating the clicked targeting ligands under extracellular acidic condition, followed by triggering the core degradation and payload release within tumor cells. In combination with superparamagnetic iron oxide nanoparticles (SPION) clustered within the micellar core, the MPUs exhibit excellent magnetic resonance imaging (MRI) contrast effects and T 2 relaxation in vitro, as well as magnetically guided MR imaging and multimodal targeting of therapeutics to tumor precisely, leading to significant inhibition of cancer with minimal side effect. This work provides a safe and versatile platform for the further development of smart theranostic systems for potential magnetically-targeted and imaging-guided personalized medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations
Zhang, Wenxu; Liu, Ye; Jackson, Aaron C.; ...
2016-06-22
Triblock and diblock copolymers based on isoprene (Ip) and chloromethylstyrene (CMS) were synthesized in this paper by sequential polymerization using reversible addition–fragmentation chain transfer radical polymerization (RAFT). The block copolymers were quaternized with tris(2,4,6-trimethoxyphenyl)phosphine (Ar 3P) to prepare soluble ionomers. The ionomers were cast from chloroform to form anion exchange membranes (AEMs) with highly ordered morphologies. At low volume fractions of ionic blocks, the ionomers formed lamellar morphologies, while at moderate volume fractions (≥30% for triblock and ≥22% for diblock copolymers) hexagonal phases with an ionic matrix were observed. Ion conductivities were higher through the hexagonal phase matrix than inmore » the lamellar phases. Finally, promising chloride conductivities (20 mS/cm) were achieved at elevated temperatures and humidified conditions.« less
Dispersion and alignment of nanorods in cylindrical block copolymer thin films.
Rasin, Boris; Chao, Huikuan; Jiang, Guoqian; Wang, Dongliang; Riggleman, Robert A; Composto, Russell J
2016-02-21
Although significant progress has been made in controlling the dispersion of spherical nanoparticles in block copolymer thin films, our ability to disperse and control the assembly of anisotropic nanoparticles into well-defined structures is lacking in comparison. Here we use a combination of experiments and field theoretic simulations to examine the assembly of gold nanorods (AuNRs) in a block copolymer. Experimentally, poly(2-vinylpyridine)-grafted AuNRs (P2VP-AuNRs) are incorporated into poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) thin films with a vertical cylinder morphology. At sufficiently low concentrations, the AuNRs disperse in the block copolymer thin film. For these dispersed AuNR systems, atomic force microscopy combined with sequential ultraviolet ozone etching indicates that the P2VP-AuNRs segregate to the base of the P2VP cylinders. Furthermore, top-down transmission electron microscopy imaging shows that the P2VP-AuNRs mainly lie parallel to the substrate. Our field theoretic simulations indicate that the NRs are strongly attracted to the cylinder base where they can relieve the local stretching of the minority block of the copolymer. These simulations also indicate conditions that will drive AuNRs to adopt a vertical orientation, namely by increasing nanorod length and/or reducing the wetting of the short block towards the substrate.
Synthesis of cellulose diacetate based copolymer electrospun nanofibers for tissues scaffold
NASA Astrophysics Data System (ADS)
Liang, Wencheng; Hou, Jia; Fang, Xiangchen; Bai, Fudong; Zhu, Tonghe; Gao, Feifei; Wei, Chao; Mo, Xiumei; Lang, Meidong
2018-06-01
In this study, a novel cellulose diacetate based copolymer used as tissues scaffold, cellulose diacetate-graft-poly(ethylene terephthalate) (CDA-g-PET) was developed by "graft onto" strategy using 3-Isocyanatomethyl-3,5,5-trimethylcyc-lohexyl isocyanate (IPDI) as a coupling reagent of cellulose diacetate and poly(ethylene terephthalate), and using dibutyltin dilaurate (DBTDL) and 1-butyl-3-methylimidazolium chloride salt ([Bmim]Cl) as catalysts. CDA-g-PET copolymers with five different grafting ratios were obtained by the regulation of the reaction time. It was proved by the FT-IR spectra of the purified copolymers that PET had been successfully grafted onto CDA backbone. Afterwards, CDA-g-PET nanofibers were fabricated via electrospinning and further were cross-linked by means of treating in glutaraldehyde (25%wt) aqueous solution for 48 h. The uniform and smooth fiber morphology was proved by SEM and the diameter decreased with the increase of grafting ratio. Moreover, the value of TGA revealed that the grafting PET onto CDA backbone would improve heat-resistant quality of CDA and help to improve the ability of thermo processing. The graft of PET onto CDA significantly enhanced mechanical property of copolymer compared with CDA. The results of hemolysis ratio indicated that hemolysis ratio has decreased compared with CDA, highlighting the potential application in the field of contacting with blood. In vitro cell viability indicated that CDA-g-PET would enhance biocompatibility compared with CDA.
Efficient encapsulation of proteins with random copolymers.
Nguyen, Trung Dac; Qiao, Baofu; Olvera de la Cruz, Monica
2018-06-12
Membraneless organelles are aggregates of disordered proteins that form spontaneously to promote specific cellular functions in vivo. The possibility of synthesizing membraneless organelles out of cells will therefore enable fabrication of protein-based materials with functions inherent to biological matter. Since random copolymers contain various compositions and sequences of solvophobic and solvophilic groups, they are expected to function in nonbiological media similarly to a set of disordered proteins in membraneless organelles. Interestingly, the internal environment of these organelles has been noted to behave more like an organic solvent than like water. Therefore, an adsorbed layer of random copolymers that mimics the function of disordered proteins could, in principle, protect and enhance the proteins' enzymatic activity even in organic solvents, which are ideal when the products and/or the reactants have limited solubility in aqueous media. Here, we demonstrate via multiscale simulations that random copolymers efficiently incorporate proteins into different solvents with the potential to optimize their enzymatic activity. We investigate the key factors that govern the ability of random copolymers to encapsulate proteins, including the adsorption energy, copolymer average composition, and solvent selectivity. The adsorbed polymer chains have remarkably similar sequences, indicating that the proteins are able to select certain sequences that best reduce their exposure to the solvent. We also find that the protein surface coverage decreases when the fluctuation in the average distance between the protein adsorption sites increases. The results herein set the stage for computational design of random copolymers for stabilizing and delivering proteins across multiple media.
In-depth analysis of switchable glycerol based polymeric coatings for cell sheet engineering.
Becherer, Tobias; Heinen, Silke; Wei, Qiang; Haag, Rainer; Weinhart, Marie
2015-10-01
Scaffold-free cell sheet engineering using thermoresponsive substrates provides a promising alternative to conventional tissue engineering which in general employs biodegradable scaffold materials. We have previously developed a thermoresponsive coating with glycerol based linear copolymers that enables gentle harvesting of entire cell sheets. In this article we present an in-depth analysis of these thermoresponsive linear polyglycidyl ethers and their performance as coating for substrates in cell culture in comparison with commercially available poly(N-isopropylacrylamide) (PNIPAM) coated culture dishes. A series of copolymers of glycidyl methyl ether (GME) and glycidyl ethyl ether (EGE) was prepared in order to study their thermoresponsive properties in solution and on the surface with respect to the comonomer ratio. In both cases, when grafted to planar surfaces or spherical nanoparticles, the applied thermoresponsive polyglycerol coatings render the respective surfaces switchable. Protein adsorption experiments on copolymer coated planar surfaces with surface plasmon resonance (SPR) spectroscopy reveal the ability of the tested thermoresponsive coatings to be switched between highly protein resistant and adsorptive states. Cell culture experiments demonstrate that these thermoresponsive coatings allow for adhesion and proliferation of NIH 3T3 fibroblasts comparable to TCPS and faster than on PNIPAM substrates. Temperature triggered detachment of complete cell sheets from copolymer coated substrates was accomplished within minutes while maintaining high viability of the harvested cells. Thus such glycerol based copolymers present a promising alternative to PNIPAM as a thermoresponsive coating of cell culture substrates. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Recent advances in 193-nm single-layer photoresists based on alternating copolymers of cycloolefins
NASA Astrophysics Data System (ADS)
Houlihan, Francis M.; Wallow, Thomas I.; Timko, Allen G.; Neria, E.; Hutton, Richard S.; Cirelli, Raymond A.; Nalamasu, Omkaram; Reichmanis, Elsa
1997-07-01
We report on our recent investigations on the formulation and processing of 193 nm single layer photoresists based on alternating copolymers of cycloolefins with maleic anhydride. Resists formulated with cycloolefin copolymers are compatible with 0.262 N tetramethylammonium developers, have excellent adhesion, sensitivity, etch resistance and thermal flow properties. The effect of polymer structure and composition, dissolution inhibitor structure and loading as well as the effect of the photoacid generator on the resist dissolution properties was investigated. Based on the results high contrast formulations were evaluated on a GCA XLS (NA equals 0.53, 4X reduction optics) deep-UV stepper to exhibit 0.27 micrometer L/S pair resolution with excellent photosensitivity. Based on the dissolution properties and a spectroscopic examination of the resist, we have designed materials that show less than 0.17 micrometer L/S pair resolution with 193 nm exposures. In this paper, the formulation methodology is detailed and the most recent results upon both with 248 and 193 nm irradiation are described.
Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun
2005-04-27
Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.
Barouti, Ghislaine; Khalil, Ali; Orione, Clement; Jarnouen, Kathleen; Cammas-Marion, Sandrine; Loyer, Pascal; Guillaume, Sophie M
2016-02-18
Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical simulation of rough-surface aerodynamics
NASA Astrophysics Data System (ADS)
Chi, Xingkai
Computational fluid dynamics (CFD) simulations of flow over surfaces with roughness in which the details of the surface geometry must be resolved pose major challenges. The objective of this study is to address these challenges through two important engineering problems, where roughness play a critical role---flow over airfoils with accrued ice and flow and heat transfer over turbine blade surfaces roughened by erosion and/or deposition. CFD simulations of iced airfoils face two major challenges. The first is how to generate high-quality single- and multi-block structured grids for highly convoluted convex and concave surface geometries with multiple scales. In this study, two methods were developed for the generation of high-quality grids for such geometries. The method developed for single-block grids involves generating a grid about the clean airfoil, carving out a portion of that grid about the airfoil, replacing that portion with a grid that accounts for the accrued ice geometry, and performing elliptic smoothing. The method developed for multi-block grids involves a transition-layer grid to ensure jaggedness in the ice geometry does not propagate into the domain. It also involves a "thick" wrap-around grid about the ice to ensure grid lines clustered next to solid surfaces do not propagate as streaks of tightly packed grid lines into the domain along block boundaries. For multi-block grids, this study also developed blocking topologies that ensure solutions to multi-block grids converge to steady state as quickly as single-block grids. The second major challenge in CFD simulations of iced airfoils is not knowing when it will predict reliably because of uncertainties in the turbulence modeling. In this study, the effects of turbulence models in predicting lift, drag, and moment coefficients were examined for airfoils with rime ice (i.e., ice with jaggedness only) and with glaze ice (i.e., ice with multiple protruding horns and surface jaggedness) as a function of angle of attack. In this examination, three different CFD codes---WIND, FLUENT, and PowerFLOW were used to examine a variety of turbulence models, including Spalart-Allmaras, RNG k-epsilon, shear-stress transport, v2-f, and differential Reynolds stress with and without non-equilibrium wall functions. The accuracy of the CFD predictions was evaluated by comparing grid-independent solutions with measured experimental data. Results obtained show CFD with WIND and FLUENT to predict the aerodynamics of airfoils with rime ice reliably up to near stall for all turbulence models investigated. (Abstract shortened by UMI.)
Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.
Abdel-Halim, E S
2012-10-01
Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.
In-situ Polymerization of Polyaniline/Polypyrrole Copolymer using Different Techniques
NASA Astrophysics Data System (ADS)
Hammad, A. S.; Noby, H.; Elkady, M. F.; El-Shazly, A. H.
2018-01-01
The morphology and surface area of the poly(aniline-co-pyrrole) copolymer (PANPY) are important properties which improve the efficiency of the copolymer in various applications. In this investigation, different techniques were employed to produce PANPY in different morphologies. Aniline and pyrrole were used as monomers, and ammonium peroxydisulfate (APS) was used as an oxidizer with uniform molar ratio. Rapid mixing, drop-wise mixing, and supercritical carbon dioxide (ScCO2) polymerization techniques were appointed. The chemical structure, crystallinity, porosity, and morphology of the composite were distinguished by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) analysis, and transmission electron microscopy (TEM) respectively. The characterization tests indicated that the polyaniline/polypyrrole copolymer was successfully prepared with different morphologies. Based on the obtained TEM, hollow nanospheres were formed using rapid mixing technique with acetic acid that have a diameter of 75 nm and thickness 26 nm approximately. Also, according to the XRD, the produced structures have a semi- crystalline structure. The synthesized copolymer with ScCO2-assisted polymerization technique showed improved surface area (38.1 m2/g) with HCl as dopant.
NASA Astrophysics Data System (ADS)
Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan
2007-06-01
A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).
Kugel, Alex; He, Jie; Samanta, Satyabrata; ...
2012-08-27
Here, a series of poly(1,9-nonamethylene adipamide-co-1,9-nonamethylene terephthalamide) copolymers were produced using melt polymerization and the thermal properties, crystal structure, and moisture uptake characterized. The results confirmed that the copolymers exhibit isomorphism. As expected, glass transition temperature and the apparent melting temperature increased with increasing terephthalmide content. Using the difference in the apparent melting temperature to the crystallization temperature as a measure of relative crystallization rate, it was observed that crystallization rate decreased as the terephthalamide content of the copolymer was increased from 0 to 50 mole percent but then sharply increased when increased beyond 50 mole percent. This behavior maymore » be the result of extensive inter- and intramolecular interactions in the melt associated with terephthalmide units in the polymer chain that nucleate crystallization upon cooling below the equilibrium melting temperature. Comparing the thermal properties of copolymers possessing an excess of terephthalmide units to the commodity polyamide Nylon 6,6, it is believed that these copolymers may have utility as partially renewable engineering thermoplastics.« less
Protein resistance of dextran and dextran-PEG copolymer films
Kozak, Darby; Chen, Annie; Bax, Jacinda; Trau, Matt
2011-01-01
The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m−2) of three molecular weights (10 000, 66 900, 400 000 g mol−1) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~ 5 to 0.5 mg m−2 with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (to ~2 mg m−2) indicating ternary adsorption of the smaller protein within the dextran layer. PMID:21614699
Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver
2017-01-01
Background Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Materials and methods Six different N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. Results The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. Conclusion The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO2) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient. PMID:28831253
Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver
2017-01-01
Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Six different N -(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO 2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO 2 ) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient.
Sterner, Eric; Masuko, Sayaka; Li, Guoyun; Li, Lingyun; Green, Dixy E.; Otto, Nigel J.; Xu, Yongmei; DeAngelis, Paul L.; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.
2014-01-01
Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ∼40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model. PMID:24563485
Luo, Shuangjiang; Stevens, Kevin A; Park, Jae Sung; Moon, Joshua D; Liu, Qiang; Freeman, Benny D; Guo, Ruilan
2016-01-27
Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.
Properties of styrene-maleic anhydride copolymers containing wood-based fillers
John Simonsen; Rodney Jacobson; Roger Rowell
1998-01-01
Recycled newsprint (ONP) and dry process aspen fiber were combined with styrene maleic anhydride (SMA) copolymers containing either 7 or 14 percent maleic anhydride. The fiber-filled SMA composites were equivalent or superior to unfilled SMA in strength, stiffness, and notched Izod impact strength. ONP performed surprisingly well as a filler. Unnotched Izod impact...
Khoee, Sepideh; Kavand, Alireza
2014-02-12
Novel pH-sensitive, biodegradable and biocompatible copolymers based on polycaprolactone-poly(ethylene glycol) (PCL/PEG) were synthesized and further modified with folic acid and/or acryloyl chloride. The mixed polymeric micelles were formed by self-assembling of folated-copolymer and non-folated-copolymer with different compositions via nanoprecipitation method. The solubilization of quercetin as anti-cancer drug by the mixed micelle with the optimized composition (folated/non-folated 20/80) was more efficient than those made of each one alone. Nanogels with different crosslinking density were produced in the presence of ethylene glycol dimethacrylate (EGDMA) as the crosslinker via a photochemical method. Interfacial crosslinking of acrylated groups were utilized to produce a core-shell spherical nanoparticle to evaluate their in-vitro drug release and degradation rate. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm
NASA Astrophysics Data System (ADS)
Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas
2012-02-01
Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.
NASA Astrophysics Data System (ADS)
Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel
2018-06-01
Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.
Azidated Ether-Butadiene-Ether Block Copolymers as Binders for Solid Propellants
NASA Astrophysics Data System (ADS)
Cappello, Miriam; Lamia, Pietro; Mura, Claudio; Polacco, Giovanni; Filippi, Sara
2016-07-01
Polymeric binders for solid propellants are usually based on hydroxyl-terminated polybutadiene (HTPB), which does not contribute to the overall energy output. Azidic polyethers represent an interesting alternative but may have poorer mechanical properties. Polybutadiene-polyether copolymers may combine the advantages of both. Four different ether-butadiene-ether triblock copolymers were prepared and azidated starting from halogenated and/or tosylated monomers using HTPB as initiator. The presence of the butadiene block complicates the azidation step and reduces the storage stability of the azidic polymer. Nevertheless, the procedure allows modifying the binder properties by varying the type and lengths of the energetic blocks.
NASA Astrophysics Data System (ADS)
Nykaza, Jacob Richard
In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.
Thermoplastic Adhesives based on polyolefin and olefinic copolymers
NASA Astrophysics Data System (ADS)
Paul, Rituparna
2014-03-01
H.B. Fuller has been a leading global industrial adhesive manufacturer for over 125 years. It is a company with a rich history of consistently delivering adhesive innovations for enhancing product performance in the market place. H.B. Fuller technologies/products find application in several markets including packaging, personal hygiene and nonwovens, durable assembly and electronics. In this presentation, H. B. Fuller's technology innovation journey will be shared with emphasis on groundbreaking technologies/products based on polyolefin and olefin copolymers.
Rapid self-assembly of block copolymers to photonic crystals
Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.
2016-07-05
The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.
NASA Astrophysics Data System (ADS)
Ma, Yuandong; Zheng, Yi; Liu, Kexin; Tian, Ge; Tian, Yan; Xu, Lei; Yan, Fei; Huang, Laiqiang; Mei, Lin
2010-07-01
Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization using stannous octoate as catalyst. The obtained random copolymers were characterized by 1H NMR, FTIR, GPC and TGA. The docetaxel-loaded nanoparticles made of PLGA-TPGS copolymer were prepared by a modified solvent extraction/evaporation method. The nanoparticles were then characterized by various state-of-the-art techniques. The results revealed that the size of PLGA-TPGS nanoparticles was around 250 nm. The docetaxel-loaded PLGA-TPGS nanoparticles could achieve much faster drug release in comparison with PLGA nanoparticles. In vitro cellular uptakes of such nanoparticles were investigated by CLSM, demonstrating the fluorescence PLGA-TPGS nanoparticles could be internalized by human cervix carcinoma cells (HeLa). The results also indicated that PLGA-TPGS-based nanoparticles were biocompatible, and the docetaxel-loaded PLGA-TPGS nanoparticles had significant cytotoxicity against Hela cells. The cytotoxicity against HeLa cells for PLGA-TPGS nanoparticles was in time- and concentration-dependent manner. In conclusion, PLGA-TPGS random copolymer could be acted as a novel and promising biocompatible polymeric matrix material applicable to nanoparticle-based drug delivery system for cancer chemotherapy.
Membrane-Based Gas Separation Accelerated by Hollow Nanosphere Architectures
Zhang, Jinshui; Schott, Jennifer Ann; Univ. of Tennessee, Knoxville, TN; ...
2016-11-15
We report that the coupling of hollow carbon nanospheres with triblock copolymers is a promising strategy to fabricate mixed-matrix membranes, because the symmetric microporous shells combine with the hollow space to promote gas transport and the unique soft-rigid molecular structure of triblock copolymers can accommodate a high loading of fillers without a significant loss of mechanical strength.
Quantum dot-polymer conjugates for stable luminescent displays.
Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai
2018-05-23
The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.
Formation and Characterization of Anisotropic Block Copolymer Gels
NASA Astrophysics Data System (ADS)
Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth
2012-02-01
Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.
Volden, Sondre; Kjøniksen, Anna-Lena; Zhu, Kaizheng; Genzer, Jan; Nyström, Bo; Glomm, Wilhelm R
2010-02-23
We demonstrate that the optical properties of gold nanoparticles can be used to detect and follow stimuli-induced changes in adsorbed macromolecules. Specifically, we investigate thermal response of anionic diblock and uncharged triblock copolymers based on poly(N-isopropylacrylamide) (PNIPAAM) blocks adsorbed onto gold nanoparticles and planar gold surfaces in a temperature range between 25 and 60 degrees C. By employing a palette of analytical probes, including UV-visible spectroscopy, dynamic light scattering, fluorescence, and quartz crystal microbalance with dissipation monitoring, we establish that while the anionic copolymer forms monolayers at both low and high temperature, the neutral copolymer adsorbs as a monolayer at low temperatures and forms multilayers above the cloud point (T(C)). Raising the temperature above T(C) severely affects the optical properties of the gold particle/polymer composites, expelling associated water and altering the immediate surroundings of the gold nanoparticles. This effect, stronger for the uncharged polymer, is related to the amount of polymer adsorbed on the surface, where a denser shell influences the surface plasmon band to a greater degree. This is corroborated with light scattering experiments, which reveal that flocculation of the neutral polymer-coated particles occurs at high temperatures. The flocculation behavior of the neutral copolymer on planar gold surfaces results in multilayer formation. The observed effects are discussed within the framework of the Mie-Drude theory.
NASA Astrophysics Data System (ADS)
Qi, Wei; Ghoroghchian, P. Peter; Li, Guizhi; Hammer, Daniel A.; Therien, Michael J.
2013-10-01
Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application.Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application. Electronic supplementary information (ESI) available: Materials and methods, characterization data. See DOI: 10.1039/c3nr03250g
Modeling and self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution
NASA Astrophysics Data System (ADS)
Wu, Xiaohan; Li, Suming; Coumes, Fanny; Darcos, Vincent; Lai Kee Him, Joséphine; Bron, Patrick
2013-09-01
A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and pharmaceutical applications.A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and pharmaceutical applications. Electronic supplementary information (ESI) available: 1H-NMR, DOSY, FTIR, and GPC measurements, methods and results of the copolymers in PEG-PLA-PEG synthesis. See DOI: 10.1039/c3nr02899b
Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; ...
2015-04-08
Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.
Amino Acid Block Copolymers with Broad Antimicrobial Activity and Barrier Properties.
Bevilacqua, Michael P; Huang, Daniel J; Wall, Brian D; Lane, Shalyn J; Edwards, Carl K; Hanson, Jarrod A; Benitez, Diego; Solomkin, Joseph S; Deming, Timothy J
2017-10-01
Antimicrobial properties of a long-chain, synthetic, cationic, and hydrophobic amino acid block copolymer are reported. In 5 and 60 min time-kill assays, solutions of K 100 L 40 block copolymers (poly(l-lysine·hydrochloride) 100 -b-poly(l-leucine) 40 ) at concentrations of 10-100 µg mL -1 show multi-log reductions in colony forming units of Gram-positive and Gram-negative bacteria, as well as yeast, including multidrug-resistant strains. Driven by association of hydrophobic segments, K 100 L 40 copolymers form viscous solutions and self-supporting hydrogels in water at concentrations of 1 and 2 wt%, respectively. These K 100 L 40 preparations provide an effective barrier to microbial contamination of wounds, as measured by multi-log decreases of tissue-associated bacteria with deliberate inoculation of porcine skin explants, porcine open wounds, and rodent closed wounds with foreign body. Based on these findings, amino acid copolymers with the features of K 100 L 40 can combine potent, direct antimicrobial activity and barrier properties in one biopolymer for a new approach to prevention of wound infections. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shao, Lin; Cao, Yang; Li, Zhanying; Hu, Wenbin; Li, Shize; Lu, Lingbin
2018-07-15
Alginate was grafted with NIPAM and NHMAM successfully, and a new responsive copolymer, alginate-g-P(NIPAM-co-NHMAM), was obtained. A novel dual responsive polysaccharide-based aerogel with thermo/pH sensitive properties was designed from the copolymer as drug controlled release system. The chemical structure of the copolymer was characterized by FT-IR and 1 H NMR. Lower critical solution temperature (LCST) of the copolymer covered a wide temperature range from 27.6 °C to 42.2 °C, which could be adjusted with changing the ratio between NIPAM and NHMAM. The dual responsive aerogel had a three-dimensional network structure. As a drug controlled release system, the aerogel was high responsive to both temperature and pH with drug loading efficiency up to 13.24%. Above LCST, the aerogel had a faster drug release, and drug was completely released in neutral environment, while the drug release was obstructed in acid environment. Furthermore, the drug release mechanism of the aerogel was illuminated. These results indicated that the dual responsive aerogel was a promising candidate for drug carriers. Copyright © 2018 Elsevier B.V. All rights reserved.
Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.
2016-01-01
CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964
Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li
2017-08-01
Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.
Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy
2016-07-11
Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chandler, Curran Matthew
Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts -- the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-bisoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2--3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern transfer template. In this scenario, block copolymer thin films on domain thick with self-assembled feature sizes of only 6--7 nm were used as plasma etch resists. Here the block copolymer's pattern was successfully transferred into the underlying SiO2 substrate using CF4--based reactive ion etching. The result was a parallel, cylindrical nanostructure etched into SiO2.
Bonartsev, A.P.; Bonartseva, G. A.; Myshkina, V. L.; Voinova, V. V.; Mahina, T. K.; Zharkova, I. I.; Yakovlev, S. G.; Zernov, A. L.; Ivanova, E. V.; Akoulina, E. A.; Kuznetsova, E. S.; Zhuikov, V. A.; Alekseeva, S. G.; Podgorskii, V. V.; Bessonov, I. V.; Kopitsyna, M. N.; Morozov, A. S.; Milanovskiy, E. Y.; Tyugay, Z. N.; Bykova, G. S.; Kirpichnikov, M. P.; Shaitan, K. V.
2016-01-01
Production of novel polyhydroxyalkanoates (PHAs), biodegradable polymers for biomedical applications, and biomaterials based on them is a promising trend in modern bioengineering. We studied the ability of an effective strain-producer Azotobacter chroococcum 7B to synthesize not only poly(3-hydroxybutyrate) homopolymer (PHB) and its main copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), but also a novel copolymer, poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB4MV). For the biosynthesis of PHB copolymers, we used carboxylic acids as additional carbon sources and monomer precursors in the chain of synthesized copolymers. The main parameters of these polymers’ biosynthesis were determined: strain-producer biomass yield, polymer yield, molecular weight and monomer composition of the synthesized polymers, as well as the morphology of A. chroococcum 7B bacterial cells. The physico-chemical properties of the polymers were studied using nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), contact angle test, and other methods. In vitro biocompatibility of the obtained polymers was investigated using stromal cells isolated from the bone marrow of rats with the XTT cell viability test. The synthesis of the novel copolymer PHB4MV and its chemical composition were demonstrated by NMR spectroscopy: the addition of 4-methylvaleric acid to the culture medium resulted in incorporation of 3-hydroxy-4-methylvalerate (3H4MV) monomers into the PHB polymer chain (0.6 mol%). Despite the low molar content of 3H4MV in the obtained copolymer, its physico-chemical properties were significantly different from those of the PHB homopolymer: it has lower crystallinity and a higher contact angle, i.e. the physico-chemical properties of the PHB4MV copolymer containing only 0.6 mol% of 3H4MV corresponded to a PHBV copolymer with a molar content ranging from 2.5% to 7.8%. In vitro biocompatibility of the obtained PHB4MV copolymer, measured in the XTT test, was not statistically different from the cell growth of PHB and PHBV polymers, which make its use possible in biomedical research and development. PMID:27795846
Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.
Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua
2018-03-15
Star-shaped copolymers with branched structures can form unimolecular micelles with better stability than the micelles self-assembled from conventional linear copolymers. However, the synthesis of star-shaped copolymers with precisely controlled degree of branching (DB) suffers from complicated sequential polymerizations and multi-step purification procedures, as well as repeated optimizations of polymer compositions. The use of a supramolecular host-guest pair as the block junction would significantly simplify the preparation. Moreover, the star-shaped copolymer-based unimolecular micelle provides an elegant solution to the tradeoff between extracellular stability and intracellular high therapeutic efficacy if the association/dissociation of the supramolecular host-guest joint can be triggered by the biologically relevant stimuli. For this purpose, in this study, a panel of supramolecular star-shaped amphiphilic block copolymers with 9, 12, and 18 arms were designed and fabricated by host-guest complexations between the ring-opening polymerization (ROP)-synthesized star-shaped poly(ε-caprolactone) (PCL) with 3, 4, and 6 arms end-capped with ferrocene (Fc) (PCL-Fc) and the atom transfer radical polymerization (ATRP)-produced 3-arm poly(oligo ethylene glycol) methacrylates (POEGMA) with different degrees of polymerization (DPs) of 24, 30, 47 initiated by β-cyclodextrin (β-CD) (3Br-β-CD-POEGMA). The effect of DB and polymer composition on the self-assembled properties of the five star-shaped copolymers was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence spectrometery. Interestingly, the micelles self-assembled from 12-arm star-shaped copolymers exhibited greater stability than the 9- and 18-arm formulations. The potential of the resulting supramolecular star-shaped amphiphilic copolymers as drug carriers was evaluated by an in vitro drug release study, which confirmed the ROS-triggered accelerated drug release from the doxorubicin (DOX)-loaded supramolecular star-shaped micelles due to the oxidation-induced dissociation of β-CD/Fc pair and the consequent loss of the colloidal stability of the star-shaped micelles. Studies of the delivery efficacy by an in vitro cytotoxicity study further indicated that higher DBs and longer hydrophilic arm compromised the therapeutic efficacy of the DOX-loaded supramolecular star-shaped micelles, resulting in significantly reduced cytotoxicity, as measured by increased IC 50 value. Overall, our results revealed that the screening of hydrophilic block by DB and MW for an optimized star-shaped copolymer should balance the stability versus therapeutic efficacy tradeoff for a comprehensive consideration. Therefore, the 12-arm star-shaped copolymer with POEGMA 30 is the best formulation tested. Copyright © 2017 Elsevier Inc. All rights reserved.
Loudiyi, M; Rutledge, D N; Aït-Kaddour, A
2018-10-30
Common Dimension (ComDim) chemometrics method for multi-block data analysis was employed to evaluate the impact of different added salts and ripening times on physicochemical, color, dynamic low amplitude oscillatory rheology, texture profile, and molecular structure (fluorescence and MIR spectroscopies) of five Cantal-type cheeses. Firstly, Independent Components Analysis (ICA) was applied separately on fluorescence and MIR spectra in order to extract the relevant signal source and the associated proportions related to molecular structure characteristics. ComDim was then applied on the 31 data tables corresponding to the proportion of ICA signals obtained for spectral methods and the global analysis of cheeses by the other techniques. The ComDim results indicated that generally cheeses made with 50% NaCl or with 75:25% NaCl/KCl exhibit the equivalent characteristics in structural, textural, meltability and color properties. The proposed methodology demonstrates the applicability of ComDim for the characterization of samples when different techniques describe the same samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
1998-01-01
A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.
NASA Technical Reports Server (NTRS)
Agrawal, Gagan; Sussman, Alan; Saltz, Joel
1993-01-01
Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). A combined runtime and compile-time approach for parallelizing these applications on distributed memory parallel machines in an efficient and machine-independent fashion was described. A runtime library which can be used to port these applications on distributed memory machines was designed and implemented. The library is currently implemented on several different systems. To further ease the task of application programmers, methods were developed for integrating this runtime library with compilers for HPK-like parallel programming languages. How this runtime library was integrated with the Fortran 90D compiler being developed at Syracuse University is discussed. Experimental results to demonstrate the efficacy of our approach are presented. A multiblock Navier-Stokes solver template and a multigrid code were experimented with. Our experimental results show that our primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20 percent of the code parallelized by manually inserting calls to the runtime library.
Two-Equation Turbulence Models for Prediction of Heat Transfer on a Transonic Turbine Blade
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Ameri, Ali A.; Gaugler, R. E. (Technical Monitor)
2001-01-01
Two versions of the two-equation k-omega model and a shear stress transport (SST) model are used in a three-dimensional, multi-block, Navier-Stokes code to compare the detailed heat transfer measurements on a transonic turbine blade. It is found that the SST model resolves the passage vortex better on the suction side of the blade, thus yielding a better comparison with the experimental data than either of the k-w models. However, the comparison is still deficient on the suction side of the blade. Use of the SST model does require the computation of distance from a wall, which for a multiblock grid, such as in the present case, can be complicated. However, a relatively easy fix for this problem was devised. Also addressed are issues such as (1) computation of the production term in the turbulence equations for aerodynamic applications, and (2) the relation between the computational and experimental values for the turbulence length scale, and its influence on the passage vortex on the suction side of the turbine blade.
Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Rigby, David L.
1998-01-01
A multi-block, three-dimensional Navier-Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VK1 rotor, and the main flow over the blade. A multi-block grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VK1 rotor the shower-head holes are inclined at 30 deg. to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the heat transfer coefficient at the blade mid-span with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)
2001-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.
LeRC-HT: NASA Lewis Research Center General Multiblock Navier-Stokes Heat Transfer Code Developed
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Gaugler, Raymond E.
1999-01-01
For the last several years, LeRC-HT, a three-dimensional computational fluid dynamics (CFD) computer code for analyzing gas turbine flow and convective heat transfer, has been evolving at the NASA Lewis Research Center. The code is unique in its ability to give a highly detailed representation of the flow field very close to solid surfaces. This is necessary for an accurate representation of fluid heat transfer and viscous shear stresses. The code has been used extensively for both internal cooling passage flows and hot gas path flows--including detailed film cooling calculations, complex tip-clearance gap flows, and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool (at least 35 technical papers have been published relative to the code and its application), but it should be useful for detailed design analysis. We now plan to make this code available to selected users for further evaluation.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugfer, Raymond E.
2002-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
2002-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid beat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M.-S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Lei, Y; Wang, T; Mitchell, J W; Qiu, J; Kilpatrick-Liverman, L
2014-12-01
Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and (1)H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet-visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. © International & American Associations for Dental Research.
Lei, Y.; Wang, T.; Mitchell, J.W.; Qiu, J.; Kilpatrick-Liverman, L.
2014-01-01
Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet–visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. PMID:25248611
Self-oscillating AB diblock copolymer developed by post modification strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueki, Takeshi, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota
We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle atmore » reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.« less
George C. Chen
2008-01-01
The aim of the present study was to combat wood decay based on the approach controlled-release biocides from polymers. The possibility of introducing polymer-bonded fungicides into the cell lumens was investigated. The synthesis of ethylene maleic anhydride copolymer containing pentachlorophenol (penta) and 8-hydroxy quinoline (8HQ) in N, N dimethyl formamide is...
Deng, Zexing; Guo, Yi; Zhao, Xin; Li, Longchao; Dong, Ruonan; Guo, Baolin; Ma, Peter X
2016-12-01
Development of flexible degradable electroactive shape memory polymers (ESMPs) with tunable switching temperature (around body temperature) for tissue engineering is still a challenge. Here we designed and synthesized a series of shape memory copolymers with electroactivity, super stretchability and tunable recovery temperature based on poly(ε-caprolactone) (PCL) with different molecular weight and conductive amino capped aniline trimer, and demonstrated their potential to enhance myogenic differentiation from C2C12 myoblast cells. We characterized the copolymers by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance ( 1 H NMR), cyclic voltammetry (CV), ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), shape memory test, tensile test and in vitro enzymatic degradation study. The electroactive biodegradable shape memory copolymers showed great elasticity, tunable recovery temperature around 37°C, and good shape memory properties. Furthermore, proliferation and differentiation of C2C12 myoblasts were investigated on electroactive copolymers films, and they greatly enhanced the proliferation, myotube formation and related myogenic differentiation genes expression of C2C12 myoblasts compared to the pure PCL with molecular weight of 80,000. Our study suggests that these electroactive, highly stretchable, biodegradable shape memory polymers with tunable recovery temperature near the body temperature have great potential in skeletal muscle tissue engineering application. Conducting polymers can regulate cell behavior such cell adhesion, proliferation, and differentiation with or without electrical stimulation. Therefore, they have great potential for electrical signal sensitive tissue regeneration. Although conducting biomaterials with degradability have been developed, highly stretchable and electroactive degradable copolymers for soft tissue engineering have been rarely reported. On the other hand, shape memory polymers (SMPs) have been widely used in biomedical fields. However, SMPs based on polyesters usually are biologically inert. This work reported the design of super stretchable electroactive degradable SMPs based on polycaprolactone and aniline trimer with tunable recovery temperature around body temperature. These flexible electroactive SMPs facilitated the proliferation and differentiation of C2C12 myoblast cells compared with polycaprolactone, indicating that they are excellent scaffolding biomaterials in tissue engineering to repair skeletal muscle and possibly other tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, Yuefei
Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous techniques have been demonstrated for classical block copolymers, the pi conjugation in the rod blocks allow for additional control mechanisms. Liquid crystals are traditionally aligned in magnetic fields. Here, it is demonstrated that if the rod-like blocks are aligned unidirectionally, the block copolymer interfaces follow to create macroscopic alignment of the nanostructures. Organic Light Emitting Diodes (OLEDs) are generally composed of electron transporting and hole transporting moieties to balance charge recombination. Here, a new multifunctional bipolar rod-coil block copolymer containing the hole transporting and electron transporting materials is synthesized. Self-assembly of this new block copolymer results in 15nm lamellae oriented in grains both parallel and perpendicula to the anode. The self-assembled block copolymer shows superior device performance to controls consisting of a luminescent, analogous homopolymer, and a blend of the two component homopolymers. The effects of the morphologies and chemical structure on photovoltaics is explored with a rod-coil block copolymer, (poly(3-hexylthiophene-b-acrylic perylene)). By varying the kinetics of self-assembly through processing, the block copolymer can be disordered, ordered with only short range registry between the nanodomains, or with long-range order. The short range ordered samples showed the best device performance suggesting that the connectivity that is a biproduct of poor order is beneficial for device performance.
Guan, Qingxiang; Sun, Dandan; Zhang, Guangyuan; Sun, Cheng; Wang, Miao; Ji, Danyang; Yang, Wei
2016-12-02
Poorly soluble drugs have low bioavailability after oral administration, thereby hindering effective drug delivery. A novel drug-delivery system of docetaxel (DTX)-based stearic acid (SA)-modified Bletilla striata polysaccharides (BSPs) copolymers was successfully developed. Particle size, zeta potential, encapsulation efficiency (EE), and loading capacity (LC) were determined. The DTX release percentage in vitro was determined using high performance liquid chromatography (HPLC). The hemolysis and in vitro anticancer activity were studied. Cellular uptake and apoptotic rate were measured using flow cytometry assay. Particle size, zeta potential, EE and LC were 125.30 ± 1.89 nm, -26.92 ± 0.18 mV, 86.6% ± 0.17%, and 14.8% ± 0.13%, respectively. The anticancer activities of DTX-SA-BSPs copolymer micelles against HepG2, HeLa, SW480, and MCF-7 (83.7% ± 1.0%, 54.5% ± 4.2%, 48.5% ± 4.2%, and 59.8% ± 1.4%, respectively) were superior to that of docetaxel injection (39.2% ± 1.1%, 44.5% ± 5.3%, 38.5% ± 5.4%, and 49.8% ± 2.9%, respectively) at 0.5 μg/mL drug concentration. The DTX release percentage of DTX-SA-BSPs copolymer micelles and docetaxel injection were 66.93% ± 1.79% and 97.06% ± 1.56% in two days, respectively. Cellular uptake of DTX-FITC-SA-BSPs copolymer micelles in cells had a time-dependent relation. Apoptotic rate of DTX-SA-BSPs copolymer micelles and docetaxel injection were 73.48% and 69.64%, respectively. The SA-BSPs copolymer showed good hemocompatibility. Therefore, SA-BSPs copolymer can be used as a carrier for delivering hydrophobic drugs.
Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee
2016-01-15
In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming). Copyright © 2015 Elsevier B.V. All rights reserved.
Durgam, Hymavathi; Sapp, Shawn; Deister, Curt; Khaing, Zin; Chang, Emily; Luebben, Silvia; Schmidt, Christine E
2010-01-01
Synthetic polymers such as polypyrrole (PPy) are gaining significance in neural studies because of their conductive properties. We evaluated two novel biodegradable block co-polymers of PPy with poly(epsilon-caprolactone) (PCL) and poly(ethyl cyanoacrylate) (PECA) for nerve regeneration applications. PPy-PCL and PPy-PECA co-polymers can be processed from solvent-based colloidal dispersions and have essentially the same or greater conductivity (32 S/cm for PPy-PCL, 19 S/cm for PPy-PECA) compared to the PPy homo-polymer (22 S/cm). The PPy portions of the co-polymers permit electrical stimulation whereas the PCL or PECA blocks enable degradation by hydrolysis. For in vitro tests, films were prepared on polycarbonate sheets by air brushing layers of dispersions and pressing the films. We characterized the films for hydrolytic degradation, electrical conductivity, cell proliferation and neurite extension. The co-polymers were sufficient to carry out electrical stimulation of cells without the requirement of a metallic conductor underneath the co-polymer film. In vitro electrical stimulation of PPy-PCL significantly increased the number of PC12 cells bearing neurites compared to unstimulated PPy-PCL. For in vivo experiments, the PPy co-polymers were coated onto the inner walls of nerve guidance channels (NGCs) made of the commercially available non-conducting biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV). The NGCs were implanted in a 10 mm defect made in the sciatic nerve of rats, and harvested after 8 weeks. Histological staining showed axonal growth. The studies indicated that these new conducting degradable biomaterials have good biocompatibility and support proliferation and growth of PC12 cells in vitro (with and without electrical stimulation) and neurons in vivo (without electrical stimulation).
Aerodynamic simulation on massively parallel systems
NASA Technical Reports Server (NTRS)
Haeuser, Jochem; Simon, Horst D.
1992-01-01
This paper briefly addresses the computational requirements for the analysis of complete configurations of aircraft and spacecraft currently under design to be used for advanced transportation in commercial applications as well as in space flight. The discussion clearly shows that massively parallel systems are the only alternative which is both cost effective and on the other hand can provide the necessary TeraFlops, needed to satisfy the narrow design margins of modern vehicles. It is assumed that the solution of the governing physical equations, i.e., the Navier-Stokes equations which may be complemented by chemistry and turbulence models, is done on multiblock grids. This technique is situated between the fully structured approach of classical boundary fitted grids and the fully unstructured tetrahedra grids. A fully structured grid best represents the flow physics, while the unstructured grid gives best geometrical flexibility. The multiblock grid employed is structured within a block, but completely unstructured on the block level. While a completely unstructured grid is not straightforward to parallelize, the above mentioned multiblock grid is inherently parallel, in particular for multiple instruction multiple datastream (MIMD) machines. In this paper guidelines are provided for setting up or modifying an existing sequential code so that a direct parallelization on a massively parallel system is possible. Results are presented for three parallel systems, namely the Intel hypercube, the Ncube hypercube, and the FPS 500 system. Some preliminary results for an 8K CM2 machine will also be mentioned. The code run is the two dimensional grid generation module of Grid, which is a general two dimensional and three dimensional grid generation code for complex geometries. A system of nonlinear Poisson equations is solved. This code is also a good testcase for complex fluid dynamics codes, since the same datastructures are used. All systems provided good speedups, but message passing MIMD systems seem to be best suited for large miltiblock applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathaway, M.D.; Wood, J.R.
1997-10-01
CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certainmore » features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.« less
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1989-01-01
Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.
Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell
NASA Astrophysics Data System (ADS)
Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei
2017-07-01
The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.
NASA Astrophysics Data System (ADS)
Toušek, J.; Toušková, J.; Remeš, Z.; Chomutová, R.; Čermák, J.; Helgesen, M.; Carlé, J. E.; Krebs, F. C.
2015-12-01
Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD - DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.
Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar
2014-10-13
This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fan, Wei; Wu, Xin; Ding, Baoyue; Gao, Jing; Cai, Zhen; Zhang, Wei; Yin, Dongfeng; Wang, Xiang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen
2012-01-01
Background Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers’ structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake. Methods This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers. Results Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to homogeneous distribution in the cytoplasm; those with a lower hydrophilic-lipophilic balance value prefer to localize in the nucleus. Conclusion This Pluronic-polyethyleneimine system may be worth exploring as components in the cationic copolymers as the DNA or small interfering RNA/microRNA delivery system in the near future. PMID:22403492
Li, Xin; Wang, Mengmeng; Wang, Lei; Shi, Xiujuan; Xu, Yajun; Song, Bo; Chen, Hong
2013-01-29
Polymer brush layers based on block copolymers of poly(oligo(ethylene glycol) methacrylate) (POEGMA) and poly(glycidyl methacrylate) (PGMA) were formed on silicon wafers by activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). Different types of biomolecule can be conjugated to these brush layers by reaction of PGMA epoxide groups with amino groups in the biomolecule, while POEGMA, which resists nonspecific protein adsorption, provides an antifouling environment. Surfaces were characterized by water contact angle, ellipsometry, and Fourier transform infrared spectroscopy (FTIR) to confirm the modification reactions. Phase segregation of the copolymer blocks in the layers was observed by AFM. The effect of surface properties on protein conjugation was investigated using radiolabeling methods. It was shown that surfaces with POEGMA layers were protein resistant, while the quantity of protein conjugated to the diblock copolymer modified surfaces increased with increasing PGMA layer thickness. The activity of lysozyme conjugated on the surface could also be controlled by varying the thickness of the copolymer layer. When biotin was conjugated to the block copolymer grafts, the surface remained resistant to nonspecific protein adsorption but showed specific binding of avidin. These properties, that is, well-controlled quantity and activity of conjugated biomolecules and specificity of interaction with target biomolecules may be exploited for the improvement of signal-to-noise ratio in sensor applications. More generally, such surfaces may be useful as biological recognition elements of high specificity for functional biomaterials.
Adams, S E; Theobald, A J; Jones, N M; Brading, M G; Cox, T F; Mendez, A; Chesters, D M; Gillam, D G; Hall, C; Holt, J
2003-12-01
To compare the antimicrobial efficacy and effect on plaque growth of a new silica-based fluoride toothpaste containing 2% zinc citrate/ 0.3% Triclosan with a silica-based fluoride toothpaste containing 0.3% Triclosan/2% copolymer. In Study 1, plaque was collected after one week's use of each toothpaste and assessed for bacterial viability, live/ dead ratio and microbial membrane integrity. In study 2, plaque was measured immediately and 18 hours after a single brushing with the specified toothpastes. The 2% zinc citrate/0.3% Triclosan formulation significantly reduced the total number of viable aerobic and anaerobic bacteria (p = 0.0223 and p = 0.0443 respectively) compared to the 0.3% Triclosan/2% copolymer formulation. Both toothpastes increased the bacterial membrane permeability significantly. However, the proportion of live bacteria for the 2% zinc citrate/0.3% Triclosan product was significantly reduced (p < 0.05). Study 2 showed significantly less plaque growth 18 hours after using the 2% zinc citrate/0.3% Triclosan toothpaste compared to the 0.3% Triclosan/2% copolymer toothpaste (p < 0.01). Regular use of a fluoride toothpaste containing 2% zinc citrate and 0.3% Triclosan, significantly reduced the viability of plaque bacteria compared to a fluoride toothpaste containing 0.3% Triclosan/ 2% copolymer 12 hours after brushing. In addition, a clinical plaque growth study confirmed that this anti-microbial efficacy leads to a significant reduction in plaque growth.
Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.
2017-01-24
A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.
Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi
2014-09-25
Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.
Comparing three toothpastes in controlling plaque and gingivitis: A 6-month clinical study.
Triratana, Terdphong; Kraivaphan, Petcharat; Amornchat, Cholticha; Mateo, Luis R; Morrison, Boyce M; Dibart, Serge; Zhang, Yun-Po
2015-04-01
To investigate the clinical efficacy of three toothpastes in controlling established gingivitis and plaque over 6 months. 135 subjects were enrolled in a single-center, double-blind, parallel group, randomized clinical study. Subjects were randomly assigned to one of three treatments: triclosan/copolymer/fluoride dentifrice containing 0.3% triclosan, 2.0% copolymer and 1,450 ppm F as sodium fluoride in a silica base; herbal/bicarbonate dentifrice containing herbal extract and 1,400 ppm F as sodium fluoride in a sodium bicarbonate base; or fluoride dentifrice containing 450 ppm F as sodium fluoride, and 1,000 ppm F as sodium monofluorophosphate. Subjects were instructed to brush their teeth twice daily for 1 minute for 6 months. After 6 months, subjects assigned to the triclosan/copolymer/fluoride group exhibited statistically significant reductions in gingival index scores and plaque index scores as compared to subjects assigned to the herbal/bicarbonate group by 35.4% and 48.9%, respectively. There were no statistically significant differences in gingival index and plaque index between subjects in the herbal/ bicarbonate group and those in the fluoride group. The triclosan/copolymer/fluoride dentifrice was statistically significantly more effective in reducing gingivitis and dental plaque than the herbal/bicarbonate dentifrice, and this difference in efficacy was clinically meaningful.
Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R
2015-03-01
In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.
21 CFR 175.210 - Acrylate ester copolymer coating.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate...
Russell, Thomas P.; Hong, Sung Woo; Lee, Doug Hyun; Park, Soojin; Xu, Ting
2015-10-13
A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Thomas P.; Hong, Sung Woo; Lee, Dong Hyun
A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.
Hydrogen-bonded aggregates in precise acid copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J., E-mail: msteve@sandia.gov
2014-02-07
We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length butmore » not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.« less
Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery.
Allen, Michael H; Green, Matthew D; Getaneh, Hiwote K; Miller, Kevin M; Long, Timothy E
2011-06-13
Conventional free radical polymerization with subsequent postpolymerization modification afforded imidazolium copolymers with controlled charge density and side chain hydroxyl number. Novel imidazolium-containing copolymers where each permanent cation contained one or two adjacent hydroxyls allowed precise structure-transfection efficiency studies. The degree of polymerization was identical for all copolymers to eliminate the influence of molecular weight on transfection efficiency. DNA binding, cytotoxicity, and in vitro gene transfection in African green monkey COS-7 cells revealed structure-property-transfection relationships for the copolymers. DNA gel shift assays indicated that higher charge densities and hydroxyl concentrations increased DNA binding. As the charge density of the copolymers increased, toxicity of the copolymers also increased; however, as hydroxyl concentration increased, cytotoxicity remained constant. Changing both charge density and hydroxyl levels in a systematic fashion revealed a dramatic influence on transfection efficiency. Dynamic light scattering of the polyplexes, which were composed of copolymer concentrations required for the highest luciferase expression, showed an intermediate DNA-copolymer binding affinity. Our studies supported the conclusion that cationic copolymer binding affinity significantly impacts overall transfection efficiency of DNA delivery vehicles, and the incorporation of hydroxyl sites offers a less toxic and effective alternative to more conventional highly charged copolymers.
Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks
NASA Astrophysics Data System (ADS)
Parviz, Dorsa; Yu, Ziniu; Hedden, Ronald C.; Green, Micah J.
2014-09-01
A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite.A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01431f
Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings
NASA Astrophysics Data System (ADS)
Lashkajani, Kazem Hasanzadeh
This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block structured grid generation code, NSGRID, is developed for this purpose. The study includes the developments of novel mesh generation algorithms over complex glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice horns. The twofold approaches tackle surface geometry discretization as well as field mesh generation. An adaptive curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with periodic source terms. This method controls the arclength grid spacing so that high convex and concave curvature regions around ice horns are appropriately captured and is shown to effectively treat the grid shock problem. Then, a novel blended method is developed by defining combinations of source terms with 2D elliptic equations. The source terms include two common control functions, Sorenson and Spekreijse, and an additional third source term to improve orthogonality. This blended method is shown to be very effective for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The performance in terms of residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. Details are given on the various formulations used in the linearization process. It is shown that the performance of the solution algorithm depends on the type of control function used. Finally, the algorithms are validated on standard complex experimental ice shapes, demonstrating the applicability of the methods. Finally, the automated framework of RANS based two-dimensional multi-step ice accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal). The framework allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-elements geometries. The code was tested on public and confidential validation test cases including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh generation procedure by using the implicit line SOR and ADI smoothers within a multigrid procedure. The results demonstrate the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters.
Trombelli, L; Farina, R
2013-03-01
To evaluate the efficacy of triclosan (T)-based toothpaste formulations in the prevention and treatment of plaque-induced periodontal and peri-implant diseases. A review of the existing literature was conducted with a systematic approach in order to retrieve pertinent articles. i) Compared with a control fluoride dentifrice, a fluoride dentifrice containing T formulations provides a more effective level of plaque control and gingival health in patients affected by gingivitis; ii) 0.3% T/2% copolymer/0.243% NaF formulation and 0.3% T/0.13% Ca glicerophosphate/1000 ppm F toothpaste in a natural Ca carbonate base seem the most effective T-based toothpaste formulations in controlling plaque and gingival inflammation in patients with gingivitis or mild/moderate periodontitis over a 6-month period; iii) 0.3% T/2% copolymer/0.243% NaF toothpaste formulation can reduce clinical attachment loss in young adolescents when compared with a 0.243% NaF toothpaste formulation, the magnitude of the difference being greater for patients with deep periodontal pockets at baseline; iv) 0.3% T/2% copolymer/0.243% NaF toothpaste formulation is either similarly or more efficacious in preventing the progression/recurrence of periodontal destruction when compared to a conventional fluoride toothpaste; v) 0.3% T/2% copolymer/0.243% NaF toothpaste formulation seems to be more effective than a fluoride toothpaste formulation in controlling the severity of mucosal inflammation, the incidence of mucosal bleeding as well as reducing probing pocket depth around dental implants.
Principle of two-dimensional characterization of copolymers.
Weidner, Steffen; Falkenhagen, Jana; Krueger, Ralph-Peter; Just, Ulrich
2007-07-01
Two-dimensional polymer characterization is used for a simultaneous analysis of molar masses and chemical heterogeneities (e.g., end groups, copolymer composition, etc.). This principle is based on coupling of two different chromatographic modes. Liquid adsorption chromatography at critical conditions (LACCC) is applied for a separation according to the chemical heterogeneity, whereas in the second-dimension fractions are analyzed with regard to their molar mass distribution by means of size exclusion chromatography (SEC). Because appropriate standards for a calibration of the SEC are seldom available, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was used to substitute the SEC. The LACCC-MALDI MS coupling enables acquiring additional structural information on copolymer composition, which can considerably enhance the performance of this coupled method.
Blakney, Anna K; Yilmaz, Gokhan; McKay, Paul F; Becer, C Remzi; Shattock, Robin J
2018-05-03
Nucleic acid delivery systems are commonly translated between different modalities, such as DNA and RNA of varying length and structure, despite physical differences in these molecules that yield disparate delivery efficiency with the same system. Here, we synthesized a library of poly(2-ethyl-2-oxazoline)/poly(ethylene imine) copolymers with varying molar mass and charge densities in order to probe how pDNA, mRNA, and RepRNA polyplex characteristics affect transfection efficiency. The library was utilized in a full factorial design of experiment (DoE) screening, with outputs of luciferase expression, particle size, surface charge, and particle concentration. The optimal copolymer molar mass and charge density was found as 83 kDa/100%, 72 kDa/100%, and 45 kDa/80% for pDNA, RepRNA, and mRNA, respectively. While 10 of the synthesized copolymers enhanced the transfection efficiency of pDNA and mRNA, only 2 copolymers enhanced RepRNA transfection efficiency, indicating a narrow and more stringent design space for RepRNA. These findings suggest that there is not a "one size fits all" polymer for different nucleic acid species.
Fluids Density Functional Theory of Salt-Doped Block Copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Hall, Lisa M.
Block copolymers have attracted a great deal of recent interest as potential non-flammable, solid-state, electrolyte materials for batteries or other charge carrying applications. The microphase separation in block copolymers combines the properties of a conductive (though mechanically soft) polymer with a mechanically robust (though non-conductive) polymer. We use fluids density functional theory (fDFT) to study the phase behavior of salt-doped block copolymers. Because the salt prefers to preferentially solvate into the conductive phase, salt doping effectively enhances the segregation strength between the two polymer types. We consider the effects of this preferential solvation and of charge correlations by separately modeling the ion-rich phase, without bonding, using the Ornstein-Zernike equation and the hypernetted-chain closure. We use the correlations from this subsystem in the inhomogeneous fDFT calculations. Initial addition of salt increases the domain spacing and sharpens the interfacial region, but for high salt loadings the interface can broaden. Addition of salt can also drive a system with a low copolymer segregation strength to order by first passing through a two phase regime with a salt-rich ordered phase and a salt-poor disordered phase. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014209.
Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.
Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar
2014-01-01
Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers.
Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin
2015-08-19
Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.
Copolymer-in-oil phantom materials for elastography.
Oudry, J; Bastard, C; Miette, V; Willinger, R; Sandrin, L
2009-07-01
Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography.
Cunningham, Alexander J; Robinson, Mattieu; Banquy, Xavier; Leblond, Jeanne; Zhu, X X
2018-03-05
Doxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were grafted from the cholic acid (CA) core yielding a star-shaped block copolymer with 4 arms (CA-(PAGE- b-PEG) 4 ) and then loaded with Dox via a nanoprecipitation technique. A high Dox loading of 14 wt % was achieved via electrostatic as opposed to hydrophobic interactions with or without oleic acid as a cosurfactant. The electrostatic interactions confer a pH responsiveness to the system. 50% of the loaded Dox was released at pH 5 in comparison to 12% at pH 7.4. The nanoparticles with Dox loaded via hydrophobic interactions did not show such a pH responsiveness. The systems with Dox loaded via electrostatic interactions showed the lowest IC 50 and highest cellular internalization, indicating the pre-eminence of this interaction in Dox loading. The blank formulations are biocompatible and did not show cytotoxicity up to 0.17 mg/mL. The new functionalized star block copolymers based on cholic acid show great potential as drug delivery carriers.
Adil, Danish; Kanimozhi, Catherine; Ukah, Ndubuisi; Paudel, Keshab; Patil, Satish; Guha, Suchi
2011-05-01
Two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) have been synthesized for their application in organic devices such as metal-insulator semiconductor (MIS) diodes and field-effect transistors (FETs). The semiconductor-dielectric interface was characterized by capacitance-voltage and conductance-voltage methods. These measurements yield an interface trap density of 4.2 × 10(12) eV⁻¹ cm⁻² in TDPP-BBT and 3.5 × 10¹² eV⁻¹ cm⁻² in PDPP-BBT at the flat-band voltage. The FETs based on these spincoated DPP copolymers display p-channel behavior with hole mobilities of the order 10⁻³ cm²/(Vs). Light scattering studies from PDPP-BBT FETs show almost no change in the Raman spectrum after the devices are allowed to operate at a gate voltage, indicating that the FETs suffer minimal damage due to the metal-polymer contact or the application of an electric field. As a comparison Raman intensity profile from the channel-Au contact layer in pentacene FETs are presented, which show a distinct change before and after biasing.
21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly-1-butene resins and butene/ethylene copolymers... resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers identified... the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by...
Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine
2010-04-12
Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.
NASA Astrophysics Data System (ADS)
Tallury, Syamal S.; Mineart, Kenneth P.; Woloszczuk, Sebastian; Williams, David N.; Thompson, Russell B.; Pasquinelli, Melissa A.; Banaszak, Michal; Spontak, Richard J.
2014-09-01
Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer can be used to elucidate the phase and property transformation from diblock to network-forming triblock copolymer. In this study, we use several theoretical formalisms and simulation methods to examine the molecular-level characteristics accompanying this transformation, and show that reported macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational fractions and copolymer morphologies are provided as functions of copolymer composition and temperature.
Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo
2014-10-28
The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.
Hu, Qian; Zhang, Yi; Wang, Changyong; Xu, Jiake; Wu, Jianping; Liu, Zonghua; Xue, Wei
2016-03-01
Amphiphilic block copolymer methoxy polyethyleneglycol-polycaprolactone (mPEG-PCL) has attracted interest in the biomedical field, due to its water solubility and biodegradability. Nevertheless, the blood safety of mPEG-PCL copolymers has not been investigated in detail. Because mPEG-PCL copolymers introduced in vivo would inevitably interact with blood tissue, an investigation of possible interactions of mPEG-PCL with key blood components is crucial. We studied the effects of two mPEG-PCL copolymer solutions on blood coagulation, the morphology and lysis of human red blood cells (RBCs), the structure of plasma fibrinogen, complement activation, and platelet aggregation. We found that higher concentrations of the mPEG-PCL copolymers impaired blood clotting, and the copolymers had little impact on the morphology or lysis of RBCs. From the spectroscopy results, the copolymers affected the local microstructure of fibrinogen. The copolymers significantly activated the complement system in a concentration-dependent way. At higher concentrations, the copolymers impaired platelet aggregation, which may have been mediated by an inhibition of the arachidonic acid pathway. These findings provide important information that may be useful for the molecular design and biomedical applications of mPEG-PCL copolymers. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 802-812, 2016. © 2016 Wiley Periodicals, Inc.
Block copolymer libraries: modular versatility of the macromolecular Lego system.
Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S
2004-12-21
The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.
High performance mixed bisimide resins and composites based thereon
NASA Technical Reports Server (NTRS)
Parker, J. A.; ations.
1986-01-01
Mixtures of bismaleimide/biscitraconirnide resins produces materials which have better handling, processing or mechanical and thermal properties, particularly in graphite composites, than materials made with the individual resins. The mechanical strength of cured graphite composites prepared from a 1:1 copolymer of such bisimide resins is excellent at both ambient and elevated temperatures. The copolymer mixture provides improved composites which are lighter than metals and replace metals in many aerospace applications.
Roll-on perfume compositions containing polyoxybutylene-polyoxyethylene copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmolka, I.R.
1987-05-26
This patent describes a liquid roll-on composition containing, in weight percent based upon the total composition weight, from 5 percent to 15 percent of a perfume oil, from 25 percent to 40 percent of a volatile alcohol, from 10 percent to 60 percent water, and from 10 percent to 30 percent of a nonionic polyether surfactant. The improvement comprises employing as the nonionic polyether surfactant a cogeneric polyoxybutylene-polyoxyethylene block copolymer.
NASA Astrophysics Data System (ADS)
Bao, Lixia; Bian, Longchun; Zhao, Mimi; Lei, Jingxin; Wang, Jiliang
2014-08-01
Herein, we report a novel amphiphilic biodegradable and sustainable soybean oil-based copolymer (SBC) prepared by grafting hydrophilic and biocompatible hydroxyethyl acrylate (HEA) polymeric segments onto the natural hydrophobic soybean oil chains. FTIR, H1-NMR, and GPC measurements have been used to investigate the molecular structure of the obtained SBC macromolecules. Self-assembly behaviors of the prepared SBC in aqueous solution have also been extensively evaluated by fluorescence spectroscopy and transmission electron microscopy. The prepared SBC nanocarrier with the size range of 40 to 80 nm has a potential application in the biomedical field.
Iodinated glycidyl methacrylate copolymer as a radiopaque material for biomedical applications.
Dawlee, S; Jayabalan, M
2013-07-01
Polymeric biomaterial was synthesized by copolymerizing 50:50 mol% of monomers, glycidyl methacrylate and methyl methacrylate. Iodine atoms were then grafted to the epoxide groups of glycidyl methacrylate units, rendering the copolymer radiopaque. The percentage weight of iodine in the present copolymer was found to be as high as 23%. The iodinated copolymer showed higher glass transition temperature and thermal stability in comparison with unmodified polymer. Radiographic analysis showed that the copolymer possessed excellent radiopacity. The iodinated copolymer was cytocompatible to L929 mouse fibroblast cells. The in vivo toxicological evaluation by intracutaneous reactivity test of the copolymer extracts has revealed that the material was nontoxic. Subcutaneous implantation of iodinated copolymer in rats has shown that the material was well tolerated. Upon explantation and histological examination, no hemorrhage, infection or necrosis was observed. The samples were found to be surrounded by a vascularized capsule consisting of connective tissue cells. The results indicate that the iodinated copolymer is biocompatible and may have suitable applications as implantable materials.
Kaith, B S; Jindal, R; Jana, A K; Maiti, M
2010-09-01
In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.
Patel, Sulabh P.; Vaishya, Ravi; Patel, Ashaben; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K.
2016-01-01
This manuscript is focused on the development of pentablock (PB) copolymer based sustained release formulation for the treatment of posterior segment ocular diseases. We have successfully synthesized biodegradable and biocompatible PB copolymers for the preparation of nanoparticles (NPs) and thermosensitive gel. Achieving high drug loading with hydrophilic biotherapeutics (peptides /proteins) is a challenging task. Moreover, small intravitreal injection volume (≤100 μL) requires high loading to develop a long term (6 months) sustained release formulation. We have successfully investigated various formulation parameters to achieve maximum peptide/protein (octreotide, insulin, lysozyme, IgG-Fab, IgG, and catalase) loading in PB NPs. Improvement in drug loading can facilitate delivery of larger doses of therapeutic proteins via limited injection volume. A composite formulation comprised of NPs in gel system exhibited sustained release (without burst effect) of peptides and proteins, may serve as a platform technology for the treatment of posterior segment ocular diseases. PMID:26964498
Ma, Yi-Ming; Wei, Dai-Xu; Yao, Hui; Wu, Lin-Ping; Chen, Guo-Qiang
2016-08-08
A thermoresponsive graft copolymer polyhydroxyalkanoate-g-poly(N-isopropylacrylamide) or short as PHA-g-PNIPAm, was successfully synthesized via a three-step reaction. First, PNIPAm oligomer with a trithiocarbonate-based chain transfer agent (CTA), short as PNIPAm-CTA, with designed polymerization degree was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequently, the PNIPAm-CTA was treated with n-butylamine for aminolysis in order to obtain a pendant thiol group at the end of the chain (PNIPAm-SH). Finally, the PNIPAm-SH was grafted onto unsaturated P(3HDD-co-3H10U), a random copolymer of 3-hydroxydodecanoate (3HDD) and 3-hydroxy-10-undecylenate (3H10U), via a thiol-ene click reaction. Enhanced hydrophilicity and thermoresponsive property of the resulted PHA-g-PNIPAm were confirmed by water contact angle studies. The biocompatibility of PHA-g-PNIPAm was comparable to poly-3-hydroxybutyrate (PHB). The graft copolymer PHA-g-PNIPAm based on biopolyester PHA could be a promising material for biomedical applications.
Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah
2016-01-01
The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.
NASA Astrophysics Data System (ADS)
Do, Bao Phuong Huu; Dung Nguyen, Ba; Duy Nguyen, Hoang; Nguyen, Phuong Tung
2013-12-01
We report the synthesis of magnetic iron oxide nanoparticles encapsulated in maleic acid-2-acrylamido-2-methyl-1-propanesulfonate based polymer. This composite nanoparticle is specified for the high-pressure/high-temperature (HPHT) oilfield scale inhibition application. The process includes a facile-ultrasound-supported addition reaction to obtain iron oxide nanoparticles with surface coated by oleic acid. Then via inverse microemulsion polymerization with selected monomers, the specifically designed copolymers have been formatted in nanoscale. The structure and morphology of obtained materials were characterized by transmission electron microscopy (TEM), x-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and the thermal stability. The effectiveness of synthesized compounds as a carbonate scale inhibitor was investigated by testing method NACE standard TM 03-074-95 at aging temperature of 70, 90 and 120 °C. The magnetic nanocomposite particles can be easily collected and detected demonstrating their superior monitoring ability, which is absent in the case of conventional copolymer-based scale inhibitor.
Lunn, David J.; Gould, Oliver E. C.; Whittell, George R.; Armstrong, Daniel P.; Mineart, Kenneth P.; Winnik, Mitchell A.; Spontak, Richard J.; Pringle, Paul G.; Manners, Ian
2016-01-01
Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale. PMID:27538877
Safaei Nikouei, Nazila; Vakili, Mohammad Reza; Bahniuk, Markian S; Unsworth, Larry; Akbari, Ali; Wu, Jianping; Lavasanifar, Afsaneh
2015-01-01
In this study we report on the development, characterization and plasma protein interaction of novel thermoresponsive in situ hydrogels based on triblock copolymers of poly(ethylene glycol) (PEG) and poly(α-carboxyl-co-benzyl carboxylate)-ε-caprolactone (PCBCL) having two different degrees of carboxyl group substitution on the PCBCL block. Block copolymers were synthesized through ring-opening polymerization of α-benzyl carboxylate-ε-caprolactone by dihydroxy PEG, leading to the production of poly(α-benzyl carboxylate-ε-caprolactone)-PEG-poly(α-benzyl carboxylate-ε-caprolactone) (PBCL-PEG-PBCL). This was followed by partial debenzylation of PBCL blocks under controlled conditions, leading to the preparation of PCBCL-PEG-PCBCL triblock copolymers with 30 and 54mol.% carboxyl group substitution. Prepared PCBCL-PEG-PCBCL block copolymers have been shown to have a concentration-dependent sol to gel transition as a result of an increase in temperature above ∼29°C, as evidenced by the inverse flow method, differential scanning calorimetry and dynamic mechanical analysis. The sol-gel transition temperature/concentration and dynamic mechanical properties of the gel were found to be dependent on the level of carboxyl group substitution. Both hydrogels (30 and 54mol.% carboxyl group substitution) showed similar amounts of protein adsorption but striking differences in the profiles of the adsorbed proteome. Additionally, the two systems showed similarities in their clot formation kinetics but substantial differences in clot endpoints. The results show great promise for the above-mentioned thermoreversible in situ hydrogels as biocompatible materials for biomedical applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Prakki, Anuradha; Cilli, Renato; Mondelli, Rafael Francisco Lia; Kalachandra, Sid
2008-03-01
To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH(3)bis-GMA or CF(3)bis-GMA, with aldehyde (24 mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n=6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n=6). Data were analyzed by one-way ANOVA and Tukey's test (alpha=0.05). Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH(3)bis-GMA and bis-GMA/CF(3)bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties.
Main-chain supramolecular block copolymers.
Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus
2011-01-01
Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.
NASA Astrophysics Data System (ADS)
Li, Meng; Li, Yu; Xue, Fang; Jing, Xinli
2018-07-01
Resin based superhydrophobic coatings are effective to construct robust superhydrophobic surfaces on large scale without limitation of substrates. However, for most of the common resin based superhydrophobic coatings, it is inevitable to deteriorate environmental or health problems due to release of a large amount volatile solvents. In this work, a kind of water-based organic/inorganic hybrid consisted of acrylate copolymers and superhydrophobic silica nanoparticles were synthesized. The highly water-repellent silica nanoparticles were successfully involved into the aqueous dispersion of acrylate copolymers without additional surfactants. The as-synthesized hybrids simultaneously retain the excellent film-forming property of acrylate resins and amplify the contributions of low surface energy nanoparticles to the superhydrophobicity. Robust superhydrophobic coatings (CA > 160°, CA < 7°) with high adhesion strength, good scratch-resistance and excellent abrasion-resistance were constructed using the synthesized hybrids with significantly reduced content of low surface energy particles and organic solvent. The hybrid coating can stand abrasion up to 300 cycles with a fine sand paper and up to 1200 cycles under rough sand paper abrasion. Benefited from its good water-repellence property, the hybrid coating with a water-based formula not only showed improved water-resistance in comparison with commercial products; but also displayed attractive performances in self-cleaning and oil/water separation processes.
Sun, Dachuan; Guo, Hongxia
2012-08-09
Using Monte Carlo simulation methods, the effects of the comonomer sequence distribution on the interfacial properties (including interfacial tension, interfacial thickness, saturated interfacial area per copolymer, and bending modulus) and interfacial structures (including chain conformations and comonomer distributions of the simulated copolymers at the interfaces) of a ternary symmetric blend containing two immiscible homopolymers and one gradient copolymer are investigated. We find that copolymers with a larger composition gradient width have a broader comonomer distribution along the interface normal, and hence more pronouncedly enlarge the interfacial thickness and reduce the interfacial tension. Furthermore, the counteraction effect, which arises from the tendency of heterogeneous segments in gradient copolymers to phase separate and enter their miscible phases to reduce the local enthalpy, decreases the stretching of copolymers along the interface normal direction. As a result, copolymers with a larger width of gradient composition can occupy a larger interfacial area and form softer monolayers at saturation and are more efficient in facilitating the formation of bicontinuous microemulsions. Additionally, chain length ratio, segregation strength, and interactions between homopolymers and copolymers can alter the interfacial character of gradient copolymers. There exists a strong coupling between the comonomer sequence distribution, chain conformation, and interfacial properties. Especially, bending modulus is mainly determined by the complicated interplay of interfacial copolymer density and interfacial chain conformation.
Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie
2013-07-11
In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).
NASA Astrophysics Data System (ADS)
Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon
2014-03-01
A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.
Sworen, John C; Smith, Jason A; Wagener, Kenneth B; Baugh, Lisa S; Rucker, Steven P
2003-02-26
The structure of random ethylene/propylene (EP) copolymers has been modeled using step polymerization chemistry. Six ethylene/propylene model copolymers have been prepared via acyclic diene metathesis (ADMET) polymerization and characterized for primary and higher level structure using in-depth NMR, IR, DSC, WAXD, and GPC analysis. These copolymers possess 1.5, 7.1, 13.6, 25.0, 43.3, and 55.6 methyl branches per 1000 carbons. Examination of these macromolecules by IR and WAXD analysis has demonstrated the first hexagonal phase in EP copolymers containing high ethylene content (90%) without the influence of sample manipulation (temperature, pressure, or radiation). Thermal behavior studies have shown that the melting point and heat of fusion decrease as the branch content increases. Further, comparisons have been made between these random ADMET EP copolymers, random EP copolymers made by typical chain addition techniques, and precisely branched ADMET EP copolymers.
Inhomogeneity of block copolymers at the interface of an immiscible polymer blend
NASA Astrophysics Data System (ADS)
Ryu, Ji Ho; Kim, YongJoo; Lee, Won Bo
2018-04-01
We present the effects of structure and stiffness of block copolymers on the interfacial properties of an immiscible homopolymer blend. Diblock and two-arm grafted copolymers with variation in stiffness are modeled using coarse-grained molecular dynamics to compare the compatibilization efficiency, i.e., reduction of interfacial tension. Overall, grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, an increase in the stiffness for one of the blocks of the diblock copolymers causes unusual inhomogeneous interfacial coverage due to bundle formation. However, an increase in the stiffness for one of blocks of the grafted copolymers prevents the bundle formation due to the branched chain. As a result, homogeneous interfacial coverage of homopolymer blends is realized with significant reduction of interfacial tension which makes grafted copolymer a better candidate for the compatibilizer of immiscible homopolymer blend.
Fabrication of an open Au/nanoporous film by water-in-oil emulsion-induced block copolymer micelles.
Koh, Haeng-Deog; Kang, Nam-Goo; Lee, Jae-Suk
2007-12-18
Water-in-oil (W/O) emulsion-induced micelles with narrow size distributions of approximately 140 nm were prepared by sonicating the polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer in the toluene/water (50:1 vol %). The ordered nanoporous block copolymer films with the hydrophilic P2VP interior and the PS matrix were distinctly fabricated by casting the resultant solution on substrates, followed by evaporating the organic solvent and water. The porous diameter was estimated to be about 70 nm. Here, we successfully prepared the open nanoporous nanocomposites, the P2VP domain decorated by Au (5+/-0.4 nm) nanoparticles based on the methodology mentioned. We anticipate that this novelty enhances the specific function of nanoporous films.
Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf
2013-11-01
Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rheological Design of Sustainable Block Copolymers
NASA Astrophysics Data System (ADS)
Mannion, Alexander M.
Block copolymers are extremely versatile materials that microphase separate to give rise to a rich array of complex behavior, making them the ideal platform for the development of rheologically sophisticated soft matter. In line with growing environmental concerns of conventional plastics from petroleum feedstocks, this work focuses on the rheological design of sustainable block copolymers--those derived from renewable sources and are degradable--based on poly(lactide). Although commercially viable, poly(lactide) has a number of inherent deficiencies that result in a host of challenges that require both creative and practical solutions that are cost-effective and amenable to large-scale production. Specifically, this dissertation looks at applications in which both shear and extensional rheology dictate performance attributes, namely chewing gum, pressure-sensitive adhesives, and polymers for blown film extrusion. Structure-property relationships in the context of block polymer architecture, polymer composition, morphology, and branching are explored in depth. The basic principles and fundamental findings presented in this thesis are applicable to a broader range of substances that incorporate block copolymers for which rheology plays a pivotal role.
Merlettini, Andrea; Gigli, Matteo; Ramella, Martina; Gualandi, Chiara; Soccio, Michelina; Boccafoschi, Francesca; Munari, Andrea; Lotti, Nadia; Focarete, Maria Letizia
2017-08-14
A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.
Marques, Nívia do N; Balaban, Rosangela de C; Halila, Sami; Borsali, Redouane
2018-03-15
Graft copolymers based on carboxymethylcellulose (CMC) and thermosensitive polyetheramines (ethylene oxide/propylene oxide = 33/10 and 1/9) were prepared in water, at room temperature, by using a carbodiimide and N-hydroxysuccinimide as activators. SLS was applied to obtain M w , A 2 and R g of CMC and its derivatives. Amide linkages were evidenced by FTIR and grafting percentage was determined by 1 H NMR. TGA demonstrated that copolymers were thermally more stable than their precursors. DLS, UV-vis and rheological measurements revealed that properties were salt- and thermo-responsive and linked to the polysaccharide/polyetheramine ratio and the hydrophobicity of the graft. None of the copolymers showed cloud point temperature (Tcp) in water, but they turned turbid in saline media when heated. Copolymers exhibited thermothickening behaviour at 60 °C (>Tcp) in saline media. Below their Tcp, they showed the ability of keeping constant viscosity or even slight increase it, which was interpreted in terms of intermolecular hydrophobic associations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tisdale, Evgenia; Kennedy, Devin; Xu, Xiaodong; Wilkins, Charles
2014-01-15
The influence of the sample preparation parameters (the choice of the matrix, matrix:analyte ratio, salt:analyte ratio) was investigated and optimal conditions were established for the MALDI time-of-flight mass spectrometry analysis of the poly(styrene-co-pentafluorostyrene) copolymers. These were synthesized by atom transfer radical polymerization. Use of 2,5-dihydroxybenzoic acid as matrix resulted in spectra with consistently high ion yields for all matrix:analyte:salt ratios tested. The optimized MALDI procedure was successfully applied to the characterization of three copolymers obtained by varying the conditions of polymerization reaction. It was possible to establish the nature of the end groups, calculate molecular weight distributions, and determine the individual length distributions for styrene and pentafluorostyrene monomers, contained in the resulting copolymers. Based on the data obtained, it was concluded that individual styrene chain length distributions are more sensitive to the change in the composition of the catalyst (the addition of small amount of CuBr2) than is the pentafluorostyrene component distribution. Copyright © 2013 Elsevier B.V. All rights reserved.
Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Mao, Shirui; Li, Yaping
2012-01-01
Background and methods A new amphiphilic comb-shaped copolymer (SP) was synthesized by conjugating poly(styrene-co-maleic anhydride) with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer. Results The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV) and a small particle size (130–200 nm) at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines. Conclusion This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery. PMID:23028224
Mimetic marine antifouling films based on fluorine-containing polymethacrylates
NASA Astrophysics Data System (ADS)
Sun, Qianhui; Li, Hongqi; Xian, Chunying; Yang, Yihang; Song, Yanxi; Cong, Peihong
2015-07-01
Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α‧-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings.
Ma, Ming; Li, Feng; Liu, Xiu-hong; Yuan, Zhe-fan; Chen, Fu-jie; Zhuo, Ren-xi
2010-10-01
Amphiphilic triblock copolymers monomethoxyl poly(ethylene glycol) (mPEG)-b-poly(ε-caprolactone) (PCL)-b-poly(aminoethyl methacrylate)s (PAMAs) (mPECAs) were synthesized as gene delivery vectors. They exhibited lower cytotoxicity and higher transfection efficiency in COS-7 cells in presence of serum compared to 25 kDa bPEI. The influence of mPEG and PCL segments in mPECAs was evaluated by comparing with corresponding diblock copolymers. The studies showed the incorporation of the hydrophobic PCL segment in triblock copolymers affected the binding capability to pDNA and surface charges of complexes due to the formation of micelles increasing the local charges. The presence of mPEG segment in gene vector decreased the surface charges of the complexes and increased the stability of the complexes in serum because of the steric hindrance effect. It was also found that the combination of PEG and PCL segments into one macromolecule might lead to synergistic effect for better transfection efficiency in serum.
PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate.
Gao, Yuan; Sun, Yan; Ren, Fuzheng; Gao, Shen
2010-10-01
This study aims to investigate the suitability of thermosensitive triblock polymer poly-(DL-lactic acid-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA as a matrix material for ocular delivery of dexamethasone acetate (DXA). The copolymer was synthesized and evaluated for its thermosensitive and gelation properties. DXA in situ gel-forming solution based on PLGA-PEG-PLGA copolymer of 20% (w/w) was prepared and evaluated for ocular pharmacokinetics in rabbit according to the microdialysis method, which was compared to the normal eye drop. The copolymer with 20% (w/w) had a low critical solution temperature of 32 degrees C, which is close to the surface temperature of the eye. The C(max) of DXA in the anterior chamber for the PLGA-PEG-PLGA solution was 125.2 microg/mL, which is sevenfold higher than that of the eye drop, along with greater area under the concentration-time curves (AUC). These results suggest that the PLGA-PEG-PLGA copolymer is potential thermosensitive in situ gel-forming material for ocular drug delivery, and it may improve the bioavailability, efficacy of some eye drugs.
Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles.
Guo, Qianqian; Zhang, Tianqi; An, Jinxia; Wu, Zhongming; Zhao, Yu; Dai, Xiaomei; Zhang, Xinge; Li, Chaoxing
2015-10-12
To explore the effect of polymer structure on their self-assembled aggregates and their unique characteristics, this study was devoted to developing a series of amphiphilic block and random phenylboronic acid-based glycopolymers by RAFT polymerization. The amphiphilic glycopolymers were successfully self-assembled into spherically shaped nanoparticles with narrow size distribution in aqueous solution. For block and random copolymers with similar monomer compositions, block copolymer nanoparticles exhibited a more regular transmittance change with the increasing glucose level, while a more evident variation of size and quicker decreasing tendency in I/I0 behavior in different glucose media were observed for random copolymer nanoparticles. Cell viability of all the polymer nanoparticles investigated by MTT assay was higher than 80%, indicating that both block and random copolymers had good cytocompatibility. Insulin could be encapsulated into both nanoparticles, and insulin release rate for random glycopolymer was slightly quicker than that for the block ones. We speculate that different chain conformations between block and random glycopolymers play an important role in self-assembled nanoaggregates and underlying glucose-sensitive behavior.
Wu, Yang; Ji, Jinkai; Yang, Ran; Zhang, Xiaoqiang; Li, Yuanhui; Pu, Yuepu; Li, Xinsong
2013-01-01
In this report, a series of well-defined glucose- and guanidine-based cationic copolymers as gene carriers were developed to inhibit human telomerase reverse transcriptase (hTERT) gene expression. First of all, guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers (guanidinylated GAPMA-s-APMA, abbreviated as GGA) were prepared via aqueous reversible addition--fragmentation chain transfer polymerization (RAFT). Then, three target hTERT siRNA TERT-1, TERT-2 and TERT-3 were designed and combined with GGA copolymers to form siRNA/GGA polyplexes. The polyplexes were examined by dynamic light scattering and agarose gel electrophoresis. The results indicated that GGA copolymers can condense siRNA effectively to form particles with the diameter from 157 nm to 411 nm and zeta potential values in the range from +3.7 to +15.8 mV at various charge ratios (N/P). The MTT assay data of siRNA/GGA polyplexes on human hepatocellular liver carcinoma cells (HepG2) indicated that GGA copolymer had better cell viabilities than polyethylenimine (PEI). Furthermore, the transfection of siRNA/GGA polyplexes was detected by real-time quantitative PCR (RT-qPCR) in HepG2. It was found that siRNA/GGA polyplexes could effectively silence hTERT mRNA expression in serum-free media (p<0.01). In the presence of serum, the hTERT mRNA expression in HepG2 cells have significant difference (p<0.01) between siRNA/GGA3 polyplexes and blank. The results showed that the GAPMA component can reduce the aggregation of protein in serum media. Therefore, the enhancement of transfection may be attributed to the combination of guadino groups and glucose component. And, the guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers might be promise in gene delivery.
Wang, Wenwen; Wang, Weiyu; Lu, Xinyi; ...
2014-10-23
For this study, comb and centipede multigraft copolymers, poly(n-butyl acrylate)-g-polystyrene (PnBA-g-PS) with PnBA backbones and PS side chains, were synthesized via high-vacuum anionic polymerization and miniemulsion polymerization. Single-tailed and double-tailed PS macromonomers were synthesized by anionic polymerization and Steglich esterification. Subsequently, the copolymerization of each macromonomer and nBA was carried out in miniemulsion, and multigraft copolymers were obtained. The latex particles of multigraft copolymers were characterized using dynamic light scattering. The molecular weights of macromonomers and multigraft copolymers were analyzed by size exclusion chromatography. Moreover, the molecular weights and structures of macromonomers were investigated by matrix-assisted laser desorption/ionization time-of-flight massmore » spectrometry and 1H nuclear magnetic resonance spectroscopy. The weight contents of PS in comb and centipede multigraft copolymers were calculated by 1H nuclear magnetic resonance spectroscopy. The thermal properties of multigraft copolymers were characterized by thermogravimetric analysis and differential scanning calorimetry. The microphase separation of multigraft copolymers was observed by atomic force microscopy and transmission electronic microscopy. Rheological measurements showed that comb and centipede multigraft copolymers have elastic properties when the weight content of PS side chains is 26–32 wt %. Centipede multigraft copolymers possess better elastic properties than comb multigraft copolymers with the similar weight content of PS. In conclusion, these findings are similar to previous results on poly(isoprene-g-polystyrene) comb and centipede copolymers made by anionic polymerization.« less
NASA Astrophysics Data System (ADS)
Davidenko, N. A.; Davidenko, I. I.; Mokrinskaya, E. V.; Pavlov, V. A.; Studzinsky, S. L.; Tarasenko, V. V.; Tonkopieva, L. S.; Chuprina, N. G.
2018-03-01
Recording media for polarization holography based on new azobenzene-containing monomers with octylmethacrylate are created. Their electrophysical and information properties are investigated. Improvement of the diffraction efficiency of holograms in these media in an external electric field formed by charging the free surface of the polymer film in a corona discharge is demonstrated. The diffraction efficiency is improved more in the copolymer, in which the azobenzene fragments possess larger dipole moments.
Ferber, Shiran; Baabur-Cohen, Hemda; Blau, Rachel; Epshtein, Yana; Kisin-Finfer, Einat; Redy, Orit; Shabat, Doron; Satchi-Fainaro, Ronit
2014-09-28
Polymeric nanocarriers conjugated with low molecular weight drugs are designed in order to improve their efficacy and toxicity profile. This approach is particularly beneficial for anticancer drugs, where the polymer-drug conjugates selectively accumulate at the tumor site, due to the enhanced permeability and retention (EPR) effect. The conjugated drug is typically inactive, and upon its pH- or enzymatically-triggered release from the carrier, it regains its therapeutic activity. These settings lack information regarding drug-release time, kinetics and location. Thereby, real-time non-invasive intravital monitoring of drug release is required for theranostics (therapy and diagnostics). We present here the design, synthesis and characterization of a theranostic nanomedicine, based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer, owing its fluorescence-based monitoring of site-specific drug release to a self-quenched near-infrared fluorescence (NIRF) probe. We designed two HPMA copolymer-based systems that complement to a theranostic nanomedicine. The diagnostic system consists of self-quenched Cy5 (SQ-Cy5) as a reporter probe and the therapeutic system is based on the anticancer agent paclitaxel (PTX). HPMA copolymer-PTX/SQ-Cy5 systems enable site-specific release upon enzymatic degradation in cathepsin B-overexpressing breast cancer cells. The release of the drug occurs concomitantly with the activation of the fluorophore to its Turn-ON state. HPMA copolymer-SQ-Cy5 exhibits preferable body distribution and drug release compared with the free drug and probe when administered to cathepsin B-overexpressing 4T1 murine mammary adenocarcinoma-bearing mice. This approach of co-delivery of two complementary systems serves as a proof-of-concept for real-time deep tissue intravital orthotopic monitoring and may have the potential use in clinical utility as a theranostic nanomedicine. Copyright © 2014. Published by Elsevier Ireland Ltd.
Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek M; Colvin, James M
2011-01-01
Prosthetic sockets serve as the interface between people with amputations and their prostheses. Although most materials used to make prosthetic sockets have been used for many years, knowledge of these materials' properties is limited, especially after they are subjected to fabrication processes. This study evaluated tensile and impact properties of the current state-of-the-art materials used to fabricate prosthetic check sockets, copolymer sockets, and definitive laminated sockets. Thermolyn Rigid and Orfitrans Stiff check socket materials produced significantly lower tensile strength and impact resistance than polyethylene terephthalate glycol (PETG). Copolymer socket materials exhibited greater resistance to impact forces than the check socket materials but lower tensile strengths than PETG. The heated molding processes, for the check socket and copolymer materials, reduced both tensile strength and elongation at break. Definitive laminated sockets were sorted according to fabrication techniques. Nyglass material had significantly higher elongation, indicating a more ductile material than carbon-based laminations. Carbon sockets with pigmented resin had higher tensile strength and modulus at break than nonpigmented carbon sockets. Elongation at yield and elongation at break were similar for both types of carbon-based laminations. The material properties determined in this study provide a foundation for understanding and improving the quality of prosthetic sockets using current fabrication materials and a basis for evaluating future technologies.
Zhao, Liping; Qiao, Juan; Moon, Meyong Hee; Qi, Li
2018-06-16
Fabrication of polymer membranes with nanopores and a confinement effect toward enzyme immobilization has been an enabling endeavor. In the work reported here, an enzyme reactor based on a thermoresponsive magnetic porous block copolymer membrane was designed and constructed. Reversible addition-fragmentation chain transfer polymerization was used to synthesize the block copolymer, poly(maleic anhydride-styrene-N-isopropylacrylamide), with poly(N-isopropylacrylamide) as the thermoresponsive moiety. The self-assembly property of the block copolymer was used for preparation of magnetic porous thin film matrices with iron oxide nanoparticles. By covalent bonding of glutaminase onto the surface of the membrane matrices and changing the temperature to tune the nanopore size, we observed enhanced enzymolysis efficiency due to the confinement effect. The apparent Michaelis-Menten constant and the maximum rate of the enzyme reactor were determined (K m = 32.3 mM, V max = 33.3 mM min -1 ) by a chiral ligand exchange capillary electrochromatography protocol with L-glutamine as the substrate. Compared with free glutaminase in solution, the proposed enzyme reactor exhibits higher enzymolysis efficiency, greater stability, and greater reusability. Furthermore, the enzyme reactor was applied for a glutaminase kinetics study. The tailored pore sizes and the thermoresponsive property of the block copolymer result in the designed porous membrane based enzyme reactor having great potential for high enzymolysis performance. Graphical abstract ᅟ.
Morphologies of precise polyethylene-based acid copolymers and ionomers
NASA Astrophysics Data System (ADS)
Buitrago, C. Francisco
Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashraf, Arman R.; Ryan, Justin J.; Satkowski, Michael M.
Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms ofmore » the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.« less
Chojnacka, Aleksandra; Ghaffar, Abdul; Feilden, Andrew; Treacher, Kevin; Janssen, Hans-Gerd; Schoenmakers, Peter
2011-11-14
Knowledge on the solubility behaviour and dissolution rate of speciality and commodity polymers is very important for the use of such materials in high-tech applications. We have developed methods for the quantification and characterization of dissolved copolymers of N-vinyl-2-pyrrolidone (VP) and vinyl acetate (VA) during dissolution in water. The methods are based on pyrolysis (Py) performed in a programmed-temperature vaporization injector with subsequent identification and quantification of the components in the pyrolysate using capillary gas chromatography-mass spectrometry (GC-MS). By injecting large volumes and applying cryo-focussing at the top of the column, low detection limits could be achieved. The monomer ratio was found to have the greatest effect on the dissolution rate of the PVP-co-VA copolymers. The material with the highest amount of VA (50%) dissolves significantly slower than the other grades. Size-exclusion chromatography (SEC) and Py-GC-MS were used to measure molecular weights and average chemical compositions, respectively. Combined off-line SEC//Py-GC-MS was used to determine the copolymer composition (VP/VA ratio), as a function of the molecular weight for the pure polymers. In the dissolution experiments, a constant VP/VA ratio across the dissolution curve was observed for all copolymers analysed. This suggests a random distribution of the two monomers over the molecules. Copyright © 2011 Elsevier B.V. All rights reserved.
Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Chevalier, Yves
2017-10-05
Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.
Crystalline imide/arylene ether copolymers
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)
1995-01-01
Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.
Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark
2017-02-07
Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less
Enhanced Line Integral Convolution with Flow Feature Detection
NASA Technical Reports Server (NTRS)
Lane, David; Okada, Arthur
1996-01-01
The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.
Riehle, Natascha; Götz, Tobias; Kandelbauer, Andreas; Tovar, Günter E M; Lorenz, Günter
2018-06-01
This article contains data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers (PSUs) and is related to the research article entitled "Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application" (Riehle et al., 2018) [1]. These elastomers were prepared by a two-step polyaddition using the aliphatic diisocyanate 4,4'-Methylenbis(cyclohexylisocyanate) (H 12 MDI), a siloxane-based chain extender 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (APTMDS) and amino-terminated polydimethylsiloxanes (PDMS) or polydimethyl-methyl-phenyl-siloxane-copolymers (PDMS-Me,Ph), respectively. (More details about the synthesis procedure and the reaction scheme can be found in the related research article (Riehle et al., 2018) [1]). Amino-terminated polydimethylsiloxanes with varying molecular weights and PDMS-Me,Ph-copolymers were prepared prior by a base-catalyzed ring-chain equilibration of a cyclic siloxane and the endblocker APTMDS. This DiB article contains a procedure for the synthesis of the base catalyst tetramethylammonium-3-aminopropyl-dimethylsilanolate and a generic synthesis procedure for the preparation of a PDMS having a targeted number average molecular weight M ¯ n of 3000 g mol -1 . Molecular weights and the amount of methyl-phenyl-siloxane within the polysiloxane-copolymers were determined by 1 H NMR and 29 Si NMR spectroscopy. The corresponding NMR spectra and data are described in this article. Additionally, this DiB article contains processed data on in line and off line FTIR-ATR spectroscopy, which was used to follow the reaction progress of the polyaddition by showing the conversion of the diisocyanate. All relevant IR band assignments of a polydimethylsiloxane-urea spectrum are described in this article. Finally, data on the tensile properties and the mechanical hysteresis-behaviour at 100% elongation of PDMS-based polyurea-elastomers are shown in dependence to the PDMS molecular weight.
Amphiphilic block copolymer membrane for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena
2013-11-01
An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.
Periodic nanostructures from self assembled wedge-type block-copolymers
Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot
2015-06-02
The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.
Kepska, Kinga
2018-01-01
The detection and concentration measurements of low concentrations of nitrogen dioxide (NO2) are important because of its negative effects on human health and its application in many fields of industry and safety systems. In our approach, conducting graft copolymers based on the poly(3-hexylthiophene) (P3HT) conducting polymer and other side-chains, polyethylene glycol (PEG) and dodec-1-en, grafted on a poly(methylhydrosiloxane) backbone, were investigated. The grafts containing PEG (PEGSil) and dodec-1-en (DodecSil) in two variants, namely, fractions with shorter (hexane fraction -H) and longer (chloroform fraction -CH) side-chains of P3HT, were tested as receptor structures in NO2 gas sensors. Their responses to NO2, within the concentration range of 1–20 ppm, were investigated in an nitrogen atmosphere at different operating temperatures—room temperature (RT) = 25 °C, 50 °C, and 100 °C. The results indicated that both of the copolymers with PEG side-chains had higher responses to NO2 than the materials with dodec-1-en side-chains. Furthermore, the results indicated that, in both cases, H fractions were more sensitive than CH fractions. The highest response to 1 ppm of NO2, from the investigated graft copolymers, had PEGSil H, which indicated a response of 1330% at RT and 1980% at 100 °C. The calculated lower-limit of the detection of this material is lower than 300 ppb of NO2 at 100 °C. This research indicated that graft copolymers of P3HT had great potential for low temperature NO2 sensing, and that the proper choice of other side-chains in graft copolymers can improve their gas sensing properties. PMID:29558448
NASA Astrophysics Data System (ADS)
Sıdır, İsa
2017-10-01
Six new low-band-gap copolymers of donor-donor-acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d‧]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b‧]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b‧]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03-2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.
Alkan, Arda; Wald, Sarah; Louage, Benoit; De Geest, Bruno G; Landfester, Katharina; Wurm, Frederik R
2017-01-10
An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (M n ) between 3600 and 8600 g mol -1 and narrow molecular weight distributions (M w /M n = 1.04-1.10) were investigated via 1 H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of coatings and the recovery of surfactants.
Method of producing nanopatterned articles, and articles produced thereby
Russell, Thomas P; Park, Soojin; Xu, Ting
2013-11-12
A nanopatterned surface is prepared by forming a block copolymer film on a miscut crystalline substrate, annealing the block copolymer film, then reconstructing the surface of the annealed block copolymer film. The method creates a well-ordered array of voids in the block copolymer film that is maintained over a large area. The nanopatterned block copolymer films can be used ina variety of different applications, including the fabrication of high density data storage media.
40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether polyester copolymer... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...
21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrile rubber modified acrylonitrile-methyl... Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. Nitrile rubber modified acrylonitrile... rubber modified acrylonitrile-methyl acrylate copolymers consist of basic copolymers produced by the...
40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... as perfluoroalkyl acrylate copolymer (PMN P-11-63) is subject to reporting under this section for the... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkyl acrylate copolymer... Specific Chemical Substances § 721.10519 Perfluoroalkyl acrylate copolymer (generic). (a) Chemical...
40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... as perfluoroalkyl acrylate copolymer (PMN P-11-63) is subject to reporting under this section for the... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkyl acrylate copolymer... Specific Chemical Substances § 721.10519 Perfluoroalkyl acrylate copolymer (generic). (a) Chemical...
40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...
40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).
Code of Federal Regulations, 2013 CFR
2013-07-01
... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...
40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).
Code of Federal Regulations, 2014 CFR
2014-07-01
... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...
40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).
Code of Federal Regulations, 2012 CFR
2012-07-01
... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David
Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.
Giovannitti, Alexander; Maria, Iuliana P; Hanifi, David; Donahue, Mary J; Bryant, Daniel; Barth, Katrina J; Makdah, Beatrice E; Savva, Achilleas; Moia, Davide; Zetek, Matyáš; Barnes, Piers R F; Reid, Obadiah G; Inal, Sahika; Rumbles, Garry; Malliaras, George G; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain
2018-05-08
We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; ...
2018-04-24
Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less
3D printing biodegradable scaffolds with chitosan materials for tissue engineering
NASA Astrophysics Data System (ADS)
Bardakova, K. N.; Demina, T. S.; Grebenik, E. A.; Minaev, N. V.; Akopova, T. A.; Bagratashvili, V. N.; Timashev, P. S.
2018-04-01
Chitosan-g-oligo (L,L-lactide) copolymer was synthesized through a solvent-free reaction in an extruder. Three-dimensional scaffolds based on photosensitive composition contained the synthetized copolymer were formed by two-photon polymerization. The optimum ratio of components, methods of preparation of photopolymerizable mixtures, parameters of the laser structuring and procedure of washing from unbound crosslinkers have been optimized. Chitosan scaffolds were non-cytotoxic and might therefore be a suitable candidate for treating spinal cord injuries and other neuronal degenerative diseases.
21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...
21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...
Method of producing nanopatterned articles, and articles produced thereby
Russell, Thomas P; Park, Soojin; Xu, Ting
2015-04-28
A nanopatterned surface is prepared by forming a block copolymer film on a miscut crystalline substrate, annealing the block copolymer film, then reconstructing the surface of the annealed block copolymer film The method creates a well-ordered array of voids in the block copolymer film that is maintained over a large area. The nanopatterned block copolymer films can be used in a variety of different applications, including the fabrication of high density data storage media.
Zhang, Chao; Li, Zhi-An; Cheng, Xiang-Rong; Xiao, Qun; Li, Hong-Bo
2010-01-01
Hydroxyapatite coating on metal implants is an effective method to enhance bioactive properties of the metal surface. We report here a method to coat the Ti-6Al-4V alloy with hydroxyapatite crystals. After alkaline/heat treatment, the spontaneous growth of organoapatite on titanium alloy surface involves sequential preadsorption of titanium isopropoxide (TIPO) and the copolymer of acrylic acid and itaconic acid on the metal, followed by exposure to simulated body fluid (SBF). The organoapatite characterization of the coating was carried out by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The copolymer of acrylic acid and itaconic acid overlayer which is rich of carboxylate groups can lead to the deposition of needle-like and homogeneous HA on the surface after immersion in SBF.
Yang, Chengdong; Fang, Renren; Yang, Xiongfa; Chen, Ru; Gao, Jianhua; Fan, Hanghong; Li, Hongxiang; Hu, Wenping
2018-04-04
It is very important to develop ambipolar field effect transistors to construct complementary circuits. To obtain balanced hole- and electron-transport properties, one of the key issues is to regulate the energy levels of the frontier orbitals of the semiconductor materials by structural tailoring, so that they match well with the electrode Fermi levels. Five conjugated copolymers were synthesized and exhibited low LUMO energy levels and narrow bandgaps on account of the strong electron-withdrawing effect of the carbonyl groups. Polymer thin film transistors were prepared by using a solution method and exhibited high and balanced hole and electron mobility of up to 0.46 cm 2 V -1 s -1 , which suggested that these copolymers are promising ambipolar semiconductor materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.
2008-05-01
Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.
Oxygen plasma resistant phosphine oxide containing imide/arylene copolymers
NASA Technical Reports Server (NTRS)
Jensen, Brian J.
1993-01-01
A series of oxygen plasma resistant imide/arylene ether copolymers were prepared by reacting anhydride-terminated poly(amide acids) and amine-terminated polyarylene ethers containing phosphine oxide units. Inherent viscosities for these copolymers ranged from 0.42 to 0.80 dL/g. After curing, the resulting copolymers had glass transition temperatures ranging from 224 C to 228 C. Solution cast films of the block copolymers were tough and flexible with tensile strength, tensile moduli, and elongation at break up to 16.1 ksi, 439 ksi, and 23 percent, respectively at 25 C and 9.1 ksi, 308 ksi and 97 percent, respectively at 150 C. The copolymers show a significant improvement in resistance to oxygen plasma when compared to the commercial polyimide Kapton. The imide/arylene ether copolymers containing phosphine oxide units are suitable as coatings, films, adhesives, and composite matrices.
Well-posed and stable transmission problems
NASA Astrophysics Data System (ADS)
Nordström, Jan; Linders, Viktor
2018-07-01
We introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability are analysed for continuous and discrete problems using both strong and weak formulations, and a general transmission condition is obtained. The theory is applied to the coupling of fluid-acoustic models, multi-grid implementations, adaptive mesh refinements, multi-block formulations and numerical filtering.
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...
21 CFR 177.1211 - Cross-linked polyacrylate copolymers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...
21 CFR 177.1211 - Cross-linked polyacrylate copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...
21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Polyvinyl Chloride and Copolymers Production is being extended for 14 days. DATES: Comments. The public... for the May 20, 2011, Proposed Polyvinyl Chloride and Copolymers Production Rule, the EPA is extending...
40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).
Code of Federal Regulations, 2013 CFR
2013-07-01
... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses described...
40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).
Code of Federal Regulations, 2012 CFR
2012-07-01
... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses described...
40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).
Code of Federal Regulations, 2014 CFR
2014-07-01
... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses described...
21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as articles...
21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...
21 CFR 177.1310 - Ethylene-acrylic acid copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...
21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...
21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...
Self-assembly of block copolymers on topographically patterned polymeric substrates
Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting
2016-05-10
Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.
Development of a percutaneous penetration predictive model by SR-FTIR.
Jungman, E; Laugel, C; Rutledge, D N; Dumas, P; Baillet-Guffroy, A
2013-01-30
This work focused on developing a new evaluation criterion of percutaneous penetration, in complement to Log Pow and MW and based on high spatial resolution Fourier transformed infrared (FTIR) microspectroscopy with a synchrotron source (SR-FTIR). Classic Franz cell experiments were run and after 22 h molecule distribution in skin was determined either by HPLC or by SR-FTIR. HPLC data served as reference. HPLC and SR-FTIR results were compared and a new predictive criterion based from SR-FTIR results, named S(index), was determined using a multi-block data analysis technique (ComDim). A predictive cartography of the distribution of molecules in the skin was built and compared to OECD predictive cartography. This new criterion S(index) and the cartography using SR-FTIR/HPLC results provides relevant information for risk analysis regarding prediction of percutaneous penetration and could be used to build a new mathematical model. Copyright © 2012 Elsevier B.V. All rights reserved.
The next-generation ESL continuum gyrokinetic edge code
NASA Astrophysics Data System (ADS)
Cohen, R.; Dorr, M.; Hittinger, J.; Rognlien, T.; Collela, P.; Martin, D.
2009-05-01
The Edge Simulation Laboratory (ESL) project is developing continuum-based approaches to kinetic simulation of edge plasmas. A new code is being developed, based on a conservative formulation and fourth-order discretization of full-f gyrokinetic equations in parallel-velocity, magnetic-moment coordinates. The code exploits mapped multiblock grids to deal with the geometric complexities of the edge region, and utilizes a new flux limiter [P. Colella and M.D. Sekora, JCP 227, 7069 (2008)] to suppress unphysical oscillations about discontinuities while maintaining high-order accuracy elsewhere. The code is just becoming operational; we will report initial tests for neoclassical orbit calculations in closed-flux surface and limiter (closed plus open flux surfaces) geometry. It is anticipated that the algorithmic refinements in the new code will address the slow numerical instability that was observed in some long simulations with the existing TEMPEST code. We will also discuss the status and plans for physics enhancements to the new code.
HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.
Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel
2018-01-01
Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improvements of self-assembly properties via homopolymer addition or block-copolymer blends
NASA Astrophysics Data System (ADS)
Chevalier, X.; Nicolet, C.; Tiron, R.; Gharbi, Ahmed; Argoud, M.; Couderc, C.; Fleury, Guillaume; Hadziioannou, G.; Iliopoulos, I.; Navarro, C.
2014-03-01
The properties of cylindrical poly(styrene-b-methylmethacrylate) (PS-b-PMMA) BCPs self-assembly in thinfilms are studied when the pure BCPs are blended either with a homopolymer or with another cylindrical PS-b-PMMA based BCP. For both of these approaches, we show that the period of the self-assembled features can be easily tuned and controlled, and that the final material presents interesting characteristics, such as the possibility to achieve thicker defects-free films, as compared to pure block-copolymers having the same period. Moreover, a statistical defectivity study based on a Delaunay triangulation and Voronoi analysis of the self-assemblies made with the different blends is described, and prove that despite their high value of polydispersity index, these blends exhibit also improved selfassembly properties (bigger monocrystalline arrangements and enhanced kinetics of defects annihilation) as compared to pure and monodisperse block-copolymers. Finally, the behavior of the blends is also compared to the ones their pure counter-part in templated approach like the contact-hole shrink to evaluate their respective process-window and response toward this physical constrain for lithographic applications.
NASA Astrophysics Data System (ADS)
Kukade, S. D.; Bawankar, S. V.
2018-02-01
The purpose of the present paper is to report temperature dependence of electrical conductivity on Guaiacol-guanidine hydrochloride-formaldehyde copolymer resin. By using a microwave irradiation technique, various ratios of copolymer resin were synthesized from the reacting monomers, i.e., guaiacol, guanidine hydrochloride and formaldehyde. The characterization of the copolymer resins has been fulfilled by spectral methods viz. ultraviolet visible (UV visible), infrared and proton nuclear magnetic spectroscopy (1H-NMR). The solid state direct current electrical conductivity of synthesized copolymer resins has been measured as a function of temperature. The electrical conductivity values of all the copolymers have been found in the range of a semiconductor.
Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions
NASA Technical Reports Server (NTRS)
Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)
2014-01-01
Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.
Polymer scaffold degradation control via chemical control
Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten
2016-01-05
A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.
Knecht, Daniela; Rittig, Frank; Lange, Ronald F M; Pasch, Harald
2006-10-13
A large variety of hydrophilic copolymers is applied in different fields of chemical industry including bio, pharma and pharmaceutical applications. For example, poly(ethylene glycol)-poly(vinyl alcohol) graft copolymers that are used as tablet coatings are responsible for the controlled release of the active compounds. These copolymers are produced by grafting of vinyl acetate onto polyethylene glycol (PEG) and subsequent hydrolysis of the poly(ethylene glycol)-poly(vinyl acetate) graft copolymers. The poly(ethylene glycol)-poly(vinyl acetate) copolymers are distributed with regard to molar mass and chemical composition. In addition, they frequently contain the homopolymers polyethylene glycol and polyvinyl acetate. The comprehensive analysis of such complex systems requires hyphenated analytical techniques, including two-dimensional liquid chromatography and combined LC and nuclear magnetic resonance spectroscopy. The development and application of these techniques are discussed in the present paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guoliang; Nealey, Paul F.
Herein we have investigated the domain width distributions of block copolymers and their ternary blends after directed assembly on chemically patterned surfaces with and without density multiplication. On chemical patterns with density multiplication, the width of the interpolated block copolymer domains was bimodal. Once blended with the corresponding homopolymers, the block copolymers exhibited unimodal distributions of domain width due to the redistribution of homopolymers in the block copolymer domains. When the block copolymers were blended with hydroxyl-terminated homopolymers, the homopolymers with functional end-groups healed the chemical patterns and facilitated the formation of nanostructures with further improved domain width distributions. Lastly,more » it is demonstrated that the block copolymers achieved the most improved domain width distributions when directed to assemble without density multiplication on one-to-one chemical patterns generated by molecular transfer printing.« less
40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...
40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...
40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...
40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...
21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-hexene-1 copolymers. 177.1960... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1960 Vinyl chloride-hexene-1 copolymers. The vinyl chloride-hexene-1 copolymers identified in paragraph (a) of this section or as...
21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...
21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...
pH-sensitive methacrylic copolymers and the production thereof
Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.
2006-02-14
The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.
pH-sensitive methacrylic copolymers and the production thereof
Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.
2007-01-09
The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.
NASA Astrophysics Data System (ADS)
Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Jelonek, Katarzyna; Orchel, Arkadiusz; Adamus, Grażyna
2017-10-01
The novel copolymers composed of poly-γ-glutamic acid (γ-PGA) and oligoesters have been developed. The structures of the obtained copolymers including variety of end groups were determined at the molecular level with the aid of electrospray ionization multistage mass spectrometry (ESI-MSn). The fragmentation experiment performed for the selected sodium adducts of the copolymers confirmed that the developed methods lead to the formation of graft copolymers composed of poly-γ-glutamic acid (γ-PGA) backbone and oligoesters pendant chains. Moreover, it was established that fragmentation of selected sodium adducts of graft copolymers proceeded via random breakage of amide bonds along the backbone and ester bonds of the oligoesters pendant chains. Considering potential applications of the synthesized copolymers in the area of biomaterials, the hydrolytic degradation under laboratory conditions and in vitro cytotoxicity tests were performed. The ESI-MSn technique applied in this study has been proven to be a useful tool in structural studies of novel graft copolymers as well as their degradation products. [Figure not available: see fulltext.
Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.
Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L
2011-08-29
Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 10¹ m²/g), CDI-X copolymers (< 10¹ m²/g), and granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.
Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin
Wilson, Lee D.; Mohamed, Mohamed H.; Berhaut, Christopher L.
2011-01-01
Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g), CDI-X copolymers (< 101 m2/g), and granular activated carbon (GAC ~103 m2/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material. PMID:28824156
Surface Chemistry of a Microcoated Energetic Material, Pentaerythritoltetranitrate (PETN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, C.M.; Vannet, M.D.; Ball, G.L.
1987-01-01
A microcoating technique was used to apply a polymer to an energetic explosive material. The explosive was pentaerythritoltetranitrate (PETN), and the coating was a copolymer consisting of vinylchloride/trifluorochloroethylene in a 1.5/1.0 molecular ratio. X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) were used to study the surface and interfacial chemistry of PETN powders and pellets made from compressed powders having either 0.5 or 20 wt% coating. Two simple models were used to discuss the nature of the copolymer film on the PETN. Model I shows the copolymer completely coating PETN; Model II depicts the copolymer as only partially coveringmore » PETN. Model II was applicable in explaining the 0.5 and 20 wt% microcoating of powders, as well as the 0.5 wt% coated pellets. However, the pellets with 20 wt% coating showed the copolymer to completely coat PETN (Model I), suggesting copolymer redistribution during pelletization. XPS and ISS results showed the copolymer film to be thin. An XPS expression modified to accommodate ISS data was developed for the calculation of the average copolymer thickness of PETN. The thicknesses were determined to be 10 {angstrom} and 6 {angstrom} for 0.5 wt% coated PETN powders and pellets, respectively. Bonding between the copolymer and PETN was concluded to be mechanical.« less
Pandav, Gunja; Durand, William J; Ellison, Christopher J; Willson, C Grant; Ganesan, Venkat
2015-12-21
Recently, alignment of block copolymer domains has been achieved using a topographically patterned substrate with a sidewall preferential to one of the blocks. This strategy has been suggested as an option to overcome the patterning resolution challenges facing chemoepitaxy strategies, which utilize chemical stripes with a width of about half the period of block copolymer to orient the equilibrium morphologies. In this work, single chain in mean field simulation methodology was used to study the self assembly of symmetric block copolymers on topographically patterned substrates with sidewall interactions. Random copolymer brushes grafted to the background region (space between patterns) were modeled explicitly. The effects of changes in pattern width, film thicknesses and strength of sidewall interaction on the resulting morphologies were examined and the conditions which led to perpendicular morphologies required for lithographic applications were identified. A number of density multiplication schemes were studied in order to gauge the efficiency with which the sidewall pattern can guide the self assembly of block copolymers. The results indicate that such a patterning technique can potentially utilize pattern widths of the order of one-two times the period of block copolymer and still be able to guide ordering of the block copolymer domains up to 8X density multiplication.
Mechanistic insights for block copolymer morphologies: how do worms form vesicles?
Blanazs, Adam; Madsen, Jeppe; Battaglia, Giuseppe; Ryan, Anthony J; Armes, Steven P
2011-10-19
Amphiphilic diblock copolymers composed of two covalently linked, chemically distinct chains can be considered to be biological mimics of cell membrane-forming lipid molecules, but with typically more than an order of magnitude increase in molecular weight. These macromolecular amphiphiles are known to form a wide range of nanostructures (spheres, worms, vesicles, etc.) in solvents that are selective for one of the blocks. However, such self-assembly is usually limited to dilute copolymer solutions (<1%), which is a significant disadvantage for potential commercial applications such as drug delivery and coatings. In principle, this problem can be circumvented by polymerization-induced block copolymer self-assembly. Here we detail the synthesis and subsequent in situ self-assembly of amphiphilic AB diblock copolymers in a one pot concentrated aqueous dispersion polymerization formulation. We show that spherical micelles, wormlike micelles, and vesicles can be predictably and efficiently obtained (within 2 h of polymerization, >99% monomer conversion) at relatively high solids in purely aqueous solution. Furthermore, careful monitoring of the in situ polymerization by transmission electron microscopy reveals various novel intermediate structures (including branched worms, partially coalesced worms, nascent bilayers, "octopi", "jellyfish", and finally pure vesicles) that provide important mechanistic insights regarding the evolution of the particle morphology during the sphere-to-worm and worm-to-vesicle transitions. This environmentally benign approach (which involves no toxic solvents, is conducted at relatively high solids, and requires no additional processing) is readily amenable to industrial scale-up, since it is based on commercially available starting materials.
Zhi, Zelun; Su, Yajuan; Xi, Yuewei; Tian, Liang; Xu, Miao; Wang, Qianqian; Padidan, Sara; Li, Peng; Huang, Wei
2017-03-29
In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol 1200/2400 modified PHMB (APEG 1200/2400 -PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG 1200/2400 -PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG 2400 -PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG 2400 -PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG 2400 -PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.
Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L
2011-10-05
Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.
Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok
2010-03-01
Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.
NASA Astrophysics Data System (ADS)
Park, Cheolmin
2016-09-01
1D photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied due to their potential use in low-power reflective mode displays, e-books and sensors, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid swollen block copolymer films. Placement of a polymer/ionic liquid (IL) film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2vinyl pyridine) (PS-b-QP2VP) copolymer SC film allowed the development of R, G and B full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3V to +6V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.
Ni, Zhenjie; Dong, Huanli; Wang, Hanlin; Ding, Shang; Zou, Ye; Zhao, Qiang; Zhen, Yonggang; Liu, Feng; Jiang, Lang; Hu, Wenping
2018-03-01
Herein, the design and synthesis of novel π-extended quinoline-flanked diketopyrrolopyrrole (DPP) [abbreviated as QDPP] motifs and corresponding copolymers named PQDPP-T and PQDPP-2FT for high performing n-type organic field-effect transistors (OFETs) in flexible organic thin film devices are reported. Serving as DPP-flankers in backbones, quinoline is found to effectively tune copolymer optoelectric properties. Compared with TDPP and pyridine-flanked DPP (PyDPP) analogs, widened bandgaps and strengthened electron deficiency are achieved. Moreover, both hole and electron mobility are improved two orders of magnitude compared to those of PyDPP analogs (PPyDPP-T and PPyDPP-2FT). Notably, featuring an all-acceptor-incorporated backbone, PQDPP-2FT exhibits electron mobility of 6.04 cm 2 V -1 s -1 , among the highest value in OFETs fabricated on flexible substrates to date. Moreover, due to the widened bandgap and strengthened electron deficiency of PQDPP, n-channel on/off ratio over 10 5 with suppressed hole transport is first realized in the ambipolar DPP-based copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules
Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja
2014-01-01
Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367
Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.
Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L
2012-10-23
One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.
Gyroid nickel nanostructures from diblock copolymer supramolecules.
Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja
2014-04-28
Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology.
Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun
2016-12-01
In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sood, Nitin K.
Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.
Non-Classical Order in Sphere Forming ABAC Tetrablock Copolymers
NASA Astrophysics Data System (ADS)
Zhang, Jingwen; Sides, Scott; Bates, Frank
2013-03-01
AB diblock and ABC triblock copolymers have been studied thoroughly. ABAC tetrablock copolymers, representing the simplest variation from ABC triblock by breaking the molecular symmetry via inserting some of the A block in between B and C blocks, have been studied systematically in this research. The model system is poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers and the resulting morphologies were characterized by nuclear magnetic resonance, gel permeation chromatography, small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Two novel phases are first discovered in a single component block copolymers: hexagonally ordered spherical phase and tentatively identified dodecagonal quasicrystalline (QC) phase. In particular, the discovery of QC phase bridges the world of soft matters to that of metals. These unusual sets of morphologies will be discussed in the context of segregation under the constraints associated with the tetrablock molecular architecture. Theoretical calculations based on the assumption of Gaussian chain statistics provide valuable insights into the molecular configurations associated with these morphologies. the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under contract number DEAC05-00OR22725 with UT-Battelle LLC at Oak Ridge National Lab.
Cui, Qianling; Wu, Feipeng; Wang, Erjian
2011-05-19
Stimuli-responsive, well-defined diblock copolymers (PEG-b-PADMO) comprising poly(ethylene glycol) (PEG, DP (degree of polymerization)=45) as the hydrophilic and temperature-sensitive part and poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO, DP=18-47) as the hydrophobic and acid-labile part self-assembled in water into spherical micelles with high aggregation number. The micellar structures and thermally induced phase transitions of the copolymers were investigated with (1)H NMR spectroscopy, light scattering, microscopy, turbidimetry, and fluorescence techniques. Thermoresponsive phase transitions of the copolymers in water were controlled via formation of core-shell-type micelles with densely compact PEG corona. Their lower critical solution temperatures (LCSTs) were modulated within the range 40-72 °C by varying PADMO block length. This unusually low LCST was attributed to the densely packed PEG structure in the polymer micelles, which resulted in strong n-clustering attractive interactions and insufficient hydration of PEG chains in the shell and greatly enhanced the thermosensitivity. The LCST behavior can also be modulated by partial acid hydrolysis of PADMO segments through the resulting change of hydrophobicity. © 2011 American Chemical Society
Mallik, Abul K; Noguchi, Hiroki; Rahman, Mohammed Mizanur; Takafuji, Makoto; Ihara, Hirotaka
2018-06-22
The synthesis of a new alternating copolymer-grafted silica phase is described for the separation of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs) and tocopherols in reversed-phase high-performance liquid chromatography (RP-HPLC). Telomerization of the monomers (octadecyl acrylate and N-methylmaleimide) was carried out with a silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T) was grafted onto porous silica surface to prepare the alternating copolymer-grafted silica phase (Sil-alt-T). The new hybrid material was characterized by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and solid-state 13 C and 29 Si cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. The results of 13 C CP/MAS NMR demonstrated that the alkyl chains of the grafted polymers in Sil-alt-T remained disordered, amorphous, and mobile represented by gauche conformational form. Separation abilities and molecular-shape selectivities of the prepared organic phase were evaluated by the separation of PAHs isomers and Standard Reference Material 869b, Column Selectivity Test Mixture for Liquid Chromatography, respectively and compared with commercially available octadecylsilylated silica (ODS) and C 30 columns as well as previously reported alternating copolymer-based column. The effectiveness of this phase is also demonstrated by the separation of tocopherol isomers. Oriented functional groups along the polymer main chains and cavity formations are investigated to be the driving force for better separation with multiple-interactions with the solutes. One of the advantages of the Sil-alt-T phase to that of the previously reported phase is the synthesis of the telomer first and then immobilized onto silica surface. In this case, the telomer was characterized easily with simple spectroscopic techniques and the molecular mass and polydispersity index of the telomer were determined by size exclusion chromatography (SEC) before grafting onto silica surface. Moreover, both of the monomers were commercially available. Therefore, the technique of preparation was very facile and better separation was achieved with the Sil-alt-T phase compared to the ODS, C 30 and other previously reported alternating copolymer-based columns. Copyright © 2018 Elsevier B.V. All rights reserved.
Shit, Arnab; Chal, Pousali; Nandi, Arun K
2018-06-13
In order to tune the band positions of the hole-transporting material (HTM) in an interfacially engineered perovskite solar cell (PSC), random copolymers of poly(3-thiopheneacetic acid) and poly(3-hexylthiophene) (P3TAA-co-P3HT) with different compositions were produced by oxidative polymerization. The copolymers were characterized using 1H NMR, FTIR, and UV-vis spectroscopy and gel permeation chromatography. Here, ZnO nanoparticles were used as the electron-transporting material (ETM) and methylammonium lead iodide (MAPbI3) perovskite was used as the light-absorbing material to form an FTO/ZnO/MAPbI3/copolymer/Ag device, of which the power conversion efficiency (PCE) was found to be dependent on the copolymer composition and reached a maximum (∼10%) at a P3TAA content of 43 mol% in the copolymer (P3). The band gaps of the copolymers as determined from UV-vis spectroscopy and cyclic voltammetry exhibit a staggered-gap hetero-interface configuration in which the HOMO and LUMO of P3 closely match those of MAPbI3 and give rise to the maximum PCE. Time-resolved photoluminescence spectra of MAPbI3/HTM samples indicate that charge transfer across the perovskite/copolymer interface was faster with a reduced recombination rate for a P3 sample. The electrochemical impedance spectra (EIS) of the PSCs exhibit Nyquist plots with two semicircles, which correspond to an equivalent circuit consisting of two parallel R-C and R-CPE circuits connected in series. Analysis of the data indicates that the effective electron lifetime was longest for the P3 copolymer, which indicates that the charge recombination was lower than that in the components and other copolymers. The copolymers exhibited an intermediate stability with respect to their components, and amongst the copolymers P3 exhibited the highest stability.
NASA Astrophysics Data System (ADS)
Bowman, Michelle Kathleen
Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a poly(styrene-b-methyl methacrylate) (SM) diblock copolymer with an order-disorder transition temperature (TODT) of 186°C, we find that the addition of clustered and discrete nanoparticles of varying size and surface selectivity can cause T ODT to generally decrease, but occasionally increase. Also experimenting with a poly(styrene-b-isoprene) (SI) diblock copolymer with an TODT of 116°C, we find that the addition of smaller nanoparticles at small volume fractions effect the TODT more profoundly. The latter unexpected results are likewise predicted by SCFT and provide a unique strategy by which to improve the nanostructure stability of block copolymers by physical means.
Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride.
Ahmed, Osama Abdelhakim Aly; Zidan, Ahmed Samir; Khayat, Maan
2016-01-01
The study aims at applying pharmaceutical nanotechnology and D-optimal fractional factorial design to screen and optimize the high-risk variables affecting the performance of a complex drug delivery system consisting of glimepiride-Zein nanoparticles and inclusion of the optimized formula with thermoresponsive triblock copolymers in in situ gel. Sixteen nanoparticle formulations were prepared by liquid-liquid phase separation method according to the D-optimal fractional factorial design encompassing five variables at two levels. The responses investigated were glimepiride entrapment capacity (EC), particle size and size distribution, zeta potential, and in vitro drug release from the prepared nanoparticles. Furthermore, the feasibility of embedding the optimized Zein-based glimepiride nanoparticles within thermoresponsive triblock copolymers poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) in in situ gel was evaluated for controlling glimepiride release rate. Through the systematic optimization phase, improvement of glimepiride EC of 33.6%, nanoparticle size of 120.9 nm with a skewness value of 0.2, zeta potential of 11.1 mV, and sustained release features of 3.3% and 17.3% drug released after 2 and 24 hours, respectively, were obtained. These desirability functions were obtained at Zein and glimepiride loadings of 50 and 75 mg, respectively, utilizing didodecyldimethylammonium bromide as a stabilizer at 0.1% and 90% ethanol as a common solvent. Moreover, incorporating this optimized formulation in triblock copolymers-based in situ gel demonstrated pseudoplastic behavior with reduction of drug release rate as the concentration of polymer increased. This approach to control the release of glimepiride using Zein nanoparticles/triblock copolymers-based in situ gel forming intramuscular implants could be useful for improving diabetes treatment effectiveness.
Water-soluble graft copolymers of starch-acrylamide and uses therefor
Butler, George B.; Hogen-Esch, Thieo E.; Meister, John J.; Pledger, Jr., Huey
1983-08-23
Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce.sup.+4 or other redox initiators. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells.
NASA Astrophysics Data System (ADS)
Lipscomb, Corinne Elizabeth
The development of biodegradable materials is a challenging and important problem in polymer science. A review of the state of the art in degradable materials is presented, which reveals that current biodegradable materials do not exhibit the thermal or mechanical properties necessary for widespread applications. One strategy for toughening polymeric materials, which has previously been applied to non-degradable thermoplastics and thermoplastic elastomers, is the formation of block copolymers. Poly(vinyl esters) (PVE) homopolymers are known to have a wide range of properties, but PVE block copolymers comprise a class of inexpensive and (bio)degradable materials that were previously unknown. Therefore, the synthesis and properties of these block copolymers were explored in an effort to develop robust degradable materials. This thesis research probes the reaction conditions necessary for the reversible-addition fragmentation chain transfer (RAFT) polymerization and chain extension reactions of vinyl ester monomers. PVE di- and triblock copolymers are synthesized and studied, and the triblock copolymers display extremely poor toughness due to their relatively low molecular weights in light of the high entanglement molecular weight of the poly(vinyl acetate) center block. Attempts to improve the mechanical properties of these materials focus on the incorporation of poly(ethylene oxide) (PEO) as a low entanglement molecular weight and biocompatible center block in PVE-containing triblock copolymers. Depending on the choice of PVE endblocks and the overall polymer composition, crystallization of the PEO block can be controlled, confined, or inhibited. Polymers in which PEO crystallization is completely inhibited exhibit enhanced mechanical properties and behave as weak thermoplastics. In order to understand the relationship between the inhibition of PEO crystallization and the mechanical properties of PVE/PEO materials, these polymers were studied using dynamic mechanical spectroscopy, wide angle X-ray scattering, small angle X-ray scattering, differential scanning calorimetry, and uniaxial tensile tests. By combining insights gained from these techniques, a complex picture emerges that explains the enhanced mechanical properties of these materials based on the type and location of thermal transitions, amorphous PEO entanglements, and the strain-induced crystallization of PEO. This work represents an important step toward developing robust materials with tunable properties containing (bio)degradable components.