NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Lin, Tao; Hu, Dapeng
2018-03-01
Photonic microwave frequency down-conversion with independent multichannel phase shifting and zero-intermediate frequency (IF) receiving is proposed and demonstrated by simulation. By combined use of a phase modulator (PM) in a sagnac loop and an optical bandpass filter (OBPF), orthogonal polarized carrier suppression single sideband (CS-SSB) signals are obtained. By adjusting the polarization controllers (PCs) to introduce the phase difference in the optical domain and using balanced detection to eliminate the direct current components, the phase of the generated IF signal can be arbitrarily tuned. Besides, the radio frequency (RF) vector signal can be also frequency down-converted to baseband directly by choosing two quadrature channels. In the simulation, high gain and continuously tunable phase shifts over the 360 degree range are verified. Furthermore, 2.5 Gbit/s RF vector signals centered at 10 GHz with different modulation formats are successfully demodulated.
Device for recording the 20 Hz - 200 KHz sound frequency spectrum using teletransmission
NASA Technical Reports Server (NTRS)
Baciu, I.
1974-01-01
The device described consists of two distinct parts: (1) The sound pickup system consisting of the wide-frequency band condenser microphone which contains in the same assembly the frequency-modulated oscillator and the output stage. Being transistorized and small, this system can be easily moved, so that sounds can be picked up even in places that are difficult to reach with larger devices. (2) The receiving and recording part is separate and can be at a great distance from the sound pickup system. This part contains a 72 MHz input stage, a frequency changer that gives an intermediate frequency of 30 MHz and a multichannel analyzer coupled to an oscilloscope and a recorder.
An infrared search for extraterrestrial laser signals
NASA Technical Reports Server (NTRS)
Betz, A.
1986-01-01
The focus of project SETI is on microwave frequencies, where receivers fundamentally have the best sensitivity for the detection of narrow band signals. Such receivers, when coupled to existing radio telescopes, form an optimum system for broad area searches over the sky. Detection of narrow band infrared signals is best done with a laser heterodyne reciever similar in function to a microwave spectral line receiver. A receiver was built for astrophysical observations at 30 THz (10 microns) and the spectrometer is being adapted for SETI work. The receiver uses a small CO2 laser as the local oscillator, a HgCdTe diode as the photomixer, and a multichannel intermediate frequency (IF) filterbank. An advanced multichannel IF processor is now being built to detect infrared line radiation in 1000 spectral channels each 1 MHz wide. When completed this processor will be used with a ground based telescope next year for a survey of several hundred selected stars for narrow band CO2 laser signals at 30 THz.
A Practical Millimeter-Wave Holographic Imaging System with Tunable IF Attenuator
NASA Astrophysics Data System (ADS)
Zhu, Yu-Kun; Yang, Ming-Hui; Wu, Liang; Sun, Yun; Sun, Xiao-Wei
2017-10-01
A practical millimeter-wave (mmw) holographic imaging system with tunable intermediate frequency (IF) attenuator has been developed. It can be used for the detection of concealed weapons at security checkpoints, especially the airport. The system is utilized to scan the passenger and detect the weapons hidden in the clothes. To reconstruct the three dimensions (3-D) image, a holographic mmw imaging algorithm based on aperture synthesis and back scattering is presented. The system is active and works at 28-33 GHz. Tunable IF attenuator is applied to compensate the intensity and phase differences between multi-channels and multi-frequencies.
NASA Technical Reports Server (NTRS)
1976-01-01
Preliminary (1977-1983), intermediate (1982-1988), and long term (1989+) phases of the search for extraterrestrial intelligence (SETI) program are examined as well as the benefits to be derived in radioastronomy and the problems to be surmounted in radio frequency interference. The priorities, intrinsic value, criteria, and strategy for the search are discussed for both terrestrial and lunar-based CYCLOPS and for a space SETI system located at lunar liberation point L4. New initiatives related to antenna independent technology, multichannel analyzers, and radio frequency interference shielding are listed. Projected SETI program costs are included.
NASA Astrophysics Data System (ADS)
Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu
2018-03-01
An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.
Self-adaptive method for high frequency multi-channel analysis of surface wave method
USDA-ARS?s Scientific Manuscript database
When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778
Modulation frequency discrimination with single and multiple channels in cochlear implant users
Galvin, John J.; Oba, Sandy; Başkent, Deniz; Fu, Qian-Jie
2015-01-01
Temporal envelope cues convey important speech information for cochlear implant (CI) users. Many studies have explored CI users’ single-channel temporal envelope processing. However, in clinical CI speech processors, temporal envelope information is processed by multiple channels. Previous studies have shown that amplitude modulation frequency discrimination (AMFD) thresholds are better when temporal envelopes are delivered to multiple rather than single channels. In clinical fitting, current levels on single channels must often be reduced to accommodate multi-channel loudness summation. As such, it is unclear whether the multi-channel advantage in AMFD observed in previous studies was due to coherent envelope information distributed across the cochlea or to greater loudness associated with multi-channel stimulation. In this study, single- and multi-channel AMFD thresholds were measured in CI users. Multi-channel component electrodes were either widely or narrowly spaced to vary the degree of overlap between neural populations. The reference amplitude modulation (AM) frequency was 100 Hz, and coherent modulation was applied to all channels. In Experiment 1, single- and multi-channel AMFD thresholds were measured at similar loudness. In this case, current levels on component channels were higher for single- than for multi-channel AM stimuli, and the modulation depth was approximately 100% of the perceptual dynamic range (i.e., between threshold and maximum acceptable loudness). Results showed no significant difference in AMFD thresholds between similarly loud single- and multi-channel modulated stimuli. In Experiment 2, single- and multi-channel AMFD thresholds were compared at substantially different loudness. In this case, current levels on component channels were the same for single-and multi-channel stimuli (“summation-adjusted” current levels) and the same range of modulation (in dB) was applied to the component channels for both single- and multi-channel testing. With the summation-adjusted current levels, loudness was lower with single than with multiple channels and the AM depth resulted in substantial stimulation below single-channel audibility, thereby reducing the perceptual range of AM. Results showed that AMFD thresholds were significantly better with multiple channels than with any of the single component channels. There was no significant effect of the distribution of electrodes on multi-channel AMFD thresholds. The results suggest that increased loudness due to multi-channel summation may contribute to the multi-channel advantage in AMFD, and that that overall loudness may matter more than the distribution of envelope information in the cochlea. PMID:25746914
Simultaneous chromatic dispersion, polarization-mode-dispersion and OSNR monitoring at 40Gbit/s.
Baker-Meflah, Lamia; Thomsen, Benn; Mitchell, John; Bayvel, Polina
2008-09-29
A novel method for independent and simultaneous monitoring of chromatic dispersion (CD), first-order PMD and OSNR in 40Gbit/s systems is proposed and demonstrated. This is performed using in-band tone monitoring of 5GHz, optically down-converted to a low intermediate-frequency (IF) of 10kHz. The measurement provides a large monitoring range with good accuracies for CD (4742+/-100ps/nm), differential group delay (DGD) (200+/-4ps) and OSNR (23+/-1dB), independently of the bit-rate. In addition, the use of electro-absorption modulators (EAM) for the simultaneous down-conversion of all channels and the use of low-speed detectors makes it cost effective for multi-channel operation.
Multichannel analysis of surface waves
Park, C.B.; Miller, R.D.; Xia, J.
1999-01-01
The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept-frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear-wave velocity (??(s)) profile with a downhole ??(s) profile.Multichannel recording is an efficient method of acquiring ground roll. By displaying the obtained information in a swept-frequency format, different frequency components of Rayleigh waves can be identified by distinctive and simple coherency. In turn, a seismic surface-wave method is derived that provides a useful noninvasive tool, where information about elastic properties of near-surface materials can be effectively obtained.
IF digitization receiver of wideband digital array radar test-bed
NASA Astrophysics Data System (ADS)
Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping
2014-10-01
In this paper, an X-band, 8-element wideband digital array radar (DAR) test-bed is presented, which makes use of a novel digital backend coupled with highly-integrated, multi-channel intermediate frequency (IF) digital receiver. Radar returns are received by the broadband antenna and then down-converted to the IF of 0.6GHz-3.0GHz. Four band-pass filters are applied in the front-end to divide the IF returns into four frequency bands with the instantaneous bandwidth of 500MHz. Every four array elements utilize a digital receiver, which is focused in this paper. The digital receivers are designed in a compact and flexible manner to meet the demands of DAR system. Each receiver consists of a fourchannel ADC, a high-performance FPGA, four DDR3 chips and two optical transceivers. With the sampling rate of up to 1.2GHz each channel, the ADC is capable of directly sampling the IF returns of four array elements at 10bits. In addition to serving as FIFO and controller, the onboard FPGA is also utilized for the implementation of various real-time algorithms such as DDC and channel calibration. Data is converted to bit stream and transferred through two low overhead, high data rate and multi-channel optical transceivers. Key technologies such as channel calibration and wideband DOA are studied with the measured data which is obtained in the experiments to illustrate the functionality of the system.
Multi-channel distributed coordinated function over single radio in wireless sensor networks.
Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay
2011-01-01
Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.
Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks
Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay
2011-01-01
Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614
NASA Astrophysics Data System (ADS)
Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Lyu, B.; Shi, T. H.; Xu, L. Q.; Wang, F. D.; Li, Q.; Zhang, J. Z.; Hu, L. Q.; Li, J. G.; the EAST Team
2018-02-01
In this paper, we report an experimental study of the effect of a m/n = -2/-1 (m, n being poloidal and toroidal mode number, separately) classical tearing mode on (intermediate, small)-scale microturbulence (see the definition in section 1) in the core of an EAST L mode plasma discharge. The microturbulence at different scales k ⊥ = 10, 18 and 26 cm-1 (i.e., {k}\\perp {ρ }i˜ 2, 3.6 and 5.2, respectively. Here, {ρ }i is the ion gyroradius and k ⊥ is the perpendicular wavenumber) were measured simultaneously by the EAST multi-channel tangential CO2 laser collective scattering diagnostics. Experimental results confirm that the decrease of microturbulent Doppler shift ({f}{{Doppler}}={k}t{v}t/2π ), inversely correlated to the increase of microturbulent mean frequency (defined in equation (1)), is due to the 2/1 tearing mode. Temporal evolution of frequency-integrated spectral power S tot of microturbulence, found to be correlated with the width of 2/1 magnetic island, suggests the modulation effect on microturbulence by the tearing mode beyond Doppler shift effect. Modulation effects on microturbulence by the tearing mode are further demonstrated by the correlation between microturbulent envelope and magnetic fluctuations.
Wang, Fei; Dong, Jianji; Xu, Enming; Zhang, Xinliang
2010-11-22
An all-optical UWB pulses generation and modulation scheme using cross phase modulation (XPM) effect of semiconductor optical amplifier (SOA) and DWDM-based multi-channel frequency discrimination is proposed and demonstrated, which has potential application in multiuser UWB-Over-Fiber communication systems. When a Gaussian pulse light and a wavelength-tunable CW probe light are together injected into the SOA, the probe light out from the SOA will have a temporal chirp due to SOA-XPM effect. When the chirped probe light is tuned to the slopes of single DWDM channel transmittance curve, the optical phase modulation to intensity modulation conversion is achieved at DWDM that serves as a multi-channel frequency discriminator, the inverted polarity Gaussian monocycle and doublet pulse is detected by a photodetector, respectively. If the probe lights are simultaneously aimed to different slopes of several DWDM channels, multi-channel or binary-phase-coded UWB signal generation can be acquired. Using proposed scheme, pulse amplitude modulation (PAM), pulse polarity modulation (PPM) and pulse shape modulation (PSM) to UWB pulses also can be conveniently realized.
Utilization of high-frequency Rayleigh waves in near-surface geophysics
Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.
2004-01-01
Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.
Lou, Wutao; Xu, Jin; Sheng, Hengsong; Zhao, Songzhen
2011-11-01
Multichannel EEG recorded in a task condition could contain more information about cognition. However, that has not been widely investigated in the vascular-dementia (VaD)- related studies. The purpose of this study was to explore the differences of brain functional states between VaD patients and normal controls while performing a detection task. Three multichannel linear descriptors, i.e. spatial complexity (Ω), field strength (Σ) and frequency of field changes (Φ), were applied to analyse four frequency bands (delta, theta, alpha and beta) of multichannel event-related EEG signals for 12 VaD patients (mean age ± SD: 69.25 ± 10.56 years ; MMSE score ± SD: 22.58 ± 4.42) and 12 age-matched healthy subjects (mean age ± SD: 67.17 ± 5.97 years ; MMSE score ± SD: 29.08 ± 0.9). The correlations between the three measures and MMSE scores were also analysed. VaD patients showed a significant higher Ω value in the delta (p = 0.013) and theta (p = 0.021) frequency bands, a lower Σ value (p = 0.011) and a higher Φ (p = 0.008) value in the delta frequency band compared with normal controls. The MMSE scores were negatively correlated with the Ω (r = -0.52, p = 0.01) and Φ (r = -0.47, p = 0.02) values in the delta frequency band. The results indicated the VaD patients presented a reduction of synchronization in the slow frequency band during target detection, and suggested more neurons might be activated in VaD patients compared with normal controls. The Ω and Φ measures in the delta frequency band might be used to evaluate the degree of cognitive dysfunction. The multichannel linear descriptors are promising measures to reveal the differences in brain functions between VaD patients and normal subjects, and could potentially be used to evaluate the degree of cognitive dysfunction in VaD patients. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Method for network analyzation and apparatus
Bracht, Roger B.; Pasquale, Regina V.
2001-01-01
A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.
Tunable and multi-channel perfect absorber based on graphene at mid-infrared region
NASA Astrophysics Data System (ADS)
Meng, HaiYu; Xue, XiongXiong; Lin, Qi; Liu, GuiDong; Zhai, Xiang; Wang, LingLing
2018-05-01
A tunable, multi-channel plasmonic perfect absorber based on graphene is proposed. Simulated results reveal that the resonant wavelength can be effectively tuned in many ways (by changing the Fermi energy of graphene, radius of Si, or air gap between the Si and the graphene film). Furthermore, the multi-channel perfect absorber is obtained by changing the period of the system. Specifically, a high absorption is obtained by using a multilayer Bragg mirror in place of the metallic plate. We believe that such an absorber may have potential applications for multi-channel photodetectors, frequency selection, and electromagnetic-wave energy storage.
NASA Astrophysics Data System (ADS)
Xia, Jianghai
2014-04-01
This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.
Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.
Cheng, Rui; Chrostowski, Lukas
2018-03-01
Multichannel photonic Hilbert transformers (MPHTs) are reported. The devices are based on single compact spiral integrated Bragg gratings on silicon with coupling coefficients precisely modulated by the phase of each grating period. MPHTs with up to nine wavelength channels and a single-channel bandwidth of up to ∼625 GHz are achieved. The potential of the devices for multichannel single-sideband signal generation is suggested. The work offers a new possibility of utilizing wavelength as an extra degree of freedom in designing radio-frequency photonic signal processors. Such multichannel processors are expected to possess improved capacities and a potential to greatly benefit current widespread wavelength division multiplexed systems.
Multimodal approach to seismic pavement testing
Ryden, N.; Park, C.B.; Ulriksen, P.; Miller, R.D.
2004-01-01
A multimodal approach to nondestructive seismic pavement testing is described. The presented approach is based on multichannel analysis of all types of seismic waves propagating along the surface of the pavement. The multichannel data acquisition method is replaced by multichannel simulation with one receiver. This method uses only one accelerometer-receiver and a light hammer-source, to generate a synthetic receiver array. This data acquisition technique is made possible through careful triggering of the source and results in such simplification of the technique that it is made generally available. Multiple dispersion curves are automatically and objectively extracted using the multichannel analysis of surface waves processing scheme, which is described. Resulting dispersion curves in the high frequency range match with theoretical Lamb waves in a free plate. At lower frequencies there are several branches of dispersion curves corresponding to the lower layers of different stiffness in the pavement system. The observed behavior of multimodal dispersion curves is in agreement with theory, which has been validated through both numerical modeling and the transfer matrix method, by solving for complex wave numbers. ?? ASCE / JUNE 2004.
Multichannel analysis of surface waves (MASW) - Active and passive methods
Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.
2007-01-01
The conventional seismic approaches for near-surface investigation have usually been either high-resolution reflection or refraction surveys that deal with a depth range of a few tens to hundreds meters. Seismic signals from these surveys consist of wavelets with frequencies higher than 50 Hz. The multichannel analysis of surface waves (MASW) method deals with surface waves in the lower frequencies (e.g., 1-30 Hz) and uses a much shallower depth range of investigation (e.g., a few to a few tens of meters). ?? 2007 Society of Exploration Geophysicists.
Plyler, Patrick N; Reber, Monika Bertges; Kovach, Amanda; Galloway, Elisabeth; Humphrey, Elizabeth
2013-02-01
Multichannel wide dynamic range compression (WDRC) and ChannelFree processing have similar goals yet differ significantly in terms of signal processing. Multichannel WDRC devices divide the input signal into separate frequency bands; a separate level is determined within each frequency band; and compression in each band is based on the level within each band. ChannelFree processing detects the wideband level, and gain adjustments are based on the wideband signal level and adjusted up to 20,000 times per second. Although both signal processing strategies are currently available in hearing aids, it is unclear if differences in these signal processing strategies affect the performance and/or preference of the end user. The purpose of the research was to determine the effects of multichannel wide dynamic range compression and ChannelFree processing on performance and/or preference of listeners using open-canal hearing instruments. An experimental study in which subjects were exposed to a repeated measures design was utilized. Fourteen adult listeners with mild sloping to moderately severe sensorineural hearing loss participated (mean age 67 yr). Participants completed two 5 wk trial periods for each signal processing strategy. Probe microphone, behavioral and subjective measures were conducted unaided and aided at the end of each trial period. Behavioral and subjective results for both signal processing strategies were significantly better than unaided results; however, behavioral and subjective results were not significantly different between the signal processing strategies. Multichannel WDRC and ChannelFree processing are both effective signal processing strategies that provide significant benefit for hearing instrument users. Overall preference between the strategies may be related to the degree of hearing loss of the user, high-frequency in-situ levels, and/or acceptance of background noise. American Academy of Audiology.
DFT studies on the multi-channel reaction of CH3S+NO2
NASA Astrophysics Data System (ADS)
Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun
The mechanisms for the reaction of CH3S with NO2 are investigated at the QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) on both single and triple potential energy surfaces (PESs). The geometries, vibrational frequencies, and zero-point energy (ZPE) correction of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d,p) level. More accurate energies are obtained at the QCISD(T)/6-311++G(d,p). The results show that 5 intermediates and 14 transition states are found. The reaction is more predominant on the single PES, while it is negligible on the triple PES. Without any barrier height for the whole process, the main channel of the reaction is to form CH3SONO and then dissociate to CH3SO+NO.
Multichannel modeling and two-photon coherent transfer paths in NaK
NASA Astrophysics Data System (ADS)
Schulze, T. A.; Temelkov, I. I.; Gempel, M. W.; Hartmann, T.; Knöckel, H.; Ospelkaus, S.; Tiemann, E.
2013-08-01
We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel analysis of the electronic ground and K(4p)+Na(3s) excited-state manifold of NaK, analyze the spin character of both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study is complemented by the demonstration of stimulated Raman adiabatic passage from the X1Σ+(v=0) state to the a3Σ+ manifold on a molecular beam experiment.
Microprocessor-based multichannel flutter monitor using dynamic strain gage signals
NASA Technical Reports Server (NTRS)
Smalley, R. R.
1976-01-01
Two microprocessor-based multichannel monitors for monitoring strain gage signals during aerodynamic instability (flutter) testing in production type turbojet engines were described. One system monitors strain gage signals in the time domain and gives an output indication whenever the signal amplitude of any gage exceeds a pre-set alarm or abort level for that particular gage. The second system monitors the strain gage signals in the frequency domain and therefore is able to use both the amplitude and frequency information. Thus, an alarm signal is given whenever the spectral content of the strain gage signal exceeds, at any point, its corresponding amplitude vs. frequency limit profiles. Each system design is described with details on design trade-offs, hardware, software, and operating experience.
Software Configurable Multichannel Transceiver
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter
2009-01-01
Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.
Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R
2016-08-16
Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.
Combined optical and photoelectric study of the photocycle of 13-cis bacteriorhodopsin.
Gergely, C; Ganea, C; Váró, G
1994-01-01
The photocycle of the 13-cis retinal containing bacteriorhodopsin was studied by three different techniques. The optical multichannel analyzer monitored the spectral changes during the photocycle and gave information about the number and the spectrum of the intermediates. The absorption kinetic measurements provided the possibility of following the absorbance changes at several characteristic wavelengths. The electric signal provided information about the charge motions during the photocycle. The results reveal the existence of two intermediates in the 13-cis photocycle, one with a short lifetime having an average of 1.7 microseconds and an absorption maximum at 620 nm. The other, a long-living intermediate, has a lifetime of about 50 ms and an absorption maximum around 585 nm. The data analysis suggests that these intermediates are in two parallel branches of the photocycle, and branching from the intermediate with the shorter lifetime might be responsible for the light-adaptation process. PMID:7948698
47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.616 Operation near certain aeronautical and marine emergency radio frequencies. (a) The transmission...
O' Connell bridge inspection by means of Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Santos Assuncao, Sonia, ,, Dr
2016-04-01
Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.
NASA Astrophysics Data System (ADS)
Kumar, Asish; Singh, Prabal P.; Thapa, Khem B.
2018-05-01
The optical properties of one-dimensional periodic structure composed by SiO2 and dielectric (air) layers with asymmetric and symmetric forms studied. The transmittance for symmetric periodic defective structure analyzed by introducing one, two, three layers of magnetized cold plasma (MCP) in one-dimensional periodic structure. We found better result for symmetric defect of three layer of the MCP compare to the other defective structures. On the basis of our calculated results, we proposed a new idea for broadband reflector at lower frequency range as well as the multichannel filter at higher frequency range.
NASA Astrophysics Data System (ADS)
Awasthi, Suneet Kumar; Panda, Ranjita; Shiveshwari, Laxmi
2017-07-01
The multichannel tunable filter properties of one-dimensional ternary plasma photonic crystal composed of magnetized plasma and lossless dielectric have been theoretically investigated using transfer matrix method in the microwave region. The proposed filters possess 2N - 2 comb-like sharp resonant peaks also called transmission channels for N > 1 in transmission spectra in the absence and presence of an external magnetic field. Due to the coupling between evanescent waves and propagating modes in plasma and dielectric layers, respectively, 2N - 2 transmission channels are found without the addition of any defect, enabling the structure to work as a multichannel filter. Next, the filter properties can be made tunable by the application of an external magnetic field, i.e., channel frequency can either be red or blue shifted depending upon the orientation of an external magnetic field. The number of channels and their positions can also be modulated by changing the number of periods (N) and the incident angle (θo), respectively, for both transverse electric (TE) and transverse magnetic (TM) modes besides other parameters such as plasma collision frequency, thickness of the plasma layer, plasma frequency, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, Christa; Agner, Josef A.; Merkt, Frederic
2013-06-28
A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal trans-4{sup Prime }-(dimethylamino)-N-methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet-submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated inmore » a study of 33f Leftwards-Arrow nd Rydberg-Rydberg transitions in Xe with n in the range 16-31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of {approx}3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of {sup 129}Xe and {sup 131}Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.
A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano
The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noisemore » coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.« less
Emotion recognition from multichannel EEG signals using K-nearest neighbor classification.
Li, Mi; Xu, Hongpei; Liu, Xingwang; Lu, Shengfu
2018-04-27
Many studies have been done on the emotion recognition based on multi-channel electroencephalogram (EEG) signals. This paper explores the influence of the emotion recognition accuracy of EEG signals in different frequency bands and different number of channels. We classified the emotional states in the valence and arousal dimensions using different combinations of EEG channels. Firstly, DEAP default preprocessed data were normalized. Next, EEG signals were divided into four frequency bands using discrete wavelet transform, and entropy and energy were calculated as features of K-nearest neighbor Classifier. The classification accuracies of the 10, 14, 18 and 32 EEG channels based on the Gamma frequency band were 89.54%, 92.28%, 93.72% and 95.70% in the valence dimension and 89.81%, 92.24%, 93.69% and 95.69% in the arousal dimension. As the number of channels increases, the classification accuracy of emotional states also increases, the classification accuracy of the gamma frequency band is greater than that of the beta frequency band followed by the alpha and theta frequency bands. This paper provided better frequency bands and channels reference for emotion recognition based on EEG.
A multi-channel isolated power supply in non-equipotential circuit
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da
2018-04-01
A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.
NASA Technical Reports Server (NTRS)
Rosatino, S. A.; Westbrook, R. M.
1979-01-01
Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.
Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.
2008-01-01
In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.
Testing and Performance Analysis of the Multichannel Error Correction Code Decoder
NASA Technical Reports Server (NTRS)
Soni, Nitin J.
1996-01-01
This report provides the test results and performance analysis of the multichannel error correction code decoder (MED) system for a regenerative satellite with asynchronous, frequency-division multiple access (FDMA) uplink channels. It discusses the system performance relative to various critical parameters: the coding length, data pattern, unique word value, unique word threshold, and adjacent-channel interference. Testing was performed under laboratory conditions and used a computer control interface with specifically developed control software to vary these parameters. Needed technologies - the high-speed Bose Chaudhuri-Hocquenghem (BCH) codec from Harris Corporation and the TRW multichannel demultiplexer/demodulator (MCDD) - were fully integrated into the mesh very small aperture terminal (VSAT) onboard processing architecture and were demonstrated.
Automated frequency analysis of synchronous and diffuse sleep spindles.
Huupponen, Eero; Saastamoinen, Antti; Niemi, Jukka; Virkkala, Jussi; Hasan, Joel; Värri, Alpo; Himanen, Sari-Leena
2005-01-01
Sleep spindles have different properties in different localizations in the cortex. First main objective was to develop an amplitude-independent multi-channel spindle detection method. Secondly the method was applied to study the anteroposterior frequency differences of pure synchronous (visible bilaterally, either frontopolarly or centrally) and diffuse (visible bilaterally both frontopolarly and centrally) sleep spindles. A previously presented spindle detector based on the fuzzy reasoning principle and a level detector were combined to form a multi-channel spindle detector. The spindle detector had a 76.17% true positive rate and 0.93% false-positive rate. Pure central spindles were faster and pure frontal spindles were slower than diffuse spindles measured simultaneously from both locations. The study of frequency relations of spindles might give new information about thalamocortical sleep spindle generating mechanisms. Copyright (c) 2005 S. Karger AG, Basel.
47 CFR 76.612 - Cable television frequency separation standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Cable television frequency separation standards. 76.612 Section 76.612 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.612 Cable television...
Miniature multichannel biotelemeter system
NASA Technical Reports Server (NTRS)
Carraway, J. B.; Sumida, J. T. (Inventor)
1974-01-01
A miniature multichannel biotelemeter system is described. The system includes a transmitter where signals from different sources are sampled to produce a wavetrain of pulses. The transmitter also separates signals by sync pulses. The pulses amplitude modulate a radio frequency carrier which is received at a receiver unit. There the sync pulses are detected by a demultiplexer which routes the pulses from each different source to a separate output channel where the pulses are used to reconstruct the signals from the particular source.
Galvin, John J; Oba, Sandra I; Başkent, Deniz; Chatterjee, Monita; Fu, Qian-Jie
2015-01-01
Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure ("which interval is different?"). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2-4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels.
2015-01-01
Rationale Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. Methods In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure (“which interval is different?”). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2–4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Conclusions Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels. PMID:26431043
High-frequency surface waves method for agricultural applications
USDA-ARS?s Scientific Manuscript database
A high-frequency surface wave method has been recently developed to explore shallow soil in the vadose zone for agricultural applications. This method is a modification from the conventional multichannel analysis of surface wave (MASW) method that explores near surface soil properties from a couple ...
Suppressing multiples using an adaptive multichannel filter based on L1-norm
NASA Astrophysics Data System (ADS)
Shi, Ying; Jing, Hongliang; Zhang, Wenwu; Ning, Dezhi
2017-08-01
Adaptive subtraction is an important link for removing surface-related multiples in the wave equation-based method. In this paper, we propose an adaptive multichannel subtraction method based on the L1-norm. We achieve enhanced compensation for the mismatch between the input seismogram and the predicted multiples in terms of the amplitude, phase, frequency band, and travel time. Unlike the conventional L2-norm, the proposed method does not rely on the assumption that the primary and the multiples are orthogonal, and also takes advantage of the fact that the L1-norm is more robust when dealing with outliers. In addition, we propose a frequency band extension via modulation to reconstruct the high frequencies to compensate for the frequency misalignment. We present a parallel computing scheme to accelerate the subtraction algorithm on graphic processing units (GPUs), which significantly reduces the computational cost. The synthetic and field seismic data tests show that the proposed method effectively suppresses the multiples.
A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.
Ramos, Javier; Ausín, José Luis; Lorido, Antonio Manuel; Redondo, Francisco; Duque-Carrillo, Juan Francisco
2013-01-01
Miniaturized, noninvasive, wearable sensors constitute a fundamental prerequisite for pervasive, predictive, and preventive healthcare systems. In this sense, this paper presents the design, realization, and evaluation of a wireless multi-channel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz. The resulting on-chip spectrometer provides high measuring EBI capabilities and together with a low-cost, commercially available radio frequency transceiver device. It provides reliable wireless communication, constitutes the basic node to build EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multi-channel EBI spectrometer, where the number of channels is completely scalable and independently configurable to satisfy specific measurement requirements of each individual. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm2 including chip-antenna, which can operate several years on one 3-V coin cell battery and make it suitable for long-term preventive healthcare monitoring.
Du, Hongliang; Li, Xin; Li, Shan; Zhang, Rui; Song, Rong; Li, Lan; Wang, Wei; Kang, Hong
2014-02-01
The aim of this study was to design a simple, economic, with high Common Mode Rejection Ratio (CMRR), preamplifier and multi-channel masticatory muscle surface electromyography (sEMG) signal acquisition system assisting to diagnose temporomandibular disorders (TMD). We used the USB interface technology in the EMG data with the aid of the windows to operate system and graphical interface. Eight patients with TMD and eight controls were analyzed separately using this system. In this system, we analyzed sEMG by an optional combination of time domain, frequency domain, time-frequency, several spectral analysis, wavelets and other special algorithms under multi-parameter. Multi-channel sEMG System of Masticatory Muscles is a simple, economic system. It has high sensitivity and specificity. The sEMG signals were changed in patients with TMD. The system would pave the way for diagnosis TMD and help us to assess the treatment effect. A novel and objective method is provided for diagnosis and treatment of oral-maxillofacial disease and functional reconstruction.
Xu, Jia-Min; Wang, Ce-Qun; Lin, Long-Nian
2014-06-25
Multi-channel in vivo recording techniques are used to record ensemble neuronal activity and local field potentials (LFP) simultaneously. One of the key points for the technique is how to process these two sets of recorded neural signals properly so that data accuracy can be assured. We intend to introduce data processing approaches for action potentials and LFP based on the original data collected through multi-channel recording system. Action potential signals are high-frequency signals, hence high sampling rate of 40 kHz is normally chosen for recording. Based on waveforms of extracellularly recorded action potentials, tetrode technology combining principal component analysis can be used to discriminate neuronal spiking signals from differently spatially distributed neurons, in order to obtain accurate single neuron spiking activity. LFPs are low-frequency signals (lower than 300 Hz), hence the sampling rate of 1 kHz is used for LFPs. Digital filtering is required for LFP analysis to isolate different frequency oscillations including theta oscillation (4-12 Hz), which is dominant in active exploration and rapid-eye-movement (REM) sleep, gamma oscillation (30-80 Hz), which is accompanied by theta oscillation during cognitive processing, and high frequency ripple oscillation (100-250 Hz) in awake immobility and slow wave sleep (SWS) state in rodent hippocampus. For the obtained signals, common data post-processing methods include inter-spike interval analysis, spike auto-correlation analysis, spike cross-correlation analysis, power spectral density analysis, and spectrogram analysis.
Kim, Dong-Sun; Kwon, Jin-San
2014-01-01
Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900
Multi-Channel Capacitive Sensor Arrays
Wang, Bingnan; Long, Jiang; Teo, Koon Hoo
2016-01-01
In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023
Note: A simple multi-channel optical system for modulation spectroscopies.
Solís-Macías, J; Sánchez-López, J D; Castro-García, R; Flores-Camacho, J M; Flores-Rangel, G; Ciou, Jian-Jhih; Chen, Kai-Wei; Chen, Chang-Hsiao; Lastras-Martínez, L F; Balderas-Navarro, R E
2017-12-01
Photoreflectance-difference (PR/PRD) and reflectance-difference (RD) spectroscopies employ synchronic detection usually with lock-in amplifiers operating at moderate (200-1000 Hz) and high (50-100 KHz) modulation frequencies, respectively. Here, we report a measurement system for these spectroscopies based on a multichannel CCD spectrometer without a lock-in amplifier. In the proposed scheme, a typical PRD or RD spectrum consists of numerical subtractions between a thousand CCD captures recorded, while a photoelastic modulator is either operating or inhibited. This is advantageous and fits the slow response of CCD detectors to high modulation frequencies. The resulting spectra are processed with Savitzky-Golay filtering and compared well with those measured with conventional scanning systems based on lock-in amplifiers.
47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Operation near certain aeronautical and marine emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76...
47 CFR 101.603 - Permissible communications.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., to their customers except that the distribution of video entertainment material to customers is... 6425-6525 MHz, 17,700-18,580 MHz, and on frequencies above 21,200 MHz, licensees may deliver any of... program material to multichannel video programming distributors, except in the frequency bands 6425-6525...
47 CFR 101.603 - Permissible communications.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., to their customers except that the distribution of video entertainment material to customers is... 6425-6525 MHz, 17,700-18,580 MHz, and on frequencies above 21,200 MHz, licensees may deliver any of... program material to multichannel video programming distributors, except in the frequency bands 6425-6525...
47 CFR 101.603 - Permissible communications.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., to their customers except that the distribution of video entertainment material to customers is... 6425-6525 MHz, 17,700-18,580 MHz, and on frequencies above 21,200 MHz, licensees may deliver any of... program material to multichannel video programming distributors, except in the frequency bands 6425-6525...
Multichannel demultiplexer/demodulator technologies for future satellite communication systems
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.
1992-01-01
NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.
NASA Astrophysics Data System (ADS)
Kim, Sungyoung; Martens, William L.
2005-04-01
By industry standard (ITU-R. Recommendation BS.775-1), multichannel stereophonic signals within the frequency range of up to 80 or 120 Hz may be mixed and delivered via a single driver (e.g., a subwoofer) without significant impairment of stereophonic sound quality. The assumption that stereophonic information within such low-frequency content is not significant was tested by measuring discrimination thresholds for changes in interaural cross-correlation (IACC) within spectral bands containing the lowest frequency components of low-pitch musical tones. Performances were recorded for three different musical instruments playing single notes ranging in fundamental frequency from 41 Hz to 110 Hz. The recordings, made using a multichannel microphone array composed of five DPA 4006 pressure microphones, were processed to produce a set of stimuli that varied in interaural cross-correlation (IACC) within a low-frequency band, but were otherwise identical in a higher-frequency band. This correlation processing was designed to have minimal effect upon other psychoacoustic variables such as loudness and timbre. The results show that changes in interaural cross correlation (IACC) within low-frequency bands of low-pitch musical tones are most easily discriminated when decorrelated signals are presented via subwoofers positioned at extreme lateral angles (far from the median plane). [Work supported by VRQ.
47 CFR 101.603 - Permissible communications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... distribution of video entertainment material to customers is permitted only as indicated in § 101.101 and paragraph (a)(2) of this section. (2) In the frequency bands 6425-6525 MHz, 17,700-18,580 MHz, and on... to multichannel video programming distributors, except in the frequency bands 6425-6525 MHz and 17...
Practical techniques for enhancing the high-frequency MASW method
USDA-ARS?s Scientific Manuscript database
For soil exploration in the vadose zone, a high-frequency multi-channel analysis of surface waves (HF-MASW) method has been developed. In the study, several practical techniques were applied to enhance the overtone image of the HF-MASW method. They included (1) the self-adaptive MASW method using a ...
Signal Processing and Interpretation Using Multilevel Signal Abstractions.
1986-06-01
mappings expressed in the Fourier domain. Pre- viously proposed causal analysis techniques for diagnosis are based on the analysis of intermediate data ...can be processed either as individual one-dimensional waveforms or as multichannel data 26 I P- - . . . ." " ." h9. for source detection and direction...microphone data . The signal processing for both spectral analysis of microphone signals and direc- * tion determination of acoustic sources involves
The use of Matlab for colour fuzzy representation of multichannel EEG short time spectra.
Bigan, C; Strungaru, R
1998-01-01
During the last years, a lot of EEG research efforts was directed to intelligent methods for automatic analysis of data from multichannel EEG recordings. However, all the applications reported were focused on specific single tasks like detection of one specific "event" in the EEG signal: spikes, sleep spindles, epileptic seizures, K complexes, alpha or other rhythms or even artefacts. The aim of this paper is to present a complex system being able to perform a representation of the dynamic changes in frequency components of each EEG channel. This representation uses colours as a powerful means to show the only one frequency range chosen from the shortest epoch of signal able to be processed with the conventional "Short Time Fast Fourier Transform" (S.T.F.F.T.) method.
47 CFR 101.147 - Frequency assignments.
Code of Federal Regulations, 2013 CFR
2013-10-01
... video entertainment material to the licensee's customers. (30) The frequency band 18,580-19,300 GHz is... 18,820-18,870 MHz and 19,160-19,210 MHz. (31) This frequency band can be used for Multichannel Video... MHz (17) 941.0-941.5 MHz (27) 941.5-944 MHz (17) (18) 952.0-960.0 MHz (28) 1,850-1,990 MHz (20) (22) 2...
47 CFR 101.147 - Frequency assignments.
Code of Federal Regulations, 2014 CFR
2014-10-01
... video entertainment material to the licensee's customers. (30) The frequency band 18,580-19,300 GHz is... 18,820-18,870 MHz and 19,160-19,210 MHz. (31) This frequency band can be used for Multichannel Video... MHz (17) 941.0-941.5 MHz (27) 941.5-944 MHz (17) (18) 952.0-960.0 MHz (28) 1,850-1,990 MHz (20) (22) 2...
Van Dun, Bram; Wouters, Jan; Moonen, Marc
2009-07-01
Auditory steady-state responses (ASSRs) are used for hearing threshold estimation at audiometric frequencies. Hearing impaired newborns, in particular, benefit from this technique as it allows for a more precise diagnosis than traditional techniques, and a hearing aid can be better fitted at an early age. However, measurement duration of current single-channel techniques is still too long for clinical widespread use. This paper evaluates the practical performance of a multi-channel electroencephalogram (EEG) processing strategy based on a detection theory approach. A minimum electrode set is determined for ASSRs with frequencies between 80 and 110 Hz using eight-channel EEG measurements of ten normal-hearing adults. This set provides a near-optimal hearing threshold estimate for all subjects and improves response detection significantly for EEG data with numerous artifacts. Multi-channel processing does not significantly improve response detection for EEG data with few artifacts. In this case, best response detection is obtained when noise-weighted averaging is applied on single-channel data. The same test setup (eight channels, ten normal-hearing subjects) is also used to determine a minimum electrode setup for 10-Hz ASSRs. This configuration allows to record near-optimal signal-to-noise ratios for 80% of subjects.
Fast low frequency (down to 10 cm(-1)) multichannel Raman spectroscopy using an iodine vapor filter.
Okajima, Hajime; Hamaguchi, Hiro-o
2009-08-01
We have constructed a multi-channel Raman spectrometer that is capable of recording the low frequency region down to 5 cm(-1) with a measurement time of a few tenths of a second. An iodine vapor filter, which uses a narrow (approximately 0.03 cm(-1)) absorption line of iodine for Rayleigh scattering elimination, is combined with a multi-channel Raman spectrometer composed of a single polychromator and a charge-coupled device (CCD) camera. Thanks to the high Rayleigh scattering elimination efficiency of the filter, which is over 10(6), Raman spectra of microcrystalline L-cystine from -300 cm(-1) to 1000 cm(-1) are simultaneously measurable with a small gap of 10 cm(-1) (-5 cm(-1) to 5 cm(-1)). Although raw spectra contain many sharp spikes due to the fine structures of iodine absorption, they can be correctly compensated with the use of a transmittance spectrum measured under the same experimental conditions. Many Raman bands including the 9.8 cm(-1) band are measured with a high signal-to-noise ratio in both the Stokes and anti-Stokes sides with a measurement time as short as 0.2 s.
Multichannel interictal spike activity detection using time-frequency entropy measure.
Thanaraj, Palani; Parvathavarthini, B
2017-06-01
Localization of interictal spikes is an important clinical step in the pre-surgical assessment of pharmacoresistant epileptic patients. The manual selection of interictal spike periods is cumbersome and involves a considerable amount of analysis workload for the physician. The primary focus of this paper is to automate the detection of interictal spikes for clinical applications in epilepsy localization. The epilepsy localization procedure involves detection of spikes in a multichannel EEG epoch. Therefore, a multichannel Time-Frequency (T-F) entropy measure is proposed to extract features related to the interictal spike activity. Least squares support vector machine is used to train the proposed feature to classify the EEG epochs as either normal or interictal spike period. The proposed T-F entropy measure, when validated with epilepsy dataset of 15 patients, shows an interictal spike classification accuracy of 91.20%, sensitivity of 100% and specificity of 84.23%. Moreover, the area under the curve of Receiver Operating Characteristics plot of 0.9339 shows the superior classification performance of the proposed T-F entropy measure. The results of this paper show a good spike detection accuracy without any prior information about the spike morphology.
Imaging a soil fragipans using a high-frequency MASW method
USDA-ARS?s Scientific Manuscript database
The objective of this study was to noninvasively image a fragipan layer, a naturally occurring dense soil layer, using a high-frequency (HF) multi-channel analysis of surface wave (MASW) method. The HF-MASW is developed to measure the soil profile in terms of the shear (S) wave velocity at depths up...
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Operation in the frequency bands 108-137 and 225-400 MHz-scope of application. 76.610 Section 76.610 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical...
A Phase-Only technique for enhancing the high-frequency MASW method
USDA-ARS?s Scientific Manuscript database
For soil exploration in the vadose zone, a high-frequency multi-channel analysis of surface waves (HF-MASW) method has been developed. In the study, several practical techniques were applied to enhance the overtone image of the HF-MASW method. They included (1) the self-adaptive MASW method using a ...
Multichannel spectral mode of the ALOHA up-conversion interferometer
NASA Astrophysics Data System (ADS)
Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.
2018-06-01
In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.
NASA Technical Reports Server (NTRS)
Hall, David G.; Bridges, James
1992-01-01
A sophisticated, multi-channel computerized data acquisition and processing system was developed at the NASA LeRC for use in noise experiments. This technology, which is available for transfer to industry, provides a convenient, cost-effective alternative to analog tape recording for high frequency acoustic measurements. This system provides 32-channel acquisition of microphone signals with an analysis bandwidth up to 100 kHz per channel. Cost was minimized through the use of off-the-shelf components. Requirements to allow for future expansion were met by choosing equipment which adheres to established industry standards for hardware and software. Data processing capabilities include narrow band and 1/3 octave spectral analysis, compensation for microphone frequency response/directivity, and correction of acoustic data to standard day conditions. The system was used successfully in a major wind tunnel test program at NASA LeRC to acquire and analyze jet noise data in support of the High Speed Civil Transport (HSCT) program.
Progress on a Multichannel, Dual-Mixer Stability Analyzer
NASA Technical Reports Server (NTRS)
Kirk, Albert; Cole, Steven; Stevens, Gary; Tucker, Blake; Greenhall, Charles
2005-01-01
Several documents describe aspects of the continuing development of a multichannel, dual-mixer system for simultaneous characterization of the instabilities of multiple precise, low-noise oscillators. One of the oscillators would be deemed to be a reference oscillator, its frequency would be offset by an amount (100 Hz) much greater than the desired data rate, and each of the other oscillators would be compared with the frequency-offset signal by operation of a combination of hardware and software. A high-rate time-tag counter would collect zero-crossing times of the approximately equal 100-Hz beat notes. The system would effect a combination of interpolation and averaging to process the time tags into low-rate phase residuals at the desired grid times. Circuitry that has been developed since the cited prior article includes an eight-channel timer board to replace an obsolete commercial time-tag counter, plus a custom offset generator, cleanup loop, distribution amplifier, zero-crossing detector, and frequency divider.
Advanced technology for a satellite multichannel demultiplexer/demodulator
NASA Technical Reports Server (NTRS)
Abramovitz, Irwin J.; Flechsig, Drew E.; Matteis, Richard M., Jr.
1994-01-01
Satellite on-board processing is needed to efficiently service multiple users while at the same time minimizing earth station complexity. The processing satellite receives a wideband uplink at 30 GHz and down-converts it to a suitable intermediate frequency. A multichannel demultiplexer then separates the composite signal into discrete channels. Each channel is then demodulated by bulk demodulators, with the baseband signals routed to the downlink processor for retransmission to the receiving earth stations. This type of processing circumvents many of the difficulties associated with traditional bent-pipe repeater satellites. Uplink signal distortion and interference are not retransmitted on the downlink. Downlink power can be allocated in accordance with user needs, independent of uplink transmissions. This allows the uplink users to employ different data rates as well as different modulation and coding schemes. In addition, all downlink users have a common frequency standard and symbol clock on the satellite, which is useful for network synchronization in time division multiple access schemes. The purpose of this program is to demonstrate the concept of an optically implemented multichannel demultiplexer (MCD). A proof-of-concept (POC) model has been developed which has the ability to receive a 40 MHz wide composite signal consisting of up to 1000 40 kHz QPSK modulated channels and perform the demultiplexing process. In addition a set of special test equipment (STE) has been configured to evaluate the performance of the POC model. The optical MCD is realized as an acousto-optic spectrum analyzer utilizing the capability of Bragg cells to perform the required channelization. These Bragg cells receive an optical input from a laser source and an RF input (the signal). The Bragg interaction causes optical output diffractions at angles proportional to the RF input frequency. These discrete diffractions are optically detected and output to individual demodulators for baseband conversion. Optimization of the MCD design was conducted in order to achieve a compromise between two opposing sources of signal degradation: adjacent channel interference and intersymbol interference. The system was also optimized to allow simple, inexpensive ground stations communications with the MCD. These design goals led to the realization of a POC MCD which demonstrates the demultiplexing function with minimal signal degradation. Performance evaluation results using the STE equipment indicate that the dynamic range of the demultiplexer in the presence of adjacent and multiple channel loading is 40 - 50 dB. Measured bit error rate (BER) probabilities varied from the predicted theoretical results by one dB or less. The performance of the proof-of-concept model indicate that the development of a space qualified optically implemented MCD are feasible. The advantages to such an implementation include reduced size, weight and power and increased reliability when compared with electronic approaches. All of these factors are critical to on-board satellite processors. Further optimization can be conducted which trade ground station complexity and MCD performance to achieve desired system results.
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir; Runnova, Anastasia; Pchelintseva, Svetlana; Efremova, Tatiana; Zhuravlev, Maksim; Pisarchik, Alexander
2018-04-01
We have considered time-frequency and spatio-temporal structure of electrical brain activity, associated with real and imaginary movements based on the multichannel EEG recordings. We have found that along with wellknown effects of event-related desynchronization (ERD) in α/μ - rhythms and β - rhythm, these types of activity are accompanied by the either ERS (for real movement) or ERD (for imaginary movement) in low-frequency δ - band, located mostly in frontal lobe. This may be caused by the associated processes of decision making, which take place when subject is deciding either perform the movement or imagine it. Obtained features have been found in untrained subject which it its turn gives the possibility to use our results in the development of brain-computer interfaces for controlling anthropomorphic robotic arm.
Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
Park, Sung Il; Shin, Gunchul; McCall, Jordan G; Al-Hasani, Ream; Norris, Aaron; Xia, Li; Brenner, Daniel S; Noh, Kyung Nim; Bang, Sang Yun; Bhatti, Dionnet L; Jang, Kyung-In; Kang, Seung-Kyun; Mickle, Aaron D; Dussor, Gregory; Price, Theodore J; Gereau, Robert W; Bruchas, Michael R; Rogers, John A
2016-12-13
Optogenetic methods to modulate cells and signaling pathways via targeted expression and activation of light-sensitive proteins have greatly accelerated the process of mapping complex neural circuits and defining their roles in physiological and pathological contexts. Recently demonstrated technologies based on injectable, microscale inorganic light-emitting diodes (μ-ILEDs) with wireless control and power delivery strategies offer important functionality in such experiments, by eliminating the external tethers associated with traditional fiber optic approaches. Existing wireless μ-ILED embodiments allow, however, illumination only at a single targeted region of the brain with a single optical wavelength and over spatial ranges of operation that are constrained by the radio frequency power transmission hardware. Here we report stretchable, multiresonance antennas and battery-free schemes for multichannel wireless operation of independently addressable, multicolor μ-ILEDs with fully implantable, miniaturized platforms. This advance, as demonstrated through in vitro and in vivo studies using thin, mechanically soft systems that separately control as many as three different μ-ILEDs, relies on specially designed stretchable antennas in which parallel capacitive coupling circuits yield several independent, well-separated operating frequencies, as verified through experimental and modeling results. When used in combination with active motion-tracking antenna arrays, these devices enable multichannel optogenetic research on complex behavioral responses in groups of animals over large areas at low levels of radio frequency power (<1 W). Studies of the regions of the brain that are involved in sleep arousal (locus coeruleus) and preference/aversion (nucleus accumbens) demonstrate the unique capabilities of these technologies.
Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics
Park, Sung Il; Shin, Gunchul; McCall, Jordan G.; Al-Hasani, Ream; Norris, Aaron; Xia, Li; Brenner, Daniel S.; Noh, Kyung Nim; Bang, Sang Yun; Bhatti, Dionnet L.; Jang, Kyung-In; Kang, Seung-Kyun; Mickle, Aaron D.; Dussor, Gregory; Price, Theodore J.; Gereau, Robert W.; Bruchas, Michael R.; Rogers, John A.
2016-01-01
Optogenetic methods to modulate cells and signaling pathways via targeted expression and activation of light-sensitive proteins have greatly accelerated the process of mapping complex neural circuits and defining their roles in physiological and pathological contexts. Recently demonstrated technologies based on injectable, microscale inorganic light-emitting diodes (μ-ILEDs) with wireless control and power delivery strategies offer important functionality in such experiments, by eliminating the external tethers associated with traditional fiber optic approaches. Existing wireless μ-ILED embodiments allow, however, illumination only at a single targeted region of the brain with a single optical wavelength and over spatial ranges of operation that are constrained by the radio frequency power transmission hardware. Here we report stretchable, multiresonance antennas and battery-free schemes for multichannel wireless operation of independently addressable, multicolor μ-ILEDs with fully implantable, miniaturized platforms. This advance, as demonstrated through in vitro and in vivo studies using thin, mechanically soft systems that separately control as many as three different μ-ILEDs, relies on specially designed stretchable antennas in which parallel capacitive coupling circuits yield several independent, well-separated operating frequencies, as verified through experimental and modeling results. When used in combination with active motion-tracking antenna arrays, these devices enable multichannel optogenetic research on complex behavioral responses in groups of animals over large areas at low levels of radio frequency power (<1 W). Studies of the regions of the brain that are involved in sleep arousal (locus coeruleus) and preference/aversion (nucleus accumbens) demonstrate the unique capabilities of these technologies. PMID:27911798
Marking multi-channel silicon-substrate electrode recording sites using radiofrequency lesions.
Brozoski, Thomas J; Caspary, Donald M; Bauer, Carol A
2006-01-30
Silicon-substrate multi-channel electrodes (multiprobes) have proven useful in a variety of electrophysiological tasks. When using multiprobes it is often useful to identify the site of each channel, e.g., when recording single-unit activity from a heterogeneous structure. Lesion marking of electrode sites has been used for many years. Electrolytic, or direct current (DC) lesions, have been used successfully to mark multiprobe sites in rat hippocampus [Townsend G, Peloquin P, Kloosterman F, Hetke JF, Leung LS. Recording and marking with silicon multichannel electrodes. Brain Res Brain Res Protoc 2002;9:122-9]. The present method used radio-frequency (rf) lesions to distinctly mark each of the 16 recording sites of 16-channel linear array multiprobes, in chinchilla inferior colliculus. A commercial radio-frequency lesioner was used as the current source, in conjunction with custom connectors adapted to the multiprobe configuration. In vitro bench testing was used to establish current-voltage-time parameters, as well as to check multiprobe integrity and radio-frequency performance. In in vivo application, visualization of individual-channel multiprobe recording sites was clear in 21 out of 33 sets of collicular serial-sections (i.e., probe tracks) obtained from acute experimental subjects, i.e., maximum post-lesion survival time of 2h. Advantages of the rf method include well-documented methods of in vitro calibration as well as low impact on probe integrity. The rf method of marking individual-channel sites should be useful in a variety of applications.
47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76... of carriers or other signal components capable of delivering peak power levels equal to or greater than 10−5 watts at any point in a cable television system is prohibited within 100 kHz of the frequency...
47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76... of carriers or other signal components capable of delivering peak power levels equal to or greater than 10−5 watts at any point in a cable television system is prohibited within 100 kHz of the frequency...
NASA Astrophysics Data System (ADS)
Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
Tobias, B; Domier, C W; Luhmann, N C; Luo, C; Mamidanna, M; Phan, T; Pham, A-V; Wang, Y
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
Automatic pickup of arrival time of channel wave based on multi-channel constraints
NASA Astrophysics Data System (ADS)
Wang, Bao-Li
2018-03-01
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.
Tunable single-photon multi-channel quantum router based on an optomechanical system
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Yan, Lei-Lei; Zhang, Jian; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-01-01
Routing of photons plays a key role in optical communication networks and quantum networks. Although the quantum routing of signals has been investigated for various systems, both in theory and experiment, the general form of a quantum router with multi-output terminals still needs to be explored. Here, we propose an experimentally accessible tunable single-photon multi-channel routing scheme using an optomechanics cavity which is Coulomb coupled to a nanomechanical resonator. The router can extract single photons from the coherent input signal and directly modulate them into three different output channels. More importantly, the two output signal frequencies can be selected by adjusting the Coulomb coupling strength. For application purposes, we justify that there is insignificant influence from the vacuum and thermal noises on the performance of the router under cryogenic conditions. Our proposal may pave a new avenue towards multi-channel routers and quantum networks.
Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V A; Volkov, M V; Garanin, S G
2013-09-30
The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth ofmore » 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)« less
Parallel Excitation for B-Field Insensitive Fat-Saturation Preparation
Heilman, Jeremiah A.; Derakhshan, Jamal D.; Riffe, Matthew J.; Gudino, Natalia; Tkach, Jean; Flask, Chris A.; Duerk, Jeffrey L.; Griswold, Mark A.
2016-01-01
Multichannel transmission has the potential to improve many aspects of MRI through a new paradigm in excitation. In this study, multichannel transmission is used to address the effects that variations in B0 homogeneity have on fat-saturation preparation through the use of the frequency, phase, and amplitude degrees of freedom afforded by independent transmission channels. B1 homogeneity is intrinsically included via use of coil sensitivities in calculations. A new method, parallel excitation for B-field insensitive fat-saturation preparation, can achieve fat saturation in 89% of voxels with Mz ≤ 0.1 in the presence of ±4 ppm B0 variation, where traditional CHESS methods achieve only 40% in the same conditions. While there has been much progress to apply multichannel transmission at high field strengths, particular focus is given here to application of these methods at 1.5 T. PMID:22247080
Zhang, Guosong; Hovem, Jens M.; Dong, Hefeng
2012-01-01
Underwater communication channels are often complicated, and in particular multipath propagation may cause intersymbol interference (ISI). This paper addresses how to remove ISI, and evaluates the performance of three different receiver structures and their implementations. Using real data collected in a high-frequency (10–14 kHz) field experiment, the receiver structures are evaluated by off-line data processing. The three structures are multichannel decision feedback equalizer (DFE), passive time reversal receiver (passive-phase conjugation (PPC) with a single channel DFE), and the joint PPC with multichannel DFE. In sparse channels, dominant arrivals represent the channel information, and the matching pursuit (MP) algorithm which exploits the channel sparseness has been investigated for PPC processing. In the assessment, it is found that: (1) it is advantageous to obtain spatial gain using the adaptive multichannel combining scheme; and (2) the MP algorithm improves the performance of communications using PPC processing. PMID:22438755
NASA Technical Reports Server (NTRS)
Full, William E.; Eppler, Duane T.
1993-01-01
The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.
Subspace techniques to remove artifacts from EEG: a quantitative analysis.
Teixeira, A R; Tome, A M; Lang, E W; Martins da Silva, A
2008-01-01
In this work we discuss and apply projective subspace techniques to both multichannel as well as single channel recordings. The single-channel approach is based on singular spectrum analysis(SSA) and the multichannel approach uses the extended infomax algorithm which is implemented in the opensource toolbox EEGLAB. Both approaches will be evaluated using artificial mixtures of a set of selected EEG signals. The latter were selected visually to contain as the dominant activity one of the characteristic bands of an electroencephalogram (EEG). The evaluation is performed both in the time and frequency domain by using correlation coefficients and coherence function, respectively.
Dadisman, Shawn V.; Ryan, Holly F.; Mann, Dennis M.
1987-01-01
During 1984, over 2300 km of multichannel seismic-reflection data were recorded by the U.S. Geological Survey in the western Ross Sea and Iselin Bank regions. A temporary loss and sinking of the streamer led to increasing the streamer tow depth to 20 m, which resulted in some attenuation of frequencies in the 30-50 Hz range but no significant difference in resolution of the stacked data. Severe water bottom multiples were encountered and removed by dip-filtering, weighted stacking, and severe post-NMO muting.
Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli
2014-01-15
A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming
2018-01-01
We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.
Methods for improved forewarning of critical events across multiple data channels
Hively, Lee M [Philadelphia, TN
2007-04-24
This disclosed invention concerns improvements in forewarning of critical events via phase-space dissimilarity analysis of data from mechanical devices, electrical devices, biomedical data, and other physical processes. First, a single channel of process-indicative data is selected that can be used in place of multiple data channels without sacrificing consistent forewarning of critical events. Second, the method discards data of inadequate quality via statistical analysis of the raw data, because the analysis of poor quality data always yields inferior results. Third, two separate filtering operations are used in sequence to remove both high-frequency and low-frequency artifacts using a zero-phase quadratic filter. Fourth, the method constructs phase-space dissimilarity measures (PSDM) by combining of multi-channel time-serial data into a multi-channel time-delay phase-space reconstruction. Fifth, the method uses a composite measure of dissimilarity (C.sub.i) to provide a forewarning of failure and an indicator of failure onset.
NASA Astrophysics Data System (ADS)
Wang, Hongxiang; Wang, Qi; Bai, Lin; Ji, Yuefeng
2018-01-01
A scheme is proposed to realize the all-optical phase regeneration of four-channel quadrature phase shift keying (QPSK) signal based on phase-sensitive amplification. By utilizing conjugate pump and common pump in a highly nonlinear optical fiber, degenerate four-wave mixing process is observed, and QPSK signals are regenerated. The number of waves is reduced to decrease the cross talk caused by undesired nonlinear interaction during the coherent superposition process. In addition, to avoid the effect of overlapping frequency, frequency spans between pumps and signals are set to be nonintegral multiples. Optical signal-to-noise ratio improvement is validated by bit error rate measurements. Compared with single-channel regeneration, multichannel regeneration brings 0.4-dB OSNR penalty when the value of BER is 10-3, which shows the cross talk in regeneration process is negligible.
Software system for data management and distributed processing of multichannel biomedical signals.
Franaszczuk, P J; Jouny, C C
2004-01-01
The presented software is designed for efficient utilization of cluster of PC computers for signal analysis of multichannel physiological data. The system consists of three main components: 1) a library of input and output procedures, 2) a database storing additional information about location in a storage system, 3) a user interface for selecting data for analysis, choosing programs for analysis, and distributing computing and output data on cluster nodes. The system allows for processing multichannel time series data in multiple binary formats. The description of data format, channels and time of recording are included in separate text files. Definition and selection of multiple channel montages is possible. Epochs for analysis can be selected both manually and automatically. Implementation of a new signal processing procedures is possible with a minimal programming overhead for the input/output processing and user interface. The number of nodes in cluster used for computations and amount of storage can be changed with no major modification to software. Current implementations include the time-frequency analysis of multiday, multichannel recordings of intracranial EEG of epileptic patients as well as evoked response analyses of repeated cognitive tasks.
Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li
2013-01-01
Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378
Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.
Multivariate cross-frequency coupling via generalized eigendecomposition
Cohen, Michael X
2017-01-01
This paper presents a new framework for analyzing cross-frequency coupling in multichannel electrophysiological recordings. The generalized eigendecomposition-based cross-frequency coupling framework (gedCFC) is inspired by source-separation algorithms combined with dynamics of mesoscopic neurophysiological processes. It is unaffected by factors that confound traditional CFC methods—such as non-stationarities, non-sinusoidality, and non-uniform phase angle distributions—attractive properties considering that brain activity is neither stationary nor perfectly sinusoidal. The gedCFC framework opens new opportunities for conceptualizing CFC as network interactions with diverse spatial/topographical distributions. Five specific methods within the gedCFC framework are detailed, these are validated in simulated data and applied in several empirical datasets. gedCFC accurately recovers physiologically plausible CFC patterns embedded in noise that causes traditional CFC methods to perform poorly. The paper also demonstrates that spike-field coherence in multichannel local field potential data can be analyzed using the gedCFC framework, which provides significant advantages over traditional spike-field coherence analyses. Null-hypothesis testing is also discussed. DOI: http://dx.doi.org/10.7554/eLife.21792.001 PMID:28117662
Development and test of photon counting lidar
NASA Astrophysics Data System (ADS)
Wang, Chun-hui; Wang, Ao-you; Tao, Yu-liang; Li, Xu; Peng, Huan; Meng, Pei-bei
2018-02-01
In order to satisfy the application requirements of spaceborne three dimensional imaging lidar , a prototype of nonscanning multi-channel lidar based on receiver field of view segmentation was designed and developed. High repetition frequency micro-pulse lasers, optics fiber array and Geiger-mode APD, combination with time-correlated single photon counting technology, were adopted to achieve multi-channel detection. Ranging experiments were carried out outdoors. In low echo photon condition, target photon counting showed time correlated and noise photon counting were random. Detection probability and range precision versus threshold were described and range precision increased from 0.44 to 0.11 when threshold increased from 4 to 8.
A Case of Aerophagia Diagnosed by Multichannel Intraluminal Impedance Monitoring.
Sohn, Ki Chang; Jeong, Young Hoon; Jo, Dong Ho; Heo, Won Gak; Yeom, Dong Han; Choi, Suck Chei; Ryu, Han Seung
2015-11-01
Aerophagia is a disorder caused by abnormal accumulation of air in the gastrointestinal tract as a result of repetitive and frequent inflow of air through the mouth. For the diagnosis of this condition, it is difficult to objectively measure the air swallowing. However, multichannel intraluminal impedance monitoring facilitates the differential diagnosis between normal air swallowing and pathologic aerophagia, and can aid in the determination of the frequency and amount of air swallowed. In this report, in addition to a literature review, we describe a case of 36-year-old man with abdominal distension who was diagnosed with aerophagia using esophageal impedance monitoring and was treated with clonazepam.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CARS). All services authorized under part 78 of this title. (e) Filings. Any application, notification... conveyed by operation of rule upon filing notification of aeronautical frequency usage by MVPDs or... database, application filing system, and processing system for Multichannel Video and Cable Television...
Triangle mechanisms in the build up and decay of the N*(1875 )
NASA Astrophysics Data System (ADS)
Samart, Daris; Liang, Wei-Hong; Oset, Eulogio
2017-09-01
We studied the N*(1875 ) (3 /2-) resonance with a multichannel unitary scheme, considering the Δ π and Σ*K , with their interaction extracted from chiral Lagrangians, and then added two more channels, the N*(1535 ) π and N σ , which proceed via triangle diagrams involving the Σ*K and Δ π respectively in the intermediate states. The triangle diagram in the N*(1535 ) π case develops a singularity at the same energy as the resonance mass. We determined the couplings of the resonance to the different channels and the partial decay widths. We found a very large decay width to Σ*K , and also observed that, due to interference with other terms, the N σ channel has an important role in the π π mass distributions at low invariant masses, leading to an apparently large N σ decay width. We discuss justifying the convenience of an experimental reanalysis of this resonance, in light of the findings of the paper, using multichannel unitary schemes.
Performance Evaluation of Multichannel Adaptive Algorithms for Local Active Noise Control
NASA Astrophysics Data System (ADS)
DE DIEGO, M.; GONZALEZ, A.
2001-07-01
This paper deals with the development of a multichannel active noise control (ANC) system inside an enclosed space. The purpose is to design a real practical system which works well in local ANC applications. Moreover, the algorithm implemented in the adaptive controller should be robust, of low computational complexity and it should manage to generate a uniform useful-size zone of quite in order to allow the head motion of a person seated on a seat inside a car. Experiments were carried out under semi-anechoic and listening room conditions to verify the successful implementation of the multichannel system. The developed prototype consists of an array of up to four microphones used as error sensors mounted on the headrest of a seat place inside the enclosure. One loudspeaker was used as single primary source and two secondary sources were placed facing the seat. The aim of this multichannel system is to reduce the sound pressure levels in an area around the error sensors, following a local control strategy. When using this technique, the cancellation points are not only the error sensor positions but an area around them, which is measured by using a monitoring microphone. Different multichannel adaptive algorithms for ANC have been analyzed and their performance verified. Multiple error algorithms are used in order to cancel out different types of primary noise (engine noise and random noise) with several configurations (up to four channels system). As an alternative to the multiple error LMS algorithm (multichannel version of the filtered-X LMS algorithm, MELMS), the least maximum mean squares (LMMS) and the scanning error-LMS algorithm have been developed in this work in order to reduce computational complexity and achieve a more uniform residual field. The ANC algorithms were programmed on a digital signal processing board equipped with a TMS320C40 floating point DSP processor. Measurements concerning real-time experiments on local noise reduction in two environments and at frequencies below 230 Hz are presented. Better noise levels attenuation is obtained in the semianechoic chamber due to the simplicity of the acoustic field. The size of the zone of quiet makes the system useful at relatively low frequencies and it is large enough to cover a listener's head movements. The spatial extent of the zones of quiet is generally observed to increase as the error sensors are moved away from the secondary source, they are put closer together or its number increases. In summary, different algorithms' performance and the viability of the multichannel system for local active noise control in real listening conditions are evaluated and some guidelines for designing such systems are then proposed.
NASA Astrophysics Data System (ADS)
Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang
2009-12-01
Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.
Analysis and compensation of synchronous measurement error for multi-channel laser interferometer
NASA Astrophysics Data System (ADS)
Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong
2017-05-01
Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.
NASA Technical Reports Server (NTRS)
Folkestad, K.; Troim, J.
1974-01-01
The report presents observations obtained in a swept frequency experiment conducted in a mother-daughter rocket flight at auroral latitudes. The discussion is essentially restricted to the possible interpretation of the experimental signal structures noted at and in the vicinity of a resonance frequency where signal components apparently are generated by nonlinear mechanisms. Various resonance frequencies have been considered in attempts to identify this multichannel response frequency. It is concluded that of all the possibilities invoked, the best consistency is provided by identifying the frequency concerned with the cone resonance frequency demonstrated experimentally in the case of a laboratory plasma by Fisher and Gould (1971).
Seismic Evidence And Complex Trace Attributes Of Shallow Gas Structures In The Sea Of Marmara
NASA Astrophysics Data System (ADS)
Aydemir, Seval; Okay, Seda; Cifci, Gunay; Dondurur, Derman; Sorlien, Christopher; Cormier, Marie-Helene
2015-04-01
Analysis of multi-channel seismic reflection, sparker and chirp data from Marmara Sea observed various shallow gas indicators including seismic chimneys, bright spots, mud diapirs, pockmarks, and acoustic blanking related to gas accumulations along North Anatolian Fault (NAF) system which branches out towards the west into the in Marmara Sea. Middle branch of the (NAF) is the place where distinct amount of seismic activity has occurred and gas deposits have been observed. This study is also devoted to evaluate the gas related structures with seismic attributes of multichannel seismic reflection data which have been collected at South Marmara shelf. The dataset was collected in September 2013 and July 2014 including nearly 1000 km high Resolution Multichannel Seismic and Chirp data and 967 km Sparker data in the frame of a bilateral TÜBİTAK Project onboard R/V K. Piri Reis. The streamer has 168 or 144 channel and group interval was 6.25 m. The source was 45+45 inch GI gun fired every 12.5 or 25 m producing high-resolution seismic signal between 10-250 Hz frequency bands. The Chirp data was collected with a transducer, which produced acoustic signal between 2.75-6.75 kHz. The source of sparker system was used to 1000 J. The data have been processed using a conventional data processing flow. In addition attributes were applied to final migration sections and than was tried to find gas accumulations with Reflection strength section, instantaneous frequency section and apparent polarity. Reflection strength section has strong reflections (bright spot). Also instantaneous frequency section has low-frequency zone depending on absorption where gas accumulations are expected. Apparent polarity section has negative polarity anamoly due to low acoustic impedance where gas accumulations are expected in sediments. In addition, attributes were coincided with sparker and chirp data where expected shallow gas accumulations.
Magalhães, Ana Tereza de Matos; Goffi-Gomez, M Valéria Schmidt; Hoshino, Ana Cristina; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; Brito, Rubens
2013-09-01
To identify the technological contributions of the newer version of speech processor to the first generation of multichannel cochlear implant and the satisfaction of users of the new technology. Among the new features available, we focused on the effect of the frequency allocation table, the T-SPL and C-SPL, and the preprocessing gain adjustments (adaptive dynamic range optimization). Prospective exploratory study. Cochlear implant center at hospital. Cochlear implant users of the Spectra processor with speech recognition in closed set. Seventeen patients were selected between the ages of 15 and 82 and deployed for more than 8 years. The technology update of the speech processor for the Nucleus 22. To determine Freedom's contribution, thresholds and speech perception tests were performed with the last map used with the Spectra and the maps created for Freedom. To identify the effect of the frequency allocation table, both upgraded and converted maps were programmed. One map was programmed with 25 dB T-SPL and 65 dB C-SPL and the other map with adaptive dynamic range optimization. To assess satisfaction, SADL and APHAB were used. All speech perception tests and all sound field thresholds were statistically better with the new speech processor; 64.7% of patients preferred maintaining the same frequency table that was suggested for the older processor. The sound field threshold was statistically significant at 500, 1,000, 1,500, and 2,000 Hz with 25 dB T-SPL/65 dB C-SPL. Regarding patient's satisfaction, there was a statistically significant improvement, only in the subscale of speech in noise abilities and phone use. The new technology improved the performance of patients with the first generation of multichannel cochlear implant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, B., E-mail: bjtobias@pppl.gov; Domier, C. W.; Luhmann, N. C.
2016-11-15
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...
2016-07-25
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
The generation of O(1S) from the dissociative recombination of O2(+)
NASA Technical Reports Server (NTRS)
Guberman, Steven L.; Giusti-Suzor, Annick
1991-01-01
The multichannel quantum defect theory (MQDT) method and large scale wave functions are applied to the calculation of the cross sections and rates for dissociative recombination of O2(+) along the 1Sigma-u(+) dissociative potential. Indirect dissociative recombination is accounted for by simultaneously including both the vibronic and electronic coupling to the intermediate Rydberg resonances. An enhanced MQDT approach involving a second-order K matrix is described. Cross sections and rates for the lowest three vibrational levels of the ion are reported. The shapes of the cross sections are discussed in terms of Fano's profile index. It is found that, for each of the three ion vibrational levels, the intermediate Rydberg resonances reduce the dissociative recombination rate below the direct recombination rate. Just above threshold, resonances with centers below threshold play an important role.
A Multi-Channel Method for Detecting Periodic Forced Oscillations in Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, James D.; Tuffner, Francis K.
2016-11-14
Forced oscillations in electric power systems are often symptomatic of equipment malfunction or improper operation. Detecting and addressing the cause of the oscillations can improve overall system operation. In this paper, a multi-channel method of detecting forced oscillations and estimating their frequencies is proposed. The method operates by comparing the sum of scaled periodograms from various channels to a threshold. A method of setting the threshold to specify the detector's probability of false alarm while accounting for the correlation between channels is also presented. Results from simulated and measured power system data indicate that the method outperforms its single-channel counterpartmore » and is suitable for real-world applications.« less
Multi-channel unidirectional transmission of phononic crystal heterojunctions
NASA Astrophysics Data System (ADS)
Xu, Zhenlong; Tong, Jie; Wu, Fugen
2018-02-01
Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.
A miniaturized NQR spectrometer for a multi-channel NQR-based detection device
NASA Astrophysics Data System (ADS)
Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko
2014-10-01
A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14 N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14 N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14 N NQR based detection device.
Long-Term Stability of Remote Clock Comparisons with IGS Clock Products
2007-11-01
in-view (AV) time and frequency transfer and the two-way satellite time and frequency transfer ( TWSTFT ) techniques are used in the daily operations of...multichannel CV and AV can reach subnanosecond at 1 day as measured by the time deviation (TDEV). TWSTFT uses communication satellites for...simultaneously exchanging timing signals among the pairs of timing laboratories [4]. TWSTFT regularly delivers time transfer stability at a few hundreds of
Krusiec-Swidergoł, B; Jonderko, K
2008-06-01
We checked on reproducibility of parameters of a multichannel electrogastrogram in adults after intake of typical, applied in electrogastrography, test meals. Recordings of multichannel electrogastrograms were accomplished in four blocks comprising 18 subjects (nine healthy volunteers and nine patients with functional GI disorders) each. Every subject had two examinations taken 1-2 days apart, and a third one was accomplished at least 2 weeks before or after the two other sessions. The registration involved a 30-min fasted and a 2-h postprandial period after one of the meal stimuli tested within a given block: 400 mL water, 400 g yoghurt (378 kcal), a scrambled eggs sandwich (370 kcal), a pancake (355 kcal). From among the parameters reflecting the propagation of the gastric slow waves, the average percentage of slow wave coupling (APSWC) exhibited a good (coefficient of variation for paired examinations CV(p) < or = 10%) to moderate (10 < CV(p) < or = 30%) reproducibility. On the other hand, the reproducibility of the maximum dominant frequency difference and the spatial dominant power difference was found to be unsatisfactory. The reproducibility of the multichannel electrogastrographic parameters did not differ between healthy volunteers and patients with functional GI disorders. Gender or the kind of a test meal did not affect the reproducibility of the electrogastrographic parameters either. The medium-term reproducibility was not any worse than the short-term one. From among the parameters of a multichannel electrogastrogram intended to quantify the propagation of slow waves, only the APSWC offers a reproducibility potentially good enough for clinical applications.
MULTICHANNEL PULSE-HEIGHT ANALYZER
Russell, J.T.; Lefevre, H.W.
1958-01-21
This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.
The early days of the multi channel cochlear implant: efforts and achievement in France.
Chouard, C H
2015-04-01
On September 10th 2013, the clinical medical research Lasker award winners were rewarded for their work on multichannel cochlear implant. It has been my pleasure to see that such a major topic had caught the attention of the Members of the Jury for this prestigious award. That is why I accepted an invitation to participate in a special issue of Hearing Research devoted to the three winners. Here I highlight four scientific contributions made by the French team in late 1970s and early 1980s to modern multichannel cochlear implant development. 1) Chouard and MacLeod plotted an approximate frequency map of the whole length of the human cochlea, including its "hidden face" corresponding to speech frequencies. Moreover MacLeod suggested a sequential display of electrical stimulation as a function of each electrode, a precursor to today's electrodogram and interleaved stimulation. 2) Chouard performed total cochlear implantation in a deaf adult male with 8 electrically independent electrodes that were evenly distributed along the cochlea. 3) Chouard and MacLeod described in a patent detailed sound signal processing for a functional multichannel cochlear implant and reported speech discrimination without help of lip reading in some totally deafened patients. 4) Chouard experimentally demonstrated in the guinea pig the advantage of early cochlear implantation in treating profound neonatal deafness. This article is part of a Special Issue entitled
622-Mbps Orthogonal Frequency Division Multiplexing (OFDM) Digital Modem Implemented
NASA Technical Reports Server (NTRS)
Kifle, Muli; Bizon, Thomas P.; Nguyen, Nam T.; Tran, Quang K.; Mortensen, Dale J.
2002-01-01
Future generation space communications systems feature significantly higher data rates and relatively smaller frequency spectrum allocations than systems currently deployed. This requires the application of bandwidth- and power-efficient signal transmission techniques. There are a number of approaches to implementing such techniques, including analog, digital, mixed-signal, single-channel, or multichannel systems. In general, the digital implementations offer more advantages; however, a fully digital implementation is very difficult because of the very high clock speeds required. Multichannel techniques are used to reduce the sampling rate. One such technique, multicarrier modulation, divides the data into a number of low-rate channels that are stacked in frequency. Orthogonal frequency division multiplexing (OFDM), a form of multicarrier modulation, is being proposed for numerous systems, including mobile wireless and digital subscriber link communication systems. In response to this challenge, NASA Glenn Research Center's Communication Technology Division has developed an OFDM digital modem (modulator and demodulator) with an aggregate information throughput of 622 Mbps. The basic OFDM waveform is constructed by dividing an incoming data stream into four channels, each using either 16- ary quadrature amplitude modulation (16-QAM) or 8-phase shift keying (8-PSK). An efficient implementation for an OFDM architecture is being achieved using the combination of a discrete Fourier transform (DFT) at the transmitter to digitally stack the individual carriers, inverse DFT at the receiver to perform the frequency translations, and a polyphase filter to facilitate the pulse shaping.
A globally efficient means of distributing UTC time and frequency through GPS
NASA Technical Reports Server (NTRS)
Kusters, John A.; Giffard, Robin P.; Cutler, Leonard S.; Allan, David W.; Miranian, Mihran
1995-01-01
Time and frequency outputs comparable in quality to the best laboratories have been demonstrated on an integrated system suitable for field application on a global basis. The system measures the time difference between 1 pulse-per-second (pps) signals derived from local primary frequency standards and from a multi-channel GPS C/A receiver. The measured data is processed through optimal SA Filter algorithms that enhance both the stability and accuracy of GPS timing signals. Experiments were run simultaneously at four different sites. Even with large distances between sites, the overall results show a high degree of cross-correlation of the SA noise. With sufficiently long simultaneous measurement sequences, the data shows that determination of the difference in local frequency from an accepted remote standard to better than 1 x 10(exp -14) is possible. This method yields frequency accuracy, stability, and timing stability comparable to that obtained with more conventional common-view experiments. In addition, this approach provides UTC(USNO MC) in real time to an accuracy better than 20 ns without the problems normally associated with conventional common-view techniques. An experimental tracking loop was also set up to demonstrate the use of enhanced GPS for dissemination of UTC(USNO MC) over a wide geographic area. Properly disciplining a cesium standard with a multi-channel GPS receiver, with additional input from USNO, has been found to permit maintaining a timing precision of better than 10 ns between Palo Alto, CA and Washington, DC.
47 CFR 101.1421 - Coordination of adjacent area MVDDS stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for... compatible with adjacent and co-channel operations in the adjacent areas on all its frequencies; and (2... adjacent and co-channel operations in adjacent areas. (b) Harmful interference to public safety stations...
47 CFR 101.603 - Permissible communications.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., to their customers except that the distribution of video entertainment material to customers is... 6425-6525 MHz, 17,700-18,580 MHz, and on frequencies above 21,200 MHz, licensees may deliver any of... provide the final RF link in the chain of transmission of program material to multichannel video...
Picosecond-precision multichannel autonomous time and frequency counter
NASA Astrophysics Data System (ADS)
Szplet, R.; Kwiatkowski, P.; RóŻyc, K.; Jachna, Z.; Sondej, T.
2017-12-01
This paper presents the design, implementation, and test results of a multichannel time interval and frequency counter developed as a desktop instrument. The counter contains four main functional modules for (1) performing precise measurements, (2) controlling and fast data processing, (3) low-noise power suppling, and (4) supplying a stable reference clock (optional rubidium standard). A fundamental for the counter, the time interval measurement is based on time stamping combined with a period counting and in-period two-stage time interpolation that allows us to achieve wide measurement range (above 1 h), high precision (even better than 4.5 ps), and high measurement speed (up to 91.2 × 106 timestamps/s). The frequency is measured up to 3.0 GHz with the use of the reciprocal method. Wide functionality of the counter includes also the evaluation of frequency stability of clocks and oscillators (Allan deviation) and phase variation (time interval error, maximum time interval error, time deviation). The 8-channel measurement module is based on a field programmable gate array device, while the control unit involves a microcontroller with a high performance ARM-Cortex core. An efficient and user-friendly control of the counter is provided either locally, through the built-in keypad or/and color touch panel, or remotely, with the aid of USB, Ethernet, RS232C, or RS485 interfaces.
Tan, Jun; Zhao, Zeping; Wang, Yuehui; Zhang, Zhike; Liu, Jianguo; Zhu, Ninghua
2018-01-22
A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.
Picosecond-precision multichannel autonomous time and frequency counter.
Szplet, R; Kwiatkowski, P; Różyc, K; Jachna, Z; Sondej, T
2017-12-01
This paper presents the design, implementation, and test results of a multichannel time interval and frequency counter developed as a desktop instrument. The counter contains four main functional modules for (1) performing precise measurements, (2) controlling and fast data processing, (3) low-noise power suppling, and (4) supplying a stable reference clock (optional rubidium standard). A fundamental for the counter, the time interval measurement is based on time stamping combined with a period counting and in-period two-stage time interpolation that allows us to achieve wide measurement range (above 1 h), high precision (even better than 4.5 ps), and high measurement speed (up to 91.2 × 10 6 timestamps/s). The frequency is measured up to 3.0 GHz with the use of the reciprocal method. Wide functionality of the counter includes also the evaluation of frequency stability of clocks and oscillators (Allan deviation) and phase variation (time interval error, maximum time interval error, time deviation). The 8-channel measurement module is based on a field programmable gate array device, while the control unit involves a microcontroller with a high performance ARM-Cortex core. An efficient and user-friendly control of the counter is provided either locally, through the built-in keypad or/and color touch panel, or remotely, with the aid of USB, Ethernet, RS232C, or RS485 interfaces.
Mudraia, I S; Kirpatovskiĭ, V I
1993-01-01
The paper describes impedance methods of investigating upper urinary tracts (UUT) which may serve adjuvants in the diagnosis of the urinary tract wall disturbances due to diseases caused by impaired urine evacuation from the kidney and which may prove helpful in the choice of therapeutic policy, evaluation of the postoperative period and outcomes prognosis. UUT impedance tests can be performed during endoscopic manipulations or under open operative interventions. Two-frequency impedancemetry allows rapid detection of non-functioning UUT parts or sclerosal sites of the UUT wall, relevant criteria being the ratio of basic impedances of the site under low and high scanning current. This value is computed by an urological two-frequency impedancemeter IDU-M. To assess the UUT wall functionally, use should be made of 6-channel urological rheograph REUR-6 providing multichannel registration of immediate impedance ureterograms. In this manner one can obtain qualitative and quantitative assessment of the ureteral peristalsis through its all length, the criteria being the amplitude of impedance ureterographic complexes, their shape, duration, frequency, rhythm, sequence and rate of distribution. Loading tests increase the accuracy of UUT impedance measurements, are able to define compensatory reserves of the wall contractility. The introduction of rheological methods in urological practice makes broader the armory of diagnostic techniques in urology, upgrade pathogenetic validity of surgical and therapeutic measures.
Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang
2015-01-01
The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product. PMID:26061199
Laser frequency stabilization using a commercial wavelength meter
NASA Astrophysics Data System (ADS)
Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias
2018-04-01
We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.
Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning
2015-01-01
[Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734
Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation
Maher, Robert; Xu, Tianhua; Galdino, Lidia; Sato, Masaki; Alvarado, Alex; Shi, Kai; Savory, Seb J.; Thomsen, Benn C.; Killey, Robert I.; Bayvel, Polina
2015-01-01
The achievable transmission capacity of conventional optical fibre communication systems is limited by nonlinear distortions due to the Kerr effect and the difficulty in modulating the optical field to effectively use the available fibre bandwidth. In order to achieve a high information spectral density (ISD), while simultaneously maintaining transmission reach, multi-channel fibre nonlinearity compensation and spectrally efficient data encoding must be utilised. In this work, we use a single coherent super-receiver to simultaneously receive a DP-16QAM super-channel, consisting of seven spectrally shaped 10GBd sub-carriers spaced at the Nyquist frequency. Effective nonlinearity mitigation is achieved using multi-channel digital back-propagation (MC-DBP) and this technique is combined with an optimised forward error correction implementation to demonstrate a record gain in transmission reach of 85%; increasing the maximum transmission distance from 3190 km to 5890 km, with an ISD of 6.60 b/s/Hz. In addition, this report outlines for the first time, the sensitivity of MC-DBP gain to linear transmission line impairments and defines a trade-off between performance and complexity. PMID:25645457
[Establishment and application of mechanical strain loading system of multi-channel cells].
Li, Yongming; Wang, Hua; Zhang, Xiaodong; Tang, Lin
2012-02-01
Based on single-chip microcomputer, we have established a mechanical strain loading system with multi-channel to study the biological behavior of cultured cells in vitro under mechanical strain. We developed a multi-channel cell strain loading device controlled by single-chip microcomputer. We controlled the vacuum pump with vacuum chamber to make negative pressure changing periodically in the vacuum chamber. The tested cells were seeded on the surface of an elastic membrane mounted on the vacuum chamber, and could be strained or relaxed by cyclic pressure. Since the cells are attached to the surface of the membrane, they presumably experience the same deformation as that was applied to the membrane. The system was easy to carry and to operate, with deformation rate (1%-21%) and frequency (0-0. 5Hz) which could be adjusted correctly according to experimental requirement, and could compare different deformation rate of three channels at the same time. The system ran stably and completely achieved design aims, and provided a method to study the biological behavior of cultured cells attached to the surface of the elastic membrane under mechanical strain in vitro.
FastICA peel-off for ECG interference removal from surface EMG.
Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping
2016-06-13
Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.
NASA Astrophysics Data System (ADS)
Magne, Sylvian; de Carlan, Loïc; Bordy, Jean-Marc; Isambert, Aurélie; Bridier, André; Ferdinand, Pierre
2011-04-01
A multichannel OSL fiber optic dosimeter based on optically stimulated luminescence (OSL) of alumina is proposed for online in vivo dosimetry (IVD) in radiation therapy (RT). Two types of dosimetric-grade Al2O3:C crystals are compared and show different behavior according to manufacturing process. Metrological validations have been performed with a Saturne 43 LINAC in reference conditions at CEA LIST LNHB (French Ionizing Radiation Reference Laboratory). The dose response of OSL integrals under photon beam irradiation (6, 12, and 20 MV) show sublinearity behavior modeled by second-order equations and exhibit a small energy dependence (between 0.7% and 1.4%), explained by a modified intermediate cavity model adapted to a LINAC photon spectrum. Preclinical tests at Institut Gustave Roussy (IGR) prove that a proper design for a PMMA build-up cap leads to a low dependence vs photon beam orientation (± 1.5% and ± 0.9%) and vs field size in view of surface measurements.
A novel filter bank for biotelemetry.
Karagözoglu, B
2001-03-01
In a multichannel biotelemetry system, signals taken from a patient are distributed along the available frequency range (bandwidth) of the system through frequency-division-multiplexing, and combined into a single composite signal. Biological signals that are limited to low frequencies (below 10 Hz) modulate the frequencies of respective sub-carriers. Other biological signals are carried in amplitude-modulated forms. It is recognized that recovering original signals from a composite signal at the receiver side is a technical challenge when a telemetry system with narrow bandwidth capacity is used, since such a system leaves little frequency spacing between information channels. A filter bank is therefore utilized for recovering biological signals that are transmitted. The filter bank contains filter units comprising switched-capacitor filter integrated circuits. The filters have two distinct and opposing outputs (band-stop (notch) and band-pass). Since most biological signals are at low frequencies, and modulated signals occupy a narrow band around the carrier, notch filters can be used to efficiently stop signals in the narrow frequency range. Once the interim channels are removed, other channels become well separated from each other, and band-pass filters can select them. In the proposed system, efficient filtering of closely packed channels is achieved, with low interference, from neighboring channels. The filter bank is applied to a system that carries four biological signals and a battery status indicator signal. Experimental results reinforce theoretical predictions that the filter bank successfully de-multiplexes closely packed information channels with low crosstalk between them. It is concluded that the proposed filter bank allows utilization of cost-effective multichannel biotelemetry systems that are designed around commercial audio devices, and that it can be readily adapted to a broad range of physiological recording requirements.
A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.
Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko
2014-10-01
A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device. Copyright © 2014 Elsevier Inc. All rights reserved.
Laser pulses for coherent xuv Raman excitation
NASA Astrophysics Data System (ADS)
Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta
2015-07-01
We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.
NASA Astrophysics Data System (ADS)
Park, Sahnggi; Kim, Kap-Joong; Kim, Duk-Jun; Kim, Gyungock
2009-02-01
Third order ring resonators are designed and their resonance frequency deviations are analyzed experimentally by processing them with E-beam lithography and ICP etching in a CMOS nano-Fabrication laboratory. We developed a reliable method to identify and reduce experimentally the degree of deviation of each ring resonance frequency before completion of the fabrication process. The identified deviations can be minimized by the way to be presented in this paper. It is expected that this method will provide a significant clue to make a high order multi-channel ring resonators.
NASA Astrophysics Data System (ADS)
Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.
2015-12-01
Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the hydrocarbon reservoir, especially when the thickness of the reservoir is small (such as the thin beds).
2004-12-01
FREQUENCY TRANSFER ( TWSTFT ) TWSTFT network in the Asia-Pacific region has developed by the collaboration of NICT and major T&F institutes in the...region [7]. A multi-channel TWSTFT modem has been developed by NICT. The performance evaluation shows that it is capable of sub-nanosecond time...intercomparison of NICT modem TWSTFT , ATLANTIS modem TWSTFT , and GPS common view (CV) in the case of the NICT-TL link is shown in Figure 4, and the stability
Perelman, Yevgeny; Ginosar, Ran
2007-01-01
A mixed-signal front-end processor for multichannel neuronal recording is described. It receives 12 differential-input channels of implanted recording electrodes. A programmable cutoff High Pass Filter (HPF) blocks dc and low-frequency input drift at about 1 Hz. The signals are band-split at about 200 Hz to low-frequency Local Field Potential (LFP) and high-frequency spike data (SPK), which is band limited by a programmable-cutoff LPF, in a range of 8-13 kHz. Amplifier offsets are compensated by 5-bit calibration digital-to-analog converters (DACs). The SPK and LFP channels provide variable amplification rates of up to 5000 and 500, respectively. The analog signals are converted into 10-bit digital form, and streamed out over a serial digital bus at up to 8 Mbps. A threshold filter suppresses inactive portions of the signal and emits only spike segments of programmable length. A prototype has been fabricated on a 0.35-microm CMOS process and tested successfully, demonstrating a 3-microV noise level. Special interface system incorporating an embedded CPU core in a programmable logic device accompanied by real-time software has been developed to allow connectivity to a computer host.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.
A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.
Optimal multichannel transmission for improved cr-MREPT
NASA Astrophysics Data System (ADS)
Ariturk, Gokhan; Ziya Ider, Yusuf
2018-02-01
Magnetic resonance electrical properties tomography (MR-EPT), aiming at reconstructing the EP’s at radio frequencies, uses the H + field (both magnitude and phase) distribution within the object. One of the MR-EPT algorithms, cr-MREPT, accurately reconstructs the internal tissue boundaries, however, it faces an artifact which occurs at the regions where the convective field, \
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.
Digital multi-channel high resolution phase locked loop for surveillance radar systems
NASA Astrophysics Data System (ADS)
Rizk, Mohamed; Shaaban, Shawky; Abou-El-Nadar, Usama M.; Hafez, Alaa El-Din Sayed
This paper present a multi-channel, high resolution, fast lock phase locked loop (PLL) for surveillance radar applications. Phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. The proposed system is based on digital process and control the error signal to the voltage controlled oscillator (VCO) adaptively to control its gain in order to achieve fast lock times while improving in lock jitter performance. Under certain circumstances the design also improves the frequency agility capability of the radar system. The results show a fast lock, high resolution PLL with transient time less than 10 µ sec which is suitable to radar applications.
Multichannel techniques for motion artifacts removal from electrocardiographic signals.
Milanesi, M; Martini, N; Vanello, N; Positano, V; Santarelli, M F; Paradiso, R; De Rossi, D; Landini, L
2006-01-01
Electrocardiographic (ECG) signals are affected by several kinds of artifacts, that may hide vital signs of interest. Motion artifacts, due to the motion of the electrodes in relation to patient skin, are particularly frequent in bioelectrical signals acquired by wearable systems. In this paper we propose different approaches in order to get rid of motion confounds. The first approach we follow starts from measuring electrode motion provided by an accelerometer placed on the electrode and use this measurement in an adaptive filtering system to remove the noise present in the ECG. The second approach is based on independent component analysis methods applied to multichannel ECG recordings; we propose to use both instantaneous model and a frequency domain implementation of the convolutive model that accounts for different paths of the source signals to the electrodes.
NASA Technical Reports Server (NTRS)
Burns, B. A.; Cavalieri, D. J.; Keller, M. R.
1986-01-01
Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.
Dimension reduction of frequency-based direct Granger causality measures on short time series.
Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2017-09-01
The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.
The electron-furfural scattering dynamics for 63 energetically open electronic states
NASA Astrophysics Data System (ADS)
da Costa, Romarly F.; do N. Varella, Márcio T.; Bettega, Márcio H. F.; Neves, Rafael F. C.; Lopes, Maria Cristina A.; Blanco, Francisco; García, Gustavo; Jones, Darryl B.; Brunger, Michael J.; Lima, Marco A. P.
2016-03-01
We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at either the static-exchange (Nopen ch-SE) or the static-exchange-plus-polarisation (Nopen ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.
The electron-furfural scattering dynamics for 63 energetically open electronic states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580; Varella, Márcio T. do N
We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C{sub 5}H{sub 4}O{sub 2}). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (N{sub open}) at either the static-exchange (N{sub open} ch-SE) or the static-exchange-plus-polarisation (N{sub open} ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channelmore » coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.« less
Zheng, Xuhui; Liu, Lei; Li, Gao; Zhou, Fubiao; Xu, Jiemin
2018-01-01
Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan’an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit. PMID:29883492
Zheng, Xuhui; Liu, Lei; Sun, Jinzhong; Li, Gao; Zhou, Fubiao; Xu, Jiemin
2018-01-01
Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan'an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Jinhai; Giordano, Sharon H.; Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
Purpose: We compared toxicities after brachytherapy versus external beam radiation therapy (EBRT) in contemporary breast cancer patients. Methods and Materials: Using MarketScan healthcare claims, we identified 64,112 women treated from 2003 to 2012 with lumpectomy followed by radiation (brachytherapy vs EBRT). Brachytherapy was further classified by multichannel versus single-channel applicator approach. We identified the risks and predictors of 1-year infectious and noninfectious postoperative adverse events using logistic regression and temporal trends using Cochran-Armitage tests. We estimated the 5-year Kaplan-Meier cumulative incidence of radiation-associated adverse events. Results: A total of 4522 (7.1%) patients received brachytherapy (50.2% multichannel vs 48.7% single-channel applicator).more » The overall risk of infectious adverse events was higher after brachytherapy than after EBRT (odds ratio [OR] = 1.21; 95% confidence interval [CI] 1.09-1.34, P<.001). However, over time, the frequency of infectious adverse events after brachytherapy decreased, from 17.3% in 2003 to 11.6% in 2012, and was stable after EBRT at 9.7%. Beyond 2007, there were no longer excess infections with brachytherapy (P=.97). The overall risk of noninfectious adverse events was higher after brachytherapy than after EBRT (OR=2.27; 95% CI 2.09-2.47, P<.0001). Over time, the frequency of noninfectious adverse events detected increased: after multichannel brachytherapy, from 9.1% in 2004 to 18.9% in 2012 (Ptrend = .64); single-channel brachytherapy, from 12.8% to 29.8% (Ptrend<.001); and EBRT, from 6.1% to 10.3% (Ptrend<.0001). The risk was significantly higher with single-channel than with multichannel brachytherapy (hazard ratio = 1.32; 95% CI 1.03-1.69, P=.03). Of noninfectious adverse events, 70.9% were seroma. Seroma significantly increased breast pain risk (P<.0001). Patients with underlying diabetes, cardiovascular disease, and treatment with chemotherapy had increased infectious and noninfectious adverse events. The 5-year incidences of fat necrosis, breast pain, and rib fracture were slightly higher after brachytherapy than after EBRT (13.7% vs 8.1%, 19.4% vs 16.0%, and 1.6% vs 1.3%, respectively), but the risks were not significantly different for multichannel versus single-channel applicators. Conclusion: Toxicities after breast brachytherapy were distinct from those after EBRT. Temporal toxicity trends may reflect changing technology and evolving practitioner experience with brachytherapy.« less
Flight Test of ASAC Aircraft Interior Noise Control System
NASA Technical Reports Server (NTRS)
Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda
1999-01-01
A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.
Development of a Multi-Channel Piezoelectric Acoustic Sensor Based on an Artificial Basilar Membrane
Jung, Youngdo; Kwak, Jun-Hyuk; Lee, Young Hwa; Kim, Wan Doo; Hur, Shin
2014-01-01
In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS) that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA) was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz–13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters. PMID:24361926
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano; Rocca, Michele; Boaga, Jacopo
2014-05-01
This presentation aims to outline the preliminary findings related to an extensive seismic survey conducted in the historical center of Venice, Italy. The survey was conducted via noninvasive and low-cost seismic techniques based on surface waves analysis and microtremor methods, mainly using single station horizontal to vertical spectral ratio techninques (HVSR) and multichannel analysis of surface waves in passive (ReMI) and active (MASW) configurations. The importance and the fragility of the cultural heritage of Venice, coupled with its peculiar geological and geotechnical characteristics, stress the importance of a good knowledge of its geological architecture and seismic characteristics as an opportunity to improve restoration and conservation planning. Even if Venice is located in a relatively low seismic hazard zone, a local characterization of soil resonance frequencies and surficial shear waves velocities could improve the planning of engineering interventions, furnishing important information on possible local effects related to seismic amplification and possible coupling within buildings and soil resonance frequencies. In the specific we collected more than 50 HVSR single station noise measurements and several passive and active multichannel analysis of surface waves located in the historical center. In this work we report the characteristics of the conducted seismic surveys (instrumentation, sampling geometry, etc.) and the preliminary findings of our analysis. Moreover, we discuss briefly the practical issues, mainly of logistic nature, of conducting this kind of surveys in a peculiar and crowed historical center as represented by Venice urban contest. Acknowledgments Instrumentation acquired in relation to the project co-financed by Regione Veneto, POR-CRO, FESR, 2007-2013, action 1.1.1. "Supporto ad attività di ricerca, processi e reti di innovazione e alla creazione di imprese in settori a elevato contenuto tecnologico"
High-frequency Rayleigh-wave method
Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.
2009-01-01
High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL.
Haberman, Marcelo Alejandro; Spinelli, Enrique Mario
2012-12-01
Single ended (SE) amplifiers allow implementing biopotential front-ends with a reduced number of parts, being well suited for preamplified electrodes or compact EEG headboxes. On the other hand, given that each channel has independent gain; mismatching between these gains results in poor common-mode rejection ratios (CMRRs) (about 30 dB considering 1% tolerance components). This work proposes a scheme for multichannel EEG acquisition systems based on SE amplifiers and a novel digital driven right leg (DDRL) circuit, which overcome the poor CMRR of the front-end stage providing a high common mode reduction at power line frequency (up to 80 dB). A functional prototype was built and tested showing the feasibility of the proposed technique. It provided EEG records with negligible power line interference, even in very aggressive EMI environments.
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical... applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10−4 watts across a 25 kHz bandwidth in any 160 microsecond...
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical... applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10−4 watts across a 25 kHz bandwidth in any 160 microsecond...
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical... applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10−4 watts across a 25 kHz bandwidth in any 160 microsecond...
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical... applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10−4 watts across a 25 kHz bandwidth in any 160 microsecond...
NASA Technical Reports Server (NTRS)
Stacey, J. M. (Inventor)
1985-01-01
A wideband passive synthetic-aperture multichannel receiver with an antenna is mounted on a satellite which travels in an orbit above the Earth passing over large bodies of water, e.g., the Atlantic Ocean. The antenna is scanned to receive signals over a wide frequency band from each incremental surface area (pixel) of the water which are related to the pixel's sea temperature. The received signals are fed to several channels which are tuned to separate selected frequencies. Their outputs are fed to a processor with a memory for storage. As the antenna points to pixels within a calibration area around a buoy of known coordinates, signals are likewise received and stored. Exactly measured sea temperature is received from the buoy. After passing over several calibration areas, a forward stepwise regression analysis is performed to produce an expression which selects the significant from the insignificant channels and assigns weights (coefficients) to them. The expression is used to determine the sea temperature at each pixel based on the signals received therefrom. Wind temperature, pressure, and wind speed at each pixel can also be calculated.
Method for ambiguity resolution in range-Doppler measurements
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M. (Inventor); Miller, Lee S. (Inventor)
1994-01-01
A method for resolving range and Doppler target ambiguities when the target has substantial range or has a high relative velocity in which a first signal is generated and a second signal is also generated which is coherent with the first signal but at a slightly different frequency such that there exists a difference in frequency between these two signals of Delta f(sub t). The first and second signals are converted into a dual-frequency pulsed signal, amplified, and the dual-frequency pulsed signal is transmitted towards a target. A reflected dual-frequency signal is received from the target, amplified, and changed to an intermediate dual-frequency signal. The intermediate dual-frequency signal is amplified, with extracting of a shifted difference frequency Delta f(sub r) from the amplified intermediate dual-frequency signal done by a nonlinear detector. The final step is generating two quadrature signals from the difference frequency Delta f(sub t) and the shifted difference frequency Delta f(sub r) and processing the two quadrature signals to determine range and Doppler information of the target.
Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics.
Shannon, R V
1983-08-01
Basic psychophysical measurements were obtained from three patients implanted with multichannel cochlear implants. This paper presents measurements from stimulation of a single channel at a time (either monopolar or bipolar). The shape of the threshold vs. frequency curve can be partially related to the membrane biophysics of the remaining spiral ganglion and/or dendrites. Nerve survival in the region of the electrode may produce some increase in the dynamic range on that electrode. Loudness was related to the stimulus amplitude by a power law with exponents between 1.6 and 3.4, depending on frequency. Intensity discrimination was better than for normal auditory stimulation, but not enough to offset the small dynamic range for electrical stimulation. Measures of temporal integration were comparable to normals, indicating a central mechanism that is still intact in implant patients. No frequency analysis of the electrical signal was observed. Each electrode produced a unique pitch sensation, but they were not simply related to the tonotopic position of the stimulated electrode. Pitch increased over more than 4 octaves (for one patient) as the frequency was increased from 100 to 300 Hz, but above 300 Hz no pitch change was observed. Possibly the major limitation of single channel cochlear implants is the 1-2 ms integration time (probably due to the capacitative properties of the nerve membrane which acts as a low-pass filter at 100 Hz). Another limitation of electrical stimulation is that there is no spectral analysis of the electrical waveform so that temporal waveform alone determines the effective stimulus.
Komorowski, Dariusz; Pietraszek, Stanislaw
2016-01-01
This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.
Frequency Agile Transceiver for Advanced Vehicle Data Links
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Macias, Filiberto; Cornelius, Harold
2009-01-01
Emerging and next-generation test instrumentation increasingly relies on network communication to manage complex and dynamic test scenarios, particularly for uninhabited autonomous systems. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. Frequency agility is one characteristic of reconfigurable radios that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate a promising chipset that performs conversion of RF signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit, programmable for any frequency band between 1 MHz and 6 GHz.
Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals
NASA Astrophysics Data System (ADS)
Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei
2018-01-01
Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.
Proof-of-concept demonstration of a miniaturized three-channel multiresolution imaging system
NASA Astrophysics Data System (ADS)
Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Vervaeke, Michael; Van Erps, Jürgen; Thienpont, Hugo
2014-05-01
Multichannel imaging systems have several potential applications such as multimedia, surveillance, medical imaging and machine vision, and have therefore been a hot research topic in recent years. Such imaging systems, inspired by natural compound eyes, have many channels, each covering only a portion of the total field-of-view of the system. As a result, these systems provide a wide field-of-view (FOV) while having a small volume and a low weight. Different approaches have been employed to realize a multichannel imaging system. We demonstrated that the different channels of the imaging system can be designed in such a way that they can have each different imaging properties (angular resolution, FOV, focal length). Using optical ray-tracing software (CODE V), we have designed a miniaturized multiresolution imaging system that contains three channels each consisting of four aspherical lens surfaces fabricated from PMMA material through ultra-precision diamond tooling. The first channel possesses the largest angular resolution (0.0096°) and narrowest FOV (7°), whereas the third channel has the widest FOV (80°) and the smallest angular resolution (0.078°). The second channel has intermediate properties. Such a multiresolution capability allows different image processing algorithms to be implemented on the different segments of an image sensor. This paper presents the experimental proof-of-concept demonstration of the imaging system using a commercial CMOS sensor and gives an in-depth analysis of the obtained results. Experimental images captured with the three channels are compared with the corresponding simulated images. The experimental MTF of the channels have also been calculated from the captured images of a slanted edge target test. This multichannel multiresolution approach opens the opportunity for low-cost compact imaging systems that can be equipped with smart imaging capabilities.
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-09-12
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs.
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-01-01
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs. PMID:27626429
NASA Astrophysics Data System (ADS)
Testorf, M. E.; Jobst, B. C.; Kleen, J. K.; Titiz, A.; Guillory, S.; Scott, R.; Bujarski, K. A.; Roberts, D. W.; Holmes, G. L.; Lenck-Santini, P.-P.
2012-10-01
Time-frequency transforms are used to identify events in clinical EEG data. Data are recorded as part of a study for correlating the performance of human subjects during a memory task with pathological events in the EEG, called spikes. The spectrogram and the scalogram are reviewed as tools for evaluating spike activity. A statistical evaluation of the continuous wavelet transform across trials is used to quantify phase-locking events. For simultaneously improving the time and frequency resolution, and for representing the EEG of several channels or trials in a single time-frequency plane, a multichannel matching pursuit algorithm is used. Fundamental properties of the algorithm are discussed as well as preliminary results, which were obtained with clinical EEG data.
NASA Astrophysics Data System (ADS)
Papademetriou, Maria D.; Tachtsidis, Ilias; Elliot, Martin J.; Hoskote, Aparna; Elwell, Clare E.
2012-06-01
Assessing noninvasively cerebral autoregulation, the protective mechanism of the brain to maintain constant cerebral blood flow despite changes in blood pressure, is challenging. Infants on life support system (ECMO) for cardiorespiratory failure are at risk of cerebral autoregulation impairment and consequent neurological problems. We measured oxyhaemoglobin concentration (HbO2) by multichannel (12 channels) near-infrared spectroscopy (NIRS) in six infants during sequential changes in ECMO flow. Wavelet cross-correlation (WCC) between mean arterial pressure (MAP) and HbO2 was used to construct a time-frequency representation of the concordance between the two signals to assess the nonstationary aspect of cerebral autoregulation and investigate regional variations. Group data showed that WCC increases with decreasing ECMO flow indicating higher concordance between MAP and HbO2 and demonstrating loss of cerebral autoregulation at low ECMO flows. Statistically significant differences in WCC were observed between channels placed on the right and left scalp with channels on the right exhibiting higher values of WCC suggesting that the right hemisphere was more susceptible to disruption of cerebral autoregulation. Multichannel NIRS in conjunction with wavelet analysis methods can be used to assess regional variations in dynamic cerebral autoregulation with important clinical application in the management of critically ill children on life support systems.
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
Polariton resonances in multilayered piezoelectric superlattices
NASA Astrophysics Data System (ADS)
Piliposyan, D.
2018-04-01
Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-length superlattice with identical piezoelectric materials in a unit cell are considered in the framework of the full system of Maxwell’s electrodynamic equations. In the long wavelength region, coupling between electro-magnetic and elastic waves creates frequency band gaps. It is shown that for piezoelectric superlattice at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell. The results of the paper may be useful in design of narrow band filters or multi-channel piezoelectric filters.
Feasibility study of a real-time operating system for a multichannel MPEG-4 encoder
NASA Astrophysics Data System (ADS)
Lehtoranta, Olli; Hamalainen, Timo D.
2005-03-01
Feasibility of DSP/BIOS real-time operating system for a multi-channel MPEG-4 encoder is studied. Performances of two MPEG-4 encoder implementations with and without the operating system are compared in terms of encoding frame rate and memory requirements. The effects of task switching frequency and number of parallel video channels to the encoding frame rate are measured. The research is carried out on a 200 MHz TMS320C6201 fixed point DSP using QCIF (176x144 pixels) video format. Compared to a traditional DSP implementation without an operating system, inclusion of DSP/BIOS reduces total system throughput only by 1 QCIF frames/s. The operating system has 6 KB data memory overhead and program memory requirement of 15.7 KB. Hence, the overhead is considered low enough for resource critical mobile video applications.
[Design of modulating intermediate frequency electrotherapy system based on microcontroller unit].
Yu, Xuefei; Liu, Xianfeng; Peng, Daming
2010-12-01
This article is devoted to the design of a system for modulating intermediate frequency electrotherapy waveform output. Prescriptions with different output waveform combinations were produced using microcontroller unit (MCU). The rich output waveforms effectively improve tolerance of human adaptability and achieve a therapeutic effect.
Multichannel feedforward control schemes with coupling compensation for active sound profiling
NASA Astrophysics Data System (ADS)
Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.
2017-05-01
Active sound profiling includes a number of control techniques that enables the equalization, rather than the mere reduction, of acoustic noise. Challenges may rise when trying to achieve distinct targeted sound profiles simultaneously at multiple locations, e.g., within a vehicle cabin. This paper introduces distributed multichannel control schemes for independently tailoring structural borne sound reaching a number of locations within a cavity. The proposed techniques address the cross interactions amongst feedforward active sound profiling units, which compensate for interferences of the primary sound at each location of interest by exchanging run-time data amongst the control units, while attaining the desired control targets. Computational complexity, convergence, and stability of the proposed multichannel schemes are examined in light of the physical system at which they are implemented. The tuning performance of the proposed algorithms is benchmarked with the centralized and pure-decentralized control schemes through computer simulations on a simplified numerical model, which has also been subjected to plant magnitude variations. Provided that the representation of the plant is accurate enough, the proposed multichannel control schemes have been shown as the only ones that properly deliver targeted active sound profiling tasks at each error sensor location. Experimental results in a 1:3-scaled vehicle mock-up further demonstrate that the proposed schemes are able to attain reductions of more than 60 dB upon periodic disturbances at a number of positions, while resolving cross-channel interferences. Moreover, when the sensor/actuator placement is found as defective at a given frequency, the inclusion of a regularization parameter in the cost function is seen to not hinder the proper operation of the proposed compensation schemes, at the time that it assures their stability, at the expense of losing control performance.
Range-gated field disturbance sensor with range-sensitivity compensation
McEwan, T.E.
1996-05-28
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies. 8 figs.
Range-gated field disturbance sensor with range-sensitivity compensation
McEwan, Thomas E.
1996-01-01
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.
Fine structure in solar microwave bursts
NASA Astrophysics Data System (ADS)
Allaart, M. A. F.; van Nieuwkoop, J.; Slottje, C.; Sondaar, L. H.
1990-12-01
A new multichannel radio spectrograph has been constructed for the study of short-lived structures in solar microwave bursts. It measured the integrated flux over the whole solar disk in two circular polarizations at 36 frequencies between 4 and 8 GHz, with a time constant of 0.5 ms. All 119 recorded bursts observed in 1981 and 1983 are analyzed. Attention is focused on events with a lifetime of less than 1 s.
47 CFR 101.147 - Frequency assignments.
Code of Federal Regulations, 2011 CFR
2011-10-01
....) Applicants for one-way spectrum from 17.7-18.58 GHz for multichannel video programming distribution are... (17) (18) 952.0-960.0 MHz (28) 1,850-1,990 MHz (20) (22) 2,110-2,130 MHz) (1) (3) (7) (20) (23) 2,130... (24) 17,700-18,820 MHz (5) (10) (15) 17,700-18,300 MHz (10) (15) 18,820-18,920 MHz (22) 18,300-18,580...
Wireless multichannel biopotential recording using an integrated FM telemetry circuit.
Mohseni, Pedram; Najafi, Khalil; Eliades, Steven J; Wang, Xiaoqin
2005-09-01
This paper presents a four-channel telemetric microsystem featuring on-chip alternating current amplification, direct current baseline stabilization, clock generation, time-division multiplexing, and wireless frequency-modulation transmission of microvolt- and millivolt-range input biopotentials in the very high frequency band of 94-98 MHz over a distance of approximately 0.5 m. It consists of a 4.84-mm2 integrated circuit, fabricated using a 1.5-microm double-poly double-metal n-well standard complementary metal-oxide semiconductor process, interfaced with only three off-chip components on a custom-designed printed-circuit board that measures 1.7 x 1.2 x 0.16 cm3, and weighs 1.1 g including two miniature 1.5-V batteries. We characterize the microsystem performance, operating in a truly wireless fashion in single-channel and multichannel operation modes, via extensive benchtop and in vitro tests in saline utilizing two different micromachined neural recording microelectrodes, while dissipating approximately 2.2 mW from a 3-V power supply. Moreover, we demonstrate successful wireless in vivo recording of spontaneous neural activity at 96.2 MHz from the auditory cortex of an awake marmoset monkey at several transmission distances ranging from 10 to 50 cm with signal-to-noise ratios in the range of 8.4-9.5 dB.
Towards fundamental understanding of ultracold KRb
NASA Astrophysics Data System (ADS)
Kotochigova, Svetlana
2009-05-01
The recent formation of ultracold KRb molecules in their absolute rovibrational ground state [1] has created great promise for study of collective phenomena that rely on the long-range interactions between polar molecules. Here we discuss the theoretical analysis of various essential properties of the KRb molecules [2] that accompanied these experimental advances. This analysis is based on multi-channel bound-state calculations of both ground and excited electronic states. We have found that the theoretical hyperfine and Zeeman mixed X^1&+circ; and a^3&+circ; vibrational structure shows excellent agreement with the experimentally observed structure. In addition, multi-channel calculations of the rovibrational structure of the excited state potentials have allowed us to find the optimal transitions to the lowest v=0 vibrational levels. Finally, we examine the dynamic polarizability of vibrationally cold KRb molecules as a function of laser frequency. Based on this knowledge, laser frequencies can be selected to minimize decoherence from loss of molecules due to spontaneous or laser-induced transitions. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008). [2] S. Kotochigova, E. Tiesinga, and P. S. Julienne, submitted to New J. Phys. (2009).
Sengottuvel, S; Khan, Pathan Fayaz; Mariyappa, N; Patel, Rajesh; Saipriya, S; Gireesan, K
2018-06-01
Cutaneous measurements of electrogastrogram (EGG) signals are heavily contaminated by artifacts due to cardiac activity, breathing, motion artifacts, and electrode drifts whose effective elimination remains an open problem. A common methodology is proposed by combining independent component analysis (ICA) and ensemble empirical mode decomposition (EEMD) to denoise gastric slow-wave signals in multichannel EGG data. Sixteen electrodes are fixed over the upper abdomen to measure the EGG signals under three gastric conditions, namely, preprandial, postprandial immediately, and postprandial 2 h after food for three healthy subjects and a subject with a gastric disorder. Instantaneous frequencies of intrinsic mode functions that are obtained by applying the EEMD technique are analyzed to individually identify and remove each of the artifacts. A critical investigation on the proposed ICA-EEMD method reveals its ability to provide a higher attenuation of artifacts and lower distortion than those obtained by the ICA-EMD method and conventional techniques, like bandpass and adaptive filtering. Characteristic changes in the slow-wave frequencies across the three gastric conditions could be determined from the denoised signals for all the cases. The results therefore encourage the use of the EEMD-based technique for denoising gastric signals to be used in clinical practice.
Liu, Jiaen; Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian
2013-01-01
Electrical Property Tomography (EPT) is a recently developed noninvasive technology to image the electrical conductivity and permittivity of biological tissues at Larmor frequency in Magnetic Resonance (MR) scanners. The absolute phase of the complex radio-frequency (RF) magnetic field (B1) is necessary for electrical property calculation. However, due to the lack of practical methods to directly measure the absolute B1 phases, current EPT techniques have been achieved with B1 phase estimation based on certain assumptions on object anatomy, coil structure and/or electromagnetic wave behavior associated with the main magnetic field, limiting EPT from a larger variety of applications. In this study, using a multi-channel transmit/receive coil, the framework of a new general approach for EPT has been introduced, which is independent on the assumptions utilized in previous studies. Using a human head model with realistic geometry, a series of computer simulations at 7T were conducted to evaluate the proposed method under different noise levels. Results showed that the proposed method can be used to reconstruct the conductivity and permittivity images with noticeable accuracy and stability. The feasibility of this approach was further evaluated in a phantom experiment at 7T. PMID:23743673
Prachuapthunyachart, Sittichoke; Jarasvaraparn, Chaowapong; Gremse, David A
2017-01-01
Esophageal multichannel intraluminal impedance-pH monitoring has become one of the preferred tests to correlate observed reflux-like behaviors with esophageal reflux events. The Gastroesophageal reflux disease Assessment Symptom Questionnaire is a validated tool used to distinguish infants with gastroesophageal reflux disease from healthy children. The aim of this study was to determine whether the Gastroesophageal reflux disease Assessment Symptom Questionnaire composite symptom scores and individual symptom scores correlate with outcomes in esophageal multichannel intraluminal impedance-pH monitoring. A total of 26 patients with gastroesophageal reflux disease-associated symptoms, aged 0-2 years, for whom both esophageal multichannel intraluminal impedance-pH monitoring and Gastroesophageal reflux disease Assessment Symptom Questionnaire survey results were available were included in the study. Gastroesophageal reflux disease Assessment Symptom Questionnaire score data were collected from a 7-day recall of parent's responses about the frequency and severity of gastroesophageal reflux disease symptoms, which determined the individual symptom scores. The composite symptom scores is the sum of all individual symptom scores. Multichannel intraluminal impedance-pH study results were compared to Gastroesophageal reflux disease Assessment Symptom Questionnaire data using Pearson correlation. Among 26 patients, a total number of 2817 (1700 acid and 1117 non-acid) reflux episodes and 845 clinical reflux behaviors were recorded. There were significant correlations between the reflux index and the individual symptom scores for coughing/gagging/choking (r 2 = 0.2842, p = 0.005), the impedance score and individual symptom scores for coughing/gagging/choking (r 2 = 0.2482, p = 0.009), the reflux symptom index for acid reflux-related coughing/gagging/choking and the individual symptom scores for coughing/gagging/choking (r 2 = 0.1900, p = 0.026), the impedance score and individual symptom scores for vomiting (r 2 = 0.1569, p = 0.045), and the impedance score and the composite symptom scores (r 2 = 0.2916, p = 0.004). However, there were no significant correlations between fussiness, irritability, or abdominal pain-related multichannel intraluminal impedance-pH results and the individual symptom scores for abdominal pain. The impedance scores from multichannel intraluminal impedance-pH studies correlate with coughing/gagging/choking and vomiting in infants with gastroesophageal reflux disease. There are no significant correlations among the reflux index and impedance score versus the Gastroesophageal reflux disease Assessment Symptom Questionnaire scores for abdominal pain. We conclude that in infants with gastroesophageal reflux disease, multichannel intraluminal impedance-pH studies are more likely to demonstrate an association between gastroesophageal reflux disease and symptoms of coughing, gagging, or choking compared to an association between gastroesophageal reflux disease and pain in infants.
Prachuapthunyachart, Sittichoke; Jarasvaraparn, Chaowapong; Gremse, David A
2017-01-01
Background: Esophageal multichannel intraluminal impedance-pH monitoring has become one of the preferred tests to correlate observed reflux-like behaviors with esophageal reflux events. The Gastroesophageal reflux disease Assessment Symptom Questionnaire is a validated tool used to distinguish infants with gastroesophageal reflux disease from healthy children. The aim of this study was to determine whether the Gastroesophageal reflux disease Assessment Symptom Questionnaire composite symptom scores and individual symptom scores correlate with outcomes in esophageal multichannel intraluminal impedance-pH monitoring. Methods: A total of 26 patients with gastroesophageal reflux disease–associated symptoms, aged 0–2 years, for whom both esophageal multichannel intraluminal impedance-pH monitoring and Gastroesophageal reflux disease Assessment Symptom Questionnaire survey results were available were included in the study. Gastroesophageal reflux disease Assessment Symptom Questionnaire score data were collected from a 7-day recall of parent’s responses about the frequency and severity of gastroesophageal reflux disease symptoms, which determined the individual symptom scores. The composite symptom scores is the sum of all individual symptom scores. Multichannel intraluminal impedance-pH study results were compared to Gastroesophageal reflux disease Assessment Symptom Questionnaire data using Pearson correlation. Results: Among 26 patients, a total number of 2817 (1700 acid and 1117 non-acid) reflux episodes and 845 clinical reflux behaviors were recorded. There were significant correlations between the reflux index and the individual symptom scores for coughing/gagging/choking (r2 = 0.2842, p = 0.005), the impedance score and individual symptom scores for coughing/gagging/choking (r2 = 0.2482, p = 0.009), the reflux symptom index for acid reflux-related coughing/gagging/choking and the individual symptom scores for coughing/gagging/choking (r2 = 0.1900, p = 0.026), the impedance score and individual symptom scores for vomiting (r2 = 0.1569, p = 0.045), and the impedance score and the composite symptom scores (r2 = 0.2916, p = 0.004). However, there were no significant correlations between fussiness, irritability, or abdominal pain–related multichannel intraluminal impedance-pH results and the individual symptom scores for abdominal pain. Conclusion: The impedance scores from multichannel intraluminal impedance-pH studies correlate with coughing/gagging/choking and vomiting in infants with gastroesophageal reflux disease. There are no significant correlations among the reflux index and impedance score versus the Gastroesophageal reflux disease Assessment Symptom Questionnaire scores for abdominal pain. We conclude that in infants with gastroesophageal reflux disease, multichannel intraluminal impedance-pH studies are more likely to demonstrate an association between gastroesophageal reflux disease and symptoms of coughing, gagging, or choking compared to an association between gastroesophageal reflux disease and pain in infants. PMID:29276590
NASA Astrophysics Data System (ADS)
Shen, Zhongyan; Gao, Jinyao; Zhang, Tao; Wang, Wei; Ding, Weifeng; Zhang, Sheng
2017-04-01
The West Antarctic Rift System (WARS) represents one of the largest active continental rift systems on Earth and is less well known than other rift systems because it is largely covered by thick ice. The Terror Rift (TR), superimposing on the Victoria Land Basin (VLB) in the western Ross Sea, is identified as the most recent deformational zone of the WARS, thus will provide knowledge of the active deformation process of the WARS. The structure and kinematics of the TR is under debate. Originally, the TR was thought to consist of two parts: the Discovery Graben and the magmatically-intruded Lee Arch. New denser seismic grid in the middle and southern segments of the TR revealed a different structure of the Lee Arch while the northern segment of the TR is not well studied. The glacial history of the VLB/TR region is another attractive issue to the geologists since this area records the behavior information of EAIS and WAIS. In the southern part of the VLB, especially in the McMurdo Sound, the framework of the glacial history is well established after several deep cores which recovery the whole stratigraphic sequences since the onset of the glaciation. However, the glacial history of the northern part of the VLB/TR is less well studied and here we emphasize its importance because the northern part of the VLB/TR is a link between the well-studied southern VLB and the sediment-well-preserved Northern Basin. During the 32nd Chinese National Antarctic Research Expedition, on the board of the RV XueLong, we collected intermediate resolution multi-channel seismic reflection data in the northern VLB/TR. These data will establish new constraints on the timing of deformation, structure and kinematics of the TR, and the history of the EAIS and WAIS.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, David J.
1999-01-01
A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.
Ultrasonic inspection of rocket fuel model using laminated transducer and multi-channel step pulser
NASA Astrophysics Data System (ADS)
Mihara, T.; Hamajima, T.; Tashiro, H.; Sato, A.
2013-01-01
For the ultrasonic inspection for the packing of solid fuel in a rocket booster, an industrial inspection is difficult. Because the signal to noise ratio in ultrasonic inspection of rocket fuel become worse due to the large attenuation even using lower frequency ultrasound. For the improvement of this problem, we tried to applied the two techniques in ultrasonic inspection, one was the step function pulser system with the super wideband frequency properties and the other was the laminated element transducer. By combining these two techniques, we developed the new ultrasonic measurement system and demonstrated the advantages in ultrasonic inspection of rocket fuel model specimen.
NASA Technical Reports Server (NTRS)
Mugnai, Alberto; Smith, Eric A.
1988-01-01
The impact of time-dependent cloud microphysical structure on the transfer to space of passive microwave radiation is studied at several frequencies across the EHF and lower SHF portions of the microwave spectrum. The feasibility of using multichannel passive-microwave retrieval techniques to estimate precipitation from space-based platforms is examined. The model is described, and the results are assessed in conjunction with a Nimbus-7 SMMR case study of precipitation in an intense tropical Pacific storm. It is concluded that the effects of cloud liquid water content must be considered to obtain a realistic estimation and distribution of rainrates.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, D.J.
1999-08-24
A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.
Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong
2018-01-31
Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.
Zhou, Rui; Hu, Yuxin; Qi, Yaolong
2018-01-01
Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059
Code of Federal Regulations, 2010 CFR
2010-10-01
... by a provider of multichannel video programming and other services offered over multichannel video programming systems, or an equipment provider that such a waiver is necessary to assist the development or introduction of a new or improved multichannel video programming or other service offered over multichannel...
Web-based multi-channel analyzer
Gritzo, Russ E.
2003-12-23
The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.
Detection and description of non-linear interdependence in normal multichannel human EEG data.
Breakspear, M; Terry, J R
2002-05-01
This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex.
Measurement of plasma densities by dual frequency multichannel boxcar THz time domain spectroscopy
NASA Astrophysics Data System (ADS)
Meier, St. M.; Tsankov, Ts V.; Luggenhölscher, D.; Czarnetzki, U.
2017-06-01
In this paper we show the development and the application of the terahertz time domain spectroscopy (THz TDS) diagnostic technique for the determination of plasma densities in low-pressure discharges. A commercially available system was modified to reach a better signal-to-noise ratio. For that the THz emitter and the detection method were changed and a fast lock-in amplifier was used to reach 38 MHz lock-in frequency. These modifications in a combination with the novel method of dual frequency multichannel boxcar embedded as a feature in the lock-in amplifier allowed us to make also time-resolved measurements. The temporal resolution can potentially go down to 100 ps and is limited only by the spectral range that needs to be recovered for the measurement of low electron densities. Further, the cause of artefacts found in all THz TDS based systems, but not understood until now, is identified and explained. As an application the electron densities in inductively coupled plasmas sustained in a magnetic multi-cusp chamber are determined. Results from steady-state discharges in noble gases (He, Ne, Ar, Kr, Xe) and time-resolved measurements in pulsed discharges in Ar and Ne are presented. The technique is benchmarked against microwave interferometry with good agreement in the applicability range of both techniques. The THz TDS performs reliably also in much denser plasmas where standard microwave interferometry fails. The lower limit for the technique is at a line-integrated electron density of 1012 cm-2, corresponding to about 1011 cm-3 for typical plasma dimensions.
47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...
47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...
47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...
47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...
47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...
Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.
Zemp, Roger J; Song, Liang; Bitton, Rachel; Shung, K Kirk; Wang, Lihong V
2008-05-26
We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-microm-diameter carbon fibers are experimentally demonstrated at 80 microm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5-3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.
Four-channel magnetic resonance imaging receiver using frequency domain multiplexing.
He, Wang; Qin, Xu; Jiejing, Ren; Gengying, Li
2007-01-01
An alternative technique that uses frequency domain multiplexing to acquire phased array magnetic resonance images is discussed in detail. The proposed method has advantages over traditional independent receiver chains in that it utilizes an analog-to-digital converter and a single-chip multicarrier receiver with high performance to reduce the size and cost of the phased array receiver system. A practical four-channel digital receiver using frequency domain multiplexing was implemented and verified on a home-built 0.3 T magnetic resonance imaging system. The experimental results confirmed that the cross talk between each channel was below -60 dB, the phase fluctuations were about 1 degrees , and there was no obvious signal-to-noise ratio degradation. It is demonstrated that the frequency domain multiplexing is a valuable and economical technique, particularly for array coil systems where the multichannel receiver is indispensable and dynamic range is not a critical problem.
Pulse homodyne field disturbance sensor
McEwan, Thomas E.
1997-01-01
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.
Pulse homodyne field disturbance sensor
McEwan, T.E.
1997-10-28
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.
A software tool for analyzing multichannel cochlear implant signals.
Lai, Wai Kong; Bögli, Hans; Dillier, Norbert
2003-10-01
A useful and convenient means to analyze the radio frequency (RF) signals being sent by a speech processor to a cochlear implant would be to actually capture and display them with appropriate software. This is particularly useful for development or diagnostic purposes. sCILab (Swiss Cochlear Implant Laboratory) is such a PC-based software tool intended for the Nucleus family of Multichannel Cochlear Implants. Its graphical user interface provides a convenient and intuitive means for visualizing and analyzing the signals encoding speech information. Both numerical and graphic displays are available for detailed examination of the captured CI signals, as well as an acoustic simulation of these CI signals. sCILab has been used in the design and verification of new speech coding strategies, and has also been applied as an analytical tool in studies of how different parameter settings of existing speech coding strategies affect speech perception. As a diagnostic tool, it is also useful for troubleshooting problems with the external equipment of the cochlear implant systems.
Multi-channel linear descriptors for event-related EEG collected in brain computer interface.
Pei, Xiao-mei; Zheng, Chong-xun; Xu, Jin; Bin, Guang-yu; Wang, Hong-wu
2006-03-01
By three multi-channel linear descriptors, i.e. spatial complexity (omega), field power (sigma) and frequency of field changes (phi), event-related EEG data within 8-30 Hz were investigated during imagination of left or right hand movement. Studies on the event-related EEG data indicate that a two-channel version of omega, sigma and phi could reflect the antagonistic ERD/ERS patterns over contralateral and ipsilateral areas and also characterize different phases of the changing brain states in the event-related paradigm. Based on the selective two-channel linear descriptors, the left and right hand motor imagery tasks are classified to obtain satisfactory results, which testify the validity of the three linear descriptors omega, sigma and phi for characterizing event-related EEG. The preliminary results show that omega, sigma together with phi have good separability for left and right hand motor imagery tasks, which could be considered for classification of two classes of EEG patterns in the application of brain computer interfaces.
Multichannel analysis of surface wave method with the autojuggie
Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.
2003-01-01
The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Syh, J; Patel, B
2015-06-15
Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. Themore » CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.« less
Elimination of Intermediate-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Rocker, Marvin; Nesman, Tomas E.; Turner, Jim E. (Technical Monitor)
2001-01-01
A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. The thrust chamber exhibited benign, yet marginally unstable combustion. The marginally unstable combustion was characterized by chamber pressure oscillations with large amplitudes and a frequency that was too low to be identified as acoustic or high-frequency combustion instability and too high to be identified as chug or low-frequency combustion instability. The source of the buzz or intermediate-frequency combustion instability was traced to the fuel venturi whose violently noisy cavitation caused resonance in the feedline downstream. Combustion was stabilized by increasing the throat diameter of the fuel venturi such that the cavitation would occur more quietly.
Design and Calibration of an Airborne Multichannel Swept-Tuned Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Hamory, Philip J.; Diamond, John K.; Bertelrud, Arild
1999-01-01
This paper describes the design and calibration of a four-channel, airborne, swept-tuned spectrum analyzer used in two hypersonic flight experiments for characterizing dynamic data up to 25 kHz. Built mainly from commercially available analog function modules, the analyzer proved useful for an application with limited telemetry bandwidth, physical weight and volume, and electrical power. The authors discuss considerations that affect the frequency and amplitude calibrations, limitations of the design, and example flight data.
SMMR Simulator radiative transfer calibration model. 2: Algorithm development
NASA Technical Reports Server (NTRS)
Link, S.; Calhoon, C.; Krupp, B.
1980-01-01
Passive microwave measurements performed from Earth orbit can be used to provide global data on a wide range of geophysical and meteorological phenomena. A Scanning Multichannel Microwave Radiometer (SMMR) is being flown on the Nimbus-G satellite. The SMMR Simulator duplicates the frequency bands utilized in the spacecraft instruments through an amalgamate of radiometer systems. The algorithm developed utilizes data from the fall 1978 NASA CV-990 Nimbus-G underflight test series and subsequent laboratory testing.
Multichannel Doppler Processing for an Experimental Low-Angle Tracking System
1990-05-01
estimation techniques at sea. Because of clutter and noise, it is necessary to use a number of different processing algorithms to extract the required...a number of different processing algorithms to extract the required information. Consequently, the ELAT radar system is composed of multiple...corresponding to RF frequencies, f, and f2. For mode 3, the ambiguities occur at vbi = 15.186 knots and vb2 = 16.96 knots. The sea clutter, with a spectrum
Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy
NASA Astrophysics Data System (ADS)
Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael
2009-04-01
MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.
Multi-channel electrical impedance tomography for regional tissue hydration monitoring.
Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M
2014-06-01
Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical settings for helping optimize patient fluid management during hemodialysis as well as for home monitoring of patients with congestive heart failure, chronic kidney disease, diabetes and other diseases with peripheral edema symptoms.
Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM
2008-05-20
A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.
Blocky inversion of multichannel elastic impedance for elastic parameters
NASA Astrophysics Data System (ADS)
Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza
2018-04-01
Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.
Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music
NASA Astrophysics Data System (ADS)
Bhattacharya, Joydeep; Petsche, Hellmuth
2001-07-01
Multichannel electroencephalograph signals from two broad groups, 10 musicians and 10 nonmusicians, recorded in different states (in resting states or no task condition, with eyes opened and eyes closed, and with two musical tasks, listening to two different pieces of music) were studied. Degrees of phase synchrony in various frequency bands were assessed. No differences in the degree of synchronization in any frequency band were found between the two groups in resting conditions. Yet, while listening to music, significant increases of synchronization were found only in the γ-frequency range (>30 Hz) over large cortical areas for the group of musicians. This high degree of synchronization elicited by music in the group of musicians might be due to their ability to host long-term memory representations of music and mediate access to these stored representations.
Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer
Zemp, Roger J.; Song, Liang; Bitton, Rachel; Shung, K. Kirk; Wang, Lihong V.
2009-01-01
We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-µm-diameter carbon fibers are experimentally demonstrated at 80 µm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5–3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge. PMID:18545502
King, Adam C; Newell, Karl M
2015-10-01
The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.
A low power MICS band phase-locked loop for high resolution retinal prosthesis.
Yang, Jiawei; Skafidas, Efstratios
2013-08-01
Ultra low power dissipation is essential in retinal prosthesis and many other biomedical implants. Extensive research has been undertaken in designing low power biomedical transceivers, however to date, most effort has been focused on low frequency inductive links. For higher frequency, more robust and more complex applications, such as Medical Implant Communication Service (MICS) band multichannel transceivers, power consumption remains high. This paper explores the design of micro-power data links at 400 MHz for a high resolution retinal prosthesis. By taking advantage of advanced small geometry CMOS technology and precise transistor-level modeling, we successfully utilized subthreshold FET operation, which has been historically limited to low frequency circuits due to the inadequate transistor operating speed in and near weak inversion; we have implemented a low power MICS transceiver. Particularly, a low power, MICS band multichannel phase-locked loop (PLL) that employs a subthreshold voltage controlled oscillator (VCO) and digital synchronous dividers has been implemented on a 65-nm CMOS. A design methodology is presented in detail with the demonstration of EKV model parameters extraction. This PLL provides 600- mVpp quadrature oscillations and exhibits a phase noise of -102 dBc/Hz at 200-kHz offset, while only consuming 430- μW from a 1-V supply. The VCO has a gain (KVCO) of 12 MHz/V and is designed to operate in the near-weak inversion region and consumes 220- μA DC current. The designed PLL has a core area of 0.54 mm(2). It satisfies all specifications of MICS band operation with the advantage of significant reduction in power which is crucial for high resolution retinal prosthesis.
Multichannel forward scattering meter for oceanography
NASA Technical Reports Server (NTRS)
Mccluney, W. R.
1974-01-01
An instrument was designed and built that measures the light scattered at several angles in the forward direction simultaneously. The instrument relies on an optical multiplexing technique for frequency encoding of the different channels suitable for detection by a single photodetector. A Mie theory computer program was used to calculate the theoretical volume scattering function for a suspension of polystyrene latex spheres. The agreement between the theoretical and experimental volume scattering functions is taken as a verification of the calibration technique used.
Application of the GNU Radio platform in the multistatic radar
NASA Astrophysics Data System (ADS)
Szlachetko, Boguslaw; Lewandowski, Andrzej
2009-06-01
This document presents the application of the Software Defined Radio-based platform in the multistatic radar. This platform consists of four-sensor linear antenna, Universal Software Radio Peripheral (USRP) hardware (radio frequency frontend) and GNU-Radio PC software. The paper provides information about architecture of digital signal processing performed by USRP's FPGA (digital down converting blocks) and PC host (implementation of the multichannel digital beamforming). The preliminary results of the signal recording performed by our experimental platform are presented.
System Measures Pressures Aboard A Compressor Rotor
NASA Technical Reports Server (NTRS)
Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.
1994-01-01
Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.
1983-08-31
Noise using Linear Programming, Jaroslavcompositic- , theorem. (invited Paper) Keybl and George Eichmann, The City University of New York. Linear...programming is used to estimate two closely spaced frequencies of sinusoidal signals buried 2:30 PM WA13 in deep white Gaussian noise . Reconstruction of...S. Olson, and J. A. Weinman, University of coarsely sampled images degraded by diffraction and Wisconsin-Madison. Eight synthetic multichannel noise
Optical linear algebra processors - Architectures and algorithms
NASA Technical Reports Server (NTRS)
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
Stability characterization of two multi-channel GPS receivers for accurate frequency transfer.
NASA Astrophysics Data System (ADS)
Taris, F.; Uhrich, P.; Thomas, C.; Petit, G.; Jiang, Z.
In recent years, wide-spread use of the GPS common-view technique has led to major improvements, making it possible to compare remote clocks at their full level of performance. For integration times of 1 to 3 days, their frequency differences are consistently measured to about one part in 1014. Recent developments in atomic frequency standards suggest, however, that this performance may no longer be sufficient. The caesium fountain LPTF FO1, built at the BNM-LPTF, Paris, France, shows a short-term white frequency noise characterized by an Allen deviation σy(τ = 1 s) = 5×10-14 and a type B uncertainty of 2×10-15. To compare the frequencies of such highly stable standards would call for GPS common-view results to be averaged over times far exceeding the intervals of their optimal performance. Previous studies have shown the potential of carrier-phase and code measurements from geodetic GPS receivers for clock frequency comparisons. The experiment related here is an attempt to see the stability limit that could be reached using this technique.
The Polar Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.
1995-01-01
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).
Oscillator metrology with software defined radio.
Sherman, Jeff A; Jördens, Robert
2016-05-01
Analog electrical elements such as mixers, filters, transfer oscillators, isolating buffers, dividers, and even transmission lines contribute technical noise and unwanted environmental coupling in time and frequency measurements. Software defined radio (SDR) techniques replace many of these analog components with digital signal processing (DSP) on rapidly sampled signals. We demonstrate that, generically, commercially available multi-channel SDRs are capable of time and frequency metrology, outperforming purpose-built devices by as much as an order-of-magnitude. For example, for signals at 10 MHz and 6 GHz, we observe SDR time deviation noise floors of about 20 fs and 1 fs, respectively, in under 10 ms of averaging. Examining the other complex signal component, we find a relative amplitude measurement instability of 3 × 10(-7) at 5 MHz. We discuss the scalability of a SDR-based system for simultaneous measurement of many clocks. SDR's frequency agility allows for comparison of oscillators at widely different frequencies. We demonstrate a novel and extreme example with optical clock frequencies differing by many terahertz: using a femtosecond-laser frequency comb and SDR, we show femtosecond-level time comparisons of ultra-stable lasers with zero measurement dead-time.
Least squares restoration of multichannel images
NASA Technical Reports Server (NTRS)
Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.
1991-01-01
Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.
Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary
2014-11-01
Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Low-Frequency Waves in Cold Three-Component Plasmas
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong
2016-09-01
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
Method and device for measuring single-shot transient signals
Yin, Yan
2004-05-18
Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.
Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device
Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.
2016-01-01
We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841
Flat Engineered Multichannel Reflectors
NASA Astrophysics Data System (ADS)
Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.
2017-07-01
Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.
Detection of phase synchronization from the data: Application to physiology
NASA Astrophysics Data System (ADS)
Rosenblum, Michael G.; Pikovsky, Arkady S.; Schäfer, Carsten; Tass, Peter; Kurths, Jürgen
2000-02-01
Synchronization of coupled oscillating systems means appearance of certain relations between their phases and frequencies. Here we use this concept in order to address the inverse problem and to reveal interaction between systems from experimental data. We discuss how the phases and frequencies can be estimated from time series and present the techniques for detection and quantification of synchronization. We apply our approach to multichannel magnetoencephalography data and records of muscle activity of a Parkinsonian patient, and also use it to analyze the cardiorespiratory interaction in humans. By means of these examples we demonstrate that our method is effective for the analysis of systems interrelation from noisy nonstationary bivariate data and provides other information than traditional correlation (spectral) techniques.
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Zheng, Bin; Huang, Xia; Qian, Wei
2017-03-01
Deep learning is a trending promising method in medical image analysis area, but how to efficiently prepare the input image for the deep learning algorithms remains a challenge. In this paper, we introduced a novel artificial multichannel region of interest (ROI) generation procedure for convolutional neural networks (CNN). From LIDC database, we collected 54880 benign nodule samples and 59848 malignant nodule samples based on the radiologists' annotations. The proposed CNN consists of three pairs of convolutional layers and two fully connected layers. For each original ROI, two new ROIs were generated: one contains the segmented nodule which highlighted the nodule shape, and the other one contains the gradient of the original ROI which highlighted the textures. By combining the three channel images into a pseudo color ROI, the CNN was trained and tested on the new multichannel ROIs (multichannel ROI II). For the comparison, we generated another type of multichannel image by replacing the gradient image channel with a ROI contains whitened background region (multichannel ROI I). With the 5-fold cross validation evaluation method, the CNN using multichannel ROI II achieved the ROI based area under the curve (AUC) of 0.8823+/-0.0177, compared to the AUC of 0.8484+/-0.0204 generated by the original ROI. By calculating the average of ROI scores from one nodule, the lesion based AUC using multichannel ROI was 0.8793+/-0.0210. By comparing the convolved features maps from CNN using different types of ROIs, it can be noted that multichannel ROI II contains more accurate nodule shapes and surrounding textures.
Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments.
Nelson, Matthew J; Valtcheva, Silvana; Venance, Laurent
2017-07-01
Modern neurophysiological experiments frequently involve multiple channels separated by very small distances. A unique methodological concern for multiple-electrode experiments is that of capacitive coupling (cross-talk) between channels. Yet the nature of the cross-talk recording circuit is not well known in the field, and the extent to which it practically affects neurophysiology experiments has never been fully investigated. Here we describe a simple electrical circuit model of simultaneous recording and stimulation with two or more channels and experimentally verify the model using ex vivo brain slice and in vivo whole-brain preparations. In agreement with the model, we find that cross-talk amplitudes increase nearly linearly with the impedance of a recording electrode and are larger for higher frequencies. We demonstrate cross-talk contamination of action potential waveforms from intracellular to extracellular channels, which is observable in part because of the different orders of magnitude between the channels. This contamination is electrode impedance-dependent and matches predictions from the model. We use recently published parameters to simulate cross-talk in high-density multichannel extracellular recordings. Cross-talk effectively spatially smooths current source density (CSD) estimates in these recordings and induces artefactual phase shifts where underlying voltage gradients occur; however, these effects are modest. We show that the effects of cross-talk are unlikely to affect most conclusions inferred from neurophysiology experiments when both originating and receiving electrode record signals of similar magnitudes. We discuss other types of experiments and analyses that may be susceptible to cross-talk, techniques for detecting and experimentally reducing cross-talk, and implications for high-density probe design. NEW & NOTEWORTHY We develop and experimentally verify an electrical circuit model describing cross-talk that necessarily occurs between two channels. Recorded cross-talk increased with electrode impedance and signal frequency. We recorded cross-talk contamination of spike waveforms from intracellular to extracellular channels. We simulated high-density multichannel extracellular recordings and demonstrate spatial smoothing and phase shifts that cross-talk enacts on CSD measurements. However, when channels record similar-magnitude signals, effects are modest and unlikely to affect most conclusions. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Chen, Huaiyu; Cao, Li
2017-06-01
In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.
Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima
2014-01-01
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158
Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima
2014-01-01
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.
A wearable multichannel tactile display of voice fundamental frequency.
Yeung, E; Boothroyd, A; Redmond, C
1988-12-01
This paper describes a wearable sensory aid that provides the deaf with tactually encoded information about intonation. Fundamental frequency is represented as both place and rate of vibration in a linear array of solenoids. Pitch extraction is accomplished through low-pass filtering and peak detection. A microcomputer is used to measure pitch period, which in turn determines which of the solenoids is actuated. By comparing consecutive periods, the system discriminates against random, noise-related inputs. The device is switchable between 1-, 8-, and 16-channel operation. The electronics package is contained in a case that may be worn on a belt. The solenoid array is worn on the forearm. The system is powered by five, rechargeable lithium cells and runs for at least 6 hours between charges. Proposed developments include the incorporation of digital pitch extraction methods and the option to use the spatial output dimension to encode speech parameters other than fundamental frequency.
Phase and amplitude analysis in time-frequency space--application to voluntary finger movement.
Ginter, J; Blinowska, K J; Kamiński, M; Durka, P J
2001-09-30
Two methods operating in time-frequency space were applied to analysis of EEG activity accompanying voluntary finger movements. The first one, based on matching pursuit approach provided high-resolution distributions of power in time-frequency space. The phenomena of event related desynchronization (ERD) and synchronization (ERS) were investigated without the need of band-pass filtering. Time evolution of mu- and beta-components was observed in a detailed way. The second method was based on a multichannel autoregressive model (MVAR) adapted for investigation of short-time changes in EEG signal. The direction and spectral content of the EEG activity propagation was estimated by means of short-time directed transfer function (SDTF). The evidence of 'cross-talk' between different areas of motor and sensory cortex was found. The earlier known phenomena, connected with voluntary movements, were confirmed and a new evidence concerning focal ERD/surround ERS and beta activity post-movement synchronization was found.
Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak
2016-03-07
Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.
Super-resolution for imagery from integrated microgrid polarimeters.
Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M
2011-07-04
Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.
Local feedback control of light honeycomb panels.
Hong, Chinsuk; Elliott, Stephen J
2007-01-01
This paper summarizes theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely spaced sensor and actuator was observed experimentally and modeled using a single degree of freedom system. The effect of the local coupling was to roll off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localization of reduction around the actuator. This localization prompts the investigation of a multichannel active control system. Globalized reduction was predicted using a model of 12-channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.
A 94/183 GHz multichannel radiometer for Convair flights
NASA Technical Reports Server (NTRS)
Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.
1979-01-01
A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.
Rotating pressure measurement system using an on board calibration standard
NASA Technical Reports Server (NTRS)
Senyitko, Richard G.; Blumenthal, Philip Z.; Freedman, Robert J.
1991-01-01
A computer-controlled multichannel pressure measurement system was developed to acquire detailed flow field measurements on board the Large Low Speed Centrifugal Compressor Research Facility at the NASA Lewis Research Center. A pneumatic slip ring seal assembly is used to transfer calibration pressures to a reference standard transducer on board the compressor rotor in order to measure very low differential pressures with the high accuracy required. A unique data acquisition system was designed and built to convert the analog signal from the reference transducer to the variable frequency required by the multichannel pressure measurement system and also to provide an output for temperature control of the reference transducer. The system also monitors changes in test cell barometric pressure and rotating seal leakage and provides an on screen warning to the operator if limits are exceeded. The methods used for the selection and testing of the the reference transducer are discussed, and the data acquisition system hardware and software design are described. The calculated and experimental data for the system measurement accuracy are also presented.
A research of a high precision multichannel data acquisition system
NASA Astrophysics Data System (ADS)
Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei
2013-08-01
The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.
Koenig, Judith B; Martin, Christina E W; Dobson, Howard; Mintchev, Martin P
2009-01-01
To evaluate whether changes in gastric myoelectrical activity in healthy, awake dogs can be detected via multichannel electrogastrography (EGG). 6 healthy hound-breed dogs. For each dog, 8-channel EGG was performed after food had been withheld for 12 hours and at 30 minutes after subsequent feeding; 60 minutes after feeding, atropine (0.04 mg/kg) was administered IM to induce ileus, and 30 minutes later, EGG was again performed. Mean cycles per minute (cpm) values of the dominant frequency (a measure of the rhythmicity of gastric electrical activity) and mean power ratios (ie, power measured after treatment divided by the power measured when food was withheld) were calculated. Motility of the gastric antrum was assessed via B-mode ultrasonography during the same phases; contractions determined ultrasonographically were correlated with EGG power for each channel in each phase. The criterion for stability (SD of the dominant frequency < 15% of the cpm value in at least 3 of the 8 EGG channels) was met in 4 of the 6 dogs (only in long-distance channels). The mean power ratios were significantly higher in the postprandial phase than in the ileus phase. Compared with the postprandial phase, significantly fewer contractions per minute were evident ultrasonographically in the ileus and food-withholding phases. There was a significant and good correlation between EGG power and ultrasonographic findings in all 8 channels. Electrogastrography may be useful in assessing gastric myoelectrical activities in awake dogs with naturally occurring gastrointestinal disease, including gastric dilatation-volvulus.
Rayleigh-wave mode separation by high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
Elastic scattering and vibrational excitation for electron impact on para-benzoquinone
NASA Astrophysics Data System (ADS)
Jones, D. B.; Blanco, F.; García, G.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; White, R. D.; Brunger, M. J.
2017-12-01
We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ˜80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To the best of our knowledge, there are no other experimental or theoretical vibrational excitation results against which we might compare the present measurements.
47 CFR 76.1205 - CableCARD support.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... operate with multichannel video programming systems shall be provided by the system operator upon request in a timely manner. (b) A multichannel video programming provider that is subject to the requirements...
47 CFR 76.1003 - Program access proceedings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1003 Program access proceedings. (a) Complaints. Any multichannel video programming distributor aggrieved by conduct... multichannel video programming distributor intending to file a complaint under this section must first notify...
47 CFR 76.1003 - Program access proceedings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1003 Program access proceedings. (a) Complaints. Any multichannel video programming distributor aggrieved by conduct... multichannel video programming distributor intending to file a complaint under this section must first notify...
47 CFR 76.1003 - Program access proceedings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1003 Program access proceedings. (a) Complaints. Any multichannel video programming distributor aggrieved by conduct... multichannel video programming distributor intending to file a complaint under this section must first notify...
Determination of optimum "multi-channel surface wave method" field parameters.
DOT National Transportation Integrated Search
2012-12-01
Multi-channel surface wave methods (especially the multi-channel analyses of surface wave method; MASW) are routinely used to : determine the shear-wave velocity of the subsurface to depths of 100 feet for site classification purposes. Users are awar...
47 CFR 76.1003 - Program access proceedings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1003 Program access proceedings. (a) Complaints. Any multichannel video programming distributor aggrieved by conduct... multichannel video programming distributor intending to file a complaint under this section must first notify...
47 CFR 76.65 - Good faith and exclusive retransmission consent complaints.
Code of Federal Regulations, 2012 CFR
2012-10-01
... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals.... Television broadcast stations and multichannel video programming distributors shall negotiate in good faith... containing different terms and conditions, including price terms, with different multichannel video...
47 CFR 76.64 - Retransmission consent.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND...) After 12:01 a.m. on October 6, 1993, no multichannel video programming distributor shall retransmit the... multichannel video programming distributor obtains the signal of a superstation that is distributed by a...
47 CFR 76.75 - Specific EEO program requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.75 Specific EEO... necessary. Nothing in this section shall be interpreted to require a multichannel video programming...) In addition to using such recruitment sources, a multichannel video programming distributor...
47 CFR 76.75 - Specific EEO program requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.75 Specific EEO... necessary. Nothing in this section shall be interpreted to require a multichannel video programming...) In addition to using such recruitment sources, a multichannel video programming distributor...
47 CFR 76.71 - Scope of application.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... systems serving 50 or more subscribers, and any multichannel video programming distributor. For purposes of the provisions of this subpart, a multichannel video programming distributor is an entity such as...
47 CFR 76.65 - Good faith and exclusive retransmission consent complaints.
Code of Federal Regulations, 2014 CFR
2014-10-01
... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals.... Television broadcast stations and multichannel video programming distributors shall negotiate in good faith... containing different terms and conditions, including price terms, with different multichannel video...
47 CFR 76.75 - Specific EEO program requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.75 Specific EEO... necessary. Nothing in this section shall be interpreted to require a multichannel video programming...) In addition to using such recruitment sources, a multichannel video programming distributor...
47 CFR 76.75 - Specific EEO program requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.75 Specific EEO... necessary. Nothing in this section shall be interpreted to require a multichannel video programming...) In addition to using such recruitment sources, a multichannel video programming distributor...
47 CFR 76.64 - Retransmission consent.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND...) After 12:01 a.m. on October 6, 1993, no multichannel video programming distributor shall retransmit the... multichannel video programming distributor obtains the signal of a superstation that is distributed by a...
47 CFR 76.71 - Scope of application.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... systems serving 50 or more subscribers, and any multichannel video programming distributor. For purposes of the provisions of this subpart, a multichannel video programming distributor is an entity such as...
47 CFR 76.64 - Retransmission consent.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND...) After 12:01 a.m. on October 6, 1993, no multichannel video programming distributor shall retransmit the... multichannel video programming distributor obtains the signal of a superstation that is distributed by a...
47 CFR 76.65 - Good faith and exclusive retransmission consent complaints.
Code of Federal Regulations, 2011 CFR
2011-10-01
... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals.... Television broadcast stations and multichannel video programming distributors shall negotiate in good faith... containing different terms and conditions, including price terms, with different multichannel video...
47 CFR 76.71 - Scope of application.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... systems serving 50 or more subscribers, and any multichannel video programming distributor. For purposes of the provisions of this subpart, a multichannel video programming distributor is an entity such as...
47 CFR 76.65 - Good faith and exclusive retransmission consent complaints.
Code of Federal Regulations, 2013 CFR
2013-10-01
... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals.... Television broadcast stations and multichannel video programming distributors shall negotiate in good faith... containing different terms and conditions, including price terms, with different multichannel video...
47 CFR 76.64 - Retransmission consent.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND...) After 12:01 a.m. on October 6, 1993, no multichannel video programming distributor shall retransmit the... multichannel video programming distributor obtains the signal of a superstation that is distributed by a...
47 CFR 76.71 - Scope of application.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... systems serving 50 or more subscribers, and any multichannel video programming distributor. For purposes of the provisions of this subpart, a multichannel video programming distributor is an entity such as...
47 CFR 76.1003 - Program access proceedings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1003 Program access proceedings. (a) Complaints. Any multichannel video programming distributor aggrieved by conduct... multichannel video programming distributor intending to file a complaint under this section must first notify...
NASA Astrophysics Data System (ADS)
Martens, William
2005-04-01
Several attributes of auditory spatial imagery associated with stereophonic sound reproduction are strongly modulated by variation in interaural cross correlation (IACC) within low frequency bands. Nonetheless, a standard practice in bass management for two-channel and multichannel loudspeaker reproduction is to mix low-frequency musical content to a single channel for reproduction via a single driver (e.g., a subwoofer). This paper reviews the results of psychoacoustic studies which support the conclusion that reproduction via multiple drivers of decorrelated low-frequency signals significantly affects such important spatial attributes as auditory source width (ASW), auditory source distance (ASD), and listener envelopment (LEV). A variety of methods have been employed in these tests, including forced choice discrimination and identification, and direct ratings of both global dissimilarity and distinct attributes. Contrary to assumptions that underlie industrial standards established in 1994 by ITU-R. Recommendation BS.775-1, these findings imply that substantial stereophonic spatial information exists within audio signals at frequencies below the 80 to 120 Hz range of prescribed subwoofer cutoff frequencies, and that loudspeaker reproduction of decorrelated signals at frequencies as low as 50 Hz can have an impact upon auditory spatial imagery. [Work supported by VRQ.
Ground EMI: designing the future trends in shallow depth surveying
NASA Astrophysics Data System (ADS)
Thiesson, J.; Schamper, C.; Simon, F. X.; Tabbagh, A.
2017-12-01
In theory, electromagnetic induction phenomena are driven by three fundamental properties (conductivity, susceptibility, permittivity). Since the 1930's, the developments of EMI prospecting were based on assumptions (Low frequency VS High frequency, low/high induction number). The design of the devices was focused on specific aims (diffusive/propagative, mapping/sounding) and, in the last thirty years the progressive transition from analog to numeric electronics completely enhanced the potency of measurements (multi-channeling, automatic positioning) a) as it did in model computation. In the field of metric sized devices for lower depths of investigation, the measurements have been first restricted to electrical conductivity. However, the measurement of the magnetic susceptibility proved to be possible thanks to in phase and quadrature separation, and the last developed commercially available multi-frequency and/or multi-receivers devices permit, thanks to accurate calibration, the measurements of the three properties with various geometries or frequencies simultaneously. The aims of this study is to present theoretical results in order to give hints for designing a device which can be optimal to evaluate the three properties and their frequency dependence.
Vibration analysis of three guyed tower designs for intermediate size wind turbines
NASA Technical Reports Server (NTRS)
Christie, R. J.
1982-01-01
Three guyed tower designs were analyzed for intermediate size wind turbines. The four lowest natural frequencies of vibration of the three towers concepts were estimated. A parametric study was performed on each tower to determine the effect of varying such tower properties as the inertia and stiffness of the tower and guys, the inertia values of the nacelle and rotor, and the rotational speed of the rotor. Only the two lowest frequencies were in a range where they could be excited by the rotor blade passing frequencies. There two frequencies could be tuned by varying the guy stiffness, the guy attachment point on the tower, the tower and mass stiffness, and the nacelle/rotor/power train masses.
NASA Astrophysics Data System (ADS)
Xiong, C. Y.; Chen, J.; Li, Q.; Liu, Y.; Gao, L.
2014-12-01
A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (˜100-˜500 kHz/10 min) and decay of laser power (˜10%-˜20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.
Xiong, C Y; Chen, J; Li, Q; Liu, Y; Gao, L
2014-12-01
A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100-∼500 kHz/10 min) and decay of laser power (∼10%-∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.
47 CFR 76.503 - National subscriber limits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Ownership of Cable Systems § 76.503 National subscriber limits. (a) No cable operator shall serve more than 30 percent of all multichannel-video programming subscribers nationwide through multichannel video programming distributors owned by such operator or in which...
47 CFR 76.503 - National subscriber limits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Ownership of Cable Systems § 76.503 National subscriber limits. (a) No cable operator shall serve more than 30 percent of all multichannel-video programming subscribers nationwide through multichannel video programming distributors owned by such operator or in which...
47 CFR 76.503 - National subscriber limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Ownership of Cable Systems § 76.503 National subscriber limits. (a) No cable operator shall serve more than 30 percent of all multichannel-video programming subscribers nationwide through multichannel video programming distributors owned by such operator or in which...
47 CFR 76.503 - National subscriber limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Ownership of Cable Systems § 76.503 National subscriber limits. (a) No cable operator shall serve more than 30 percent of all multichannel-video programming subscribers nationwide through multichannel video programming distributors owned by such operator or in which...
Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif
2007-06-01
Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.
Dynein-ADP as a force-generating intermediate revealed by a rapid reactivation of flagellar axoneme.
Tani, T; Kamimura, S
1999-01-01
Fragmented flagellar axonemes of sand dollar spermatozoa were reactivated by rapid photolysis of caged ATP. After a time lag of 10 ms, axonemes treated with protease started sliding disintegration. Axonemes without protease digestion started nanometer-scale high-frequency oscillation after a similar time lag. Force development in the sliding disintegration was measured with a flexible glass needle and its time course was corresponded well to that of the dynein-ADP intermediate production estimated using kinetic rates previously reported. However, with a high concentration ( approximately 80 microM) of vanadate, which binds to the dynein-ADP intermediate and forms a stable complex of dynein-ADP-vanadate, the time course of force development in sliding disintegration was not affected at all. In the case of high frequency oscillation, the time lag to start the oscillation, the initial amplitude, and the initial frequency were not affected by vanadate, though the oscillation once started was damped more quickly at higher concentrations of vanadate. These results suggest that during the initial turnover of ATP hydrolysis, force generation of dynein is not blocked by vanadate. A vanadate-insensitive dynein-ADP is postulated as a force-generating intermediate. PMID:10465762
47 CFR 76.1204 - Availability of equipment performing conditional access or security functions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... system; and (3) Does not provide access to any digital transmission of multichannel video programming or... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive... security functions. (a)(1) A multichannel video programming distributor that utilizes navigation devices to...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 73 and 76 Radio Broadcast Services and Multichannel Video and Cable Television Service; Clarification Regarding Information Collection Requirements AGENCY... Commission has published a number of requirements related to Radio Broadcast Services and Multichannel Video...
The EUMETSAT sea ice concentration climate data record
NASA Astrophysics Data System (ADS)
Tonboe, Rasmus T.; Eastwood, Steinar; Lavergne, Thomas; Sørensen, Atle M.; Rathmann, Nicholas; Dybkjær, Gorm; Toudal Pedersen, Leif; Høyer, Jacob L.; Kern, Stefan
2016-09-01
An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org, including documentation.
Accelerator infrastructure in Europe: EuCARD 2011
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-10-01
The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.
Development of a multichannel hyperspectral imaging probe for food property and quality assessment
USDA-ARS?s Scientific Manuscript database
This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910-miscrometer fiber as a point light source and 30 light receiving fibers...
47 CFR 76.905 - Standards for identification of cable systems subject to effective competition.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate... system. (2) The franchise area is: (i) Served by at least two unaffiliated multichannel video programming... franchise area; and (ii) the number of households subscribing to multichannel video programming other than...
Multichannel Compression, Temporal Cues, and Audibility.
ERIC Educational Resources Information Center
Souza, Pamela E.; Turner, Christopher W.
1998-01-01
The effect of the reduction of the temporal envelope produced by multichannel compression on recognition was examined in 16 listeners with hearing loss, with particular focus on audibility of the speech signal. Multichannel compression improved speech recognition when superior audibility was provided by a two-channel compression system over linear…
Digital intermediate frequency QAM modulator using parallel processing
Pao, Hsueh-Yuan [Livermore, CA; Tran, Binh-Nien [San Ramon, CA
2008-05-27
The digital Intermediate Frequency (IF) modulator applies to various modulation types and offers a simple and low cost method to implement a high-speed digital IF modulator using field programmable gate arrays (FPGAs). The architecture eliminates multipliers and sequential processing by storing the pre-computed modulated cosine and sine carriers in ROM look-up-tables (LUTs). The high-speed input data stream is parallel processed using the corresponding LUTs, which reduces the main processing speed, allowing the use of low cost FPGAs.
Tran, Truyet T.; Craven, Ashley P.; Leung, Tsz-Wing; Chat, Sandy W.; Levi, Dennis M.
2016-01-01
Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential ‘cross-talk’ among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes ‘beyond-the-plateau’. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations. PMID:26909178
Hsu, Wen-Yang; Schmid, Alexandre
2017-08-01
Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.
NASA Astrophysics Data System (ADS)
Atgın, Orhan; Çifçi, Günay; Soelien, Christopher; Seeber, Leonardo; Steckler, Michael; Shillington, Donna; Kurt, Hülya; Dondurur, Derman; Okay, Seda; Gürçay, Savaş; Sarıtaş, Hakan; Mert Küçük, H.; Barın, Burcu
2013-04-01
Marmara Sea is a limelight area for investigations due to its tectonic structure and remarkable seismic activity of North Anatolian Fault Zone (NAFZ). As NAFZ separates into 3 branches in the Marmara Sea, it has a complicated tectonic structure which gives rise to debates among researchers. Çınarcık Basin, which is close to Istanbul and very important for its tectonic activity is studied in this thesis. Two different multichannel seismic reflection data were used in this thesis. First data were acquired in 2008 in the frame of TAMAM (Turkish American Multichannel Project) and second data were in 2010 in the frame of TAMAM-2 (PirMarmara) onboard R/V K.Piri Reis. Also high resolution multibeam data were used which is provided by French Marine Institute IFREMER. In the scope of TAMAM project total 3000 km high resolution multi channel data were collected. 3000 km of multichannel seismic reflection profiles were collected in 2008 and 2010 using 72, 111, and 240 channels of streamer with a 6.25 m group interval. The generator-injector airgun was fired every 12.5 or 18.75 m and the resulting MCS data has 10-230 Hz frequency band. In this study, a detailed fault map of the basin is created and the fault on the southern slope of the basin which is interpreted by many researchers in many publications was investigated. And there is no evidence that such a fault exists on the southern part of the basin. With the multichannel seismic reflection data seismic stratigrafic interpretations of the basin deposits were done. The yearly cumulative north-south extension of the basin was calculated by making some calculations on the most active part of the faulting in the basin. In addition, the tilt angles of parallel tilted sediments were calculated and correlated with global sea level changes to calculate ages of the deposits in the basin. Keywords: NAFZ, multi channel seismic reflection, Çınarcık Basin
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
Image enhancement filters significantly improve reading performance for low vision observers
NASA Technical Reports Server (NTRS)
Lawton, T. B.
1992-01-01
As people age, so do their photoreceptors; many photoreceptors in central vision stop functioning when a person reaches their late sixties or early seventies. Low vision observers with losses in central vision, those with age-related maculopathies, were studied. Low vision observers no longer see high spatial frequencies, being unable to resolve fine edge detail. We developed image enhancement filters to compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. The filters work by boosting the amplitude of the less visible intermediate spatial frequencies. The lower spatial frequencies. These image enhancement filters not only reduce the magnification needed for reading by up to 70 percent, but they also increase the observer's reading speed by 2-4 times. A summary of this research is presented.
USDA-ARS?s Scientific Manuscript database
This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910-miscrometer fiber as a point light source and 30 light receiving fibers...
A Student-Made Inexpensive Multichannel Pipet
ERIC Educational Resources Information Center
Dragojlovic, Veljko
2009-01-01
An inexpensive multichannel pipet designed to deliver small volumes of liquid simultaneously to wells in a multiwell plate can be prepared by students in a single laboratory period. The multichannel pipet is made of disposable plastic 1 mL syringes and drilled plastic plates, which are used to make plunger and barrel assemblies. Application of the…
Phase coded, micro-power impulse radar motion sensor
McEwan, Thomas E.
1996-01-01
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.
Phase coded, micro-power impulse radar motion sensor
McEwan, T.E.
1996-05-21
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.
Lee, Myung W.
2007-01-01
The amplitude of a bottom simulating reflection (BSR), which occurs near the phase boundary between gas hydrate-bearing sediments and underlying gas-filled sediments, strongly depends on the frequency content of a seismic signal, as well as the impedance contrast across the phase boundary. A strong-amplitude BSR, detectable in a conventional seismic profile, is a good indicator of the presence of free gas beneath the phase boundary. However, the BSR as observed in low-frequency multichannel seismic data is generally difficult to identify in high-frequency, single-channel seismic data. To investigate the frequency dependence of BSR amplitudes, single-channel seismic data acquired with an air gun source at Blake Ridge, which is located off the shore of South Carolina, were analyzed in the frequency range of 10-240 Hz. The frequency-dependent impedance contrast caused by the velocity dispersion in partially gas saturated sediments is important to accurately analyze BSR amplitude. Analysis indicates that seismic attenuation of gas hydrate-bearing sediments, velocity dispersion, and a transitional base all contribute to the frequency-dependent BSR amplitude variation in the frequency range of 10-500 Hz. When velocity dispersion is incorporated into the BSR amplitude analysis, the frequency-dependent BSR amplitude at Blake Ridge can be explained with gas hydrate-bearing sediments having a quality factor of about 250 and a transitional base with a thickness of about 1 meter.
Multi-channel polarized thermal emitter
Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P
2013-07-16
A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.
Multichannel, Active Low-Pass Filters
NASA Technical Reports Server (NTRS)
Lev, James J.
1989-01-01
Multichannel integrated circuits cascaded to obtain matched characteristics. Gain and phase characteristics of channels of multichannel, multistage, active, low-pass filter matched by making filter of cascaded multichannel integrated-circuit operational amplifiers. Concept takes advantage of inherent equality of electrical characteristics of nominally-identical circuit elements made on same integrated-circuit chip. Characteristics of channels vary identically with changes in temperature. If additional matched channels needed, chips containing more than two operational amplifiers apiece (e.g., commercial quad operational amplifliers) used. Concept applicable to variety of equipment requiring matched gain and phase in multiple channels - radar, test instruments, communication circuits, and equipment for electronic countermeasures.
NASA Astrophysics Data System (ADS)
Banerjee, Abhishek; Rai, Abhishek; Majhi, Kunjalata; Barman, Sudipta Roy; Ganesan, R.; Kumar, P. S. Anil
2017-05-01
Surface states consisting of helical Dirac fermions have been extensively studied in three-dimensional topological insulators. Yet, experiments to date have only investigated fully formed topological surface states (TSS) and it is not known whether preformed or partially formed surface states can exist or what properties they could potentially host. Here, by decorating thin films of Bi2Se3 with nanosized islands of the same material, we show for the first time that not only can surface states exist in various intermediate stages of formation but they exhibit unique properties not accessible in fully formed TSS. These include tunability of the Dirac cone mass, vertical migration of the surface state wave-function and the appearance of mid-gap Rashba-like states as exemplified by our theoretical model for decorated TIs. Our experiments show that an interplay of Rashba and Dirac fermions on the surface leads to an intriguing multi-channel weak anti-localization effect concomitant with an unprecedented tuning of the topological protection to transport. Our work offers a new route to engineer topological surface states involving Dirac-Rashba coupling by nano-scale decoration of TI thin films, at the same time shedding light on the real-space mechanism of surface state formation in general.
Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Juhyung; Terry, P. W.
2013-10-15
The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois
2014-12-15
Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate themore » feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.« less
NASA Astrophysics Data System (ADS)
Tan, Xiaodong; Xia, Nan; Young, Hunter; Richter, Claus-Peter
2015-02-01
Auditory prostheses may benefit from Infrared Neural Stimulation (INS) because optical stimulation allows for spatially selective activation of neuron populations. Selective activation of neurons in the cochlear spiral ganglion can be determined in the central nucleus of the inferior colliculus (ICC) because the tonotopic organization of frequencies in the cochlea is maintained throughout the auditory pathway. The activation profile of INS is well represented in the ICC by multichannel electrodes (MCEs). To characterize single unit properties in response to INS, however, single tungsten electrodes (STEs) should be used because of its better signal-to-noise ratio. In this study, we compared the temporal properties of ICC single units recorded with MCEs and STEs in order to characterize the response properties of single auditory neurons in response to INS in guinea pigs. The length along the cochlea stimulated with infrared radiation corresponded to a frequency range of about 0.6 octaves, similar to that recorded with STEs. The temporal properties of single units recorded with MCEs showed higher maximum rates, shorter latencies, and higher firing efficiencies compared to those recorded with STEs. When the preset amplitude threshold for triggering MCE recordings was raised to twice over the noise level, the temporal properties of the single units became similar to those obtained with STEs. Undistinguishable neural activities from multiple sources in MCE recordings could be responsible for the response property difference between MCEs and STEs. Thus, caution should be taken in single unit recordings with MCEs.
Rodriguez-Falces, Javier; Negro, Francesco; Gonzalez-Izal, Miriam; Farina, Dario
2013-08-01
This study analyses the spatial distribution of individual motor unit potentials (MUPs) over the skin surface and the influence of motor unit depth and recording configuration on this distribution. Multichannel surface (13×5 electrode grid) and intramuscular (wire electrodes inserted with needles of lengths 15 and 25mm) electromyographic (EMG) signals were concurrently recorded with monopolar derivations from the biceps brachii muscle of 10 healthy subjects during 60-s isometric contractions at 20% of the maximum torque. Multichannel monopolar MUPs of the target motor unit were obtained by spike-triggered averaging of the surface EMG. Amplitude and frequency characteristics of monopolar and bipolar MUPs were calculated for locations along the fibers' direction (longitudinal), and along the direction perpendicular (transverse) to the fibers. In the longitudinal direction, monopolar and bipolar MUPs exhibited marked amplitude changes that extended for 16-32mm and 16-24mm over the innervation and tendon zones, respectively. The variation of monopolar and bipolar MUP characteristics was not symmetrical about the innervation zone. Motor unit depth had a considerable influence on the relative longitudinal variation of amplitude for monopolar MUPs, but not for bipolar MUPs. The transverse extension of bipolar MUPs ranged between 24 and 32mm, whereas that of monopolar MUPs ranged between 72 and 96mm. The mean power spectral frequency of surface MUPs was highly dependent on the transverse electrode location but not on depth. This study provides a basis for the interpretation of the contribution of individual motor units to the interference surface EMG signal. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miller, Robert E. (Robin)
2005-04-01
Perception of very low frequencies (VLF) below 125 Hz reproduced by large woofers and subwoofers (SW), encompassing 3 octaves of the 10 regarded as audible, has physiological and content aspects. Large room acoustics and vibrato add VLF fluctuations, modulating audible carrier frequencies to >1 Hz. By convention, sounds below 90 Hz produce no interaural cues useful for spatial perception or localization, therefore bass management redirects the VLF range from main channels to a single (monaural) subwoofer channel, even if to more than one subwoofer. Yet subjects claim they hear a difference between a single subwoofer channel and two (stereo bass). If recordings contain spatial VLF content, is it possible physiologically to perceive interaural time/phase difference (ITD/IPD) between 16 and 125 Hz? To what extent does this perception have a lifelike quality; to what extent is it localization? If a first approximation of localization, would binaural SWs allow a higher crossover frequency (smaller satellite speakers)? Reported research supports the Jeffress model of ITD determination in brain structures, and extending the accepted lower frequency limit of IPD. Meanwhile, uncorrelated very low frequencies exist in all tested multi-channel music and movie content. The audibility, recording, and reproduction of uncorrelated VLF are explored in theory and experiments.
Advances in Ice Penetrating Radar
NASA Astrophysics Data System (ADS)
Paden, J. D.
2016-12-01
Radars have been employed for ice remote sensing since the mid-twentieth century. The original application in radioglaciology was to obtain ice thickness: an essential parameter in ice flux calculations and boundary condition in ice flow models. Later, radars were used to estimate basal conditions and track laterally persistent features in the ice. The Center for Remote Sensing of Ice Sheet's recent hardware advances include multichannel systems and radar suites covering the usable frequency spectrum. These advances coupled with increased interest in the polar regions result in a concomitant exponential growth in data. We focus on a few results that have come from these changes. Multichannel radar systems improved clutter rejection and enabled 3D imaging. Using computer vision algorithms, we have automated the process of extracting the ice bottom surface in 3D imagery for complex topographies including narrow glacier channels where the ice surface and ice bottom merge together within the 3D images. We present results of wide swath imaging which have enabled narrow, 2-3 km wide, glacier channels to be fully imaged in a single pass. When radar data are available across the frequency spectrum, we have the ability to enhance target detection and measure frequency dependent properties. For example, we can couple HF sounder measurements in warmer ice where scattering attenuates and hides the signal of interest with VHF sounder measurements in cooler ice which have much improved resolution from a single flight line. We present examples of improved bed detection with coupled HF and VHF imagery in a temperate to cold ice transition that show the strong frequency dependence of englacial scattering. To handle the increased data rate, we developed a standard processing chain and data product for CReSIS radar systems, including legacy systems. Application specific GIS tools are an essential part and enable us to merge other data products during data analysis. By using imagery, gravity, mass conservation, etc., we improve the accuracy of ice bottom tracking. We present examples of the integration of these information sources to produce improved ice thickness estimates and show examples of data products which span more than two decades.
NASA Astrophysics Data System (ADS)
Motwani, Tanuj
Starch-water interactions occurring during gelatinization are critical for developing a mechanistic understanding of the gelatinization process. The overall goal of this project was to investigate the state of water in starch-water systems in the gelatinization temperature range using dielectric relaxation spectroscopy. In the first part of the project, the dielectric response of native wheat starch-water slurries was measured at seven different starch concentrations between 5--60% starch (w/w) in the frequency range of 200 MHz--20 GHz at 25°C. The deconvolution of the dielectric spectra using the Debye model revealed presence of up to three relaxation processes. The relaxation time range of what were considered to be the high, intermediate and low frequency relaxations were 4--9 ps, 20--25 ps and 230--620 ps, respectively. The high frequency relaxation was observed at all starch concentrations, while the intermediate and low frequency relaxation were only observed at starch concentrations of 10% and above, and 30% and above, respectively. The high frequency relaxation was attributed to bulk water, while the intermediate and low frequency relaxations were attributed to rotationally restrained water molecules present in the starch-water system. To investigate the state of water in the gelatinization temperature range, the dielectric response, gelatinization enthalpy and water absorption by 10%, 30% or 50% starch slurries were measured after heating the slurries to different end temperatures between 40--90°C for 30 min. The high frequency relaxation time for 10% starch slurry dropped significantly (P<0.001) upon heating up to 60°C. For 30% and 50% starch slurries, high frequency relaxation times were not significantly influenced (P>0.159) by heating up to 80°C. The intermediate and low frequency relaxation times were not significantly influenced (P>0.712) by heating for all starch concentrations. Also, the amount of water associated with the three relaxations was not significantly influenced by heating (P >0.187). The water absorption results indicated that highest water uptake was achieved in the 10% starch slurry. The endothermic peak associated with gelatinization either vanished or was diminished after heating the slurries to 60°C and above, suggesting that native granular order was not necessary for the existence of the three separate states of water. In the second part of the project, the dielectric response of starch-water systems was investigated in the presence or absence of glucose or maltose. Dielectric response of 10% starch + 10% sugar, 10% starch + 20% sugar or 10% starch + 30% sugar slurries was measured in the frequency range of 200 MHz--20 GHz after heating the slurries to different end temperatures between 25--90°C for 30 min. The dielectric spectra of the slurries could be deconvoluted to obtain up to three Debye-type relaxations. The relaxation time range of high, intermediate and low frequency relaxations were 4--7 ps, 17--26 ps and 175--335 ps, respectively, at 25°C. The high frequency relaxation was the dominant relaxation in slurries containing 10% sugar, and the intermediate frequency relaxation was the dominant relaxation in slurries containing 30% sugar at 25°C. The high frequency relaxation time decreased upon heating up to 60°C but was not significantly influenced (P>0.102) by the concentration or the type of sugar. Intermediate and low frequency relaxation times were not significantly influenced (P>0.419) by heating or sugar type. The relative strengths of the intermediate frequency relaxation dropped while that of high frequency relaxation increased upon heating up to 50°C. The relative strength of low frequency relaxation (P>0.561) was not influenced by heating. The static dielectric constant decreased upon heating but was not influenced by the type of sugar or solids in the slurry. This indicated that the water molecules present in the system were the major contributors to the polarization observed. At the same concentration of solids, conductivity of the sugar containing slurries was lower than that of the non-sugar-containing starch slurries, which suggested that conductivity was mostly associated with starch. Glucose or maltose did not exert any differential effect on the swelling behavior or dielectric relaxation parameters of starch-water-sugar slurries. This project presents novel insights into the starch-water interactions occurring in the gelatinization temperature range. The results of this project can be used to develop a dielectric relaxation based technique to monitor water mobility during industrial processing of starch-based foods. Dielectric response was not unique to any of the solids used in the study suggesting that dielectric spectroscopy could be used for monitoring state of water in food systems containing different types of solids. Also, the dielectric relaxation parameters obtained in this study can be used to predict water mobility in simple food systems having water, sugar and starch as major components, and hence, can possibly be used to estimate shelf life of food products.
Dai, Chenkai; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan; Melvin, Thuy-Anh; Cullen, Kathleen E.; Della Santina, Charles C.
2012-01-01
By sensing three-dimensional (3D) head rotation and electrically stimulating the three ampullary branches of a vestibular nerve to encode head angular velocity, a multichannel vestibular prosthesis (MVP) can restore vestibular sensation to individuals disabled by loss of vestibular hair cell function. However, current spread to afferent fibers innervating non-targeted canals and otolith endorgans can distort the vestibular nerve activation pattern, causing misalignment between the perceived and actual axis of head rotation. We hypothesized that over time, central neural mechanisms can adapt to correct this misalignment. To test this, we rendered five chinchillas vestibular-deficient via bilateral gentamicin treatment and unilaterally implanted them with a head mounted MVP. Comparison of 3D angular vestibulo-ocular reflex (aVOR) responses during 2 Hz, 50°/s peak horizontal sinusoidal head rotations in darkness on the first, third and seventh days of continual MVP use revealed that eye responses about the intended axis remained stable (at about 70% of the normal gain) while misalignment improved significantly by the end of one week of prosthetic stimulation. A comparable time course of improvement was also observed for head rotations about the other two semicircular canal axes and at every stimulus frequency examined (0.2–5 Hz). In addition, the extent of disconjugacy between the two eyes progressively improved during the same time window. These results indicate that the central nervous system rapidly adapts to multichannel prosthetic vestibular stimulation to markedly improve 3D aVOR alignment within the first week after activation. Similar adaptive improvements are likely to occur in other species, including humans. PMID:21374081
Sharifahmadian, Ershad
2006-01-01
The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.
Multichannel electrochemical microbial detection unit
NASA Technical Reports Server (NTRS)
Wilkins, J. R.; Young, R. N.; Boykin, E. H.
1978-01-01
The paper describes the design and capabilities of a compact multichannel electrochemical unit devised to detect and automatically indicate detection time length of bacteria. By connecting this unit to a strip-chart recorder, a permanent record is obtained of the end points and growth curves for each of eight channels. The experimental setup utilizing the multichannel unit consists of a test tube (25 by 150 mm) containing a combination redox electrode plus 18 ml of lauryl tryptose broth and positioned in a 35-C water bath. Leads from the electrodes are connected to the multichannel unit, which in turn is connected to a strip-chart recorder. After addition of 2.0 ml of inoculum to the test tubes, depression of the push-button starter activates the electronics, timer, and indicator light for each channel. The multichannel unit is employed to test tenfold dilutions of various members of the Enterobacteriaceae group, and a typical dose-response curve is presented.
Development of a Multi-Channel, High Frequency QRS Electrocardiograph
NASA Technical Reports Server (NTRS)
DePalma, Jude L.
2003-01-01
With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology out into the clinical world, where it has the potential to save lives.
NASA Astrophysics Data System (ADS)
Bécel, Anne; Shillington, Donna J.; Nedimović, Mladen R.; Webb, Spahr C.; Kuehn, Harold
2015-08-01
Multi-channel seismic (MCS) reflection profiles across the Pacific Plate south of the Alaska Peninsula reveal the internal structure of mature oceanic crust (48-56 Ma) formed at fast to intermediate spreading rates during and after a major plate re-organization. Oceanic crust formed at fast spreading rates (half spreading rate ∼ 74 mm /yr) has smoother basement topography, thinner sediment cover with less faulting, and an igneous section that is at least 1 km thicker than crust formed at intermediate spreading rates (half spreading rate ∼ 28- 34 mm /yr). MCS data across fast-spreading oceanic crust formed during plate re-organization contain abundant bright reflections, mostly confined to the lower crust above a highly reflective Moho transition zone, which has a reflection coefficient (RC) of ∼0.1. The lower crustal events dip predominantly toward the paleo-ridge axis at ∼10-30°. Reflections are also imaged in the uppermost mantle, which primarily dip away from the ridge at ∼10-25°, the opposite direction to those observed in the lower crust. Dipping events in both the lower crust and upper mantle are absent on profiles acquired across the oceanic crust formed at intermediate spreading rates emplaced after plate re-organization, where a Moho reflection is weak or absent. Our preferred interpretation is that the imaged lower crustal dipping reflections within the fast spread crust arise from shear zones that form near the spreading center in the region characterized by interstitial melt. The abundance and reflection amplitude strength of these events (RC ∼ 0.15) can be explained by a combination of solidified melt that was segregated within the shear structures, mylonitization of the shear zones, and crystal alignment, all of which can result in anisotropy and constructive signal interference. Formation of shear zones with this geometry requires differential motion between the crust and upper mantle, where the upper mantle moves away from the ridge faster than the crust. Active asthenospheric upwelling is one possible explanation for these conditions. The other possible interpretation is that lower crustal reflections are caused by magmatic (mafic/ultramafic) layering associated with accretion from a central mid-crustal magma chamber. Considering that the lower crustal dipping events have only been imaged in regions that have experienced plate re-organizations associated with ridge jumps or rift propagation, we speculate that locally enhanced mantle flow associated with these settings may lead to differential motion between the crust and the uppermost mantle, and therefore to shearing in the ductile lower crust or, alternatively, that plate reorganization could produce magmatic pulses which may lead to mafic/ultramafic banding.
Evaluation of a multi-channel algorithm for reducing transient sounds.
Keshavarzi, Mahmoud; Baer, Thomas; Moore, Brian C J
2018-05-15
The objective was to evaluate and select appropriate parameters for a multi-channel transient reduction (MCTR) algorithm for detecting and attenuating transient sounds in speech. In each trial, the same sentence was played twice. A transient sound was presented in both sentences, but its level varied across the two depending on whether or not it had been processed by the MCTR and on the "strength" of the processing. The participant indicated their preference for which one was better and by how much in terms of the balance between the annoyance produced by the transient and the audibility of the transient (they were told that the transient should still be audible). Twenty English-speaking participants were tested, 10 with normal hearing and 10 with mild-to-moderate hearing-impairment. Frequency-dependent linear amplification was provided for the latter. The results for both participant groups indicated that sounds processed using the MCTR were preferred over the unprocessed sounds. For the hearing-impaired participants, the medium and strong settings of the MCTR were preferred over the weak setting. The medium and strong settings of the MCTR reduced the annoyance produced by the transients while maintaining their audibility.
The magnetic field of gastrointestinal smooth muscle activity
NASA Astrophysics Data System (ADS)
Bradshaw, Alan; Ladipo, Jk; Richards, William; Wikswo, John
1997-11-01
The gastrointestinal (GI) tract controls the absorption and transport of ingested materials. Its function is determined largely by the electrical activity of the smooth muscle that lines the GI tract. GI electrical activity consists of an omnipresent slowly oscillating wave known as the basic electrical rhythm (BER) that modulates a higher-frequency spiking activity associated with muscle contraction. The BER has been shown to be a reliable indicator of intestinal viability, and thus, recording of smooth muscle activity may have clinical value. The BER is difficult to measure with cutaneous electrodes because layers of low-conductivity fat between the GI tract and the abdominal surface attenuate the potential. On the other hand, the magnetic field associated with GI electrical activity is mostly unaffected by intervening fat layers. We recorded the magnetic fields from GI activity in 12 volunteers using a multichannel Superconducting QUantum Interference Device (SQUID) magnetometer. Characteristics typical of gastric and intestinal BER were apparent in the data. Channels near the epigastrium recorded gastric BER, and channels in intestinal areas recorded small bowel BER. These results suggest that a single multichannel SQUID magnetometer is able to measure gastrointestinal electrical activity from multiple locations around the abdomen simultaneously.
Biosensor analysis of natural and artificial sweeteners in intact taste epithelium.
Zhang, Fenni; Zhang, Qian; Zhang, Diming; Lu, Yanli; Liu, Qingjun; Wang, Ping
2014-04-15
Sweeteners are commonly used as food additives in our daily life, which, however, have been causing a number of undesirable diseases since the last century. Therefore, the detection and quantification of sweeteners are of great value for food safety. In this study, we used a taste biosensor to measure and analyze different sweeteners, both natural and artificial sweeteners included. Electrophysiological activities from taste epithelium were detected by the multi-channel biosensors and analyzed with spatiotemporal methods. The longtime signal result showed different temporal-frequency properties with stimulations of individual sweeteners such as glucose, sucrose, saccharin, and cyclamate, while the multi-channel results in our study revealed the spatial expression of taste epithelium to sweet stimuli. Furthermore, in the analysis of sweetener with different concentrations, the result showed obvious dose-dependent increases in signal responses of the taste epithelium, which indicated promising applications in sweetness evaluation. Besides, the mixture experiment of two natural sweeteners with a similar functional unit (glucose and sucrose) presented two signal patterns, which turned out to be similar with responses of each individual stimulus involved. The biosensor analysis of common sweeteners provided new approaches for both natural and artificial sweeteners evaluation. © 2013 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gauthier, P.-A.; Camier, C.; Lebel, F.-A.; Pasco, Y.; Berry, A.; Langlois, J.; Verron, C.; Guastavino, C.
2016-08-01
Sound environment reproduction of various flight conditions in aircraft mock-ups is a valuable tool for the study, prediction, demonstration and jury testing of interior aircraft sound quality and annoyance. To provide a faithful reproduced sound environment, time, frequency and spatial characteristics should be preserved. Physical sound field reproduction methods for spatial sound reproduction are mandatory to immerse the listener's body in the proper sound fields so that localization cues are recreated at the listener's ears. Vehicle mock-ups pose specific problems for sound field reproduction. Confined spaces, needs for invisible sound sources and very specific acoustical environment make the use of open-loop sound field reproduction technologies such as wave field synthesis (based on free-field models of monopole sources) not ideal. In this paper, experiments in an aircraft mock-up with multichannel least-square methods and equalization are reported. The novelty is the actual implementation of sound field reproduction with 3180 transfer paths and trim panel reproduction sources in laboratory conditions with a synthetic target sound field. The paper presents objective evaluations of reproduced sound fields using various metrics as well as sound field extrapolation and sound field characterization.
Consequences of broad auditory filters for identification of multichannel-compressed vowels
Souza, Pamela; Wright, Richard; Bor, Stephanie
2012-01-01
Purpose In view of previous findings (Bor, Souza & Wright, 2008) that some listeners are more susceptible to spectral changes from multichannel compression (MCC) than others, this study addressed the extent to which differences in effects of MCC were related to differences in auditory filter width. Method Listeners were recruited in three groups: listeners with flat sensorineural loss, listeners with sloping sensorineural loss, and a control group of listeners with normal hearing. Individual auditory filter measurements were obtained at 500 and 2000 Hz. The filter widths were related to identification of vowels processed with 16-channel MCC and with a control (linear) condition. Results Listeners with flat loss had broader filters at 500 Hz but not at 2000 Hz, compared to listeners with sloping loss. Vowel identification was poorer for MCC compared to linear amplification. Listeners with flat loss made more errors than listeners with sloping loss, and there was a significant relationship between filter width and the effects of MCC. Conclusions Broadened auditory filters can reduce the ability to process amplitude-compressed vowel spectra. This suggests that individual frequency selectivity is one factor which influences benefit of MCC, when a high number of compression channels are used. PMID:22207696
Multifunctional pulse generator for high-intensity focused ultrasound system
NASA Astrophysics Data System (ADS)
Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro
2017-07-01
High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.
Low-frequency source parameters of twelve large earthquakes. M.S. Thesis
NASA Technical Reports Server (NTRS)
Harabaglia, Paolo
1993-01-01
A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.
Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Dortu, Fabian; Schrevens, Olivier; Giannone, Domenico; Bouville, David; Cassan, Eric; Gylfason, Kristinn B.; Sohlström, Hans; Sanchez, Benito; Griol, Amadeu; Hill, Daniel
2009-01-01
We present an efficient and highly alignment-tolerant light coupling and distribution system for a multichannel Si3N4/SiO2 single-mode photonics sensing chip. The design of the input and output couplers and the distribution splitters is discussed. Examples of multichannel data obtained with the system are given.
NASA Astrophysics Data System (ADS)
Yun, Lingtong; Zhao, Hongzhong; Du, Mengyuan
2018-04-01
Quadrature and multi-channel amplitude-phase error have to be compensated in the I/Q quadrature sampling and signal through multi-channel. A new method that it doesn't need filter and standard signal is presented in this paper. And it can combined estimate quadrature and multi-channel amplitude-phase error. The method uses cross-correlation and amplitude ratio between the signal to estimate the two amplitude-phase errors simply and effectively. And the advantages of this method are verified by computer simulation. Finally, the superiority of the method is also verified by measure data of outfield experiments.
Serial Recall, Word Frequency, and Mixed Lists: The Influence of Item Arrangement
ERIC Educational Resources Information Center
Miller, Leonie M.; Roodenrys, Steven
2012-01-01
Studies of the effect of word frequency in the serial recall task show that lists of high-frequency words are better recalled than lists of low-frequency words; however, when high- and low-frequency words are alternated within a list, there is no difference in the level of recall for the two types of words, and recall is intermediate between lists…
2013-03-01
intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or
Correlation studies of passive and active microwave data in the marginal ice zone
NASA Technical Reports Server (NTRS)
Comiso, J. C.
1991-01-01
The microwave radiative and backscatter characteristics of sea ice in an Arctic marginal ice zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea ice. In the inner pack, undeformed first-year ice is observed to have low backscatter values but high brightness temperatures while multiyear ice has generally high backscatter values and low brightness temperatures. However, in the marginal ice zone, the signature and backscatter for multiyear ice are considerably different and closer to those of first-year ice. Some floes identified by photography as snow-covered thick ice have backscatter similar to that of new ice or open water while brash ice has backscatter similar to or higher than that of ridged ice.
NASA Technical Reports Server (NTRS)
1980-01-01
Design features and performance parameters are described for three types of wideband multiple channel satellite transponders for use in a 30/20 GHz communications satellite, which provides high data rate trunking service to ten ground station terminals. The three types of transponder are frequency division multiplex (FDM), time division multiplex (TDM), and a hybrid transponder using a combination of FDM and TDM techniques. The wideband multiple beam trunking concept, the traffic distribution between the trunking terminals, and system design constraints are discussed. The receiver front end design, the frequency conversion scheme, and the local oscillator design are described including the thermal interface between the transponders and the satellite. The three designs are compared with regard to performance, weight, power, cost and initial technology. Simplified block diagrams of the baseline transponder designs are included.
Estimating cognitive workload using wavelet entropy-based features during an arithmetic task.
Zarjam, Pega; Epps, Julien; Chen, Fang; Lovell, Nigel H
2013-12-01
Electroencephalography (EEG) has shown promise as an indicator of cognitive workload; however, precise workload estimation is an ongoing research challenge. In this investigation, seven levels of workload were induced using an arithmetic task, and the entropy of wavelet coefficients extracted from EEG signals is shown to distinguish all seven levels. For a subject-independent multi-channel classification scheme, the entropy features achieved high accuracy, up to 98% for channels from the frontal lobes, in the delta frequency band. This suggests that a smaller number of EEG channels in only one frequency band can be deployed for an effective EEG-based workload classification system. Together with analysis based on phase locking between channels, these results consistently suggest increased synchronization of neural responses for higher load levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
A microcomputer based frequency-domain processor for laser Doppler anemometry
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Adair, Desmond
1988-01-01
A prototype multi-channel laser Doppler anemometry (LDA) processor was assembled using a wideband transient recorder and a microcomputer with an array processor for fast Fourier transform (FFT) computations. The prototype instrument was used to acquire, process, and record signals from a three-component wind tunnel LDA system subject to various conditions of noise and flow turbulence. The recorded data was used to evaluate the effectiveness of burst acceptance criteria, processing algorithms, and selection of processing parameters such as record length. The recorded signals were also used to obtain comparative estimates of signal-to-noise ratio between time-domain and frequency-domain signal detection schemes. These comparisons show that the FFT processing scheme allows accurate processing of signals for which the signal-to-noise ratio is 10 to 15 dB less than is practical using counter processors.
Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.
Dong, Hao-Wen; Wang, Yue-Sheng; Zhang, Chuanzeng
2017-04-01
Topology optimization of a waveguide-cavity structure in phononic crystals for designing narrow band filters under the given operating frequencies is presented in this paper. We show that it is possible to obtain an ultra-high-Q filter by only optimizing the cavity topology without introducing any other coupling medium. The optimized cavity with highly symmetric resonance can be utilized as the multi-channel filter, raising filter and T-splitter. In addition, most optimized high-Q filters have the Fano resonances near the resonant frequencies. Furthermore, our filter optimization based on the waveguide and cavity, and our simple illustration of a computational approach to wave control in phononic crystals can be extended and applied to design other acoustic devices or even opto-mechanical devices. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Keyu; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen 518067; College of Electronic Science and Technology, Shenzhen University, Shenzhen 518067
We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.
Miniature biotelemeter gives multichannel wideband biomedical data
NASA Technical Reports Server (NTRS)
Carraway, J. B.
1972-01-01
A miniature biotelemeter was developed for sensing and transmitting multiple channels of biomedical data over a radio link. The design of this miniature, 10-channel, wideband (5 kHz/channel), pulse amplitude modulation/ frequency modulation biotelemeter takes advantage of modern device technology (e.g., integrated circuit operational amplifiers, complementary symmetry/metal oxide semiconductor logic, and solid state switches) and hybrid packaging techniques. The telemeter is being used to monitor 10 channels of neuron firings from specific regions of the brain in rats implanted with chronic electrodes. Design, fabrication, and testing of an engineering model biotelemeter are described.
A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy
NASA Astrophysics Data System (ADS)
Veiga, Alejandro; Grunfeld, Christian
2016-02-01
The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.
Norwegian remote sensing experiment in a marginal ice zone
Farrelly, B.; Johannessen, J.A.; Svendsen, E.; Kloster, K.; Horjen, I.; Matzler, C.; Crawford, J.; Harrington, R.; Jones, L.; Swift, C.; Delnore, V.E.; Cavalieri, D.; Gloersen, P.; Hsiao, S.V.; Shemdin, O.H.; Thompson, T.W.; Ramseier, R.O.; Johannessen, O.M.; Campbell, W.J.
1983-01-01
The Norwegian Remote Sensing Experiment in the marginal ice zone north of Svalbard took place in fall 1979. Coordinated passive and active microwave measurements were obtained from shipborne, airborne, and satellite instruments together with in situ observations. The obtained spectra of emissivity (frequency range, 5 to 100 gigahertz) should improve identification of ice types and estimates of ice concentration. Mesoscale features along the ice edge were revealed by a 1.215-gigahertz synthetic aperture radar. Ice edge location by the Nimbus 7 scanning multichannel microwave radiometer was shown to be accurate to within 10 kilometers.
The UTCOMS: a wireless video capsule nanoendoscope
NASA Astrophysics Data System (ADS)
Lee, Mike M.; Lee, Eun-Mi; Cho, Byung Lok; Eshraghian, Kamran; Kim, Yun-Hyun
2006-02-01
This research shows a 1mW Low Power and real-time imaging Tx/Rx communication system via RF-delay smart Antenna using up to 10GHz UWB(Ultra WideBand) as a concept of Wireless Medical Telemetry Service (WMTS). This UTCOMS (COMmunication System for Nano-scale USLI designed Endoscope using UWB technology) results in less body loss(about 6~13dB) at high frequency, disposable and ingestible compact size of 5×10 mm2 and multifunction, bidirectional communications, independent subsystem control multichannel, and high sensitivity smart receiving antenna of three-dimensional image captured still and moving images.
Yamaguchi, Tsuyoshi; Yonezawa, Takuya; Koda, Shinobu
2015-07-15
The frequency-dependent viscosity and conductivity of three imidazolium-based ionic liquids were measured at several temperatures in the MHz region, and the results are compared with the intermediate scattering functions determined by neutron spin echo spectroscopy. The relaxations of both the conductivity and the viscosity agree with that of the intermediate scattering function at the ionic correlation when the relaxation time is short. As the relaxation time increases, the relaxations of the two transport properties deviate to lower frequencies than that of the ionic structure. The deviation begins at a shorter relaxation time for viscosity than for conductivity, which explains the fractional Walden rule between the zero-frequency values of the shear viscosity and the molar conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Syh, J; Patel, B
2014-06-15
Purpose: The multichannel cylindrical vaginal applicator is a variation of traditional single channel cylindrical vaginal applicator. The multichannel applicator has additional peripheral channels that provide more flexibility in the planning process. The dosimetric advantage is to reduce dose to adjacent organ at risk (OAR) such as bladder and rectum while maintaining target coverage with the dose optimization from additional channels. Methods: Vaginal HDR brachytherapy plans are all CT based. CT images were acquired in 2 mm thickness to keep integrity of cylinder contouring. The CTV of 5mm Rind with prescribed treatment length was reconstructed from 5mm expansion of inserted cylinder.more » The goal was 95% of CTV covered by 95% of prescribed dose in both single channel planning (SCP)and multichannel planning (MCP) before proceeding any further optimization for dose reduction to critical structures with emphasis on D2cc and V2Gy . Results: This study demonstrated noticeable dose reduction to OAR was apparent in multichannel plans. The D2cc of the rectum and bladder were showing the reduced dose for multichannel versus single channel. The V2Gy of the rectum was 93.72% and 83.79% (p=0.007) for single channel and multichannel respectively (Figure 1 and Table 1). To assure adequate coverage to target while reducing the dose to the OAR without any compromise is the main goal in using multichannel vaginal applicator in HDR brachytherapy. Conclusion: Multichannel plans were optimized using anatomical based inverse optimization algorithm of inverse planning simulation annealing. The optimization solution of the algorithm was to improve the clinical target volume dose coverage while reducing the dose to critical organs such as bladder, rectum and bowels. The comparison between SCP and MCP demonstrated MCP is superior to SCP where the dwell positions were based on geometric array only. It concluded that MCP is preferable and is able to provide certain features superior to SCP.« less
Fire forbids fifty-fifty forest
Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E.; Flores, Bernardo M.; Xu, Chi; Scheffer, Marten
2018-01-01
Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse. PMID:29351323
Fire forbids fifty-fifty forest.
van Nes, Egbert H; Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E; Flores, Bernardo M; Xu, Chi; Scheffer, Marten
2018-01-01
Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse.
UNUSUAL TRENDS IN SOLAR P-MODE FREQUENCIES DURING THE CURRENT EXTENDED MINIMUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathy, S. C.; Jain, K.; Hill, F.
2010-03-10
We investigate the behavior of the intermediate-degree mode frequencies of the Sun during the current extended minimum phase to explore the time-varying conditions in the solar interior. Using contemporaneous helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI), we find that the changes in resonant mode frequencies during the activity minimum period are significantly greater than the changes in solar activity as measured by different proxies. We detect a seismic minimum in MDI p-mode frequency shifts during 2008 July-August but no such signature is seen in mean shifts computed from GONG frequencies. We alsomore » analyze the frequencies of individual oscillation modes from GONG data as a function of latitude and observe a signature of the onset of the solar cycle 24 in early 2009. Thus, the intermediate-degree modes do not confirm the onset of the cycle 24 during late 2007 as reported from the analysis of the low-degree Global Oscillations at Low Frequency frequencies. Further, both the GONG and MDI frequencies show a surprising anti-correlation between frequencies and activity proxies during the current minimum, in contrast to the behavior during the minimum between cycles 22 and 23.« less
Multichannel-Hadamard calibration of high-order adaptive optics systems.
Guo, Youming; Rao, Changhui; Bao, Hua; Zhang, Ang; Zhang, Xuejun; Wei, Kai
2014-06-02
we present a novel technique of calibrating the interaction matrix for high-order adaptive optics systems, called the multichannel-Hadamard method. In this method, the deformable mirror actuators are firstly divided into a series of channels according to their coupling relationship, and then the voltage-oriented Hadamard method is applied to these channels. Taking the 595-element adaptive optics system as an example, the procedure is described in detail. The optimal channel dividing is discussed and tested by numerical simulation. The proposed method is also compared with the voltage-oriented Hadamard only method and the multichannel only method by experiments. Results show that the multichannel-Hadamard method can produce significant improvement on interaction matrix measurement.
Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro
2018-06-01
Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2 s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.
EDMC: An enhanced distributed multi-channel anti-collision algorithm for RFID reader system
NASA Astrophysics Data System (ADS)
Zhang, YuJing; Cui, Yinghua
2017-05-01
In this paper, we proposes an enhanced distributed multi-channel reader anti-collision algorithm for RFID environments which is based on the distributed multi-channel reader anti-collision algorithm for RFID environments (called DiMCA). We proposes a monitor method to decide whether reader receive the latest control news after it selected the data channel. The simulation result shows that it improves interrogation delay.
Comby, G.
1996-10-01
The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)
Seismic joint analysis for non-destructive testing of asphalt and concrete slabs
Ryden, N.; Park, C.B.
2005-01-01
A seismic approach is used to estimate the thickness and elastic stiffness constants of asphalt or concrete slabs. The overall concept of the approach utilizes the robustness of the multichannel seismic method. A multichannel-equivalent data set is compiled from multiple time series recorded from multiple hammer impacts at progressively different offsets from a fixed receiver. This multichannel simulation with one receiver (MSOR) replaces the true multichannel recording in a cost-effective and convenient manner. A recorded data set is first processed to evaluate the shear wave velocity through a wave field transformation, normally used in the multichannel analysis of surface waves (MASW) method, followed by a Lambwave inversion. Then, the same data set is used to evaluate compression wave velocity from a combined processing of the first-arrival picking and a linear regression. Finally, the amplitude spectra of the time series are used to evaluate the thickness by following the concepts utilized in the Impact Echo (IE) method. Due to the powerful signal extraction capabilities ensured by the multichannel processing schemes used, the entire procedure for all three evaluations can be fully automated and results can be obtained directly in the field. A field data set is used to demonstrate the proposed approach.
NASA Astrophysics Data System (ADS)
Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey
2015-10-01
Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.
Robust adaptive multichannel SAR processing based on covariance matrix reconstruction
NASA Astrophysics Data System (ADS)
Tan, Zhen-ya; He, Feng
2018-04-01
With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.
Deibel, Jason A; Berndsen, Nicholas; Wang, Kanglin; Mittleman, Daniel M; van der Valk, Nick C; Planken, Paul C M
2006-09-18
We report on the emission patterns from THz plasmons propagating towards the end of cylindrical metal waveguides. Such waveguides exhibit low loss and dispersion, but little is known about the dynamics of the terahertz radiation at the end of the waveguide, specifically in the near- and intermediate-field. Our experimental results and numerical simulations show that the near- and intermediate-field terahertz spectra, measured at the end of the waveguide, vary with the position relative to the waveguide. This is explained by the frequency-dependent diffraction occurring at the end of the cylindrical waveguide. Our results show that near-field changes in the frequency content of THz pulses for increasing wire-detector distances must be taken into account when studying surface waves on cylindrical waveguides.
[Design of low-intermediate frequency electrotherapy and pain assessment system].
Liang, Chunyan; Tian, Xuelong; Yu, Xuehong; Luo, Hongyan
2014-06-01
Aiming at the single treatment and the design separation between treatment and assessment in electrotherapy equipment, a kind of system including low-intermediate frequency treatment and efficacy evaluation was developed. With C8051F020 single-chip microcomputer as the core and the circuit design and software programming used, the system realized the random switch of therapeutic parameters, the collection, display and data storage of pressure pain threshold in the assessment. Experiment results showed that the stimulus waveform, current intensity, frequency, duty ratio of the system output were adjustable, accurate and reliable. The obtained pressure pain threshold had a higher accuracy (< 0.3 N) and better stability, guiding the parameter choice in the precise electrical stimulation. It, therefore, provides a reliable technical support for the treatment and curative effect assessment.
Dynamics of a Landau-Zener non-dissipative system with fluctuating energy levels
NASA Astrophysics Data System (ADS)
Fai, L. C.; Diffo, J. T.; Ateuafack, M. E.; Tchoffo, M.; Fouokeng, G. C.
2014-12-01
This paper considers a Landau-Zener (two-level) system influenced by a three-dimensional Gaussian and non-Gaussian coloured noise and finds a general form of the time dependent diabatic quantum bit (qubit) flip transition probabilities in the fast, intermediate and slow noise limits. The qubit flip probability is observed to mimic (for low-frequencies noise) that of the standard LZ problem. The qubit flip probability is also observed to be the measure of quantum coherence of states. The transition probability is observed to be tailored by non-Gaussian low-frequency noise and otherwise by Gaussian low-frequency coloured noise. Intermediate and fast noise limits are observed to alter the memory of the system in time and found to improve and control quantum information processing.
Characterization of the Shear Layer in a Mach 3 Shock/Turbulent Boundary Layer Interaction
NASA Astrophysics Data System (ADS)
Helm, Clara; Priebe, Stephan; Li, Justine; Dupont, Pierre; Martin, Pino
2013-11-01
The unsteady motion of fully separated shock and turbulent boundary layers interactions (STBLIs) is characterized by an energized low-frequency motion that is two orders of magnitude lower than that of the incoming turbulence. In addition, the spectra shows significant energy content at frequency that is between the characteristic low frequency and the higher frequency motions of the incoming turbulence. The intermediate frequency content is hypothesized to be associated with the existence of Kelvin-Helmholtz type structures, which form in the shear layer downstream of the separation shock and are shed near the reattachment point downstream of the interaction. The current research is concerned with investigating the origins of the intermediate frequencies, and how they may be related to or possibly influence the low-frequency unsteadiness. Specifically, LES data of a Mach 3 STBLI over a 24o ramp are used to estimate convection velocities within the shear layer downstream of the shock. In addition, Brown and Thomas type correlations are used to estimate time and length scales of the eddies in the shear layer. This work is supported by the Air Force Office of Scientific Research under grant AF/9550-10-1-0164.
NASA Astrophysics Data System (ADS)
Price, V.; Weber, T.; Jerram, K.; Doucet, M.
2016-12-01
The analysis of multi-frequency, narrow-band single-beam acoustic data for fisheries applications has long been established, with methodology focusing on characterizing targets in the water column by utilizing complex algorithms and false-color time series data to create and compare frequency response curves for dissimilar biological groups. These methods were built on concepts developed for multi-frequency analysis of satellite imagery for terrestrial analysis and have been applied to a broad range of data types and applications. Single-beam systems operating at multiple frequencies are also used for the detection and identification of seeps in water column data. Here we incorporate the same analysis and visualization techniques used for fisheries applications to attempt to characterize and quantify seeps by creating and comparing frequency response curves and applying false coloration to shallow and deep multi-channel seep data. From this information, we can establish methods to differentiate bubble size in the echogram and differentiate seep composition. These techniques are also useful in differentiating plume content from biological noise (volume reverberation) created by euphausid layers and fish with gas-filled swim bladders. The combining of the multiple frequencies using false coloring and other image analysis techniques after applying established normalization and beam pattern correction algorithms is a novel approach to quantitatively describing seeps. Further, this information could be paired with geological models, backscatter, and bathymetry data to assess seep distribution.
NASA Astrophysics Data System (ADS)
Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco
2016-04-01
Caldera-forming eruptions are considered as one of the most catastrophic natural events to affect the Earth's surface and human society. The half-submerged Campi Flegrei caldera, located in southern Italy, belongs to the world's most active calderas and, thus, has received particular attention in scientific communities and governmental institutions. Therefore, it has also become subject to a joint approach in the IODP and ICDP programmes. Despite ample research, no scientific consensus regarding the formation history of the Campi Flegrei caldera has been reached yet. So far, it is still under debate whether the Campi Flegrei caldera was formed by only one ignimbritic eruption, namely the Neapolitan Yellow Tuff (NYT) eruption at 15 ka or, if it is a nested-caldera system related to the NYT and the Campanian Ignimbrite (CI) eruption at 39 ka. In the last decades, the Campi Flegrei caldera has been characterized by short-term episodes of unrest involving considerable ground deformation (uplift and subsidence of several meters), seismicity and increased temperature at fumaroles. Furthermore, long-term deformation can be observed in the central part of the caldera with uplift rates of several tens of meters within a few thousand years. Recently, it has been proposed that the long-term deformation may be related to caldera resurgence, while short-term uplift episodes are probably triggered by the injection of magmatic fluids into a shallow hydrothermal system at ~2 km depth. However, both long-term and short term uplift could be interpreted as eruption precursor, thereby posing high-concern for a future eruption, which would expose more than 1.5 million people living in the surroundings of the volcanic district to extreme volcanic risks. During a joint Italian-German research expedition in 2008, a semi-3D grid (100-150 m profile spacing) of high-frequency (up to 1000 Hz) multichannel seismic data were acquired to support both the ongoing onshore ICDP and a proposed offshore IODP drilling campaign. These data are of outstanding quality and high vertical resolution (~1 m), however, limited by their low signal penetration of ~200 m below seafloor. Hence, only the shallow structures of the Campi Flegrei caldera could be imaged and, consequently, the interpretation was mainly focused on the evolution of the Campi Flegrei caldera since the NYT eruption at 15 ka. Nonetheless, the data also show first evidence for a collapse prior the NYT eruption, supporting the existence of a nested-caldera system formed by collapses related to both the CI and NYT eruptions. Detailed imaging of the upper 2 km - target of the IODP/ICDP drilling campaigns - will be provided through an additional semi-3D (50 m profile spacing) low-frequency (20-200 Hz) multichannel seismic survey collected in February 2016. Preliminary results from a combination of both low- and high-frequency seismic surveys will be presented on (1) deeper-seated collapse structures related to the CI eruption, (2) the extent of the caldera fill, and (3) the hypothesized shallow hydrothermal system.
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
42 CFR 456.606 - Frequency of inspections.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Inspections of Care in Intermediate Care Facilities and Institutions for Mental Diseases § 456.606 Frequency of inspections. The team and the agency...
Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E
2017-11-01
Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Phase-modulated radio over fiber multimode links.
Gasulla, Ivana; Capmany, José
2012-05-21
We present the first experimental demonstration of a phase-modulated MMF link implementing high-frequency digital transmission in a cost-effective solution based on direct detection. Successful subcarrier transmission of QPSK, 16-QAM and 64-QAM data channels for bit rates up to 120 Mb/s through a 5 km MMF link is achieved over the microwave region comprised between 6 and 20 GHz. The overall capacity of the proposed approach can be further increased by properly accommodating more passband channels in the operative frequency range determined by the phase-to-intensity conversion process provided by the dispersive nature of the optical fiber. In this sense, our results show the possibility of achieving an aggregate bit rate per length product of 144 Gb/s · km and confirm, in consequence, the possibility of broadband phase-modulated radio over fiber transmission through MMF links suitable for multichannel SCM signal distribution.
Measuring the global distribution of intense convection over land with passive microwave radiometry
NASA Technical Reports Server (NTRS)
Spencer, R. W.; Santek, D. A.
1985-01-01
The global distribution of intense convective activity over land is shown to be measurable with satellite passive-microwave methods through a comparison of an empirical rain rate algorithm with a climatology of thunderstorm days for the months of June-August. With the 18 and 37 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the strong volume scattering effects of precipitation can be measured. Even though a single frequency (37 GHz) is responsive to the scattering signature, two frequencies are needed to remove most of the effect that variations in thermometric temperatures and soil moisture have on the brightness temperatures. Because snow cover is also a volume scatterer of microwave energy at these microwavelengths, a discrimination procedure involving four of the SMMR channels is employed to separate the rain and snow classes, based upon their differences in average thermometric temperature.
The utilization of Nimbus-7 SMMR measurements to delineate rainfall over land
NASA Technical Reports Server (NTRS)
Rogers, E.; Siddalingaiah, H.
1982-01-01
Based on previous theoretical calculations, an empirical statistical approach to use satellite multifrequency dual polarized passive microwave data to detect rainfall areas over land was initiated. The addition of information from a lower frequency channel (18.0 or 10.7 GHz) was shown to improve the discrimination of rain from wet ground achieved by using a single frequency dual polarized (37 GHz) channel alone. The algorithm was developed and independently tested using data from the Nimbus-7 Scanning Multichannel Microwave Radiometer. Horizontally and vertically polarized brightness temperature pairs at 37, 18, 10.7 GHz were sampled for raining areas over land (determined from ground base radar), wet ground areas (adjacent and upwind from rain areas determined from radar), and dry land regions (areas where rain had not fallen in a 24h period) over the central and eastern United States. Surface thermodynamic temperatures were both above and below 15 deg C.
Least squares restoration of multi-channel images
NASA Technical Reports Server (NTRS)
Chin, Roland T.; Galatsanos, Nikolas P.
1989-01-01
In this paper, a least squares filter for the restoration of multichannel imagery is presented. The restoration filter is based on a linear, space-invariant imaging model and makes use of an iterative matrix inversion algorithm. The restoration utilizes both within-channel (spatial) and cross-channel information as constraints. Experiments using color images (three-channel imagery with red, green, and blue components) were performed to evaluate the filter's performance and to compare it with other monochrome and multichannel filters.
The Performance Analysis Based on SAR Sample Covariance Matrix
Erten, Esra
2012-01-01
Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976
47 CFR 76.1630 - MVPD digital television transition notices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1630 MVPD digital television transition notices. (a) Multichannel video programming distributors (MVPDs) shall provide subscribers with...
47 CFR 76.1630 - MVPD digital television transition notices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1630 MVPD digital television transition notices. (a) Multichannel video programming distributors (MVPDs) shall provide subscribers with...
47 CFR 76.1630 - MVPD digital television transition notices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1630 MVPD digital television transition notices. (a) Multichannel video programming distributors (MVPDs) shall provide subscribers with...
47 CFR 76.1630 - MVPD digital television transition notices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1630 MVPD digital television transition notices. (a) Multichannel video programming distributors (MVPDs) shall provide subscribers with...
47 CFR 76.1630 - MVPD digital television transition notices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1630 MVPD digital television transition notices. (a) Multichannel video programming distributors (MVPDs) shall provide subscribers with...
NASA Astrophysics Data System (ADS)
Dittrich, Paul-Gerald; Grunert, Fred; Ehehalt, Jörg; Hofmann, Dietrich
2015-03-01
Aim of the paper is to show that the colorimetric characterization of optically clear colored liquids can be performed with different measurement methods and their application specific multichannel spectral sensors. The possible measurement methods are differentiated by the applied types of multichannel spectral sensors and therefore by their spectral resolution, measurement speed, measurement accuracy and measurement costs. The paper describes how different types of multichannel spectral sensors are calibrated with different types of calibration methods and how the measurement values can be used for further colorimetric calculations. The different measurement methods and the different application specific calibration methods will be explained methodically and theoretically. The paper proofs that and how different multichannel spectral sensor modules with different calibration methods can be applied with smartpads for the calculation of measurement results both in laboratory and in field. A given practical example is the application of different multichannel spectral sensors for the colorimetric characterization of petroleum oils and fuels and their colorimetric characterization by the Saybolt color scale.
Fijal, Bonnie A; Guo, Yingying; Li, Si G; Ahl, Jonna; Goto, Taro; Tanaka, Yoko; Nisenbaum, Laura K; Upadhyaya, Himanshu P
2015-10-01
Atomoxetine, which is indicated for treatment of attention-deficit hyperactivity disorder (ADHD), is predominantly metabolized by genetically polymorphic cytochrome P450 2D6 (CYP2D6). Based on identified CYP2D6 genotypes, individuals can be categorized into 4 phenotypic metabolizer groups as ultrarapid, extensive, intermediate, and poor. Previous studies have focused on observed differences between poor and extensive metabolizers, but it is not well understood whether the safety profile of intermediate metabolizers differs from that of ultrarapid and extensive metabolizers. This study compared safety and tolerability among the different CYP2D6 metabolizer groups in the 12-week open-label phase of an atomoxetine study in adult patients with ADHD. Genotyping identified 1039 patients as extensive/ultrarapid metabolizers, 780 patients as intermediate metabolizers, and 117 patients as poor metabolizers. Common (≥5% frequency) treatment-emergent adverse events did not significantly differ between extensive/ultrarapid and intermediate metabolizers (odds ratios were <2.0 or >0.5). Poor metabolizers had higher frequencies of dry mouth, erectile dysfunction, hyperhidrosis, insomnia, and urinary retention compared with the other metabolizer groups. There were no significant differences between extensive/ultrarapid and intermediate metabolizers in changes from baseline in vital signs. These results suggest that data from CYP2D6 intermediate and extensive/ultrarapid metabolizers can be combined when considering safety analyses related to atomoxetine. © 2015, The American College of Clinical Pharmacology.
Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy
NASA Astrophysics Data System (ADS)
Cossel, Kevin C.; Adler, Florian; Maslowski, Piotr; Ye, Jun
2010-06-01
Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) is a unique technique that provides broad bandwidth, high resolution, and ultra-high detection sensitivities. This is accomplished by combining a femtosecond laser based optical frequency comb with an enhancement cavity and a broadband, multichannel imaging system. These systems are capable of simultaneously recording many terahertz of spectral bandwidth with sub-gigahertz resolution and absorption sensitivities of 1×10-7 cm-1 Hz-1/2. In addition, the ultrashort pulses enable efficient nonlinear processes, which makes it possible to reach spectral regions that are difficult to access with conventional laser sources. We will present an application of CE-DFCS for trace impurity detection in the semiconductor processing gas arsine near 1.8 μm and the development of a high-power, mid-infrared frequency comb for breath analysis in the 2.8-4.8 μm region. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye. Science 311, 1595-1599 (2006) F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye. Opt. Lett. 34, 1330-1332 (2009)
Della Santina, Charles C.; Migliaccio, Americo A.; Patel, Amit H.
2009-01-01
Bilateral loss of vestibular sensation can be disabling. Those afflicted suffer illusory visual field movement during head movements, chronic disequilibrium and postural instability due to failure of vestibulo-ocular and vestibulo-spinal reflexes. A neural prosthesis that emulates the normal transduction of head rotation by semicircular canals could significantly improve quality of life for these patients. Like the 3 semicircular canals in a normal ear, such a device should at least transduce 3 orthogonal (or linearly separable) components of head rotation into activity on corresponding ampullary branches of the vestibular nerve. We describe the design, circuit performance and in vivo application of a head-mounted, semi-implantable multi-channel vestibular prosthesis that encodes head movement in 3 dimensions as pulse-frequency-modulated electrical stimulation of 3 or more ampullary nerves. In chinchillas treated with intratympanic gentamicin to ablate vestibular sensation bilaterally, prosthetic stimuli elicited a partly compensatory angular vestibulo-ocular reflex in multiple planes. Minimizing misalignment between the axis of eye and head rotation, apparently caused by current spread beyond each electrode’s targeted nerve branch, emerged as a key challenge. Increasing stimulation selectivity via improvements in electrode design, surgical technique and stimulus protocol will likely be required to restore AVOR function over the full range of normal behavior. PMID:17554821
Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique
Xia, J.; Chen, C.; Li, P.H.; Lewis, M.J.
2004-01-01
A collapse developed at Calvert Cliffs Nuclear Power Plant, Maryland, in early 2001. The location of the collapse was over a groundwater drainage system pipe buried at an elevation of +0??9 m (reference is to Chesapeake Bay level). The cause of the collapse was a subsurface drain pipe that collapsed because of saltwater corrosion of the corrugated metal pipe. The inflow/outflow of sea water and groundwater flow caused soil to be removed from the area where the pipe collapsed. To prevent damage to nearby structures, the collapse was quickly filled with uncompacted sand and gravel (???36000 kg). However, the plant had an immediate need to determine whether more underground voids existed. A high-frequency multichannel surface-wave survey technique was conducted to define the zone affected by the collapse. Although the surface-wave survey at Calvert Cliffs Nuclear Power Plant was conducted at a noise level 50-100 times higher than the normal environment for a shallow seismic survey, the shear (S)-wave velocity field calculated from surface-wave data delineated a possible zone affected by the collapse. The S-wave velocity field showed chimney-shaped low-velocity anomalies that were directly related to the collapse. Based on S-wave velocity field maps, a potential zone affected by the collapse was tentatively defined.
Interruption Phenomenon in Intermediate-Frequency Vacuum Arc
NASA Astrophysics Data System (ADS)
Jiang, Yuan; Wu, Jianwen
2016-03-01
In the condition of the 3 mm gap, experiments for 360 Hz intermediate-frequency vacuum arc are carried out in interrupters with the diameters being 41 mm and with the contact materials being CuCr50 and Cu-W-WC alloy respectively. The results indicate that the contacts material is closely related to the breaking capacity of the vacuum interrupters and characteristics of an intermediate-frequency vacuum arc. For contacts with the same diameter, the breaking capacity of CuCr50 is better than that of Cu-W-WC. When the current fails to be interrupted, the arcs overflow the gap and present irregular performances in the first half wave. Consequently a voltage spike appears. More macroscopic metal droplets can be seen in the arc column between CuCr50 contacts because of the lower melting point. It is observed that the droplet emission is much more severe during arc reignition than that in the first half wave. It is much more conspicuous that the high frequency arc voltage noises appear in Cu-W-WC contacts when the vacuum arcs reignite, for higher temperature and stronger electronic emission ability of Cu-W-WC contacts. supported by National Natural Science Foundation of China (No. 51377007), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20131102130006), and Fundamental Research Funds for the Central Universities of China
NASA Technical Reports Server (NTRS)
Walton, W. T.; Wilheit, T. T.
1981-01-01
Definition studies and baseline design are summarized for the proposed, and now discontinued, LAMMR. The instrument is an offset parabolic reflector with Cassegrain feeds. The three-meter aperture reflector, to be constructed using graphite-epoxy technology, rotates continuously at 0.833 rps. The scan drive subsystem includes momentum compensation for the rotating mass which includes the reflector, the support arm and Cassegrain subreflector, feed horns and radiometer. Two total power radiometers are recommended for each frequency, one each for horizontal and vertical polarizations. The selection plan, definition study specifications, LAMMR performance specifications, and predicted accuracies and resolutions after processing are shown.
Synergistic use of multispectral satellite data for monitoring land surface change
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.
1991-01-01
Observations by the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA satellites were used to compute visible and near infrared reflectances and surface temperature, while passive microwave observations at 37 GHz frequency by the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I) on board, respectively, the Nimbus-7 and DMSP-F8 satellites were used to compute polarization difference. These observations were analyzed along transects from rainforest to desert over northern Africa for the period 1979-1987, which included an unprecedented drought during 1984 over the Sahel zone. Model simulations were made to understand the interrelationship among multispectral data.
Global land-surface primary productivity based upon Nimbus-7 37 GHz data
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1988-01-01
Accumulation and renewal of organic matter as quantified through net primary productivity (NPP) is considered a very major function of the biosphere, and its estimation is crucial in understanding the carbon cycle. A physically-based model relating NPP to the difference of vertically and horizontally polarized brightness temperatures (Delta T) observed at 37 GHz frequency of the scanning multichannel microwave radiometer on board the Nimbus-7 satellite is used for fitting areally averaged values of NPP and Delta T for five biomes. The land-surface NPP within 80 deg N to 55 deg S is then calculated using the Delta T data and compared with other estimates.
Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; ...
2014-08-13
Here, quasi-optical imaging at sub-THz frequencies has had a major impact on fusion plasma diagnostics. Mm-wave imaging reflectometry utilizes microwaves to actively probe fusion plasmas, inferring the local properties of electron density fluctuations. Electron cyclotron emission imaging is a multichannel radiometer that passively measures the spontaneous emission of microwaves from the plasma to infer local properties of electron temperature fluctuations. These imaging diagnostics work together to diagnose the characteristics of turbulence. Important quantities such as amplitude and wavenumber of coherent fluctuations, correlation lengths and decor relation times of turbulence, and poloidal flow velocity of the plasma are readily inferred.
Identification of corn fields using multidate radar data
NASA Technical Reports Server (NTRS)
Shanmugan, K. S.; Ulaby, F. T.; Narayanan, V.; Dobson, C.
1983-01-01
Airborne C- and L-band radar data acquired over a test site in western kansas were analyzed to determine corn-field identification accuracies obtainable using single-channel, multichannel, and multidate radar data. An automated pattern-recognition procedure was used to classify 144 fields into three categories: corn, pasture land, and bare soil (including wheat stubble and fallow). Corn fields were identified with accuracies ranging from 85 percent for single channel, single-date data to 100 percent for single-channel, multidate data. The effects of radar parameters such as frequency, polarization, and look angle as well as the effects of soil moisture on the classification accuracy are also presented.
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Frolov, Nikita S.; Musatov, Vyachaslav Yu.
2018-02-01
In present work we studied features of the human brain states classification, corresponding to the real movements of hands and legs. For this purpose we used supervised learning algorithm based on feed-forward artificial neural networks (ANNs) with error back-propagation along with the support vector machine (SVM) method. We compared the quality of operator movements classification by means of EEG signals obtained experimentally in the absence of preliminary processing and after filtration in different ranges up to 25 Hz. It was shown that low-frequency filtering of multichannel EEG data significantly improved accuracy of operator movements classification.
Multichannel audio monitor for detecting electrical signals.
Friesen, W O; Stent, G S
1978-12-01
The multichannel audio monitor (MUCAM) permits the simultaneous auditory monitoring of concurrent trains of electrical signals generated by as many as eight different sources. The basic working principle of this device is the modulation of the amplitude of a given pure tone by the incoming signals of each input channel. The MUCAM thus converts a complex, multichannel, temporal signal sequence into a musical melody suitable for instant, subliminal pattern analysis by the human ear. Neurophysiological experiments requiring multi-electrode recordings have provided one useful application of the MUCAM.
Code of Federal Regulations, 2013 CFR
2013-10-01
... FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE... interested party, cable television system operator, a multichannel video programming distributor, local...
Code of Federal Regulations, 2014 CFR
2014-10-01
... FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE... interested party, cable television system operator, a multichannel video programming distributor, local...
Code of Federal Regulations, 2011 CFR
2011-10-01
... FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE... interested party, cable television system operator, a multichannel video programming distributor, local...
Code of Federal Regulations, 2012 CFR
2012-10-01
... FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE... interested party, cable television system operator, a multichannel video programming distributor, local...
Code of Federal Regulations, 2010 CFR
2010-10-01
... FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE... interested party, cable television system operator, a multichannel video programming distributor, local...
Sumioka, Norihiko; Williams, Atsuko; Yamada, Jun
2016-12-01
A list number recall test in English (L2) was administered to both Japanese (L1) students with beginning-level English proficiency who attended evening high school and Japanese college students with intermediate-level English proficiency. The major findings were that, only for the high school group, the small numbers 1 and 2 in middle positions of lists were recalled better than the large numbers 8 and 9 and there was a significant correlation between number frequency in Japanese and recall performance. Equally intriguing was that in both groups for adjacent transposition errors, smaller numbers tended to appear in the first position and large numbers in the second; also, omission errors were commonly seen for larger numbers. These phenomena are interpreted as reflecting frequency and/or frequency-related effects. Briefly discussed were the bilingual short-term memory system, effects of number value, generality and implications of the findings, and weaknesses of the study.
Research on characteristics of radiated noise of large cargo ship in shallow water
NASA Astrophysics Data System (ADS)
Liu, Yongdong; Zhang, Liang
2017-01-01
With the rapid development of the shipping industry, the number of the world's ship is gradually increasing. The characteristics of the radiated noise of the ship are also of concern. Since the noise source characteristics of multichannel interference, the surface wave and the sea temperature microstructure and other reasons, the sound signal received in the time-frequency domain has varying characteristics. The signal of the radiated noise of the large cargo ship JOCHOH from horizontal hydrophone array in some shallow water of China is processed and analyzed in the summer of 2015, and the results show that a large cargo ship JOCHOH has a number of noise sources in the direction of the ship's bow and stern lines, such as host, auxiliary and propellers. The radiating sound waves generated by these sources do not meet the spherical wave law at lower frequency in the ocean, and its radiated noise has inherent spatial distribution, the variation characteristics of the radiated noise the large cargo ship in time and frequency domain are given. The research method and results are of particular importance.
Geotail MCA plasma wave data analysis
NASA Astrophysics Data System (ADS)
Anderson, Roger R.
NASA Grant NAG 5-2346 supports the data analysis effort at The University of Iowa for the GEOTAIL Multi-Channel Analyzer (MCA) which is a part of the GEOTAIL Plasma Wave Instrument (PWI). At the beginning of this reporting period we had just begun to receive our GEOTAIL Sirius data on CD-ROMs. Much programming effort went into adapting and refining the data analysis programs to include the CD-ROM inputs. Programs were also developed to display the high-frequency-resolution PWI Sweep Frequency Analyzer (SFA) data and to include in all the various plot products the electron cyclotron frequency derived from the magnitude of the magnetic field extracted from the GEOTAIL Magnetic Field (MGF) data included in the GEOTAIL Sirius data. We also developed programs to use the MGF data residing in the Institute of Space and Astronautical Science (ISAS) GEOTAIL Scientific Data Base (SDB). Our programmers also developed programs and provided technical support for the GEOTAIL data analysis efforts of Co-lnvestigator William W. L. Taylor at Nichols Research Corporation (NRC). At the end of this report we have included brief summaries of the NRC effort and the progress being made.
Geotail MCA plasma wave data analysis
NASA Technical Reports Server (NTRS)
Anderson, Roger R.
1994-01-01
NASA Grant NAG 5-2346 supports the data analysis effort at The University of Iowa for the GEOTAIL Multi-Channel Analyzer (MCA) which is a part of the GEOTAIL Plasma Wave Instrument (PWI). At the beginning of this reporting period we had just begun to receive our GEOTAIL Sirius data on CD-ROMs. Much programming effort went into adapting and refining the data analysis programs to include the CD-ROM inputs. Programs were also developed to display the high-frequency-resolution PWI Sweep Frequency Analyzer (SFA) data and to include in all the various plot products the electron cyclotron frequency derived from the magnitude of the magnetic field extracted from the GEOTAIL Magnetic Field (MGF) data included in the GEOTAIL Sirius data. We also developed programs to use the MGF data residing in the Institute of Space and Astronautical Science (ISAS) GEOTAIL Scientific Data Base (SDB). Our programmers also developed programs and provided technical support for the GEOTAIL data analysis efforts of Co-lnvestigator William W. L. Taylor at Nichols Research Corporation (NRC). At the end of this report we have included brief summaries of the NRC effort and the progress being made.
Use of GPS ASHTECH Z12T receivers for accurate time and frequency comparisons.
Petit, G; Thomas, C; Jiang, Z; Uhrich, P; Taris, F
1999-01-01
The GPS phase measurements described in this paper were obtained using two similar multichannel GPS ASHTECH Z12T receivers belonging to the Bureau International des Poids et Mesures, BIPM, and the Laboratoire Primaire du Temps et des Frequences, BNM-LPTF. These receivers are based on the conventional geodetic ASHTECH Z12 unit, which has been modified to meet the stability requirements of time and frequency comparisons. Comparison of the two receivers operated side by side in different antenna configurations shows typical short-term noise of 1.1 to 3.5 ps. Longer term variations indicate a temperature sensitivity in the equipment, which limits the performance of the GPS phase method. One of the receivers was successfully operated using a temperature-stabilized antenna TSA from 3S Navigation, and the ASHTECH antenna, which feeds the second receiver, was placed in a home-built oven maintained at a constant temperature. These precautions made it possible to reduce a number of systematic effects. A separate study of frequency comparison was carried out between two hydrogen-masers located at the BNM-LPTF (Paris, France) and the PTB (Braunschweig, Germany) using receivers similar to ASHTECH Z12T receivers. The relative frequency stability obtained was about 3.3x10(-15) for an average time of 15 000 s, an interesting result comparable with the outstanding performance of new ultrastable frequency standards.
Moore, Brian C J; Füllgrabe, Christian; Stone, Michael A
2011-01-01
To determine preferred parameters of multichannel compression using individually fitted simulated hearing aids and a method of paired comparisons. Fourteen participants with mild to moderate hearing loss listened via a simulated five-channel compression hearing aid fitted using the CAMEQ2-HF method to pairs of speech sounds (a male talker and a female talker) and musical sounds (a percussion instrument, orchestral classical music, and a jazz trio) presented sequentially and indicated which sound of the pair was preferred and by how much. The sounds in each pair were derived from the same token and differed along a single dimension in the type of processing applied. For the speech sounds, participants judged either pleasantness or clarity; in the latter case, the speech was presented in noise at a 2-dB signal-to-noise ratio. For musical sounds, they judged pleasantness. The parameters explored were time delay of the audio signal relative to the gain control signal (the alignment delay), compression speed (attack and release times), bandwidth (5, 7.5, or 10 kHz), and gain at high frequencies relative to that prescribed by CAMEQ2-HF. Pleasantness increased with increasing alignment delay only for the percussive musical sound. Clarity was not affected by alignment delay. There was a trend for pleasantness to decrease slightly with increasing bandwidth, but this was significant only for female speech with fast compression. Judged clarity was significantly higher for the 7.5- and 10-kHz bandwidths than for the 5-kHz bandwidth for both slow and fast compression and for both talker genders. Compression speed had little effect on pleasantness for 50- or 65-dB SPL input levels, but slow compression was generally judged as slightly more pleasant than fast compression for an 80-dB SPL input level. Clarity was higher for slow than for fast compression for input levels of 80 and 65 dB SPL but not for a level of 50 dB SPL. Preferences for pleasantness were approximately equal with CAMEQ2-HF gains and with gains slightly reduced at high frequencies and were lower when gains were slightly increased at high frequencies. Speech clarity was not affected by changing the gain at high frequencies. Effects of alignment delay were small except for the percussive sound. A wider bandwidth was slightly preferred for speech clarity. Speech clarity was slightly greater with slow compression, especially at high levels. Preferred high-frequency gains were close to or a little below those prescribed by CAMEQ2-HF.
Multichannel X-Band Dielectric-Resonator Oscillator
NASA Technical Reports Server (NTRS)
Mysoor, Narayan; Dennis, Matthew; Cook, Brian
2006-01-01
A multichannel dielectric-resonator oscillator (DRO), built as a prototype of a local oscillator for an X-band transmitter or receiver, is capable of being electrically tuned among and within 26 adjacent frequency channels, each 1.16 MHz wide, in a band ranging from 7,040 to 7,070 GHz. The tunability of this oscillator is what sets it apart from other DROs, making it possible to use mass-produced oscillator units of identical design in diverse X-band applications in which there are requirements to use different fixed frequencies or to switch among frequency channels. The oscillator (see figure) includes a custom-designed voltage-controlled-oscillator (VCO) monolithic microwave integrated circuit (MMIC), a dielectric resonator disk (puck), and two varactor-coupling circuits, all laid out on a 25-mil (0.635-mm)-thick alumina substrate having a length and width of 17.8 mm. The resonator disk has a diameter of 8.89 mm and a thickness of 4.01 mm. The oscillator is mounted in an 8.9-mm-deep cavity in a metal housing. The VCO MMIC incorporates a negative- resistance oscillator amplifier along with a buffer amplifier. The resonator disk is coupled to a microstrip transmission line connected to the negative-resistance port of the VCO MMIC. The two varactor-coupling circuits include microstrip lines, laid out orthogonally to each other, for coupling with the resonator disk. Each varactor microstrip line is DC-coupled to an external port via a microwave choke. One varactor is used for coarse tuning to select a channel; the other varactor is used (1) for fine tuning across the 1.16-MHz width of each channel and (2) as a feedback port for a phase-lock loop. The resonator disk is positioned to obtain (1) the most desirable bandwidth, (2) relatively tight coupling with the microstrip connected to the coarse-tuning varactor, and (3) relatively loose coupling with the microstrip connected to the fine-tuning varactor. Measurements of performance showed that the oscillator can be switched among any of the 26 channels and can be phase-locked to a nominal frequency in any channel. The degree of nonlinearity of tuning was found not to exceed 2.5 percent. The tuning sensitivity was found to be 6.15 MHz/V at a bias offset of -2 V on the phase-lock-loop varactor. The phase noise of the oscillator in free-running operation was found to be -107 dBc/Hz (where dBc signifies decibels relative to the carrier signal) at 100 kHz away from the carrier frequency.
47 CFR 76.77 - Reporting requirements and enforcement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.77 Reporting... employees on FCC Form 396-C on or before September 30 of each year. If a multichannel video programming...
47 CFR 76.77 - Reporting requirements and enforcement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.77 Reporting... employees on FCC Form 396-C on or before September 30 of each year. If a multichannel video programming...
47 CFR 76.77 - Reporting requirements and enforcement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.77 Reporting... employees on FCC Form 396-C on or before September 30 of each year. If a multichannel video programming...
47 CFR 76.77 - Reporting requirements and enforcement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.77 Reporting... employees on FCC Form 396-C on or before September 30 of each year. If a multichannel video programming...
Charles, Paul T; Adams, Andre A; Howell, Peter B; Trammell, Scott A; Deschamps, Jeffrey R; Kusterbeck, Anne W
2010-01-01
Fluorescence immunoassays employing monoclonal antibodies directed against the explosive 2,4,6-trinitrotoluene (TNT) were conducted in a multi-channel microimmunosensor. The multi-channel microimmunosensor was prepared in poly (methyl methacrylate) (PMMA) via hot embossing from a brass molding tool. The multi-channeled microfluidic device was sol-gel coated to generate a siloxane surface that provided a scaffold for antibody immobilization. AlexaFluor-cadaverine-trinitrobenzene (AlexaFluor-Cad-TNB) was used as the reporter molecule in a displacement immunoassay. The limit of detection was 1-10 ng/mL (ppb) with a linear dynamic range that covered three orders of magnitude. In addition, antibody crossreactivity was investigated using hexahydro-1,3,5-triazine (RDX), HMX, 2,4-dinitrotoluene (DNT), 4-nitrotoluene (4-NT) and 2-amino-4,6-DNT.
Charles, Paul T.; Adams, Andre A.; Howell, Peter B.; Trammell, Scott A.; Deschamps, Jeffrey R.; Kusterbeck, Anne W.
2010-01-01
Fluorescence immunoassays employing monoclonal antibodies directed against the explosive 2,4,6-trinitrotoluene (TNT) were conducted in a multi-channel microimmunosensor. The multi-channel microimmunosensor was prepared in poly (methyl methacrylate) (PMMA) via hot embossing from a brass molding tool. The multi-channeled microfluidic device was sol-gel coated to generate a siloxane surface that provided a scaffold for antibody immobilization. AlexaFluor-cadaverine-trinitrobenzene (AlexaFluor-Cad-TNB) was used as the reporter molecule in a displacement immunoassay. The limit of detection was 1–10 ng/mL (ppb) with a linear dynamic range that covered three orders of magnitude. In addition, antibody crossreactivity was investigated using hexahydro-1,3,5-triazine (RDX), HMX, 2,4-dinitrotoluene (DNT), 4-nitrotoluene (4-NT) and 2-amino-4,6-DNT. PMID:22315573
Development of a multichannel hyperspectral imaging probe for food property and quality assessment
NASA Astrophysics Data System (ADS)
Huang, Yuping; Lu, Renfu; Chen, Kunjie
2017-05-01
This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910 μm fiber as a point light source and 30 light receiving fibers of three sizes (i.e., 50 μm, 105 μm and 200 μm) arranged in a special pattern to enhance signal acquisitions over the spatial distances of up to 36 mm. The multichannel probe allows simultaneous acquisition of 30 spatially-resolved reflectance spectra of food samples with either flat or curved surface over the spectral region of 550-1,650 nm. The measured reflectance spectra can be used for estimating the optical scattering and absorption properties of food samples, as well as for assessing the tissues of the samples at different depths. Several calibration procedures that are unique to this probe were carried out; they included linearity calibrations for each channel of the hyperspectral imaging system to ensure consistent linear responses of individual channels, and spectral response calibrations of individual channels for each fiber size group and between the three groups of different size fibers. Finally, applications of this new multichannel probe were demonstrated through the optical property measurement of liquid model samples and tomatoes of different maturity levels. The multichannel probe offers new capabilities for optical property measurement and quality detection of food and agricultural products.
Yao, Huajian; Shearer, Peter M.; Gerstoft, Peter
2013-01-01
Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest megathrust earthquakes in the past 10 y using a compressive-sensing (sparse source recovery) technique, resolving generally low-frequency radiation closer to the trench at shallower depths and high-frequency radiation farther from the trench at greater depths. Together with coseismic slip models and early aftershock locations, our results suggest depth-varying frictional properties at the subducting plate interfaces. The shallower portion of the slab interface (above ∼15 km) is frictionally stable or conditionally stable and is the source region for tsunami earthquakes with large coseismic slip, deficient high-frequency radiation, and few early aftershocks. The slab interface at intermediate depths (∼15–35 km) is the main unstable seismogenic zone for the nucleation of megathrust quakes, typically with large coseismic slip, abundant early aftershocks, and intermediate- to high-frequency radiation. The deeper portion of the slab interface (∼35–45 km) is seismically unstable, however with small coseismic slip, dominant high-frequency radiation, and relatively fewer aftershocks.
Scale-free brain quartet: artistic filtering of multi-channel brainwave music.
Wu, Dan; Li, Chaoyi; Yao, Dezhong
2013-01-01
To listen to the brain activities as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which translated scalp EEGs into music notes according to the power law of both EEG and music. In the present study, the methodology was extended for deriving a quartet from multi-channel EEGs with artistic beat and tonality filtering. EEG data from multiple electrodes were first translated into MIDI sequences by SFBM, respectively. Then, these sequences were processed by a beat filter which adjusted the duration of notes in terms of the characteristic frequency. And the sequences were further filtered from atonal to tonal according to a key defined by the analysis of the original music pieces. Resting EEGs with eyes closed and open of 40 subjects were utilized for music generation. The results revealed that the scale-free exponents of the music before and after filtering were different: the filtered music showed larger variety between the eyes-closed (EC) and eyes-open (EO) conditions, and the pitch scale exponents of the filtered music were closer to 1 and thus it was more approximate to the classical music. Furthermore, the tempo of the filtered music with eyes closed was significantly slower than that with eyes open. With the original materials obtained from multi-channel EEGs, and a little creative filtering following the composition process of a potential artist, the resulted brainwave quartet opened a new window to look into the brain in an audible musical way. In fact, as the artistic beat and tonal filters were derived from the brainwaves, the filtered music maintained the essential properties of the brain activities in a more musical style. It might harmonically distinguish the different states of the brain activities, and therefore it provided a method to analyze EEGs from a relaxed audio perspective.
Scale-Free Brain Quartet: Artistic Filtering of Multi-Channel Brainwave Music
Wu, Dan; Li, Chaoyi; Yao, Dezhong
2013-01-01
To listen to the brain activities as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which translated scalp EEGs into music notes according to the power law of both EEG and music. In the present study, the methodology was extended for deriving a quartet from multi-channel EEGs with artistic beat and tonality filtering. EEG data from multiple electrodes were first translated into MIDI sequences by SFBM, respectively. Then, these sequences were processed by a beat filter which adjusted the duration of notes in terms of the characteristic frequency. And the sequences were further filtered from atonal to tonal according to a key defined by the analysis of the original music pieces. Resting EEGs with eyes closed and open of 40 subjects were utilized for music generation. The results revealed that the scale-free exponents of the music before and after filtering were different: the filtered music showed larger variety between the eyes-closed (EC) and eyes-open (EO) conditions, and the pitch scale exponents of the filtered music were closer to 1 and thus it was more approximate to the classical music. Furthermore, the tempo of the filtered music with eyes closed was significantly slower than that with eyes open. With the original materials obtained from multi-channel EEGs, and a little creative filtering following the composition process of a potential artist, the resulted brainwave quartet opened a new window to look into the brain in an audible musical way. In fact, as the artistic beat and tonal filters were derived from the brainwaves, the filtered music maintained the essential properties of the brain activities in a more musical style. It might harmonically distinguish the different states of the brain activities, and therefore it provided a method to analyze EEGs from a relaxed audio perspective. PMID:23717527
Highly Efficient Compression Algorithms for Multichannel EEG.
Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda
2018-05-01
The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.
2013-01-01
Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral responses. Serial FMAERs may be useful for tracking language change in LKS. Cortical FMAERs may augment invasive cortical language testing in epilepsy surgical patients. The FMAER may be normal in ASD and other language disorders when pathology spares the superior temporal gyrus and surround but presumably involves other brain regions. Ear/mastoid reference electrodes should be avoided and multichannel, reference free recordings utilized. Source analysis may assist in better understanding of complex FMAER findings. PMID:23351174
NASA Technical Reports Server (NTRS)
Petty, G. W.
1994-01-01
Microwave rain rate retrieval algorithms have most often been formulated in terms of the raw brightness temperatures observed by one or more channels of a satellite radiometer. Taken individually, single-channel brightness temperatures generally represent a near-arbitrary combination of positive contributions due to liquid water emission and negative contributions due to scattering by ice and/or visibility of the radiometrically cold ocean surface. Unfortunately, for a given rain rate, emission by liquid water below the freezing level and scattering by ice particles above the freezing level are rather loosely coupled in both a physical and statistical sense. Furthermore, microwave brightness temperatures may vary significantly (approx. 30-70 K) in response to geophysical parameters other than liquid water and precipitation. Because of these complications, physical algorithms which attempt to directly invert observed brightness temperatures have typically relied on the iterative adjustment of detailed micro-physical profiles or cloud models, guided by explicit forward microwave radiative transfer calculations. In support of an effort to develop a significantly simpler and more efficient inversion-type rain rate algorithm, the physical information content of two linear transformations of single-frequency, dual-polarization brightness temperatures is studied: the normalized polarization difference P of Petty and Katsaros (1990, 1992), which is intended as a measure of footprint-averaged rain cloud transmittance for a given frequency; and a scattering index S (similar to the polarization corrected temperature of Spencer et al.,1989) which is sensitive almost exclusively to ice. A reverse Monte Carlo radiative transfer model is used to elucidate the qualitative response of these physically distinct single-frequency indices to idealized 3-dimensional rain clouds and to demonstrate their advantages over raw brightness temperatures both as stand-alone indices of precipitation activity and as primary variables in physical, multichannel rain rate retrieval schemes. As a byproduct of the present analysis, it is shown that conventional plane-parallel analyses of the well-known foot-print-filling problem for emission-based algorithms may in some cases give seriously misleading results.
Romano, Ryan C; Carter, Jodi M; Folpe, Andrew L
2015-08-01
Malignant melanomas are known to express vimentin, among other intermediate filaments. Though anomalous keratin expression by malignant melanoma has been reported, its frequency is not well-established and this phenomenon is not well-known. We have seen in consultation a number of malignant melanomas with anomalous expression of keratin, other intermediate filaments, or synaptophysin, and therefore studied a large group of primary and metastatic melanomas to determine the frequency of these events. About 73 cases of malignant melanoma (22 primaries and 51 metastases) from 71 patients (51 male, 20 female; mean 59 years, range 17-87 years) were retrieved from our archives. Prior diagnoses were confirmed by re-review of hematoxylin and eosin sections and relevant (e.g., S100 protein, HMB45, Melan-A, and tyrosinase) immunohistochemical studies. Available sections were immunostained for keratin (OSCAR and AE1/AE3 antibodies), desmin, neurofilament protein, glial fibrillary acidic protein, synaptophysin, and chromogranin A. Not all cases could be tested for all markers. Cases were predominantly epithelioid (48/73, 66%) or spindle cell/desmoplastic (25/73, 34%). S100 protein, Melan-A, HMB45, and tyrosinase were positive in 60/65 (92%), 34/64 (53%), 30/60 (50%), 25/48 (52%) of cases, respectively. All five S100-protein-negative cases expressed at least one of the other melanocytic markers: Melan-A (two of four, 50%), HMB45 (two of three, 67%), and tyrosinase (one of two, 50%). All cases expressed at least one melanocytic marker. Cases were positive for keratin (OSCAR, 17/61, 28%; AE1/AE3, 16/40, 40%), desmin (11/47, 24%), neurofilament protein (5/31, 16%), glial fibrillary acidic protein (3/32, 9%), and synaptophysin (10/34, 29%), typically only in a minority of cells. Chromogranin was negative (0/32, 0%). Altogether 9/73 cases (12%) showed expression of >1 intermediate filament. All S100-protein-negative melanomas showed anomalous intermediate filament expression (keratin--one case, desmin--three cases, neurofilament protein--one case). Anomalous intermediate filament or synaptophysin expression was more common in epithelioid (intermediate filament, 27/48, 56%; synaptophysin, 7/22, 32%) as compared with spindle cell/desmoplastic (intermediate filament, 8/25, 32%; synaptophysin, 3/12, 25%) melanomas. Overall, 48% (35/73) of cases showed anomalous expression of at least one intermediate filament. Anomalous expression of all intermediate filaments and synaptophysin was found in significant subsets of malignant melanoma, representing potentially serious diagnostic pitfalls. While the inclusion of consultation cases may inflate the frequency of these findings in this series, similar findings were also seen in institutional cases. Malignant melanoma showing anomalous intermediate filament and synaptophysin expression may easily be mistaken for carcinomas, rhabdomyosarcomas, and neuroendocrine tumors. Awareness of this phenomenon, careful histopathological evaluation, and an appropriate melanocytic immunohistochemical panel should facilitate the diagnosis of malignant melanoma with unusual immunophenotypes.
Restoration of multichannel microwave radiometric images
NASA Technical Reports Server (NTRS)
Chin, R. T.; Yeh, C. L.; Olson, W. S.
1983-01-01
A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation.
Multi-channel retarding field analyzer for EAST
NASA Astrophysics Data System (ADS)
M, HENKEL; D, HÖSCHEN; Y, LIANG; Y, LI; S, C. LIU; D, NICOLAI; N, SANDRI; G, SATHEESWARAN; N, YAN; H, X. ZHANG; the EAST, team2
2018-05-01
A multi-channel retarding field analyzer (MC-RFA) including two RFA modules and two Langmuir probes to measure the ion and electron temperature profiles within the scrape-off layer was developed for investigations of the interplay between magnetic topology and plasma transport at the plasma boundary. The MC-RFA probe for the stellarator W7-X and first measurements at the tokamak EAST was designed. The probe head allows simultaneous multi-channel ion temperature as well as for electron temperature measurements. The usability for radial correlation measurements of the measured ion currents is also given.
Acousto-Optic Applications for Multichannel Adaptive Optical Processor
1992-06-01
AO cell and the two- channel line-scan camera system described in Subsection 4.1. The AO material for this IntraAction AOD-70 device was flint glass (n...Single-Channel 1.68 (flint glass ) 60,.0 AO Cell Multichannel 2.26 (TeO 2) 20.0 AO Cell Beam splitter 1.515 ( glass ) 50.8 Multichannel correlation was...Tone Intermodulation Dynamic Ranges of Longitudinal TeO2 Bragg Cells for Several Acoustic Power Densities 4-92 f f2 f 3 1 t SOURCE: Reference 21 TR-92
Study of high performance alloy electroforming
NASA Technical Reports Server (NTRS)
Malone, G. A.
1985-01-01
More panels electroformed with intentional variations of pulse plating parameters are being made. Pulse plating frequency was noted to have a significant effect regarding mechanical properties. The use of a high pulse frequency (assuming fixed duty cycles) results in an increase in ductility and a decrease in ultimate and yield strengths. Electroforming to intermediate frequencies is being done to obtain the best possible combination of ductility and strength. Results of some tests from high frequency specimens are tabulated.
Using resolvent analysis for the design of separation control on a NACA 0012 airfoil
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Taira, Kunihiko
2017-11-01
A combined effort based on large-eddy simulation and resolvent analysis on the separated flow over a NACA 0012 airfoil is conducted to design active flow control for suppression of separation. This study considers the the airfoil at 6 deg. angle-of-attack and Reynolds number of 23000. The response mode obtained from the resolvent analysis about the baseline turbulent mean flow reveals modal structures that can be categorized into three families when sweeping through the resonant frequency: (1) von Karman wake structure for low frequency; (2) Kelvin-Helmholtz structure in the separation bubble for high frequency; (3) blended structure of (1) and (2) for the intermediate frequency. Leveraging the insights from resolvent analysis, unsteady thermal actuation is introduced to the flow near the leading-edge to examine the use of the frequencies from three families for separation control in LES. As indicated by the resolvent response modes, we find that the use of intermediate frequencies are most effective in suppressing the flow separation, since the shear layer over the separation bubble and the wake are both receptive to the perturbation at the these frequencies. The resolvent-analysis-based control strategy achieves 35% drag reduction and 9% lift increase with effective frequency. This work was supported by Office of Naval Research (N00014-15-R-FO13) and Army Research Office (W911NF-14-1-0224).
Multichannel analyzers at high rates of input
NASA Technical Reports Server (NTRS)
Rudnick, S. J.; Strauss, M. G.
1969-01-01
Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.
Note: Design and investigation of a multichannel plasma-jet triggered gas switch.
Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong
2014-07-01
We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.
Kato, K; Wang, Yujun; Kobayashi, J; Julienne, P S; Inouye, S
2017-04-21
Multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms. We observe a shift in the scattering length where the first atom-dimer resonance appears in the ^{41}K-^{87}Rb system relative to the position of the previously observed atom-dimer resonance in the ^{40}K-^{87}Rb system. This shift is well explained by our calculations with a three-body model including van der Waals interactions, and, more importantly, multichannel spinor physics. With only minor differences in the atomic masses of the admixtures, the shift in the atom-dimer resonance positions can be cleanly ascribed to the isolated and overlapping Feshbach resonances in the ^{40}K-^{87}Rb and ^{41}K-^{87}Rb systems, respectively. Our study demonstrates the role of multichannel Feshbach physics in determining Efimov resonances in heteronuclear three-body systems.
Solar wind pickup of ionized Venus exosphere atoms
NASA Technical Reports Server (NTRS)
Curtis, S. A.
1981-01-01
Previous calculations of electrostatic and electromagnetic growth rates for plasma instabilities have neglected the thermal spread of the distribution function of the planetary ions. We consider the effects of finite temperatures for exospheric ions borne in the solar wind. Specifically, growth rates are calculated for electromagnetic instabilities in the low-frequency case for Alfven waves and the intermediate frequency case for whistlers. Also, electrostatic growth rates are calculated for the intermediate frequency regime. From these growth rates, estimates are derived for the pickup times of the planetary ions. The electromagnetic instabilities are shown to produce the most rapid pickup. In the situation where the angle between the local Venus magnetic field and the plasma flow direction is small, the pickup times for both electromagnetic and electrostatic instabilities become very long. A possible consequence of this effect is to produce regions of enhanced planetary ion density in favorable Venus magnetic field-solar wind flow geometries.
Single-Source Gravitational Wave Limits From the J1713+0747 24-hr Global Campaign
NASA Astrophysics Data System (ADS)
Dolch, T.; NANOGrav Collaboration; Ellis, J. A.; Chatterjee, S.; Cordes, J. M.; Lam, M. T.; Bassa, C.; Bhattacharyya, B.; Champion, D. J.; Cognard, I.; Crowter, K.; Demorest, P. B.; Hessels, J. W. T.; Janssen, G.; Jenet, F. A.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kondratiev, V. I.; Kramer, M.; Lazarus, P.; Lazio, T. J. W.; Lorimer, D. R.; Madison, D. R.; McLaughlin, M. A.; Palliyaguru, N.; Perrodin, D.; Ransom, S. M.; Roy, J.; Shannon, R. M.; Smits, R.; Stairs, I. H.; Stappers, B. W.; Stinebring, D. R.; Stovall, K.; Verbiest, J. P. W.; Zhu, W. W.
2016-05-01
Dense, continuous pulsar timing observations over a 24-hr period provide a method for probing intermediate gravitational wave (GW) frequencies from 10 microhertz to 20 millihertz. The European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes Pulsar Timing Array (PPTA), and the combined International Pulsar Timing Array (IPTA) all use millisecond pulsar observations to detect or constrain GWs typically at nanohertz frequencies. In the case of the IPTA's nine-telescope 24-Hour Global Campaign on millisecond pulsar J1713+0747, GW limits in the intermediate frequency regime can be produced. The negligible change in dispersion measure during the observation minimizes red noise in the timing residuals, constraining any contributions from GWs due to individual sources. At 10-5 Hz, the 95% upper limit on strain is 10-11 for GW sources in the pulsar's direction.
NASA Technical Reports Server (NTRS)
Persinger, Tim; Castelaz, Michael W.
1990-01-01
This paper presents the results of spectral type and luminosity classification of reference stars in the Allegheny Observatory MAP parallax program, using broadband and intermediate-band photometry. In addition to the use of UBVRI and DDO photometric systems, the uvbyH-beta photometric system was included for classification of blue (B - V less than 0.6) reference stars. The stellar classifications made from the photometry are used to determine spectroscopic parallaxes. The spectroscopic parallaxes are used in turn to adjust the relative parallaxes measured with the MAP to absolute parallaxes. A new method for dereddening stars using more than one photometric system is presented. In the process of dereddening, visual extinctions, spectral types, and luminosity classes are determined, as well as a measure of the goodness of fit. The measure of goodness of fit quantifies confidence in the stellar classifications. It is found that the spectral types are reliable to within 2.5 spectral subclasses.
Frequency of Examinations and Student Achievement in a Randomized Experiment
ERIC Educational Resources Information Center
De Paola, Maria; Scoppa, Vincenzo
2011-01-01
We carry out a randomized experiment involving undergraduate students enrolled at an Italian University attending two introductory economics classes to evaluate the impact on achievement of examination frequency and interim feedback provision. Students in the treated group were allowed to undertake an intermediate exam and were informed about the…
NASA Astrophysics Data System (ADS)
Li, Zhong-xiao; Li, Zhen-chun
2016-09-01
The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.
Multichannel Compressive Sensing MRI Using Noiselet Encoding
Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin
2015-01-01
The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548
47 CFR 76.1901 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Applicability. 76.1901 Section 76.1901 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... to distribution of any content over the Internet, nor to a multichannel video programming distributor...
47 CFR 76.1901 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Applicability. 76.1901 Section 76.1901 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... to distribution of any content over the Internet, nor to a multichannel video programming distributor...
47 CFR 76.1901 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Applicability. 76.1901 Section 76.1901 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... to distribution of any content over the Internet, nor to a multichannel video programming distributor...
Integrated multi-channel vehicle-vehicle and vehicle-roadside communications for ITS
DOT National Transportation Integrated Search
2008-12-01
This research describes a medium access control (MAC) protocol to Enable multi-channel operation for dedicated short-range communication (DSRC). In particular, we focus on the challenge of supporting potentially high-bandwidth commercial or infotainm...
Code of Federal Regulations, 2010 CFR
2010-10-01
... in this subpart: (a) Multichannel video programming system. A distribution system that makes available for purchase, by customers or subscribers, multiple channels of video programming other than an...-to-home multichannel video programming via satellite, and satellite master antenna systems. (b...
NASA Astrophysics Data System (ADS)
Kardell, D. A.; Christeson, G. L.; Reece, R.; Carlson, R. L.
2017-12-01
The upper section of oceanic crust (layer 2A) commonly exhibits relatively low seismic velocities due to abundant pore and crack space created by the extrusive emplacement of magma and extensional faulting at the spreading ridge. While this is generally true for all spreading rates, previous studies have shown that slow seafloor spreading can yield much higher levels of upper crustal heterogeneity than observed for faster spreading rates. We use a recent multichannel seismic dataset collected with a 12.5 km streamer during the CREST cruise (Crustal Reflectivity Experiment Southern Transect) to build eleven 60-80 km-long tomographic velocity models. These two-dimensional models include both ridge-normal and ridge-parallel orientations and cover oceanic crust produced at slow to intermediate spreading rates. Crustal ages range between 0 and 70 m.y., spreading rates range between slow-spreading and intermediate-spreading, and sedimentary cover thickness ranges from 0 m close to the spreading center to 500 m proximal to the Rio Grande Rise. Our results show a trend of increasing layer 2A velocities with age out to the midpoint of the seismic transect. There is a rapid increase in velocities from 2.8 km/s near the ridge to 4.3 km/s around 10 Ma, and a slower increase to velocities around 5 km/s in 37 m.y. old crust. While this indicates an ongoing evolution in oceanic crust older than expected, the velocities do level off in the older half of the transect, averaging 5 km/s. Crust covered by a thicker sedimentary section can exhibit velocities up to 1 km/s faster than adjacent non-sedimented crust, accounting for much of the local variations. This is possibly due to the effects of a sealed hydrothermal system. We also observe a more heterogeneous velocity structure parallel to the ridge than in the ridge-normal orientation, and more velocity heterogeneity for slow-spreading crust compared to intermediate-spreading crust.
Apolinário, T A; Paiva, C L A; Agostinho, L A
2017-04-05
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by a dynamic mutation due to the expansion of CAG repeats in the HTT gene (4p16.3). The considered normal alleles have less than 27 CAG repeats. Intermediate alleles (IAs) show 27 to 35 CAG repeats and expanded alleles have more than 35 repeats. The IAs apparently have shown a normal phenotype. However, there are some reported associations between individuals that bear an IA and clinical HD signs, such as behavioral disturbs. The association of IAs with the presence of clinical signs gives clinical relevance to these patients. We emphasized the importance of determining the frequency of IA alleles in the general population as well as in HD families. Therefore, the aim of this study was to conduct a systematic review, in order to investigate the frequency of IAs in the overall chromosomes of different ethnic groups and of families with HD history worldwide as well as the frequency of individuals who bear the intermediate alleles. We searched indexed articles from the following electronic databases: U.S. National Library of Medicine and the National Institutes of Health (PubMed), Pubmed Central (PMC) and Virtual Health Library (VHL). Therefore, 488 articles were obtained and, of these, 33 had been published in more than one database. We accepted the article of only one database and ended up with 455 articles for this review. The frequency of IAs within the chromosomes of the general population ranged from 0.45 to 8.7% and of individuals with family history of HD ranged from 0.05 to 5.1%. The higher frequency of IAs in the general population (8.7%) was found in one Brazilian cohort.
47 CFR 76.1302 - Carriage agreement proceedings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Carriage agreement proceedings. 76.1302 Section... proceedings. (a) Complaints. Any video programming vendor or multichannel video programming distributor... required. Any aggrieved video programming vendor or multichannel video programming distributor intending to...
47 CFR 76.1702 - Equal employment opportunity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Equal employment opportunity. 76.1702 Section... documents pertaining to the other employment units of a multichannel video programming distributor that... multichannel video programming distributor shall provide reasonable accommodation at these locations for...
47 CFR 76.1702 - Equal employment opportunity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Equal employment opportunity. 76.1702 Section... documents pertaining to the other employment units of a multichannel video programming distributor that... multichannel video programming distributor shall provide reasonable accommodation at these locations for...
Tian, Yunfei; Wu, Peng; Wu, Xi; Jiang, Xiaoming; Xu, Kailai; Hou, Xiandeng
2013-04-21
A simple and economical multi-channel optical sensor using corona discharge radical emission spectroscopy is developed and explored as an optical nose for discrimination analysis of volatile organic compounds, wines, and even isomers.
47 CFR 76.1302 - Carriage agreement proceedings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... proceedings. (a) Complaints. Any video programming vendor or multichannel video programming distributor... required. Any aggrieved video programming vendor or multichannel video programming distributor intending to... programming distributor that it intends to file a complaint with the Commission based on actions alleged to...
47 CFR 76.3 - Other pertinent rules.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... Commission's rules and regulations relating to Multichannel Video and the Cable Television Service are.... Part 78—Cable Television Relay Service. Part 79—Closed Captioning of Video Programming. Part 91...
47 CFR 76.3 - Other pertinent rules.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... Commission's rules and regulations relating to Multichannel Video and the Cable Television Service are.... Part 78—Cable Television Relay Service. Part 79—Closed Captioning of Video Programming. Part 91...
47 CFR 76.3 - Other pertinent rules.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... Commission's rules and regulations relating to Multichannel Video and the Cable Television Service are.... Part 78—Cable Television Relay Service. Part 79—Closed Captioning of Video Programming. Part 91...
47 CFR 76.3 - Other pertinent rules.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... Commission's rules and regulations relating to Multichannel Video and the Cable Television Service are.... Part 78—Cable Television Relay Service. Part 79—Closed Captioning of Video Programming. Part 91...
47 CFR 76.3 - Other pertinent rules.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... Commission's rules and regulations relating to Multichannel Video and the Cable Television Service are.... Part 78—Cable Television Relay Service. Part 79—Closed Captioning of Video Programming. Part 91...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Definitions. 76.800 Section 76.800 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... owns or controls the common areas of a multiple dwelling unit building. (c) MVPD. A multichannel video...
47 CFR 0.111 - Functions of the Bureau.
Code of Federal Regulations, 2014 CFR
2014-10-01
... opportunity matters involving broadcasters, cable operators and other multichannel video programming... section 224 of the Communications Act. (13) Resolve complaints regarding multichannel video and cable... devices); subpart Q (regulation of carriage agreements); subpart S (Open Video Systems); and subparts T, U...
47 CFR 0.111 - Functions of the Bureau.
Code of Federal Regulations, 2013 CFR
2013-10-01
... opportunity matters involving broadcasters, cable operators and other multichannel video programming... section 224 of the Communications Act. (13) Resolve complaints regarding multichannel video and cable... devices); subpart Q (regulation of carriage agreements); subpart S (Open Video Systems); and subparts T, U...
Optical multichannel sensing of skin blood pulsations
NASA Astrophysics Data System (ADS)
Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis
2004-09-01
Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.
Compact multichannel MEMS based spectrometer for FBG sensing
NASA Astrophysics Data System (ADS)
Ganziy, D.; Rose, B.; Bang, O.
2017-04-01
We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the spectrometer. This makes the proposed interrogator highly cost-effective. The digital nature of the DMD also provides opportunities for advanced programmable spectroscopy.
Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology
NASA Astrophysics Data System (ADS)
Konishi, Tsuyoshi; Yamasaki, Yu
2018-02-01
Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.
Multi-functional quantum router using hybrid opto-electromechanics
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang
2018-03-01
Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.
VUV Fourier-Transform absorption study of the npπ1 Πu-, v, N ←X1 Σg+, v″ = 0,N″ transitions in D2
NASA Astrophysics Data System (ADS)
Glass-Maujean, M.; Jungen, Ch.; Dickenson, G. D.; Ubachs, W.; de Oliveira, N.; Joyeux, D.; Nahon, L.
2015-09-01
The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-Transform spectrometer has been used to measure Q (N″) (N -N″ = 0) absorption transitions of the D2 molecule. Some 212 Q-lines were assigned and their transition frequencies determined up to excitation energies of 137 000 cm-1 above the ground state, thereby extending the earlier work by various authors, and considerably improving the spectral accuracy (<0.1 cm-1). The assignments have been aided by first principles multichannel quantum defect theory (MQDT) calculations which also provide predictions of the autoionization widths of the upper levels.
Antenna pattern correction for the Nimbus-7 SMMR
NASA Technical Reports Server (NTRS)
Milman, A. S.
1986-01-01
This paper describes the philosophy and method used to develop the antenna pattern correction (APC) algorithm that was used on the data from the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7. There are limitations on what can be accomplished with such a procedure; these limitations are explored with the aid of Fourier analysis, even though the algorithm used on the SMMR data does not perform any Fourier transforms. The resulting analysis showed that, for the SMMR instrument, no useful improvement could be made in the data in terms of reduction of side lobes, but the quality of the sea surface temperature retrievals could be improved considerably by matching the antenna beamwidths at the different frequencies.
Rocketdyne automated dynamics data analysis and management system
NASA Technical Reports Server (NTRS)
Tarn, Robert B.
1988-01-01
An automated dynamics data analysis and management systems implemented on a DEC VAX minicomputer cluster is described. Multichannel acquisition, Fast Fourier Transformation analysis, and an online database have significantly improved the analysis of wideband transducer responses from Space Shuttle Main Engine testing. Leakage error correction to recover sinusoid amplitudes and correct for frequency slewing is described. The phase errors caused by FM recorder/playback head misalignment are automatically measured and used to correct the data. Data compression methods are described and compared. The system hardware is described. Applications using the data base are introduced, including software for power spectral density, instantaneous time history, amplitude histogram, fatigue analysis, and rotordynamics expert system analysis.
On the design of a postprocessor for a search for extraterrestrial intelligence /SETI/ system
NASA Technical Reports Server (NTRS)
Healy, T. J.; Seeger, C. L.; Stull, M. A.
1979-01-01
The design of an on-line postprocessor for a search for extraterrestrial intelligence (SETI) system is described. Signal processing tasks of the postprocessor include: (1) analysis of power level, phase coherence, and state of polarization of single-channel signals in a search for significant signals; (2) grouping or aggregation of adjacent channel data, time averaging of data; and (3) the detection of drifting and modulated signals. Control functions include multichannel spectrum analyzer frequency and clock control, system calibration and selfdiagnostic, control of data flow to and from short-term and long-term (archival) memories, and operation of detection subsystems, such as a visual display and a tunable receiver.
Understanding perception of active noise control system through multichannel EEG analysis.
Bagha, Sangeeta; Tripathy, R K; Nanda, Pranati; Preetam, C; Das, Debi Prasad
2018-06-01
In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music, noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with noise and music classes, the proposed method has sensitivity values of 75.831% ( p < 0.001 ) and 99.31% ( p < 0.001 ), respectively. The method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.
Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.
2013-01-01
Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047
Multi-frequency communication system and method
Carrender, Curtis Lee; Gilbert, Ronald W.
2004-06-01
A multi-frequency RFID remote communication system is provided that includes a plurality of RFID tags configured to receive a first signal and to return a second signal, the second signal having a first frequency component and a second frequency component, the second frequency component including data unique to each remote RFID tag. The system further includes a reader configured to transmit an interrogation signal and to receive remote signals from the tags. A first signal processor, preferably a mixer, removes an intermediate frequency component from the received signal, and a second processor, preferably a second mixer, analyzes the IF frequency component to output data that is unique to each remote tag.
Resonant-type MEMS transducers excited by two acoustic emission simulation techniques
NASA Astrophysics Data System (ADS)
Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen
2004-07-01
Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.
Effect of Free Stream Turbulence on Flow Past a Circular Cylinder at Low Reynolds Numbers
NASA Astrophysics Data System (ADS)
Kumar, Vinoth; Singh, Mrityunjay; Thangadurai, Murugan; Chatterjee, P. K.
2018-01-01
Circular cylinders experiencing different upstream flow conditions have been studied for low Reynolds numbers using hot-wire anemometry and smoke flow visualizations. The upstream condition of the cylinder in the test section is varied using a wire mesh placed at the entrance of the test section. The Reynolds number is varied by varying the diameter of the cylinder and the mean velocity in the test section. Smooth cylinders of diameter varying from 1.25 to 25 mm are used in the present study. A multi-channel hot-wire anemometry is used for measuring the fluctuating velocities in the test section and the wake behind the cylinder. The sectional views of the wake behind the cylinder are obtained using a 4 MP CCD camera, 200 mJ pulsed laser and a fog generator. The flow quality in the test section is examined using higher order turbulence statistics. The effect of free stream turbulence levels and their frequencies on wake structures and the shedding frequencies of circular cylinders are studied in detail. It has been observed that the alteration in wake structure and the shedding frequency depend strongly on the frequencies and the amplitudes of upstream disturbances besides the diameter of the circular cylinder.
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
Improved RF Isolation Amplifier
NASA Technical Reports Server (NTRS)
Stevens, G. L.; Macconnell, J.
1985-01-01
Circuit has high reverse isolation and wide bandwidth. Wideband isolation amplifier has low intermodulation distortion and high reverse isolation. Circuit does not require selected or matched components or directional coupling device. Circuit used in applications requiring high reverse isolation such as receiver intermediate-frequency (IF) strips and frequency distribution systems. Also applicable in RF and video signaling.
Low-loss waveguides for THz guidance and devices
NASA Astrophysics Data System (ADS)
Rahman, B. M. A.; Themistos, C.; Tanvir, H.; Uthman, M.; Quadir, A.; Markides, C.
2013-03-01
The terahertz (THz) region occupies a large portion of the electromagnetic spectrum, located between the microwave and optical frequencies and normally is defined as the band ranging from 0.1 to 10 THz. In recent years, this intermediate THz radiation band has attracted considerable interest, because it offers significant scientific and technological potential for applications in many fields, such as sensing [1], imaging [2] and spectroscopy [3]. However, waveguiding in this intermediate spectral region is a major challenge and strong dielectric and conductive losses in the terahertz frequency range have been a major problem for waveguiding. The conventional guiding structures exemplified by microstrips, coplanar striplines and coplanar waveguides [4] are highly lossy and dispersive. However, so far the most promising dielectric waveguides have been the use of photonic crystal fibers at terahertz frequencies [5, 6] and metal coated guides [7] at terahertz frequencies. In this paper, various types of practical dielectric and metal coated waveguides are evaluated and design optimization of Quantum Cascade Lasers, MMI-based power splitters and narrow-band filters are presented, by using full-vectorial finite element method [8].
NASA Astrophysics Data System (ADS)
Desiraju, Naveen Kumar; Doclo, Simon; Wolff, Tobias
2017-12-01
Acoustic echo cancellation (AEC) is a key speech enhancement technology in speech communication and voice-enabled devices. AEC systems employ adaptive filters to estimate the acoustic echo paths between the loudspeakers and the microphone(s). In applications involving surround sound, the computational complexity of an AEC system may become demanding due to the multiple loudspeaker channels and the necessity of using long filters in reverberant environments. In order to reduce the computational complexity, the approach of partially updating the AEC filters is considered in this paper. In particular, we investigate tap selection schemes which exploit the sparsity present in the loudspeaker channels for partially updating subband AEC filters. The potential for exploiting signal sparsity across three dimensions, namely time, frequency, and channels, is analyzed. A thorough analysis of different state-of-the-art tap selection schemes is performed and insights about their limitations are gained. A novel tap selection scheme is proposed which overcomes these limitations by exploiting signal sparsity while not ignoring any filters for update in the different subbands and channels. Extensive simulation results using both artificial as well as real-world multichannel signals show that the proposed tap selection scheme outperforms state-of-the-art tap selection schemes in terms of echo cancellation performance. In addition, it yields almost identical echo cancellation performance as compared to updating all filter taps at a significantly reduced computational cost.
NASA Astrophysics Data System (ADS)
Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng
2018-02-01
During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.
Noise Reduction with Microphone Arrays for Speaker Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Z
Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identificationmore » algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?« less
Shoshana, O; Pérez Lustres, J L; Ernsting, N P; Ruhman, S
2006-06-14
Using multichannel femtosecond spectroscopy we have followed Na- charge transfer to solvent (CTTS) dynamics in THF solution. Absorption of the primary photoproducts in the visible, resolved here for the first time, consists of an asymmetric triplet centered at 595 nm, which we assign to a metastable incompletely solvated neutral atomic sodium species. Decay of this feature within approximately 1 ps to a broad and structureless solvated neutral is accompanied by broadening and loss of spectral detail. Kinetic analysis shows that both the spectral structure and the decay of this band are independent of the excitation photon frequency in the range 400-800 nm. With different pump-probe polarizations the anisotropy in transient transmission has been charted and its variation with excitation wavelength surveyed. The anisotropies are assigned to the reactant bleach, indicating that due to solvent-induced symmetry breaking, the CTTS absorption band of Na- is made up of discreet orthogonally polarized sub bands. None of the anisotropy in transient absorption could be associated with the photoproduct triplet band even at the earliest measurable time delays. Along with the documented differences in the spatial distribution of ejected electrons across the tested excitation wavelength range, these results lead us to conclude that photoejection is extremely rapid, and that loss of correlations between the departing electron and its neutral core is faster than our time resolution of approximately 60 fs.
NASA Astrophysics Data System (ADS)
Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi
2018-05-01
By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.
47 CFR 76.1301 - Prohibited practices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Prohibited practices. 76.1301 Section 76.1301... interest. No cable operator or other multichannel video programming distributor shall require a financial... systems. (b) Exclusive rights. No cable operator or other multichannel video programming distributor shall...
47 CFR 76.1301 - Prohibited practices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... interest. No cable operator or other multichannel video programming distributor shall require a financial... systems. (b) Exclusive rights. No cable operator or other multichannel video programming distributor shall coerce any video programming vendor to provide, or retaliate against such a vendor for failing to provide...
Karaboyas, Angelo; Robinson, Bruce M.; Li, Yun; Fukuhara, Shunichi; Bieber, Brian A.; Rayner, Hugh C.; Andreucci, Vittorio E.; Pisoni, Ronald L.; Port, Friedrich K.; Morgenstern, Hal; Akizawa, Tadao; Saran, Rajiv
2013-01-01
It is unknown whether regular patient-doctor contact (PDC) contributes to better outcomes for patients undergoing hemodialysis. Here, we analyzed the associations between frequency and duration of PDC during hemodialysis treatments with clinical outcomes among 24,498 patients from 778 facilities in the international Dialysis Outcomes and Practice Patterns Study (DOPPS). The typical facility PDC frequency, estimated by facility personnel, was high (more than once per week) for 55% of facilities, intermediate (once per week) for 24%, and low (less than once per week) for 21%. The mean ± SD estimated duration of a typical interaction between patient and physician was 7.7±5.6 minutes. PDC frequency and duration varied across DOPPS phases and countries; the proportion of facilities with high PDC frequency was 17% in the United States and 73% across the other countries. Compared with high PDC frequency, the adjusted hazard ratio (HR) for all-cause mortality was 1.06 (95% confidence interval [CI], 0.96 to 1.17) for intermediate PDC frequency and 1.11 (95% CI, 1.01 to 1.23) for low PDC frequency (P=0.03 for trend). Furthermore, each 5-minutes-shorter duration of PDC was associated with a 5% higher risk for death, on average (HR, 1.05; 95% CI, 1.01 to 1.09), adjusted for PDC frequency and other covariates. Multivariable analyses also suggested modest inverse associations between both PDC frequency and duration with hospitalization but not with kidney transplantation. Taken together, these results suggest that policies supporting more frequent and longer duration of PDC may improve patient outcomes in hemodialysis. PMID:23886592
ERIC Educational Resources Information Center
Sumioka, Norihiko; Williams, Atsuko; Yamada, Jun
2016-01-01
A list number recall test in English (L2) was administered to both Japanese (L1) students with beginning-level English proficiency who attended evening high school and Japanese college students with intermediate-level English proficiency. The major findings were that, only for the high school group, the small numbers 1 and 2 in middle positions of…
Application of convolve-multiply-convolve SAW processor for satellite communications
NASA Technical Reports Server (NTRS)
Lie, Y. S.; Ching, M.
1991-01-01
There is a need for a satellite communications receiver than can perform simultaneous multi-channel processing of single channel per carrier (SCPC) signals originating from various small (mobile or fixed) earth stations. The number of ground users can be as many as 1000. Conventional techniques of simultaneously processing these signals is by employing as many RF-bandpass filters as the number of channels. Consequently, such an approach would result in a bulky receiver, which becomes impractical for satellite applications. A unique approach utilizing a realtime surface acoustic wave (SAW) chirp transform processor is presented. The application of a Convolve-Multiply-Convolve (CMC) chirp transform processor is described. The CMC processor transforms each input channel into a unique timeslot, while preserving its modulation content (in this case QPSK). Subsequently, each channel is individually demodulated without the need of input channel filters. Circuit complexity is significantly reduced, because the output frequency of the CMC processor is common for all input channel frequencies. The results of theoretical analysis and experimental results are in good agreement.
Study of ion-gyroscale fluctuations in low-density L-mode plasmas heated by NBI on KSTAR
NASA Astrophysics Data System (ADS)
Lee, W.; Ko, S. H.; Leem, J.; Yun, G. S.; Park, H. K.; Wang, W. X.; Budny, R. V.; Kim, K. W.; Luhmann, N. C., Jr.; The KSTAR Team
2018-04-01
Broadband density fluctuations with peak frequency ranging from 150 to 400 kHz were measured using a multichannel microwave imaging reflectometer in core region of the low-density L-mode plasmas heated by neutral beam injection on KSTAR. These fluctuations have been studied by comparing the dominant mode scales estimated from the measurement with those predicted from linear gyrokinetic simulation. The measured poloidal wavenumbers are qualitatively comparable to those of the ‘fastest growing modes’ from simulations, whereas they are larger than those of the ‘transport-dominant modes’ by about a factor of three. The agreement on wavenumbers between the measurement and linear simulation (for the fastest growing modes) is probably due to sufficiently weak E × B flow shear compared to the maximum linear growth rate. Meanwhile, the transport-dominant modes seem to be related to the fluctuations in lower frequencies (˜80-150 kHz) observed in some of the measurement.
Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited)
Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; ...
2014-07-22
The two-dimensional mm-wave imaging reflectometer (MIR) on DIII-D is a multi-faceted device for diagnosing electron density fluctuations in fusion plasmas. Its multi-channel, multi-frequency capabilities and high sensitivity permit visualization and quantitative diagnosis of density perturbations, including correlation length, wavenumber, mode propagation velocity, and dispersion. The two-dimensional capabilities of MIR are made possible with twelve vertically separated sightlines and four-frequency operation (corresponding to four radial channels). The 48-channel DIII-D MIR system has a tunable source that can be stepped in 500 µs increments over a range of 56 to 74 GHz. An innovative optical design keeps both on-axis and off-axis channelsmore » focused at the cutoff surface, permitting imaging over an extended poloidal region. As a result, the integrity of the MIR optical design is confirmed by comparing Gaussian beam calculations to laboratory measurements of the transmitter beam pattern and receiver antenna patterns.« less
Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.
Horowitz, P; Matthews, B S; Forster, J; Linscott, I; Teague, C C; Chen, K; Backus, P
1986-01-01
Multichannel spectroscopy with millihertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrow-band radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary receiver Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile swept receiver with an 8,388,608-channel spectrum analyzer, on-line signal recognition, and multithreshold archiving. A search of 250 Sun-like stars at 1.4 and 2.8 GHz has been carried out with the Arecibo 305-m antenna, and a meridian transit search of the northern sky is in progress at the Harvard-Smithsonian 26-m antenna. Successive spectra of 400 kHz at 0.05 Hz resolution are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable ("magic") frequencies (such as the 21-cm hydrogen hyperfine line), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Waivers. 76.1207 Section 76.1207... by a provider of multichannel video programming and other services offered over multichannel video programming systems, or an equipment provider that such a waiver is necessary to assist the development or...
47 CFR 76.75 - Specific EEO program requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Equal Employment Opportunity Requirements § 76.75 Specific EEO... or sex is prohibited and that they may notify the Equal Employment Opportunity Commission, the... necessary. Nothing in this section shall be interpreted to require a multichannel video programming...
47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.
Code of Federal Regulations, 2011 CFR
2011-10-01
... content. Where a multichannel video programming distributor retransmits unencrypted digital terrestrial... 47 Telecommunication 4 2011-10-01 2011-10-01 false Redistribution control of unencrypted digital... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Encoding Rules § 76.1909...
Studies of midaltitude cyclone structure with SEASAT scanning multichannel microwave radiometer
NASA Technical Reports Server (NTRS)
Katsaros, K. B.
1984-01-01
The data provided by the atmospheric water channels of SEASAT's Scanning Multichannel Microwave Radiometer (SMMR) is used to investigate mesoscale structure at various stages of the development of a midlatitude cyclone. Seasonal and graphic differences in the storms are also studied.
47 CFR 76.66 - Satellite broadcast signal carriage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals § 76.66 Satellite... satellite carrier that offers multichannel video programming distribution service in the United States to... entirety the primary video, accompanying audio, and closed captioning data contained in line 21 of the...
47 CFR 76.66 - Satellite broadcast signal carriage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals § 76.66 Satellite... satellite carrier that offers multichannel video programming distribution service in the United States to... entirety the primary video, accompanying audio, and closed captioning data contained in line 21 of the...
47 CFR 76.66 - Satellite broadcast signal carriage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals § 76.66 Satellite... satellite carrier that offers multichannel video programming distribution service in the United States to... entirety the primary video, accompanying audio, and closed captioning data contained in line 21 of the...
47 CFR 76.66 - Satellite broadcast signal carriage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals § 76.66 Satellite... satellite carrier that offers multichannel video programming distribution service in the United States to... entirety the primary video, accompanying audio, and closed captioning data contained in line 21 of the...
Multichannel sound reinforcement systems at work in a learning environment
NASA Astrophysics Data System (ADS)
Malek, John; Campbell, Colin
2003-04-01
Many people have experienced the entertaining benefits of a surround sound system, either in their own home or in a movie theater, but another application exists for multichannel sound that has for the most part gone unused. This is the application of multichannel sound systems to the learning environment. By incorporating a 7.1 surround processor and a touch panel interface programmable control system, the main lecture hall at the University of Michigan Taubman College of Architecture and Urban Planning has been converted from an ordinary lecture hall to a working audiovisual laboratory. The multichannel sound system is used in a wide variety of experiments, including exposure to sounds to test listeners' aural perception of the tonal characteristics of varying pitch, reverberation, speech transmission index, and sound-pressure level. The touch panel's custom interface allows a variety of user groups to control different parts of the AV system and provides preset capability that allows for numerous system configurations.
MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?
Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence
2017-09-01
Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.
NASA Astrophysics Data System (ADS)
Ko, Guen Bae; Yoon, Hyun Suk; Kwon, Sun Il; Lee, Chan Mi; Ito, Mikiko; Hong, Seong Jong; Lee, Dong Soo; Lee, Jae Sung
2013-03-01
Silicon photomultipliers (SiPMs) are outstanding photosensors for the development of compact imaging devices and hybrid imaging systems such as positron emission tomography (PET)/ magnetic resonance (MR) scanners because of their small size and MR compatibility. The wide use of this sensor for various types of scintillation detector modules is being accelerated by recent developments in tileable multichannel SiPM arrays. In this work, we present the development of a front-end readout module for multi-channel SiPMs. This readout module is easily extendable to yield a wider detection area by the use of a resistive charge division network (RCN). We applied this readout module to various PET detectors designed for use in small animal PET/MR, optical fiber PET/MR, and double layer depth of interaction (DOI) PET. The basic characteristics of these detector modules were also investigated. The results demonstrate that the PET block detectors developed using the readout module and tileable multi-channel SiPMs had reasonable performance.
NASA Astrophysics Data System (ADS)
Valinataj Omran, A.; Sohbatzadeh, F.; Siadati, S. N.; Hosseinzadeh Colagar, A.; Akishev, Y.; Arefi-Khonsari, F.
2017-08-01
In this article, we developed transporting plasma sources that operate at atmospheric pressure. The effect of electrode configuration on plasma transporting was investigated. In order to increase the transporting plasma cross-section, we converted a plasma stream into four plasma channels by a cylindrical housing. Electron excitation and rotational temperatures were estimated using optical emission spectroscopy. Furthermore, the electrical and temporal characteristics of the plasma, discharge power and charge deposition on the target were investigated. The propagation characteristics of single and multi-channel transporting plasma were compared with the same cross-sectional area. Two configurations for multi-channels were designed for this purpose. Escherichia coli bacteria were exposed to the single and multi-channel transporting discharge for different time durations. After exposure, the results indicated that the inactivation zones were significantly increased by a multi-channel transporting plasma. Finally, E. coli inactivation by those plasma apparatuses was compared with that of several standard antimicrobial test discs such as Gentamicin, Tetracycline, Amoxicillin and Cefixime.
Theory and simulation of multi-channel interference (MCI) widely tunable lasers.
Chen, Quanan; Lu, Qiaoyin; Guo, Weihua
2015-07-13
A novel design of an InP-based monolithic widely tunable laser, multi-channel interference (MCI) laser, is proposed and presented for the first time. The device is comprised of a gain section, a common phase section and a multi-channel interference section. The multi-channel interference section contains a 1x8 splitter based on cascaded 1 × 2 multi-mode interferometers (MMIs) and eight arms with unequal length difference. The rear part of each arm is integrated with a one-port multi-mode interference reflector (MIR). Mode selection of the MCI laser is realized by the constructive interference of the lights reflected back by the eight arms. Through optimizing the arm length difference, a tuning range of more than 40 nm covering the whole C band, a threshold current around 11.5 mA and an side-mode-suppression-ratio (SMSR) up to 48 dB have been predicted for this widely tunable laser. Detailed design principle and numerical simulation results are presented.
[Cochlear implantation in patients with Waardenburg syndrome type II].
Wan, Liangcai; Guo, Menghe; Chen, Shuaijun; Liu, Shuangriu; Chen, Hao; Gong, Jian
2010-05-01
To describe the multi-channel cochlear implantation in patients with Waardenburg syndrome including surgeries, pre and postoperative hearing assessments as well as outcomes of speech recognition. Multi-channel cochlear implantation surgeries have been performed in 12 cases with Waardenburg syndrome type II in our department from 2000 to 2008. All the patients received multi-channel cochlear implantation through transmastoid facial recess approach. The postoperative outcomes of 12 cases were compared with 12 cases with no inner ear malformation as a control group. The electrodes were totally inserted into the cochlear successfully, there was no facial paralysis and cerebrospinal fluid leakage occurred after operation. The hearing threshold in this series were similar to that of the normal cochlear implantation. After more than half a year of speech rehabilitation, the abilities of speech discrimination and spoken language of all the patients were improved compared with that of preoperation. Multi-channel cochlear implantation could be performed in the cases with Waardenburg syndrome, preoperative hearing and images assessments should be done.
Multi-channel orbicularis oculi stimulation to restore eye-blink function in facial paralysis.
Somia, N N; Zonnevijlle, E D; Stremel, R W; Maldonado, C; Gossman, M D; Barker, J H
2001-01-01
Facial paralysis due to facial nerve injury results in the loss of function of the muscles of the hemiface. The most serious complication in extreme cases is the loss of vision. In this study, we compared the effectiveness of single- and multiple-channel electrical stimulation to restore a complete and cosmetically acceptable eye blink. We established bilateral orbicularis oculi muscle (OOM) paralysis in eight dogs; the OOM of one side was directly stimulated using single-channel electrical stimulation and the opposite side was stimulated using multi-channel electrical stimulation. The changes in the palpebral fissure and complete palpebral closure were measured. The difference in current intensities between the multi-channel and single-channel simulation groups was significant, while only multi-channel stimulation produced complete eyelid closure. The latest electronic stimulation circuitry with high-quality implantable electrodes will make it possible to regulate precisely OOM contractions and thus generate complete and cosmetically acceptable eye-blink motion in patients with facial paralysis. Copyright 2001 Wiley-Liss, Inc.
Omnidirectional and multi-channel filtering by photonic quantum wells with negative-index materials.
Lin, Mi; Ouyang, Zhengbiao; Xu, Jun; Qiu, Gaoxin
2009-03-30
We propose a type of photonic quantum well made of two different photonic crystals with negative- and positive-index materials. It is demonstrated by transfer matrix method that, omnidirectional and multichannel filtering can be achieved. Resonance tunneling modes, or the multi-channel filtering modes, are found to exist when a passband of the well photonic crystal is located inside the gap of the barrier photonic crystals. And for each passband of the well photonic crystal in the photonic bandgap of the barrier photonic crystal, the number of modes is the same as the number of periods in the well photonic crystals. Moreover, the modes are insensitive to the incident angle from 0 to 85 degrees and the scaling of the barrier photonic crystals at a certain range. Such structures are useful for all-direction receiving, sending, or linking-up of multi-channel signals in wireless-communication networks. And they can be applied in signal-detection systems to enhance signal-detection sensitivity.
Load-adaptive practical multi-channel communications in wireless sensor networks.
Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon
2010-01-01
In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.