Sample records for multicomponent amorphous steels

  1. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    PubMed

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

  2. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

  3. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    PubMed Central

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials. PMID:29670302

  4. Thermodynamic analysis and purifying an amorphous phase of frozen crystallization centers

    NASA Astrophysics Data System (ADS)

    Lysov, V. I.; Tsaregradskaya, T. L.; Turkov, O. V.; Saenko, G. V.

    2017-12-01

    The possibility of dissolving frozen crystallization centers in amorphous alloys of the Fe-B system is considered by means of thermodynamic calculations. This can in turn improve the thermal stability of an amorphous alloy. The effect isothermal annealing has on the thermal stability of multicomponent amorphous alloys based on iron is investigated via the highly sensitive dilatometric technique, measurements of microsolidity, and electron microscopic investigations. The annealing temperature is determined empirically on the basis of the theses of the thermodynamic theory of the high temperature stability of multicomponent amorphous alloys, according to which there exists a range of temperatures that is characterized by a negative difference between the chemical potentials of phases in a heterogeneous amorphous matrix-frozen crystallization centers system. The thermodynamic condition of the possible dissolution of frozen crystallization centers is thus met. It is shown that introducing regimes of thermal processing allows us to expand the ranges of the thermal stability of iron-based amorphous alloys by 20-40 K through purifying an amorphous matrix of frozen crystallization centers. This conclusion is proved via electron microscopic investigations.

  5. Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei; Meng, Yifei; Zhang, Xie

    Amorphous and nanograined (NG) steels are two categories of strong steels. However, over the past decade, their application has been hindered by their limited plasticity, the addition of expensive alloying elements, and processing challenges associated with producing bulk materials. Here in this work, we report that the surface of a carburized Fe-Mn-Si martensitic steel with extremely low elemental alloying additions can be economically fabricated into an amorphous-nanocrystalline hybrid structure. Atom probe tomography and nanobeam diffraction of a hard turned steel surface together with molecular dynamics (MD) simulations reveal that the original cementite surface structure experiences a size-dependent amorphization and phasemore » transformation during heavy plastic deformation. MD simulations further show that the martensite-cementite interface serves as a nucleation site for cementite amorphization, and that cementite can become disordered if further strained when the cementite particles are relatively small. These graded structures exhibit a surface hardness of ~16.2 GPa, which exceeds the value of ~8.8 GPa for the original nanocrystalline martensitic steel and most nanocrystalline steels reported before. Finally, this practical and cost-efficient approach for producing a hard surface with retained bulk ductility and toughness can provide expanded opportunities for producing an amorphous-crystalline hybrid structure in steels and other alloy systems.« less

  6. Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization

    DOE PAGES

    Guo, Wei; Meng, Yifei; Zhang, Xie; ...

    2018-04-11

    Amorphous and nanograined (NG) steels are two categories of strong steels. However, over the past decade, their application has been hindered by their limited plasticity, the addition of expensive alloying elements, and processing challenges associated with producing bulk materials. Here in this work, we report that the surface of a carburized Fe-Mn-Si martensitic steel with extremely low elemental alloying additions can be economically fabricated into an amorphous-nanocrystalline hybrid structure. Atom probe tomography and nanobeam diffraction of a hard turned steel surface together with molecular dynamics (MD) simulations reveal that the original cementite surface structure experiences a size-dependent amorphization and phasemore » transformation during heavy plastic deformation. MD simulations further show that the martensite-cementite interface serves as a nucleation site for cementite amorphization, and that cementite can become disordered if further strained when the cementite particles are relatively small. These graded structures exhibit a surface hardness of ~16.2 GPa, which exceeds the value of ~8.8 GPa for the original nanocrystalline martensitic steel and most nanocrystalline steels reported before. Finally, this practical and cost-efficient approach for producing a hard surface with retained bulk ductility and toughness can provide expanded opportunities for producing an amorphous-crystalline hybrid structure in steels and other alloy systems.« less

  7. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  8. Fabrication of nanocrystalline surface composite layer on Cu plate under ball collisions.

    PubMed

    Romankov, S; Park, Y C; Yoon, J M

    2014-10-01

    It was demonstrated that the severe plastic deformation of a surface induced by repeated ball collisions can be effectively used for fabrication of the nanocrystalline surface composite layers. The Cu disk was fixed at the top of a vibration chamber and ball treated. Al, Zr, Ni, Co and Fe were introduced into a Cu plate as contaminants from the grinding media one after the other by 15-min ball treatment. The composite structure was formed as a result of mechanical intermixing of the components. The particle size in as-fabricated layer ranged from 2 nm to 20 nm, with average values of about 7 nm. As-fabricated layer contained non-equilibrium multicomponent solid solution based on FCC Cu crystal structure, Zr-based phase, nanosized steel debris and amorphous phase. The hardness of the as-fabricated composite was almost ten times that of the initial Cu plate.

  9. Refractory amorphous metallic (W/0.6/ Re/0.4/)76B24 coatings on steel substrates

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Khanna, S. K.; Mehra, M.; Johnson, W. L.

    1985-01-01

    Refractory metallic coatings of (W/0.6/ Re/0.4/)76B24 (WReB) have been deposited onto glass, quartz, and heat-treated AISI 52100 bearing steel substrates by dc magnetron sputtering. As-deposited WReB films are amorphous, as shown by their diffuse X-ray diffraction patterns; chemically homogeneous, according to secondary ion mass spectrometry (SIMS) analysis; and they exhibit a very high (approximately 1000 C) crystallization temperature. Adhesion strength of these coatings on heat-treated AISI 52100 steel is in excess of approximately 20,000 psi and they possess high microhardness (approximately 2400 HV50). Unlubricated wear resistance of such hard and adherent amorphous metallic coatings on AISI 52100 steel is studied using the pin-on-disc method under various loading conditions. Amorphous metallic WReB coatings, about 4 microns thick, exhibit an improvement of more than two and a half orders of magnitude in the unlubricated wear resistance over that of the uncoated AISI 52100 steel.

  10. Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug.

    PubMed

    Yu, Deng-Guang; Gao, Li-Dong; White, Kenneth; Branford-White, Christopher; Lu, Wei-Yue; Zhu, Li-Min

    2010-11-01

    To design and fabricate multicomponent amorphous electrospun nanofibers for synergistically improving the dissolution rate and permeation profiles of poorly water-soluble drugs. Nanofibers were designed to be composed of a poorly water soluble drug, helicid, a hydrophilic polymer polyvinylpyrrolidone as filament-forming matrix, sodium dodecyl sulfate as transmembrane enhancer and mannitol as taste masking agent, and were prepared from hot aqueous co-dissolving solutions of them. An elevated temperature electrospinning process was developed to fabricate the composite nanofibers, which were characterized using FESEM, DSC, XRD, ATR-FTIR, in vitro dissolution and permeation tests. The composite nanofibers were homogeneous with smooth surfaces and uniform structure, and the components were combined together in an amorphous state because of the favorable interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among them. In vitro dissolution and permeation tests demonstrated that the composite nanofibers had a dissolution rate over 26-fold faster than that of crude helicid particles and a 10-fold higher permeation rate across sublingual mucosa. A new type of amorphous material in the form of nanofibers was prepared from hot aqueous solutions of multiple ingredients using an electrospinning process. The amorphous nanofibers were able to improve the dissolution rate and permeation rate of helicid.

  11. Deformation-induced localized solid-state amorphization in nanocrystalline nickel.

    PubMed

    Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe

    2012-01-01

    Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification.

  12. Deformation-induced localized solid-state amorphization in nanocrystalline nickel

    PubMed Central

    Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe

    2012-01-01

    Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification. PMID:22768383

  13. Multicomponent Synthesis and Evaluation of New 1,2,3-Triazole Derivatives of Dihydropyrimidinones as Acidic Corrosion Inhibitors for Steel.

    PubMed

    González-Olvera, Rodrigo; Román-Rodríguez, Viridiana; Negrón-Silva, Guillermo E; Espinoza-Vázquez, Araceli; Rodríguez-Gómez, Francisco Javier; Santillan, Rosa

    2016-02-22

    An efficient one-pot synthesis of 1,2,3-triazole derivatives of dihydropyrimidinones has been developed using two multicomponent reactions. The aldehyde-1,2,3-triazoles were obtained in good yields from in situ-generated organic azides and O-propargylbenzaldehyde. The target heterocycles were synthesized through the Biginelli reaction in which the aldehyde-1,2,3-triazoles reacted with ethyl acetoacetate and urea in the presence of Ce(OTf)₃ as the catalyst. The corrosion inhibition of steel grade API 5 L X52 in 1 M HCl by the synthesized compounds was investigated using the electrochemical impedance spectroscopy technique. The measurements revealed that these heterocycles are promising candidates to inhibit acidic corrosion of steel.

  14. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Zhong, Z.; Dooryhee, E.; Ghose, S.; Gill, S.; Camino, F.; Şavklıyıldız, İ.; Akdoğan, E. K.

    2017-06-01

    The study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ∼2 × 1018 n/cm2. At the higher neutron dose of ∼2 × 1019, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe2B phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.

  15. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel – A macroscopic assessment

    DOE PAGES

    Simos, N.; Zhong, Z.; Dooryhee, E.; ...

    2017-03-23

    Here, this study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ~2 x 10 18 n/cm 2. At the higher neutron dose of ~2 x 10 19, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe 2Bmore » phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.« less

  16. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2012-01-01

    The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.

  17. Modeling of grain-oriented Si-steel and amorphous alloy iron core under ferroresonance using Jiles-Atherton hysteresis method

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Zou, Mi; Yang, Ming; Yang, Qing; Peng, Daixiao

    2018-05-01

    Amorphous alloy is increasingly widely used in the iron core of power transformer due to its excellent low loss performance. However, its potential harm to the power system is not fully studied during the electromagnetic transients of the transformer. This study develops a simulation model to analyze the effect of transformer iron core materials on ferroresonance. The model is based on the transformer π equivalent circuit. The flux linkage-current (ψ-i) Jiles-Atherton reactor is developed in an Electromagnetic Transients Program-Alternative Transients Program and is used to represent the magnetizing branches of the transformer model. Two ferroresonance cases are studied to compare the performance of grain-oriented Si-steel and amorphous alloy cores. The ferroresonance overvoltage and overcurrent are discussed under different system parameters. Results show that amorphous alloy transformer generates higher voltage and current than those of grain-oriented Si-steel transformer and significantly harms the power system safety.

  18. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Kai; Wang, Yibo; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enrichedmore » region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.« less

  19. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Cheng, Shu-sen; Guo, Han-jie; Mei, Ya-guang

    2018-03-01

    Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al2O3-based inclusions during secondary refining. The results showed that Al2O3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO-MgO-Al2O3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3wt% and the temperature is higher than 1843 K.

  20. Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyan; Feng, Yuping; Nieto, Daniel; García-Lecina, Eva; Mcdaniel, Clare; Díaz-Marcos, Jordi; Flores-Arias, María Teresa; Gerard M., O.'connor; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-05-01

    Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe3C) and ferrimagnetic [(Fe,Mn)3O4 and Fe2CrO4] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.

  1. In-situ composite formation of damage tolerant coatings utilizing laser

    DOEpatents

    Blue, Craig A [Knoxville, TN; Wong, Frank [Livermore, CA; Aprigliano, Louis F [Berlin, MD; Engleman, Peter G [Knoxville, TN; Peter, William H [Knoxville, TN; Rozgonyi, Tibor G [Golden, CO; Ozdemir, Levent [Golden, CO

    2011-05-10

    A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.

  2. In-situ composite formation of damage tolerant coatings utilizing laser

    DOEpatents

    Blue, Craig A; Wong, Frank; Aprigliano, Louis F; Engleman, Peter G; Rozgonyi, Tibor G; Ozdemir, Levent

    2014-03-18

    A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.

  3. In-situ composite formation of damage tolerant coatings utilizing laser

    DOEpatents

    Blue, Craig A.; Wong, Frank; Aprigliano, Louis F.; Engleman, Peter G.; Peter, William H.; Rozgonyi, Tibor G.; Ozdemir, Levent

    2016-05-24

    A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.

  4. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  5. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Techniques for the assessment of the importance of the various forms of PAHs, and recent infrared observations concerning the PAH problem, are considered. Spectroscopic data suggest that the observed interstellar spectrum is due to both free molecule-sized PAHs producing the narrow features, and amorphous carbon particles contributing to the broad underlying components. Explanations for the multicomponent emission spectrum are discussed. A model of the emission mechanism for the example of chrysene is presented, and an exact treatment of the IR fluorescence from highly vibrationally excited large molecules shows that species containing 20-30 carbon atoms are responsible for the narrow features, although the spectra more closely resemble those of amorphous carbon particles. It is suggested that future emphasis should be placed on the spatial characteristics of the component spectra.

  6. Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.

    2012-06-01

    The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.

  7. Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Li, Zhuguo; Huang, Jian; Zhu, Yanyan

    2012-08-01

    Ni-Fe-B-Si-Nb coatings have been deposited on mild steel substrates using high power diode laser cladding. Scanning laser beam at high speeds was followed to remelt the surface of the coatings. Different laser cladding powers in the range of 700-1000 W were used to obtain various dilution ratios in the coating. The dilution effect on the chemical characterization, phase composition and microstructure is analyzed by energy dispersive spectroscopy, X-ray diffraction and scanning-electron microscopy. The microhardness distribution of the coatings after laser processing is also measured. The results reveal that Ni-based amorphous composite coatings have successfully been fabricated on mild steel substrate at low dilution ratio when the cladding power was 700 W, 800 W and 900 W. While at high laser power of 1000 W, no amorphous phase was found. The coatings with low dilution ratio exhibit the highest microhardness of 1200 HV0.5 due to their largest volume fraction of amorphous phase.

  8. Chemically sensitive free-volume study of amorphization of Cu60Zr40 induced by cold rolling and folding

    NASA Astrophysics Data System (ADS)

    Puff, Werner; Rabitsch, Herbert; Wilde, Gerhard; Dinda, Guru P.; Würschum, Roland

    2007-06-01

    With the aim to contribute to a microscopical understanding of the processes of solid-state amorphization, the chemically sensitive technique of background—reduced Doppler broadening of positron-electron annihilation radiation in combination with positron lifetime spectroscopy and microstructural characterization is applied to a free volume study of the amorphization of Cu60Zr40 induced by consecutive folding and rolling. Starting from the constituent pure metal foils, a nanosale multilayer structure of elemental layers and amorphous interlayers develops in an intermediate state of folding and rolling, where free volumes with a Zr-rich environment occur presumably located in the hetero-interfaces between the various layers or in grain boundaries of the Cu layers. After complete intermixing and amorphization, the local chemical environment of the free volumes reflects the average chemical alloy composition. In contrast to other processes of amorphization, free volumes of the size of few missing atoms occur in the rolling-induced amorphous state. Self-consistent results from three different methods for analyzing the Doppler broadening spectra, i.e., S-W-parameter correlation, multicomponent fit, and the shape of ratio curves, demonstrate the potential of the background-reduced Doppler technique for chemically sensitive characterization of structurally complex materials on an atomic scale.

  9. Composition-controlled active-passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B bulk amorphous steels

    NASA Astrophysics Data System (ADS)

    Si, Jiajia; Wu, Yidong; Wang, Tan; Liu, Yanhui; Hui, Xidong

    2018-07-01

    Various corrosive environments in daily life and industry have put forward high requirement on corrosion resistance of metals, especially steels. Unlike the strict demand in Cr content of crystalline stainless steels, amorphous steels (ASs) with lower Cr content can be endowed with outstanding corrosion resistance, while the intrinsic mechanism is not fully understood. Herein, we present a novel Fe92-x-y-zCrxMoyZr8Bz (6 ≤ x ≤ 40, 0 ≤ y ≤ 22, and 12 ≤ z ≤ 18) bulk amorphous steel (BAS) forming system and reveal the synergistic effect of Cr and Mo in determining the chemical stability of oxide films. It has been found the Fe92-x-zCrxZr8Bz BASs with 1 mm in diameter display a Cr-controlling active-passive transition at the Cr threshold of ∼25% in 1 M hydrochloric acid. When adding minor Mo into the BASs, the Cr threshold can be remarkably reduced by forming favorable hexavalent Mo oxides. The generation of Mo6+ is facilitated by atomic selective dissolution at the interface and can promote the passivation. In contrast, when the Cr content of the Mo-doped glasses exceeds 25%, few Mo6+ oxides would produce as the prior formation of protective passive films inhibits the further oxidation of Mo. Therefore, manipulating the active-passive transition properly is crucial to designing ASs with high stainlessness.

  10. Elastic properties of paramagnetic austenitic steel at finite temperature: Longitudinal spin fluctuations in multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Schönecker, Stephan; Chen, Dengfu; Li, Wei; Long, Mujun; Vitos, Levente

    2017-11-01

    We propose a first-principles framework for longitudinal spin fluctuations (LSFs) in disordered paramagnetic (PM) multicomponent alloy systems and apply it to investigate the influence of LSFs on the temperature dependence of two elastic constants of PM austenitic stainless steel Fe15Cr15Ni. The magnetic model considers individual fluctuating moments in a static PM medium with first-principles-derived LSF energetics in conjunction with describing chemical disorder and randomness of the transverse magnetic component in the single-site alloy formalism and disordered local moment (DLM) picture. A temperature-sensitive mean magnetic moment is adopted to accurately represent the LSF state in the elastic-constant calculations. We make evident that magnetic interactions between an LSF impurity and the PM medium are weak in the present steel alloy. This allows gaining accurate LSF energetics and mean magnetic moments already through a perturbation from the static DLM moments instead of a tedious self-consistent procedure. We find that LSFs systematically lower the cubic shear elastic constants c' and c44 by ˜6 GPa in the temperature interval 300-1600 K, whereas the predominant mechanism for the softening of both elastic constants with temperature is the magneto-volume coupling due to thermal lattice expansion. We find that non-negligible local magnetic moments of Cr and Ni are thermally induced by LSFs, but they exert only a small influence on the elastic properties. The proposed framework exhibits high flexibility in accurately accounting for finite-temperature magnetism and its impact on the mechanical properties of PM multicomponent alloys.

  11. The 25-KVA amorphous metal-core transformer developmental test report

    NASA Astrophysics Data System (ADS)

    Urata, G. V.; Franchi, J. O.; Franchi, P. E.

    1989-08-01

    NCEL has completed a test and evaluation program for 25-kVA amorphous metal-core transformers. These transformers save energy by reducing no-load losses by 60 to 70 percent. No-load losses are estimated to cost the Navy millions annually and if all of the Navy transformers were replaced by amorphous metal-core transformers, the Navy would save millions a year. The program objective was to evaluate the electrical performance and operational reliability of the amorphous metal-core transformers compared to conventional silicon-steel transformers.

  12. Effect of steel structure and defects on reliability of parts of impact mechanisms

    NASA Astrophysics Data System (ADS)

    Popelyukh, AI; Repin, AA; Alekseev, SE

    2018-03-01

    The paper discusses selection of materials suitable for manufacturing critical parts of impact mechanisms. It is shown that in order to extend life of parts exposed to high dynamic loading, it is expedient to use medium- and high-carbon alloy-treated steels featuring low impurity with nonmetallic inclusions and high hardening characteristics. Application of thermally untreated parts is undesirable as steel having ferrite–pearlite structure possesses low fatigue strength. Aimed to ensure high reliability of parts with a hardness of 42–55 HRC, steel should be reinforced by thermal treatement with the formation of multicomponent martensite–bainite structure. High-quality production should include defectoscopy and incoming material control.

  13. Hydrogenated amorphous carbon films on steel balls and Si substrates: Nanostructural evolutions and their trigging tribological behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Wang, Yan; Zhang, Xingkai; Shi, Jing; Gao, Kaixiong; Zhang, Bin; Zhang, Junyan

    2017-10-01

    In this study, we prepared hydrogenated amorphous carbon films on steel balls and Si substrates (steel ball- and Si substrate-films) with different deposition time, and discussed their carbon nanostructural evolutions and tribological behaviors. The steel ball-film structure started to be graphite-like structure and then gradually transformed into fullerene-like (FL) structure. The Si substrate-film structure began in FL structure and kept it through the thickness. The difference may be result from the competition between high starting substrate temperature after additional nitriding applied on the steel balls (its supply power is higher than that in the film deposition), and relaxation of compressive stress from energized ion bombardment in film deposition process. The FL structural film friction couples could achieve ultra-low friction in open air. In particular, the Si substrate-film with 3 h, against the steel ball-film with 2 h and 3 h, exhibited super-low friction (∼0.009) and superlong wear life (∼5.5 × 105 cycles). Our result could widen the superlubricity scope from previously high load and velocity, to middle load and velocity.

  14. Multicomponent click synthesis of new 1,2,3-triazole derivatives of pyrimidine nucleobases: promising acidic corrosion inhibitors for steel.

    PubMed

    González-Olvera, Rodrigo; Espinoza-Vázquez, Araceli; Negrón-Silva, Guillermo E; Palomar-Pardavé, Manuel E; Romero-Romo, Mario A; Santillan, Rosa

    2013-12-06

    A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were investigated as corrosion inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy (EIS) technique. The results indicate that these heterocyclic compounds are promising acidic corrosion inhibitors for steel.

  15. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-04-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  16. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  17. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    PubMed Central

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  18. Structural Analysis Computer Programs for Rigid Multicomponent Pavement Structures with Discontinuities--WESLIQID and WESLAYER. Report 1. Program Development and Numerical Presentations.

    DTIC Science & Technology

    1981-05-01

    represented as a Winkler foundation. The program can treat any number of slabs connected by steel bars or other load trans- fer devices at the joints...dimensional finite element method. The inherent flexibility of such an approach permits the analysis of a rigid pavement with steel bars and stabilized...layers and provides an efficient tool for analyzing stress conditions at the joint. Unfor- tunately, such a procedure would require a tremendously

  19. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  20. Computational Fluid Dynamics Modeling of Macrosegregation and Shrinkage in Large-Diameter Steel Roll Castings

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu

    2011-12-01

    Minimizing macrosegregation and shrinkage in large cast steel mill rolls challenges the limits of commercial foundry technology. Processing improvements have been achieved by balancing the total heat input of casting with the rate of heat extraction from the surface of the roll in the mold. A submerged entry nozzle (SEN) technique that injects a dilute alloy addition through a nozzle into the partially solidified net-shaped roll ingot can mitigate both centerline segregation and midradius channel segregate conditions. The objective of this study is to optimize the melt chemistry, solidification, and SEN conditions to minimize centerline and midradius segregation, and then to improve the quality of the transition region between the outer shell and the diluted interior region. To accomplish this objective, a multiphase, multicomponent computational fluid dynamics (CFD) code was developed for studying the macrosegregation and shrinkage under various casting conditions for a 65-ton, 1.6-m-diameter steel roll. The developed CFD framework consists of solving for the volume fraction of phases (air and steel mixture), temperature, flow, and solute balance in multicomponent alloy systems. Thermal boundary conditions were determined by measuring the temperature in the mold at several radial depths and height locations. The thermophysical properties including viscosity of steel alloy used in the simulations are functions of temperature. The steel mixture in the species-transfer model consists of the following elements: Fe, Mn, Si, S, P, C, Cr, Mo, and V. Density and liquidus temperature of the steel mixture are locally affected by the segregation of these elements. The model predictions were validated against macrosegregation measured from pieces cut from the 65-ton roll. The effect of key processing parameters such as melt composition and superheat of both the shell and the dilute interior alloy are addressed. The influence of mold type and thickness on macrosegregation and shrinkage also are discussed.

  1. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.

    PubMed

    Kim, Jeongmin; Sung, Bong June

    2015-06-17

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  2. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    PubMed

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Wear resistance of CuZr-based amorphous-forming alloys against bearing steel in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wang, Hui; Bao, Yayun; Zheng, Dingcong

    2017-11-01

    To investigate the amorphous-crystalline microstructure on the tribocorrosion of bulk metallic glasses (BMGs), 6 mm diameter rods of Cu46-xZr47Al7Agx (x = 0, 2, 4) amorphous-forming alloys with in situ crystalline and amorphous phases were fabricated by arc-melting and Cu-mould casting. Using a pin-on-disc tribometer, the tribo-pair composed by CuZr-based amorphous-forming alloys and AISI 52100 steel were studied in 3.5% NaCl solution. With the increase of Ag content from 0 to 4 at.%, the compressive fracture strength and the average hardness decrease firstly and then increase. Moreover, 4 at.% Ag addition increases the amount of amorphous phase obviously and inhibits the formation of brittle crystalline phase, resulting in the improvement of corrosion resistance and the corrosive wear resistance. The primary wear mechanism of the BMG composites is abrasive wear accompanying with corrosive wear. The tribocorrosion mass loss of Cu42Zr47Al7Ag4 composite is 1.5 mg after 816.8 m sliding distance at 0.75 m s-1 sliding velocity under 10 N load in NaCl solution. And the volume loss evaluated from the mass loss is about 20 times lower than that of AISI 304 SS. Thus, Cu42Zr47Al7Ag4 composite may be a good candidate in the tribology application under marine environment.

  4. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  5. Electrical and structural characterization of IZO (indium oxide-zinc oxide) thin films for device applications

    NASA Astrophysics Data System (ADS)

    Yaglioglu, Burag

    Materials for oxide-based transparent electronics have been recently reported in the literature. These materials include various amorphous and crystalline compounds based on multi-component oxides and many of them offer useful combinations of transparency, controllable carrier concentrations, and reasonable n-carrier mobility. In this thesis, the properties of amorphous and crystalline In2O3-10wt%ZnO, IZO, thin films were investigated for their potential use in oxide electronics. The room temperature deposition of this material using DC magnetron sputtering results in the formation of amorphous films. Annealing amorphous IZO films at 500°C in air produces a previously unknown crystalline compound. Using electron diffraction experiments, it is reported that the crystal structure of this compound is based on the high-pressure rhombohedral phase of In2O3. Electrical properties of different phases of IZO were explored and it was concluded that amorphous films offer most promising characteristics for device applications. Therefore, thin film transistors (TFT) were fabricated based on amorphous IZO films where both the channel and metallization layers were deposited from the same target. The carrier densities in the channel and source-drain layers were adjusted by changing the oxygen content in the sputter chamber during deposition. The resulting transistors operate as depletion mode n-channel field effect devices with high saturation mobilities.

  6. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  7. Structure and Properties of Amorphous Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The work is supported by NSF-MRSEC program.

  8. Examination of Applying Amorphous Rolled Core to Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Amano, Hisato; Enomoto, Yuji; Ito, Motoya; Itabashi, Hiromitsu; Tanigawa, Sigeho; Masaki, Ryoso

    Amorphous alloy exhibits high permeability and extremely low iron loss compared to magnetic steel sheet. Therefore, it is expected to contribute to the efficiency improvement of electromagnetic application products such as motors, generators, and transformers. In this paper, we examined an axial-type motor that uses the rolled amorphous core as a stator core for the purpose of applying amorphous alloy to a motor for air-conditioning equipments. We propose the motor structure to use amorphous alloy as a rolled core without complicated processing, and the evaluation results of the trial motor clarified that this structure is able to meet the target motor efficiency of 85% under the conditions that the size of the motor is below φ100mm × 60mm and that ferrite magnets are used.

  9. Rotational magnetization: Problems in experimental and theoretical studies of electrical steels and amorphous magnetic materials

    NASA Astrophysics Data System (ADS)

    Moses, A. J.

    1994-03-01

    Flux rotating in the plane of laminations of amorphous materials or electrical steels can cause additional losses in electrical machines. To make full use of laboratory rotational magnetization studies, a better understanding of the nature of rotational flux in machine cores is needed. This paper highlights the need for careful laboratory simulation of the conditions which occur in actual machines. Single specimen tests must produce uniform flux over a given measuring region and output from field and flux sensors need careful analysis. Differences between thermal and flux sensing methods are shown as well as anomalies caused when the magnetisation direction is reversed in an anistropic specimen. Methods of overcoming these problems are proposed.

  10. Chemical Warfare Agent Surface Adsorption: Hydrogen Bonding of Sarin and Soman to Amorphous Silica

    DTIC Science & Technology

    2014-03-17

    Prior to experiments, the gas manifold and dosing lines were heated, under vacuum, to 100 °C to minimize water contamination. A stainless steel ...23 L UHV chamber constructed out of 316L stainless steel with all ports equipped with con-flat flanges (Kurt J. Lesker Company). The chamber is...dosed as a neat vapor using a multivalved stainless steel high-vacuum manifold. The entire path of the manifold was evacuated and heated to 100 °C

  11. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There weremore » 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.« less

  12. The effects of ion implantation on the tribology of perfluoropolyether-lubricated 440C stainless steel couples

    NASA Technical Reports Server (NTRS)

    Shogrin, Bradley; Jones, William R., Jr.; Wilbur, Paul J.; Pilar, Herrera-Fierro; Williamson, Don L.

    1995-01-01

    The lubricating lifetime of thin films of a perfluoropolyether (PFPE) based on hexafluoropropene oxide in the presence of ion implanted 440C stainless steel is presented. Stainless steel discs, either unimplanted or implanted with N2, C, Ti, Ti + N2, or Ti + C had a thin film of PFPE (60-400 A) applied to them reproducibly (+/- 20 percent) and uniformly (+/- 15 percent) using a device developed for this study. The lifetimes of these films were quantified by measuring the number of sliding-wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unimplanted couple. The tests were performed in a dry nitrogen atmosphere (less than 1 percent RH) at room temperature using a 3 N normal load with a relative sliding speed of 0.05 m/s. The lubricated lifetime of the 440C couple was increased by an order of magnitude by implanting the disc with Ti. Ranked from most to least effective, the implanted species were: Ti; Ti+C; unimplanted; N2; C approximately equals Ti+N2. The mechanism postulated to explain these results involves the formation of a passivating or reactive layer which inhibits or facilitates the production of active sites. The corresponding surface microstructures induced by ion implantation, obtained using x-ray diffraction and conversion electron Mossbauer spectroscopy, ranked from most to least effective in enhancing lubricant lifetime were: amorphous Fe-Cr-Ti; amorphous Fe-Cr-Ti-C + TiC; unimplanted; epsilon-(Fe,Cr)(sub x)N, x = 2 or 3; amorphous Fe-Cr-C approximately equals amorphous Fe-Cr-Ti-N.

  13. Transformation Stasis Phenomenon of Bainite Formation in Low-Carbon, Multicomponent Alloyed Steel

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei

    2017-11-01

    The transformation stasis phenomenon of bainite formation in low-carbon steel was detected using a high-resolution dilatometer. The phenomenon occurred at different stages for different isothermal temperatures. In combination with microstructural observation, the calculated overall activation energy of transformation and interface migration velocity shed new light on the cause of formation of the stasis phenomenon. The temporary stasis formed at the initial stage of phase transformation for high isothermal temperature was attributed to the drag effect of substitutional atoms, which leads to low-interface migration velocity and large overall activation energy.

  14. Evaluation of Amorphous Transformer by Optimum Capacity Selection based on the Load Curve Pattern of Customers

    NASA Astrophysics Data System (ADS)

    Takagi, Masaaki; Yamamoto, Hiromi; Yamaji, Kenji

    Energy loss in transformer is composed of no-load loss and load loss. No-load loss of amorphous transformer (i.e. amorphous metal-based transformer) is less by about 70% compared with traditional transformers (e.g. silicon steel-based transformer). However, amorphous transformers have disadvantages of high cost and high load loss parameter compared with traditional transformers. Furthermore, there are varieties of transformer capacities, and the customers who would buy new transformer have many choices. In this paper, the authors propose an algorithm for optimum transformer selection based on the load curve patterns of customers. It is possible to select the capacity that minimizes the total cost by measuring equivalent load Qe that is the root mean square of load. It becomes clear that amorphous transformer is effective in achieving substantial energy saving compared with traditional transformer.

  15. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  16. Raman studies on molecular and ionic forms in solid layers of nitrogen dioxide - Temperature and light induced effects

    NASA Astrophysics Data System (ADS)

    Givan, A.; Loewenschuss, A.

    1990-12-01

    Raman spectra of zero-pressure-formed N2O4 solid layers are reported. Sample composition is extremely dependent upon deposition conditions. For ordered and pure solid N2O4(D2h), produced by slow NO2 deposition, temperature cycling over the range in which the solid is stable shows no significant spectral changes and does not result in autoionization, as argued in a previous Raman study. Fast and low temperature deposited layers are amorphous and multicomponent, showing bands of disordered and isomeric molecular N2O4 and of ionic NO + NO3, nitrosonium nitrate. For nitrosonium nitrate, three solid modifications can be characterized spectroscopically. In the amorphous phase, a light induced, temperature dependent, reversible transition between molecular and ionic nitrogen tetroxide is observed below 150 K. The paths leading to nitrosonium nitrate formation are examined.

  17. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    NASA Astrophysics Data System (ADS)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  18. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  19. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys.

    PubMed

    Granberg, F; Nordlund, K; Ullah, Mohammad W; Jin, K; Lu, C; Bei, H; Wang, L M; Djurabekova, F; Weber, W J; Zhang, Y

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.

  20. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys

    NASA Astrophysics Data System (ADS)

    Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; Jin, K.; Lu, C.; Bei, H.; Wang, L. M.; Djurabekova, F.; Weber, W. J.; Zhang, Y.

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.

  1. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys

    DOE PAGES

    Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; ...

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations (“equiatomic”), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantialmore » reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Finally and moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.« less

  2. Fabrication of Si-As-Te ternary amorphous semiconductor in the microgravity environment (M-13)

    NASA Technical Reports Server (NTRS)

    Hamakawa, Yoshihiro

    1993-01-01

    Ternary chalcogenide Si-As-Te system is an interesting semiconductor from the aspect of both basic physics and technological applications. Since a Si-As-Te system consists of a IV-III-II hedral bonding network, it has a very large glass forming region with a wide physical constant controllability. For example, its energy gap can be controlled in a range from 0.6 eV to 2.5 eV, which corresponds to the classical semiconductor Ge (0.66 eV), Si (1.10 eV), GaAs (1.43 eV), and GaP (2.25 eV). This fact indicates that it would be a suitable system to investigate the compositional dependence of the atomic and electronic properties in the random network of solids. In spite of these significant advantages in the Si-As-Te amorphous system, a big barrier impending the wide utilization of this material is the huge difficulty encountered in the material preparation which results from large differences in the weight density, melting point, and vapor pressure of individual elements used for the alloying composition. The objective of the FMPT/M13 experiment is to fabricate homogeneous multi-component amorphous semiconductors in the microgravity environment of space, and to make a series of comparative characterizations of the amorphous structures and their basic physical constants on the materials prepared both in space and in normal terrestrial gravity.

  3. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride asmore » precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.« less

  4. Functional Multi-Nanolayer Coatings of Amorphous Carbon/Tungsten Carbide with Exceptional Mechanical Durability and Corrosion Resistance.

    PubMed

    Nemati, Narguess; Bozorg, Mansoor; Penkov, Oleksiy V; Shin, Dong-Gap; Sadighzadeh, Asghar; Kim, Dae-Eun

    2017-09-06

    A novel functional multilayer coating with periodically stacked nanolayers of amorphous carbon (a:C)/tungsten carbide (WC) and an adhesion layer of chromium (Cr) was deposited on 304 stainless steel using a dual magnetron sputtering technique. Through process optimization, highly densified coatings with high elasticity and shear modulus, excellent wear resistance, and minimal susceptibility to corrosive and caustic media could be acquired. The structural and mechanical properties of the optimized coatings were studied in detail using a variety of analytical techniques. Furthermore, finite element method simulations indicated that the stress generated due to contact against a steel ball was distributed well within the coating, which allowed the stresses to be lower than the yield threshold of the coating. Thus, an ultralow wear rate of ∼10 -12 mm 3 /N mm could be achieved in dry sliding conditions under relatively high Hertzian contact pressures of ∼0.4-0.9 GPa. The amorphous and pinhole-free structure of the individual layers, sufficient number of pairs, and the relatively dense stacked layers resulted in significant polarization resistance (Z″ = 5.5 × 10 6 Ω cm 2 ) and increased the corrosion resistance of the coating by 10-fold compared to that of recently reported corrosion-resistant coatings.

  5. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    NASA Astrophysics Data System (ADS)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  6. Transparent Oxide Thin-Film Transistors: Production, Characterization and Integration

    NASA Astrophysics Data System (ADS)

    Barquinha, Pedro Miguel Candido

    This dissertation is devoted to the study of the emerging area of transparent electronics, summarizing research work regarding the development of n-type thin-film transistors (TFTs) based on sputtered oxide semiconductors. All the materials are produced without intentional substrate heating, with annealing temperatures of only 150-200 °C being used to optimize transistor performance. The work is based on the study and optimization of active semiconductors from the gallium-indium-zinc oxide system, including both the binary compounds Ga2O3, In2O3 and ZnO, as well as ternary and quaternary oxides based on mixtures of those, such as IZO and GIZO with different atomic ratios. Several topics are explored, including the study and optimization of the oxide semiconductor thin films, their application as channel layers on TFTs and finally the implementation of the optimized processes to fabricate active matrix backplanes to be integrated in liquid crystal display (LCD) prototypes. Sputtered amorphous dielectrics with high dielectric constant (high-kappa) based on mixtures of tantalum-silicon or tantalum-aluminum oxides are also studied and used as the dielectric layers on fully transparent TFTs. These devices also include transparent and highly conducting IZO thin films as source, drain and gate electrodes. Given the flexibility of the sputtering technique, oxide semiconductors are analyzed regarding several deposition parameters, such as oxygen partial pressure and deposition pressure, as well as target composition. One of the most interesting features of multicomponent oxides such as IZO and GIZO is that, due to their unique electronic configuration and carrier transport mechanism, they allow to obtain amorphous structures with remarkable electrical properties, such as high hall-effect mobility that exceeds 60 cm2 V -1 s-1 for IZO. These properties can be easily tuned by changing the processing conditions and the atomic ratios of the multicomponent oxides, allowing to have amorphous oxides suitable to be used either as transparent semiconductors or as highly conducting electrodes. The amorphous structure, which is maintained even if the thin films are annealed at 500 °C, brings great advantages concerning interface quality and uniformity in large areas. A complete study comprising different deposition conditions of the semiconductor layer is also made regarding TFT electrical performance. Optimized devices present outstanding electrical performance, such as field-effect mobility (muFE) exceeding 20 cm2 V -1 s-1, turn-on voltage (Von) between -1 and 1 V, subthreshold slope (S) lower than 0.25 V dec-1 and On-Off ratio above 107 . Devices employing amorphous multicomponent oxides present largely improved properties when compared with the ones based on polycrystalline ZnO, mostly in terms of muFE. Within the compositional range where IZO and GIZO films are amorphous, TFT performance can be largely adjusted: for instance, high indium contents favor large mu FE but also highly negative Von, which can be compensated by proper amounts of zinc and gallium. Large oxygen concentrations during oxide semiconductor sputtering are found to be deleterious, decreasing muFE, shifting Von towards high values and turning the devices electrically unstable. It is also shown that semiconductor thickness (ds) has a very important role: for instance, by reducing ds to 10 nm it is possible to produce TFTs with Von≈0 V even using deposition conditions and/or target compositions that normally yield highly conducting films. Given the low ds of the films, this behavior is mostly related with surface states existent at the oxide semiconductor air-exposed back-surface, where depletion layers that can extend towards the dielectric/semiconductor interface are created due to the interaction with atmospheric oxygen. Different passivation layers on top of this air-exposed surface are studied, with SU-8 revealing to be to most effective one. Other important topics are source-drain contact resistance assessment and the effect of different annealing temperatures ( TA), being the properties of the TFTs dominated by TA rather than by the deposition conditions as TA increases. Fully transparent TFTs employing sputtered amorphous multicomponent dielectrics produced without intentional substrate heating present excellent electrical properties, that approach those exhibited by devices using PECVD SiO2 produced at 400 °C. Gate leakage current can be greatly reduced by using tantalum-silicon or tantalum-aluminum oxides rather than Ta2O5. A section of this dissertation is also devoted to the analysis of current stress stability and aging effects of the TFTs, being found that optimal devices exhibit recoverable threshold voltage shifts lower than 0.50 V after 24 h stress with constant drain current of 10 muA, as well as negligible aging effects during 18 months. The research work of this dissertation culminates in the fabrication of a backplane employing transparent TFTs and subsequent integration with a LCD frontplane by Hewlett-Packard. The successful operation of this initial 2.8h prototype with 128x128 pixels provides a solid demonstration that oxide semiconductor-based TFTs have the potential to largely contribute to a novel electronics era, where semiconductor materials away from conventional silicon are used to create fascinating applications, such as transparent electronic products.

  7. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    NASA Astrophysics Data System (ADS)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  8. Development of coatings for ultrasonic additive manufacturing sonotrode using laser direct metal deposition process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.

    2016-10-01

    ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking wasmore » eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.« less

  9. Surface modification by carbon ion implantation for the application of ni-based amorphous alloys as bipolar plate in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan

    2011-04-01

    Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.

  10. Deformation Behavior of Cementite in Deformed High Carbon Steel Observed by X-ray Diffraction with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Taniyama, Akira; Takayama, Toru; Arai, Masahiro; Hamada, Takanari

    2017-10-01

    The deformation behavior of cementite in drawn pearlitic steel and spheroidal cementite steel, which have hypereutectoid composition, was investigated by X-ray diffraction using synchrotron radiation. A detailed analysis of diffraction peak profiles reveals that the deformation behavior strongly depends on the shape of cementite in steel. The unit cell volume of the cementite in the drawn pearlitic steel compressively and elastically deforms by 1.5 to 2 pct of the initial volume at the early stage of drawing, whereas that in the drawn spheroidal cementite steel is compressed by 1 pct of the initial volume even at a large true strain. The cementite in the drawn pearlitic steel fragments into small pieces with increasing the true strain, and these pieces change to amorphous cementite. The dislocation densities of the cementite in the drawn pearlitic steel and in the drawn spheroidal cementite steel are estimated to be 1013/m2 before drawing and 1014/m2 after drawing. Although the large strain is induced in the cementite by drawing, the maximum strain energy in the cementite is too small to contribute to the dissolution of the cementite.

  11. Understanding electrical conduction in lithium ion batteries through multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Pan, Jie

    Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si electrodes with high current efficiency and durability through a fundamental understanding of the ionic and electronic conduction in Si and its SEI. Multi-scale physical and chemical processes occur in the electrode during charging and discharging. This thesis, thus, focuses on multi-scale modeling, including developing new methods, to help understand these coupled physical and chemical processes. For example, we developed a new method based on ab initio molecular dynamics to study the effects of stress/strain on Li ion transport in amorphous lithiated Si electrodes. This method not only quantitatively shows the effect of stress on ionic transport in amorphous materials, but also uncovers the underlying atomistic mechanisms. However, the origin of ionic conduction in the inorganic components in SEI is different from that in the amorphous Si electrode. To tackle this problem, we developed a model by separating the problem into two scales: 1) atomistic scale: defect physics and transport in individual SEI components with consideration of the environment, e.g., LiF in equilibrium with Si electrode; 2) mesoscopic scale: defect distribution near the heterogeneous interface based on a space charge model. In addition, to help design better artificial SEI, we further demonstrated a theoretical design of multicomponent SEIs by utilizing the synergetic effect found in the natural SEI. We show that the electrical conduction can be optimized by varying the grain size and volume fraction of two phases in the artificial multicomponent SEI.

  12. Experimental Evidence of Chiral Ferrimagnetism in Amorphous GdCo Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Lambert, Charles-Henri; Kent, Noah

    Inversion symmetry breaking has become a vital research area in modern magnetism with phenomena including the Rashba effect, spin Hall effect, and the Dzyaloshinskii-Moriya interaction (DMI)-a vector spin exchange. The latter one may stabilize chiral spin textures with topologically nontrivial properties, such as Skyrmions. So far, chiral spin textures have mainly been studied in helimagnets and thin ferromagnets with heavy-element capping. Here, the concept of chirality driven by interfacial DMI is generalized to complex multicomponent systems and demonstrated on the example of chiral ferrimagnetism in amorphous GdCo films. Utilizing Lorentz microscopy and X-ray magnetic circular dichroism spectroscopy, and tailoring thickness,more » capping, and rare-earth composition, reveal that 2 nm thick GdCo films preserve ferrimagnetism and stabilize chiral domain walls. Finally, the type of chiral domain walls depends on the rare-earth composition/saturation magnetization, enabling a possible temperature control of the intrinsic properties of ferrimagnetic domain walls.« less

  13. Experimental Evidence of Chiral Ferrimagnetism in Amorphous GdCo Films

    DOE PAGES

    Streubel, Robert; Lambert, Charles-Henri; Kent, Noah; ...

    2018-05-23

    Inversion symmetry breaking has become a vital research area in modern magnetism with phenomena including the Rashba effect, spin Hall effect, and the Dzyaloshinskii-Moriya interaction (DMI)-a vector spin exchange. The latter one may stabilize chiral spin textures with topologically nontrivial properties, such as Skyrmions. So far, chiral spin textures have mainly been studied in helimagnets and thin ferromagnets with heavy-element capping. Here, the concept of chirality driven by interfacial DMI is generalized to complex multicomponent systems and demonstrated on the example of chiral ferrimagnetism in amorphous GdCo films. Utilizing Lorentz microscopy and X-ray magnetic circular dichroism spectroscopy, and tailoring thickness,more » capping, and rare-earth composition, reveal that 2 nm thick GdCo films preserve ferrimagnetism and stabilize chiral domain walls. Finally, the type of chiral domain walls depends on the rare-earth composition/saturation magnetization, enabling a possible temperature control of the intrinsic properties of ferrimagnetic domain walls.« less

  14. Experimental Study of the Microstructure and Micromechanical Properties of Laser Cladded Ni-based Amorphous Composite Coatings

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Zheng, Qichi; Zhu, Yanyan; Li, Zhuguo; Feng, Kai; Liu, Chuan

    2018-01-01

    (Ni0.6Fe0.4)65B18Si10Nb4C3 amorphous composite coating was successfully fabricated on AISI 1045 steel substrate by using laser cladding process with coaxial powder feeding equipment. The microstructure and phase distribution of the coating were investigated by using x-ray diffraction, scanning electron microscopy and transmission electron microscope. The mechanical properties of the coating were examined by using microhardness testing and nanoindentation. The experimental results indicated that the volume fraction of amorphous phase increased with the decrease in laser cladding heat input, leading to an improvement of mean microhardness and nanohardness. NbC particles in a size ranging between 150 and 1650 nm were found embedding in the amorphous composite coatings in all situations. The presence of the NbC particles can contribute to an improvement of 96.7 HV in hardness on the basis of experimental results, while theoretical prediction suggests an improvement of 92.5 HV by using Orowan-Ashby equation.

  15. Possiblity of substituting 12XH3A steel in the manufacture of gears for a Sova motorcycle gearing box

    NASA Astrophysics Data System (ADS)

    Abramov, L. M.; Karabanov, V. P.; Abramov, V. L.; Astakhin, A. S.

    1996-03-01

    The experimental work describes the possibility of substituting the expensive alloying steel 12XH3A for the low-cost material (steel 40X) in manufacturing gears of the motor cycle gearing box. It ban be achieved on the basis of the obtained results and with the help of laser melting treatment of small-alloying steel. We can speak about the dependence of laser melting radiation efficiency on the regimes and procedures. The breakage of the gearing box of the motor cycle 'Sova' may be explained by the low carry ability of its first gearing box gear. This investigation includes the determination of the cause of this problem. One of the most wide spread methods of such decisions is the substitution of the used materials by another. The most important criteria for the new materials are: (1) the increase of mechanical characteristics (solidity, plasticity); (2) the increase of such characteristics as hardness, specific percussive viscosity; (3) the improvement of the technological characteristics; (4) the condencention of the manufacturing expenditures (economical effect). In accordance with these creations some materials (35X, 40X, 20XH, 40XHM steels) were chosen. The best material is 40X steel, because it allows us to treat the gears by laser radiation with the surface melt. Surface melt allows us to produce: (1) martensite structure with high solidity and low percussive viscosity; (2) martensite structure with chrome carbides and high percussive viscosity, but low plasticity; (3) amorphous or monocrystallic structures with the best characteristics. The last structure has the best characteristics because dislocation defects in such material are practically absent. Also, the amorphous surface of the materials is the most interesting. The spirit of the investigation is to define the parameters of production such as radiation power, size of laser spot, and speed of spot.

  16. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE PAGES

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.; ...

    2017-12-27

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  17. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  18. Modification of structural and magnetic properties of soft magnetic multi-component metallic glass by 80 MeV 16O6+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Kane, S. N.; Shah, M.; Satalkar, M.; Gehlot, K.; Kulriya, P. K.; Avasthi, D. K.; Sinha, A. K.; Modak, S. S.; Ghodke, N. L.; Reddy, V. R.; Varga, L. K.

    2016-07-01

    Effect of 80 MeV 16O6+ ion irradiation in amorphous Fe77P8Si3C5Al2Ga1B4 alloy is reported. Electronic energy loss induced modifications in the structural and, magnetic properties were monitored by synchrotron X-ray diffraction (SXRD), Mössbauer and, magnetic measurements. Broad amorphous hump seen in SXRD patterns reveals the amorphous nature of the studied specimens. Mössbauer measurements suggest that: (a) alignment of atomic spins within ribbon plane, (b) changes in average hyperfine field suggests radiation-induced decrease in the inter atomic distance around Mössbauer (Fe) atom, (c) hyperfine field distribution confirms the presence of non-magnetic elements (e.g. - B, P, C) in the first near-neighbor shell of the Fe atom, thus reducing its magnetic moment, and (d) changes in isomer shift suggests variation in average number of the metalloid near neighbors and their distances. Minor changes in soft magnetic behavior - watt loss and, coercivity after an irradiation dose of 2 × 1013 ions/cm2 suggests prospective application of Fe77P8Si3C5Al2Ga1B4 alloy as core material in accelerators (radio frequency cavities).

  19. Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.

  20. In Situ Synthesis and Characterization of Fe-Based Metallic Glass Coatings by Electrospark Deposition Technique

    NASA Astrophysics Data System (ADS)

    Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.

    2017-02-01

    Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.

  1. Corrosion behavior of low alloy steels in a wet-dry acid humid environment

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-he; Liu, Wei; Yang, Jian-wei; Zhu, Yi-chun; Zhang, Bin-li; Lu, Min-xu

    2016-09-01

    The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet-dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet-dry acid humid environment.

  2. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    NASA Astrophysics Data System (ADS)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  3. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  4. Safe gas handling and system design for the large scale production of amorphous silicon based solar cells

    NASA Astrophysics Data System (ADS)

    Fortmann, C. M.; Farley, M. V.; Smoot, M. A.; Fieselmann, B. F.

    1988-07-01

    Solarex is one of the leaders in amorphous silicon based photovoltaic production and research. The large scale production environment presents unique safety concerns related to the quantity of dangerous materials as well as the number of personnel handling these materials. The safety measures explored by this work include gas detection systems, training, and failure resistant gas handling systems. Our experiences with flow restricting orifices in the CGA connections and the use of steel cylinders is reviewed. The hazards and efficiency of wet scrubbers for silane exhausts are examined. We have found it to be useful to provide the scrubbler with temperature alarms.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Chen, Tianyi

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, andmore » thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.« less

  6. Constructing superhydrophobic WO3@TiO2 nanoflake surface beyond amorphous alloy against electrochemical corrosion on iron steel

    NASA Astrophysics Data System (ADS)

    Yu, S. Q.; Ling, Y. H.; Wang, R. G.; Zhang, J.; Qin, F.; Zhang, Z. J.

    2018-04-01

    To eliminate harmful localized corrosion, a new approach by constructing superhydrophobic WO3@TiO2 hierarchical nanoflake surface beyond FeW amorphous alloy formed on stainless steel was proposed. Facile dealloying and liquid deposition was employed at low temperature to form a nanostructured layer composing inner WO3 nanoflakes coated with TiO2 nanoparticles (NPs) layer. After further deposition of PFDS on nanoflakes, the contact angle reached 162° while the corrosion potential showed a negative shift of 230 mV under illumination, resulting in high corrosion resistance in 3.5 wt% NaCl solution. The tradeoff between superhydrophobic surface and photo-electro response was investigated. It was found that this surface feature makes 316 SS be immune to localized corrosion and a pronounced photo-induced process of electron storage/release as well as the stability of the functional layer were detected with or without illumination, and the mechanism behind this may be related to the increase of surface potential due to water repellence and the delayed cathodic protection of semiconducting coating derived mainly from the valence state changes of WO3. This study demonstrates a simple and low-cost electrochemical approach for protection of steel and novel means to produce superhydrophobic surface and cathodic protection with controllable electron storage/release on engineering scale.

  7. Amorphous Alloy Surpasses Steel and Titanium

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  8. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference inmore » the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.« less

  9. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    NASA Astrophysics Data System (ADS)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  10. Additive erosion reduction influences in the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.

    1981-05-01

    Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil.) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which were previously (and purposely) studied individually. These include solid particle additive concentrations, gas wall thermochemical influences, and transient turbulent wall boundary layer flow with multicomponent molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.

  11. The Molecular Volcano Revisited: Determination of Crack Propagation and Distribution During the Crystallization of Nanoscale Amorphous Solid Water Films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2012-02-02

    Temperature programmed desorption (TPD) is utilized to determine the length distribution of cracks formed through amorphous solid water (ASW) during crystallization. This distribution is determined by monitoring how the thickness of an ASW overlayer alters desorption of an underlayer of O2. As deposited the ASW overlayer prevents desorption of O2. During crystallization, cracks form through the ASW overlayer and open a path to vacuum which allows O2 to escape in a rapid episodic release known as the 'molecular volcano'. Sufficiently thick ASW overlayers further trap O2 resulting in a second O2 desorption peak commensurate with desorption of the last ofmore » the ASW overlayer. The evolution of this trapping peak with overlayer thickness is the basis for determining the distribution of crystallization induced cracks through the ASW. Reflection adsorption infrared spectroscopy (RAIRS) and TPD of multicomponent parfait structures of ASW, O2 and Kr indicate that a preponderance of these cracks propagate down from the outer surface of the ASW.« less

  12. Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Lan, Peng; Tang, Haiyan; Zhang, Jiaquan

    2016-06-01

    A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.

  13. Influence of Processing in the Solid State Morphology of ABPBI/PBT polymeric Composite Films: X-Ray Studies

    DTIC Science & Technology

    1982-11-01

    ratio is substantially superior to that of steel. Examples of HSHM fibers are: Kevlar , Poly(p-Benzamide), and Poly(p- phenylene Benzobisthiazole). The...is amorphous, but pressure treatment with phenol at 290-3050C for two hours causes it to crystallize. A marked increase in crystallinity of poly(p

  14. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments

    NASA Astrophysics Data System (ADS)

    Wei, Liang; Gao, Kewei; Li, Qian

    2018-05-01

    The corrosion behavior of P110 low-Cr alloy steel in supercritical CO2-saturated brine (aqueous phase) and water-saturated supercritical CO2 (SC CO2 phase) was investigated. The results show that P110 steel primarily suffered general corrosion in the aqueous phase, while severe localized corrosion occurred in the SC CO2 phase. The formation of corrosion product scale on P110 steel in the aqueous phase divided into three stages: formation of the initial corrosion layer containing amorphous Cr(OH)3, FeCO3 and a small amount of Fe3C; transformation of initial corrosion layer to mixed layer, which consisted of FeCO3 and a small amount of Cr(OH)3 and Fe3C; growth and dissolution of the mixed layer. Finally, only a single mixed layer covered on the steel in the aqueous phase. However, the scale formed in SC CO2 phase consisted of two layers: the inner mixed layer and the dense outer FeCO3 crystalline layer.

  15. Bulk metallic glass matrix composites: Processing, microstructure, and application as a kinetic energy penetrator

    NASA Astrophysics Data System (ADS)

    Dandliker, Richard B.

    The development of alloys with high glass forming ability allows fabrication of bulk samples of amorphous metal. This capability makes these materials available for applications which require significant material thickness in all three dimensions. Superior mechanical properties and advantages in processing make metallic glass a choice candidate as a matrix material for composites. This study reports techniques for making composites by melt-infiltration casting using the alloy Zrsb{41.2}Tisb{13.8}Cusb{12.5}Nisb{10.0}Besb{22.5} (VitreloyspTM 1) as a matrix material. Composite rods 5 cm in length and 7 mm in diameter were made and found to have a nearly fully amorphous matrix; there was less than 3 volume percent crystallized matrix material. The samples were reinforced by continuous metal wires, tungsten powder, or silicon carbide particulate preforms. The most easily processed samples were made with uniaxially aligned tungsten and carbon steel continuous wire reinforcement; the majority of the analysis presented is of these samples. The measured porosity was typically less than 3%. The results also indicate necessary guidelines for developing processing techniques for large scale production, new reinforcement materials, and other metallic glass compositions. Analysis of the microstructure of the tungsten wire and steel wire reinforced composites was performed by x-ray diffraction, scanning electron microscopy, scanning Auger microscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The most common phase in the crystallized matrix is most likely a Laves phase with the approximate formula Besb{12}Zrsb3TiNiCu. In tungsten-reinforced composites, a crystalline reaction layer 240 nm thick of tungsten nanocrystals in an amorphous matrix formed. In the steel reinforced composites, the reaction layer was primarily composed of a mixed metal carbide, mainly ZrC. One promising application of the metallic glass matrix composite is as a kinetic energy penetrator material. Ballistic tests show that a composite of 80 volume percent uniaxially aligned tungsten wires and a VitreloyspTM 1 matrix has self-sharpening behavior, which is a necessary characteristic of superior penetrator materials. Small-scale tests with both aluminum and steel targets show that this composite performs better than tungsten heavy alloys typically used for penetrator applications, and comparably with depleted uranium.

  16. Predictive analysis of the influence of the chemical composition and pre-processing regimen on structural properties of steel alloys using machine learning techniques

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Narayanan; Maddali, Siddharth; Romanov, Vyacheslav; Hawk, Jeffrey

    We present some structural properties of multi-component steel alloys as predicted by a random forest machine-learning model. These non-parametric models are trained on high-dimensional data sets defined by features such as chemical composition, pre-processing temperatures and environmental influences, the latter of which are based upon standardized testing procedures for tensile, creep and rupture properties as defined by the American Society of Testing and Materials (ASTM). We quantify the goodness of fit of these models as well as the inferred relative importance of each of these features, all with a conveniently defined metric and scale. The models are tested with synthetic data points, generated subject to the appropriate mathematical constraints for the various features. By this we highlight possible trends in the increase or degradation of the structural properties with perturbations in the features of importance. This work is presented as part of the Data Science Initiative at the National Energy Technology Laboratory, directed specifically towards the computational design of steel alloys.

  17. On a Thermodynamic Approach to Material Selection for Service in Aggressive Multi-Component Gaseous and/or Vapor Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazoff, Michael Vasily; Marschman, Steven Craig; Soelberg, Nicholas Ray

    This report fulfills the M4 milestone, M4FT-15IN08020110 UNF Analysis Support, under Work Package Number FT-15IN080201. The issue of materials selection for many engineering applications represents an important problem, particularly in cases where material failure is possible as a result of corrosive environments. For example, 304 dual purpose or 316 stainless steel is used in the construction of many used nuclear fuel storage canisters. Deployed all over the world, these canisters are housed inside shielded enclosures and cooled passively by convective airflow. When located along seaboards or particular industrial areas, salt, other corrosive chemicals, and moisture can become entrained in themore » air that cools the canisters. It is important to develop an understanding of what impact, if any, that chemical environment will have on those canisters. In many cases of corrosion in aggressive gaseous environments, the material selection process is based on some general recommendations, anecdotal evidence, and/or the past experience of that particular project’s participants. For gaseous mixtures, the theoretical basis is practically limited to the construction of the so-called “Ellingham diagrams” for pure metals. These plots predict the equilibrium temperature between different individual metals, their respective oxides, and oxygen gas. Similar diagrams can be constructed for the reactions with sulfur, nitrogen, carbon, etc. In the generalization of this approach by Richardson and Jeffes, additional scales can be superimposed upon an Ellingham diagram that would correspond to different gaseous mixtures, e.g. CO/CO 2, or H 2/H 2O. However, while the general approach to predicting the stability of a multi-component heterogeneous alloy (e.g., steel or a superalloy) in a multi-component aggressive gaseous environment was developed in very general form, actual examples of its applications to concrete real-life problems are practically absent. This is related to alloy design, corrosion protection, and material selection for different applications. In this work, an effort was made to advance in that direction using modern computational thermodynamics methodology, software, and databases by Thermo-Calc Inc. The developed methodology is illustrated by the case study – a process of nuclear waste immobilization using a chemical engineering approach described below. The developed methodology can be considered a practical illustration of the Ellingham approach generalization and could be used for obtaining thermodynamic guidance on a given process’ feasibility using equipment/sensors made of a particular multicomponent heterogeneous metallic alloy.« less

  18. Friction and wear performance of bearing ball sliding against diamond-like carbon coatings

    NASA Astrophysics Data System (ADS)

    Wu, Shenjiang; Kousaka, Hiroyuki; Kar, Satyananda; Li, Dangjuan; Su, Junhong

    2017-01-01

    We have studied the tribological properties of bearing steel ball (Japan standard, SUJ2) sliding against tetrahedral amorphous carbon (ta-C) coatings and amorphous hydrogenated carbon (a-C:H) coatings. The reciprocating sliding testes are performed with ball-on-plate friction tester in ambient air condition. Analysis of friction coefficient, wear volume and microstructure in wear scar are carried out using optical microscopy, atom force morphology (AFM) and Raman spectroscopy. The results show the SUJ2 on ta-C coating has low friction coefficient (around 0.15) but high wear loss. In contrast, the low wear loss of SUJ2 on a-C:H coating with high (around 0.4) and unsteady friction coefficient. Some Fe2O3, FeO and graphitization have been found on the wear scar of SUJ2 sliding against ta-C coating. Nearly no oxide materials exist on the wear scar of SUJ2 against a-C:H coating. The mechanism and hypothesis of the wear behavior have been investigated according to the measurement results. This study will contribute to proper selection and understand the tribological performance of bearing steels against DLC coatings.

  19. Solubility of Nitrogen in Superaustenitic Stainless Steels During Air Induction Melting

    NASA Astrophysics Data System (ADS)

    Chandrasekar, A.; Anburaj, J.; Narayanan, R.; Balusamy, V.; Mohamed Nazirudeen, S. S.

    2013-04-01

    The amount of nitrogen contained in super austenitic stainless steels (SASS) influences their properties significantly. The effect of maximum amount of nitrogen in the highly alloyed Cr and Ni SASS containing further additions of Mo and Mn is studied. The calculated nitrogen contents of the experimental alloys are compared with the actual nitrogen contents obtained in the alloys produced using induction melting furnace. The actual nitrogen content of the alloys is always lower than the calculated value, and this discrepancy is due to the presence of positive interaction parameters of Ni, Cu, and Si in the alloy. However, the yield of nitrogen in the liquid SASS is improved significantly with additions of Mn and Mo contents. The construction of multicomponent phase diagrams for SASS is demonstrated using Thermo-Calc software. SASS containing more nitrogen exhibited a very high strength without loss of toughness.

  20. Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector

    DOE PAGES

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; ...

    2015-10-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparisonmore » between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.« less

  1. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  2. Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load

    NASA Astrophysics Data System (ADS)

    Denis, Nicolas; Kato, Yoshiyuki; Ieki, Masaharu; Fujisaki, Keisuke

    2016-05-01

    In this paper, an interior permanent magnet synchronous motor (IPMSM) with a stator core made of amorphous magnetic material (AMM) is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM) control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.

  3. Bulk amorphous steels based on Fe alloys

    DOEpatents

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  4. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng

    2013-11-01

    This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.

  5. Microstructure and Mechanical Properties of Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joints

    NASA Astrophysics Data System (ADS)

    Ogura, Tomo; Nishida, Taichi; Nishida, Hidehito; Yoshikawa, Syuhei; Yoshida, Takumi; Omichi, Noriko; Fujimoto, Mitsuo; Hirose, Akio

    The mechanical properties and interfacial microstructure of an aluminum alloy/stainless steel dissimilar lap joint using friction stir welding (FSW) were characterized. In an FSWed A3003 aluminum alloy-SUS304 steel lap joint, the strength on the advancing side was larger than that at the retreating side. TEM observation indicated that a sound joint can be obtained from the stage of the formation of the amorphous layer owing to the mechanical alloying effects before the formation of intermetallic compounds. This lap joining technique was also successfully applied to A6061-T6 aluminum alloy-grooved SUS304 plates. The maximum tensile strength of the lap joint was approximately the same as that of the base alloy, however, the proof stress of the joint decreased with the dissolution of the β″ phase in the A6061 aluminium alloy, which is caused by the generation of heat during friction stir welding.

  6. Adhesion, friction, and deformation of ion-beam-deposited boron nitride films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Buckley, Donald H.; Alterovitz, Samuel A.; Pouch, John J.; Liu, David C.

    1987-01-01

    The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.

  7. Adhesion, friction and deformation of ion-beam-deposited boron nitride films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Alterovitz, S. A.; Pouch, J. J.; Liu, D. C.

    1987-01-01

    The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.

  8. Jet Fuel Thermal Stability Investigations using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Klettlinger, Jennifer; Vasu, Subith

    2017-01-01

    Ellipsometry is an optical technique used to measure the thickness of thin films. This technique was used to measure the thickness of deposits created by heated jet fuel, specifically Sasol IPK on stainless steel tubes. A new amorphous model was used to iteratively determine the film thickness. This method was found to be repeatable, and the thickness of deposit increased with increasing temperature and increasing concentration of naphthalene.

  9. The electrochemical Evaluation of a Zr-Based Bulk Metallic Glass in a Phosphate-Buffered Saline Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, M. L.; Buchanan, R. A.; Leon, R. V.

    2005-01-01

    Bulk metallic glasses (BMGs) represent an emerging class of materials with an amorphous structure and a unique combination of properties. The objectives of this investigation were to define the electrochemical behavior of a specific Zr-based BMG alloy in a physiologically relevant environment and to compare these properties to standard, crystalline biomaterials as well as other Zr-based BMG compositions. Cyclic-anodic-polarization studies were conducted with a Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10.0}Ti{sub 5.0} (at %) BMG in a phosphate-buffered saline electrolyte with a physiologically relevant oxygen content at 37 C. The results were compared to three common, crystalline biomaterials: CoCrMo, 316L stainless steel,more » and Ti-6Al-4V. The BMG alloy was found to have a lower corrosion penetration rate (CPR), as compared to the 316L stainless steel, and an equivalent CPR, as compared to the CoCrMo and Ti-6Al-4V alloys. Furthermore, the BMG alloy demonstrated better localized corrosion resistance than the 316L stainless steel. However, the localized corrosion resistance of the BMG alloy was not as high as those of the CoCrMo and Ti-6Al-4V alloys in the tested environment. The excellent electrochemical properties demonstrated by the BMG alloy are combined with a low modulus and unparalleled strength. This unique combination of properties dramatically demonstrates the potential for amorphous alloys as a new generation of biomaterials.« less

  10. Structural transformations, strengthening, and wear resistance of titanium nickelide upon abrasive and adhesive wear

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.; Makarov, V. V.

    2010-07-01

    Wear resistance and structural transformations upon abrasive and adhesive wear of titanium nickelide Ti49.4Ni50.6 in microcrystalline (MC) and submicrocrystalline (SMC) states have been investigated. It has been shown that the abrasive wear resistance of this alloy exceeds that of the steel 12Kh18N9 by a factor of about 2, that of the steel 110G13 (Hadfield steel), by a factor of 1.3, and is close to that of the steel 95Kh18. Upon adhesive wear in a testing-temperature range from -50 to +300°C, the Ti49.4Ni50.6 alloy, as compared to the steel 12Kh18N9, is characterized by the wear rate that is tens of times smaller and by a reduced (1.5-2.0 times) friction coefficient. The enhanced wear resistance of the Ti49.4Ni50.6 alloy is due to the development of intense strain hardening in it and to a high fracture toughness, which is a consequence of effective relaxation of high contact stresses arising in the surface layer of the alloy. The SMC state produced in the alloy with the help of equal-channel angular pressing (ECAP) has no effect on the abrasive wear resistance of the alloy. The favorable effect of ECAP on the wear resistance of the Ti49.4Ni50.6 alloy takes place under conditions of its adhesive wear at temperatures from -25 to +70°C. The electron-microscopic investigation showed that under conditions of wear at negative and room temperatures in the surface layer (1-5 μm thick) of titanium nickelide there arises a mixed structure consisting of an amorphous phase and nanocrystals of supposedly austenite and martensite. Upon friction at 200-300°C, a nanocrystalline structure of the B2 phase arises near the alloy surface, which, as is the case with the amorphous-nanocrystalline structure, is characterized by significant effective strength and wear resistance.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jincheng; Rimsza, Jessica

    Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less

  12. An investigation of passivity and breakdown of amorphous chromium-bromine thin films for surface modification of metallic biomaterials

    NASA Astrophysics Data System (ADS)

    Cormier, Lyne Mercedes

    1998-12-01

    The objectives of this investigation of amorphous Cr-B thin films as prospective coatings for biomaterials applications were to (i) produce and characterize an amorphous Cr-B thin film coating by magnetron sputtering, (ii) evaluate its corrosion resistance in physiologically relevant electrolytes, and (iii) propose a mechanism for the formation/dissolution of the passive film formed on amorphous Cr-B in chloride-containing near-neutral salt electrolytes. Dense (zone T) amorphous Cr75B25 thin films produced by DC magnetron sputtering were found to be better corrosion barriers than nanoczystalline or porous (zone 1) amorphous Cr75B25 thin films. The growth morphology and microstructure were a function of the sputtering pressure and substrate temperature, in agreement with the structure zone model of Thornton. The passivity/loss of passivity of amorphous Cr 75B25 in near-neutral salt solutions was explained using a modified bipolar layer model. The chromate ions identified by X-Ray Photoelectron Spectroscopy (XPS) in the outer layer of the passive film were found to play a determinant role in the passive behaviour of amorphous Cr75B 25 thin films in salt solutions. In near-neutral salt solutions of pH = 5 to 7, a decrease in pH combined with an increase in chloride concentration resulted in less dissolution of the Cr75B25 thin films. The apparent breakdown potential at 240 mV (SCE) obtained by Cyclic Potentiodynamic Anodic Polarization (CPAP) was associated with oxidation of species within the passive film, but not to dissolution leading to immediate loss of passivity. Pit Propagation Rate (PPR) testing evaluated the stable pitting potential to be between 600 and 650 mV. Amorphous Cr75B25 thin films ranked the best among other Cr-based materials such as 316L stainless steel, CrB2 and Cr investigated in this study for general corrosion behaviour in NaCl and Hanks solutions by CPAP testing. In terms of corrosion resistance, amorphous Cr75B25 thin films were recognized as a promising material for surface modification of biomaterials.

  13. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-03-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  14. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-06-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  15. Relationship Between Solidification Microstructure and Hot Cracking Susceptibility for Continuous Casting of Low-Carbon and High-Strength Low-Alloyed Steels: A Phase-Field Study

    NASA Astrophysics Data System (ADS)

    Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.

    2013-08-01

    Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.

  16. A Mathematical Model for the Multiphase Transport and Reaction Kinetics in a Ladle with Bottom Powder Injection

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2017-12-01

    A computation fluid dynamics-population balance model-simultaneous reaction model (CFD-PBM-SRM) coupled model has been proposed to study the multiphase flow behavior and refining reaction kinetics in a ladle with bottom powder injection, and some new and important phenomena and mechanisms are presented. For the multiphase flow behavior, the effects of bubbly plume flow, powder particle motion, particle-particle collision and growth, particle-bubble collision and adhesion, and powder particle removal into top slag are considered. For the reaction kinetics, the mechanisms of multicomponent simultaneous reactions, including Al, S, Si, Mn, Fe, and O, at the multi-interface, including top slag-liquid steel interface, air-liquid steel interface, powder droplet-liquid steel interface, and bubble-liquid steel interface, are presented, and the effect of sulfur solubility in the powder droplet on the desulfurization is also taken into account. Model validation is carried out using hot tests in a 2-t induction furnace with bottom powder injection. The result shows that the powder particles gradually disperse in the entire furnace; in the vicinity of the bottom slot plugs, the desulfurization product CaS is liquid phase, while in the upper region of the furnace, the desulfurization product CaS is solid phase. The predicted sulfur contents by the present model agree well with the measured data in the 2-t furnace with bottom powder injection.

  17. Internal stresses in wear and corrosion resistant amorphous metallic coatings of (W/0.6/Re/0.4/)76B24 and (Mo/0.6/Ru/0.4/)82B18

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Williams, R. M.; Khanna, S. K.

    1985-01-01

    Hard protective coatings in the W-Re-B and Mo-Ru-B alloy systems have been deposited by magnetron sputtering onto soda-lime glass and heat-treated AISI 52100 steel substrates. X-ray diffraction has confirmed the amorphous nature of the as-deposited coatings, and their crystallization temperatures were determined by differential thermal analysis to be 1000 and 790 C for W-Re-B and Mo-Ru-B coatings, respectively. Both coatings exhibit high microhardness; Mo-Ru-B, in addition, has excellent corrosion resistance by comparison with pure Mo at high anodic potentials. Attention is given to the influence of internal stresses on the protective properties of the coatings deposited under different conditions.

  18. Amorphous boron gasket in diamond anvil cell research

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin

    2003-11-01

    Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.

  19. The Mechanism of Anaerobic (Microbial) Corrosion.

    DTIC Science & Technology

    1982-12-01

    hydrogen sulfide reacts with hypophosphite (as well as phosphate and phosphite ) .to form, in the presence of mild steel, iron phosphide, simulating the...of phosphate and phosphite , but not hypophosphite, were observed to have become yellow in 24 hours. The yellow color disap- peared upon exposure to... product is an amorphous type of iron phosphide which can be !- detected b the formation of phos hine upon its acidification. Phosphine( in M IFO, 1473

  20. [Studies on the recovery of pharmaceutical drug substances from surfaces made of defined stainless-steel alloys].

    PubMed

    Kloss, S; Müller, U; Oelschläger, H

    2005-09-01

    Facilities for the manufacturing of pharmaceutical drug substances on the pilot-plant and the industrial scale as well as chemical reactors and vessels used for chemical work-up mainly consist of alloyed stainless steel. The influence of the alloy composition and the surface condition, i.e. of the roughness of the stainless-steel materials, on the adsorption of structurally diverse steroidal substances and, hence, on the quality of the products was studied. In general, stainless-steel alloys with smooth, not so rough surfaces are to be favored as reactor material. However, it was demonstrated in this study that, on account of the weak interaction between active substances and steel materials, mechanically polished materials of a medium roughness up to approx. 0.4 microm can be employed instead of the considerably more cost-intensive electrochemically polished stainless-steel surfaces. The type of surface finishing up to a defined roughness, then, has no influence on the quality of these pharmaceutical products. Substances that, because of their molecular structure, can function as "anions" in the presence of polar solvents, are adsorbed on very smooth surfaces prepared by electrochemical methods, forming an amorphous surface film. For substances with this structural characteristics, the lower-cost mechanically polished reactor materials of a medium roughness up to approx. 0.5 microm should be used exclusively.

  1. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in corrosive environments.

  2. Effect of pH, Surfactant, and Heat Treatment on Morphology, Structure, and Hardness of Electrodeposited Co-P Coatings

    NASA Astrophysics Data System (ADS)

    Zeinali-Rad, M.; Allahkaram, S. R.; Mahdavi, S.

    2015-09-01

    Nano-crystalline and amorphous Co-P coatings were deposited on plain carbon steel substrates by using direct current. Effects of electrolyte pH on morphology, current efficiency, phosphorus content, hardness, and preferred orientation of the nano-crystalline coatings were investigated. Moreover, the effects of heat treatment on microstructure and hardness of the nano-crystalline and the amorphous coatings were studied. The results showed that, phosphorus content and hardness of the nano-crystalline coatings were decreased by increasing of the pH, in spite of a current efficiency enhancement to as much as 98%. Grain size and preferred orientation were also changed from 13 to 31 nm and from mostly [002] to [100] by increasing the pH from 1 to 4, respectively. Smoother coatings and higher current efficiencies were obtained by the addition of 1 g/L sodium dodecyl sulfate (SDS) to the bath. Highest hardness of the nano-crystalline and the amorphous coatings was about 600 and 750 HV, which increased and reached 760 and 1090 HV after heat treatment, respectively.

  3. The application of electrolytic photoetching and photopolishing to AISI 304 stainless steel and the electrolytic photoetching of amorphous cobalt alloy

    NASA Astrophysics Data System (ADS)

    Thomaz, Marita Duarte Canhao da Silva Pereira Fernandes

    The results presented cover broad aspects of a quantitative investigation into the elecrolytic etching and polishing of metals and alloys through photographically produced dielectric stencils (Photoresists). A study of the potential field generated between a cathode and relatively smaller anode sites as those defined by a dielectric stencil was carried out. Numerical, analytical and graphical methods yielded answers to the factors determining lateral dissolution (undercut) at the anode/stencil interface. A quasi steady state numerical model simulating the transient behavior of the partially masked electrodes undergoing dissolution was obtained. AISI 304 stainless steel was electrolytically photoetched in 10% w/w HCl electrolyte. The optimised process parameters were utilised for quantifying the effects of galvanostatic etching of the anode as that defined by a relatively narrow adherent resist stencil. Stainless steel was also utilised in investigating electrolytic photopolishing. A polishing electrolyte (orthophosphoric acid-glycerol) was modified by the addition of a surfactant which yielded surface texture values of 70nm (Ra) and high levels of specular reflectance. These results were used in the production of features upon the metal surface through photographically produced precision stencils. The process was applied to the production of edge filters requiring high quality surface textures in precision recesses. Some of the new amorphous material exhibited high resistance to dissolution in commercially used spray etching formulations. One of these materials is a cobalt based alloy produced by chill block spinning. This material was also investigated and electro etched in 10% w/w HCl solution. Although passivity was not overcome, by selecting suitable operating parameters the successful electro photoetching of precision magnetic recording head laminations was achieved. Similarly, a polycrystalline nickel based alloy also exhibiting passivity in commercially used etchants was successfully etched in the above electrolyte.

  4. Microstructures and tribological properties of GLC coated 100Cr6 bearing steels

    NASA Astrophysics Data System (ADS)

    Kong, Yonghua; Chen, Qiao; Wang, Long

    2017-11-01

    Low friction and hard amorphous carbon films were fabricated on 100Cr6 bearing steels via the unbalanced magnetron sputtering method. This paper studied the effect of graphite-like carbon (GLC) coatings on the wear resistance of 100Cr6, which are widely used in textile rings. The microstructures of the GLC coatings were investigated using scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive Spectrometer (EDS) and Raman. A comparative analysis using a ball-on-disc tribometer was carried out on 100Cr6 bearing steels with GLC coatings and those that had chromium-electroplated coatings. It was demonstrated that the GLC films on 100Cr6 presented better tribological properties, and the corresponding wear mechanisms were investigated. The tribological properties of GLC films under cryogenic treatment (-196 °C), annealing at temperatures of 300 °C and 350 °C were characterized. It was revealed that the friction coefficients decreased after using three kinds of treatments above.

  5. Bio-Environment-Induced Degradation and Failure of Internal Fixation Implants.

    PubMed

    Zhou, Yan; Perkins, Luke A; Wang, Guodong; Zhou, Dongsheng; Liang, Hong

    2015-10-15

    Internal fixations provide fast healing but their failure remains problematic to patients. Here, we report an experimental study in failure of three typical cases of metals: a bent intramedullary stainless steel nail, a broken exterior pure Ti plate, and a broken intramedullary stainless steel nail. Characterization of the bent nail indicates that those metals are vulnerable to corrosion with the evidence of increased surface roughness and embrittlement. Depredated surface of the Ti plate resulted debris particles in the surrounding tissue of 15.2 ± 6.5 μm in size. Nanoparticles were observed in transmission electron microscope. The electron diffraction pattern of the debris indicates a combination of nanocrystalline and amorphous phases. The failure mode of the broken nail made of stainless steel was found to be fatigue initiated from the surface. This study clearly shows the biological-attack induced surface degradation resulting in debris and fatigue. Future design and selection of implant materials should consider such factors for improvement.

  6. Tribological synthesis method for producing low-friction surface film coating

    DOEpatents

    Ajayi, Oyelayo O.; Lorenzo-Martin, Maria De La; Fenske, George R.

    2016-10-25

    An article of method of manufacture of a low friction tribological film on a substrate. The article includes a substrate of a steel or ceramic which has been tribologically processed with a lubricant containing selected additives and the additives, temperature, load and time of processing can be selectively controlled to bias formation of a film on the substrate where the film is an amorphous structure exhibiting highly advantageous low friction properties.

  7. Microgravity

    NASA Image and Video Library

    2000-07-29

    An entranced youngster watches a demonstration of the enhanced resilience of undercooled metal alloys as compared to conventional alloys. Steel bearings are dropped onto plates made of steel, titanium alloy, and zirconium liquid metal alloy, so-called because its molecular structure is amorphous and not crystalline. The bearing on the liquid metal plate bounces for a minute or more longer than on the other plates. Experiments aboard the Space Shuttle helped scientists refine their understanding of the physical properties of certain metal alloys when undercooled (i.e., kept liquid below their normal solidification temperature). This new knowledge then allowed scientists to modify a terrestrial production method so they can now make limited quantities marketed under the Liquid Metal trademark. The exhibit was a part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  8. Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Crsbnd C films

    NASA Astrophysics Data System (ADS)

    Nygren, Kristian; Andersson, Matilda; Högström, Jonas; Fredriksson, Wendy; Edström, Kristina; Nyholm, Leif; Jansson, Ulf

    2014-06-01

    It is known that mechanical and tribological properties of transition metal carbide films can be tailored by adding an amorphous carbon (a-C) phase, thus making them nanocomposites. This paper addresses deposition, microstructure, and for the first time oxidation resistance of magnetron sputtered nanocomposite Crsbnd C/a-C films with emphasis on studies of both phases. By varying the deposition temperature between 20 and 700 °C and alternating the film composition, it was possible to deposit amorphous, nanocomposite, and crystalline Crsbnd C films containing about 70% C and 30% Cr, or 40% C and 60% Cr. The films deposited at temperatures below 300 °C were X-ray amorphous and 500 °C was required to grow crystalline phases. Chronoamperometric polarization at +0.6 V vs. Ag/AgCl (sat. KCl) in hot 1 mM H2SO4 resulted in oxidation of Crsbnd C, yielding Cr2O3 and C, as well as oxidation of C. The oxidation resistance is shown to depend on the deposition temperature and the presence of the a-C phase. Physical characterization of film surfaces show that very thin C/Cr2O3/Crsbnd C layers develop on the present material, which can be used to improve the oxidation resistance of, e.g. stainless steel electrodes.

  9. Hybrid gas-to-particle conversion and chemical vapor deposition for production of high-surface area films

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh Tan

    A hybrid process, based upon gas-to-particle conversion and chemical vapor deposition, is presented as an alternative technique for producing porous films with the main advantages of solvent-free, low-substrate temperature operation. Starting from solid precursors, nanoparticles were produced in the vapor phase. Downstream of this reaction zone, these nanoparticles were collected via thermophoresis onto a cooled substrate forming a porous film. Initially, alumina (Al2O3) films were produced. Later, multi-component processing was explored by incorporating platinum (Pt) nanoparticles into the Al2O3 matrix leading to the production of Pt/Al 2O3 films by two routes: simultaneous precursor injection processing or by a layer-by-layer approach. In single component processing, the formation of nanoparticle aggregates was evident within the amorphous Al2O3 films. Aggregates, composed of these particles, are likely held together by relatively weak van der Waals forces leading to the observed poor physical cohesion. In multi-component processing, reasonable control of composition and distribution of species is possible with Pt nanoparticles appearing to be co-agglomerated with alumina. Deposited crystalline Pt nanoparticles may encourage the crystallization of the amorphous Al2O3. Finally, from chemisorption results, the produced sample appears to have potentially greater catalytic activity than a commercially available standard. A model is in development to study nanoparticle interactions with a gas and deposition occurring in stagnation flow onto the cooled horizontal substrate within the tubular reactor. Using velocity and temperature fields generated from numerical solutions to the Navier-Stokes and energy equations, particle trajectories were calculated from the summation of drag, gravitational, thermophoretic, and Brownian forces. In rectangular coordinates, cooling stage width to reactor diameter ratio, deposition stage temperature, and initial velocity were the primary parameters varied in this study. An optimum balance between thermophoretic and drag forces appears to be the key factor in obtaining high yield and surface uniformity in the films. The results also suggest that Brownian motion is not a significant contributor to deposition under conditions in this study.

  10. The effect of amino acid excipients on morphology and solid-state properties of multi-component spray-dried formulations for pulmonary delivery of biomacromolecules.

    PubMed

    Sou, Tomás; Kaminskas, Lisa M; Nguyen, Tri-Hung; Carlberg, Renée; McIntosh, Michelle P; Morton, David A V

    2013-02-01

    For a dry powder carrier platform to be suitable for pulmonary delivery of potent biomacromolecules, it has to be aerosolisable and capable of stabilising the biomacromolecules. In the present study, strategies aiming to produce a multi-component spray-dried powder formulation with a stable amorphous glassy matrix containing mannitol, trehalose, glycine and alanine, while using leucine as a particle formation and aerosolisation enhancing agent were investigated. The results from in vitro aerosolisation studies demonstrated high fine particle fractions (FPFs) from several formulations. Scanning electronic micrographs (SEMs) revealed distinct morphological features of these formulations in response to increasing leucine concentration: from the apparent insufficiency for discrete particle formation, to reduced particle agglomeration, to increased surface corrugation. X-ray powder diffraction (XRPD) results indicated that partially ordered leucine resulting from self-assembly on the particle surface is important for the amino acid to function effectively as an encapsulating agent. This may also play a role in inhibiting crystallisation of other components within the formulation. In conclusion, the results suggest that with suitable particle size, good dispersibility and solid-state properties, selected trehalose/leucine combinations appear to have good potential for development into a universal carrier platform for pulmonary delivery of potent biomacromolecules and the work highlights areas deserving further investigation. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Antibacterial and Tribological Performance of Carbonitride Coatings Doped with W, Ti, Zr, or Cr Deposited on AISI 316L Stainless Steel

    PubMed Central

    Yao, Sun-Hui; Su, Yen-Liang; Lai, Yu-Cheng

    2017-01-01

    Carbonitride (CNx) coatings have existed for several decades but are not well understood. Related studies have indicated that CNx coatings exhibit behaviors comparable to diamond-like carbon (DLC) coatings. Metal-doped CNx coatings are expected to show superior performance to single CNx coatings. In this study, a CNx coating and a group of CNx coatings with 6 at. % metal doping (W, Ti, Zr, or Cr) were prepared on biograde AISI 316L stainless steel (SS316L) substrates, and they were then characterized and studied for antibacterial and wear performance. The microstructure, constituent phase, nanohardness, adhesion, surface roughness, and contact angle were evaluated. The antimicrobial test used Staphylococcus aureus and followed the Japanese Industrial Standard JIS Z 2801:2010. Finally, the wear behavior was assessed. The results showed that the CNx coating was a composite of amorphous CNx and amorphous C structures. The metal doping caused crystalline metal carbides/nitrides to form in the CNx coatings, which weakened their overall integrity. All the coatings showed antimicrobial ability for the SS316L samples. The CNx-Zr coating, the surface of which had the highest hydrophilicity, produced the best antibacterial performance. However, the CNx-Zr coating showed lower wear resistance than the CNx-W and CNx-Ti coatings. The CNx-Ti coating with a highly hydrophilic surface exhibited the lowest antibacterial ability. PMID:29039782

  12. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  13. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  14. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  15. FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM

    DOE PAGES

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; ...

    2016-05-20

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.« less

  16. FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.« less

  17. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.« less

  18. Atomistic Computer Simulations of Water Interactions and Dissolution of Inorganic Glasses

    DOE PAGES

    Du, Jincheng; Rimsza, Jessica

    2017-09-01

    Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less

  19. Prediction of Formation of Amorphous Alloys During Annealing of Ti-binary Alloys and Validation of the Same

    DTIC Science & Technology

    2009-11-22

    The authors argued that the occurrence of the reversible step in the specific heat reflected “the freezing and unfreezing of some degree of freedom...of steel, the austenite phase is sometimes formed in a composition range where ferrite and liquid are the equilibrium phases. The formation of the...austenite is explained by the construction of a meta-stable extension of the (austenite+liquid) field into the ( ferrite +liquid) region. The

  20. Analysis of a Rapidly Solidified High-Phosphorus Austenitic Steel Containing an Amorphous Phase.

    DTIC Science & Technology

    1981-12-01

    electrodeposited nickel by a combination of Jet electro- polishing and ion-beam milling. Specimens were observed in a Vacuum Generators HB-5 scanning...the cell walls in these powders is one of suppressed crystal growth rather than nucleation , since the glass is formed in direct contact with the...Cohen, this Symposium. 5. T. F. Kelly, Ph.D. Thesis , MIT, February 1982. 6. C. V. Thompson, A. L. Greer, and A. J. Drehman, Proc. 4th Intl. Conf

  1. Efficient transformer study: Analysis of manufacture and utility data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Klaehn; Cordaro, Joe; McIntosh, John

    Distribution transformers convert power from the distribution system voltage to the end-customer voltage, which consists of residences, businesses, distributed generation, campus systems, and manufacturing facilities. Amorphous metal distribution transformers (AMDT) are also more expensive and heavier than conventional silicon steel distribution transformers. This and the difficulty to measure the benefit from energy efficiency and low awareness of the technology have hindered the adoption of AMDT. This report presents the cost savings for installing AMDT and the amount of energy saved based on the improved efficiency.

  2. Cobalt-Free Permanent Magnet Alloys.

    DTIC Science & Technology

    1984-10-01

    carbide co- UC CbC lumbium carbide M003 Uranium carbide - tho- UC 2 25ThC rium carbide ZrO2 MgO WOs Use of this Process for MnAlC As indicated in the...cobalt. Free World Cobal Consumption Estimated Breakdown by End Uses Magnetic alloys 20% Cemented carbides - 5% 30 SuPerolloy _ 15% Other steels and...would normally result in the formation of binary alloy of TbFe 2 and preventing the formation of amorphous alloy (Fe-B) contain- ing Tb. The

  3. Space Research Benefits Demonstrated

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An entranced youngster watches a demonstration of the enhanced resilience of undercooled metal alloys as compared to conventional alloys. Steel bearings are dropped onto plates made of steel, titanium alloy, and zirconium liquid metal alloy, so-called because its molecular structure is amorphous and not crystalline. The bearing on the liquid metal plate bounces for a minute or more longer than on the other plates. Experiments aboard the Space Shuttle helped scientists refine their understanding of the physical properties of certain metal alloys when undercooled (i.e., kept liquid below their normal solidification temperature). This new knowledge then allowed scientists to modify a terrestrial production method so they can now make limited quantities marketed under the Liquid Metal trademark. The exhibit was a part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  4. Tribological and corrosion behaviour of electroless Ni-B coating possessing a blackberry like structure

    NASA Astrophysics Data System (ADS)

    Bülbül, Ferhat; Altun, Hikmet; Küçük, Özkan; Ezirmik, Vefa

    2012-08-01

    This study aims to evaluate the tribological and corrosion properties of the electroless Ni-B coating deposited on AISI 304 stainless steels. The microstructure of the coating was characterized using x-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). XRD analysis revealed that the prepared coating possessed an amorphous character. SEM-EDS investigation also indicated that a non-stoichiometric Ni-B coating was deposited with a columnar growth mechanism on the stainless steel substrate and the morphology of the growth surface was blackberry-like. The hardness and tribological properties were characterized by microhardness and a pin-on-disc wear test. The electroless Ni-B coated sample had a higher degree of hardness, a lower friction coefficient and a lower wear rate than the uncoated substrate. The electrochemical potentiodynamic polarization method was used to evaluate the corrosion resistance of the coating. The electroless Ni-B coating offered cathodic protection on the substrate by acting as a sacrificial anode although it was electrochemically more reactive than the stainless steel substrate.

  5. Influence of Silicate Concentration in Electrolyte on the Growth and Performance of Plasma Electrolytic Oxidation Coatings Prepared on Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Yang, Wenbin; Peng, Zhenjun; Liu, Baixing; Liu, Weimin; Liang, Jun

    2018-04-01

    Plasma electrolytic oxidation (PEO) coatings were prepared on low carbon steel from electrolytes with different silicate concentrations. The microstructure, elemental and phase compositions of the PEO coatings were analyzed by scanning electron microscope, energy-dispersive spectrometer, and x-ray diffraction, respectively. The adhesion of PEO coatings with low carbon steel substrate was qualitatively examined by thermal shock tests. The tribological properties were evaluated by a reciprocating tribometer sliding against a Si3N4 ceramic ball. The corrosion behaviors of PEO coatings were investigated in 3.5 wt.% NaCl solution by electrochemical impedance spectra and potentiodynamic polarization. Results indicated that all the PEO coatings were comprised of amorphous SiO2 and Fe-containing oxides; however, the silicate concentration in electrolyte showed significant influence on the growth and the performance of PEO coatings. The PEO coating prepared from the electrolyte with silicate concentration of 30 g/L had the highest Fe content because the substrate was more readily oxidized and showed a dense structure, resulting in the best comprehensive performance of adhesion, wear resistance, and corrosion resistance.

  6. Influence of Silicate Concentration in Electrolyte on the Growth and Performance of Plasma Electrolytic Oxidation Coatings Prepared on Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Yang, Wenbin; Peng, Zhenjun; Liu, Baixing; Liu, Weimin; Liang, Jun

    2018-05-01

    Plasma electrolytic oxidation (PEO) coatings were prepared on low carbon steel from electrolytes with different silicate concentrations. The microstructure, elemental and phase compositions of the PEO coatings were analyzed by scanning electron microscope, energy-dispersive spectrometer, and x-ray diffraction, respectively. The adhesion of PEO coatings with low carbon steel substrate was qualitatively examined by thermal shock tests. The tribological properties were evaluated by a reciprocating tribometer sliding against a Si3N4 ceramic ball. The corrosion behaviors of PEO coatings were investigated in 3.5 wt.% NaCl solution by electrochemical impedance spectra and potentiodynamic polarization. Results indicated that all the PEO coatings were comprised of amorphous SiO2 and Fe-containing oxides; however, the silicate concentration in electrolyte showed significant influence on the growth and the performance of PEO coatings. The PEO coating prepared from the electrolyte with silicate concentration of 30 g/L had the highest Fe content because the substrate was more readily oxidized and showed a dense structure, resulting in the best comprehensive performance of adhesion, wear resistance, and corrosion resistance.

  7. The chemical and oxidation characteristics of semi-dry flue gas desulfurization ash from a steel factory.

    PubMed

    Liu, Ren-ping; Guo, Bin; Ren, Ailing; Bian, Jing-feng

    2010-10-01

    Some samples of semi-dry flue gas desulfurization (FGD) ash were taken from sinter gas of a steel factory. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were employed to identify the samples in order to investigate their physical and chemical characteristics. The results show that semi-dry FGD ash from a steel factory is stable under atmospheric conditions. It has irregular shape, a smooth surface and loose construction. The size of FGD ash particles is around 0.5-25 µm, the average size is about 5 µm and the median diameter is 4.18 µm. Semi-dry FGD ash from a steel factory consists of CaSO₃, CaSO₄, CaCO₃, some amorphous vitreous material and unburned carbon. An experimental method was found to study the oxidation characteristics of ash. A prediction model of the oxidation efficiency was obtained based on response surface methodology. The results show that not only the temperature, but also gas:solid ratio, play an important role in influencing the oxidation efficiency. The interactions of the gas:solid ratio with temperature play an essential role. An improved response surface model was obtained which can be helpful to describe the degree of oxidation efficiency of semi-dry FGD ash.

  8. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    PubMed

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-11-01

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.

  9. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control

    PubMed Central

    Kamseu, Elie; Lancellotti, Isabella; Sglavo, Vincenzo M.; Modolo, Luca; Leonelli, Cristina

    2016-01-01

    Amorphous silica and alumina of metakaolin are used to adjust the bulk composition of black (BSS) and white (WSS) steel slag to prepare alkali-activated (AAS) mortars consolidated at room temperature. The mix-design also includes also the addition of semi-crystalline matrix of river sand to the metakaolin/steel powders. The results showed that high strength of the steel slag/metakaolin mortars can be achieved with the geopolymerization process which was particularly affected by the metallic iron present into the steel slag. The corrosion of the Fe particles was found to be responsible for porosity in the range between 0.1 and 10 µm. This class of porosity dominated (~31 vol %) the pore network of B compared to W samples (~16 vol %). However, W series remained with the higher cumulative pore volume (0.18 mL/g) compared to B series, with 0.12 mL/g. The maximum flexural strength was 6.89 and 8.51 MPa for the W and B series, respectively. The fracture surface ESEM observations of AAS showed large grains covered with the matrix assuming the good adhesion bonds between the gel-like geopolymer structure mixed with alkali activated steel slag and the residual unreacted portion. The correlation between the metallic iron/Fe oxides content, the pore network development, the strength and microstructure suggested the steel slag's significant action into the strengthening mechanism of consolidated products. These products also showed an interesting adsorption/desorption behavior that suggested their use as coating material to maintain the stability of the indoor relative humidity. PMID:28773529

  10. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control.

    PubMed

    Kamseu, Elie; Lancellotti, Isabella; Sglavo, Vincenzo M; Modolo, Luca; Leonelli, Cristina

    2016-05-24

    Amorphous silica and alumina of metakaolin are used to adjust the bulk composition of black (BSS) and white (WSS) steel slag to prepare alkali-activated (AAS) mortars consolidated at room temperature. The mix-design also includes also the addition of semi-crystalline matrix of river sand to the metakaolin/steel powders. The results showed that high strength of the steel slag/metakaolin mortars can be achieved with the geopolymerization process which was particularly affected by the metallic iron present into the steel slag. The corrosion of the Fe particles was found to be responsible for porosity in the range between 0.1 and 10 µm. This class of porosity dominated (~31 vol %) the pore network of B compared to W samples (~16 vol %). However, W series remained with the higher cumulative pore volume (0.18 mL/g) compared to B series, with 0.12 mL/g. The maximum flexural strength was 6.89 and 8.51 MPa for the W and B series, respectively. The fracture surface ESEM observations of AAS showed large grains covered with the matrix assuming the good adhesion bonds between the gel-like geopolymer structure mixed with alkali activated steel slag and the residual unreacted portion. The correlation between the metallic iron/Fe oxides content, the pore network development, the strength and microstructure suggested the steel slag's significant action into the strengthening mechanism of consolidated products. These products also showed an interesting adsorption/desorption behavior that suggested their use as coating material to maintain the stability of the indoor relative humidity.

  11. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling, and tunnel-boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately 1 cm. The observed corrosion resistance may enable applications of importance in industries such as oil and gas production, refining, nuclear power generation, shipping, etc.

  12. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    NASA Astrophysics Data System (ADS)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  13. Amorphous Ni(Fe)OxHy-coated nanocone arrays self-supported on stainless steel mesh as a promising oxygen-evolving anode for large scale water splitting

    NASA Astrophysics Data System (ADS)

    Shen, Junyu; Wang, Mei; Zhao, Liang; Zhang, Peili; Jiang, Jian; Liu, Jinxuan

    2018-06-01

    The development of highly efficient, robust, and cheap water oxidation electrodes is a major challenge in constructing industrially applicable electrolyzers for large-scale production of hydrogen from water. Herein we report a hierarchical stainless steel mesh electrode which features Ni(Fe)OxHy-coated self-supported nanocone arrays. Through a facile, mild, low-cost and readily scalable two-step fabrication procedure, the electrochemically active area of the optimized electrode is enlarged by a factor of 3.1 and the specific activity is enhanced by a factor of 250 at 265 mV overpotential compared with that of a corresponding pristine stainless steel mesh electrode. Moreover, the charge-transfer resistance is reduced from 4.47 Ω for the stainless steel mesh electrode to 0.13 Ω for the Ni(Fe)OxHy-coated nanocone array stainless steel mesh electrode. As a result, the cheap and easily fabricated electrode displays 280 and 303 mV low overpotentials to achieve high current densities of 500 and 1000 mA cmgeo-2, respectively, for oxygen evolution reaction in 1 M KOH. More importantly, the electrode exhibits a good stability over 340 h of chronopotentiometric test at 50 mA cmgeo-2 and only a slight attenuation (4.2%, ∼15 mV) in catalytic activity over 82 h electrolysis at a constant current density of 500 mA cmgeo-2.

  14. The Soft Magnetic Properties, and Temperature Stability, of Co-Fe-Zr-B Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Bednarčík, J.; Kováč, J.; Roth, S.; Fűzer, J.; Kollár, P.; Varga, L.; Franz, H.

    2008-01-01

    In the present work multicomponent Co-based alloys with nominal composition Co72-x FexZr8B20 (x=10, 15, and 20 at. %) were synthesized by single-roller melt-spinning. The measurement of coercivity, Hc, reveals the soft magnetic behavior of investigated alloys. The value of Hc increases from 23 A/m for alloy with x=10 at. % up to 32 A/m for alloy with x=20 at. %. Further it was found that crystallization temperature of as-quenched alloys slightly varies with iron content and lays between 605 and 625°C. From the temperature dependence of magnetization it follows that partial substitution of cobalt by iron has positive influence on the Curie temperature of amorphous phase, Tam c, which increases from 300°C up to 462°C for alloy with x=10 at. % and x=2 0 at. %, respectively.

  15. Aluminium and titanium modified mesoporous TUD-1: A bimetal acid catalyst for Biginelli reaction

    NASA Astrophysics Data System (ADS)

    Pasupathi, M.; Santhi, N.; Pachamuthu, M. P.; Alamelu Mangai, G.; Ragupathi, C.

    2018-05-01

    Using a simple, non-surfactant template triethanolamine (TEA), bimetal (Al3+ and Ti4+ ions) incorporated mesoporous catalyst AlTiTUD-1 (Si/Al+Ti = 50) was synthesized. The catalyst was characterized by XRD (Low and High angle), N2 Sorption, FTIR, SEM, TEM, DR UV Visible, and pyridine adsorbed FT-IR techniques. The XRD and N2 sorption studies confirmed its amorphous, mesoporous nature, which possessed a BET surface area of 590 m2 g-1 and pore diameter of 4.4 nm. The Al3+ and Ti4+ co-ordination within the TUD-1 was evaluated by DR UV-Vis. Pyridine adsorbed FTIR revealed both Bronsted (B) and Lewis (L) acidity, which is responsible for the catalytic activity. The acid catalyst showed a good catalytic performance in Biginelli type multicomponent coupling reaction for the substituted aldehydes, ethyl acetoacetate and thiourea to yield about 70% in reflux condition.

  16. Metallic glass formation at the interface of explosively welded Nb and stainless steel

    NASA Astrophysics Data System (ADS)

    Bataev, I. A.; Hokamoto, K.; Keno, H.; Bataev, A. A.; Balagansky, I. A.; Vinogradov, A. V.

    2015-07-01

    The interface between explosively welded niobium and stainless steel SUS 304 was studied using scanning electron microscopy, transmission electron microscopy and energy dispersive X-Ray spectroscopy. The wavy interface along which vortex zones were located was observed. The vortex zones formed due to the mixing of materials typically had amorphous structure. Inoue's criteria of glass formation were used to explain this result. The effect of the composition, cooling rate and pressure on the glass formation are discussed. The conditions of deformation, heating, and cooling as well as shockwaves propagation were numerically simulated. We show that the conditions of vortex zone formation resemble the conditions of rapid solidification processes. In contrast to the "classical" methods of rapid solidification of melt, the conditions of metastable phase formation during explosive welding are significantly complicated by the fluctuations of composition and pressure. Possible metastable structures formation at the interface of some common explosively joined materials is predicted.

  17. Adsorption and inhibitive properties of a Schiff base for the corrosion control of carbon steel in saline water.

    PubMed

    Samide, Adriana; Tutunaru, Bogdan

    2011-01-01

    A Schiff base, namely N-(2-hydroxybenzylidene) thiosemicarbazide (HBTC), was investigated as inhibitor for carbon steel in saline water (SW) using electrochemical measurements such as: potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The morphology of the surfaces before and after corrosion was examined by Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDS). The results showed that HBTC acts as corrosion inhibitor in SW by suppressing simultaneously the cathodic and anodic processes via adsorption on the surface which followed the Langmuir adsorption isotherm; the polarization resistance (R(p)) and inhibition efficiency (IE) increased with each HBTC concentration increase. SEM/EDS analysis showed at this stage that the main product of corrosion is a non-stoichiometric amorphous Fe(3+) oxyhydroxide, consisting of a mixture of Fe(3+) oxyhydroxides, α-FeOOH and/or γ-FeOOH, α-FeOOH/γ-FeOOH and Fe(OH)(3).

  18. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets.

    PubMed

    Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki

    2015-01-01

    In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.

  19. Effects of Helium Ion Irradiation on Properties of Crystalline and Amorphous Multiphase Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang

    2017-08-01

    The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Williams; Zhao, Ji-Cheng

    Cost effective and high performance alloys that are capable of operating at 760 °C or higher for extended periods of time under a very aggressive environment are critically required for the design and development of advanced ultrasupercritical (AUSC) boilers and steam turbines. Finely dispersed Laves phase precipitates have been shown by Takeyama and co-workers to be a viable strengthening mechanism in high temperature austenitic steels. There is currently no straightforward theory that can predict what other intermetallic phases can serve as potent precipitation-strengthening phases for steels; thus we employed a highly effective dual-anneal diffusion multiple (DADM) approach to screen formore » viable strengthening precipitates over a wide range of compositions. From the Fe-Co-Cr-Ni-Mo DADMs, the Fe-Cr-Mo based Chi phase was identified as a new strengthening phase for high temperature ferritic steels; and from the Fe-Mn-Cr-Nb-Ni-Mo-FeAl DADMs, the Laves phase was identified as a viable strengthening precipitate in Fe-Mn and Fe-Ni based austenitic steels. After identification of viable strengthening phases from the DADMs that covered compositions in the basic ternary and quaternary systems, we employed computation thermodynamics to perform multicomponent alloy design and optimization. For the new the Chi-phase strengthened steels, we performed thermodynamic calculations to vary the volume fraction of the Chi phase and introduced Nb and carbon to promote the formation of stable carbides for grain size control during solution heat treatment. For the Fe-Ni-Mn based austenitic steels, we performed extensive parametric optimization of compositions in order to reduce the expensive Ni content, add Cr and Al for oxidation resistance, and balance the alloying contents (Ni, Mn, Cr, Al, Mo) to suppress the ferritic phase and promote the austenitic matrix phase. Four steels (two ferritic + two austenitic) were designed and tested. The two Chi-phase strengthened ferritic steels exhibited excellent oxidation resistance and good creep-rupture strength at moderate temperatures, considering their ferritic matrix that usually results in lower creep resistance than austenitic steels. These steels showed brittleness and sample-to-sample variability in ductility. The low ductility might be due to the macro segregation during solidification or the significant grain growth during the solution heat treatments. We believe there is no inherent brittleness based on the chemistry of the steels. The creep-rupture performance of the steels is comparable to the 9Cr steels. Due to their ferritic matrix, the new Chi-phase strengthened ferritic steels may not be suited for the 760 °C AUSC applications, but they are very good candidates for intermediate temperature applications due to their outstanding oxidation resistance and high strength. Further study is required to find the source of low and highly variable ductility. We believe the compositions of the Chi-phase strengthened steels are not inherently brittle. The Chi-phase strengthened ferritic steels may also be excellent candidates for intermediate-temperature and room-temperature cast stainless steels, thus we highly recommend further investigations. The two Mn-containing austenitic steels based on the Laves phase showed good ductility, excellent oxidation resistance (slightly inferior to the two ferritic steels) at high temperatures and moderate creep strength. The creep-strength of the two austenitic steels based on the Larson-Miller parameters is higher than that of the traditional 316 stainless steels, but lower than the alumina-forming alloys (AFAs) developed at Oak Ridge National Laboratories. We do not recommend high priority in further studying these compositions unless higher Cr alloys are required for hot-corrosion resistance.« less

  1. Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

    NASA Astrophysics Data System (ADS)

    Huh, Joo-Youl; Hwang, Min-Je; Shim, Seung-Woo; Kim, Tae-Chul; Kim, Jong-Sang

    2018-05-01

    The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc > 90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, S.

    This report describes the research program intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous silicon (a-Si) alloy cells, and modules with low manufacturing cost and high reliability. United Solar uses a spectrum-splitting, triple-junction cell structure. The top cell uses an amorphous silicon alloy of {approx}1.8-eV bandgap to absorb blue photons. The middle cell uses an amorphous silicon germanium alloy ({approx}20% germanium) of {approx}1.6-eV bandgap to capture green photons. The bottom cell has {approx}40% germanium to reduce the bandgap to {approx}1.4-eV to capture red photons. The cells are deposited on a stainless-steel substrate withmore » a predeposited silver/zinc oxide back reflector to facilitate light-trapping. A thin layer of antireflection coating is applied to the top of the cell to reduce reflection loss. The major research activities conducted under this program were: (1) Fundamental studies to improve our understanding of materials and devices; the work included developing and analyzing a-Si alloy and a-SiGe alloy materials prepared near the threshold of amorphous-to-microcrystalline transition and studying solar cells fabricated using these materials. (2) Deposition of small-area cells using a radio-frequency technique to obtain higher deposition rates. (3) Deposition of small-area cells using a modified very high frequency technique to obtain higher deposition rates. (4) Large-area cell research to obtain the highest module efficiency. (5) Optimization of solar cells and modules fabricated using production parameters in a large-area reactor.« less

  3. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    PubMed

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes.

  4. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    NASA Astrophysics Data System (ADS)

    Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.

    2014-10-01

    The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  5. Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe-Cu steel characterized by atom-probe tomography.

    PubMed

    Kolli, R Prakash; Seidman, David N

    2014-12-01

    The composition of co-precipitated and collocated NbC carbide precipitates, Fe3C iron carbide (cementite), and Cu-rich precipitates are studied experimentally by atom-probe tomography (APT). The Cu-rich precipitates located at a grain boundary (GB) are also studied. The APT results for the carbides are supplemented with computational thermodynamics predictions of composition at thermodynamic equilibrium. Two types of NbC carbide precipitates are distinguished based on their stoichiometric ratio and size. The Cu-rich precipitates at the periphery of the iron carbide and at the GB are larger than those distributed in the α-Fe (body-centered cubic) matrix, which is attributed to short-circuit diffusion of Cu along the GB. Manganese segregation is not observed at the heterophase interfaces of the Cu-rich precipitates that are located at the periphery of the iron carbide or at the GB, which is unlike those located at the edge of the NbC carbide precipitates or distributed in the α-Fe matrix. This suggests the presence of two populations of NiAl-type (B2 structure) phases at the heterophase interfaces in multicomponent Fe-Cu steels.

  6. Influence of Impact Conditions on Feedstock Deposition Behavior of Cold-Sprayed Fe-Based Metallic Glass

    NASA Astrophysics Data System (ADS)

    Ziemian, Constance W.; Wright, Wendelin J.; Cipoletti, David E.

    2018-05-01

    Cold spray is a promising method by which to deposit dense Fe-based metallic glass coatings on conventional metal substrates. Relatively low process temperatures offer the potential to prevent the crystallization of amorphous feedstock powders while still providing adequate particle softening for bonding and coating formation. In this study, Fe48Mo14Cr15Y2C15B6 powder was sprayed onto a mild steel substrate, using a variety of process conditions, to investigate the feasibility of forming well-bonded amorphous Fe-based coatings. Particle splat adhesion was examined relative to impact conditions, and the limiting values of temperature and velocity associated with successful softening and adhesion were empirically established. Variability of particle sizes, impact temperatures, and impact velocities resulted in splat morphologies ranging from well-adhered deformed particles to substrate craters formed by rebounded particles and a variety of particle/substrate interface conditions. Transmission electron microscopy studies revealed the presence of a thin oxide layer between well-adhered particles and the substrate, suggesting that bonding is feasible even with an increased oxygen content at the interface. Results indicate that the proper optimization of cold spray process parameters supports the formation of Fe-based metallic glass coatings that successfully retain their amorphous structure, as well as the superior corrosion and wear-resistant properties of the feedstock powder.

  7. Corrosion phenomena in sodium-potassium coolant resulting from solute interaction in multicomponent solution

    NASA Astrophysics Data System (ADS)

    Krasin, V. P.; Soyustova, S. I.

    2018-03-01

    The solubility of Fe, Cr, Ni, V, Mn and Mo in sodium-potassium melt has been calculated using the mathematical framework of pseudo-regular solution model. The calculation results are compared with available published experimental data on mass transfer of components of austenitic stainless steel in sodium-potassium loop under non-isothermal conditions. It is shown that the parameters of pair interaction of oxygen with transition metal can be used to predict the corrosion behavior of structural materials in sodium-potassium melt in the presence of oxygen impurity. The results of calculation of threshold concentration of oxygen of ternary oxide formation of sodium with transitional metals (Fe, Cr, Ni, V, Mn, Mo) are given in conditions when pure solid metal comes in contact with sodium-potassium melt.

  8. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J; Hsu, Julia

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C weremore » found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.« less

  9. Amphorous hydrated Fe(III) sulfate: metastable product and bio-geochemical marker of iron oxidizing thiobacilli

    NASA Astrophysics Data System (ADS)

    Lazaroff, Norman; Jollie, John; Dugan, Patrick R.

    1998-07-01

    Chemolithotrophic iron oxidation by Thiobacillus ferrooxidans and other iron oxidizing thiobacilli produce an Fe(III) sulfato complex that polymerizes as x-ray amorphous filaments approximately 40 nm in diameter. The precursor complex in solutionis seen by ATR-FTIR spectroscopy to have a sulfate spectrum resembling the v(subscript 3) and v(subscript 1) vibrational modes of the precipitated polymer. Chemically similar precipitates prepared by oxidation of acid ferrous sulfate with hydrogen peroxide have a different micromorphology, higher iron/sulfur ratio and acid solubility than the bacterial product. They possess coalescing globular microstructures composed of compacted micro-fibrils. Scanning electron microscopy and diffuse reflectance FTIR show the formation of iron polymer on the surface of immobilized cells of T. ferrooxidans, oxidizing iron during the corrosion of steel. Although spatially separated form the steel coupons by a membrane filter, the cell walls become covered with tufts of amorphous hydrated Fe(III) sulfate. The metastable polymer is converted to crystalline goethite, lepidocrocite, and magnetite in that order, as the pH rises due to proton reduction at cathodic sites on the steel. The instability of the iron polymer to changes in pH is also evidenced by the loss of sulfate when washed with lithium hydroxide solution at pH 8. Under those conditions there is little change in micromorphology, but restoration of sulfate with sulfuric acid at pH 2.5, fails to re-establish the original chemical structure. Adding sulfate salts of appropriate cations to solutions of the Fe(III) sulfato complex or suspensions of its precipitated polymer in dilute sulfuric acid, result in dissociation of the metastable complex followed by crystallization of ferric ions and sulfate in jarosites. Jarosites and other derivatives of iron precipitation by iron oxidizing thiobacilli, form conspicuous deposits in areas of natural pyrite leaching. The role of iron oxidizing thiobacilli in pyrite leaching, biohydrometallurgy, acid mine drainage, and the cycle of iron and sulfur in nature, has been studied for nearly 50 years. The manifestation of those activities, so widespread on Earth, can be a clue for seeking evidence of life elsewhere.

  10. Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems.

    PubMed

    Leiviskä, Tiina; Khalid, Muhammad Kamran; Sarpola, Arja; Tanskanen, Juha

    2017-04-01

    This study investigated the removal of vanadium from real industrial wastewater by using six iron materials: commercial iron sorbent (CFH-12), commercial mineral sorbent (AQM), blast furnace sludge (BFS), steel converter sludge (SCS), ferrochrome slag (FeCr) and slag from a steel foundry (OKTO). Batch tests revealed that CFH-12 (ferric oxyhydroxide) removed vanadium most efficiently, which was explained by its high iron content and the amorphous form of the iron, and that the sorption followed the Langmuir isotherm. With a dosage of 10 g/l and an initial vanadium concentration of 58.2 mg/l, 91-94% removal rates for vanadium were achieved in the studied pH range (3-9). Other sorbents showed significantly lower efficiency than CFH-12, with the exception of BFS at acidic pH (93%). Based on the batch test results, CFH-12 was selected for a pilot study made on site. The pilot study demonstrated the feasibility of CFH-12 to remove vanadium at high temperature (80 °C) from concentrated industrial wastewater with fluctuating water quality (vanadium concentration varied from 51 to 83 mg/l, pH about 9 (at 25 °C)). Leaching of impurities (mainly S, Ca, Mg and K) into the effluent occurred during the first day, but subsequently good quality effluent was produced (e.g. <0.1 mg/l V). During the pilot study, the amorphous iron material of CFH-12 was crystallized into a hematite-like phase (Fe 1.67 H 0.99 O 3 ), and goethite (FeO(OH)) with a higher average pore diameter, probably due to the hot process conditions to which CFH-12 was exposed for over five days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backfish, Michael

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A secondmore » data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.« less

  12. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  13. Microstructure of Vacuum-Brazed Joints of Super-Ni/NiCr Laminated Composite Using Nickel-Based Amorphous Filler Metal

    NASA Astrophysics Data System (ADS)

    Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan

    2013-06-01

    Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.

  14. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  15. A Substrate Bias Effect on Recovery of the Threshold Voltage Shift of Amorphous Silicon Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Chang-Wook; Han, Min-Koo; Choi, Nack-Bong; Kim, Chang-Dong; Kim, Ki-Yong; Chung, In-Jae

    2007-07-01

    Hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) were fabricated on a flexible stainless-steel (SS) substrate. The stability of the a-Si:H TFT is a key issue for active matrix organic light-emitting diodes (AMOLEDs). The drain current decreases because of the threshold voltage shift (Δ VTH) during OLED driving. A negative voltage at a floated gate can be induced by a negative substrate bias through a capacitor between the substrate and the gate electrode without additional circuits. The negative voltage biased at the SS substrate can recover Δ VTH and reduced drain current of the driving TFT. The VTH of the TFT increased by 2.3 V under a gate bias of +15 V and a drain bias of +15 V at 65 °C applied for 3,500 s. The VTH decreased by -2.3 V and the drain current recovered 97% of its initial value under a substrate bias of -23 V at 65 °C applied for 3,500 s.

  16. Synthesis and characterization of hematite pigment obtained from a steel waste industry.

    PubMed

    Prim, S R; Folgueras, M V; de Lima, M A; Hotza, D

    2011-09-15

    Pigments that meet environmental and technology requirements are the focus of the research in the ceramic sector. This study focuses on the synthesis of ceramic pigment by encapsulation of hematite in crystalline and amorphous silica matrix. Iron oxide from a metal sheet rolling process was used as chromophore. A different content of hematite and silica was homogenized by conventional and high energy milling. The powders obtained after calcinations between 1050 and 1200 °C for 2h were characterized by X-ray diffraction and SEM analysis. The pigments were applied to ceramic enamel and porcelain body. The effect of pigment was measured by comparing L*a*b* values of the heated samples. Results showed that the color developed is influenced by variables such as oxide content employed, conditions of milling and processing temperature. The results showed that the use of pigment developed does not interfere in microstructural characteristics of pigmented material. The best hue was obtained from samples with 15 wt% of chromophore, heated at 1200 °C in amorphous silica matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. An Atom-Probe Tomographic Study of Arc Welds in a Multi-Component High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.

    2013-04-01

    An experimental plate steel with the composition Fe-1.39Cu-2.7Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C at. pct has been recently produced at Northwestern University for use in Naval hull and deck applications—it is designated NUCu-140. To understand the microstructural changes occurring in NUCu-140 steel after gas-metal arc welding (GMAW), a detailed study of the heat-affected and fusion zones was performed throughout the weld cross section using microhardness, metallographic, chemical, and atom-probe tomographic analyses. Local-electrode atom-probe (LEAP) tomography was employed to measure the morphology and compositions of Cu-rich precipitates from each region. The mean radius, number density, volume fraction, and compositions of the precipitates, as well as the interfacial concentration profiles, are measured. The Cu precipitates dissolve partially from the heat-affected zone (HAZ) thermal cycle, and freshly formed sub-nanometer radius Cu-rich precipitates nucleate in both the HAZ and fusion zone (FZ) during cooling; however, the precipitation of Cu during cooling in the HAZ and FZ is not sufficient to restore the lost strength. The precipitation in the FZ is reduced compared to the HAZ due to a mismatched Cu composition of the weld. Multi-pass welding is suggested to restore strength in the GMAW sample by promoting Cu precipitate nucleation and growth in the HAZ and FZ.

  18. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Han, F. F.; Inoue, A.; Han, Y.; Kong, F. L.; Zhu, S. L.; Shalaan, E.; Al-Marzouki, F.; Greer, A. L.

    2017-04-01

    Thermal stability and crystallization of three multicomponent glassy alloys, Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5 and Al84Y9Ni4Co1.5Fe0.5Pd1, were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic AlxMy (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al3Y + Al9(Co, Ni)2 + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent AlxMy] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable AlxMy compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  19. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys.

    PubMed

    Han, F F; Inoue, A; Han, Y; Kong, F L; Zhu, S L; Shalaan, E; Al-Marzouki, F; Greer, A L

    2017-04-13

    Thermal stability and crystallization of three multicomponent glassy alloys, Al 86 Y 7 Ni 5 Co 1 Fe 0.5 Pd 0.5 , Al 85 Y 8 Ni 5 Co 1 Fe 0.5 Pd 0.5 and Al 84 Y 9 Ni 4 Co 1.5 Fe 0.5 Pd 1 , were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic Al x M y (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al 3 Y + Al 9 (Co, Ni) 2  + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent Al x M y ] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable Al x M y compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  20. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K

    NASA Astrophysics Data System (ADS)

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-02-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 1014 to 2.7 × 1018 D/cm2. The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I—the linear region of low implantation doses (up to 1 × 1017 D/cm2); II—the nonlinear region of medium implantation doses (1 × 1017 to 8 × 1017 D/cm2); III—the linear region of high implantation doses (8 × 1017 to 2.7 × 1018 D/cm2). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of deuterium ion implantation. This manifests itself in a nearly complete ceasing of deuterium accumulation from a newly implanted dose (radiation-resistant structure).

  1. Residual stress control and design of next-generation ultra-hard gear steels

    NASA Astrophysics Data System (ADS)

    Qian, Yana

    In high power density transmission systems, Ni-Co secondary hardening steels have shown great potential for next-generation gear applications due to their excellent strength, toughness and superior fatigue performance. Study of residual stress generation and evolution in Ferrium C61 and C67 gear steels revealed that shot peening and laser peening processes effectively produce desired beneficial residual stress in the steels for enhanced fatigue performance. Surface residual stress levels of -1.4GPa and -1.5GPa were achieved in shot peened C61 and laser peened C67, respectively, without introducing large surface roughness or defects. Higher compressive residual stress is expected in C67 according to a demonstrated correlation between attainable residual stress and material hardness. Due to the lack of appropriate shot media, dual laser peening is proposed for future peening optimization in C67. A novel non-destructive synchrotron radiation technique was implemented and applied for the first time for residual stress distribution analysis in gear steels with large composition and property gradients. Observed substantial residual stress redistribution and material microstructure change during the rolling contact fatigue screening test with extremely high 5.4GPa load indicates the unsuitability of the test as a fatigue life predictor. To exploit benefits of higher case hardness and associated residual stress, a new material and process (CryoForm70) aiming at 70Rc surface hardness was designed utilizing the systems approach based on thermodynamics and secondary hardening mechanisms. The composition design was first validated by the excellent agreement between experimental and theoretical core martensite start temperature in the prototype. A novel cryogenic deformation process was concurrently designed to increase the case martensite volume fraction from 76% to 92% for enhanced strengthening efficiency and surface hardness. High temperature vacuum carburizing was optimized for desired carbon content profiles using carbon diffusion simulation in the multi-component system. After cyclic tempering with intermediate cryogenic treatment, a case hardness of 68.5 +/- 0.3Rc at 0.72 +/- 0.2wt% carbon content was achieved. The design demonstrated the effectiveness of cryogenic deformation in promoting martensite transformation for high carbon and high alloy steels. Good agreement between achieved and predicted case and core hardness supports the effectiveness of the computational design approach.

  2. Diffusion Behavior of Mn and Si Between Liquid Oxide Inclusions and Solid Iron-Based Alloy at 1473 K

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Joong; Tago, Hanae; Kim, Kyung-Ho; Kitamura, Shin-ya; Shibata, Hiroyuki

    2018-06-01

    In order to clarify the changes in the composition of oxide inclusions in steel, the effect of the metal and oxide composition on the reaction between solid Fe-based alloys and liquid multi-component oxides was investigated using the diffusion couple method at 1473 K. The measured concentration gradients of Mn and Si in the metal indicated that Mn diffused into the metal from the oxide, while the diffusion of Si occurred in the opposite direction. In addition, the MnO content in the oxide decreased with heat treatment time, while the SiO2 content increased. The compositional changes in both phases indicated that the Mn content in the metal near the interface increased with heat treatment with decreasing MnO content in the oxide. Assuming local equilibrium at the interface, the calculated [Mn]2/[Si] ratio at the interface in equilibrium with the oxide increased with increases in the MnO/SiO2 ratio in the oxide. The difference in the [Mn]2/[Si] ratios between the interface and the metal matrix increased, which caused the diffusion of Mn and Si between the multi-component oxide and metal. By measuring the diffusion lengths of Mn and Si in the metal, the chemical diffusion coefficients of Mn and Si were obtained to calculate the composition changes in Mn and Si in the metal. The calculated changes in Mn and Si in the metal agreed with the experimental results.

  3. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamum, Md Abdullah A.; Elmustafa, Abdelmageed A,; Stutzman, Marcy L.

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed amore » significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.« less

  4. Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy.

    PubMed

    Jie, Jin; Shao, Tianmin

    2017-10-19

    M50 bearing steels were alternately implanted with Ti⁺ and N⁺ ions using solid and gas ion sources of implantation system, respectively. N-implantation was carried out at an energy of about 80 keV and a fluence of 2 × 10 17 ions/cm², and Ti-implantation at an energy of about 40-90 keV and a fluence of 2 × 10 17 ions/cm². The microstructures of modification layers were analyzed by grazing-incidence X-ray diffraction, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results showed that the gradient structure was formed under the M50 bearing steel subsurface, along the ion implantation influence zone composed of amorphous, nanocrystalline, and gradient-refinement phases. A layer of precipitation compounds like TiN is formed. In addition, nano-indentation hardness and tribological properties of the gradient structure subsurface were examined using a nano-indenter and a friction and wear tester. The nano-indentation hardness of N + Ti-co-implanted sample is above 12 GPa, ~1.3 times than that of pristine samples. The friction coefficient is smaller than 0.2, which is 22.2% of that of pristine samples. The synergism between precipitation-phase strengthening and gradient microstructure is the main mechanism for improving the mechanical properties of M50 materials.

  5. Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy

    PubMed Central

    Jie, Jin; Shao, Tianmin

    2017-01-01

    M50 bearing steels were alternately implanted with Ti+ and N+ ions using solid and gas ion sources of implantation system, respectively. N-implantation was carried out at an energy of about 80 keV and a fluence of 2 × 1017 ions/cm2, and Ti-implantation at an energy of about 40–90 keV and a fluence of 2 × 1017 ions/cm2. The microstructures of modification layers were analyzed by grazing-incidence X-ray diffraction, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results showed that the gradient structure was formed under the M50 bearing steel subsurface, along the ion implantation influence zone composed of amorphous, nanocrystalline, and gradient-refinement phases. A layer of precipitation compounds like TiN is formed. In addition, nano-indentation hardness and tribological properties of the gradient structure subsurface were examined using a nano-indenter and a friction and wear tester. The nano-indentation hardness of N + Ti-co-implanted sample is above 12 GPa, ~1.3 times than that of pristine samples. The friction coefficient is smaller than 0.2, which is 22.2% of that of pristine samples. The synergism between precipitation-phase strengthening and gradient microstructure is the main mechanism for improving the mechanical properties of M50 materials. PMID:29048360

  6. Repetitive cleaning of a stainless steel first mirror using radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Peng, Jiao; Yan, Rong; Ding, Rui; Chen, Junling; Zhu, Dahuan; Zhang, Zengming

    2017-10-01

    First mirrors (FMs) are crucial components of optical diagnostic systems in present-day tokamaks and future fusion reactors. Their lifetimes should be extremely limited due to their proximity to burning plasma, greatly influencing the safe operation of corresponding diagnostics. Repetitive cleaning is expected to provide a solution to the frequent replacement of contaminated FMs, thus prolonging their lifetimes. Three repetitive cleaning cycles using radio frequency plasma were applied to stainless steel (SS) FM samples, to evaluate the change of the mirrors’ optical properties and morphology during each cycle. Amorphous carbon films were deposited on mirror surfaces under identical conditions in three cycles. In three cycles with identical cleaning parameters, the total reflectivity was restored at up to 95%. Nevertheless, with successive cleaning cycles, the FM surfaces gradually appeared to roughen due to damage to the grain boundaries. Correspondingly, the diffuse reflectivity increased from a few percent to 20% and 27% after the second and third cycles. After optimizing the cleaning parameters of the second and third cycles, the roughness showed a significant decrease, and simultaneously the increase of diffuse reflectivity was remarkably improved.

  7. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    NASA Astrophysics Data System (ADS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  8. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  9. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    NASA Astrophysics Data System (ADS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  10. Virasoro symmetry of the constrained multicomponent Kadomtsev-Petviashvili hierarchy and its integrable discretization

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong; He, Jingsong

    2016-06-01

    We construct Virasoro-type additional symmetries of a kind of constrained multicomponent Kadomtsev-Petviashvili (KP) hierarchy and obtain the Virasoro flow equation for the eigenfunctions and adjoint eigenfunctions. We show that the algebraic structure of the Virasoro symmetry is retained under discretization from the constrained multicomponent KP hierarchy to the discrete constrained multicomponent KP hierarchy.

  11. Improved performance of flexible amorphous silicon solar cells with silver nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Y. R.; Li, Z. Q.; Chen, X. H.; Liu, C.; Ye, X. J.; Wang, Z. B.; Sun, Z.; Huang, S. M.

    2012-12-01

    A novel hybrid electrode structure using Ag nanowires (NWs) to create surface plasmons to enhance light trapping is designed and applied on the front surface of hydrogenated amorphous silicon (a-Si:H) solar cells on steel substrates, targeting broad-band absorption enhancements. Ag NWs were synthesized using a soft and self-seeding process. The produced Ag NWs were deposited on indium tin oxide (ITO) glass substrates or the ITO layers of the as-prepared flexible a-Si:H solar cells to form Ag NW-ITO hybrid electrodes. The Ag NW-ITO hybrid electrodes were optimized to achieve maximum optical enhancement using surface plasmons and obtain good electrical contacts in cells. Finite-element electromagnetic simulations confirmed that the presence of the Ag NWs resulted in increased electromagnetic fields within the a-Si:H layer. Compared to the cell with conventional ITO electrode, the measured quantum efficiency of the best performing a-Si:H cell shows an obvious enhancement in the wavelength range from 330 nm to 600 nm. The cell based on the optimized Ag NW-ITO demonstrates an increase about 4% in short-circuit current density and over 6% in power conversion efficiency under AM 1.5 illumination.

  12. Formation of polycrystalline MgB2 synthesized by powder in sealed tube method with different initial boron phase

    NASA Astrophysics Data System (ADS)

    Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar

    2018-04-01

    Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).

  13. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

    PubMed Central

    Khanolkar, Gauri R.; Rauls, Michael B.; Kelly, James P.; Graeve, Olivia A.; Hodge, Andrea M.; Eliasson, Veronica

    2016-01-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding. PMID:26932846

  14. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    PubMed

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  15. Gamma-radiolytic preparation of multi-component oxides

    NASA Astrophysics Data System (ADS)

    Procházková, Lenka; Bárta, Jan; Čuba, Václav; Ekberg, Christian; Tietze, Sabrina; Jakubec, Ivo

    2016-07-01

    The preparation of solid precursors to Zn1-xCdxO and (Lu,Y)3Al5O12:Ce induced by 60Co gamma-ray irradiation of aqueous solutions containing soluble metal salts and ammonium formate is presented. Due to the irradiation, crystalline zinc carbonate hydroxide Zn4(CO3)(OH)6·H2O or amorphous carbonates of Lu, Y and Al were formed in the solutions. After calcination at 500 °C, the agglomerated phase-pure Zn1-xCdxO with crystallite size about 50 nm was obtained if the Cd concentration in solutions remained below 16 M% (with respect to Zn) with x being up to 0.035. The solid precursors to garnets contained the intended concentration of all elements, according to X-ray fluorescence analysis. After calcination at 1200 °C in mild vacuum, the respective phase-pure garnets with crystallite size 100 nm or their solid solution were produced when the Ce dopation was kept below 2 M% (with respect to rare-earth metals). The Ce solubility in the garnet lattice was estimated as 1-2 M% at the calcination conditions used.

  16. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mehta, Neeraj

    2017-06-01

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78- x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume ( V h), formation energy ( E h) of micro-voids in the glassy network and modulus of elasticity ( E) have been determined and their variation with glass composition has been investigated.

  17. Extension of thermophysical and thermodynamic property measurements by laser pulse heating up to 10,000 K. I. Under pressure

    NASA Astrophysics Data System (ADS)

    Ohse, R. W.

    1990-07-01

    The necessity for increased high-temperature data reliability and extension of thermophysical property measurements up to 5000 K and above are discussed. A new transient-type laser-autoclave technique (LAT) has been developed to extend density and heat capacity measurements of high-temperature multicomponent systems far beyond their melting and boiling points. Pulsed multibeam laser heating is performed in an autoclave under high inert gas pressure to eliminate evaporation. The spherical samples are positioned by containment-free acoustic levitation regardless of their conductive or magnetic properties. Temperature, spectral and total emittances are determined by a new microsecond six-wavelength pyrometer coupled to a fast digital data acquisition system. The density is determined by high resolution microfocus X-ray shadow technique. The heat capacity is obtained from the cooling rate. Further applications are a combination of the laser-autoclave with splat cooling techniques for metastable structure synthesis and amorphous metals research and an extension of the LAT for the study of critical phenomena and the measurement of critical-point temperatures.

  18. Towards tunable and multifunctional interfaces: Multicomponent amorphous alloys and bilayer stacks

    NASA Astrophysics Data System (ADS)

    Kast, Matthew G.

    Controlling the electronic structure and requisite charge transfer at and across interfaces is a grand challenge of materials science. Despite decades of research and numerous successes in the fields microelectronics and photovoltaics much work remains to be done. In many applications, whether they be in microelectronics, photovoltaics or display technology there is a demand for multiple functions at a single interface. Historically, existent materials were either discarded as an option due to known properties or tested with some application based figure of merit in mind. Following this, the quality of the material and/or the preparation of the surface/interface to which the material would be deposited was optimized. As the microelectronics and photovoltaics industries have matured, continued progress (faster, lower power transistors and more efficient, cheaper, abundant solar cells) will require new materials (possibly not previously existent) that are fundamentally better for their application than their highly optimized existent counter parts. The manifestation of this has been seen in the microelectronics field with introduction of hafnium silicates to replace silica (which had previously been monumentally successful) as the gate dielectrics for the most advanced transistors. Continued progress in efficient, cheap, abundant photovoltaics will require similar advances. Advances will be needed in the area of new abundant absorbers that can be deposited cheaply which result in materials with high efficiencies. In addition, selective contacts capable of extracting charge from efficient absorbers with low ohmic losses and low recombination rates will be needed. Presented here are two approaches to the multifunctional interface problem, first the use of amorphous alloys that open up the accessible composition space of thin films significantly and second the use of bilayers that loosen the requirements of a single film at an interface.

  19. Phase Transformations and Microstructural Evolution of Mo-Bearing Stainless Steels

    NASA Astrophysics Data System (ADS)

    Anderson, T. D.; Dupont, J. N.; Perricone, M. J.; Marder, A. R.

    2007-01-01

    The good corrosion resistance of superaustenitic stainless steel (SASS) alloys has been shown to be a direct consequence of high concentrations of Mo, which can have a significant effect on the microstructural development of welds in these alloys. In this research, the microstructural development of welds in the Fe-Ni-Cr-Mo system was analyzed over a wide variety of Cr/Ni ratios and Mo contents. The system was first simulated by construction of multicomponent phase diagrams using the CALPHAD technique. Data from vertical sections of these diagrams are presented over a wide compositional range to produce diagrams that can be used as a guide to understand the influence of composition on microstructural development. A large number of experimental alloys were then prepared via arc-button melting for comparison with the diagrams. Each alloy was characterized using various microscopy techniques. The expected δ-ferrite and γ-austenite phases were accompanied by martensite at low Cr/Ni ratios and by σ phase at high Mo contents. A total of 20 possible phase transformation sequences are proposed, resulting in various amounts and morphologies of the γ, δ, σ, and martensite phases. The results were used to construct a map of expected phase transformation sequence and resultant microstructure as a function of composition. The results of this work provide a working guideline for future base metal and filler metal development of this class of materials.

  20. Optical sensing in laser machining

    NASA Astrophysics Data System (ADS)

    Smurov, Igor; Doubenskaia, Maria

    2009-05-01

    Optical monitoring of temperature evolution and temperature distribution in laser machining provides important information to optimise and to control technological process under study. The multi-wavelength pyrometer is used to measure brightness temperature under the pulsed action of Nd:YAG laser on stainless steel substrates. Specially developed "notch" filters (10-6 transparency at 1.06 μm wavelength) are applied to avoid the influence of laser radiation on temperature measurements. The true temperature is restored based on the method of multi-colour pyrometry. Temperature monitoring of the thin-walled gilded kovar boxes is applied to detect deviation of the welding seam from its optimum position. The pyrometers are used to control CO2-laser welding of steel and Ti plates: misalignment of the welded plates, variation of the welding geometry, internal defects, deviation of the laser beam trajectory from the junction, etc. The temperature profiles along and across the welding axis are measured by the 2D pyrometer. When using multi-component powder blends in laser cladding, for example metal matrix composite with ceramic reinforcement, one needs to control temperature of the melt to avoid thermal decomposition of certain compounds (as WC) and to assure melting of the base metal (as Co). Infra-red camera FLIR Phoenix RDAS provides detailed information on distribution of brightness temperature in laser cladding zone. CCD-camera based diagnostic system is used to measure particles-in-flight velocity and size distribution.

  1. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K.

    PubMed

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-12-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 10(14) to 2.7 × 10(18) D/cm(2). The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I-the linear region of low implantation doses (up to 1 × 10(17) D/cm(2)); II-the nonlinear region of medium implantation doses (1 × 10(17) to 8 × 10(17) D/cm(2)); III-the linear region of high implantation doses (8 × 10(17) to 2.7 × 10(18) D/cm(2)). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of deuterium ion implantation. This manifests itself in a nearly complete ceasing of deuterium accumulation from a newly implanted dose (radiation-resistant structure).

  2. An investigation of fibrogenic and other toxic effects of arc-welding fume particles deposited in the rat lung.

    PubMed

    Hicks, R; Al-Shamma, K J; Lam, H F; Hewitt, P J

    1983-12-01

    Lung burdens of deposited particles from fumes generated by arc-welding were established in rats by single inhalation exposures, repeated intermittent exposure or by intratracheal injection. Fumes from manual metal arc-welding using flux-coated mild-steel rods (MMA-MS) were compared with those from metal inert-gas welding with stainless steel wire (MIG-SS). After initial rapid clearance of deposited material from the lungs, persistent residual deposits remained. Such residues resulting from single inhalation were small and confined mainly to peribronchial accumulations in macrophage clusters. Deposits remaining after repeated inhalation were larger and more widespread. Intratracheal administration (50 mg) established massive residual deposits, giving nodular accumulations in peribronchial, subpleural and perivascular sites, with substantial alveolar parenchymal involvement. Deposits from both types of fumes contained predominantly iron. Particles from stainless steel also contained chromium, but concentrations of this element were low in deposits from MMA-MS fumes. MMA-MS deposits contained silica, probably amorphous. Long-term studies (up to 450 days) attempted to detect evidence of fibrosis resulting from particle burdens. Low-grade collagen fibre layers developed at margins of MMA-MS nodules. Diffuse reticulin fibre networks occurred within MIG-SS aggregates. Tissue hydroxyproline levels were increased (doubled) in lungs with intratracheal burdens of MMA-MS particles, but no significant increases resulted from MIG-SS. The major lesions were nodular aggregates of particle-laden macrophages with giant-cell formation, and alveolar epithelial thickening with atelectasis.

  3. Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Sun, Baonan; Lian, Zhan

    2018-02-01

    By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.

  4. Raman Mapping for the Investigation of Nano-phased Materials

    NASA Astrophysics Data System (ADS)

    Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.

    Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

  5. Greener durable concretes through geopolymerisation of blast furnace slag

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2015-05-01

    The eco-friendliness of concrete is quantified by parameters such as ‘embodied energy’ (EE) and ‘embodied CO2 emission’ (ECO2e), besides duration of designed ‘service life’. It may be noted that ECO2e is also referred as carbon footprint (CF) in the literature. Geopolymer (GP) is an inorganic polymeric gel, a type of amorphous alumino-silicate product, which can be synthesised by polycondensation reactions. The concrete reported in this paper was prepared using industrial wastes in the form of blast furnace slag, fly ash as geopolymeric source materials and sodium silicate and sodium hydroxide as activators. Many mechanical properties such as compressive strength, chloride diffusion, steel corrosion, rapid chloride permeability test and rapid migration test are compared with Portland cement.

  6. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.

    PubMed

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.

  7. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    PubMed Central

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304

  8. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.

    2015-11-01

    The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  9. Surface Chemistry, Microstructure, and Tribological Properties of Cubic Boron Nitride Films

    NASA Technical Reports Server (NTRS)

    Watanabe, Shuichi; Wheeler, Donald R.; Abel, Phillip B.; Street, Kenneth W.; Miyoshi, Kazuhisa; Murakawa, Masao; Miyake, Shojiro

    1998-01-01

    This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.

  10. High pressure die casting of Fe-based metallic glass.

    PubMed

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  11. High pressure die casting of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  12. High pressure die casting of Fe-based metallic glass

    PubMed Central

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  13. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    NASA Astrophysics Data System (ADS)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  14. Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films.

    PubMed

    Kern, P; Müller, Y; Patscheider, J; Michler, J

    2006-11-30

    Electrolytically deposited amorphous TiO2 films on steel are remarkably sensitive to electron beam (e-beam) irradiation at moderate energies at 20 keV, resulting in controlled local oxide reduction and crystallization, opening the possibility for local topographical, chemical, and structural modifications within a biocompatible, amorphous, and semiconducting matrix. The sensitivity is shown to vary significantly with the annealing temperature of as-deposited films. Well-defined irradiation conditions in terms of probe current IP (5 microA) and beam size were achieved with an electron probe microanalyzer. As shown by atomic force and optical microscopy, micro-Raman spectroscopy, wavelength-dispersive X-ray (WDX), and Auger analyses, e-beam exposure below 1 Acm-2 immediately leads to electron-stimulated oxygen desorption, resulting in a well-defined volume loss primarily limited to the irradiated zone under the electron probe and in a blue color shift in this zone because of the presence of Ti2O3. Irradiation at 5 Acm(-2) (IP = 5 microA) results in local crystallization into anatase phase within 1 s of exposure and in reduction to TiO after an extended exposure of 60 s. Further reduction to the metallic state could be observed after 60 s of exposure at approximately 160 Acm(-2). The local reduction could be qualitatively sensed with WDX analysis and Auger line scans. An estimation of the film temperature in the beam center indicates that crystallization occurs at less than 150 degrees C, well below the atmospheric crystallization temperature of the present films. The high e-beam sensitivity in combination with the well-defined volume loss from oxygen desorption allows for precise electron lithographic topographical patterning of the present oxides. Irradiation effects leading to the observed reduction and crystallization phenomena under moderate electron energies are discussed.

  15. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.

    PubMed

    Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen

    2012-03-01

    Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.

  16. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    DOE PAGES

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; ...

    2017-07-25

    Here, Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe 100–xNi x) 80Nb 4Si 2B 14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in allmore » alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe 30Ni 70) 80Nb 4Si 2B 14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr 23C 6-type structure and a likely composition of Fe 21Nb 2B 6. Toroidal losses have been measured for (Fe 70Ni 30) 80Nb 4Si y B 16–y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W 1.0T, 400 Hz = 0.9 W/kg and W 1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.« less

  17. Chemical Data for Precipitate Samples

    USGS Publications Warehouse

    Foster, Andrea L.; Koski, Randolph A.

    2008-01-01

    During studies of sulfide oxidation in coastal areas of Prince William Sound in 2005, precipitate samples were collected from onshore and intertidal locations near the Ellamar, Threeman, and Beatson mine sites (chapter A, fig. 1; table 7). The precipitates include jarosite and amorphous Fe oxyhydroxide from Ellamar, amorphous Fe oxyhydroxide from Threeman, and amorphous Fe oxyhydroxide, ferrihydrite, and schwertmannite from Beatson. Precipitates occurring in the form of loose, flocculant coatings were harvested using a syringe and concentrated in the field by repetitive decanting. Thicker accumulations were either scraped gently from rocks using a stainless steel spatula or were scooped directly into receptacles (polyethylene jars or plastic heavy-duty zippered bags). Most precipitate samples contain small amounts of sedimentary detritus. With three jarosite-bearing samples from Ellamar, an attempt was made to separate the precipitate from the heavy-mineral fraction of the sediment. In this procedure, the sample was stirred in a graduated cylinder containing deionized water. The jarosite-rich suspension was decanted onto analytical filter paper and air dried before analysis. Eleven precipitate samples from the three mine sites were analyzed in laboratories of the U.S. Geological Survey (USGS) in Denver, Colorado (table 8). Major and trace elements were determined by inductively coupled plasma-mass spectrometry following multiacid (HCl-HNO3-HClO4-HF) digestion (Briggs and Meier, 2002), except for mercury, which was analyzed by cold-vapor atomic absorption spectroscopy (Brown and others, 2002a). X-ray diffraction (XRD) analyses were performed on powdered samples (<200 mesh) by S. Sutley of the USGS. Additional details regarding sample preparation and detection limits are found in Taggert (2002). Discussions of the precipitate chemistry and associated microbial communities are presented in Koski and others (2008) and Foster and others (2008), respectively.

  18. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    NASA Astrophysics Data System (ADS)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; Ohodnicki, Paul; McHenry, Michael E.

    2017-11-01

    Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100- x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16- y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

  19. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir

    Here, Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe 100–xNi x) 80Nb 4Si 2B 14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in allmore » alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe 30Ni 70) 80Nb 4Si 2B 14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr 23C 6-type structure and a likely composition of Fe 21Nb 2B 6. Toroidal losses have been measured for (Fe 70Ni 30) 80Nb 4Si y B 16–y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W 1.0T, 400 Hz = 0.9 W/kg and W 1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.« less

  20. Multicomponent cognitive-behavioral group therapy with hypnosis for the treatment of fibromyalgia: long-term outcome.

    PubMed

    Castel, Antoni; Cascón, Rosalia; Padrol, Anna; Sala, José; Rull, Maria

    2012-03-01

    This study compared the efficacy of 2 psychological treatments for fibromyalgia with each other and with standard care. Ninety-three patients with fibromyalgia (FM) were randomly assigned to 1 of the 3 experimental conditions: 1) multicomponent cognitive-behavioral therapy (CBT); 2) multicomponent CBT with hypnosis; and 3) pharmacological treatment (standard care control group). The outcome measures of pain intensity, catastrophizing, psychological distress, functionality, and sleep disturbances were assessed before treatment, immediately after treatment, and at 3- and 6-month follow-up visits. CBT and CBT with hypnosis participants received the standard pharmacological management plus 14 weekly, 120-minute-long sessions of psychological treatment. All but 1 session followed a group format; the remaining session was individual. The analyses indicated that: 1) patients with FM who received multicomponent CBT alone or multicomponent CBT with hypnosis showed greater improvements than patients who received only standard care; and 2) adding hypnosis enhanced the effectiveness of multicomponent CBT. This study presents new evidence about the efficacy of multicomponent CBT for FM and about the additional effects of hypnosis as a complement to CBT. The relevance and implications of the obtained results are discussed. This article highlights the beneficial effects of adding hypnosis in a multicomponent cognitive-behavioral group treatment of fibromyalgia patients. Also, this research showed that by adding hypnosis the length of treatment did not increase. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Impact of multilayered compression bandages on sub-bandage interface pressure: a model.

    PubMed

    Al Khaburi, J; Nelson, E A; Hutchinson, J; Dehghani-Sanij, A A

    2011-03-01

    Multi-component medical compression bandages are widely used to treat venous leg ulcers. The sub-bandage interface pressures induced by individual components of the multi-component compression bandage systems are not always simply additive. Current models to explain compression bandage performance do not take account of the increase in leg circumference when each bandage is applied, and this may account for the difference between predicted and actual pressures. To calculate the interface pressure when a multi-component compression bandage system is applied to a leg. Use thick wall cylinder theory to estimate the sub-bandage pressure over the leg when a multi-component compression bandage is applied to a leg. A mathematical model was developed based on thick cylinder theory to include bandage thickness in the calculation of the interface pressure in multi-component compression systems. In multi-component compression systems, the interface pressure corresponds to the sum of the pressures applied by individual bandage layers. However, the change in the limb diameter caused by additional bandage layers should be considered in the calculation. Adding the interface pressure produced by single components without considering the bandage thickness will result in an overestimate of the overall interface pressure produced by the multi-component compression systems. At the ankle (circumference 25 cm) this error can be 19.2% or even more in the case of four components bandaging systems. Bandage thickness should be considered when calculating the pressure applied using multi-component compression systems.

  2. Machine learning assisted first-principles calculation of multicomponent solid solutions: estimation of interface energy in Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Chandran, Mahesh; Lee, S. C.; Shim, Jae-Hyeok

    2018-02-01

    A disordered configuration of atoms in a multicomponent solid solution presents a computational challenge for first-principles calculations using density functional theory (DFT). The challenge is in identifying the few probable (low energy) configurations from a large configurational space before DFT calculation can be performed. The search for these probable configurations is possible if the configurational energy E({\\boldsymbol{σ }}) can be calculated accurately and rapidly (with a negligibly small computational cost). In this paper, we demonstrate such a possibility by constructing a machine learning (ML) model for E({\\boldsymbol{σ }}) trained with DFT-calculated energies. The feature vector for the ML model is formed by concatenating histograms of pair and triplet (only equilateral triangle) correlation functions, {g}(2)(r) and {g}(3)(r,r,r), respectively. These functions are a quantitative ‘fingerprint’ of the spatial arrangement of atoms, familiar in the field of amorphous materials and liquids. The ML model is used to generate an accurate distribution P(E({\\boldsymbol{σ }})) by rapidly spanning a large number of configurations. The P(E) contains full configurational information of the solid solution and can be selectively sampled to choose a few configurations for targeted DFT calculations. This new framework is employed to estimate (100) interface energy ({σ }{{IE}}) between γ and γ \\prime at 700 °C in Alloy 617, a Ni-based superalloy, with composition reduced to five components. The estimated {σ }{{IE}} ≈ 25.95 mJ m-2 is in good agreement with the value inferred by the precipitation model fit to experimental data. The proposed new ML-based ab initio framework can be applied to calculate the parameters and properties of alloys with any number of components, thus widening the reach of first-principles calculation to realistic compositions of industrially relevant materials and alloys.

  3. Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Rodriquez, M. C.; Stansbery, E. K.

    2007-01-01

    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003.

  4. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    NASA Astrophysics Data System (ADS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  5. Four-point-bending-fatigue behavior of the Zr-based Vitreloy 105 bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, M. L.; Buchanan, R. A.; Liaw, Peter K

    The purpose of this study was to make a direct comparison between four-point-bending and uniaxial fatigue tests with the Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10.0}Ti{sub 5.0} (at.%) BMG alloy (Vitreloy 105). The fatigue lifetimes in four-point bending were found to be greater than those reported in uniaxial testing. However, the fatigue-endurance limit found in four-point bending was slightly less than that reported for uniaxial fatigue. Thus, the significant differences between fatigue studies in the literature are not likely due to this difference in testing geometry. On the contrary, the fatigue lifetimes were found to be highly dependent upon surface defects andmore » material quality. The four-point-bending-fatigue performance of the Vit 105 alloy was found to be greater than most BMGs and similar to the 300 M high-strength steel and other crystalline alloys in spite of not being 'perfectly amorphous.' Due to the detrimental effects of these inhomogeneities and wear at the supporting pins, this fatigue behavior can be assumed to be a conservative estimate of the potential fatigue performance of a perfectly amorphous and homogeneous BMG.« less

  6. Gauge transformation and symmetries of the commutative multicomponent BKP hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong

    2016-01-01

    In this paper, we defined a new multi-component B type Kadomtsev-Petviashvili (BKP) hierarchy that takes values in a commutative subalgebra of {gl}(N,{{C}}). After this, we give the gauge transformation of this commutative multicomponent BKP (CMBKP) hierarchy. Meanwhile, we construct a new constrained CMBKP hierarchy that contains some new integrable systems, including coupled KdV equations under a certain reduction. After this, the quantum torus symmetry and quantum torus constraint on the tau function of the commutative multi-component BKP hierarchy will be constructed.

  7. Simultaneous multi-component seismic denoising and reconstruction via K-SVD

    NASA Astrophysics Data System (ADS)

    Hou, Sian; Zhang, Feng; Li, Xiangyang; Zhao, Qiang; Dai, Hengchang

    2018-06-01

    Data denoising and reconstruction play an increasingly significant role in seismic prospecting for their value in enhancing effective signals, dealing with surface obstacles and reducing acquisition costs. In this paper, we propose a novel method to denoise and reconstruct multicomponent seismic data simultaneously. This method lies within the framework of machine learning and the key points are defining a suitable weight function and a modified inner product operator. The purpose of these two processes are to perform missing data machine learning when the random noise deviation is unknown, and building a mathematical relationship for each component to incorporate all the information of multi-component data. Two examples, using synthetic and real multicomponent data, demonstrate that the new method is a feasible alternative for multi-component seismic data processing.

  8. Structure of Oxide Glass and Melts at High-Pressure: A View from Inelastic X-ray Scattering and 2D Solid-State NMR

    NASA Astrophysics Data System (ADS)

    Lee, S.; Mysen, B. O.; Fei, Y.; Cody, G. D.; Mao, H.; Eng, P.

    2006-12-01

    Full understanding of the atomic arrangement of oxides glasses and melts both at ambient and high-pressure has long been one of the fundamental and yet difficult problems in earth sciences, condensed matter physics as well as glass sciences. The structures of archetypal oxide glasses (e.g. SiO2 and B2O3) as well as complex silicate glasses (ternary and quaternary aluminosilicate glasses) at high pressure are essential to elucidate origins of anomalous macroscopic properties of melts and global geophysical processes in the Earth's interior. Recent progress in inelastic x-ray scattering (IXS) with high brilliance 3rd generation synchrotron x-rays combined with DAC techniques allows us to explore pressure-induced changes in the bonding nature of archetypal amorphous oxide, illustrating a new opportunity to study amorphous oxides with IXS (Lee SK et al. Nature Materials 2005, 4, p851). 2 dimensional solid-state NMR have offered much improved resolution over conventional 1D NMR, unveiling previously unknown structural details of amorphous silicates at high pressure (Lee SK. Geochim. Cosmochim. Acta 2005, 69, p3695; J. Phys. Chem. B. 2006, 110, p16408) Here, we report the synchrotron inelastic x-ray scattering results (oxygen and boron K-edge) for divers oxide glasses at pressure up to 40 GPa, revealing the nature of pressure-induced bonding changes and the structure. Direct in-situ measurements provide evidence for a continuous transformation with multiple densification mechanisms. 2D solid-state NMR spectra for silicate and germinate glasses shows detailed information about extent of disorder among framework units at high pressure. The chemical ordering among framework units leads to the formation of ^{[5,6]}Si-O-^{[4]}Si in silicates and ^{[5,6]}Al-O-^{[4]}Si in aluminosilicates. Whereas the densification mechanism can be dependent on the chemical composition and the fraction of non-bridging oxygen, the pressure dependence of both simple and complex multi-component silicate glasses showed similar characteristics: low pressure regime was marked with topological variation without coordination transformation and inter-mediate pressure region (about 5-10 GPa) was characterized by the largest (d(^{[4]}B or ^{[5,6]}Si)/dP) value. Finally high-pressure regime (above 10 GPa) was characterized by a larger energy penalty for coordination transformation than in intermediate pressure regime. These results provide improved prospect for the bonding nature of amorphous materials at high pressure using synchrotron inelastic x-ray scattering and 2D NMR and aid in understanding the microscopic origins of the properties of melts and geological processes in the Earth's interior.

  9. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C disk and on a titanium-6 wt % aluminum-4 wt% vanadium (Ti-6Al-4V) flat, both in contact with a 9.4-mm-diameter, hemispherical Ti-6Al-4V pin. The resistance to fretting wear and damage of the a-DLC/Ti-6Al-4V materials pair was superior to that of the Ti-6Al-4V/Ti-6AI-4V materials pair.

  10. Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement

    NASA Astrophysics Data System (ADS)

    Bootkul, D.; Saenphinit, N.; Supsermpol, B.; Aramwit, C.; Intarasiri, S.

    2014-08-01

    Currently, stainless steels are widely used in various industrial applications due to their excellence in toughness and corrosion resistance. But their resistance to wear needs to be improved for appropriate use in tribological applications. The Filtered Cathodic Vacuum Arc (FCVA) is a superior technique for forming a high-density film structure of amorphous carbon, especially for a tetrahedral amorphous carbon (ta-C) type, because it can produce a plasma of highly energetic ions that can penetrate into a growing coating, resulting in densification of the film. However, this technique tends to generate high internal stress, due to serious accumulation of energy in the film structure that then leads to film delamination. In general, there are numerous solutions that have been used to reduce the internal stress. DLC with various additive elements such as Ti, Cr or W as strong-carbide-forming (SCF) metals is one of the popular methods to provide attractive combinations of properties of wear resistance and film adhesion as well as reducing the internal stress. The present study was focused on investigation of titanium-doped DLC coating on SS304 steel, mainly for adhesion improvement in optimizing for tribological applications. The synthesized films were formed by the FCVA technique at normal substrate temperature. In the experimental set-up, the films were produced by mixing the titanium and carbon ions generated by dual cathode plasma source operating in synchronous pulsed mode. Their compositions were adjusted by varying the relative duration of the pulse length from each cathode. Titanium doping concentration was varied from pure DLC deposition as the control group to titanium and graphite trigger pulses ratios of 1:16, 1:12, 1:10, 1:8 and 1:4, as the Ti-doped DLC group. The results showed that by increasing titanium trigger pulses ratio from 1:16, 1:12, 1:10 and 1:8, respectively, the film adhesion was increased while the wear rate did not change significantly as measured by scratch test measurement while adjusted more titanium trigger pulses at 1:4 ratio, the wear rate raised rapidly up to be beyond 50%. In summary, the optimized range of Ti doping in DLC structure to maintain both acceptable wear rate and good adhesion properties of FCVA-synthesized Ti-doped DLC was considered to not over 1:8 of titanium and graphite trigger pulses ratio. Mechanism involved in the phenomenon was discussed.

  11. Development of a Rational Modeling Approach for the Design, and Optimization of the Multifiltration Unit. Volume 1

    NASA Technical Reports Server (NTRS)

    Hand, David W.; Crittenden, John C.; Ali, Anisa N.; Bulloch, John L.; Hokanson, David R.; Parrem, David L.

    1996-01-01

    This thesis includes the development and verification of an adsorption model for analysis and optimization of the adsorption processes within the International Space Station multifiltration beds. The fixed bed adsorption model includes multicomponent equilibrium and both external and intraparticle mass transfer resistances. Single solute isotherm parameters were used in the multicomponent equilibrium description to predict the competitive adsorption interactions occurring during the adsorption process. The multicomponent equilibrium description used the Fictive Component Analysis to describe adsorption in unknown background matrices. Multicomponent isotherms were used to validate the multicomponent equilibrium description. Column studies were used to develop and validate external and intraparticle mass transfer parameter correlations for compounds of interest. The fixed bed model was verified using a shower and handwash ersatz water which served as a surrogate to the actual shower and handwash wastewater.

  12. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  13. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  14. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    NASA Astrophysics Data System (ADS)

    Ye, Qingfeng; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Li, Ruifeng; Huang, Jian; Wu, Yixiong

    2017-02-01

    Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower icorr than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted Rt value reaches its maximum at 24 h during a 48 h' immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H2SO4 reveals that corrosion starts from Cr-depleted interdendrites.

  15. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false How do I demonstrate compliance if I manufacture multi-component kits? 59.506 Section 59.506 Protection of Environment ENVIRONMENTAL PROTECTION... § 59.506 How do I demonstrate compliance if I manufacture multi-component kits? (a) If you manufacture...

  16. Chemical and Microstructural Changes in Metallic and Ceramic Materials Exposed to Venusian Surface Conditions

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Lukco, Dorothy; Hunter, Gary W.; Nakley, Leah; Radoman-Shaw, Brandon G.; Harvey, Ralph P.

    2017-01-01

    The chemical and microstructural behavior of steels (304, 310, 316, and 1018), nickel-based alloys (beta-NiAl, G30, and 625), gold, coatings (4YSZ, SilcoNert(TradeMark) 1040 (SilcoTek Co.), Dursan(TradeMark)? (SilcoTek Co.), and porcelain), and bulk ceramics (alpha-Al2O3, fused quartz, beta-SiC, and alpha-Si3N4) were probed after exposure to supercritical fluid with temperature, pressure, and composition mimicking the Venus lower atmosphere. Exposures were carried out in the Glenn Extreme Environments Rig (GEER) chamber with the Venusian gas mixture (96.5% CO2, 3.5% N2, 30 ppm H2O, 150 ppm SO2, 28 ppm CO, 15 ppm OCS, 3 ppm H2S, 0.5 ppm HCl, and 5 ppb HF) at 92 bar (1330 psi) and 467 C (873 F) for durations of 10 and 42 days. An additional 21-day exposure was done to stainless steel uncoated and coated with SilcoNert(TradeMark) and Dursan(TradeMark). Samples were characterized before and after the experiment by gravimetric analysis, X-ray diffraction, X-ray photoelectron and Auger electron spectroscopies, and cross section electron microscopy analysis. All steels exposed for 10 and 42 days formed double-layered scales consisting mainly of metal (Cr, Fe, Ni) oxides and sulfides showing different chemistry, microstructure, and crystalline phases. The alloys G30 and 625 formed double-layered scales consisting mainly of nickel sulfides. After 10 days, the beta-NiAl exhibited no detectable scale, suggesting only a very thin film was formed. The 304 and 316 stainless steels coated with 4YSZ that were exposed for 10 and 42 days exhibited no significant oxidation. Steel 1018 coated with 4YSZ exhibited a corrosion scale of iron and/or chromium oxide formed at the base of the alloy. The 304 steel coated with porcelain did not exhibit corrosion, although the coating exhibited recession. SilcoNert(TradeMark) exposed for 10 and 42 days exhibited recession, although no oxidation was found to occur at the base of the alloy. Stainless steel 316 coated with Dursan(TradeMark) ? exhibited corrosion at the base of the alloy. All ceramics tested showed no clear evidence of reaction. The weight-gain-per-area performance of the materials exposed in the GEER for 10 and 42 days are reported from the lowest to the highest weight gain per area as follows: gold did not exhibit any weight change; nickel-based alloys: beta- NiAl < G30 < 625; steels: 304 < 310 < 316 < 1018; ceramics: considering the experimental uncertainties, no weight change was observed for all ceramics of this work (alpha-Al2O3, Si3N4, SiC, and amorphous SiO2).

  17. Method of joining ITM materials using a partially or fully-transient liquid phase

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-03-14

    A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.

  18. [Exploration of one-step preparation of Ganoderma lucidum multicomponent microemulsion].

    PubMed

    He, Jun-Jie; Chen, Yan; Du, Meng; Cao, Wei; Yuan, Ling; Zheng, Li-Yan

    2013-03-01

    To explore one-step method for the preparation of Ganoderma lucidum multicomponent microemulsion, according to the dissolution characteristics of triterpenes and polysaccharides in Ganoderma lucidum, formulation of the microemulsion was optimized. The optimal blank microemulsion was used as a solvent to sonicate the Ganoderma lucidum powder to prepare the multicomponent microemulsion, besides, its physicochemical properties were compared with the microemulsion made by conventional method. The results showed that the multicomponent microemulsion was characterized as (43.32 +/- 6.82) nm in size, 0.173 +/- 0.025 in polydispersity index (PDI) and -(3.98 +/- 0.82) mV in zeta potential. The contents of Ganoderma lucidum triterpenes and polysaccharides were (5.95 +/- 0.32) and (7.58 +/- 0.44) mg x mL(-1), respectively. Sonicating Ganoderma lucidum powder by blank microemulsion could prepare the multicomponent microemulsion. Compared with the conventional method, this method is simple and low cost, which is suitable for industrial production.

  19. Dispersive—diffusive transport of non-sorbed solute in multicomponent solutions

    NASA Astrophysics Data System (ADS)

    Hu, Qinhong; Brusseau, Mark L.

    1995-10-01

    The composition of fuels, mixed-solvent wastes and other contaminants that find their way into the subsurface are frequently chemically complex. The dispersion and diffusion characteristics of multicomponent solutions in soil have rarely been compared to equivalent single-solute systems. The purpose of this work was to examine the diffusive and dispersive transport of single- and multi-component solutions in homogeneous porous media. The miscible displacement technique was used to investigate the transport behavior of 14C-labelled 2,4-dichlorophenoxyacetic acid ( 2,4-D) in two materials for which sorption of 2,4-D was minimal. Comparison of breakthrough curves collected for 2,4-D in single- and multi-component solutions shows that there is little, if any, difference in transport behavior over a wide range of pore-water velocities (70, 7, 0.66 and 0.06 cm h -1). Thus, dispersivities measured with a non-sorbing single-solute solution should be applicable to multicomponent systems.

  20. Chemical segregation in metallic glass nanowires.

    PubMed

    Zhang, Qi; Li, Qi-Kai; Li, Mo

    2014-11-21

    Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.

  1. Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses

    PubMed Central

    2013-01-01

    The thermal and dielectric anomalies of window-type glasses at low temperatures (T < 1 K) are rather successfully explained by the two-level systems (2LS) standard tunneling model (STM). However, the magnetic effects discovered in the multisilicate glasses in recent times, magnetic effects in the organic glasses, and also some older data from mixed (SiO2)1−x(K2O)x and (SiO2)1−x(Na2O)x glasses indicate the need for a suitable extension of the 2LS-STM. We show that—not only for the magnetic effects, but also for the mixed glasses in the absence of a field—the right extension of the 2LS-STM is provided by the (anomalous) multilevel tunnelling systems (ATS) proposed by one of us for multicomponent amorphous solids. Though a secondary type of TS, different from the standard 2LS, was invoked long ago already, we clarify their physical origin and mathematical description and show that their contribution considerably improves the agreement with the experimental data. In spite of dealing with low-temperature properties, our work impinges on the structure and statistical physics of glasses at all temperatures. PMID:23861652

  2. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the fuel types, temperature, and substrate materials.

  3. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Pyatina, T.

    2014-11-01

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na 2O-Al 2O 3-SiO 2-H 2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS wasmore » crystalline analcime.« less

  4. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Pyatina, T.

    2014-11-14

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na 2O-Al 2O 3-SiO 2-H 2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS wasmore » crystalline analcime.« less

  5. Spectroscopic Analysis of Perfluoropolyether Lubricant Degradation During Boundary Lubrication

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Shogrin, Bradley A.; Jones, William R., Jr.

    1996-01-01

    The degradation of a branched perfluoropolyether (PFPE) under boundary lubrication conditions was studied using mu-FTIR and mu-Raman spectroscopies. Stainless steel (440C) discs coated with thin (600A), uniform films of the PFPE were tested in a ball-on-disc apparatus until various levels of friction coefficient were attained. Discs were then examined using the above techniques. When the friction coefficient surpassed the value obtained with an un-lubricated control, the lubricant film had either been physically displaced or partially transformed in to a 'friction polymer'. Infrared analysis of this 'friction polymer' indicated the presence of a polymeric fluorinated acid species (R(sub f)COOH). Raman spectroscopy indicated the presence of amorphous carbon in the wear track and in the friction polymer. Some reaction mechanisms are suggested to explain the results.

  6. Enhancement of Ti-containing hydrogenated carbon (Tisbnd C:H) films by high-power plasma-sputtering

    NASA Astrophysics Data System (ADS)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-02-01

    Ti-containing amorphous hydrogenated carbon (Tisbnd C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C2H2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Tisbnd TiCsbnd DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Tisbnd C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  7. The Solidification of Multicomponent Alloys

    PubMed Central

    Boettinger, William J.

    2017-01-01

    Various topics taken from the author’s research portfolio that involve multicomponent alloy solidification are reviewed. Topics include: ternary eutectic solidification and Scheil-Gulliver paths in ternary systems. A case study of the solidification of commercial 2219 aluminum alloy is described. Also described are modifications of the Scheil-Gulliver analysis to treat dendrite tip kinetics and solid diffusion for multicomponent alloys. PMID:28819348

  8. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes.

    PubMed

    Matcha, Kiran; Antonchick, Andrey P

    2014-10-27

    The development of multicomponent reactions for indole synthesis is demanding and has hardly been explored. The present study describes the development of a novel multicomponent, cascade approach for indole synthesis. Various substituted indole derivatives were obtained from simple reagents, such as unfunctionalized alkenes, diazonium salts, and sodium triflinate, by using an established straightforward and regioselective method. The method is based on the radical trifluoromethylation of alkenes as an entry into Fischer indole synthesis. Besides indole synthesis, the application of the multicomponent cascade reaction to the synthesis of pyrazoles and pyridazinones is described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.

    PubMed

    Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W

    2016-06-23

    The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.

  10. Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models

    NASA Astrophysics Data System (ADS)

    Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf

    2018-03-01

    The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.

  11. Some aspects of multicomponent excess free energy models with subregular binaries

    NASA Astrophysics Data System (ADS)

    Cheng, Weiji; Ganguly, Jibamitra

    1994-09-01

    We have shown that two of the most commonly used multicomponent formulations of excess Gibbs free energy of mixing, those by WOHL (1946, 1953) and REDLICH and KISTER (1948), are formally equivalent if the binaries are constrained to have subregular properties, and also that other subregular multicomponent formulations developed in the mineralogical and geochemical literature are equivalent to, or higher order extensions of, these formulations. We have also presented a compact derivation of a multicomponent subregular solution leading to the same expression as derived by HELFFRICH and WOOD (1989). It is shown that Wohl's multicomponent formulation involves combination of binary excess free energies, which are calculated at compositions obtained by normal projection of the multicomponent composition onto the bounding binary joins, and is, thus, equivalent to the formulation developed by MUGGIANU et al. (1975). Finally, following the lead of HILLERT (1980), we have explored the limiting behavior of regular and subregular ternary solutions when a pair of components become energetically equivalent, and have, thus, derived an expression for calculating the ternary interaction parameter in a ternary solution from a knowledge of the properties of the bounding binaries, when one of these binaries is nearly ideal.

  12. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design.

    PubMed

    Okesola, Babatunde O; Mata, Alvaro

    2018-05-21

    Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.

  13. Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel.

    PubMed

    Chen, Qiang; Xie, Zhiwen; Chen, Tian; Gong, Feng

    2016-11-26

    TiN/SiO x duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiO x . Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiO x layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.

  14. Corrosion of bare carbon steel as a passive sensor to assess moisture availability for biological activity in Atacama Desert soils.

    PubMed

    Cáceres, Luis; Davila, Alfonso F; Soliz, Alvaro; Saldivia, Jessica

    2018-02-28

    Here we consider that the corrosion of polished bared metal coupons can be used as a passive sensor to detect or identify the lower limit of water availability suitable for biological activity in Atacama Desert soils or solid substrates. For this purpose, carbon steel coupons were deposited at selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, long rectangular shaped ones that were half-buried in a vertical position, and square shaped ones that were deposited on the soil surface. The morphological attributes observed by SEM inspection were found to correlate to the so-called humectation time which is determined from local meteorological parameters. The main finding was that the decreasing trend of atmospheric moisture along the transect was closely related to corrosion behaviour and water soil penetration. For instance, at the coastal site oxide phases formed on the coupon surface rapidly evolve into well-crystallized species, while at the driest inland site Lomas Bayas only amorphous oxide was observed on the coupons.

  15. Corrosion of Bare Carbon Steel as a Passive Sensor to Assess Moisture Availability for Biological Activity in Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Caceres, Luis; Davila, Alfonso F.; Soliz, Alvaro; Saldivia, Jessica

    2018-01-01

    In this work we suggest the corrosion of polished bared metal coupons as a passive sensor to detect or identify the lower limit of water availability that could be suitable for biological activity in the Atacama Desert on soil or solid substrates. For this purpose, carbon steel coupons were deposited in selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, a long rectangular shape that are half-buried in a vertical position, and square shape that are deposited on the soil surface. The morphological attributes observed by SEM inspection is correlated to the so-called humectation time which is determined from local meteorological parameters. The main result is that the decreasing trend of atmospheric moisture along the transect is closely related to corrosion behavior and water soil penetration. For instance, while in the coastal site oxide phases formed on the coupon surface rapidly evolve to well- crystallized species, in the driest inland site Lomas Bayas only amorphous oxide is observed.

  16. Enhancement of as-sputtered silver-tantalum oxide thin film coating on biomaterial stainless steel by surface thermal treatment

    NASA Astrophysics Data System (ADS)

    Alias, Rodianah; Mahmoodian, Reza; Shukor, Mohd Hamdi Abd; Yew, Been Seok; Muhamad, Martini

    2018-04-01

    Stainless steel 316L (SS316L) is extensively used as surgical/clinical tools due to its low carbon content and excellent mechanical characteristic. The fabrication of metal ceramic based on this metallic biomaterial favor its biofunctionality properties. However, instability phase of amorphous thin film lead to degradation, corrosion and oxidation. Thus, thin film coating requires elevated adhesion strength and higher surface hardness to meet clinical tools criteria. In this study, the SS316L was deposited with micron thickness of Ag-TaO thin film by using magnetron sputtering. The microstructure, elemental analysis and phase identification of Ag-TaO thin film were characterized by using FESEM, EDX and XRD, respectively; whereas the micro scratch test and micro hardness test were performed by using Micro Scratch Testing System and Vickers Micro Hardness Tester, respectively. It was found that the coating thin film's adhesion and hardness strength were improved from 672 to 2749 mN and 142 to 158 Hv respectively. It was found that the as-deposited surface were treated at 500 °C of temperatures with 2 °C/min ramping rate enhance 4.1 times of the adhesion strength value. Furthermore, FESEM characterization revealed coarsening structure of the thin film coating which can provide high durability service.

  17. Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling

    NASA Astrophysics Data System (ADS)

    dos Reis, Marcos Allan Leite; Barbosa Neto, Newton Martins; de Sousa, Mário Edson Santos; Araujo, Paulo T.; Simões, Sónia; Vieira, Manuel F.; Viana, Filomena; Loayza, Cristhian R. L.; Borges, Diego J. A.; Cardoso, Danyella C. S.; Assunção, Paulo D. C.; Braga, Eduardo M.

    2018-01-01

    Stainless steel 304L alloy powder and multiwalled carbon nanotubes were mixed by ball-milling under ambient atmosphere and in a broad range of milling times, which spans from 0 to 120 min. Here, we provided spectroscopic signatures for several distinct composites produced, to show that the Raman spectra present interesting splittings of the D-band feature into two main sub-bands, D-left and D-right, together with several other secondary features. The G-band feature also presents multiple splittings that are related to the outer and inner diameter distributions intrinsic to the multiwalled carbon nanotube samples. A discussion about the second order 2D-band (also known as G'-band) is also provided. The results reveal that the multiple spectral features observed in the D-band are related to an increased chemical functionalization. A lower content of amorphous carbon at 60 and 90 min of milling time is verified and the G-band frequencies associated to the tubes in the outer diameters distribution is upshifted, which suggests that doping induced by strain is taking place in the milled samples. The results indicate that Raman spectroscopy can be a powerful tool for a fast and non-destructive characterization of carbon nanocomposites used in powder metallurgy manufacturing processes.

  18. Equivalence of Brownian dynamics and dynamic Monte Carlo simulations in multicomponent colloidal suspensions.

    PubMed

    Cuetos, Alejandro; Patti, Alessandro

    2015-08-01

    We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.

  19. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    PubMed

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  20. A Systematic Review and Meta-Analysis Comparing Carer Focused and Dyadic Multicomponent Interventions for Carers of People With Dementia

    PubMed Central

    Laver, Kate; Milte, Rachel; Dyer, Suzanne; Crotty, Maria

    2016-01-01

    Objective: The aim of this study was to compare the efficacy of two approaches: multicomponent interventions that focus on working with the carer and dyadic interventions that work with both the carer and the person with dementia. Method: A systematic review involving a search of Medline, EMBASE, and PsycINFO in October 2015 was performed. Randomized controlled trials involving carers of people with dementia and comparing multicomponent interventions with usual care were included. Results: Pooling of all studies demonstrated that multicomponent interventions can reduce depressive symptoms, improve quality of life, reduce carer impact, and reduce behavioral and psychological symptoms of dementia as well as caregiver upset with these symptoms. We were unable to find a significant difference in the effects of dyadic interventions in comparison with carer focused interventions for these outcomes. Discussion: Although effect sizes associated with intervention are small, multicomponent interventions are relatively inexpensive to deliver, acceptable, and widely applicable. PMID:27458254

  1. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical attack of an aggressive medium.

  2. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings.

    PubMed

    Qiao, Lei; Wu, Yuping; Hong, Sheng; Zhang, Jianfeng; Shi, Wei; Zheng, Yugui

    2017-11-01

    Fe-based amorphous/nanocrystalline coatings were prepared on the AISI 321 steel substrate by the high-velocity oxygen-fuel (HVOF) thermal spraying technology. The effect of selected parameters (oxygen flow, kerosene flow and spray distance) on the cavitation erosion resistance (denoted as Rc) of the coating were investigated by using the Taguchi method. Statistical tools such as design of experiments (DOE), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were used to meet the expected objective. It was concluded that the kerosene flow had greater influence on the Rc of the coating and followed by the spray distance and the oxygen flow, respectively. The optimum spray parameters (OSP) were 963L/min for the oxygen flow, 28L/h for the kerosene flow, and 330mm for the spray distance. The Rc of the coating increased with the increase of hardness or the decrease of porosity, and the hardness had a greater influence on Rc than the porosity. The Fe-based coating deposited under the OSP exhibited the best cavitation erosion resistance in distilled water. The cracks initiated at the edge of the pores and the interfaces between the un-melted or half-melted particles, and finally leaded to the delamination of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition

    NASA Astrophysics Data System (ADS)

    Guan, J. J.; Wang, H. Q.; Qin, L. Z.; Liao, B.; Liang, H.; Li, B.

    2017-04-01

    The CrCN coatings were fabricated onto Si (1 1 1) wafers and SUS304 stainless steel plates using filtered cathodic vacuum arc deposition (FCVAD) technique under different flow ratios of N2/C2H2 gas mixture. The morphology, crystalline structure and chemical composition of the coatings were characterized. It was found that the grain size reduce with increasing carbon content, which makes the CrCN coatings refined and smooth. The quasi-one-dimensional carbolite phase was also found in CrN host lattice with C2H2 content ranging from 5% to 20%, and it will be evolved into amorphous carbon and amorphous CNx phases as C2H2 content exceeds 20%. Moreover, we examined the mechanical and tribological properties of the CrCN coatings, and the experimental results confirmed that the friction coefficient of the coatings descend to the lowest value as 0.39 with 30% C2H2 content, due to the graphite (sp2 Csbnd C) phase embed in CrN host lattice; while the chromium carbon (Cr3C2) and diamond (sp3 Csbnd C) phases may give rise to the increase of the coating hardness with the highest value at 23.97 GPa under 20% C2H2 content.

  4. Laser ultrasonic multi-component imaging

    DOEpatents

    Williams, Thomas K [Federal Way, WA; Telschow, Kenneth [Des Moines, WA

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  5. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  6. Agency for Healthcare Research and Quality Evidence-based Practice Center methods for systematically reviewing complex multicomponent health care interventions.

    PubMed

    Guise, Jeanne-Marie; Chang, Christine; Viswanathan, Meera; Glick, Susan; Treadwell, Jonathan; Umscheid, Craig A; Whitlock, Evelyn; Fu, Rongwei; Berliner, Elise; Paynter, Robin; Anderson, Johanna; Motu'apuaka, Pua; Trikalinos, Tom

    2014-11-01

    The purpose of this Agency for Healthcare Research and Quality Evidence-based Practice Center methods white paper was to outline approaches to conducting systematic reviews of complex multicomponent health care interventions. We performed a literature scan and conducted semistructured interviews with international experts who conduct research or systematic reviews of complex multicomponent interventions (CMCIs) or organizational leaders who implement CMCIs in health care. Challenges identified include lack of consistent terminology for such interventions (eg, complex, multicomponent, multidimensional, multifactorial); a wide range of approaches used to frame the review, from grouping interventions by common features to using more theoretical approaches; decisions regarding whether and how to quantitatively analyze the interventions, from holistic to individual component analytic approaches; and incomplete and inconsistent reporting of elements critical to understanding the success and impact of multicomponent interventions, such as methods used for implementation the context in which interventions are implemented. We provide a framework for the spectrum of conceptual and analytic approaches to synthesizing studies of multicomponent interventions and an initial list of critical reporting elements for such studies. This information is intended to help systematic reviewers understand the options and tradeoffs available for such reviews. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Hot cracking during welding and casting

    NASA Astrophysics Data System (ADS)

    Cao, Guoping

    Aluminum welds are susceptible to liquation cracking in the partially melted zone (PMZ). Using the multicomponent Scheil model, curves of temperature vs. fraction solid (T-fS) during solidification were calculated for the PMZ and weld metals (WMs). These curves were used to predict the crack susceptibility by checking if the harmful condition of WM fS > PMZ fS exists during PMZ solidification and reduce the susceptibility by minimizing this condition. This approach was tested against full-penetration welds of alloys 7075 and 2024 and it can be used to guide the selection or development of filler metals. Liquation cracking in the PMZ in welds of Al-Si cast alloys was also investigated. The crack susceptibility was evaluated by circular-patch test, and full-penetration welds made with filler metals 1100, 4043, 4047 and 5356. Liquation cracking was significant with filler metals 1100 and 5356 but slight with filler metals 4043 and 4047. In all welds, liquation cracks were completely backfilled, instead of open as in full-penetration welds of wrought alloys 2219 and 6061. The T-fS curves showed that alloy A357 has a much higher fraction liquid for backfilling before PMZ solidification was essentially over. Hot tearing in Mg-xAl-yCa alloys was studied by constrained rod casting (CRC) in a steel mold. The hot tearing susceptibility decreased significantly with increasing Ca content (y) but did not change much with the Al content (x). An instrumented CRC with a steel mold was developed to detect the onset of hot tearing. The secondary phases, eutectic content, solidification path, and freezing range were examined. Hot tearing in Mg-Al-Sr alloys was also studied by CRC in a steel mold. With Mg-(4,6,8)Al-1.5Sr alloys, the hot tearing susceptibility decreased significantly with increasing Al content. With Mg-(4,6,8)Al-3Sr alloys, the trend was similar but not as significant. At the same Al content, the hot tearing susceptibility decreased significantly with increasing Sr content. Instrumented CRC with a steel mold was also used to test hot tearing of Mg-Al-Sr alloys. Cracking occurred at a higher temperature in alloys most susceptible to cracking than in alloys least susceptible.

  8. Multi-component Cu-Strengthened Steel Welding Simulations: Atom Probe Tomography and Synchrotron X-ray Diffraction Analyses

    NASA Astrophysics Data System (ADS)

    Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.

    2015-07-01

    An experimental steel with the composition Fe-1.39Cu-2.70Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C (at. pct) has been developed at Northwestern University, which has both high toughness and high strength after quenching and aging treatments. Simulated heat-affected zone (HAZ) samples are utilized to analyze the microstructures typically obtained after gas metal arc welding (GMAW). Dissolution within the HAZ of cementite (Fe3C) and NbC (F.C.C.) is revealed using synchrotron X-ray diffraction, while dissolution of Cu precipitates is measured employing local electrode atom probe tomography. The results are compared to Thermo-Calc equilibrium calculations. Comparison of measured Cu precipitate radii, number density, and volume fraction with similar measurements from a GMAW sample suggests that the cooling rate in the simulations is faster than in the experimental GMAW sample, resulting in significantly less Cu precipitate nucleation and growth during the cooling part of the weld thermal cycle. The few Cu precipitates detected in the simulated samples are primarily located on grain boundaries resulting from heterogeneous nucleation. The dissolution of NbC precipitates and the resultant austenite coarsening in the highest-temperature sample, coupled with a rapid cooling rate, results in the growth of bainite, and an increase in the strength of the matrix in the absence of significant Cu precipitation.

  9. Effects of bias voltage on diamond like carbon coatings deposited using titanium isopropoxide (TIPOT) and acetylene/argon mixtures onto various substrate materials.

    PubMed

    Said, R; Ghumman, C A A; Teodoro, M N D; Ahmed, W; Abuazza, A; Gracio, J

    2010-04-01

    RF-PECVD was used to prepare amorphous of carbon (DLC) onto stainless steel 316 and glass substrates. The substrates were negatively biased at between 100 V to 400 V. Thin films of DLC have been deposited using C2H2 and titanium isopropoxide (TIPOT). Argon was used to generate the plasma in the PECVD system chamber. DEKTAK 8 surface stylus profilometer was used to measure the film thickness and the deposition rate was calculated. Micro Raman spectroscopy was employed to determine the chemical structure and bonding present in the films. Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) instrument. In addition, X-ray photoelectron spectroscopy (XPS) was used to analyze the composition and chemical state of the films. The wettability of the films was examined using the optical contact angle meter (CAM200) system. Two types of liquids with different polarities were used to study changes in the surface energy. The as-grown films were in the thickness range of 200-400 nm. Raman spectroscopy results showed that the I(D)/I(G) ratio decreased when the bias voltage on the stainless steel substrates was increased. This indicates an increase in the graphitic nature of the film deposited. In contrast, on the glass substrates the I(D)/I(G) ratio increased when the bias voltage was increased indicates a greater degree of diamond like character. Chemical composition determined using XPS showed the presence of carbon and oxygen in both samples on glass and stainless steel substrates. Both coatings the contact angle of the films decreased except for 400 V which showed a slight increase. The oxygen is thought to play an important role on the polar component of a-C.

  10. Lubricating coating prepared by PIIID on a forming tool

    NASA Astrophysics Data System (ADS)

    Martinatti, J. F.; Santos, L. V.; Durrant, S. F.; Cruz, N. C.; Rangel, E. C.

    2012-06-01

    In this work, the performance of a-C:H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C2H2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 μs, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films were investigated. Film thickness increased from 0.3 to 0.5 μm when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84°, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of μ) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

  11. Identification And Characterization Of The Solids Found In Extraction Contactor SEP-401 In June 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Fink, S. D.

    2012-12-10

    The Modular Caustic-Side Solvent Extraction Unit (MCU) recently conducted an outage that included maintenance on the centrifugal contactors. Operations personnel observed solids or deposits in two contactors and attempted to collect samples for analyses by Savannah River National Laboratory (SRNL). The residues found in Extraction Contactor SEP-401 are a mixture of amorphous silica, aluminosilicate, titanium, and debris from low alloy steel. The solids contain low concentrations of plutonium and strontium. These isotopes are associated with the titanium that came from the monosodium titanate (MST) added in the Actinide Removal Process (ARP) most likely as leached Ti from the MST thatmore » precipitated subsequently in MCU. An attempt was also made to obtain samples from the contents of Wash Contactor SEP-702. However, sampling provide ineffective.« less

  12. Tribochemistry of contact interfaces of nanocrystalline molybdenum carbide films

    NASA Astrophysics Data System (ADS)

    Kumar, D. Dinesh; Kumar, N.; Panda, Kalpataru; Kamalan Kirubaharan, A. M.; Kuppusami, P.

    2018-07-01

    Transition metal carbides (TMC) are known for their improved tribological properties and are sensitive to the tribo-atmospheric environment. Nanocrystalline molybdenum carbide (MoC) thin films were deposited by DC magnetron sputtering technique using reactive CH4 gas. The friction and wear resistance properties of MoC thin films were significantly improved in humid-atmospheric condition as compared to high-vacuum tribo-condition. A comprehensive chemical analysis of deformed contact interfaces was carried out by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. XPS and Raman spectroscopy showed the formation of stable molybdenum-oxide (MoO), molybdenum carbide (MoC) and amorphous carbon (a-C) tribo-phases. Moreover, during the sliding in humid-atmospheric condition, these phases were extensively deposited on the sliding steel ball counter body which significantly protected against undesirable friction and wear.

  13. Sintered magnetic cores of high Bs Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy with a lamellar microstructure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sharma, Parmanand; Makino, Akihiro

    2014-05-01

    Fabrication of bulk cores of nano-crystalline Fe84.3Si4B8P3Cu0.7 alloy with a lamellar type of microstructure is reported. Amorphous ribbon flakes of size ˜1.0-2.0 mm were compacted in the bulk form by spark plasma sintering technique at different sintering temperatures. High density (˜96.4%) cores with a uniform nano-granular structure made from α-Fe (˜31 nm) were obtained. These cores show excellent mechanical and soft magnetic properties. The lamellar micro-structure is shown to be important in achieving significantly lower magnetic core loss than the non-oriented silicon steel sheets, commercial powder cores and even the core made of the same alloy with finer and randomly oriented powder particles.

  14. Metal Amorphous Nanocomposite Soft Magnetic Material-Enabled High Power Density, Rare Earth Free Rotational Machines [Metal Amorphous Nanocomposite (MANC) Soft Magnetic Material (SMM) Enabled High Power Density, Rare Earth Free Rotational Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.

    Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less

  15. Metal Amorphous Nanocomposite Soft Magnetic Material-Enabled High Power Density, Rare Earth Free Rotational Machines [Metal Amorphous Nanocomposite (MANC) Soft Magnetic Material (SMM) Enabled High Power Density, Rare Earth Free Rotational Machines

    DOE PAGES

    Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.

    2018-02-27

    Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less

  16. Multicomponent Droplet Evaporation on Chemical Micro-Patterned Surfaces

    PubMed Central

    He, Minghao; Liao, Dong; Qiu, Huihe

    2017-01-01

    The evaporation and dynamics of a multicomponent droplet on a heated chemical patterned surface were presented. Comparing to the evaporation process of a multicomponent droplet on a homogenous surface, it is found that the chemical patterned surface can not only enhance evaporation by elongating the contact line, but also change the evaporation process from three regimes for the homogenous surface including constant contact line (CCL) regime, constant contact angle (CCA) regime and mix mode (MM) to two regimes, i.e. constant contact line (CCL) and moving contact line (MCL) regimes. The mechanism of contact line stepwise movement in MCL regimes in the microscopic range is investigated in detail. In addition, an improved local force model on the contact line was employed for analyzing the critical receding contact angles on homogenous and patterned surfaces. The analysis results agree well for both surfaces, and confirm that the transition from CCL to MCL regimes indicated droplet composition changes from multicomponent to monocomponent, providing an important metric to predict and control the dynamic behavior and composition of a multicomponent droplet using a patterned surface. PMID:28157229

  17. [Effect of multicomponent environment on intestinal permeability of puerarin in biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Liu, Yang; Wang, Gang; Dong, Ling; Tang, Ming-Min; Zhu, Mei-Ling; Dong, Hong-Huant; Hou, Cheng-Bo

    2014-12-01

    The evaluation of permeability in biopharmaceutics classification system of Chinese materia medica (CMMBCS) requires multicomponent as a whole in order to conduct research, even in the study of a specific component, should also be put in the multicomponent environment. Based on this principle, the high content components in Gegen Qinlian decoction were used as multicomponent environmental impact factors in the experiment, and the relevant parameters of intestinal permeability about puerarin were measured with using in situ single-pass intestinal perfusion model, to investigate and evaluate the intestinal permeability of puerarin with other high content components. The experimental results showed that different proportions of baicalin, glycyrrhizic acid and berberine had certain influence on intestinal permeability of puerarin, and glycyrrhizic acid could significantly inhibit the intestinal absorption of puerarin, moreover, high concentration of berberine could promote the absorption of puerarin. The research results indicated that the important research ideas of permeability evaluation in biopharmaceutics classification system of Chinese materia medica with fully considering the effects of other ingredients in multicomponent environment.

  18. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 3. Numerical methods and comparisons with exact solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbard, F.; Fitzgerald, J.W.; Hoppel, W.A.

    1998-07-01

    We present the theoretical framework and computational methods that were used by {ital Fitzgerald} {ital et al.} [this issue (a), (b)] describing a one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. The concepts and limitations of modeling spatially varying multicomponent aerosols are elucidated. New numerical sectional techniques are presented for simulating multicomponent aerosol growth, settling, and eddy transport, coupled to time-dependent and spatially varying condensing vapor concentrations. Comparisons are presented with new exact solutions for settling and particle growth by simultaneous dynamic condensation of one vapor and by instantaneous equilibration with a spatially varying secondmore » vapor. {copyright} 1998 American Geophysical Union« less

  19. Sediment-pore water interactions controlling cementation in the NanTroSEIZE drilling transects

    NASA Astrophysics Data System (ADS)

    Hong, W.; Spinelli, G. A.; Torres, M. E.

    2012-12-01

    One goal of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is to understand how changes in subducting sediment control the transition from aseismic to seismogenic behavior in subduction zones. In the sediment entering the Nankai subduction zone, dramatic changes in physical and chemical properties occur across a diagenetic boundary; they are thought to affect sediment strength and deformation. The dissolution of disseminated volcanic ash and precipitation of silica cement may be responsible for these changes in physical properties, but the mechanism controlling cementation was unclear (Spinelli et al., 2007). In this study, we used CrunchFlow (Steefel, 2009) to simulate chemical reactions and fluid flow through 1-D sediment columns at Integrated Ocean Drilling Program (IODP) sites on the incoming plate in Nankai Trough. The simulations include the thermodynamics and kinetics of sediment-water interactions, advection of pore water and sediment due to compaction, and multi-component diffusion in an accumulating sediment column. Key reactions in the simulations are: ash dissolution, amorphous silica precipitation and dissolution, and zeolite precipitation. The rate of ash decomposition was constrained using Sr isotope data of Joseph et al. (2012). Our model reproduces the distinct diagenetic boundary observed in sediment and pore water chemistry, which defines two zones. Above this boundary (zone 1), dissolved and amorphous silicate contents are high and the potassium concentration remains near seawater values or gradually decreases toward the boundary. Below the boundary, both dissolved and amorphous silicate content drop rapidly, concomitant with a decrease in dissolved potassium. Our model shows that these changes in the system are driven by formation of clinoptilolite in response to changes in pore fluid pH. The low pH values (<7.6) above the diagenetic boundary accelerate ash decomposition and maintain clinoptilolite slightly undersaturated. The dissolved silicate released from ash alteration precipitates as cement, inhibiting consolidation. At or below the boundary, the increase in pH (>8.0), leads to oversaturation (and precipitation) of clinoptilolite. Strong demand of dissolved silicate due to clinoptilolite formation soon depletes the dissolved potassium and silicate; ash and silicate cement are forced to dissolve. The exact set of reactions resulting on the observed pH increase is still unclear, but it likely involves the carbon system. It is noteworthy that the diagenetic boundary at all sites in the incoming plate occurs at the same thermal maturity of the sediments (TTI=0.025), similar to observations on onshore sequences in Japan (Sasaki, 1986).

  20. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

    NASA Astrophysics Data System (ADS)

    Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.

    2018-02-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

  1. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    NASA Astrophysics Data System (ADS)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  2. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  3. Experimental evidence for excess entropy discontinuities in glass-forming solutions.

    PubMed

    Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas

    2012-02-21

    Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics

  4. The impact of including incentives and competition in a workplace smoking cessation program on quit rates.

    PubMed

    Koffman, D M; Lee, J W; Hopp, J W; Emont, S L

    1998-01-01

    To determine the effectiveness of a multicomponent smoking cessation program supplemented by incentives and team competition. A quasi-experimental design was employed to compare the effectiveness of three different smoking cessation programs, each assigned to separate worksite. The study was conducted from 1990 to 1991 at three aerospace industry worksites in California. All employees who were current, regular tobacco users were eligible to participate in the program offered at their site. The multicomponent program included a self-help package, telephone counseling, and other elements. The incentive-competition program included the multicomponent program plus cash incentives and team competition for the first 5 months of the program. The traditional program offered a standard smoking cessation program. Self-reported questionnaires and carbon monoxide tests of tobacco use or abstinence were used over a 12-month period. The incentive-competition program had an abstinence rate of 41% at 6 months (n = 68), which was significantly better than the multicomponent program (23%, n = 81) or the traditional program (8%, n = 36). At 12 months, the quit rates for the incentive and multicomponent-programs were statistically indistinguishable (37% vs. 30%), but remained higher than the traditional program (11%). Chi-square tests, t-tests, and logistic regression were used to compare smoking abstinence across the three programs. Offering a multicomponent program with telephone counseling may be just as effective for long-term smoking cessation as such a program plus incentives and competition, and more effective than a traditional program.

  5. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  6. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel

    2009-04-07

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  7. A Parametric Study of Nonlinear Seismic Response Analysis of Transmission Line Structures

    PubMed Central

    Wang, Yanming; Yi, Zhenhua

    2014-01-01

    A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures. PMID:25133215

  8. Fabrication and characterization of DLC coated microdimples on hip prosthesis heads.

    PubMed

    Choudhury, Dipankar; Ay Ching, Hee; Mamat, Azuddin Bin; Cizek, Jan; Abu Osman, Noor Azuan; Vrbka, Martin; Hartl, Martin; Krupka, Ivan

    2015-07-01

    Diamond like carbon (DLC) is applied as a thin film onto substrates to obtain desired surface properties such as increased hardness and corrosion resistance, and decreased friction and wear rate. Microdimple is an advanced surface modification technique enhancing the tribological performance. In this study, DLC coated microdimples were fabricated on hip prosthesis heads and their mechanical, material and surface properties were characterized. An Electro discharge machining (EDM) oriented microdrilling was utilized to fabricate a defined microdimple array (diameter of 300 µm, depth of 70 µm, and pitch of 900 µm) on stainless steel (SS) hip prosthesis heads. The dimpled surfaces were then coated by hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) layers by using a magnetron sputtering technology. A preliminary tribology test was conducted on these fabricated surfaces against a ceramic ball in simulated hip joint conditions. It was found that the fabricated dimples were perpendicular to the spherical surfaces and no cutting-tools wear debris was detected inside the individual dimples. The a-C:H and Ta-C coatings increased the hardness at both the dimple edges and the nondimpled region. The tribology test showed a significant reduction in friction coefficient for coated surfaces regardless of microdimple arrays: the lowest friction coefficient was found for the a-C:H samples (µ = 0.084), followed by Ta-C (µ = 0.119), as compared to the SS surface (µ = 0.248). © 2014 Wiley Periodicals, Inc.

  9. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    NASA Astrophysics Data System (ADS)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  10. Mathematical Model of Nonstationary Separation Processes Proceeding in the Cascade of Gas Centrifuges in the Process of Separation of Multicomponent Isotope Mixtures

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.

    2017-03-01

    We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.

  11. Multicomponent Separation Potential. Generalization of the Dirac Theory

    NASA Astrophysics Data System (ADS)

    Palkin, V. A.; Gadel‧shin, V. M.; Aleksandrov, O. E.; Seleznev, V. D.

    2014-05-01

    Formulas for the separation potential and the separative power have been obtained in the present work by generalizing the classical theory of Dirac, with the observance of his two axioms, to the case of a multicomponent mixture without considering a concrete cascade scheme. The resulting expressions are general characteristics of a separation process, since they are applicable to any separation methods and are independentof the form of the components in the mixture. They can be used in constructing actual cascades for separation of multicomponent mixtures and in determining the indices of their effi ciency.

  12. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  13. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    PubMed

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  14. Electron Cloud Measurements in Fermilab Main Injector and Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey Scott; Backfish, M.; Tan, C. Y.

    This conference paper presents a series of electron cloud measurements in the Fermilab Main Injector and Recycler. A new instability was observed in the Recycler in July 2014 that generates a fast transverse excitation in the first high intensity batch to be injected. Microwave measurements of electron cloud in the Recycler show a corresponding depen- dence on the batch injection pattern. These electron cloud measurements are compared to those made with a retard- ing field analyzer (RFA) installed in a field-free region of the Recycler in November. RFAs are also used in the Main Injector to evaluate the performance ofmore » beampipe coatings for the mitigation of electron cloud. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. The diamond-like carbon coating, in contrast, reduced the electron cloud signal to 1% of that measured in uncoated stainless steel beampipe.« less

  15. Structure and properties of TiSiCN coatings with different bias voltages by arc ion plating

    NASA Astrophysics Data System (ADS)

    Xie, Xinming; Li, Jinlong; Dong, Minpeng; Zhang, Henghua; Wang, Liping

    2018-03-01

    TiSiCN coatings were deposited on 316 L steel using the multi-arc ion plating system. All the coatings had the same total thickness of approximately 1.6 µm. The TiSiCN coatings were deposited under the mixture constant flow of N2 and C2H2 but varying bias. Information about structures, composition and properties were characterized by scanning electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, nanoindentation and ball-on-plate wear tests. The results show that all of the coatings consist of a TiCN nano-crystal phase and an Si3N4 amorphous phase. With an increase in the bias, the film becomes denser and exhibits better tribological behavior and mechanical properties. Moreover, the bonding strength between the coatings and the substrate increased and the resistance to thermal shock intensified when the coatings were made at a higher bias voltage.

  16. The effects of deposition parameters on surface morphology and crystallographic orientation of electroless Ni-B coatings

    NASA Astrophysics Data System (ADS)

    Bulbul, Ferhat

    2011-02-01

    Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.

  17. Influence of substrate material and surface finishing on the morphology of the calcium-phosphate coating.

    PubMed

    Leitão, E; Barbosa, M A; de Groot, K

    1997-07-01

    The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.

  18. MICROWAVE-ACCELERATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    The application of microwave-accelerated solventless synthetic protocols in multicomponent (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of valuable heterocyclic compounds from in situ generated intermed...

  19. Surface-slip equations for multicomponent nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Scott, C. D.; Moss, J. N.

    1985-01-01

    Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.

  20. Surface-slip equations for multicomponent, nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene

    1985-01-01

    Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.

  1. A chemical family-based strategy for uncovering hidden bioactive molecules and multicomponent interactions in herbal medicines.

    PubMed

    Song, Hui-Peng; Wu, Si-Qi; Hao, Haiping; Chen, Jun; Lu, Jun; Xu, Xiaojun; Li, Ping; Yang, Hua

    2016-03-30

    Two concepts involving natural products were proposed and demonstrated in this paper. (1) Natural product libraries (e.g. herbal extract) are not perfect for bioactivity screening because of the vast complexity of compound compositions, and thus a library reconstruction procedure is necessary before screening. (2) The traditional mode of "screening single compound" could be improved to "screening single compound, drug combination and multicomponent interaction" due to the fact that herbal medicines work by integrative effects of multi-components rather than single effective constituents. Based on the two concepts, we established a novel strategy aiming to make screening easier and deeper. Using thrombin as the model enzyme, we firstly uncovered the minor lead compounds, potential drug combinations and multicomponent interactions in an herbal medicine of Dan-Qi pair, showing a significant advantage over previous methods. This strategy was expected to be a new and promising mode for investigation of herbal medicines.

  2. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  3. General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles.

    PubMed

    Yang, Hui; Bradley, Siobhan J; Wu, Xin; Chan, Andrew; Waterhouse, Geoffrey I N; Nann, Thomas; Zhang, Jian; Kruger, Paul E; Ma, Shengqian; Telfer, Shane G

    2018-04-18

    Nanoparticles comprising three or more different metals are challenging to prepare. General methods that tackle this challenge are highly sought after as multicomponent metal nanoparticles display favorable properties in applications such as catalysis, biomedicine, and imaging. Herein, we report a practical and versatile approach for the synthesis of nanoparticles composed of up to four different metals. This method relies on the thermal decomposition of nanostructured composite materials assembled from platinum nanoparticles, a metal-organic framework (ZIF-8), and a tannic acid coordination polymer. The controlled integration of multiple metal cations (Ni, Co, Cu, Mn, Fe, and/or Tb) into the tannic acid shell of the precursor material dictates the composition of the final multicomponent metal nanoparticles. Upon thermolysis, the platinum nanoparticles seed the growth of the multicomponent metal nanoparticles via coalescence with the metallic constituents of the tannic acid coordination polymer. The nanoparticles are supported in the walls of hollow nitrogen-doped porous carbon capsules created by the decomposition of the organic components of the precursor. The capsules prevent sintering and detachment of the nanoparticles, and their porosity allows for efficient mass transport. To demonstrate the utility of producing a broad library of supported multicomponent metal nanoparticles, we tested their electrocatalytic performance toward the hydrogen evolution reaction and oxygen evolution reaction. We discovered functional relationships between the composition of the nanoparticles and their electrochemical activity and identified the PtNiCu and PtNiCuFe nanoparticles as particularly efficient catalysts. This highlights how to generate diverse libraries of multicomponent metal nanoparticles that can be synthesized and subsequently screened to identify high-performance materials for target applications.

  4. Multi-component intrinsic brain activities as a safe, alternative to cortical stimulation for sensori-motor mapping in neurosurgery.

    PubMed

    Neshige, Shuichiro; Matsuhashi, Masao; Kobayashi, Katsuya; Sakurai, Takeyo; Shimotake, Akihiro; Hitomi, Takefumi; Kikuchi, Takayuki; Yoshida, Kazumichi; Kunieda, Takeharu; Matsumoto, Riki; Takahashi, Ryosuke; Miyamoto, Susumu; Maruyama, Hirofumi; Matsumoto, Masayasu; Ikeda, Akio

    2018-06-18

    To assess the feasibility of multi-component electrocorticography (ECoG)-based mapping using "wide-spectrum, intrinsic-brain activities" for identifying the primary sensori-motor area (S1-M1) by comparing that using electrical cortical stimulation (ECS). We evaluated 14 epilepsy patients with 1514 subdural electrodes implantation covering the perirolandic cortices at Kyoto University Hospital between 2011 and 2016. We performed multi-component, ECoG-based mapping (band-pass filter, 0.016-300/600 Hz) involving combined analyses of the single components: movement-related cortical potential (<0.5-1 Hz), event-related synchronization (76-200 Hz), and event-related de-synchronization (8-24 Hz) to identify the S1-M1. The feasibility of multi-component mapping was assessed through comparisons with single-component mapping and ECS. Among 54 functional areas evaluation, ECoG-based maps showed significantly higher rate of localization concordances with ECS maps when the three single-component maps were consistent than when those were inconsistent with each other (p < 0.001 in motor, and p = 0.02 in sensory mappings). Multi-component mapping revealed high sensitivity (89-90%) and specificity (94-97%) as compared with ECS. Wide-spectrum, multi-component ECoG-based mapping is feasible, having high sensitivity/specificity relative to ECS. This safe (non-stimulus) mapping strategy, alternative to ECS, would allow clinicians to rule in/out the possibility of brain function prior to resection surgery. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay

    NASA Astrophysics Data System (ADS)

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1 Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t = 104 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1 Ma are approximately equal to 1 and 3.3 cm thick, respectively. The hyper-alkaline front (pH > 8.5) spreads 2.5 cm into the clay formation after 1 Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1 Ma.

  6. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay.

    PubMed

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t=10 4 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1Ma are approximately equal to 1 and 3.3cm thick, respectively. The hyper-alkaline front (pH>8.5) spreads 2.5cm into the clay formation after 1Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1Ma. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Phase-Field Modeling of Sigma-Phase Precipitation in 25Cr7Ni4Mo Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Malik, Amer; Odqvist, Joakim; Höglund, Lars; Hertzman, Staffan; Ågren, John

    2017-10-01

    Phase-field modeling is used to simulate the formation of sigma phase in a model alloy mimicking a commercial super duplex stainless steel (SDSS) alloy, in order to study precipitation and growth of sigma phase under linear continuous cooling. The so-called Warren-Boettinger-McFadden (WBM) model is used to build the basis of the multiphase and multicomponent phase-field model. The thermodynamic inconsistency at the multiple junctions associated with the multiphase formulation of the WBM model is resolved by means of a numerical Cut-off algorithm. To make realistic simulations, all the kinetic and the thermodynamic quantities are derived from the CALPHAD databases at each numerical time step, using Thermo-Calc and TQ-Interface. The credibility of the phase-field model is verified by comparing the results from the phase-field simulations with the corresponding DICTRA simulations and also with the empirical data. 2D phase-field simulations are performed for three different cooling rates in two different initial microstructures. A simple model for the nucleation of sigma phase is also implemented in the first case. Simulation results show that the precipitation of sigma phase is characterized by the accumulation of Cr and Mo at the austenite-ferrite and the ferrite-ferrite boundaries. Moreover, it is observed that a slow cooling rate promotes the growth of sigma phase, while a higher cooling rate restricts it, eventually preserving the duplex structure in the SDSS alloy. Results from the phase-field simulations are also compared quantitatively with the experiments, performed on a commercial 2507 SDSS alloy. It is found that overall, the predicted morphological features of the transformation and the composition profiles show good conformity with the empirical data.

  8. MICROWAVE-FACILITATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    The application of microwave-expedited solvent-free synthetic protocols in multi-component (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of heterocyclic compounds from in situ generated intermediates. R...

  9. Isocyanide-mediated multicomponent synthesis of C-oximinoamidines.

    PubMed

    Mercalli, Valentina; Meneghetti, Fiorella; Tron, Gian Cesare

    2013-11-15

    By capitalizing on the different reactivity of nitrile N-oxides with isocyanides and amine, α-oximinoamidines, a so far elusive class of compounds, have been synthesized in a straightforward way by reacting isocyanides, syn-chlorooximes, and amines in a multicomponent fashion.

  10. Rapid correction of electron microprobe data for multicomponent metallic systems

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Sivakumar, R.

    1973-01-01

    This paper describes an empirical relation for the correction of electron microprobe data for multicomponent metallic systems. It evaluates the empirical correction parameter, a for each element in a binary alloy system using a modification of Colby's MAGIC III computer program and outlines a simple and quick way of correcting the probe data. This technique has been tested on a number of multicomponent metallic systems and the agreement with the results using theoretical expressions is found to be excellent. Limitations and suitability of this relation are discussed and a model calculation is also presented in the Appendix.

  11. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  12. Direct observation of the photodegradation of anthracene and pyrene adsorbed onto mangrove leaves.

    PubMed

    Wang, Ping; Wu, Tun-Hua; Zhang, Yong

    2014-01-01

    An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR) and anthracene (ANT) adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L.) Blanco (Ac) and Kandelia obovata (Ko) in multicomponent mixtures (mixture of the ANT and PYR). Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs.

  13. Direct Observation of the Photodegradation of Anthracene and Pyrene Adsorbed onto Mangrove Leaves

    PubMed Central

    Wang, Ping; Wu, Tun-Hua; Zhang, Yong

    2014-01-01

    An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR) and anthracene (ANT) adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L.) Blanco (Ac) and Kandelia obovata (Ko) in multicomponent mixtures (mixture of the ANT and PYR). Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs. PMID:25144741

  14. Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems

    DOE R&D Accomplishments Database

    Shizgal, B.; Karplus, M.

    1970-10-01

    The nonequilibrium contribution to the reaction rate of an isothermal multicomponent system is obtained by solution of the appropriate Chapman-Enskog equation; the system is composed of reactive species in contact with a heat bath of inert atoms M.

  15. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  16. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less

  17. Multicomponent Implant Releasing Dexamethasone

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Ashammakhi, N.

    2008-02-01

    Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.

  18. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph Collin

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrademore » structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H + and T +) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion products in the process. Alternatively, imposed currents and other high-temperature cathodic protection systems are envisioned for protection of the structural materials. This novel concept could prove to be enabling technology for such high-temperature molten-salt reactors. The use of UF 4 as a liquid-phase homogenous fuel is also complicated by redox control. For example, the oxidation of tetravalent uranium to hexavalent uranium could result in the formation of volatile UF 6. This too could be controlled through electrochemically manipulated oxidation and reduction reactions. In situ studies of pertinent electrochemical reactions in the molten salts are proposed, and are relevant to both the corrosive attack of structural materials, as well as the volatilization of fuel. Some consideration is given to the potential advantages of gravity fed falling-film blankets. Such systems may be easier to control than vortex systems, but would require that cylindrical reaction vessels be oriented with the centerline normal to the gravitational field.« less

  19. MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE-FLUID-PHASE POROUS MEDIA

    EPA Science Inventory

    A two dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between NAPL, water, gas and solid phases in porous media under the assumption of local chemical equilibrium. as-phase pres...

  20. MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE FLUID PHASE POROUS MEDIA

    EPA Science Inventory

    A two-dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between nonaqueous phase liquid, water, gas and solid phases in porous media under the assumption of local chemical equilib...

  1. GROUNDWATER MASS TRANSPORT AND EQUILIBRIUM CHEMISTRY MODEL FOR MULTICOMPONENT SYSTEMS

    EPA Science Inventory

    A mass transport model, TRANQL, for a multicomponent solution system has been developed. The equilibrium interaction chemistry is posed independently of the mass transport equations which leads to a set of algebraic equations for the chemistry coupled to a set of differential equ...

  2. CONTAMINANT TRANSPORT RESULTING FROM MULTICOMPONENT NONAQUEOUS PHASE LIQUID POOL DISSOLUTION IN THREE-DIMENSIONAL SUBSURFACE FORMATIONS (R823579)

    EPA Science Inventory

    A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...

  3. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  4. Optimal Multicomponent Analysis Using the Generalized Standard Addition Method.

    ERIC Educational Resources Information Center

    Raymond, Margaret; And Others

    1983-01-01

    Describes an experiment on the simultaneous determination of chromium and magnesium by spectophotometry modified to include the Generalized Standard Addition Method computer program, a multivariate calibration method that provides optimal multicomponent analysis in the presence of interference and matrix effects. Provides instructions for…

  5. Structural and Thermodynamic Factors of Suppressed Interdiffusion Kinetics in Multi-component High-entropy Materials

    PubMed Central

    Chang, Shou-Yi; Li, Chen-En; Huang, Yi-Chung; Hsu, Hsun-Feng; Yeh, Jien-Wei; Lin, Su-Jien

    2014-01-01

    We report multi-component high-entropy materials as extraordinarily robust diffusion barriers and clarify the highly suppressed interdiffusion kinetics in the multi-component materials from structural and thermodynamic perspectives. The failures of six alloy barriers with different numbers of elements, from unitary Ti to senary TiTaCrZrAlRu, against the interdiffusion of Cu and Si were characterized, and experimental results indicated that, with more elements incorporated, the failure temperature of the barriers increased from 550 to 900°C. The activation energy of Cu diffusion through the alloy barriers was determined to increase from 110 to 163 kJ/mole. Mechanistic analyses suggest that, structurally, severe lattice distortion strains and a high packing density caused by different atom sizes, and, thermodynamically, a strengthened cohesion provide a total increase of 55 kJ/mole in the activation energy of substitutional Cu diffusion, and are believed to be the dominant factors of suppressed interdiffusion kinetics through the multi-component barrier materials. PMID:24561911

  6. Multilevel, multicomponent microarchitectures of vertically-aligned carbon nanotubes for diverse applications.

    PubMed

    Qu, Liangti; Vaia, Rich A; Dai, Liming

    2011-02-22

    A simple multiple contact transfer technique has been developed for controllable fabrication of multilevel, multicomponent microarchitectures of vertically aligned carbon nanotubes (VA-CNTs). Three dimensional (3-D) multicomponent micropatterns of aligned single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) have been fabricated, which can be used to develop a newly designed touch sensor with reversible electrical responses for potential applications in electronic devices, as demonstrated in this study. The demonstrated dependence of light diffraction on structural transfiguration of the resultant CNT micropattern also indicates their potential for optical devices. Further introduction of various components with specific properties (e.g., ZnO nanorods) into the CNT micropatterns enabled us to tailor such surface characteristics as wettability and light response. Owing to the highly generic nature of the multiple contact transfer strategy, the methodology developed here could provide a general approach for interposing a large variety of multicomponent elements (e.g., nanotubes, nanorods/wires, photonic crystals, etc.) onto a single chip for multifunctional device applications.

  7. An uncontrolled trial of multi-component care for first-episode psychosis: Effects on social cognition.

    PubMed

    Breitborde, Nicholas J K; Moe, Aubrey M; Woolverton, Cindy; Harrison-Monroe, Patricia; Bell, Emily K

    2018-06-01

    Growing evidence suggests that specialized, multi-component treatment programmes produce improvements in numerous outcomes among individuals with first-episode psychosis. However, these programmes often lack interventions specifically designed to address deficits in social cognition. This raises questions about the effectiveness of such programmes in addressing deficits in social cognition that accompany psychotic disorders. We investigated the effect of participation in a multi-component treatment programme on social cognition among 71 individuals with first-episode psychosis. Participants experienced gains in emotion processing, social knowledge, social perception and theory of mind. However, after controlling for multiple comparisons, these improvements were limited to theory of mind and recognition of social cues in low emotion interactions. Although our findings should be interpreted cautiously, they raise the possibility that individuals participating in multi-component treatment programmes for first-episode psychosis without interventions specifically targeting social cognition may still experience gains in social cognition. © 2017 John Wiley & Sons Australia, Ltd.

  8. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling.

    PubMed

    Monakhova, Yulia B; Mushtakova, Svetlana P

    2017-05-01

    A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

  9. (n, N) type maintenance policy for multi-component systems with failure interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoqi; Wu, Su; Li, Binfeng; Lee, Seungchul

    2015-04-01

    This paper studies maintenance policies for multi-component systems in which failure interactions and opportunistic maintenance (OM) involve. This maintenance problem can be formulated as a Markov decision process (MDP). However, since an action set and state space in MDP exponentially expand as the number of components increase, traditional approaches are computationally intractable. To deal with curse of dimensionality, we decompose such a multi-component system into mutually influential single-component systems. Each single-component system is formulated as an MDP with the objective of minimising its long-run average maintenance cost. Under some reasonable assumptions, we prove the existence of the optimal (n, N) type policy for a single-component system. An algorithm to obtain the optimal (n, N) type policy is also proposed. Based on the proposed algorithm, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that failure interactions and OM pose significant effects on a maintenance policy.

  10. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  11. Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.

    2013-07-01

    Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.

  12. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals

    PubMed Central

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610

  13. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.

    PubMed

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.

  14. Porous multi-component material for the capture and separation of species of interest

    DOEpatents

    Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A

    2016-06-21

    A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.

  15. Full-scale evaluation of a multi-component additive for efficient control of activated sludge filamentous bulking.

    PubMed

    Seka, M A; Van DeWiele, T; Verstraete, W

    2002-01-01

    A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.

  16. Recent advances in the chemistry of Rh carbenoids: multicomponent reactions of diazocarbonyl compounds

    NASA Astrophysics Data System (ADS)

    Medvedev, J. J.; Nikolaev, V. A.

    2015-07-01

    Multicomponent reactions of diazo compounds catalyzed by RhII complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O-ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references.

  17. LASER DESORPTION/IONIZATION OF SINGLE ULTRAFINE MULTICOMPONENT AEROSOLS. (R823980)

    EPA Science Inventory

    Laser desorption/ionization characteristics of single
    ultrafine multicomponent aerosols have been investigated.
    The results confirm earlier findings that (a) the negative
    ion spectra are dominated by free electrons and (b) the ion
    yield-to-mass ratio is higher for ...

  18. An Integrative Review of Multicomponent Weight Management Interventions for Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Doherty, Alison J.; Jones, Stephanie P.; Chauhan, Umesh; Gibson, Josephine M. E.

    2018-01-01

    Background: Obesity is more prevalent in people with intellectual disabilities and increases the risk of developing serious medical conditions. UK guidance recommends multicomponent weight management interventions (MCIs), tailored for different population groups. Methods: An integrative review utilizing systematic review methodology was conducted…

  19. Molecular-Level Control of Ciclopirox Olamine Release from Poly(ethylene oxide)-Based Mucoadhesive Buccal Films: Exploration of Structure-Property Relationships with Solid-State NMR.

    PubMed

    Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri

    2016-05-02

    Mucoadhesive buccal films (MBFs) provide an innovative way to facilitate the efficient site-specific delivery of active compounds while simultaneously separating the lesions from the environment of the oral cavity. The structural diversity of these complex multicomponent and mostly multiphase systems as well as an experimental strategy for their structural characterization at molecular scale with atomic resolution were demonstrated using MBFs of ciclopirox olamine (CPX) in a poly(ethylene oxide) (PEO) matrix as a case study. A detailed description of each component of the CPX/PEO films was followed by an analysis of the relationships between each component and the physicochemical properties of the MBFs. Two distinct MBFs were identified by solid-state NMR spectroscopy: (i) at low API (active pharmaceutical ingredient) loading, a nanoheterogeneous solid solution of CPX molecularly dispersed in an amorphous PEO matrix was created; and (ii) at high API loading, a pseudoco-crystalline system containing CPX-2-aminoethanol nanocrystals incorporated into the interlamellar space of a crystalline PEO matrix was revealed. These structural differences were found to be closely related to the mechanical and physicochemical properties of the prepared MBFs. At low API loading, the polymer chains of PEO provided sufficient quantities of binding sites to stabilize the CPX that was molecularly dispersed in the highly amorphous semiflexible polymer matrix. Consequently, the resulting MBFs were soft, with low tensile strength, plasticity, and swelling index, supporting rapid drug release. At high CPX content, however, the active compounds and the polymer chains simultaneously cocrystallized, leaving the CPX to form nanocrystals grown directly inside the spherulites of PEO. Interfacial polymer-drug interactions were thus responsible not only for the considerably enhanced plasticity of the system but also for the exclusive crystallization of CPX in the thermodynamically most stable polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids.

  20. Full 3-dimensional digital workflow for multicomponent dental appliances: A proof of concept.

    PubMed

    van der Meer, W Joerd; Vissink, Arjan; Ren, Yijin

    2016-04-01

    The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. The authors scanned a volunteer's dentition with an intraoral scanner (Lava Chairside Oral Scanner C.O.S., 3M). A digital impression was used to design 2 multicomponent orthodontic appliances. Biocompatible acrylic baseplates were produced with the aid of a 3D printer. The metal springs and clasps were produced by a bending robot. The fit of the 2 appliances was assessed by 2 experienced orthodontists. The authors assessed both orthodontic appliances with the volunteer's dentition and found the fit to be excellent. Clinicians can fully produce a multicomponent dental appliance consisting of both an acrylic baseplate and other parts, such as clasps, springs, or screws, using a digital workflow process without the need for a physical model of the patient's dentition. Plaster models can be superfluous for orthodontic treatment as digital models can be used in all phases of a full digital workflow in orthodontics. The arduous task of making a multicomponent dental appliance that involves bending wires can possibly be replaced by a computer, design software, a 3D printer, and a bending robot. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  1. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects.

    PubMed

    Tian, Dayong; Lin, Zhifen; Yu, Jianqiao; Yin, Daqiang

    2012-08-01

    Organic chemicals usually coexist as a mixture in the environment, and the mixture toxicity of organic chemicals has received increased attention. However, research regarding the joint effects of reactive chemicals is lacking. In this study, we examined two kinds of reactive chemicals, cyanogenic toxicants and aldehydes and determined their joint effects on Photobacterium phosphoreum. Three factors were found to influence the joint effects of multicomponent mixtures containing reactive chemicals, including the number of components, the dominating components and the toxic ratios. With an increased number of components, the synergistic or antagonistic effects (interactions) will weaken to the additive effects (non-interactions) if the added component cannot yield a much stronger joint effect with an existing component. Contrarily, the joint effect of the mixture may become stronger instead of weaker if the added components can yield a much stronger joint effect than the existing joint effect of the multicomponent mixture. The components that yield the strongest interactions in their binary mixture can be considered the dominating components. These components contribute more to the interactions of multicomponent mixtures than other components. Moreover, the toxic ratios also influence the joint effects of the mixtures. This study provides an insight into what are the main factors and how they influence the joint effects of multicomponent mixtures containing reactive chemicals, and thus, the findings are beneficial to the study of mixture toxicology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Criteria for Modeling in LES of Multicomponent Fuel Flow

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2009-01-01

    A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.

  3. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.

    PubMed

    Wu, Chuan-Yu; Best, Serena M; Bentham, A Craig; Hancock, Bruno C; Bonfield, William

    2006-08-01

    Pharmaceutical tablets are generally produced by compacting a mixture of several ingredients, including active drugs and excipients. It is of practical importance if the properties of such tablets can be predicted on the basis of the ones for constituent components. The purpose of this work is to develop a theoretical model which can predict the tensile strength of compacted multi-component pharmaceutical mixtures. The model was derived on the basis of the Ryshkewitch-Duckworth equation that was originally proposed for porous materials. The required input parameters for the model are the relative density or solid fraction (ratio of the volume of solid materials to the total volume of the tablets) of the multi-component tablets and parameters associated with the constituent single-component powders, which are readily accessible. The tensile strength of tablets made of various powder blends at different relative density was also measured using diametrical compression. It has been shown that the tensile strength of the multi-component powder compacts is primarily a function of the solid fraction. Excellent agreement between prediction and experimental data for tablets of binary, ternary and four-component blends of some widely used pharmaceutical excipients was obtained. It has been demonstrated that the proposed model can well predict the tensile strength of multi-component pharmaceutical tablets. Thus, the model will be a useful design tool for formulation engineers in the pharmaceutical industry.

  4. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  5. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    PubMed

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1 H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. The effects of phase transformation on the structure and mechanical properties of TiSiCN nanocomposite coatings deposited by PECVD method

    NASA Astrophysics Data System (ADS)

    Abedi, Mohammad; Abdollah-zadeh, Amir; Bestetti, Massimiliano; Vicenzo, Antonello; Serafini, Andrea; Movassagh-Alanagh, Farid

    2018-06-01

    In the present study, the effects of phase transformations on the structure and mechanical properties of TiSiCN coatings were investigated. TiSiCN nanocomposite coatings were deposited on AISI H13 hot-work tool steel by a pulsed direct current plasma-enhanced chemical vapor deposition process at 350 or 500 °C, using TiCl4 and SiCl4 as the precursors of Ti and Si, respectively, in a CH4/N2/H2/Ar plasma as the source of carbon and nitrogen and reducing environment. Some samples deposited at 350 °C were subsequently annealed at 500 °C under Ar atmosphere. Super hard self-lubricant TiSiCN coatings, having nanocomposite structure consisting of TiCN nanocrystals and amorphous carbon particles embedded in an amorphous SiCNx matrix, formed through spinodal decomposition in the specimens deposited or annealed at 500 °C. In addition, it was revealed that either uncomplete or relatively coarse phase segregation of titanium compounds was achieved during deposition at 350 °C and 500 °C, respectively. On the contrary, by deposition at 350 °C followed by annealing at 500 °C, a finer structure was obtained with a sensible improvement of the mechanical properties of coatings. Accordingly, the main finding of this work is that significant enhancement in key properties of TiSiCN coatings, such as hardness, adhesion and friction coefficient, can be obtained by deposition at low temperature and subsequent annealing at higher temperature, thanks to the formation of a fine grained nanocomposite structure.

  7. Biotribological behavior of Ag-ZrCxN1-x coatings against UHMWPE for joint prostheses devices.

    PubMed

    Calderon V, S; Sánchez-López, J C; Cavaleiro, A; Carvalho, S

    2015-01-01

    This study aims to evaluate the structural, mechanical and tribological properties of zirconium carbonitrides (ZrCxN1-x) coatings with embedded silver nanoparticles, produced with the intention of achieving a material with enhanced multi-functional properties, including mechanical strength, corrosion resistance, tribological performance and antibacterial behavior suitable for their use in joint prostheses. The coatings were deposited by direct current (DC) reactive magnetron sputtering onto 316 L stainless steel, changing the silver content from 0 to 20 at% by modifying the current density applied to the targets. Different nitrogen and acetylene gas fluxes were used as reactive gases. The coatings revealed different mixtures of crystalline ZrCxN1-x, silver nanoparticles and amorphous carbon phases. The hardness of the films was found to be mainly controlled by the ratio between the hard (ZrCxN1-x) and soft (Ag and amorphous carbon) phases in the films, fluctuating between 7.4 and 20.4 GPa. The coefficient of friction, measured against ultra-high molecular weight polyethylene (UHMWPE) in Hank's balanced salt solution with 10 gL(-1) albumin, is governed by the surface roughness and hardness. The UHMWPE wear rates were in the same order of magnitude (between 1.4 and 2.0 × 10(-6)mm(3)N(-1)m(-1)), justified by the effect of the protective layer of albumin formed during the tests. The small differences were due to the hydrophobic/hydrophilic character of the surface, as well as to the silver content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Multicomponent Linguistic Awareness Intervention for At-Risk Kindergarteners

    ERIC Educational Resources Information Center

    Zoski, Jennifer L.; Erickson, Karen A.

    2017-01-01

    This study investigated the feasibility of multicomponent linguistic awareness intervention on early literacy skills in at-risk kindergarteners. Seventeen students, including native Spanish-speaking English language learners (n = 10) and native English speakers (n = 7), participated in a 6-week small-group therapy program, for a total of 12…

  9. Evaluation of a Multicomponent Online Communication Professional Development Program for Early Interventionists

    ERIC Educational Resources Information Center

    Brown, Jennifer A.; Woods, Juliann J.

    2012-01-01

    Collaborative early intervention (EI) service delivery is enhanced by professional development focused on knowledge and skills in the content and process of delivering services. This article describes a multicomponent online professional development course designed to build infant toddler specialists' capacity to support children with…

  10. MOFAT: A TWO-DIMENSIONAL FINITE ELEMENT PROGRAM FOR MULTIPHASE FLOW AND MULTICOMPONENT TRANSPORT - PROGRAM DOCUMENTATION AND USER'S GUIDE

    EPA Science Inventory

    This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...

  11. Chemometric Analysis of Multicomponent Biodegradable Plastics by Fourier Transform Infrared Spectrometry: The R-Matrix Method

    USDA-ARS?s Scientific Manuscript database

    A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...

  12. Treatment of Test Anxiety by Cue-Controlled Desensitization and Study-Skills Training.

    ERIC Educational Resources Information Center

    Lent, Robert W.; Russell, Richard K.

    1978-01-01

    Compared relative effectiveness of two multicomponent strategies in the treatment of test anxiety. Test-anxious students were assigned to groups. Within-group changes between pre- and post-testing favored multicomponent treatments. Between groups, both desensitization treatment programs demonstrated significant improvement over no-treatment on…

  13. Multicomponent Training of Teachers of Students with Severe Disabilities

    ERIC Educational Resources Information Center

    Brown, Phillip; Stephenson, Jennifer; Carter, Mark

    2014-01-01

    Over the last decade, the obligation of general and special educators to utilize evidence-based instructional practices has become more prominent. Research increasingly suggests the failure of didactic teacher training alone to ensure implementation with fidelity of these practices by teachers in their classrooms. Multicomponent training (MCT)…

  14. Synthesis of unnatural amino acids via microwave-assisted regio-selective one-pot multi-component reactions of sulfamidates

    EPA Science Inventory

    Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...

  15. Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry

    NASA Astrophysics Data System (ADS)

    Stevens, Kimberly A.; Esplin, Christian D.; Davis, Taylor M.; Butterfield, D. Jacob; Ng, Philip S.; Bowden, Anton E.; Jensen, Brian D.; Iverson, Brian D.

    2018-05-01

    The use of carbon nanotubes to create superhydrophobic coatings has been considered due to their ability to offer a relatively uniform nanostructure. However, carbon nanotubes (CNTs) may be considered delicate with a typical diameter of tens of nanometers for a multi-walled CNT; as-grown carbon nanotubes often require the addition of a thin-film hydrophobic coating to render them superhydrophobic. Furthermore, fine control over the diameter of the as-grown CNTs or the overall nanostructure is difficult. This work demonstrates the utility of using carbon infiltration to layer amorphous carbon on multi-walled nanotubes to improve structural integrity and achieve superhydrophobic behavior with tunable geometry. These carbon-infiltrated carbon nanotube (CICNT) surfaces exhibit an increased number of contact points between neighboring tubes, resulting in a composite structure with improved mechanical stability. Additionally, the native surface can be rendered superhydrophobic with a vacuum pyrolysis treatment, with contact angles as high as 160° and contact angle hysteresis on the order of 1°. The CICNT diameter, static contact angle, sliding angle, and contact angle hysteresis were examined for varying levels of carbon-infiltration to determine the effect of infiltration on superhydrophobicity. The same superhydrophobic behavior and tunable geometry were also observed with CICNTs grown directly on stainless steel without an additional catalyst layer. The ability to tune the geometry while maintaining superhydrophobic behavior offers significant potential in condensation heat transfer, anti-icing, microfluidics, anti-microbial surfaces, and other bio-applications where control over the nanostructure is beneficial.

  16. Titanium alloy vs. stainless steel miniscrews: an in vivo split-mouth study.

    PubMed

    Bollero, P; Di Fazio, V; Pavoni, C; Cordaro, M; Cozza, P; Lione, R

    2018-04-01

    To compare in vivo Titanium Alloy (TiA) with Stainless Steel (SS) miniscrews Temporary Anchorage Devices (TADs) using removal torque and Scanning Electron Microscopic (SEM) analysis. 15 subjects (6 males and 9 females) who required maximum anchorage were recruited. For each patient, a TiA TAD and a SS TAD with same length and width were implanted following a randomized split-mouth study design. Retraction was carried out with nickel-titanium spring ligated directly from the anterior hooks of the archwire to the TADs to produce 90 to 100 g of force. When no further anchorage supplementation was needed, the TADs were removed. The removal torque values were registered with a digital screwdriver. After removal, the TADs were collected in a fixed solution and examined using SEM and X-ray microanalysis. All TADs remained intact, with a 100% success rate. There was no difference in removal torque between TiA and SS miniscrews (4.4 ± 1.3 N-cm and 5.1 ± 0.7 N-cm, respectively). All specimens' loss of gloss with signs of biological contaminations resulted in a dull implant surface. SEM photomicrographs of TiA miniscrews showed predominantly blood cells while SS miniscrews showed the precipitation of an amorphous layer with low cellular component. There was no difference in spectroscopic analysis between TiA and SS miniscrews. TiA and SS miniscrews had comparable removal torque values. SEM photomicrographs showed no evidence of osseointegration with both TADs having similar biological responses.

  17. New generation of the health monitoring system SMS 2001

    NASA Astrophysics Data System (ADS)

    Berndt, Rolf-Dietrich; Schwesinger, Peter

    2001-08-01

    The Structure Monitoring System SMS 2001 (applied for patent) represents a modular structured multi-component measurement devise for use under outdoor conditions. Besides usual continuously (static) measurements of e.g. environmental parameters and structure related responses the SMS is able to register also short term dynamic events automatically with measurement frequencies up to 1 kHz. A larger range of electrical sensors is able to be used. On demand a solar based power supply can be realized. The SMS 2001 is adaptable in a wide range, it is space-saving in its geometric structure and can meet very various demands of the users. The system is applicable preferably for small and medium sized concrete and steel structures (besides buildings and bridges also for special cases). It is suitable to support the efficient concept of a controlled life time extension especially in the case of pre-damaged structures. The interactive communication between SMS and the central office is completely remote controlled. Two point or multi-point connections using the internet can be realized. The measurement data are stored in a central data bank. A safe access supported by software modules can be organized in different levels, e.g. for scientific evaluation, service reasons or needs of authorities.

  18. Modeling the ignition of a copper oxide aluminum thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2017-01-01

    An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.

  19. Toughening Fe-based Amorphous Coatings by Reinforcement of Amorphous Carbon.

    PubMed

    Wang, Wei; Zhang, Cheng; Zhang, Zhi-Wei; Li, Yi-Cheng; Yasir, Muhammad; Wang, Hai-Tao; Liu, Lin

    2017-06-22

    Toughening of Fe-based amorphous coatings meanwhile maintaining a good corrosion resistance remains challenging. This work reports a novel approach to improve the toughness of a FeCrMoCBY amorphous coating through in-situ formation of amorphous carbon reinforcement without reducing the corrosion resistance. The Fe-based composite coating was prepared by high velocity oxy-fuel (HVOF) thermal spraying using a pre-mixed Fe-based amorphous/nylon-11 polymer feedstock powders. The nylon-11 powders were in-situ carbonized to amorphous carbon phase during thermal spraying process, which homogeneously distributed in the amorphous matrix leading to significant enhancement of toughness of the coating. The mechanical properties, including hardness, impact resistance, bending and fatigue strength, were extensively studied by using a series of mechanical testing techniques. The results revealed that the composite coating reinforced by amorphous carbon phase exhibited enhanced impact resistance and nearly twice-higher fatigue strength than that of the monolithic amorphous coating. The enhancement of impact toughness and fatigue properties is owed to the dumping effect of the soft amorphous carbon phase, which alleviated stress concentration and decreased crack propagation driving force.

  20. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi

    2018-05-01

    A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

  1. Roles of the State Asthma Program in Implementing Multicomponent, School-Based Asthma Interventions

    ERIC Educational Resources Information Center

    Hester, Laura L.; Wilce, Maureen A.; Gill, Sarah A.; Disler, Sheri L.; Collins, Pamela; Crawford, Gregory

    2013-01-01

    Background: Asthma is a leading chronic childhood disease in the United States and a major contributor to school absenteeism. Evidence suggests that multicomponent, school-based asthma interventions are a strategic way to address asthma among school-aged children. The Centers for Disease Control and Prevention (CDC) encourages the 36 health…

  2. A Multicomponent UV Analysis of ["alpha"]- and ["beta"]-Acids in Hops

    ERIC Educational Resources Information Center

    Egts, Haley; Durben, Dan J.; Dixson, John A.; Zehfus, Micheal H.

    2012-01-01

    A method is presented for the determination of ["alpha"]- and ["beta"]-acids (humulones and lupulones) in a hops sample using a multicomponent UV spectroscopic analysis of a methanolic hop extract. When compared with standard methods, this lab can be considered "greener" because it uses smaller volumes of safer solvents (methanol instead of…

  3. Using Data to Individualize a Multicomponent, Technology-Based Self-Monitoring Intervention

    ERIC Educational Resources Information Center

    Bruhn, Allison Leigh; Vogelgesang, Kari; Fernando, Josephine; Lugo, Wilbeth

    2016-01-01

    Technology in schools is abundant as is the call for evidence-based interventions for students who need additional support to be successful. One promising use of technology is for self-monitoring interventions aimed at improving classroom behavior. In this study, two middle school students with disabilities used a multicomponent, self-monitoring…

  4. The Effects of a Multi-Component Intervention on Preschool Children's Literacy Skills

    ERIC Educational Resources Information Center

    Dennis, Lindsay R.

    2016-01-01

    This study examined the effects of a multi-component intervention program (i.e., extended instruction and iPad app technology) on preschool children's vocabulary. Instruction utilizing the intervention program was provided across 6 storybooks, 4 verbs per book, for a total of 24 verbs. Dependent variables included expressive vocabulary,…

  5. Using a Multicomponent Function-Based Intervention to Support Students with Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Cho, Su-Je; Blair, Kwang-Sun Cho

    2017-01-01

    The current study evaluated the effects of a multicomponent function-based intervention on students with other health impairment (OHI) for attention deficit hyperactivity disorder (ADHD) in a private special education school. The focus of the intervention was to prevent problem behaviors and to increase academic engagement by modifying classroom…

  6. Early Reading Intervention by Means of a Multicomponent Reading Game

    ERIC Educational Resources Information Center

    van de Ven, M.; de Leeuw, L.; van Weerdenburg, M.; Steenbeek-Planting, E. G.

    2017-01-01

    This study examined the effects of an intervention with a multicomponent reading game on the development of reading skills in 60 Dutch primary school children with special educational needs. The game contains evidence-based reading exercises and is based on principles of applied gaming. Using a multiple baseline approach, we tested children's…

  7. DNS of moderate-temperature gaseous mixing layers laden with multicomponent-fuel drops

    NASA Technical Reports Server (NTRS)

    Clercq, P. C. Le; Bellan, J.

    2004-01-01

    A formulation representing multicomponent-fuel (MC-fuel) composition as a Probability Distribution Function (PDF) depending on the molar weight is used to construct a model of a large number of MC-fuel drops evaporating in a gas flow, so as to assess the extent of fuel specificity on the vapor composition.

  8. Catalysis and Multi-Component Reactions

    NASA Astrophysics Data System (ADS)

    Shibasaki, Masakatsu; Yus, Miguel; Bremner, Stacy; Comer, Eamon; Shore, Gjergji; Morin, Sylvie; Organ, Michael G.; van der Eycken, Erik; Merkul, Eugen; Dorsch, Dieter; Müller, Thomas J. J.; Ryabukhin, Sergey V.; Ostapchuk, Eugeniy N.; Plaskon, Andrey S.; Volochnyuk, Dmitriy M.; Shivanyuk, Alexander N.; Tolmachev, Andrey A.; Sheibani, Hassan; Babaie, Maryam; Behzadi, Soheila; Dabiri, Minoo; Bahramnejad, Mahboobeh; Bashiribod, Sahareh; Hekmatshoar, Rahim; Sadjadi, Sodeh; Khorasani, Mohammad; Polyakov, Anatoliy I.; Eryomina, Vera A.; Medvedeva, Lidiya A.; Tihonova, Nadezhda I.; Listratova, Anna V.; Voskressensky, Leonid G.; Merkul, Eugen; Dorsch, Dieter; Müller, Thomas J. J.; Sheibani, Hassan; Esfandiarpoor, Zeinab; Behzadi, Soheila; Titova, Julia A.; Fedorova, Olga V.; Ovchinnikova, Irina G.; Valova, Marina S.; Koryakova, Olga V.; Rusinov, Gennady L.; Charushin, Valery N.; Hekmatshoar, Rahim; Sadjadi, Sodeh

    We have been studying the development of new asymmetric two-center catalysis using rare earth alkoxides and bifunctional sugar and related ligands. In The Fourth International Conference on Multi-Component Reactions and Related Chemistry (MCR 2009), new catalytic asymmetric reactions using catalysts 1 and 2 and catalytic asymmetric syntheses of ranirestat 3 and tamiflu 4 will be presented.

  9. Evaluation of a School-Based Multicomponent Nutrition Education Program to Improve Young Children's Fruit and Vegetable Consumption

    ERIC Educational Resources Information Center

    Prelip, Michael; Kinsler, Janni; Thai, Chan Le; Erausquin, Jennifer Toller; Slusser, Wendelin

    2012-01-01

    Objective: To assess the impact of a multicomponent nutrition education program on student knowledge, attitudes, and behaviors related to consumption of fruits and vegetables (FVs). Design: Quasi-experimental pretest/posttest research design; 3 study conditions (Intervention+, Intervention, Comparison). Setting: Six schools from the Los Angeles…

  10. Continuous Video Modeling to Prompt Completion of Multi-Component Tasks by Adults with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Ayres, Kevin M.; Purrazzella, Kaitlin; Purrazzella, Kimberly

    2014-01-01

    This investigation examined the ability of four adults with moderate intellectual disability to complete multi-component tasks using continuous video modeling. Continuous video modeling, which is a newly researched application of video modeling, presents video in a "looping" format which automatically repeats playing of the video while…

  11. Developing dimensions for a multicomponent multidisciplinary approach to obesity management: a qualitative study.

    PubMed

    Cochrane, Anita J; Dick, Bob; King, Neil A; Hills, Andrew P; Kavanagh, David J

    2017-10-16

    There have been consistent recommendations for multicomponent and multidisciplinary approaches for obesity management. However, there is no clear agreement on the components, disciplines or processes to be considered within such an approach. In this study, we explored multicomponent and multidisciplinary approaches through an examination of knowledge, skills, beliefs, and recommendations of stakeholders involved in obesity management. These stakeholders included researchers, practitioners, educators, and patients. We used qualitative action research methods, including convergent interviewing and observation, to assist the process of inquiry. The consensus was that a multicomponent and multidisciplinary approach should be based on four central meta-components (patient, practitioner, process, and environmental factors), and specific components of these factors were identified. Psychologists, dieticians, exercise physiologists and general practitioners were nominated as key practitioners to be included. A complex condition like obesity requires that multiple components be addressed, and that both patients and multiple disciplines are involved in developing solutions. Implementing cycles of continuous improvement to deal with complexity, instead of trying to control for it, offers an effective way to deal with complex, changing multisystem problems like obesity.

  12. Research design issues for evaluating complex multicomponent interventions in neighborhoods and communities.

    PubMed

    Komro, Kelli A; Flay, Brian R; Biglan, Anthony; Wagenaar, Alexander C

    2016-03-01

    Major advances in population health will not occur unless we translate existing knowledge into effective multicomponent interventions, implement and maintain these in communities, and develop rigorous translational research and evaluation methods to ensure continual improvement and sustainability. We discuss challenges and offer approaches to evaluation that are key for translational research stages 3 to 5 to advance optimized adoption, implementation, and maintenance of effective and replicable multicomponent strategies. The major challenges we discuss concern (a) multiple contexts of evaluation/research, (b) complexity of packages of interventions, and (c) phases of evaluation/research questions. We suggest multiple alternative research designs that maintain rigor but accommodate these challenges and highlight the need for measurement systems. Longitudinal data collection and a standardized continuous measurement system are fundamental to the evaluation and refinement of complex multicomponent interventions. To be useful to T3-T5 translational research efforts in neighborhoods and communities, such a system would include assessments of the reach, implementation, effects on immediate outcomes, and effects of the comprehensive intervention package on more distal health outcomes.

  13. Assessing intervention fidelity in a multi-level, multi-component, multi-site program: the Children's Healthy Living (CHL) program.

    PubMed

    Butel, Jean; Braun, Kathryn L; Novotny, Rachel; Acosta, Mark; Castro, Rose; Fleming, Travis; Powers, Julianne; Nigg, Claudio R

    2015-12-01

    Addressing complex chronic disease prevention, like childhood obesity, requires a multi-level, multi-component culturally relevant approach with broad reach. Models are lacking to guide fidelity monitoring across multiple levels, components, and sites engaged in such interventions. The aim of this study is to describe the fidelity-monitoring approach of The Children's Healthy Living (CHL) Program, a multi-level multi-component intervention in five Pacific jurisdictions. A fidelity-monitoring rubric was developed. About halfway during the intervention, community partners were randomly selected and interviewed independently by local CHL staff and by Coordinating Center representatives to assess treatment fidelity. Ratings were compared and discussed by local and Coordinating Center staff. There was good agreement between the teams (Kappa = 0.50, p < 0.001), and intervention improvement opportunities were identified through data review and group discussion. Fidelity for the multi-level, multi-component, multi-site CHL intervention was successfully assessed, identifying adaptations as well as ways to improve intervention delivery prior to the end of the intervention.

  14. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles.

    PubMed

    Banerjee, Bubun

    2017-03-01

    Heterocycles are the backbone of organic compounds. Specially, N- &O-containing heterocycles represent privileged structural subunits well distributed in naturally occurring compounds with immense biological activities. Multicomponent reactions (MCRs) are becoming valuable tool for synthesizing structurally diverse molecular entities. On the other hand, the last decade has seen a tremendous outburst in modifying chemical processes to make them sustainable for the betterment of our environment. The application of ultrasound in organic synthesis is fulfilling some of the goals of 'green and sustainable chemistry' as it has some advantages over the traditional thermal methods in terms of reaction rates, yields, purity of the products, product selectivity, etc. Therefore the synthesis of biologically relevant heterocycles using one-pot multi-component technique coupled with the application of ultrasound is one of the thrusting areas in the 21st Century among the organic chemists. The present review deals with the "up to date" developments on ultrasound assisted one-pot multi-component synthesis of biologically relevant heterocycles reported so far. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Multi-Component Diffusion with Application To Computational Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Sutton, Kenneth; Gnoffo, Peter A.

    1998-01-01

    The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.

  16. Theory of amorphous ices.

    PubMed

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  17. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  18. Multicomponent Lifestyle Interventions for Treating Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analyses

    PubMed Central

    Giske, L.; Fure, B.; Juvet, L. K.

    2017-01-01

    Background Treatment of childhood obesity is important in preventing development of obesity-related diseases later in life. This systematic review evaluates the effect of multicomponent lifestyle interventions for children and adolescents from 2 to 18 years. Methods and Results We performed systematic searches in nine databases. Thirty-nine studies met the criteria for meta-analyses. We found a significant difference in body mass index (BMI) after 6 months (MD −0.99 (95% CI −1.36 to −0.61)), 12 months (MD −0.67 (95% CI −1.01 to −0.32)), and 24 months (MD −0.96 (95% CI −1.63 to −0.29)) in favour of multicomponent lifestyle interventions compared to standard, minimal, and no treatment. We also found a significant difference in BMI Z scores after 6 months (MD −0.12 (95% CI −0.17 to −0.06)), 12 months (MD −0.16 (95% CI −0.21 to −0.11)), and 24 months (MD −0.16 (95% CI −0.21 to −0.10)) in favour of multicomponent lifestyle interventions. Subgroup analyses suggested an increased effect in specialist health care with a group treatment component included in the intervention. Conclusion Multicomponent lifestyle interventions have a moderate effect on change in BMI and BMI Z score after 6, 12, and 24 months compared with standard, minimal, and no treatment. PMID:29391949

  19. Multicomponent seismic methods for characterizing gas hydrate occurrences and systems in deep-water Gulf of Mexico

    USGS Publications Warehouse

    Haines, Seth S.; Lee, Myung W.; Collett, Timothy S.; Hardage, Bob A.

    2011-01-01

    In-situ characterization and quantification of natural gas hydrate occurrences remain critical research directions, whether for energy resource, drilling hazard, or climate-related studies. Marine multicomponent seismic data provide the full seismic wavefield including partial redundancy, and provide a promising set of approaches for gas hydrate characterization. Numerous authors have demonstrated the possibilities of multicomponent data at study sites around the world. We expand on this work by investigating the utility of very densely spaced (10’s of meters) multicomponent receivers (ocean-bottom cables, OBC, or ocean-bottom seismometers, OBS) for gas hydrate studies in the Gulf of Mexico and elsewhere. Advanced processing techniques provide high-resolution compressional-wave (PP) and converted shearwave (PS) reflection images of shallow stratigraphy, as well as P-wave and S-wave velocity estimates at each receiver position. Reflection impedance estimates can help constrain velocity and density, and thus gas hydrate saturation. Further constraint on velocity can be determined through identification of the critical angle and associated phase reversal in both PP and PS wideangle data. We demonstrate these concepts with examples from OBC data from the northeast Green Canyon area and numerically simulated OBS data that are based on properties of known gas hydrate occurrences in the southeast (deeper water) Green Canyon area. These multicomponent data capabilities can provide a wealth of characterization and quantification information that is difficult to obtain with other geophysical methods.

  20. Dismantling Multicomponent Behavioral Treatment for Insomnia in Older Adults: A Randomized Controlled Trial

    PubMed Central

    Epstein, Dana R.; Sidani, Souraya; Bootzin, Richard R.; Belyea, Michael J.

    2012-01-01

    Study Objective: Recently, the use of multicomponent insomnia treatment has increased. This study compares the effect of single component and multicomponent behavioral treatments for insomnia in older adults after intervention and at 3 months and 1 yr posttreatment. Design: A randomized, controlled study. Setting: Veterans Affairs medical center. Participants: 179 older adults (mean age, 68.9 yr ± 8.0; 115 women [64.2%]) with chronic primary insomnia. Interventions: Participants were randomly assigned to 6 wk of stimulus control therapy (SCT), sleep restriction therapy (SRT), the 2 therapies combined into a multicomponent intervention (MCI), or a wait-list control group. Measurements and Results: Primary outcomes were subjective (daily sleep diary) and objective (actigraphy) measures of sleep-onset latency (SOL), wake after sleep onset (WASO), total sleep time (TST), time in bed (TIB), and sleep efficiency (SE). Secondary outcomes were clinical measures including response and remission rates. There were no differences between the single and multicomponent interventions on primary sleep outcomes measured by diary and actigraphy. All treatments produced significant improvement in diary-reported sleep in comparison with the control group. Effect sizes for sleep diary outcomes were medium to large. Treatment gains were maintained at follow-up for diary and actigraph measured SOL, WASO, and SE. The MCI group had the largest proportion of treatment remitters. Conclusions: For older adults with chronic primary insomnia, the findings provide initial evidence that SCT, SRT, and MCI are equally efficacious and produce sustainable treatment gains on diary, actigraphy, and clinical outcomes. From a clinical perspective, MCI may be a preferred treatment due to its higher remission rate. Clinical Trial Information: Behavioral Intervention for Insomnia in Older Adults. NCT01154023. URL: http://clinicaltrials.gov/ct2/show/NCT01154023?term=Behavioral+Intervention+for+Insomnia+in+Older+Adults&rank=1. Citation: Epstein DR; Sidani S; Bootzin RR; Belyea MJ. Dismantling multicomponent behavioral treatment for insomnia in older adults: a randomized controlled trial. SLEEP 2012;35(6):797-805. PMID:22654199

  1. School Based Multicomponent Intervention for Obese Children in Udupi District, South India - A Randomized Controlled Trial.

    PubMed

    Nayak, Baby S; Bhat, Vinod H

    2016-12-01

    Childhood obesity and overweight is a global epidemics and has been increasing in the developing countries. Childhood obesity is linked with increased mortality and morbidity independent of adult obesity. Declining physical activity, access to junk food and parenting style are the major determinants of overweight in children. Thus, there is a need for increasing the physical activity of children, educating the parents as well as the children on lifestyle modification. This can be achieved through implementation of multicomponent intervention. To evaluate the effectiveness of multicomponent intervention on improving the lifestyle practices, reducing the body fat and improving the self esteem of obese children from selected schools of Udupi District, South India. A sample of 120 obese children were enrolled for multicomponent intervention. The components of multicomponent intervention were: education provided to the obese children on lifestyle modification, education of the parents and increasing the physical education activity of these children in the form of aerobics under the supervision of physical education teacher. There was an attrition of 25% in the intervention group. Thus the final sample in the intervention group was 90. Total sample of 131 overweight/ obese children enrolled as controls. There was an attrition of 20.61% in the control group. Thus, the final sample in the control group was 104. Intervention group received the multicomponent intervention for six month. Mixed Method Repeated measures Ananlysis of Variance (ANOVA) was applied for analysis of data. Results indicated that the intervention was effective in reducing the Body Mass Index (BMI), triceps, biceps, subscapular skin fold thickness of obese children. The intervention was also effective in improving the lifestyle practices and self-esteem of obese children. Overweight/obese children need to control diet and perform vigorous exercise at least for 20 minutes a day to reduce the excess fat and maintain their body fat level.

  2. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.

    PubMed

    Kanna, T; Sakkaravarthi, K; Tamilselvan, K

    2013-12-01

    We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.

  3. In situ observation of shear-driven amorphization in silicon crystals.

    PubMed

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X

    2016-10-01

    Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.

  4. Theory of amorphous ices

    PubMed Central

    Limmer, David T.; Chandler, David

    2014-01-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957

  5. Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Y.; Morita, T.; Morimoto, Y.

    A self-organized fringe pattern in a single amorphous mark of a GeTe thin film was formed by multiple femtosecond pulse amorphization. Micro Raman measurement indicates that the fringe is a periodic alternation between crystalline and amorphous phases. The period of the fringe is smaller than the irradiation wavelength and the direction is parallel to the polarization direction. Snapshot observation revealed that the fringe pattern manifests itself via a complex but coherent process, which is attributed to crystallization properties unique to a nonthermally amorphized phase and the distinct optical contrast between crystalline and amorphous phases.

  6. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  7. Fracture toughness and sliding properties of magnetron sputtered CrBC and CrBCN coatings

    NASA Astrophysics Data System (ADS)

    Wang, Qianzhi; Zhou, Fei; Ma, Qiang; Callisti, Mauro; Polcar, Tomas; Yan, Jiwang

    2018-06-01

    CrBC and CrBCN coatings with low and high B contents were deposited on 316L steel and Si wafers using an unbalanced magnetron sputtering system. Mechanical properties including hardness (H), elastic modulus (E) and fracture toughness (KIc) as well as residual stresses (σ) were quantified. A clear correlation between structural, mechanical and tribological properties of coatings was found. In particular, structural analyses indicated that N incorporation in CrBC coatings with high B content caused a significant structural evolution of the nanocomposite structure (crystalline grains embedded into an amorphous matrix) from nc-CrB2/(a-CrBx, a-BCx) to nc-CrN/(a-BCx, a-BN). As a result, the hardness of CrBC coating with high B content decreased from 23.4 to 16.3 GPa but the fracture toughness was enhanced. Consequently, less cracks initiated on CrBCN coatings during tribological tests, which combined with the shielding effect of a-BN on wear debris, led to a low friction coefficient and wear rate.

  8. Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.

    2009-04-01

    Ni-P-fly ash coatings were produced on zincate coated 5083 wrought aluminium alloy substrates with the aid of an electroless deposition technique. Structural and chemical characterization of the produced coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-P-fly ash coating was found to consist of an amorphous Ni-P matrix with dispersed fly ash particles. The wear resistance of the Ni-P-fly ash coating on zincate treated aluminium alloy was observed to be higher than that of the bare aluminium alloy, when sliding against a stainless steel counterface. In addition, the adhesion between the Ni-P-fly ash/zincate coating and the aluminium alloy substrate was also studied with a scratch testing apparatus. The adhesion strength of Ni-P-fly ash/zincate coating on the aluminium alloy substrate was observed to be higher in comparison to the Ni-P/zincate coating on the same aluminium alloy.

  9. Laser modification of macroscopic properties of metal surface layer

    NASA Astrophysics Data System (ADS)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  10. Novel concepts for low-cost and high-efficient thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gómez, D.; Menéndez, A.; Sánchez, P.; Martínez, A.; Andrés, L. J.; Menéndez, M. F.; Campos, N.; García, A.; Sánchez, B.

    2011-09-01

    This work presents the activities carried out at ITMA Materials Technology related to the building integration of thin film (TF) photovoltaics (PV). Three different approaches have been developed in order to achieve high efficient solar cells at low manufacturing costs: (i) a new route for manufacturing monolithical silicon based thin film solar cells on building materials, (ii) the use of metallic nanoparticles for light trapping (plasmonic effects and light scattering) and (iii) the luminescent sol-gel coating on glass for solar concentration. In the first case, amorphous silicon modules (single junction) have been successfully manufactured at lab scale on steel and commercial ceramic substrates with efficiencies of 5.4% and 4.0%, respectively. Promising initial attempts have been also made in ethylene tetrafluoroethylene (ETFE), a polymer with high potential in textile architecture. In a similar way, the development of nanotechnology based coatings (metallic nanoparticles and luminescent materials) represent the most innovative part of the work and some preliminary results are showed.

  11. A fibre-coupled UHV-compatible variable angle reflection-absorption UV/visible spectrometer

    NASA Astrophysics Data System (ADS)

    Stubbing, J. W.; Salter, T. L.; Brown, W. A.; Taj, S.; McCoustra, M. R. S.

    2018-05-01

    We present a novel UV/visible reflection-absorption spectrometer for determining the refractive index, n, and thicknesses, d, of ice films. Knowledge of the refractive index of these films is of particular relevance to the astrochemical community, where they can be used to model radiative transfer and spectra of various regions of space. In order to make these models more accurate, values of n need to be recorded under astronomically relevant conditions, that is, under ultra-high vacuum (UHV) and cryogenic cooling. Several design considerations were taken into account to allow UHV compatibility combined with ease of use. The key design feature is a stainless steel rhombus coupled to an external linear drive (z-shift) allowing a variable reflection geometry to be achieved, which is necessary for our analysis. Test data for amorphous benzene ice are presented as a proof of concept, the film thickness, d, was found to vary linearly with surface exposure, and a value for n of 1.43 ± 0.07 was determined.

  12. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    NASA Astrophysics Data System (ADS)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  13. Influence of Pulse Electrodeposition and Heat Treatment on Microstructure, Tribological, and Corrosion Behavior of Nano-Grain Size Co-W Coatings

    NASA Astrophysics Data System (ADS)

    Abazari, Somayeh; Rastegari, Saeed; Kheirandish, Shahram

    2017-07-01

    In the present study, Co-W nano-structured alloy coatings are produced on low-carbon steel substrate by means of pulse electrodeposition from a citrate-based bath under different average current densities and duty cycles. The results indicate that the coating deposited under 60% of duty cycle and 1 A/dm2 of average current density exhibit optimum pulse plating conditions with 44.38 wt.% W, 37 nm grain size, and 758 HV microhardness. The effect of heat treatment temperature on microstructure, composition, corrosion behavior, and morphology of amorphous deposited Co-W alloy with 44 wt.% W was investigated. The microhardness of the coating increased to 1052 HV after heat treatment at 600 °C, which is due to the formation of Co3W and CoWO4 phases in the deposit. Furthermore, the coatings heat-treated at 600 °C had lower friction coefficients and better wear resistance under various loads than before heating.

  14. Investigation of the Atypical Glass Transition and Recrystallization Behavior of Amorphous Prazosin Salts

    PubMed Central

    Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K.

    2011-01-01

    This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ∼ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development. PMID:24310595

  15. Investigation of the atypical glass transition and recrystallization behavior of amorphous prazosin salts.

    PubMed

    Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K

    2011-08-25

    This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ~ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development.

  16. The Effectiveness of Modified Multi-Component Cognitive Strategy Instruction in Expository Text Comprehension of Students with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    Bilgi, Arzu Doganay; Özmen, E. Rüya

    2018-01-01

    This study investigates the effectiveness of Modified Multi-Component Cognitive Strategy Instruction (MMCSI) on expository text comprehension skills of students with mild intellectual disability (ID). Three students participated from inclusion classes of three different secondary schools in Turkey. The study was conducted using a multiple probe…

  17. Dissipative effects in multi-component systems

    NASA Astrophysics Data System (ADS)

    El, Andrej; Bouras, Ioannis; Xu, Zhe; Greiner, Carsten

    2013-05-01

    Using a smooth initial condition of Glauber type in the kinetic transport algorithm BAMPS we investigate differences in behavior of a multi-component system and its one-component equivalent with the same η/s value. Flow harmonic coefficients v2 and v4 are shown to have very low sensitivity to the details of microscopic interactions in the system.

  18. Effects on Physical Health of a Multicomponent Programme for Overweight and Obesity for Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Martínez-Zaragoza, Fermín; Campillo-Martínez, José M.; Ato-García, Manuel

    2016-01-01

    Background: Overweight and obesity are major health risk factors in people with intellectual disabilities. The aim of this study was to test the effectiveness of a multicomponent programme (physical activity, diet and motivation) for overweight and obesity in adults with intellectual disabilities. Material and Methods: A quasi-experimental design…

  19. Evaluation of a Multicomponent Intervention Package to Increase Summer Work Experiences for Transition-Age Youth with Severe Disabilities

    ERIC Educational Resources Information Center

    Carter, Erik W.; Trainor, Audrey A.; Ditchman, Nicole; Swedeen, Beth; Owens, Laura

    2009-01-01

    Early work experiences have been advocated as an important avenue for equipping youth with disabilities with the skills, attitudes, opportunities, and aspirations needed to transition successfully to meaningful careers after high school. We examined the efficacy and social validity of a multicomponent intervention package--composed of…

  20. Evaluation of a Multicomponent Intervention for Diurnal Bruxism in a Young Child with Autism

    ERIC Educational Resources Information Center

    Barnoy, Emily L.; Najdowski, Adel C.; Tarbox, Jonathan; Wilke, Arthur E.; Nollet, Megan D.

    2009-01-01

    Bruxism, forceful grinding of one's teeth together, can produce destructive outcomes such as wear on the teeth and damaged gums and bone structures. The current study implemented a multicomponent intervention that consisted of vocal and physical cues to decrease rates of bruxism. A partial component analysis suggested that the vocal cue was only…

  1. Using Multi-Component Consultation to Increase the Integrity with Which Teachers Implement Behavioral Classroom Interventions: A Pilot Study

    ERIC Educational Resources Information Center

    Owens, Julie Sarno; Coles, Erika K.; Evans, Steven W.; Himawan, Lina K.; Girio-Herrera, Erin; Holdaway, Alex S.; Zoromski, Allison K.; Schamberg, Terah; Schulte, Ann

    2017-01-01

    The goal of this pilot study was to evaluate the effectiveness of a multi-component consultation package in improving teachers' classroom management skills, particularly among teachers with lower baseline levels of knowledge, skills, and intervention-supportive beliefs. Participants were 58 elementary school teachers (93% female; 50% Non-Hispanic…

  2. Multicomponent Programs for Reducing Peer Victimization in Early Elementary School: A Longitudinal Evaluation of the WITS Primary Program

    ERIC Educational Resources Information Center

    Leadbeater, Bonnie; Sukhawathanakul, Paweena

    2011-01-01

    Past research demonstrates the promise of multicomponent programs in reducing peer victimization and bullying in older elementary and middle school children, however little research focuses on young children. The current study examines the effectiveness of the WITS Primary program on trajectories of victimization and social responsibility in…

  3. On Studying Common Factor Dominance and Approximate Unidimensionality in Multicomponent Measuring Instruments with Discrete Items

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2018-01-01

    This article outlines a procedure for examining the degree to which a common factor may be dominating additional factors in a multicomponent measuring instrument consisting of binary items. The procedure rests on an application of the latent variable modeling methodology and accounts for the discrete nature of the manifest indicators. The method…

  4. Understanding the Implementation Process of a Multi-Component Health Promotion Intervention for Adults with Intellectual Disabilities in Sweden

    ERIC Educational Resources Information Center

    Sundblom, Elinor; Bergström, Helena; Ellinder, Liselotte Schäfer

    2015-01-01

    Background: There is a need to better understand implementation processes of health interventions. This study describes the implementation of a multicomponent intervention to improve diet and physical activity among adults with intellectual disabilities, viewed from the perspectives of staff and managers. Materials and Methods: All health…

  5. A Review of Multicomponent Interventions to Prevent and Control Tobacco Use among College Students

    ERIC Educational Resources Information Center

    Rodgers, Kirsten C.

    2012-01-01

    Objective: Multicomponent tobacco control programs have been implemented at the state and community levels and have led to a reduction in tobacco use. The purpose was to review the public health research literature on tobacco prevention and control programs on college campuses and derive evidence-based implications for comprehensive program…

  6. A Multi-Component Social Skills Intervention for Children with Asperger Syndrome: The Junior Detective Training Program

    ERIC Educational Resources Information Center

    Beaumont, Renae; Sofronoff, Kate

    2008-01-01

    Background: The study aimed to investigate the effectiveness of a new multi-component social skills intervention for children with Asperger syndrome (AS): The Junior Detective Training Program. This 7-week program included a computer game, small group sessions, parent training sessions and teacher handouts. Method: Forty-nine children with AS were…

  7. Multicomponent Synthesis of a N-Protected Alpha-Amino Ester: Ethyl 2-((4-Methoxyphenyl)Amino)-3-Phenylpropanoate

    ERIC Educational Resources Information Center

    Le Gall, Erwan; Pignon, Antoine

    2012-01-01

    This laboratory experiment describes the preparation of a N-protected phenylalanine ethyl ester by a zinc-mediated Mannich-like multicomponent reaction between benzyl bromide, "p"-anisidine, and ethyl glyoxylate. The one-step reaction involves the in situ metallation of benzyl bromide into a benzylzinc reagent and its addition onto imine (Barbier…

  8. Protecting wood from mould, decay, and termites with multi-component biocide systems

    Treesearch

    Carol A. Clausen

    2007-01-01

    Biocides must be developed for controlling mould establishment on cellulose-based building materials. Accordingly, biocides intended for indoor applications must be non- toxic, non-volatile, odourless, hypoallergenic, and able to provide long-term protection under conditions of high humidity. Multi-component biocide systems were tested in American Wood-Preservers’...

  9. Development of scintillating screens based on the single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitaliy; Savchyn, Volodymyr; Zorenko, Tanya; Fedorov, Alexander; Sidletskiy, Oleg

    2014-09-01

    The paper is dedicated to development of scintillators based on single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets onto Gd3Ga5O12 substrates using the liquid phase epitaxy method.

  10. A continuum theory for multicomponent chromatography modeling.

    PubMed

    Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc

    2016-05-13

    A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Transition Metal Free Multicomponent approach to Stereo-enriched Cyclopentyl-isoxazoles via C-C Bond Cleavage.

    PubMed

    Kaliappan, Krishna Pillai; Subramanian, Parthasarathi

    2018-06-19

    An efficient multicomponent reaction leading to the synthesis of stereo-enriched cyclopentyl-isoxazoles from camphor derived α-oxime, alkynes and MeOH is reported. Our method involves a series of cascade transformations such as in situ generation of catalyst I(III) which catalyzes the addition MeOH into a sterically hindered ketone, oxime oxidation and α-hydroxyiminium ion rearrangement to generate in situ nitrile oxide which upon [3+2]-cycloaddition reaction with alkynes delivers regioselective products. The reaction is very selective to syn-oxime. This multicomponent approach has also been extended for the synthesis of a novel glycoconjugate, camphoric ester-isoxazole C-galactoside. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  13. [Construction of biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Liu, Yang; Wei, Li; Dong, Ling; Zhu, Mei-Ling; Tang, Ming-Min; Zhang, Lei

    2014-12-01

    Based on the characteristics of multicomponent of traditional Chinese medicine and drawing lessons from the concepts, methods and techniques of biopharmaceutics classification system (BCS) in chemical field, this study comes up with the science framework of biopharmaceutics classification system of Chinese materia medica (CMMBCS). Using the different comparison method of multicomponent level and the CMMBCS method of overall traditional Chinese medicine, the study constructs the method process while setting forth academic thoughts and analyzing theory. The basic role of this system is clear to reveal the interaction and the related absorption mechanism of multicomponent in traditional Chinese medicine. It also provides new ideas and methods for improving the quality of Chinese materia medica and the development of new drug research.

  14. [Impacts of multicomponent environment on solubility of puerarin in biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Hou, Cheng-Bo; Wang, Guo-Peng; Zhang, Qiang; Yang, Wen-Ning; Lv, Bei-Ran; Wei, Li; Dong, Ling

    2014-12-01

    To illustrate the solubility involved in biopharmaceutics classification system of Chinese materia medica (CMMBCS) , the influences of artificial multicomponent environment on solubility were investigated in this study. Mathematical model was built to describe the variation trend of their influence on the solubility of puerarin. Carried out with progressive levels, single component environment: baicalin, berberine and glycyrrhizic acid; double-component environment: baicalin and glycyrrhizic acid, baicalin and berberine and glycyrrhizic acid and berberine; and treble-component environment: baicalin, berberin, glycyrrhizic acid were used to describe the variation tendency of their influences on the solubility of puerarin, respectively. And then, the mathematical regression equation model was established to characterize the solubility of puerarin under multicomponent environment.

  15. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    PubMed Central

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-01-01

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322

  16. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    PubMed

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  17. In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Korotcenkov, G.; Brinzari, V.; Cho, B. K.

    2016-02-01

    Thermoelectric properties of In2O3-SnO2-based multi-component metal oxide films formed by spray pyrolysis method are studied. It is shown that the introduction of additional components such as gallium and zinc can control the parameters of the deposited layers. At that, the doping with gallium is more effective for optimization of the efficiency of the thermoelectric conversion. The explanation of the observed changes in the electro-physical and thermoelectric properties of the films at the composition change is given. It is found that the main changes in the properties of multicomponent metal oxide films take place at concentrations of dopants which correspond to their limit solubility in the dominant oxide.

  18. Method of inducing differential etch rates in glow discharge produced amorphous silicon

    DOEpatents

    Staebler, David L.; Zanzucchi, Peter J.

    1980-01-01

    A method of inducing differential etch rates in glow discharge produced amorphous silicon by heating a portion of the glow discharge produced amorphous silicon to a temperature of about 365.degree. C. higher than the deposition temperature prior to etching. The etch rate of the exposed amorphous silicon is less than the unheated amorphous silicon.

  19. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics

    PubMed Central

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-01-01

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics. PMID:25297473

  20. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics.

    PubMed

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-10-09

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics.

  1. Amorphization and nanocrystallization of silcon under shock compression

    DOE PAGES

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; ...

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less

  2. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  3. Characterization of melt-quenched and milled amorphous solids of gatifloxacin.

    PubMed

    Hattori, Yusuke; Suzuki, Ayumi; Otsuka, Makoto

    2016-11-01

    The objectives of this study were to characterize and investigate the differences in amorphous states of gatifloxacin. We prepared two types of gatifloxacin amorphous solids coded as M and MQ using milling and melt-quenching methods, respectively. The amorphous solids were characterized via X-ray diffraction (XRD), nonisothermal differential scanning calorimetry (DSC) and time-resolved near-infrared (NIR) spectroscopy. Both the solids displayed halo XRD patterns, the characteristic of amorphous solids; however, in the non-isothermal DSC profiles, these amorphous solids were distinguished by their crystallization and melting temperatures. The Kissinger-Akahira-Sunose plots of non-isothermal crystallization temperatures at various heating rates indicated a lower activation energy of crystallization for the amorphous solid M than that of MQ. These results support the differentiation between two amorphous states with different physical and chemical properties.

  4. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  5. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  6. Amorphization reaction in thin films of elemental Cu and Y

    NASA Astrophysics Data System (ADS)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  7. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.

    PubMed

    Lin, Chuanlong; Yong, Xue; Tse, John S; Smith, Jesse S; Sinogeikin, Stanislav V; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-29

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1  Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  8. Fast surface crystallization of amorphous griseofulvin below T g.

    PubMed

    Zhu, Lei; Jona, Janan; Nagapudi, Karthik; Wu, Tian

    2010-08-01

    To study crystal growth rates of amorphous griseofulvin (GSF) below its glass transition temperature (T (g)) and the effect of surface crystallization on the overall crystallization kinetics of amorphous GSF. Amorphous GSF was generated by melt quenching. Surface and bulk crystal growth rates were determined using polarized light microscope. X-ray powder diffraction (XRPD) and Raman microscopy were used to identify the polymorph of the crystals. Crystallization kinetics of amorphous GSF powder stored at 40 degrees C (T (g)-48 degrees C) and room temperature (T (g)-66 degrees C) was monitored using XRPD. Crystal growth at the surface of amorphous GSF is 10- to 100-fold faster than that in the bulk. The surface crystal growth can be suppressed by an ultrathin gold coating. Below T (g), the crystallization of amorphous GSF powder was biphasic with a rapid initial crystallization stage dominated by the surface crystallization and a slow or suspended late stage controlled by the bulk crystallization. GSF exhibits the fastest surface crystallization kinetics among the known amorphous pharmaceutical solids. Well below T (g), surface crystallization dominated the overall crystallization kinetics of amorphous GSF powder. Thus, surface crystallization should be distinguished from bulk crystallization in studying, modeling and controlling the crystallization of amorphous solids.

  9. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  10. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chuanlong; Yong, Xue; Tse, John S.

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transitionmore » to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.« less

  11. Image quality and radiation dose on digital chest imaging: comparison of amorphous silicon and amorphous selenium flat-panel systems.

    PubMed

    Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert

    2006-09-01

    The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.

  12. Experimental evidence for a crossover between two distinct mechanisms of amorphization in ice Ih under pressure.

    PubMed

    Strässle, Thierry; Klotz, Stefan; Hamel, Gérard; Koza, Michael M; Schober, Helmut

    2007-10-26

    We report neutron scattering data which reveal the central role of phonon softening leading to a negative melting line, solid-state amorphization, and negative thermal expansion of ice. We find that pressure-induced amorphization is due to mechanical melting at low temperatures, while at higher temperatures amorphization is governed by thermal melting (violations of Born's and Lindemann's criteria, respectively). This confirms earlier conjectures of a crossover between two distinct amorphization mechanisms and provides a natural explanation for the strong annealing observed in high-density amorphous ice.

  13. Amorphous-amorphous transition in a porous coordination polymer.

    PubMed

    Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki

    2017-07-04

    The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.

  14. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 2: amorphization capacity and mechanisms of interaction.

    PubMed

    Qian, Ken K; Suib, Steven L; Bogner, Robin H

    2011-11-01

    Amorphization of crystalline compounds using mesoporous media is a promising technique to improve the solubility and dissolution rate of poorly soluble compounds. The objective of this paper is to determine the capacity of amorphization and understand the mechanisms of phase transformation. Commercial grades of mesoporous silicon dioxide (SiO(2)) samples (5- to 30-nm mean pore diameters) with either constant surface area or constant pore volume were used. The amorphization capacity of naphthalene was not proportional to either the surface area or the pore volume measured using adsorption chambers. Instead, the amorphization capacity correlated with surface curvature, that is, the smaller the pore diameter and the higher the surface curvature, the greater the amorphization capacity. The change in surface chemistry due to a highly curved surface may be responsible for the enhanced amorphization capacity as well. The amorphization of crystalline compounds was facilitated through capillary condensation, with the decrease in pore volume as the direct experimental evidence. The amorphization capacity was also enhanced by the dipole-dipole or dipole-induced dipole interaction, promoted by the hydroxyl groups on the surface of SiO(2). The enthalpy of vapor-solid condensation of crystalline compounds was a useful indicator to predict the rank order of amorphization capacity. Copyright © 2011 Wiley-Liss, Inc.

  15. Amorphization of Indomethacin by Co-Grinding with Neusilin US2: amorphization kinetics, physical stability and mechanism.

    PubMed

    Bahl, Deepak; Bogner, Robin H

    2006-10-01

    To quantify the effects of the ratio of indomethacin to Neusilin US2 and the processing humidity on the amorphization kinetics, stability and nature of the interaction. A porcelain jar mill with zirconia balls was used to affect conversion of the physical mixtures (48 g) of indomethacin and Neusilin US2 (in the ratios 1:1 to 1:5) to amorphous states at room temperature (25 degrees C) employing either 0% RH or 75% RH. The percent crystallinity in the samples was determined from ATR-FTIR scans chemometrically. The physical stability of these co-ground amorphous powders was evaluated at 40 degrees C/75% RH and 40 degrees C/0% RH. The lower the ratio of indomethacin to Neusilin US2, the faster is the amorphization during co-grinding. Higher humidity facilitates amorphization with a more pronounced effect at the lower ratio of indomethacin to Neusilin US2. There is further amorphization of some of the partially amorphized samples on storage at 40 degrees C/75% RH for 3 months. Hydrogen bonding and surface interaction between metal ions of Neusilin US2 and indomethacin can explain changes in the FTIR spectra. The processing humidity and the ratio of indomethacin to Neusilin US2 are important factors to be considered to affect amorphization during ball milling. Amorphous indomethacin can be stabilized by co-grinding with Neusilin US2.

  16. Does a multicomponent exercise program improve dual-task performance in amnestic mild cognitive impairment? A randomized controlled trial.

    PubMed

    Makizako, Hyuma; Doi, Takehiko; Shimada, Hiroyuki; Yoshida, Daisuke; Tsutsumimoto, Kota; Uemura, Kazuki; Suzuki, Takao

    2012-12-01

    There has been much interest in exercise interventions as a primary behavioral prevention strategy against cognitive decline. The aim of this study was to evaluate the effect of a multicomponent exercise program on physical and dual-task performances in community-dwelling older adults with amnestic mild cognitive impairment (aMCI). Fifty older adults (23 women) with aMCI (mean age, 76 years) were randomized to an intervention (n=25) or a control group (n=25). The intervention group received a multicomponent exercise program for 90 minutes/day, 2 days/week, or 40 times over six months. The multicomponent exercises included aerobic exercise, muscle strength training and postural balance retraining, which was conducted under multi-task conditions to stimulate attention and memory. Participants in the control group attended two health promotion education classes within six months. Physical and dual-task performances were measured before randomization and after six months. Dual-task performances using reaction times with balance and cognitive demands were measured. The improvement effects on dual-task performances with both balance and cognitive demands were not statistically significant: reaction time with balance demand F1,45=3.3, p=0.07, and cognitive demand F1,45=2.6, p=0.12. However, there was a significant group-by-time interaction on maximal walking speed, which decreased significantly in the control group (F1,45=5.9, p=0.02). This six-month multicomponent exercise program improved maximal walking speed in older adults with aMCI; however, it did not improve dual-task performances assessed by reaction times.

  17. Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng

    2017-03-01

    We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.

  18. Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract.

    PubMed

    Nordlund, Markus; Belka, Miloslav; Kuczaj, Arkadiusz K; Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Jicha, Miroslav; Sauser, Youri; Le Bouhellec, Soazig; Cosandey, Stephane; Majeed, Shoaib; Vuillaume, Grégory; Peitsch, Manuel C; Hoeng, Julia

    2017-02-01

    Inhalation of aerosols generated by electronic cigarettes leads to deposition of multiple chemical compounds in the human airways. In this work, an experimental method to determine regional deposition of multicomponent aerosols in an in vitro segmented, realistic human lung geometry was developed and applied to two aerosols, i.e. a monodisperse glycerol aerosol and a multicomponent aerosol. The method comprised the following steps: (1) lung cast model preparation, (2) aerosol generation and exposure, (3) extraction of deposited mass, (4) chemical quantification and (5) data processing. The method showed good agreement with literature data for the deposition efficiency when using a monodisperse glycerol aerosol, with a mass median aerodynamic diameter (MMAD) of 2.3 μm and a constant flow rate of 15 L/min. The highest deposition surface density rate was observed in the bifurcation segments, indicating inertial impaction deposition. The experimental method was also applied to the deposition of a nebulized multicomponent aerosol with a MMAD of 0.50 μm and a constant flow rate of 15 L/min. The deposited amounts of glycerol, propylene glycol and nicotine were quantified. The three analyzed compounds showed similar deposition patterns and fractions as for the monodisperse glycerol aerosol, indicating that the compounds most likely deposited as parts of the same droplets. The developed method can be used to determine regional deposition for multicomponent aerosols, provided that the compounds are of low volatility. The generated data can be used to validate aerosol deposition simulations and to gain insight in deposition of electronic cigarette aerosols in human airways.

  19. Worksite Health Program Promoting Changes in Eating Behavior and Health Attitudes.

    PubMed

    Mache, Stefanie; Jensen, Sarah; Jahn, Reimo; Steudtner, Mirko; Ochsmann, Elke; Preuß, Geraldine

    2015-11-01

    The aim of the present study was to evaluate the effectiveness of a worksite multicomponent health promotion intervention on eating behavior and attitudes, changes in body weight, and readiness to make eating behavior changes among workers over a 12-month intervention period. A total of 3,095 workers of a logistic company participated in a quasi-experimental comparison group study design. The intervention group received a multicomponent health training. Two of the main elements of the multicomponent intervention were physical exercise training and nutrition counseling/training. During the pilot year, participants completed a survey at baseline and again after 12 months to assess physical activity-, health-, and diet-related factors. Results showed that participants' body weight did not significantly decrease in the intervention group. Mean weight loss in the intervention groups was 0.5 kg (body mass index = 0.1 kg/m(2)). Eating behaviors in the intervention group improved more than in the comparison group. Some positive intervention effects were observed for the cognitive factors (e.g., changes in eating attitudes). Baseline readiness to change eating behavior was significantly improved over time. We demonstrated initial results of a long-term multicomponent worksite health promotion program with regard to changes in body weight, eating behavior, and attitudes. This evaluation of a 12-month pilot study suggests that a worksite health promotion program may lead to improvements in nutritional health behaviors for a number of workers. An investigation of long-term effects of this multicomponent intervention is strongly recommended. © 2015 Society for Public Health Education.

  20. An update on the strategies in multicomponent activity monitoring within the phytopharmaceutical field

    PubMed Central

    2012-01-01

    Background To-date modern drug research has focused on the discovery and synthesis of single active substances. However, multicomponent preparations are gaining increasing importance in the phytopharmaceutical field by demonstrating beneficial properties with respect to efficacy and toxicity. Discussion In contrast to single drug combinations, a botanical multicomponent therapeutic possesses a complex repertoire of chemicals that belong to a variety of substance classes. This may explain the frequently observed pleiotropic bioactivity spectra of these compounds, which may also suggest that they possess novel therapeutic opportunities. Interestingly, considerable bioactivity properties are exhibited not only by remedies that contain high doses of phytochemicals with prominent pharmaceutical efficacy, but also preparations that lack a sole active principle component. Despite that each individual substance within these multicomponents has a low molar fraction, the therapeutic activity of these substances is established via a potentialization of their effects through combined and simultaneous attacks on multiple molecular targets. Although beneficial properties may emerge from such a broad range of perturbations on cellular machinery, validation and/or prediction of their activity profiles is accompanied with a variety of difficulties in generic risk-benefit assessments. Thus, it is recommended that a comprehensive strategy is implemented to cover the entirety of multicomponent-multitarget effects, so as to address the limitations of conventional approaches. Summary An integration of standard toxicological methods with selected pathway-focused bioassays and unbiased data acquisition strategies (such as gene expression analysis) would be advantageous in building an interaction network model to consider all of the effects, whether they were intended or adverse reactions. PMID:22417247

  1. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  2. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  3. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  4. Automated Design of Board and MCM Level Digital Systems.

    DTIC Science & Technology

    1997-10-01

    Partitioning for Multicomponent Synthesis 159 Appendix K: Resource Constrained RTL Partitioning for Synthesis of Multi- FPGA Designs 169 Appendix L...digital signal processing) ar- chitectures. These target architectures, illustrated in Figure 1, can contain application-specific ASICS, FPGAs ...synthesis tools for ASIC, FPGA and MCM synthesis (Figure 8). Multicomponent Partitioning Engine The par- titioning engine is a hierarchical partitioning

  5. A multicomponent matched filter cluster confirmation tool for eROSITA: initial application to the RASS and DES-SV data sets

    DOE PAGES

    Klein, M.; Mohr, J. J.; Desai, S.; ...

    2017-11-14

    We describe a multi-component matched filter cluster confirmation tool (MCMF) designed for the study of large X-ray source catalogs produced by the upcoming X-ray all-sky survey mission eROSITA. We apply the method to confirm a sample of 88 clusters with redshifts $0.05

  6. From Research to Practice: The Effect of Multi-Component Vocabulary Instruction on Increasing Vocabulary and Comprehension Performance in Social Studies

    ERIC Educational Resources Information Center

    Graham, Lori; Graham, Anna; West, Courtney

    2015-01-01

    This study was designed to demonstrate the effect of implementing multi-component vocabulary strategy instruction in fourth grade social studies. Curriculum was designed for a six-week period and was intended to actively engage students and reinforce retention of word meanings in isolation and in context. Teachers were randomly chosen for…

  7. A comment on Scherr et al. "A multicomponent, school-based intervention, the Shaping Healthy Choices Program, improves nutrition-related outcomes"

    USDA-ARS?s Scientific Manuscript database

    We write in response to the article by Scherr et al. entitled "A multicomponent, school-based intervention, the Shaping Healthy Choices Program, improves nutrition-related outcomes." We admire Scherr et al. for undertaking such a challenging study on so important a topic, and for wisely using a rand...

  8. Computer Program for the Calculation of Multicomponent Convective Diffusion Deposition Rates from Chemically Frozen Boundary Layer Theory

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Chen, B. K.; Rosner, D. E.

    1984-01-01

    The computer program based on multicomponent chemically frozen boundary layer (CFBL) theory for calculating vapor and/or small particle deposition rates is documented. A specific application to perimter-averaged Na2SO4 deposition rate calculations on a cylindrical collector is demonstrated. The manual includes a typical program input and output for users.

  9. Total Synthesis of the Marine Phosphomacrolide, (-)-Enigmazole A, Exploiting Multicomponent Type I Anion Relay Chemistry (ARC) in Conjunction with a Late-Stage Petasis-Ferrier Union/Rearrangement.

    PubMed

    Ai, Yanran; Kozytska, Mariya V; Zou, Yike; Khartulyari, Anton S; Maio, William A; Smith, Amos B

    2018-06-01

    An effective late-stage large-fragment union/rearrangement exploiting the Petasis-Ferrier protocol, in conjunction with multicomponent Type I Anion Relay Chemistry (ARC) to access advanced intermediates, permits completion of a convergent, stereocontrolled total synthesis of the architecturally complex phosphomacrolide (-)-enigmazole A (1).

  10. A Research-Based Undergraduate Organic Laboratory Project: Investigation of a One-Pot, Multicomponent, Environmentally Friendly Prins-Friedel-Crafts-Type Reaction

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Maresh, Justin J.; Kinzie, Charles R.; Arena, Anthony F.; Speltz, Thomas

    2012-01-01

    Students in the undergraduate organic laboratory synthesize tetrahydro-2-(4-nitrophenyl)-4-phenyl-2"H"-pyran via the Montmorillonite K10 clay-catalyzed reaction of p-nitrobenzaldehye with methanol, 3-buten-1-ol, and benzene. The synthesis comprises an environmentally friendly tandem Prins-Friedel-Crafts-type multicomponent reaction (MCR) and sets…

  11. A Diastereoselective Multicomponent Reaction for Construction of Alkynylamide-Substituted α,β-Diamino Acid Derivatives To Hunt Hits.

    PubMed

    Lei, Ruirui; Wu, Yong; Dong, Suzhen; Jia, Kaili; Liu, Shunying; Hu, Wenhao

    2017-03-17

    A highly diasetereoselective Mannich-type multicomponent reaction was developed to rapidly construct alkynylamide-substituted α,β-diamino acid derivatives from simple starting materials under mild conditions in moderate to good yields for hit hunting. Most of the resulting products 4 exhibited good anticancer activity in HCT116, BEL7402, and SMMC7721 cells.

  12. Supporting First Year Alternatively Certified Urban and Rural Intern Teachers through a Multicomponent Distance Induction Program

    ERIC Educational Resources Information Center

    Gresko, Jennifer A.

    2013-01-01

    The pathway for entering the K-12 classroom as a teacher varies compared to what was once the traditional model of teacher preparation. In this mixed-methods action research study, I explore supporting first year alternatively certified urban and rural intern teachers through a multicomponent distance induction program. The induction model in this…

  13. Do Two or More Multicomponent Instruments Measure the Same Construct? Testing Construct Congruence Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Tong, Bing

    2016-01-01

    A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…

  14. A multicomponent matched filter cluster confirmation tool for eROSITA: initial application to the RASS and DES-SV data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, M.; Mohr, J. J.; Desai, S.

    We describe a multi-component matched filter cluster confirmation tool (MCMF) designed for the study of large X-ray source catalogs produced by the upcoming X-ray all-sky survey mission eROSITA. We apply the method to confirm a sample of 88 clusters with redshifts $0.05

  15. The Effect of a Multicomponent Professional Development Training on the Beliefs and Behaviors of Community Health Educators Concerning Food Irradiation

    ERIC Educational Resources Information Center

    Thompson, Britta M.; Knight, Stephanie L.

    2006-01-01

    Beliefs have a significant effect on the health behaviors of individuals and educators; however, they can be difficult to change. The purpose of this study was to determine if exposing community health educators, specifically family and consumer sciences county extension educators, to a multicomponent professional development training on food…

  16. Multicomponent Macrocyclization Reactions (MCMRs) Employing Highly Reactive Acyl Ketene and Nitrile Oxide Intermediates

    PubMed Central

    Knapp, John M.; Fettinger, James C.; Kurth, Mark J.

    2011-01-01

    An efficient synthesis of spiro-fused macrolactams by a multicomponent macrocyclization reaction (MCMR) is reported. The use of highly reactive, transient intermediates in this MCMR permits short reaction times, even at high dilution. The methods employed for this MCMR were first developed as a four component strategy for the synthesis of β-ketoamide isoxazolines. PMID:21827181

  17. The influence of precipitation kinetics on trace element partitioning between solid and liquid solutions: A coupled fluid dynamics/thermodynamics framework to predict distribution coefficients

    NASA Astrophysics Data System (ADS)

    Kavner, A.

    2017-12-01

    In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.

  18. Predicting new multicomponent materials for hydrogen storage using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Aidhy, Dilpuneet; Wolverton, Chris

    2010-03-01

    Wide research has unraveled some very promising hydrogen storage materials such as metal borohydrides, amides and alanates. However, all of these materials are limited either thermodynamically or kinetically. The recent observation of mixing in these systems (e.g., borohydride-amide mixing in Li4(BH4)(NH2)3 [1] and metal mixing in NaZn2(BH4)3) [2] has demonstrated the possibility of forming new multicomponent ordered compounds that may have desirable hydrogen storage properties. However, these multicomponent systems are largely unexplored. Here, we use density functional theory (DFT) along with Monte Carlo-based crystal structure prediction methods to search for new multicomponent hydrides. We find evidence for stable compounds in the Mg(BH4)2/Mg(NH2)2 system, which have not yet been observed. In addition, we also study a wide range of mixed metal borohydride systems, and find evidence of ordered stable structures such as Li2Na(BH4)3. 1. F. E. Pinkerton, M. S. Meyer, G. P. Meisner and M. P. Balogh, J. Phys. Chem. B 110, 7967 (2006). 2. D. Ravnsbeak, Y. Filinchuk, Y. Cerenius, H. J. Jakobsen, F. Besenbacher, J. Skibsted and T. R. Jensen, Angew. Chem. 48, 6659 (2009).

  19. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    PubMed

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  20. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    PubMed Central

    Farjoo, Afrooz; Kuznicki, Steve M.

    2017-01-01

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons. PMID:28984833

  1. Strategies for rehabilitation professionals to move evidence-based knowledge into practice: a systematic review.

    PubMed

    Menon, Anita; Korner-Bitensky, Nicol; Kastner, Monika; McKibbon, K Ann; Straus, Sharon

    2009-11-01

    Rehabilitation clinicians need to stay current regarding best practices, especially since adherence to clinical guidelines can significantly improve patient outcomes. However, little is known about the benefits of knowledge translation interventions for these professionals. To examine the effectiveness of single or multi-component knowledge translation interventions for improving knowledge, attitudes, and practice behaviors of rehabilitation clinicians. Systematic review of 7 databases conducted to identify studies evaluating knowledge translation interventions specific to occupational therapists and physical therapists. 12 studies met the eligibility criteria. For physical therapists, participation in an active multi-component knowledge translation intervention resulted in improved evidence-based knowledge and practice behaviors compared with passive dissemination strategies. These gains did not translate into change in clinicians' attitudes towards best practices. For occupational therapists, no studies have examined the use of multi-component interventions; studies of single interventions suggest limited evidence of effectiveness for all outcomes measured. While this review suggests the use of active, multi-component knowledge translation interventions to enhance knowledge and practice behaviors of physical therapists, additional research is needed to understand the impact of these strategies on occupational therapists. Serious research gaps remain regarding which knowledge translation strategies impact positively on patient outcomes.

  2. Systematic Review and Meta-Analysis: The Impact of Multicomponent Weight Management Interventions on Self-Esteem in Overweight and Obese Adolescents.

    PubMed

    Murray, Margaret; Dordevic, Aimee L; Bonham, Maxine P

    2017-05-01

    Building self-esteem in overweight adolescents is key to long-term weight management; yet, self-esteem is rarely a key outcome of adolescent weight management interventions. This systematic review investigates the impact of multicomponent weight management interventions on self-esteem in overweight and obese adolescents. Six databases were searched in December 2014. Eligible studies met the following criteria: (1) randomized controlled trial, (2) overweight or obese participants, (3) adolescents (10-19 years), (4) multicomponent weight management intervention, (5) reported self-esteem and weight changes. Thirteen studies with 1,157 overweight or obese adolescents, aged 10-19 years, were included. Meta-analyses showed no significant change in self-esteem (0.27 [-0.04, 0.59]), but body mass index z -score reduced following intervention (-0.17 [-0.22, -0.11]). The lack of change in self-esteem suggests weight loss alone is insufficient to improve self-esteem. Multicomponent weight management interventions require a specific focus on self-esteem to improve this outcome in overweight and obese adolescents. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Multi-component ground motion response spectra for coupled horizontal, vertical, angular accelerations, and tilt

    USGS Publications Warehouse

    Kalkan, E.; Graizer, V.

    2007-01-01

    Rotational and vertical components of ground motion are almost always ignored in design or in the assessment of structures despite the fact that vertical motion can be twice as much as the horizontal motion and may exceed 2g level, and rotational excitation may reach few degrees in the proximity of fault rupture. Coupling of different components of ground excitation may significantly amplify the seismic demand by introducing additional lateral forces and enhanced P-?? effects. In this paper, a governing equation of motion is postulated to compute the response of a SDOF oscillator under a multi-component excitation. The expanded equation includes secondary P-?? components associated with the combined impacts of tilt and vertical excitations in addition to the inertial forcing terms due to the angular and translational accelerations. The elastic and inelastic spectral ordinates traditionally generated considering the uniaxial input motion are compared at the end with the multi-component response spectra of coupled horizontal, vertical and tilting motions. The proposed multi-component response spectrum reflects kinematic characteristics of the ground motion that are not identifiable by the conventional spectrum itself, at least for the near-fault region where high intensity vertical shaking and rotational excitation are likely to occur.

  4. Photochromic amorphous molecular materials and their applications

    NASA Astrophysics Data System (ADS)

    Shirota, Yasuhiko; Utsumi, Hisayuki; Ujike, Toshiki; Yoshikawa, Satoru; Moriwaki, Kazuyuki; Nagahama, Daisuke; Nakano, Hideyuki

    2003-01-01

    Two novel classes of photochromic amorphous molecular materials based on azobenzene and dithienylethene were designed and synthesized. They were found to readily form amorphous glasses with well-defined glass-transition temperatures when the melt samples were cooled on standing in air and to exhibit photochromism in their amorphous films as well as in solution. Photochromic properties of these materials are discussed in relation to their molecular structures. Surface relief grating was formed on the amorphous films of azobenzene-based photochromic amorphous molecular materials by irradiation with two coherent Ar + laser beams. Dual image was formed at the same location of the films of dithienylethene-based photochromic amorphous molecular materials by irradiation with two linearly polarized light beams perpendicular to each other.

  5. On Structure and Properties of Amorphous Materials

    PubMed Central

    Stachurski, Zbigniew H.

    2011-01-01

    Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy) materials: (i) metallic; (ii) thin films; (iii) organic and inorganic thermoplastics; and (iv) amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids. PMID:28824158

  6. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makino, Nobuaki; Toshiba Corporation, 33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017; Shigeta, Yukichi

    The stabilization of the amorphous structure in amorphous silicon film by adding Ge atoms was studied using Raman spectroscopy. Amorphous Si{sub 1−x}Ge{sub x} (x = 0.0, 0.03, 0.14, and 0.27) films were deposited on glass substrates from electron beam evaporation sources and annealed in N{sub 2} atmosphere. The change in the amorphous states and the phase transition from amorphous to crystalline were characterized using the TO, LO, and LA phonons in the Raman spectra. The temperature of the transition from the amorphous phase to the crystalline phase was higher for the a-Si{sub 1−x}Ge{sub x} (x = 0.03, 0.14) films, and the crystallization was hindered.more » The reason why the addition of a suitable quantity of Ge atoms into the three-dimensional amorphous silicon network stabilizes its amorphous structure is discussed based on the changes in the Raman signals of the TO, LO, and LA phonons during annealing. The characteristic bond length of the Ge atoms allows them to stabilize the random network of the amorphous Si composed of quasi-tetrahedral Si units, and obstruct its rearrangement.« less

  8. Pressure-induced transformations in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Garcez, K. M. S.; Antonelli, A.

    2014-02-01

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  9. Antimicrobial and biocorrosion-resistant MoO3-SiO2 nanocomposite coating prepared by double cathode glow discharge technique

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Sun, Teng Teng; Jiang, Shuyun; Munroe, Paul; Xie, Zong-Han

    2018-07-01

    In this investigation, a MoO3-SiO2 nanocomposite coating was developed on a 316L stainless steel (SS) substrate by double-cathode glow discharge deposition. Chemical valence states, phase composition and microstructure features of the nanocomposite coating were studied using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the nanocomposite coating was composed of a mixture of crystalline MoO3 and amorphous phases, in which amorphous SiO2 phase was embedded between the hexagonal-structured MoO3 grains with an average grain size of ∼8.4 nm. Nanoindentation and scratch tests, together with SEM and TEM observation of locally deformed regions, indicated that the nanocomposite coating exhibited high load-bearing capacity due to a combination of high hardness and good adhesion. Contact angle measurements suggested that the nanocomposite coating was more hydrophobic than uncoated 316L SS. The anti-bacterial activity of the MoO3-SiO2 nanocomposite coating against two bacterial strains (E. coli and S. aureus) was determined by the spread plate method. This showed that both bacterial strains exposed to the coating suffered a significant loss of viability. The influences of sulfate-reducing bacteria (SRB) on the electrochemical behavior of the MoO3-SiO2 nanocomposite coating in modified Postgate's C seawater (PCS) medium were investigated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The electrochemical tests revealed that the coating had a greater resistance to microbiologically influenced corrosion induced by SRB than uncoated 316L SS. This was corroborated by electrochemical testing (potentiodynamic polarization and EIS), in conjunction with SEM observations of the corroded surfaces.

  10. Improvement of arthroscopic cartilage stiffness probe using amorphous diamond coating.

    PubMed

    Töyräs, Juha; Korhonen, Rami K; Voutilainen, Tanja; Jurvelin, Jukka S; Lappalainen, Reijo

    2005-04-01

    During arthroscopic evaluation of articular cartilage unstable contact and even slipping of the measurement instrument on the tissue surface may degrade the reproducibility of the measurement. The main aim of the present study was to achieve more stable contact by controlling the friction between articular cartilage surface and the arthroscopic cartilage stiffness probe (Artscan 200, Artscan Oy, Helsinki, Finland) using amorphous diamond (AD) coating. In order to obtain surfaces with different average roughnesses (R(a)), polished stainless steel disks were coated with AD by using the filtered pulsed arc-discharge (FPAD) method. Dynamic coefficient of friction (mu) between the articular cartilage (n = 8) and the coated plates along one non-coated plate was then determined. The friction between AD and cartilage could be controlled over a wide range (mu = 0.027-0.728, p < 0.05, Wilcoxon test) by altering the roughness. Possible deterioration of cartilage was investigated by measuring surface roughness after friction tests and comparing it with the roughness of the adjacent, untested samples (n = 8). Importantly, even testing with the roughest AD (R(a) = 1250 nm) did not damage articular surface. On the basis of the friction measurements, a proper AD coating was selected for the stiffness probe. The performance of coated and non-coated probe was compared by measuring bovine osteochondral samples (n = 22) with both instruments. The reproducibility of the stiffness measurements was significantly better with the AD-coated probe (CV% = 4.7) than with the uncoated probe (CV% = 8.2). To conclude, AD coating can be used to safely control dynamic friction with articular surface. Sufficient friction between articular surface and reference plate of the arthroscopic probe improves significantly reproducibility of the stiffness measurements. (c) 2005 Wiley Periodicals, Inc.

  11. Preparation of immobilized coating Fenton-like catalyst for high efficient degradation of phenol.

    PubMed

    Wang, Jiankang; Yao, Zhongping; Wang, Yajing; Xia, Qixing; Chu, Huiya; Jiang, Zhaohua

    2017-05-01

    In this study, solid acid amorphous Fe 3 O 4 /SiO 2 ceramic coating decorated with sulfur on Q235 carbon steel as Fenton-like catalyst for phenol degradation was successfully prepared by plasma electrolytic oxidation (PEO) in silicate electrolyte containing Na 2 S 2 O 8 as sulfur source. The surface morphology and phase composition were characterized by SEM, EDS, XRD and XPS analyses. NH 3 -TPD was used to evaluate surface acidity of PEO coating. The results indicated that sulfur decorated amorphous Fe 3 O 4 /SiO 2 ceramic coatings with porous structure and higher acid strength had the similar pore size and the surface became more and more uneven with the increase of Na 2 S 2 O 8 in the silicate electrolyte. The Fenton-like catalytic activity of sulfur decorated PEO coatings was also evaluated. In contrast to negligible catalytic activity of sulfur undecorated PEO coating, catalytic activity of sulfur decorated PEO coating was excellent and PEO coating prepared with 3.0 g Na 2 S 2 O 8 had the highest catalytic activity which could degrade 99% of phenol within 8 min under circumneutral pH. The outstanding performance of sulfur decorated PEO coating was attributed to strong acidic microenvironment and more Fe 2+ on the surface. The strong acid sites played a key factor in determining catalytic activity of catalyst. In conclusion, rapid phenol removal under circumneutral pH and easier separation endowed it potential application in wastewater treatment. In addition, this strategy of preparing immobilized solid acid coating could provide guidance for designing Fenton-like catalyst with excellent catalytic activity and easier separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, J.A.; Rittner, M.N.; Youngdahl, C.J.; Weertman, J.R.

    1998-03-17

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound. 6 figs.

  13. Evolution of Constitution, Structure, and Morphology in FeCo-Based Multicomponent Alloys

    NASA Astrophysics Data System (ADS)

    Li, R.; Stoica, M.; Liu, G.; Eckert, J.

    2010-07-01

    Constituent phases, melting behaviors, and microstructure of multicomponent (Fe0.5Co0.5) x (Mo0.1C0.2B0.5Si0.2)100- x alloys ( x = 95, 90, 85, 80, and 70) produced by copper mold casting were evaluated by various analysis techniques, i.e., X-ray diffractometry, scanning electronic microscopy with energy dispersive X-ray spectrometry, and differential scanning calorimetry. Metastable Fe3C- and Cr23C6-type phases were identified in the chill-cast alloys. A schematic illustration was proposed to explain the evolution of constituent phases and microstructure for the alloys with x = 95, 90, and 85 during the solidification process, which could be applicable to controlling microstructural formation of other multicomponent alloys with similar microstructures by artificially adjusting the composition.

  14. Amorphous Rover

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    A proposed mobile robot, denoted the amorphous rover, would vary its own size and shape in order to traverse terrain by means of rolling and/or slithering action. The amorphous rover was conceived as a robust, lightweight alternative to the wheeled rover-class robotic vehicle heretofore used in exploration of Mars. Unlike a wheeled rover, the amorphous rover would not have a predefined front, back, top, bottom, or sides. Hence, maneuvering of the amorphous rover would be more robust: the amorphous rover would not be vulnerable to overturning, could move backward or sideways as well as forward, and could even narrow itself to squeeze through small openings.

  15. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang

    Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.

  17. Ultra-hard amorphous AlMgB14 films RF sputtered onto curved substrates

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Putrolaynen, V. V.; Yuzvyuk, M. H.

    2017-03-01

    Recently, hard AlMgB14 (BAM) coatings were deposited for the first time by RF magnetron sputtering using a single stoichiometric ceramic target. High target sputtering power and sufficiently short target-to-substrate distance were found to be critical processing conditions. They enabled fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth in 2 µm thick film (Grishin et al 2014 JETP Lett. 100 680). The narrow range of sufficiently short target-to-substrate distance makes impossible to coat non flat specimens. To achieve ultimate BAM films’ characteristics onto curved surfaces we developed two-step sputtering process. The first thin layer is deposited as a template at low RF power that facilitates a layered Frank van der Merwe mode growth of smooth film occurs. The next layer is grown at high RF target sputtering power. The affinity of subsequent flow of sputtered atoms to already evenly condensed template fosters the development of smooth film surface. As an example, we made BAM coating onto hemispherical 5 mm in diameter ball made from a hard tool steel and used as a head of a special gauge. Very smooth (6.6 nm RMS surface roughness) and hard AlMgB14 films fabricated onto commercial ball-shaped items enhance hardness of tool steel specimens by a factor of four.

  18. Silicon thin-film transistor backplanes on flexible substrates

    NASA Astrophysics Data System (ADS)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  19. Amorphization strategy affects the stability and supersaturation profile of amorphous drug nanoparticles.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Yang, Yue; Hadinoto, Kunn

    2014-05-05

    Amorphous drug nanoparticles have recently emerged as a promising bioavailability enhancement strategy of poorly soluble drugs attributed to the high supersaturation solubility generated by the amorphous state and fast dissolution afforded by the nanoparticles. Herein we examine the effects of two amorphization strategies in the nanoscale, i.e., (1) molecular mobility restrictions and (2) high energy surface occupation, both by polymer excipient stabilizers, on the (i) morphology, (ii) colloidal stability, (iii) drug loading, (iv) amorphous state stability after three-month storage, and (v) in vitro supersaturation profiles, using itraconazole (ITZ) as the model drug. Drug-polyelectrolyte complexation is employed in the first strategy to prepare amorphous ITZ nanoparticles using dextran sulfate as the polyelectrolyte (ITZ nanoplex), while the second strategy employs pH-shift precipitation using hydroxypropylmethylcellulose as the surface stabilizer (nano-ITZ), with both strategies resulting in >90% ITZ utilization. Both amorphous ITZ nanoparticles share similar morphology (∼300 nm spheres) with the ITZ nanoplex exhibiting better colloidal stability, albeit at lower ITZ loading (65% versus 94%), due to the larger stabilizer amount used. The ITZ nanoplex also exhibits superior amorphous state stability, attributed to the ITZ molecular mobility restriction by electrostatic complexation with dextran sulfate. The higher stability, however, is obtained at the expense of slower supersaturation generation, which is maintained over a prolonged period, compared to the nano-ITZ. The present results signify the importance of selecting the optimal amorphization strategy, in addition to formulating the excipient stabilizers, to produce amorphous drug nanoparticles having the desired characteristics.

  20. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling.

    PubMed

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-02-08

    The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.

  1. Devitrification of amorphous celecoxib.

    PubMed

    Gupta, Piyush; Bansal, Arvind K

    2005-09-30

    The purpose of this research was to analyze the devitrification of amorphous celecoxib (CEL) in the presence of different stressors (temperature, pressure, and/or humidity) encountered during processing of solid dosage forms. Amorphous CEL was prepared in situ in the analytical instruments, as well as in laboratory, by quench-cooling of melt process, and analyzed by dynamic mechanical thermal analysis, differential scanning calorimetry, microscopy, and Fourier-transform infrared spectroscopy. Amorphous CEL prepared in situ in the analytical instruments was resistant to crystallization under the influence of temperature and/or pressure, because of its protection from the external environment during preparation. These samples exhibited structural relaxation during annealing at 25 degrees C/0% relative humidity (RH) for 16 hours. Generation of amorphous CEL in the laboratory resulted in partially crystalline samples, because of exposure to environmental temperature and humidity, resulting in incomplete vitrification. Subjection to thermal stress favored crystallization of amorphous CEL into metastable polymorphic forms, which were not obtained by solvent recrystallization approach. Temperature and humidity were identified as the major factors promoting devitrification of amorphous CEL, leading to loss of solubility advantage. Exposure to International Conference on Harmonization-specified accelerated stability storage conditions (40 degrees C/75% RH) resulted in complete devitrification of amorphous CEL within 15 days. The phase-transformation process of amorphous CEL along the temperature scale was examined visually, as well as spectrally. This propensity for devitrification of amorphous CEL seemed to depend on the strength of differential molecular interactions between the amorphous and crystalline form.

  2. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: a material science approach.

    PubMed

    Qi, Sheng; McAuley, William J; Yang, Ziyi; Tipduangta, Pratchaya

    2014-07-01

    Use of the amorphous state is considered to be one of the most effective approaches for improving the dissolution and subsequent oral bioavailability of poorly water-soluble drugs. However as the amorphous state has much higher physical instability in comparison with its crystalline counterpart, stabilization of amorphous drugs in a solid-dosage form presents a major challenge to formulators. The currently used approaches for stabilizing amorphous drug are discussed in this article with respect to their preparation, mechanism of stabilization and limitations. In order to realize the potential of amorphous formulations, significant efforts are required to enable the prediction of formulation performance. This will facilitate the development of computational tools that can inform a rapid and rational formulation development process for amorphous drugs.

  3. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  4. Intrinsic charge trapping in amorphous oxide films: status and challenges

    NASA Astrophysics Data System (ADS)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.

  5. Stoichiometric Control of Multiple Different Tectons in Coordination-Driven Self-assembly

    PubMed Central

    Lee, Junseong; Ghosh, Koushik; Stang, Peter J.

    2009-01-01

    We present a general strategy for the synthesis of stable, multi-component fused polygon complexes where coordination-driven self-assembly allows for single supramolecular species can be formed from multi-component self-assembly and the shape of the obtained polygons can be controlled by simply changing the ratio of individual components. The compounds are characterized by Multinuclear NMR, ESI Mass spectrometry. PMID:19663439

  6. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  7. Using a Multicomponent Multimedia Shared Story Intervention with an iPad to Teach Content Picture Vocabulary to Students with Developmental Disabilities

    ERIC Educational Resources Information Center

    Rivera, Christopher J.; Hudson, Melissa E.; Weiss, Stacy L.; Zambone, Alana

    2017-01-01

    With the increased use of iPads in classrooms, special education teachers need methods for preparing students with developmental disabilities to access and use this technology for a variety of academic purposes. This study used a multiple probe design to examine a multicomponent multimedia shared story (MSS) intervention via an iPad to teach…

  8. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  9. Correlation of atomic packing with the boson peak in amorphous alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W. M.; Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; School of Materials Science and Engineering, Southeast University, Nanjing 211189

    2014-09-28

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diametermore » are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.« less

  10. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  11. Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy.

    PubMed

    Mah, Pei T; Novakovic, Dunja; Saarinen, Jukka; Van Landeghem, Stijn; Peltonen, Leena; Laaksonen, Timo; Isomäki, Antti; Strachan, Clare J

    2017-05-01

    To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.

  12. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    PubMed

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-07

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  13. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccard, Mathieu; Holman, Zachary C.

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  14. Microscale Interface Synthesis of Ni-B Amorphous Nanoparticles from NiSO4 by Sodium Borohydride Reduction in Microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong

    2016-09-01

    Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.

  15. Dismantling multicomponent behavioral treatment for insomnia in older adults: a randomized controlled trial.

    PubMed

    Epstein, Dana R; Sidani, Souraya; Bootzin, Richard R; Belyea, Michael J

    2012-06-01

    Recently, the use of multicomponent insomnia treatment has increased. This study compares the effect of single component and multicomponent behavioral treatments for insomnia in older adults after intervention and at 3 months and 1 yr posttreatment. A randomized, controlled study. Veterans Affairs medical center. 179 older adults (mean age, 68.9 yr ± 8.0; 115 women [64.2%]) with chronic primary insomnia. Participants were randomly assigned to 6 wk of stimulus control therapy (SCT), sleep restriction therapy (SRT), the 2 therapies combined into a multicomponent intervention (MCI), or a wait-list control group. Primary outcomes were subjective (daily sleep diary) and objective (actigraphy) measures of sleep-onset latency (SOL), wake after sleep onset (WASO), total sleep time (TST), time in bed (TIB), and sleep efficiency (SE). Secondary outcomes were clinical measures including response and remission rates. There were no differences between the single and multicomponent interventions on primary sleep outcomes measured by diary and actigraphy. All treatments produced significant improvement in diary-reported sleep in comparison with the control group. Effect sizes for sleep diary outcomes were medium to large. Treatment gains were maintained at follow-up for diary and actigraph measured SOL, WASO, and SE. The MCI group had the largest proportion of treatment remitters. For older adults with chronic primary insomnia, the findings provide initial evidence that SCT, SRT, and MCI are equally efficacious and produce sustainable treatment gains on diary, actigraphy, and clinical outcomes. From a clinical perspective, MCI may be a preferred treatment due to its higher remission rate. Behavioral Intervention for Insomnia in Older Adults. NCT01154023. URL: http://clinicaltrials.gov/ct2/show/NCT01154023?term=Behavioral+Intervention+for+Insomnia+in+Older+Adults&rank=1.

  16. Effect of multicomponent interventions on competence of family caregivers of people with dementia: A systematic review.

    PubMed

    Ying, Jie; Wang, Yonghong; Zhang, Meiling; Wang, Shouqi; Shi, Ying; Li, Huanhuan; Li, Yuan; Xing, Zhuangjie; Sun, Jiao

    2018-05-01

    This review aims to summarise and evaluate multicomponent interventions focused on improving the competence of family members of people with dementia (PwD) who undertake the caregiving tasks. Caregiver competence is essential for family members of PwD acting as caregivers. Competence affects the physical and mental health of both PwD and caregivers. Many kinds of multicomponent interventions are used to improve caregiver competence. A systematic review. A literature search from six databases was conducted. Articles published until January 2017 were screened. Intervention studies that measured caregiver competence of family members of PwD as an outcome were included. The Oxford Center Evidence-based Medicine criteria and the Cochrane Handbook for Systematic Reviews of Interventions were used for quality assessment. Fifteen studies were included, and number of participants was 1096. The characteristics of the included studies and key findings were analysed. Multicomponent interventions may improve the family caregivers' competence. Caregivers in the intervention group were confident and skilful in managing their role. The intervention design, treatment content and length and intensity of the intervention varied in the included studies. Given that heterogeneity was high, combining these results via narrative synthesis is more appropriate than a meta-analysis. The current study provides recommendations regarding the formulation and implementation of interventions based on relevant literature. In view of existing research, researchers should conduct an in-depth study in this area and provide evidence-based interventions to support family members caring for PwD. The competence of family caregivers is essential for the life quality of PwD. To promote the health of the family caregiver and PwD, multicomponent interventions may be appropriate for nurses to practice. © 2018 John Wiley & Sons Ltd.

  17. Healthcare team training programs aimed at improving depression management in primary care: A systematic review.

    PubMed

    Vöhringer, Paul A; Castro, Ariel; Martínez, Pablo; Tala, Álvaro; Medina, Simón; Rojas, Graciela

    2016-08-01

    Although evidence from Latin America and the Caribbean suggests that depression can be effectively treated in primary care settings, depression management remains unevenly performed. This systematic review evaluates all the international evidence on healthcare team training programs aimed at improving the outcomes of patients with depression. Three databases were searched for articles in English or Spanish indexed up to November 20, 2014. Studies were included if they fulfilled the following conditions: clinical trials, meta-analyses, or systematic reviews; and if they evaluated a training or educational program intended to improve the management of depression by primary healthcare teams, and assessed change in depressive symptoms, diagnosis or response rates, referral rates, patients' satisfaction and/or quality of life, and the effectiveness of treatments. Nine studies were included in this systematic review. Five trials tested the effectiveness of multi-component interventions (training included), and the remaining studies evaluated the effectiveness of specific training programs for depression management. All the studies that implemented multi-component interventions were efficacious, and half of the training trials were shown to be effective. Contribution of training programs alone to the effectiveness of multi-component interventions is yet to be established. The lack of specificity regarding health providers' characteristics might be a confounding factor. The review conducted suggests that stand-alone training programs are less effective than multi-component interventions. In applying the evidence gathered from developed countries to Latin America and the Caribbean, these training programs must consider and address local conditions of mental health systems, and therefore multi-component interventions may be warranted. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.

    2015-04-01

    In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less

  19. "Self-Shaping" of Multicomponent Drops.

    PubMed

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  20. Characteristics of amorphous kerogens fractionated from terrigenous sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Suzuki, Noriyuki

    1984-02-01

    A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomic H/C ratio and the lowest atomic N/C ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C 16 and C 18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic H/C ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.

Top