Science.gov

Sample records for multicomponent liquid mixtures

  1. Uphill diffusion in multicomponent mixtures.

    PubMed

    Krishna, Rajamani

    2015-05-21

    Molecular diffusion is an omnipresent phenomena that is important in a wide variety of contexts in chemical, physical, and biological processes. In the majority of cases, the diffusion process can be adequately described by Fick's law that postulates a linear relationship between the flux of any species and its own concentration gradient. Most commonly, a component diffuses down the concentration gradient. The major objective of this review is to highlight a very wide variety of situations that cause the uphill transport of one constituent in the mixture. Uphill diffusion may occur in multicomponent mixtures in which the diffusion flux of any species is strongly coupled to that of its partner species. Such coupling effects often arise from strong thermodynamic non-idealities. For a quantitative description we need to use chemical potential gradients as driving forces. The transport of ionic species in aqueous solutions is coupled with its partner ions because of the electro-neutrality constraints; such constraints may accelerate or decelerate a specific ion. When uphill diffusion occurs, we observe transient overshoots during equilibration; the equilibration process follows serpentine trajectories in composition space. For mixtures of liquids, alloys, ceramics and glasses the serpentine trajectories could cause entry into meta-stable composition zones; such entry could result in phenomena such as spinodal decomposition, spontaneous emulsification, and the Ouzo effect. For distillation of multicomponent mixtures that form azeotropes, uphill diffusion may allow crossing of distillation boundaries that are normally forbidden. For mixture separations with microporous adsorbents, uphill diffusion can cause supra-equilibrium loadings to be achieved during transient uptake within crystals; this allows the possibility of over-riding adsorption equilibrium for achieving difficult separations.

  2. Thermodiffusion in multicomponent n-alkane mixtures.

    PubMed

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n-alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  3. New validated liquid chromatographic and chemometrics-assisted UV spectroscopic methods for the determination of two multicomponent cough mixtures in syrup.

    PubMed

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2008-01-01

    Multivariate spectrophotometric calibration and liquid chromatographic (LC) methods were applied to the determination of 2 multicomponent mixtures containing diprophylline, guaiphenesin, methylparaben, and propylparaben (Mixture 1), or clobutinol, orciprenaline, saccharin sodium, and sodium benzoate (Mixture 2). For the multivariate spectrophotometric calibration methods, principal component regression (PCR) and partial least-squares regression (PLS-1), a calibration set of the mixtures consisting of the components of each mixture was prepared in 0.1 M HCl. Analytical figures of merit such as sensitivity, selectivity, limit of quantitation, and limit of detection were determined for both PLS-1 and PCR. The LC separation was achieved on a reversed-phase C18 analytical column by using isocratic elution with 20 mM potassium dihydrogen phosphate, pH 3.3-acetonitrile (55 + 45, v/v) as the mobile phase and UV detection at 260 and 220 nm for Mixture 1 and Mixture 2, respectively. The proposed methods were validated and successfully applied to the analysis of pharmaceutical formulations and laboratory-prepared mixtures containing the 2 multicomponent combinations.

  4. Method for locating the vapor-liquid critical point of multicomponent fluid mixtures using a shear mode piezoelectric sensor.

    PubMed

    Ke, Jie; King, P J; George, Michael W; Poliakoff, Martyn

    2005-01-01

    A new approach to locating the critical point of fluid mixtures is reported, utilizing a shear mode piezoelectric sensor. This technique employs a single piece of quartz crystal that is installed at the bottom of a strongly stirred high-pressure vessel. The sensor response indicates whether liquid or gas is in contact with its surfaces. Thus, the sensor is able to identify vapor-liquid phase separation by registering a discontinuity in the impedance minimum of the sensor as a function of pressure. Two systems (methanol + CO2 and H2 + CO2) have been investigated using this method. The critical point data of the methanol + CO2 system were chosen to validate the approach against a wealth of literature data, and good agreement was obtained. The sensor behavior in the two-phase region, as well as the effect of stirring, is discussed. The method is general and can be used with other sensors.

  5. Development and validation of chemometrics-assisted spectrophotometry and liquid chromatography methods for the simultaneous determination of the active ingredients in two multicomponent mixtures containing chlorpheniramine maleate and phenylpropanolamine hydrochloride.

    PubMed

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2007-01-01

    Multivariate spectrophotometric calibration and liquid chromatography (LC) methods were used for the simultaneous determination of the active ingredients in 2 multicomponent mixtures containing chlorpheniramine maleate and phenylpropanolamine hydrochloride with ibuprofen and caffeine (mixture 1) or with propyphenazone (mixture 2). For the multivariate spectrophotometric calibration methods, principal component regression (PCR) and partial least squares (PLS-1), a calibration set of the mixtures consisting of the components of each mixture was prepared in distilled water. A leave-1-out cross-validation procedure was used to find the optimum numbers of latent variables. Analytical parameters such as sensitivity, selectivity, analytical sensitivity, limit of quantitation, and limit of detection were determined for both PLS-1 and PCR. The LC method depends on the use of a cyanopropyl column with the mobile phase acetonitrile-12 mM ammonium acetate, pH 5.0 (25 + 75, v/v), for mixture 1 or acetonitrile-10 mM potassium dihydrogen phosphate, pH 4.7 (45 + 55, v/v), for mixture 2; the UV detector was set at 212 nm. In spite of the presence of a high degree of spectral overlap of these components, they were rapidly and simultaneously determined with high accuracy and precision, with no interference from the matrix excipients. The proposed methods were successfully applied to the analysis of pharmaceutical formulations and laboratory-prepared mixtures containing the 2 multicomponent combinations.

  6. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  7. Adsorption of a multicomponent mixture of gases with multisite occupancy.

    PubMed

    Manzi, S; Mas, W; Belardinelli, R; Pereyra, V D

    2004-01-20

    In this paper, we present a study of the adsorption of multicomponent mixtures with multisite occupancy. The transfer-matrix technique is used to analyze the one-dimensional binary mixtures for interacting systems. A general expression for the characteristic polynomial is derived. Extension of the treatment to a higher dimension is also presented by using the mean-field Bragg-Williams approximation, transfer-matrix calculations, and Monte Carlo simulation. Partial and total isotherms are obtained for the dimer-trimer mixture where a different order appears.

  8. Liquid-liquid equilibria for ternary polymer mixtures

    NASA Astrophysics Data System (ADS)

    Oh, Suk Yung; Bae, Young Chan

    2011-01-01

    A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  9. Multicomponent Diffusion of Penetrant Mixtures in Rubbery Polymers: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Bringuier, Stefan; Varady, Mark; Knox, Craig; Cabalo, Jerry; Pearl, Thomas; Mantooth, Brent

    The importance of understanding transport of chemical species across liquid-solid boundaries is of particular interest in the decontamination of harmful chemicals absorbed within polymeric materials. To characterize processes associated with liquid-phase extraction of absorbed species from polymers, it is necessary to determine an appropriate physical description of species transport in multicomponent systems. The Maxwell-Stefan (M-S) formulation is a rigorous description of mass transport in multicomponent solutions, in which, mutual diffusivities determine the degree of relative motion between interacting molecules in response to a chemical potential gradient. The work presented focuses on the determination of M-S diffusivities from molecular dynamics (MD) simulations of nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX), water, and methanol mixtures within a poly(dimethylsiloxane) matrix. We investigate the composition dependence of M-S diffusivities and compare the results to values predicted using empirical relations for binary and ternary mixtures. Finally, we highlight the pertinent differences in molecular mechanisms associated with species transport and employ non-equilibrium MD to probe transport across the mixture-polymer interface.

  10. Isentropic Compression of Multicomponent Mixtures of Fuels and Inert Gases

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle; Julien, Howard L.; Woods, Stephen S.; Wilson, D. Bruce; Saulsberry, Regor L.

    2000-01-01

    In selected aerospace applications of the fuels hydrazine and monomethythydrazine, there occur conditions which can result in the isentropic compression of a multicomponent mixture of fuel and inert gas. One such example is when a driver gas such as helium comes out of solution and mixes with the fuel vapor, which is being compressed. A second example is when product gas from an energetic device mixes with the fuel vapor which is being compressed. Thermodynamic analysis has shown that under isentropic compression, the fuels hydrazine and monomethylhydrazine must be treated as real fluids using appropriate equations of state. The appropriate equations of state are the Peng-Robinson equation of state for hydrazine and the Redlich-Kwong-Soave equation of state for monomethylhydrazine. The addition of an inert gas of variable quantity and input temperature and pressure to the fuel compounds the problem for safety design or analysis. This work provides the appropriate thermodynamic analysis of isentropic compression of the two examples cited. In addition to an entropy balance describing the change of state, an enthalpy balance is required. The presence of multicomponents in the system requires that appropriate mixing rules are identified and applied to the analysis. This analysis is not currently available.

  11. Isentropic Compression of Multicomponent Mixtures of Fuels and Inert Gases

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle; Julien, Howard L.; Woods, Stephen S.; Wilson, D. Bruce; Saulsberry, Regor L.

    2000-01-01

    In selected aerospace applications of the fuels hydrazine and monomethythydrazine, there occur conditions which can result in the isentropic compression of a multicomponent mixture of fuel and inert gas. One such example is when a driver gas such as helium comes out of solution and mixes with the fuel vapor, which is being compressed. A second example is when product gas from an energetic device mixes with the fuel vapor which is being compressed. Thermodynamic analysis has shown that under isentropic compression, the fuels hydrazine and monomethylhydrazine must be treated as real fluids using appropriate equations of state. The appropriate equations of state are the Peng-Robinson equation of state for hydrazine and the Redlich-Kwong-Soave equation of state for monomethylhydrazine. The addition of an inert gas of variable quantity and input temperature and pressure to the fuel compounds the problem for safety design or analysis. This work provides the appropriate thermodynamic analysis of isentropic compression of the two examples cited. In addition to an entropy balance describing the change of state, an enthalpy balance is required. The presence of multicomponents in the system requires that appropriate mixing rules are identified and applied to the analysis. This analysis is not currently available.

  12. Dissolution, Cyclodextrin-Enhanced Solubilization, and Mass Removal of an Ideal Multicomponent Organic Liquid

    PubMed Central

    Carroll, Kenneth C.; Brusseau, Mark L.

    2010-01-01

    Laboratory experiments and mathematical modeling were conducted to examine the influence of a hydroxypropyl-beta-cyclodextrin (HPCD) solution on the dissolution of single- and three-component organic liquids. The results of batch experiments showed that HPCD-enhanced solubilization of the organic-liquid mixtures was ideal (describable using Raoult’s Law), and that solubilization-enhancement factors were independent of mixture composition. Addition of the HPCD solution to columns containing residual saturations of the organic liquid enhanced the dissolution and removal of all three compounds in the mixture. The results of the column experiments and multicomponent rate-limited dissolution modeling suggest that solubilization was ideal for both water and cyclodextrin flushing. Concomitantly, the mass-flux reduction versus mass removal behavior was ideal for all experiments. Mass transfer was increased for HPCD solubilization relative to the water flushing due to solubility and concentration-gradient enhancement. Organic-liquid composition did not significantly impact mass transfer coefficients, and fractional mass removal behavior during HPCD solubilization was nearly identical for each compound whether present as a single component or in a mixture. Additionally, mass transfer coefficients for aqueous and HPCD solubilization for single and multicomponent mixtures were not statistically different upon normalizing by the solubility enhancement factor. PMID:19233508

  13. The effect of multicomponent diffusion on NAPL dissolution from spherical ternary mixtures.

    PubMed

    Brahma, Priti P; Harmon, Thomas C

    2003-12-01

    This paper investigates the dissolution characteristics of ternary nonaqueous phase liquid (NAPL) mixtures with the goal of comparing the relative contributions of multicomponent (intra-NAPL) diffusion, film transfer and thermodynamic nonideality. These contributions are compared at the pore scale and intermediate scale (several centimeters downstream from the source). Trichloroethene (TCE), tetrachloroethene (PCE) and 1,1,1-trichloroethane (TCA) were selected to model a reasonably ideal mixture; TCE, PCE and octanol were selected as a relevant nonideal mixture. A multicomponent diffusion-based dissolution model incorporating hydrodynamic theory was formulated to estimate intra-NAPL concentration gradients and associated aqueous interfacial concentrations for ideally shaped (spherical) NAPL blobs. Pore scale dissolution times for this model were compared to those generated using the conventional well-mixed NAPL dissolution model, applying the same film transfer boundary condition in both cases. Activity coefficients (spatially and temporally variable for the diffusion model, temporally variable for the well-mixed model) were estimated using UNIFAC. NAPL interfacial concentration histories generated using the pore scale models were used as input in a three-dimensional groundwater transport model (MT3DMS) to compare downstream concentration distributions. For the relatively large NAPL bodies simulated (r=0.6 cm), intra-NAPL diffusion effects were found to be significant at the pore scale and were strongly impacted by the mixture's thermodynamic ideality. At the intermediate scale, and for the conditions tested, modest differences in the simulations suggested that intra-NAPL diffusion effects would be negligible compared to those associated with mixture composition uncertainty, dissolution rate processes related to NAPL-induced permeability effects and hydrodynamic issues associated with flow field heterogeneity.

  14. Uphill diffusion and phase separation in partially miscible multicomponent mixtures

    NASA Astrophysics Data System (ADS)

    He, Ping; Raghavan, Ashwin; Ghoniem, Ahmed

    2015-11-01

    The partially miscible multicomponent mixtures, which are frequently encountered in green chemistry processes, often exhibit complicated behaviors, and are critical to the production rate, energy efficiency, and pollution controls. Recent studies have been mainly focused on phase behaviors. However, the coupled phase equilibrium and transport process, which may be the answer to phase separations observed in experiments, is not well researched. Here, we present a numerical and theoretical study on coupled mixing of heavy oil and supercritical water, and the results of our state-of-art modeling agree with experimental measurements. We find that due to the non-ideal diffusion driving force, (1) strong uphill diffusion of heavy oil fractions occurs, (2) a new heavy oil phase is separated starting from the plait point, and heavy fractions become highly concentrated, and (3) water diffusion initially overshoots in oil, and is expelled lately. Finally, we conclude our analysis applicable to different molecules and conditions. The authors thank Saudi Aramco for supporting this work (contract number 6600023444).

  15. Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Zarifi, Mojdeh; Kvamme, Bjørn

    2016-01-01

    In this paper, a generalization of the Cahn-Hilliard theory of binary liquids is presented for multicomponent incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion-type dynamics is derived on the basis of the Lagrange multiplier formalism. Next, a generalization of the binary Cahn-Hilliard free-energy functional is presented for an arbitrary number of components, offering the utilization of independent pairwise equilibrium interfacial properties. We show that the equilibrium two-component interfaces minimize the functional, and we demonstrate that the energy penalization for multicomponent states increases strictly monotonously as a function of the number of components being present. We validate the model via equilibrium contact angle calculations in ternary and quaternary (four-component) systems. Simulations addressing liquid-flow-assisted spinodal decomposition in these systems are also presented.

  16. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects.

    PubMed

    Tian, Dayong; Lin, Zhifen; Yu, Jianqiao; Yin, Daqiang

    2012-08-01

    Organic chemicals usually coexist as a mixture in the environment, and the mixture toxicity of organic chemicals has received increased attention. However, research regarding the joint effects of reactive chemicals is lacking. In this study, we examined two kinds of reactive chemicals, cyanogenic toxicants and aldehydes and determined their joint effects on Photobacterium phosphoreum. Three factors were found to influence the joint effects of multicomponent mixtures containing reactive chemicals, including the number of components, the dominating components and the toxic ratios. With an increased number of components, the synergistic or antagonistic effects (interactions) will weaken to the additive effects (non-interactions) if the added component cannot yield a much stronger joint effect with an existing component. Contrarily, the joint effect of the mixture may become stronger instead of weaker if the added components can yield a much stronger joint effect than the existing joint effect of the multicomponent mixture. The components that yield the strongest interactions in their binary mixture can be considered the dominating components. These components contribute more to the interactions of multicomponent mixtures than other components. Moreover, the toxic ratios also influence the joint effects of the mixtures. This study provides an insight into what are the main factors and how they influence the joint effects of multicomponent mixtures containing reactive chemicals, and thus, the findings are beneficial to the study of mixture toxicology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effect of molecular angular momentum on the thermal conductivity of a multicomponent gas mixture

    NASA Technical Reports Server (NTRS)

    Biolsi, L.; Mason, E. A.

    1975-01-01

    The effects of molecular angular momentum (spin polarization) on the thermal conductivity of a multicomponent gas mixture are considered. The Wang Chang-Uhlenbeck approach to the kinetic theory of gases with internal states is used. Formal results are obtained for the thermal conductivity of a gas mixture of uniform composition. These results are given in terms of the quantum mechanical degeneracy-averaged cross section.

  18. Effect of molecular angular momentum on the thermal conductivity of a multicomponent gas mixture

    NASA Technical Reports Server (NTRS)

    Biolsi, L.; Mason, E. A.

    1975-01-01

    The effects of molecular angular momentum (spin polarization) on the thermal conductivity of a multicomponent gas mixture are considered. The Wang Chang-Uhlenbeck approach to the kinetic theory of gases with internal states is used. Formal results are obtained for the thermal conductivity of a gas mixture of uniform composition. These results are given in terms of the quantum mechanical degeneracy-averaged cross section.

  19. Thermodiffusion in multicomponent hydrocarbon mixtures: Experimental investigations and computational analysis.

    PubMed

    VanVaerenbergh, Stefan; Srinivasan, Seshasai; Saghir, M Ziad

    2009-09-21

    In an unprecedented experimental investigation, a ternary and a four component hydrocarbon mixture at high pressure have been studied in a nearly convection free environment to understand the thermodiffusion process. A binary mixture has also been investigated in this environment. Experimental investigations of the three mixtures have been conducted in space onboard the spacecraft FOTON-M3 thereby isolating the gravity-induced convection that otherwise interferes with thermodiffusion experiments on Earth. The experimental results have also been used to test a thermodiffusion model that has been calibrated based on the results of previous experimental investigations. It was found that with an increase in the number of components in the mixtures, the performance of the thermodiffusion model deteriorated. Computational analysis was also made to estimate the possible sources of errors. Simulations showed that the vibrations of the spacecraft could influence the estimates of thermodiffusion factors. It was also found that they are sensitive to slight variations in the temperature of the mixture.

  20. Thermodiffusion in multicomponent hydrocarbon mixtures: Experimental investigations and computational analysis

    NASA Astrophysics Data System (ADS)

    VanVaerenbergh, Stefan; Srinivasan, Seshasai; Saghir, M. Ziad

    2009-09-01

    In an unprecedented experimental investigation, a ternary and a four component hydrocarbon mixture at high pressure have been studied in a nearly convection free environment to understand the thermodiffusion process. A binary mixture has also been investigated in this environment. Experimental investigations of the three mixtures have been conducted in space onboard the spacecraft FOTON-M3 thereby isolating the gravity-induced convection that otherwise interferes with thermodiffusion experiments on Earth. The experimental results have also been used to test a thermodiffusion model that has been calibrated based on the results of previous experimental investigations. It was found that with an increase in the number of components in the mixtures, the performance of the thermodiffusion model deteriorated. Computational analysis was also made to estimate the possible sources of errors. Simulations showed that the vibrations of the spacecraft could influence the estimates of thermodiffusion factors. It was also found that they are sensitive to slight variations in the temperature of the mixture.

  1. Liquid class predictor for liquid handling of complex mixtures

    SciTech Connect

    Seglke, Brent W.; Lekin, Timothy P.

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  2. Rayleigh-Benard instability in multicomponent mixtures with the Soret effect

    NASA Astrophysics Data System (ADS)

    Ryzhkov, Ilya

    2011-11-01

    Convection in multicomponent mixtures can show a variety of flow patterns due to several heat and mass transfer mechanisms: convection, heat conduction, main and cross diffusion, and the Soret effect. Convective stability of multicomponent fluids has not been widely investigated so far. The use of simplifying assumptions (e.g. the absence of cross-diffusion) may lead to the disagreement between theory and experiment. We study the stability of a plane multicomponent fluid layer heated from above/below in gravity field. In the basic state, the fluid is at rest and temperature gradient induces concentration gradients due to the Soret effect. The problem is reduced to that without cross-diffusion and Soret effect by a special transformation. Several types of boundary conditions are considered: 1) free, permeable 2) rigid, permeable 3) rigid, impermeable. The theorems, which generalize the exchange of stability principle to multicomponent fluids, are proved for boundary conditions 1 and 2. An explicit formula for critical Rayleigh numbers is obtained for boundary conditions 1. The stability problem for boundary conditions 3 was solved numerically for a ternary mixture. The stability maps are constructed in a wide range of parameters. The work is supported by the Interdisciplinary project of SB RAS N 116 and Krasnoyarsk Science Foundation.

  3. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts.

    PubMed

    Wang, Yuanyuan; Jing, Bo; Guo, Yucong; Li, Junling; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2016-07-01

    The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds (WSOCs) and their effects on ammonium sulfate (AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA) in the relative humidity (RH) range of 5%-90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM) and Zdanovskii-Stokes-Robinson (ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles. When organic content was dominant in the mixture (75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles. Copyright © 2016. Published by Elsevier B.V.

  4. Self-consistent generalized Langevin equation theory of the dynamics of multicomponent atomic liquids

    NASA Astrophysics Data System (ADS)

    Lázaro-Lázaro, Edilio; Mendoza-Méndez, Patricia; Elizondo-Aguilera, Luis Fernando; Perera-Burgos, Jorge Adrián; Ramírez-González, Pedro Ezequiel; Pérez-Ángel, Gabriel; Castañeda-Priego, Ramón; Medina-Noyola, Magdaleno

    2017-05-01

    A fundamental challenge of the theory of liquids is to understand the similarities and differences in the macroscopic dynamics of both colloidal and atomic liquids, which originate in the (Newtonian or Brownian) nature of the microscopic motion of their constituents. Starting from the recently discovered long-time dynamic equivalence between a colloidal and an atomic liquid that share the same interparticle pair potential, in this work we develop a self-consistent generalized Langevin equation theory for the dynamics of equilibrium multicomponent atomic liquids, applicable as an approximate but quantitative theory describing the long-time diffusive dynamical properties of simple equilibrium atomic liquids. When complemented with a Gaussian-like approximation, this theory is also able to provide a reasonable representation of the passage from a ballistic to diffusive behavior. We illustrate the applicability of the resulting theory with three particular examples, namely, a monodisperse and a polydisperse monocomponent hard-sphere liquid and a highly size-asymmetric binary hard-sphere mixture. To assess the quantitative accuracy of our results, we perform event-driven molecular dynamics simulations, which corroborate the general features of the theoretical predictions.

  5. Bonding and structure in dense multi-component molecular mixtures

    DOE PAGES

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; ...

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systemsmore » engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  6. Bonding and structure in dense multi-component molecular mixtures

    SciTech Connect

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  7. Thermodynamics of Multicomponent PAH Mixtures and Development of Tar-Like Behavior

    PubMed Central

    Rice, James W.; Fu, Jinxia; Suuberg, Eric M.

    2011-01-01

    This study explores the solid/liquid phase behavior of mixtures of polycyclic aromatic hydrocarbons (PAHs), exploring the transition from non-ideal solid mixtures to a relatively ideal liquid behavior characteristic of “tars”. PAH mixtures have been studied using differential scanning calorimetry, melting point analysis and Knudsen effusion. Mixtures of anthracene, pyrene and fluoranthene show behavior that is consistent with other binary PAH mixtures; that is, the initially solid mixture exhibits a significant melting point depression, relative to the pure components, and in a certain range of composition, solid azeotrope behavior on vaporization. As the number of distinct PAH species is increased (by adding in benzo[a]pyrene, phenanthrene, fluorene and chrysene) this behavior gradually gives way to liquid phase character at even room temperature, and the vaporization behavior approaches that crudely predictable from ideal mixture theory. PMID:21442010

  8. Dissolution and biodegradation of a mixture of immiscible liquids

    SciTech Connect

    Gandhi, P.; Erickson, L.E.; Fan, L.T.

    1994-12-31

    Subsurface contaminants are frequently encountered as mixtures of nonaqueous phase liquids (NAPLs) at sites contaminated by gasoline or coal tar comprising organic mixtures. The leaching of these organic mixtures from the aquifer has been examined with and without biodegradation. The results obtained have been compared with the limiting case of a single component NAPL. Various physical processes involved have been quantified based on the assumptions that liquid-liquid and sorption equilibria are established at the beginning of each flushing; oxygen required for biochemical oxidation is completely consumed by the end of each flushing; and the rate of biochemical oxidation obeys the Monod kinetics for a multi-substrate system, characterized by an oxygen utilization factor. This has given rise to an equilibrium model expressing the mass fraction of any component remaining in the aquifer, its aqueous concentration, and the composition of the NAPL as functions of the number of flushings. The results of the simulation with the model demonstrate that bioremediation can significantly reduce the time necessary for removing the components of intermediate solubility such as xylene. Highly soluble components of the NAPL are mainly removed by the pump-and-treat mechanism while the components of extremely low solubility are unavailable to the microbes as substrates in a multi-component system.

  9. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  10. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, J.D.; Darab, J.G.; Gross, M.E.

    1999-05-11

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

  11. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, John D.; Darab, John G.; Gross, Mark E.

    1999-01-01

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.

  12. On the separation of multicomponent mixtures in a cylindrical thermogravitational column

    NASA Astrophysics Data System (ADS)

    Kozlova, Sofia V.; Ryzhkov, Ilya I.

    2016-11-01

    This work studies the stationary separation of a multicomponent mixture in a thermogravitational column (TGC). The existing theory for a flat-plate column is extended to the case of a cylindrical column. The equations of motion and heat/mass transfer are written in cylindrical coordinates to take into account the impact of the cylinders curvature and the ratio of their radii on the separation process. To characterize the impact of each component on convective motion induced by thermal diffusion, the dimensionless separation ratios are used. A multicomponent system as a whole is described by the net separation ratio. The approximation neglecting vertical diffusion in the column is employed and conditions for its validity are analyzed. The profiles of velocity, temperature, composition, and density in the column with a multicomponent mixture are found and their dependence on the separation ratios and the ratio of cylinders radii is analyzed. The vertical separation is described by the solutal Rayleigh numbers, which are proportional to the vertical concentration gradients. It is shown that the key relation of TGC theory, which relates the net solutal Rayleigh number to the net separation ratio, essentially depends on the ratio of cylinders radii. The working formulas for the thermal diffusion coefficients are derived and the importance of forgotten effect is discussed. It is found that the vertical separation in the column increases with decreasing the ratio of inner and outer cylinders radii. A detailed comparison of results with the case of a flat-plate column is performed. Example of a ternary hydrocarbon mixture is analyzed on the basis of obtained solution and numerical simulation.

  13. Analysis of aromatic constituents in multicomponent hydrocarbon mixtures by infrared spectroscopy using multiple linear regression

    NASA Astrophysics Data System (ADS)

    Vesnin, V. L.; Muradov, V. G.

    2012-09-01

    Absorption spectra of multicomponent hydrocarbon mixtures based on n-heptane and isooctane with addition of benzene (up to 1%) and toluene and o-xylene (up to 20%) were investigated experimentally in the region of the first overtones of the hydrocarbon groups (λ = 1620-1780 nm). It was shown that their concentrations could be determined separately by using a multiple linear regression method. The optimum result was obtained by including four wavelengths at 1671, 1680, 1685, and 1695 nm, which took into account absorption of CH groups in benzene, toluene, and o-xylene and CH3 groups, respectively.

  14. Nonlinear ultrasonic nature of organic liquid and organic liquid mixture.

    PubMed

    Lu, Yi-gang; Zhang, Yang; Dong, Yan-wu

    2006-12-22

    Based on Jacobson's molecular free length theory in liquids and the relationship between ultrasonic velocity and the molecular free length in organic liquids, this paper deduces the equations for pressure coefficient and temperature coefficient of ultrasonic velocity and nonlinear acoustic parameter B/A in both of organic liquid and organic liquid binary mixtures. These nonlinear acoustic parameters are evaluated against the measured results and data from other sources. The equations reveal the connections between the nonlinear acoustic parameters and some internal structural of the medium or mixtures e.g. the sizes of molecule, several thermodynamic physical parameters and outside status e.g. condition of pressure and temperature of the liquid or liquid mixture. With the equations the nonlinear acoustic parameter B/A of organic liquid binary mixtures, which is impossible to know without the nonlinear acoustic parameter B/A of the tow components before, can be calculated based on the structural and physical parameters of organic liquid and organic liquid binary mixtures.

  15. Ultrasound absorption in the region of the tricritical point of a multicomponent mixture

    NASA Astrophysics Data System (ADS)

    Fenner, D. B.; Bowen, D. E.

    1981-11-01

    We report measurements of the ultrasound absorption in quaternary liquid mixtures of ammonium sulfate + water + ethanol + benzene. Near the tricritical region the frequency dependence of the sound absorption is satisfactorily described by the Kawasaki theory. The characteristics-frequency parameter scales with an exponent similar to that reported for binary mixtures.

  16. Rate Limited Diffusion and Dissolution of Multicomponent Nonaqueous Phase Liquids (NAPLs) and Effects on Mass Discharge in Groundwater

    NASA Astrophysics Data System (ADS)

    Padgett, M.; Tick, G.; Carroll, K. C.

    2014-12-01

    Remediation efforts and contaminant transport predictions generally neglect the complicated dissolution and transport behavior associated with multicomponent NAPL (Non-aqueous phase liquid) sources. Therefore, it is important to understand the diffusion and dissolution processes occurring in these multicomponent systems as a function of mole fraction, molecular similarity/dissimilarity, hydraulic, or nonideal factors. A series of laboratory scale NAPL-aqueous phase dissolution experiments were conducted to assess dissolution and intra-NAPL diffusion as a function of multicomponent NAPL composition (i.e. mole fraction) for both trichloroethene and toluene. These target compounds were selected as representative contaminants as they are commonly components of NAPL mixtures and they define both classes of NAPL (dense-DNAPL and light-LNAPL). Predetermined volumes of target NAPL were mixed with an insoluble n-hexadecane NAPL to create mixtures that vary by NAPL composition. The ideality of resulting target compound dissolution was evaluated by quantifying NAPL-phase activity coefficient through Raoult's Law analysis. The results show that dissolution from the NAPL mixtures behave ideally for mole fractions above 0.2. As the target compound fraction of the NAPL mixture get smaller, the dissolution behavior becomes increasingly more nonideal (i.e. greater NAPL-phase activity coefficients). Overall, the time-series batch experiments show that dissolution rates were consistent for various mole fraction ratios, indicating that intra-NAPL diffusion is not the rate-limiting control over aqueous concentrations or is not significantly controlled by NAPL composition-dependent factors. The results of this work will improve transport predictions, remediation design, and risk assessments especially for sites contaminated by complex NAPL mixtures.

  17. IDENTIFICATION AND EXPERIMENTAL DATABASE FOR BINARY AND MULTICOMPONENT MIXTURES WITH POTENTIAL FOR INCREASING OVERALL CYCLE EFFICIENCY

    SciTech Connect

    Stephen M Bajorek; J. Schnelle

    2002-05-01

    This report describes an experimental investigation designed to identify binary and multicomponent mixture systems that may be for increasing the overall efficiency of a coal fired unit by extracting heat from flue gases. While ammonia-water mixtures have shown promise for increasing cycle efficiencies in a Kalina cycle, the costs and associated range of thermal conditions involved in a heat recovery system may prohibit its use in a relatively low temperature heat recovery system. This investigation considered commercially available non-azeotropic binary mixtures with a boiling range applicable to a flue gas initially at 477.6 K (400 F) and developed an experimental database of boiling heat transfer coefficients for those mixtures. In addition to their potential as working fluids for increasing cycle efficiency, cost, ease of handling, toxicity, and environmental concerns were considered in selection of the mixture systems to be examined experimentally. Based on this review, water-glycol systems were identified as good candidates. However, previous investigations of mixture boiling have focused on aqueous hydrocarbon mixtures, where water is the heaviest component. There have been few studies of water-glycol systems, and those that do exist have investigated boiling on plain surfaces only. In water-glycol systems, water is the light component, which makes these systems unique compared to those that have been previously examined. This report examines several water-glycol systems, and documents a database of experimental heat transfer coefficients for these systems. In addition, this investigation also examines the effect of an enhanced surface on pool boiling in water-glycol mixtures, by comparing boiling on a smooth surface to boiling on a Turbo IIIB. The experimental apparatus, test sections, and the experimental procedures are described. The mixture systems tested included water-propylene glycol, water-ethylene glycol, and water-diethylene glycol. All

  18. Dielectric study on mixtures of ionic liquids.

    PubMed

    Thoms, E; Sippel, P; Reuter, D; Weiß, M; Loidl, A; Krohns, S

    2017-08-07

    Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual modification of the fragility parameter, which is believed to be a measure of the complexity of the energy landscape in supercooled liquids. The physical origin of this index is still under debate; therefore, mixing ionic liquids can provide further insights. From the chemical point of view, tuning ionic liquids via mixing is an easy and thus an economic way. For this study, we performed detailed investigations by broadband dielectric spectroscopy and differential scanning calorimetry on two mixing series of ionic liquids. One series combines an imidazole based with a pyridine based ionic liquid and the other two different anions in an imidazole based ionic liquid. The analysis of the glass-transition temperatures and the thorough evaluations of the measured dielectric permittivity and conductivity spectra reveal that the dynamics in mixtures of ionic liquids are well defined by the fractions of their parent compounds.

  19. Evaporation of Liquid Hydrocarbon Mixtures on Titan

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Chevrier, V. F.; Rivera-Valentin, E. G.; Singh, S.; Roe, L. A.; Wagner, A.

    2013-10-01

    Besides Earth, Titan is the only other known planetary body with proven stable liquids on its surface. The hydrological cycle of these liquid hydrocarbon mixtures is critical in understanding Titan’s atmosphere and surface features. Evaporation of liquid surface bodies has been indirectly observed as shoreline changes from measurements by Cassini ISS and RADAR (Hayes et al. 2011, Icarus 211, 655-671; Turtle et al. 2011, Science 18, 1414-1417.), but the long seasons of Saturn strongly limit the time span of these observations and their validity over the course of an entire Titan year. Using a novel Titan simulation chamber, the evaporation rate of liquid methane and dissolved nitrogen mixture under Titan surface conditions was derived (Luspay-Kuti et al. 2012, GRL 39, L23203), which is especially applicable to low latitude transient liquids. Polar lakes, though, are expected to be composed of a variety of hydrocarbons, primarily a mixture of ethane and methane (e.g. Cordier et al. 2009, ApJL 707, L128-L131). Here we performed laboratory simulations of ethane-methane mixtures with varying mole fraction under conditions suitable for the polar regions of Titan. We will discuss results specifically addressing the evaporation behavior as the solution becomes increasingly ethane dominated, providing quantitative values for the evaporation rate at every step. These laboratory results are relevant to polar lakes, such as Ontario Lacus, and can shed light on their stability.

  20. Quantitative NIR Raman analysis in liquid mixtures.

    PubMed

    Sato-Berrú, R Ysacc; Medina-Valtierra, Jorge; Medina-Gutiérrez, Cirilo; Frausto-Reyes, Claudio

    2004-08-01

    The capability to obtain quantitative information of a simple way from Raman spectra is a subject of considerable interest. In this work, this is demonstrated for mixtures of ethanol with water and rhodamine-6G (R-6G) with methanol, which were analyzed directly in glass vessel. The Raman intensities and a simple mathematical model have been used and applied for the analysis of liquid samples. It is starting point to generate a general expression, from the experimental spectra, as the sum of the particular expression for each pure compound allow us to obtain an expression for the mixtures which can be used for determining concentrations, from the Raman spectrum, of the mixture.

  1. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, B.; Tong, S. R.; Liu, Q. F.; Li, K.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2015-08-01

    Water soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, water uptake behavior of internally mixed WSOC aerosols remains limited characterization. Here, the hygroscopic properties of single component such as levoglucosan, oxalic acid, malonic acid, succinic acid and phthalic acid and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid and phthalic acid have strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppress its crystallization completely. The interactions between oxalic acid and levoglucosan are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with UNIFAC method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH due to positive chemical interactions between solutes. Organic mixture has more complex effect on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan accounts for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake under high RH conditions and thus affect the cloud condensation nuclei (CCN) activity, optical properties and chemical reactivity of atmospheric particles.

  2. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Tong, Shengrui; Liu, Qifan; Li, Kun; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2016-03-01

    Water-soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, knowledge on the water uptake behavior of internally mixed WSOC aerosols remains limited. Here, the hygroscopic properties of single components such as levoglucosan, oxalic acid, malonic acid, succinic acid, phthalic acid, and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid, and phthalic acid have a strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppressing its crystallization completely during the drying process. The phase behaviors of oxalic acid/levoglucosan mixed particles are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with the Universal Quasi-Chemical Functional Group Activity Coefficient (UNIFAC) method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a crystalline solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH compared to the model predictions based on reasonable oxalic acid phase assumption. Organic mixture has more complex effects on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan account for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing the phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake

  3. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles.

    PubMed

    Spruijt, E; Biesheuvel, P M

    2014-02-19

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation-diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of

  4. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients.

    PubMed

    Spitzer, Jan

    2013-04-01

    The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.

  5. Discrete velocity models for multicomponent mixtures and polyatomic molecules without nonphysical collision invariants and shock profiles

    NASA Astrophysics Data System (ADS)

    Bernhoff, Niclas

    2016-11-01

    An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that, in difference to in the continuous case, DVMs can have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single species as well as for binary mixtures. For binary mixtures also the concept of supernormal DVMs has been introduced by Bobylev and Vinerean. Supernormal DVMs are defined as normal DVMs such that both restrictions to the different species are normal as DVMs for single species. In this presentation we extend the concept of supernormal DVMs to the case of multicomponent mixtures and introduce it for polyatomic molecules. By polyatomic molecules we mean here that each molecule has one of a finite number of different internal energies, which can change, or not, during a collision. We will present some general algorithms for constructing such models, but also give some concrete examples of such constructions. The two different approaches above can be combined to obtain multicomponent mixtures with a finite number of different internal energies, and then be extended in a natural way to chemical reactions. The DVMs are constructed in such a way that we for the shock-wave problem obtain similar structures as for the classical discrete Boltzmann equation (DBE) for one species, and therefore will be able to apply previously obtained results for the DBE. In fact the DBE becomes a system of ordinary differential equations (dynamical system) and the shock profiles can be seen as heteroclinic orbits connecting two singular points (Maxwellians). The previous results for the DBE then give us the existence of shock profiles for shock speeds close to a typical speed

  6. Loss of thermodynamic work at the cascade stages during the separation of a multicomponent mixture of ideal gases

    NASA Astrophysics Data System (ADS)

    Chizhkov, V. P.; Boitsov, V. N.

    2016-01-01

    Formulas for estimating the thermodynamic work during the separation of components of binary and multicomponent mixtures are discussed and generalized. The difference between the work of separation determined from the separation potential and the thermodynamically estimated work during the isobaric-isothermal mixing of fractions separated at the ends of a cascade is calculated and explained.

  7. The New TLC Method for Separation and Determination of Multicomponent Mixtures of Plant Extracts

    PubMed Central

    Matysik, Elżbieta; Woźniak, Anna; Paduch, Roman; Rejdak, Robert; Polak, Beata; Donica, Helena

    2016-01-01

    The new mode of two-dimensional gradient thin layer chromatography (MGD-2D TLC) has been presented. Short distance development of sample in the first dimension leads to formation of the preconcentrated narrow zones. They are consecutively separated in the second dimension with the mobile phase gradient in several steps of development until the eluent reaches the further end of the chromatographic plate. The use of the above-mentioned technique allows isolating and then identifying the compounds of various polarity from the multicomponent mixture. The practical application of two-dimensional gradient thin layer chromatography has been performed for isolation of the two plant (Juniperus and Thymus) oils components as the examples of test mixtures. The experiments have been carried out with the use of silica gel plates as well as a normal phase condition. The results of solute separation with isocratic one-dimensional thin layer chromatography system have been compared with those of two-dimensional gradient system. It has been observed that application of the latter mode leads to almost triplicated number of zones in comparison with the former one. It is purposeful to apply the proposed mode to control the purity of the dominant component or components of the mixture. PMID:26981317

  8. Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach

    SciTech Connect

    Wolverton, Christopher; Ozolins, Vidvuds; Kung, Harold H.; Yang, Jun; Hwang, Sonjong; Shore, Sheldon

    2016-11-28

    The objective of the proposed program is to discover novel mixed hydrides for hydrogen storage, which enable the DOE 2010 system-level goals. Our goal is to find a material that desorbs 8.5 wt.% H2 or more at temperatures below 85°C. The research program will combine first-principles calculations of reaction thermodynamics and kinetics with material and catalyst synthesis, testing, and characterization. We will combine materials from distinct categories (e.g., chemical and complex hydrides) to form novel multicomponent reactions. Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH2+NH3BH3] and nitrogen-hydrogen based borohydrides [e.g. Al(BH4)3(NH3)3]. The 2010 and 2015 FreedomCAR/DOE targets for hydrogen storage systems are very challenging, and cannot be met with existing materials. The vast majority of the work to date has delineated materials into various classes, e.g., complex and metal hydrides, chemical hydrides, and sorbents. However, very recent studies indicate that mixtures of storage materials, particularly mixtures between various classes, hold promise to achieve technological attributes that materials within an individual class cannot reach. Our project involves a systematic, rational approach to designing novel multicomponent mixtures of materials with fast hydrogenation/dehydrogenation kinetics and favorable thermodynamics using a combination of state-of-the-art scientific computing and experimentation. We will use the accurate predictive power of first-principles modeling to understand the thermodynamic and microscopic kinetic processes involved in hydrogen release and uptake and to design new material/catalyst systems with improved properties. Detailed characterization and atomic-scale catalysis experiments will elucidate the effect of dopants and nanoscale catalysts in achieving fast kinetics and reversibility. And

  9. Mass Transfer in the Dissolution of a Multi-Component Liquid Droplet in an Immiscible Liquid Environment

    PubMed Central

    Su, Jonathan T.; Needham, David

    2013-01-01

    The Epstein Plesset equation has recently been shown to accurately predict the dissolution of a pure liquid microdroplet into a second immiscible solvent, such as oil into water. Here, we present a series of new experiments and a modification to this equation to model the dissolution of a two-component oil-mixture microdroplet into a second immiscible solvent, in which the two materials of the droplet have different solubilities. The model is based upon a reduced surface area approximation and the assumption of ideal homogenous mixing: Massfluxdmidt=AfraciDi(ci-cs){1R+1πDit}, where Afraci is the area fraction of component I; ci and cs are the initial and saturation concentrations of the droplet material in the surrounding medium; R is the radius of the droplet; t is time; and Di is the coefficient of diffusion of component I in the surrounding medium. This new model has been tested by use of a two-chamber micropipette-based method, which measured the dissolution of single individual microdroplets of mutually-miscible liquid mixtures (ethyl acetate/butyl acetate, and butyl acetate/amyl acetate) into water. We additionally measured the diffusion coefficient of the pure materials: ethyl acetate, butyl acetate, and amyl acetate, in water at 22 deg C. Diffusion coefficients for the pure acetates in water were: 8.65 x 10−6, 7.61 x 10−6, and 9.14 x 10−6 cm2/s respectively. This model accurately predicts the dissolution of microdroplets for the ethyl acetate/butyl acetate and butyl acetate/amyl acetate systems given the solubility and diffusion coefficients of each of the individual components in water as well as the initial droplet radius. The average mean squared error was 8.96%. The dissolution of a spherical ideally mixed multi-component droplet closely follows the modified Epstein Plesset model presented here. PMID:24050124

  10. Molecular thermodiffusion (thermophoresis) in liquid mixtures.

    PubMed

    Semenov, Semen N; Schimpf, Martin E

    2005-10-01

    Thermodiffusion (thermophoresis) in liquid mixtures is theoretically examined using a hydrodynamic approach. Thermodiffusion is related to the local temperature-induced pressure gradient in the liquid layer surrounding the selected molecule and to the secondary macroscopic pressure gradient established in the system. The local pressure gradient is produced by excess pressure due to the asymmetry of interactions with surrounding molecules in a nonuniform temperature field. The secondary pressure gradient is considered an independent parameter related to the concentration gradient formed by volume forces, calculated from the generalized equations for mass transfer. Values of Soret coefficients for mixtures of toluene and -hexane are calculated using parameters in the literature. When the molecules are assumed to be similar in shape, the calculated Soret coefficients are lower than the empirical values found in the literature. However, by introducing an asymmetry parameter, which is calculated from independent measurements of component diffusion in the literature, very good agreement is obtained.

  11. UV sensors based on liquid crystals mixtures

    NASA Astrophysics Data System (ADS)

    Chanishvili, Andro; Petriashvili, Gia; Chilaya, Guram; Barberi, Riccardo; De Santo, Maria P.; Matranga, Mario A.; Ciuchi, F.

    2006-04-01

    The Erythemal Response Spectrum is a scientific expression that describes the sensitivity of the skin to the ultraviolet radiation. The skin sensitivity strongly depends on the UV wavelength: a long exposition to UV radiation causes erythema once a threshold dose has been exceeded. In the past years several devices have been developed in order to monitor the UV exposure, most of them are based on inorganic materials that are able to mimic the human skin behaviour under UV radiation. We present a new device based on liquid crystals technology. The sensor is based on a liquid crystalline mixture that absorbs photons at UV wavelength and emits them at a longer one. This system presents several innovative features: the absorption range of the mixture can be varied to be sensitive to different wavelengths, the luminescence intensity can be tuned, the system can be implemented on flexible devices.

  12. Thermodynamic Study of the Role of Interface Curvature on Multicomponent Vapor-Liquid Phase Equilibrium.

    PubMed

    Shardt, Nadia; Elliott, Janet A W

    2016-04-14

    The effect of interface curvature on phase equilibrium has been much more studied for single-component than multicomponent systems. We isolate the effect of curvature on multicomponent vapor-liquid equilibrium (VLE) phase envelopes and phase composition diagrams using the ideal system methanol/ethanol and the nonideal system ethanol/water as illustrative examples. An important finding is how nanoscale interface curvature shifts the azeotrope (equal volatility point) of nonideal systems. Understanding of the effect of curvature on VLE can be exploited in future nanoscale prediction and design.

  13. Unmixing Multi-Component Magnetic Mixtures in Geologic Materials Using First Order Reversal Curve Diagrams

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Harrison, R. J.; Li, Y.; Muraszko, J.; Channell, J. E. T.; Piotrowski, A. M.; Hodell, D. A.; Necula, C.; Panaiotu, C. G.

    2015-12-01

    We have developed a magnetic unmixing method based on principal component analysis (PCA) of first-order reversal curve (FORC) diagrams. PCA provides an objective and robust statistical framework for unmixing, because it represents data variability as a linear combination of a limited number of principal components that are derived purely on the basis of natural variations contained within the dataset. For PCA we have resampled FORC distributions on grids that capture diagnostic signatures of magnetic domain states. Individual FORC diagrams were then recast as linear combinations of end-member (EM) FORC diagrams, located at user-defined positions in PCA space. The EM selection is guided by constraints derived from physical modeling, and is imposed by data scatter. To test our model, we have investigated temporal variations of two EMs in bulk North Atlantic sediment cores collected from the Rockall Trough and the Iberian Continental Margin. Sediments from these sites contain a mixture of magnetosomes and granulometrically distinct detrital magnetite. We have also quantified the spatial variation of three EM components in surficial sediments along the flow path of the North Atlantic Deep Water (NADW). These samples were separated into granulometric fractions, which also assisted in constraining EM definition. The unmixing model reveals systematic variations in EM relative abundance as a function of distance along NADW flow. Finally, we have applied PCA to the combined dataset of Rockall Trough and NADW sediments, which can be recast as a four-EM mixture, providing enhanced discrimination between components. Our method forms the foundation of a general solution to the problem of unmixing multi-component magnetic mixtures, a fundamental task of rock magnetic studies.

  14. Direct numerical simulation of gaseous mixing layers laden with multicomponent-liquid drops: liquid-specific effects

    NASA Astrophysics Data System (ADS)

    Le Clercq, Patrick C.; Bellan, Josette

    2005-06-01

    A representation of multicomponent-liquid (MC-liquid) composition as a linear combination of two single-Gamma probability distribution functions (PDFs) is used to describe a large number of MC-liquid drops evaporating in a gas flow. The PDF, called the double-Gamma PDF, depends on the molar mass. The gas-phase conservation equations are written in an Eulerian frame and the drops are described in a Lagrangian frame. Gas conservation equations for mass, momentum, species and energy are combined with differential conservation equations for the first four moments of the gas-composition PDF and coupled to the perfect gas equation of state. Source terms in all conservation equations account for the gas/drop interaction. The drop governing equations encompass differential conservation statements for position, mass, momentum, energy and four moments of the liquid-composition PDF. Simulations are performed for a three-dimensional mixing layer whose lower stream is initially laden with drops colder than the surrounding gas. Initial perturbations excite the layer to promote the double pairing of its four initial spanwise vortices to an ultimate vortex. During the layer evolution, the drops heat and evaporate. The results address the layer evolution, and the state of the gas and drops when layers reach a momentum-thickness maximum past the double vortex pairing. Of interest is the influence of the liquid composition on the development of the vortical features of the flow, on the vortical state reached after the second pairing, and on the gas temperature and composition. The MC-liquid simulations are initiated with a single-Gamma PDF composition so as to explore the development of the double-Gamma PDF. Examination of equivalent simulations with n-decane, diesel and three kerosenes as the liquid, permits assessment of the single-species versus the MC-liquid aspect, and of mixture composition specific effects. Global layer growth and global rotational characteristics are

  15. Non-equilibrium dynamics of glass-forming liquid mixtures.

    PubMed

    Sánchez-Díaz, Luis Enrique; Lázaro-Lázaro, Edilio; Olais-Govea, José Manuel; Medina-Noyola, Magdaleno

    2014-06-21

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010)] is extended here to multi-component systems. The resulting theory describes the statistical properties of the instantaneous local particle concentration profiles nα(r, t) of species α in terms of the coupled time-evolution equations for the mean value n̄α(r, t) and for the covariance σ(αβ)(r, r'; t) ≡ δn(α)(r, t)δn(β)(r', t) of the fluctuations δn(α)(r, t) = n(α)(r, t) - n̄α(r, t). As in the monocomponent case, these two coarse-grained equations involve a local mobility function bα(r, t) for each species, written in terms of the memory function of the two-time correlation function C(αβ)(r, r'; t, t') ≡ δn(α)(r, t)δn(β)(r', t'). If the system is constrained to remain spatially uniform and subjected to a non-equilibrium preparation protocol described by a given temperature and composition change program T(t) and n̄α(r, t), these equations predict the irreversible structural relaxation of the partial static structure factors Sαβ(k; t) and of the (collective and self) intermediate scattering functions Fαβ(k, τ; t) and F(αβ)(S)(k, τ; t). We illustrate the applicability of the resulting theory with two examples involving simple model mixtures subjected to an instantaneous temperature quench: an electroneutral binary mixture of equally sized and oppositely charged hard-spheres, and a binary mixture of soft-spheres of moderate size-asymmetry.

  16. Non-equilibrium dynamics of glass-forming liquid mixtures

    NASA Astrophysics Data System (ADS)

    Sánchez-Díaz, Luis Enrique; Lázaro-Lázaro, Edilio; Olais-Govea, José Manuel; Medina-Noyola, Magdaleno

    2014-06-01

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010)] is extended here to multi-component systems. The resulting theory describes the statistical properties of the instantaneous local particle concentration profiles nα(r, t) of species α in terms of the coupled time-evolution equations for the mean value overline{n}_α ({r},t) and for the covariance σ _{α β }({r},{r}^' };t)equiv overline{δ n_α ({r},t)δ n_β ({r}^' },t)} of the fluctuations δ n_α ({r},t) = n_α ({r},t)- overline{n}_α ({r},t). As in the monocomponent case, these two coarse-grained equations involve a local mobility function bα(r, t) for each species, written in terms of the memory function of the two-time correlation function C_{α β }({r},{r}^' };t,t^' }) equiv overline{δ n_α ({r},t)δ n_β ({r}^' },t^' })}. If the system is constrained to remain spatially uniform and subjected to a non-equilibrium preparation protocol described by a given temperature and composition change program T(t) and overline{n}_α (t), these equations predict the irreversible structural relaxation of the partial static structure factors Sαβ(k; t) and of the (collective and self) intermediate scattering functions Fαβ(k, τ; t) and F^S_{α β }(k,τ ;t). We illustrate the applicability of the resulting theory with two examples involving simple model mixtures subjected to an instantaneous temperature quench: an electroneutral binary mixture of equally sized and oppositely charged hard-spheres, and a binary mixture of soft-spheres of moderate size-asymmetry.

  17. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop

  18. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop

  19. Excess compressibility in binary liquid mixtures.

    PubMed

    Aliotta, F; Gapiński, J; Pochylski, M; Ponterio, R C; Saija, F; Salvato, G

    2007-06-14

    Brillouin scattering experiments have been carried out on some mixtures of molecular liquids. From the measurement of the hypersonic velocities we have evaluated the adiabatic compressibility as a function of the volume fraction. We show how the quadratic form of the excess compressibility dependence on the solute volume fraction can be derived by simple statistical effects and does not imply any interaction among the components of the system other than excluded volume effects. This idea is supported by the comparison of the experimental results with a well-established prototype model, consisting of a binary mixture of hard spheres with a nonadditive interaction potential. This naive model turns out to be able to produce a very wide spectrum of structural and thermodynamic features depending on values of its parameters. An attempt has made to understand what kind of structural information can be gained through the analysis of the volume fraction dependence of the compressibility.

  20. Efficient and robust relaxation procedures for multi-component mixtures including phase transition

    NASA Astrophysics Data System (ADS)

    Han, Ee; Hantke, Maren; Müller, Siegfried

    2017-06-01

    We consider a thermodynamic consistent multi-component model in multi-dimensions that is a generalization of the classical two-phase flow model of Baer and Nunziato. The exchange of mass, momentum and energy between the phases is described by additional source terms. Typically these terms are handled by relaxation procedures. Available relaxation procedures suffer from efficiency and robustness resulting in very costly computations that in general only allow for one-dimensional computations. Therefore we focus on the development of new efficient and robust numerical methods for relaxation processes. We derive exact procedures to determine mechanical and thermal equilibrium states. Further we introduce a novel iterative method to treat the mass transfer for a three component mixture. All new procedures can be extended to an arbitrary number of inert ideal gases. We prove existence, uniqueness and physical admissibility of the resulting states and convergence of our new procedures. Efficiency and robustness of the procedures are verified by means of numerical computations in one and two space dimensions.

  1. Zwanzig model of multi-component mixtures of biaxial particles: y3 theory re-visited

    NASA Astrophysics Data System (ADS)

    Sokolova, E. P.; Tumanyan, N. P.; Vlasov, A. Yu.; Masters, A. J.

    The paper considers the thermodynamic and phase ordering properties of a multi-component Zwanzig mixture of hard rectangular biaxial parallelepipeds. An equation of state (EOS) is derived based on an estimate of the number of arrangements of the particles on a three- dimensional cubic lattice. The methodology is a generalization of the Flory-DiMarzio counting scheme, but, unlike previous work, this treatment is thermodynamically consistent. The results are independent of the order in which particles are placed on the lattice. By taking the limit of zero lattice spacing, a translationally continuous variant of the model (the off-lattice variant) is obtained. The EOS is identical to that obtained previously by a wide variety of different approaches. In the off-lattice limit, it corresponds to a third-level y-expansion and, in the case of a binary mixture of square platelets, it also corresponds to the EOS obtained from fundamental measure theory. On the lattice it is identical to the EOS obtained by retaining only complete stars in the virial expansion. The off-lattice theory is used to study binary mixtures of rods (R1 - R2) and binary mixtures of platelets (P1 - P2). The particles were uniaxial, of length (thickness) L and width D. The aspect ratios Γi = Li/Di of the components were kept constant (Γ1R = 15, Γ1P = 1/15 and Γ2R = 150, Γ2P = 1/150), so the second virial coefficient of R1 was identical to P1 and similarly for R2 and P2. The volume ratio of particles 1 and 2, v1/v2, was then varied, with the constraints that viR = viP and ILM0001. Results on nematic-isotropic (N - I) phase coexistence at an infinite dilution of component 2, are qualitatively similar for rods and platelets. At small values of the ratio v1/v2, the addition of component 2 (i.e. a thin rod (e.g. a polymer) or a thin plate) results in the stabilization of the nematic phase. For larger values of v1/v2, however, this effect is reversed and the addition of component 2 destabilizes the

  2. Coarsening in binary solid-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Voorhees, P. W.

    1990-01-01

    A theory of Ostwald ripening has been developed for a solid-liquid mixture cosisting of a low volume fraction array of spherical solid particles in a liquid wherein the coarsening process proceeds via the transport of both heat and mass. It is found that the simultaneous transport of heat and mass during ripening does not alter the exponents of the temporal power laws governing the ripening process from their classical values but does alter the amplitudes of these power laws. The growth rate of the cube of the average particle radius, the rate constant, is found to depend both on the alloy solute concentration and the ratio of the thermal to solutal diffusivities. In most metallic systems, a large decrease in the rate constant can be expected with small additions of solute to a pure metal. Possible extensions of this theory to the analogous problem of ripening in isothermal ternary alloys are also discussed.

  3. Study on the variation rules of the joint effects for multicomponent mixtures containing cyanogenic toxicants and aldehydes based on the transition state theory.

    PubMed

    Li, Weiying; Tian, Dayong; Lin, Zhifen; Wang, Dali; Yu, Hongxia

    2014-02-28

    Although the study of the variation rules of the joint effects for multicomponent mixtures has gained increasing attention, it still remains unclear how the variation occurs and what the relationships between the joint effects of multicomponent mixtures and their corresponding binary mixtures are. To explain how the variation occurs, this study first proposes a hypothesis on the variation rules of the joint effects using the well-known transition state theory. The hypothesis concluded that the joint effect of multicomponent mixtures is among the joint effects of the corresponding binary mixtures. This hypothesis was named the fishing hypothesis because there is a similarity between the action process of the joint effects and the fishing process. Next, the hypothesis was validated by use of the experimental data by evaluating the joint effects of binary, ternary and quaternary mixtures containing cyanogenic toxicants and aldehydes on Photobacterium phosphoreum. The application of the fishing hypothesis can explain the rule as to how the joint effects of a multicomponent-mixture vary with its number of components and their ratios. This study provides a good method to predict the joint effects of multicomponent mixtures using the joint effects of their corresponding binary mixtures. An improvement in the fishing hypothesis will be needed in our future studies due to the approximate assumptions used in the deduction of the hypothesis.

  4. Mathematical Model of Nonstationary Separation Processes Proceeding in the Cascade of Gas Centrifuges in the Process of Separation of Multicomponent Isotope Mixtures

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.

    2017-03-01

    We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.

  5. Mathematical Modeling of Non-Stationary Hydraulic Process Occurring in the Gas Centrifuge Cascade During the Separation of Multicomponent Isotope Mixtures

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.

    2016-08-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  6. CONTAMINANT TRANSPORT RESULTING FROM MULTICOMPONENT NONAQUEOUS PHASE LIQUID POOL DISSOLUTION IN THREE-DIMENSIONAL SUBSURFACE FORMATIONS (R823579)

    EPA Science Inventory

    A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...

  7. CONTAMINANT TRANSPORT RESULTING FROM MULTICOMPONENT NONAQUEOUS PHASE LIQUID POOL DISSOLUTION IN THREE-DIMENSIONAL SUBSURFACE FORMATIONS (R823579)

    EPA Science Inventory

    A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...

  8. Atomic caging in multicomponent glass-forming metallic liquids

    NASA Astrophysics Data System (ADS)

    Wong, Kaikin; Chen, Changjiu; Koza, Michael Marek; Samwer, Konrad; Mavila Chathoth, Suresh

    2015-05-01

    We have examined the effect of density on atomic caging in highly dense glass-forming metallic liquids, Ni59.5Nb40.5 and Ni60Nb34.8Sn5.2 using quasielastic neutron scattering. The density of the liquids is unusually high and close to the mode-coupling dynamic transition. The self-correlation function obtained from the QENS data shows stretching and the temperature dependence of the diffusion coefficient shows non-Arrhenius behavior. The mean relaxation time exhibits a non-linear variation with Q 2, which is an indicative of a jump diffusion process in these highly dense liquids. We use a simple jump diffusion model to obtain the residence time of Ni atoms in these alloy liquids. The residence time of Ni atoms exhibits a linear dependence with density of these alloy liquids, but shows an abrupt change in the slope approximately at a density of 7.5 \\text{g cm}-3 . The present observation indicates that the time at which the atoms are trapped in cages is not a monotonic function of density in hard-sphere-like metallic liquids. Our results indicate the existence of a hidden dynamic transition in glass-forming metallic liquids.

  9. Shockwave initiation of mixture liquid HE

    NASA Astrophysics Data System (ADS)

    Men'shikh, Alexey

    2005-07-01

    The authors performed studies of initiation of mixture liquid HE (of the ``oxidizer-fuel'' type) consisting of tetranitromethane with nitrobenzene (TNM/NB) having mass ratio of 74/26 by planar and spherically diverging shock waves with amplitudes of 10-25 GPa. Laser interferometry method was used to record profile of particle velocity at the HE-window interface. At initiation of HE detonation having thickness of 2-50 mm, the pulsing regime was recorded, maximum pressure of which reached 50 GPa in some parts of the front. Thickness of the layer of pulsing detonation wave was ˜150 mm. We recorded dispersion of particle velocity of wave. Different profiles and amplitudes of wave were recorded in one test at different interference lines. At HE thickness of 50 mm, in a series of tests, we recorded normal detonation wave with value of Neumann spike of 35 GPa, value of detonation pressure of 21 GPa. Pulsing detonation regime was also recorded at initiation of the other mixture liquid HE TNM/NB, where NB percentage was from 20 to 50%. The paper presents hypotheses for explanation of the mechanism of detonation initiation in studied HE.

  10. DETERMINATION AND QUANTIFICATION OF NON-AQUEOUS PHASE LIQUID MIXTURES IN ENVIRONMENTAL MEDIA

    SciTech Connect

    Rucker, G

    2006-09-22

    It is important to recognize the presence of Non-Aqueous Phase Liquids (NAPLs) in soils at a waste site in order to design and construct a successful remediation system. NAPLs often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media, such as vadose zone soil, where the mixture will partition and equilibrate with soil particles, pore vapor, and pore water. Complex organic mixtures can greatly complicate the determination and quantification of NAPL in soil due to inter-media transfer. NAPL thresholds can also change because of mixture physical properties and can disguise the presence of NAPL. A unique analytical method and copyrighted software have been developed at the Department of Energy's Savannah River Site that facilitates solution of this problem. The analytical method uses a classic chemistry approach and applies the principals of solubility limit theory, Raoult's Law, and equilibrium chemistry to derive an accurate estimation of NAPL presence and quantity. The method is unique because it calculates an exact result that is mass balanced for each physical state, chemical mixture component, and mixture characteristics. The method is also unique because the solution can be calculated on both a wet weight and dry weight basis--a factor which is often overlooked. The software includes physical parameters for 300 chemicals in a database that self-loads into the model to save time. The method accommodates up to 20 different chemicals in a multi-component mixture analysis. A robust data display is generated including important parameters of the components and mixture including: NAPL thresholds for individual chemical components within the mixture, mass distribution in soil for each physical state, molar fractions, density, vapor pressure, solubility, mass balance, media concentrations, residual saturation, and modest graphing capabilities. This method and software are power tools to simplify otherwise tedious

  11. Dynamic thermodiffusion model for binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Saghir, M. Ziad

    2009-07-01

    Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring’s reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models.

  12. Dynamic thermodiffusion model for binary liquid mixtures.

    PubMed

    Eslamian, Morteza; Saghir, M Ziad

    2009-07-01

    Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring's reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models.

  13. Triphilic Ionic-Liquid Mixtures: Fluorinated and Non-fluorinated Aprotic Ionic-Liquid Mixtures

    PubMed Central

    Hollóczki, Oldamur; Macchiagodena, Marina; Weber, Henry; Thomas, Martin; Brehm, Martin; Stark, Annegret; Russina, Olga; Triolo, Alessandro; Kirchner, Barbara

    2015-01-01

    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains—polar and nonpolar—three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment. PMID:26305804

  14. Stable Isotope Labeling Strategy for Protein-Ligand Binding Analysis in Multi-Component Protein Mixtures

    NASA Astrophysics Data System (ADS)

    DeArmond, Patrick D.; West, Graham M.; Huang, Hai-Tsang; Fitzgerald, Michael C.

    2011-03-01

    Described here is a stable isotope labeling protocol that can be used with a chemical modification- and mass spectrometry-based protein-ligand binding assay for detecting and quantifying both the direct and indirect binding events that result from protein-ligand binding interactions. The protocol utilizes an H{2/16}O2 and H{2/18}O2 labeling strategy to evaluate the chemical denaturant dependence of methionine oxidation in proteins both in the presence and absence of a target ligand. The differential denaturant dependence to the oxidation reactions performed in the presence and absence of ligand provides a measure of the protein stability changes that occur as a result of direct interactions of proteins with the target ligand and/or as a result of indirect interactions involving other protein-ligand interactions that are either induced or disrupted by the ligand. The described protocol utilizes the 18O/16O ratio in the oxidized protein samples to quantify the ligand-induced protein stability changes. The ratio is determined using the isotopic distributions observed for the methionine-containing peptides used for protein identification in the LC-MS-based proteomics readout. The strategy is applied to a multi-component protein mixture in this proof-of-principle experiment, which was designed to evaluate the technique's ability to detect and quantify the direct binding interaction between cyclosporin A and cyclophilin A and to detect the indirect binding interaction between cyclosporin A and calcineurin (i.e., the protein-protein interaction between cyclophilin A and calcineurin that is induced by cyclosporin A binding to cyclophilin A).

  15. Nonequilibrium fluctuation-induced Casimir pressures in liquid mixtures.

    PubMed

    Kirkpatrick, T R; Ortiz de Zárate, J M; Sengers, J V

    2016-03-01

    In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concentration fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the concentration gradient results from a temperature gradient through the Soret effect. A comparison is made between the pressures induced by nonequilibrium concentration fluctuations in liquid mixtures and those induced by nonequilibrium temperature fluctuations in one-component fluids. Some suggestions for experimental verification procedures are also presented.

  16. Investigations into complex liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Jennifer

    Liquid crystal phases exhibit physical characteristics that lie between those of liquid and crystal phases. The many liquid crystal sub-phases are defined based on the degree of positional and orientational ordering the molecules have and the materials that make up these liquid crystal phases. This thesis presents a study of the molecular packing and physical properties of complex liquid crystal phases using dopants to better examine the stability and packing mechanisms of these phases. It also looks at the dispersion of quantum dots in liquid crystal materials, examining the electro-optical properties of the mixtures. The main goal of this thesis is to examine the effects of dopants on the properties of liquid crystal phases using optical microscopy, differential scanning calorimetry, electro-optical measurements, and X-ray scattering. For those mixtures with quantum dots fluorescence microscopy and photoluminescence measurements were also conducted. Rod-like liquid crystals are commonly used in display applications when the material is in a nematic liquid crystal phase, which is the least ordered phase exhibiting no positional ordering. The more complicated chiral smectic liquid crystal phases, which have a one dimensional layer structure, show potential for faster and tri-stable switching. A chiral rod-like liquid crystal material is doped with both chiral and achiral rod-like liquid crystals to examine the stability of one of the chiral smectic sub-phase, the SmC* FI1 phase. This phase consists of tilted molecules rotating about the cone defined by the tilt angle with a periodicity of three layers and an overall helical structure. The SmC*FI1 phase is stabilized by the competition between antiferroelectric and ferroelectric interactions, and small amounts of the achiral dopant broadens the range of this phase by almost 5°C. Higher dopant concentrations of the achiral material result in the destabilization of not just the SmC*FI1 phase but all tilted sub

  17. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging–ion mass spectrometry

    PubMed Central

    Fanood, Mohammad M Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron–ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2–4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  18. Liquid-gas phase transitions in a multicomponent nuclear system with Coulomb and surface effects

    SciTech Connect

    Lee, S. J.; Mekjian, A. Z.

    2001-04-01

    The liquid-gas phase transition is studied in a multicomponent nuclear system using a local Skyrme interaction with Coulomb and surface effects. Some features are qualitatively the same as the results of Mu''ller and Serot where a relativistic mean field was used without Coulomb and surface effects. Surface tension brings the coexistence binodal surface to lower pressure. The Coulomb interaction makes the binodal surface smaller and causes another pair of binodal points at low pressure and large proton fraction with fewer protons in the liquid phase and more protons in the gas phase.

  19. Diffusion controlled evaporation of a multicomponent droplet - Theoretical studies on the importance of variable liquid properties

    NASA Astrophysics Data System (ADS)

    Kneer, R.; Schneider, M.; Noll, B.; Wittig, S.

    1993-06-01

    A well-known multicomponent droplet vaporization model, the Diffusion Limit Model, has been extended to account for property variations in the liquid phase. The model has been tested for typical conditions of modern gas turbine combustors. The results for a hexane/tetradecane droplet show that the temperature- and concentration-dependence of the liquid properties affect the vaporization process, especially with regard to a reduced diffusional resistance. Additionally, remarkable variations of the refractive index are observed yielding helpful information for the estimation of errors in optical particle sizing techniques. Regarding comprehensive spray calculations, the use of the constant property formulation is recommended with improved reference values based on variable property calculations.

  20. Percolation segregation in multi-size and multi-component particulate mixtures: Measurement, sampling, and modeling

    NASA Astrophysics Data System (ADS)

    Jha, Anjani K.

    Particulate materials are routinely handled in large quantities by industries such as, agriculture, electronic, ceramic, chemical, cosmetic, fertilizer, food, nutraceutical, pharmaceutical, power, and powder metallurgy. These industries encounter segregation due to the difference in physical and mechanical properties of particulates. The general goal of this research was to study percolation segregation in multi-size and multi-component particulate mixtures, especially measurement, sampling, and modeling. A second generation primary segregation shear cell (PSSC-II), an industrial vibrator, a true cubical triaxial tester, and two samplers (triers) were used as primary test apparatuses for quantifying segregation and flowability; furthermore, to understand and propose strategies to mitigate segregation in particulates. Toward this end, percolation segregation in binary, ternary, and quaternary size mixtures for two particulate types: urea (spherical) and potash (angular) were studied. Three coarse size ranges 3,350-4,000 mum (mean size = 3,675 mum), 2,800-3,350 mum (3,075 mum), and 2,360-2,800 mum (2,580 mum) and three fines size ranges 2,000-2,360 mum (2,180 mum), 1,700-2,000 mum (1,850 mum), and 1,400-1,700 mum (1,550 mum) for angular-shaped and spherical-shaped were selected for tests. Since the fines size 1,550 mum of urea was not available in sufficient quantity; therefore, it was not included in tests. Percolation segregation in fertilizer bags was tested also at two vibration frequencies of 5 Hz and 7Hz. The segregation and flowability of binary mixtures of urea under three equilibrium relative humidities (40%, 50%, and 60%) were also tested. Furthermore, solid fertilizer sampling was performed to compare samples obtained from triers of opening widths 12.7 mm and 19.1 mm and to determine size segregation in blend fertilizers. Based on experimental results, the normalized segregation rate (NSR) of binary mixtures was dependent on size ratio, mixing ratio

  1. Sound speed measurements in liquid oxygen-liquid nitrogen mixtures

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Mazel, D. S.

    1985-01-01

    The sound speed in liquid oxygen (LOX), liquid nitrogen (LN2), and five LOX-LN2 mixtures was measured by an ultrasonic pulse-echo technique at temperatures in the vicinity of -195.8C, the boiling point of N2 at a pressure of I atm. Under these conditions, the measurements yield the following relationship between sound speed in meters per second and LN2 content M in mole percent: c = 1009.05-1.8275M+0.0026507 M squared. The second speeds of 1009.05 m/sec plus or minus 0.25 percent for pure LOX and 852.8 m/sec plus or minus 0.32 percent for pure LN2 are compared with those reported by past investigators. Measurement of sound speed should prove an effective means for monitoring the contamination of LOX by Ln2.

  2. Crystallization and glass formation in multi-component liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Schroers, Jan; O'Hern, Corey

    2013-03-01

    When a liquid is cooled faster than the critical cooling rate, crystallization is avoided, and amorphous solids are formed. What sets the critical cooling rate? We perform molecular dynamics simulations of model metallic alloys--polydisperse spheres with hard-sphere and modified Lennard-Jones interactions--to study the critical cooling rate as a function of the particle size ratio, stoichiometry, and strength of the attractive interactions. We also characterize the structural properties of glassy and crystalline states that form at rapid and slow cooling/compression rates, respectively, using local order parameters, position correlation functions, and Voronoi and other tessellations. NSF MRSEC DMR-1119826

  3. Enhanced-Solubilization of a Multi-Component Immiscible Liquid Source Zone within an Intermediate-scale Flow Cell System

    NASA Astrophysics Data System (ADS)

    Harvell, J. R.; Tick, G. R.

    2011-12-01

    Complex multi-component immiscible liquid mixtures can significantly limit the effectiveness of groundwater remediation. The use of enhanced-flushing technologies has emerged as a promising technique for the remediation of sites contaminated with immiscible liquids. A series of two dimensional (2-D) flow cell experiments was conducted to quantify the effectiveness of two different flushing agents on the removal of a uniformly distributed multi-component immiscible liquid source zone. A 39.5 x 20.2 cm flow-cell was packed with 20/30-mesh sand and emplaced with a 15 x 3 cm rectangular source zone within the center of the flow cell. The source zone was established with a 10% NAPL saturation (Sn) consisting of equal 1:1:1 mole mixture of tetrachloroethene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (DCE). The solubilization agents investigated included 5 wt% solution of a complexing sugar, hydroxypropyl-$betacyclodextrin (HPCD), and a 5 wt% solution of a surfactant, sodium dodecyl sulfate (SDS). The results of these experiments indicate that the addition of a chemical flushing agent greatly reduces the time needed to remove each component compared to flushing with water alone (i.e. pump and treat). Elution curve (concentration-time) analysis from both total extraction and at the down-gradient end of the source zone showed that SDS removed all three components from the source zone approximately 10 times faster than HPCD. For the extraction port SDS showed slightly more ideal removal in terms of mass flux behavior, removing more mass initially before a significant reduction in mass flux was observed. Although SDS was superior when evaluated on a recovery basis, HPCD outperformed SDS for all components when compared based on contaminant-mass to reagent-mass and moles of contaminant to moles of reagent removed for the source zone port. These findings suggest that the selection of a particular flushing agent should be evaluated carefully prior to remediation as

  4. ION-pair liquid chromatography technique for the estimation of metformin in its multicomponent dosage forms.

    PubMed

    Vasudevan, M; Ravi, J; Ravisankar, S; Suresh, B

    2001-04-01

    A simple, precise and accurate high performance liquid chromatography (HPLC) method was developed for the simultaneous estimation of metformin with gliclazide and glipizide present in multicomponent dosage forms. The method was carried out on Inertsil C(18) column. A mobile phase composed of acetonitrile-water containing camphor sulphonic acid (adjusted to pH 7 using 0.1 N sodium hydroxide; 75 mM) at a flow rate of 1 ml min(-1) was used for the separation. Detection was carried out at 225 nm. Tolbutamide was used as internal standard. Validation of the developed HPLC method was carried out.

  5. Nucleation in a Sheared Liquid Binary Mixture.

    NASA Astrophysics Data System (ADS)

    Min, Kyung-Yang

    When a binary liquid mixture of lutidine plus water (LW) is quenched to a temperature T and is exposed to a continuous shear rate S, the result is a steady-state droplet distribution. This steady state can be probed by measuring the unscattered intensity I_{f}, or the scattered intensity I_{s}, as a function of delta T and S. In the experiments described here, S is fixed and delta T is varied in a step-wise fashion. The absence of hysteresis was probed in two separate experiments: First, I_{f} was measured as a function of S for a given delta T. Next, I_{f} was measured as a function of delta T for a given S. In either case, the hysteresis associated with the shear-free nucleation is absent. In addition, a flow-history dependent hysteresis was studied. In the 2-dimensional parameter space consisting of S and delta T, the onset of nucleation uniquely determines a cloud point line. A plot of the cloud point line exhibits two segments of different slopes with a cross-over near the temperature corresponding to the Becker-Doring limit. The classical picture of a free energy barrier was reformulated to explain this cross-over behavior. Next, photon correlation spectroscopy was used to study the dependence of the transient nucleation behavior on the initial states. A unique feature of this study is that this initial state can be conveniently adjusted by varying the shear rate S to which the mixture is initially exposed. The shear is then turned off, and the number density N(t), as well as the mean radius of the growing droplets, is monitored as a function of time. It was possible to measure the droplet density at a very early stage of phase separation where the nucleation rate J was close to zero. The measurement reveals that N(t) depends critically on the initial state of the metastable system. When the shear is large enough to rupture the droplets as small as the critical size, N(t) increases very slowly. Measurements of the nucleation rates vs. the square of the

  6. Effect of stirring on the safety of flammable liquid mixtures.

    PubMed

    Liaw, Horng-Jang; Gerbaud, Vincent; Chen, Chan-Cheng; Shu, Chi-Min

    2010-05-15

    Flash point is the most important variable employed to characterize fire and explosion hazard of liquids. The models developed for predicting the flash point of partially miscible mixtures in the literature to date are all based on the assumption of liquid-liquid equilibrium. In real-world environments, however, the liquid-liquid equilibrium assumption does not always hold, such as the collection or accumulation of waste solvents without stirring, where complete stirring for a period of time is usually used to ensure the liquid phases being in equilibrium. This study investigated the effect of stirring on the flash-point behavior of binary partially miscible mixtures. Two series of partially miscible binary mixtures were employed to elucidate the effect of stirring. The first series was aqueous-organic mixtures, including water+1-butanol, water+2-butanol, water+isobutanol, water+1-pentanol, and water+octane; the second series was the mixtures of two flammable solvents, which included methanol+decane, methanol+2,2,4-trimethylpentane, and methanol+octane. Results reveal that for binary aqueous-organic solutions the flash-point values of unstirred mixtures were located between those of the completely stirred mixtures and those of the flammable component. Therefore, risk assessment could be done based on the flammable component flash-point value. However, for the assurance of safety, it is suggested to completely stir those mixtures before handling to reduce the risk. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Synthesis of task specific and reusable protic ionic liquids for one-pot multicomponent syntheses

    NASA Astrophysics Data System (ADS)

    Sardar, Sabahat; Wilfred, Cecilia Devi; Marc, Leveque Jean

    2016-11-01

    Protic ionic liquids (ILs) synthesized from 1-methylimidazole with 1,3-propane sultone and 1,4-butane sultone catalyzed Mannich reaction at 25 °C to afford Mannich bases in high yield (76%) and less time duration (20 min). Ionic liquids have been used as dual reagent i.e., as catalyst as well as solvent. Simple extraction by water separated ionic liquid from reaction mixture with 4 times recycling without any significant loss in activity.

  8. A Variational Statistical-Field Theory for Polar Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Zhuang, Bilin; Wang, Zhen-Gang

    Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.

  9. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.

    2016-09-01

    In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.

  10. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids.

    PubMed

    Tóth, Gyula I

    2016-09-01

    In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.

  11. Effect of Various Enhanced-Solubilization Agents on Multi-Component Immiscible Liquid Dissolution and Mass Flux in Homogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Tick, G. R.; Slavic, D.

    2010-12-01

    Complex multi-component immiscible liquid mixtures can significantly limit the effectiveness of groundwater remediation. The use of enhanced-flushing technologies has emerged as a promising technique for the remediation of sites contaminated with immiscible liquids. An important aspect for the effective remediation of these sites depends on the physical heterogeneity of the subsurface, the related distribution of immiscible liquid present within porous media, and the composition of the immiscible liquid mixture. A series of column experiments was conducted to quantify the effectiveness of four different flushing agents on the removal of a uniformly distributed multi-component immiscible liquid consisting of equal mole fractions of tetrachloroethene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (DCE) in homogeneous quartz sand. The solubilization agents investigated included: two complexing sugars, hydroxypropyl-β-cyclodextrin (HPCD) and methyl-β-cyclodextrin (MCD); one surfactant, sodium dodecyl sulfate (SDS); and one cosolvent, ethanol (ETOH). The effectiveness of the flushing agents was evaluated by comparing elution profiles, flushing efficiencies, mass flux behavior, and dissolution ideality (i.e. Raoult’s law prediction) of each component. The results of these experiments indicate that the addition of a chemical flushing agent greatly reduces the time needed to remove each component compared to flushing with water alone (i.e. pump and treat). Although the stronger solubilization-power agents (i.e. SDS and ETOH) showed quicker removal in general, each solubilization agent exhibited unique removal limitations based upon different removal efficiency analyses. For instance, TCE and DCE exhibited relatively ideal dissolution while PCE showed significant nonideal dissolution behavior during flushing with MCD. These findings suggest that the selection of a particular flushing agent should be evaluated carefully prior to remediation as the mass flux and

  12. Multicomponent analysis of replacement liquids of electronic cigarettes using chromatographic techniques.

    PubMed

    Kavvalakis, Matthaios P; Stivaktakis, Polychronis D; Tzatzarakis, Manolis N; Kouretas, Dimitrios; Liesivuori, Jyrki; Alegakis, Athanasios K; Vynias, Dionysios; Tsatsakis, Aristidis M

    2015-05-01

    The electronic cigarette (e-cig) is an invention of the past few years and its popularity is rapidly growing all over the world. A rapid multicomponent analytical protocol for the analysis of the replacement liquids (e-liquids) of e-cig was developed using gas (GC) and liquid chromatography (LC)-mass spectrometry (MS). GC-MS-based methods were developed for the determination of the main humectants and polycyclic aromatic hydrocarbons (PAHs). For the determination and quantification of nicotine (NIC) and nitrosamines, appropriate LC-MS-based methods were developed. The approbated methods were applied for the analysis of 263 e-liquid samples obtained from the Greek market. The instruments response was linear; the limits of quantification ranged from 0.003 μg/mL for three PAHs to 1.187 μg/mL for glycerol. The precision was <16% for all analytes, while the mean accuracy ranged from 99.1% for NIC to 106.6% for the flavor 2,5-dimethylpyrazine. The measured concentrations of NIC were correlated with the theoretical concentrations as reported by the manufacturers. An analog relation between the concentration of the glycerol and of propylene glycol was noticed. The frequency of detection of flavors ranged from 30.4% for the methyl cyclopentenolone to 5.3% for 3.4-dimethoxybenzaldehyde. Nitrosamines and PAHs were not detected in any sample. Because a similar analytical protocol was not available from the existing literature so far, our study offers the advantage of complete analytical methods for rapid and simultaneous multicomponent identification. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Equation-of-state modeling of mixtures with ionic liquids.

    PubMed

    Tsioptsias, Costas; Tsivintzelis, Ioannis; Panayiotou, Costas

    2010-05-14

    A non-electrolyte equation-of-state model was used to describe the phase behavior of binary systems containing alkyl-methyimidazolium bis(trifluoromethyl-sulfonyl)imide ionic liquids. A methodology is suggested for modeling this phase behavior by using the Non-Random Hydrogen-Bonding (NRHB) model. According to this methodology, the scaling constants of the ionic liquid are calculated using limited available experimental data on liquid densities and Hansen's solubility parameters, while all electrostatic interactions (polar, hydrogen bonding and ionic) are treated as strong specific interactions. Using the aforementioned methodology, the model is applied to describe the vapor-liquid and the liquid-liquid equilibria in mixtures of ionic liquids with various polar or quadrupolar solvents at low and high pressures. In all cases, one temperature-independent binary interaction parameter was used. Accurate correlations were obtained for the majority of the systems, both, for vapor-liquid and liquid-liquid equilibria.

  14. Thermodiffusion in a multicomponent lyotropic mixture in the vicinity of the critical micellar concentration by using the Z -scan technique.

    PubMed

    Santos, M P; Gómez, S L; Bringuier, E; Figueiredo Neto, A M

    2008-01-01

    Thermodiffusion in a lyotropic mixture of water and potassium laurate is investigated by means of an optical technique (Z scan) distinguishing the index variations due to the temperature gradient and the mass gradients. A phenomenological framework allowing for coupled diffusion is developed in order to analyze thermodiffusion in multicomponent systems. An observable parameter relating to the mass gradients is found to exhibit a sharp change around the critical micellar concentration, and thus may be used to detect it. The change in the slope is due to the markedly different values of the Soret coefficients of the surfactant and the micelles. The difference in the Soret coefficients is due to the fact that the micellization process reduces the energy of interaction of the ball of amphiphilic molecules with the solvent.

  15. Multicomponent effective medium-correlated random walk theory for the diffusion of fluid mixtures through porous media.

    PubMed

    Bonilla, Mauricio R; Bhatia, Suresh K

    2012-01-10

    Molecular transport in nanoconfined spaces plays a key role in many emerging technologies for gas separation and storage, as well as in nanofluidics. The infiltration of fluid mixtures into the voids of porous frameworks having complex topologies is common place to these technologies, and optimizing their performance entails developing a deeper understanding of how the flow of these mixtures is affected by the morphology of the pore space, particularly its pore size distribution and pore connectivity. Although several techniques have been developed for the estimation of the effective diffusivity characterizing the transport of single fluids through porous materials, this is not the case for fluid mixtures, where the only alternatives rely on a time-consuming solution of the pore network equations or adaptations of the single fluid theories which are useful for a limited type of systems. In this paper, a hybrid multicomponent effective medium-correlated random walk theory for the calculation of the effective transport coefficients matrix of fluid mixtures diffusing through porous materials is developed. The theory is suitable for those systems in which component fluxes at the single pore level can be related to the potential gradients of the different species through linear flux laws and corresponds to a generalization of the classical single fluid effective medium theory for the analysis of random resistor networks. Comparison with simulation of the diffusion of binary CO(2)/H(2)S and ternary CO(2)/H(2)S/C(3)H(8) gas mixtures in membranes modeled as large networks of randomly oriented pores with both continuous and discrete pore size distributions demonstrates the power of the theory, which was tested using the well-known generalized Maxwell-Stefan model for surface diffusion at the single pore level.

  16. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  17. The influence of odor type on the discrimination and identification of odorants in multicomponent odor mixtures.

    PubMed

    Livermore, A; Laing, D G

    1998-11-15

    Using a limited set of odorants, previous studies have indicated that the ability of humans to discriminate and identify the components of olfactory mixtures is limited to approximately four. However, the ability to generalize these results may have been limited by specific neural or cognitive interactions among the particular odorants used. In the present experiment, 41 subjects examined the influence of odor type (different individual odorants), from two very different odor sets, on the perception of the components of complex mixtures. One set contained odors that were selected by an expert panel to blend well in mixtures (good blenders), whereas the other contained odors that blended poorly in mixtures (poor blenders). The stimuli were common, dissimilar odorants of equivalent, moderate intensity, each of which was a single chemical. A computer-controlled air dilution olfactometer delivered a single odorant or a mixture containing up to eight odorants. Although the poor blenders were more easily discriminated, this superiority was displayed within a narrow range, and the ability of subjects to identify mixture components with either odor set was limited to approximately four. The results indicate that, whereas odor type can alter which odorants will be perceived in a mixture, the limited capacity to discriminate mixture components is independent of the type of odorants. These findings are discussed in terms of their implications for olfactory coding.

  18. Segregation of liquid crystal mixtures in topological defects

    DOE PAGES

    Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Zhang, Rui; ...

    2017-04-28

    The structure and physical properties of liquid crystal (LC) mixtures are a function of composition, and small changes can have pronounced effects on observables, such as phase-transition temperatures. Traditionally, LC mixtures have been assumed to be compositionally homogenous. The results of chemically detailed simulations presented here show that this is not the case; pronounced deviations of the local order from that observed in the bulk at defects and interfaces lead to significant compositional segregation effects. More specifically, two disclination lines are stabilized in this work by introducing into a nematic liquid crystal mixture a cylindrical body that exhibits perpendicular anchoring.more » Here, it is found that the local composition deviates considerably from that of the bulk at the interface with the cylinder and in the defects, thereby suggesting new assembly and synthetic strategies that may capitalize on the unusual molecular environment provided by liquid crystal mixtures.« less

  19. Nonequilibrium Casimir-like Forces in Liquid Mixtures.

    PubMed

    Kirkpatrick, T R; Ortiz de Zárate, J M; Sengers, J V

    2015-07-17

    In this Letter, we consider a liquid mixture confined between two thermally conducting walls subjected to a stationary temperature gradient. While in a one-component liquid nonequilibrium fluctuation forces appear inside the liquid layer, nonequilibrium fluctuations in a mixture induce a Casimir-like force on the walls. The physical reason is that the temperature gradient induces large concentration fluctuations through the Soret effect. Unlike temperature fluctuations, nonequilibrium concentration fluctuations are also present near a perfectly thermally conducting wall. The magnitude of the fluctuation-induced Casimir force is proportional to the square of the Soret coefficient and is related to the concentration dependence of the heat and volume of mixing.

  20. `Guest-host' effect in liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Suchodolska, B.; Rudzki, A.; Ossowska-Chruściel, M. D.; Zalewski, S.; Chruściel, J.

    2015-01-01

    The most important goal of our research is to show the influence of the 'guest' (bent-core mesogen, 1,3-phenyldicarboxylatebis{4-[(4-octylbenzoyl)sulphanyl]phenyl} [IFOS8], banana-shaped liquid crystal [BLC]) on the 'host' (calamitic liquid crystal [CLC], (S)-(+)-1-methylheptyloxybiphenyl-(4-n-octylphenyl)thiobenzoate [MHOBS8]), on the stability and the destabilization of the antiferroelectric B2 and the ferroelectric smectic C* (SmC*) phases, and change of the temperature ranges of other phases in the binary liquid crystal mixtures. This work is focused on polymorphism of three new binary liquid crystal mixtures, exhibiting a 'guest-host' (guest liquid crystal-host liquid crystal [GH-LC]) effect. MHOBS8 has, among others, a ferroelectric SmC* phase, and IFOS8 assumes the B2 phase with antiferroelectric properties. The observed properties of the mixtures, such as variation of the phase transition temperatures, spontaneous polarization, tilt angle and switching time, are characteristic of a 'guest-host' mixture. The influence of BLC on the character of the interactions within the CLC host is discussed, with particular attention paid to electro-optical properties of the GH-LC mixtures.

  1. Heat capacity singularity of binary liquid mixtures at the liquid-liquid critical point.

    PubMed

    Méndez-Castro, Pablo; Troncoso, Jacobo; Peleteiro, José; Romaní, Luis

    2013-10-01

    The critical anomaly of the isobaric molar heat capacity for the liquid-liquid phase transition in binary nonionic mixtures is explained through a theory based on the general assumption that their partition function can be exactly mapped into that of the Ising three-dimensional model. Under this approximation, it is found that the heat capacity singularity is directly linked to molar excess enthalpy. In order to check this prediction and complete the available data for such systems, isobaric molar heat capacity and molar excess enthalpy near the liquid-liquid critical point were experimentally determined for a large set of binary liquid mixtures. Agreement between theory and experimental results-both from literature and from present work-is good for most cases. This fact opens a way for explaining and predicting the heat capacity divergence at the liquid-liquid critical point through basically the same microscopic arguments as for molar excess enthalpy, widely used in the frame of solution thermodynamics.

  2. Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis.

    PubMed

    Isambert, Nicolas; Sanchez Duque, Maria del Mar; Plaquevent, Jean-Christophe; Génisson, Yves; Rodriguez, Jean; Constantieux, Thierry

    2011-03-01

    The efficiency of a chemical synthesis can be nowadays measured, not only by parameters like selectivity and overall yield, but also by its raw material, time, human resources and energy requirements, as well as the toxicity and hazard of the chemicals and the protocols involved. The development of multicomponent reactions (MCRs) in the presence of task-specific ionic liquids (ILs), used not only as environmentally benign reaction media, but also as catalysts, is a new approach that meet with the requirements of sustainable chemistry. The aim of this tutorial review is to highlight the synergistic effect of the combined use of MCRs and ILs for the development of new eco-compatible methodologies for heterocyclic chemistry.

  3. Perturbation theory for multicomponent fluids based on structural properties of hard-sphere chain mixtures

    SciTech Connect

    Hlushak, Stepan

    2015-09-28

    An analytical expression for the Laplace transform of the radial distribution function of a mixture of hard-sphere chains of arbitrary segment size and chain length is used to rigorously formulate the first-order Barker-Henderson perturbation theory for the contribution of the segment-segment dispersive interactions into thermodynamics of the Lennard-Jones chain mixtures. Based on this approximation, a simple variant of the statistical associating fluid theory is proposed and used to predict properties of several mixtures of chains of different lengths and segment sizes. The theory treats the dispersive interactions more rigorously than the conventional theories and provides means for more accurate description of dispersive interactions in the mixtures of highly asymmetric components.

  4. Perturbation theory for multicomponent fluids based on structural properties of hard-sphere chain mixtures.

    PubMed

    Hlushak, Stepan

    2015-09-28

    An analytical expression for the Laplace transform of the radial distribution function of a mixture of hard-sphere chains of arbitrary segment size and chain length is used to rigorously formulate the first-order Barker-Henderson perturbation theory for the contribution of the segment-segment dispersive interactions into thermodynamics of the Lennard-Jones chain mixtures. Based on this approximation, a simple variant of the statistical associating fluid theory is proposed and used to predict properties of several mixtures of chains of different lengths and segment sizes. The theory treats the dispersive interactions more rigorously than the conventional theories and provides means for more accurate description of dispersive interactions in the mixtures of highly asymmetric components.

  5. Low-melting mixtures based on choline ionic liquids.

    PubMed

    Rengstl, Doris; Fischer, Veronika; Kunz, Werner

    2014-11-07

    In this article a strategy is proposed for the design of low toxic, room temperature liquid low-melting mixtures (LMMs) which are entirely composed of natural materials. From literature it is well known that, in general, deep eutectic solvents based on choline chloride and dicarboxylic acids are LMMs, but not liquids at room temperature, with one exception: a 1 : 1 molar mixture of malonic acid and choline chloride. Therefore, the starting point of this study was the decrease of the melting point of one of the components, namely the dicarboxylic acid, which is succinic, glutaric or adipic acid. For this purpose, one of the two protons of the acidic group was exchanged by a bulky unsymmetrical choline cation. The resulting ionic liquids (ILs) were still solid at room temperature, but have a reduced melting temperature compared to the corresponding acids. In the second step, mixtures of these ILs with choline chloride were prepared. It turned out that choline glutarate-choline chloride mixtures are liquids at room temperature at compositions containing 95-98 wt% of choline glutarate. Finally, urea was added as another hydrogen bond donor. Density, conductivity and viscosity measurements were performed for all obtained mixtures. Moreover, a Walden plot was drawn which indicates that all mixtures are liquids with fully dissociated ions moving independently. Therefore, they are considered as "good" ionic liquids and, thus, for example they can be used to exchange more toxic or less biodegradable ILs in application processes. A brief outlook containing application possibilities is given. It is demonstrated that choline dodecylsulfate is readily soluble in these mixtures, forming aggregates in the LMM at temperatures exceeding 55 °C.

  6. Chemical thermodynamics of ultrasound speed in solutions and liquid mixtures.

    PubMed

    Reis, João Carlos R; Santos, Angela F S; Lampreia, Isabel M S

    2010-02-01

    A comprehensive formalism is developed to treat thermodynamically speed of ultrasound data for solutions and liquid mixtures. For solutions, the apparent speed of ultrasound of a solute is introduced and proposed to take the place of empirically defined quantities. The partial speed of ultrasound of a solute is defined and related to the partial molar volume and partial molar isentropic compression. For liquid mixtures, the concept of speed of sound before mixing pure liquids is presented and used to define the change in speed of ultrasound upon ideal mixing, which is predicted to be generally a negative quantity. A new thermodynamic equation is derived linking the values for excess speed of ultrasound, excess molar volume and excess molar isentropic compression of a mixture, and its applications are discussed. Ideal and excess apparent speeds of ultrasound, as well as ideal and excess partial speeds of ultrasound, are defined for substances making up a liquid mixture. Accurate speeds of ultrasound in 31 mixtures of water with the amphiphile 2-(ethylamino)ethanol at 293.15 K are reported. These data are used to demonstrate the ability of the apparent speed of ultrasound to describe the impact of solutes on sonic properties of solutions and the advantages of analysing thermodynamic properties of binary liquid mixtures in terms of the dependence on composition of Balankina's ratios between excess and ideal values. It is concluded that the new thermodynamic functions defined for speeds of ultrasound in solutions and liquid mixtures give, at the least, equivalent information on molecular aspects to the usual functions related to the isentropic compressibility, without needing density data for this purpose.

  7. Evaporation of Ethanol-Water Binary Mixture Sessile Liquid Marbles.

    PubMed

    Ooi, Chin Hong; Bormashenko, Edward; Nguyen, Anh V; Evans, Geoffrey M; Dao, Dzung V; Nguyen, Nam-Trung

    2016-06-21

    Liquid marble is a liquid droplet coated with particles. Recently, the evaporation process of a sessile liquid marble using geometric measurements has attracted great attention from the research community. However, the lack of gravimetric measurement limits further insights into the physical changes of a liquid marble during the evaporation process. Moreover, the evaporation process of a marble containing a liquid binary mixture has not been reported before. The present paper investigates the effective density and the effective surface tension of an evaporating liquid marble that contains aqueous ethanol at relatively low concentrations. The effective density of an evaporating liquid marble is determined from the concurrent measurement of instantaneous mass and volume. Density measurements combined with surface profile fitting provide the effective surface tension of the marble. We found that the density and surface tension of an evaporating marble are significantly affected by the particle coating.

  8. Evaporation of multi-component mixtures and shell formation in spray dried droplets

    NASA Astrophysics Data System (ADS)

    Valente, Pedro; Duarte, Íris; Porfirio, Tiago; Temtem, Márcio

    2015-11-01

    Drug particles where the active pharmaceutical ingredient (APIs) is dispersed in a polymer matrix forming an amorphous solid dispersion (ASD) is a commonly used strategy to increase the solubility and dissolution rate of poorly water soluble APIs. However, the formation and stability of an amorphous solid dispersion depends on the polymer/API combination and process conditions to generate it. The focus of the present work is to further develop a numerical tool to predict the formation of ASDs by spray drying solutions of different polymer/API combinations. Specifically, the evaporation of a multi-component droplet is coupled with a diffusion law within the droplet that minimizes the Gibbs free energy of the polymer/API/solvents system, following the Flory-Huggins model. Prior to the shell formation, the evaporation of the solvents is modelled following the simplified approach proposed by Abramzon & Sirignano (1989) which accounts for the varying relative velocity between the droplet and the drying gas. After shell formation, the diffusion of the solvents across the porous shell starkly modifies the evaporative dynamics.

  9. Liquid clathrate formation in ionic liquid-aromatic mixtures.

    PubMed

    Holbrey, John D; Reichert, W Matthew; Nieuwenhuyzen, Mark; Sheppard, Oonagh; Hardacre, Christopher; Rogers, Robin D

    2003-02-21

    1-Alkyl-3-methylimidazolium containing ionic liquids with hexafluorophosphate, bis(trifyl)imide, tetrafluoroborate, and chloride anions form liquid clathrates when mixed with aromatic hydrocarbons; in the system 1,3-dimethylimidazolium hexafluorophosphate-benzene, the aromatic solute could be trapped in the solid state forming a crystalline 2:1 inclusion compound.

  10. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.

    PubMed

    Goldsipe, Arthur; Blankschtein, Daniel

    2007-05-22

    In article 1 of this series, we developed a molecular-thermodynamic (MT) theory to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. In this article, we extend the MT theory to model mixtures containing a pH-sensitive surfactant. The MT theory was validated by examining mixtures containing both a pH-sensitive surfactant and a conventional surfactant, which effectively behave like ternary surfactant mixtures. We first compared the predicted micellar titration data to experimental micellar titration data that we obtained for varying compositions of mixed micelles containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) mixed with either a cationic surfactant (dodecyltrimethylammonium bromide, C12TAB), a nonionic surfactant (dodecyl octa(ethylene oxide), C12E8), or an anionic surfactant (sodium dodecyl sulfate, SDS) surfactant. The MT theory accurately modeled the titration behavior of C12DAO mixed with C12E8. However, C12DAO was observed to interact more favorably with SDS and with C12TAB than was predicted by the MT theory. We also compared predictions to data from the literature for mixtures of C12DAO and SDS. Although the pH values of solutions with no added acid were modeled with only qualitative accuracy, the MT theory resulted in quantitatively accurate predictions of solution pH for mixtures containing added acid. In addition, the predicted degree of counterion binding yielded a lower bound to the experimentally measured value. Finally, we predicted the critical micelle concentration (cmc) of solutions of two pH-sensitive surfactants, tetradecyldimethylamine oxide (C14DAO) and hexadecyldimethyl betaine (C16Bet), at varying solution pH and surfactant composition. However, at the pH values considered, the pH sensitivity of C16Bet could be neglected, and it was equivalently modeled as a zwitterionic surfactant. The cmc's predicted using the MT theory agreed well with the experimental

  11. On the ideality of binary mixtures of ionic liquids.

    PubMed

    Brüssel, Marc; Brehm, Martin; Pensado, Alfonso S; Malberg, Friedrich; Ramzan, Muhammad; Stark, Annegret; Kirchner, Barbara

    2012-10-14

    In this work, structural and dynamical properties of the binary mixture of 1-ethyl-3-methyl-imidazolium chloride and 1-ethyl-3-methyl-imidazolium thiocyanate are investigated from ab initio molecular dynamics simulations and compared to the pure ionic liquids. Furthermore, the binary mixture is simulated with two different densities to gain insight into how the selected density affects the different properties. In addition, a simple NMR experiment is carried out to investigate the changes of the chemical shifts of the hydrogen atoms due to the composition of the mixture.

  12. Dynamic thermodiffusion theory for ternary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Ziad Saghir, M.

    2010-04-01

    Following the non-equilibrium thermodynamics approach, we develop expressions for the calculation of the thermal diffusion coefficients in a ternary system. On the basis of some physical justifications, we approximate the net heat of transport with the activation energy of viscous flow. In parallel, we revisit the Kempers model and propose new expressions for the estimation of the thermal diffusion factors in a ternary mixture. The proposed expressions are based on a dynamic modeling approach, as they incorporate the activation energy of viscous flow, which is a fluid flow property and contains the effects of some of the parameters that govern thermodiffusion. The proposed expressions, the Kempers and Ghorayeb-Firoozabadi-Shukla models are evaluated against the experimental data. Our expression which was developed on the basis of the Kempers approach has the best performance.

  13. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  14. Dielectric constant of liquid alkanes and hydrocarbon mixtures.

    PubMed

    Sen, A D; Anicich, V G; Arakelian, T

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  15. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  16. Shock Wave Initiation of Mixture Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Mikhailov, A. L.; Nazarov, D. V.; Finyushin, S. A.; Men'shikh, A. V.; Davydov, V. A.

    2006-07-01

    We investigated initiation of liquid HE consisting of tetranitromethane (TNM) and nitrobenzene (NB). Smooth stable (when mass of NB<20%) and pulsing unstable detonation wave front was registered (20-50% NB). We registered shock wave, shock compressed explosive (SCE) detonation wave and normal detonation wave for unstable detonation front on different parts of the front. In case of normal and SCE detonation wave we registered parameters rise during 3-25 nsec until the start of chemical reaction. We consider it to be the induction period of thermal explosion inside detonation wave front.

  17. Electron avalanches in liquid argon mixtures

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  18. An investigation of vapor concentration during boiling of liquid mixtures

    SciTech Connect

    Utaka, Yoshio; Takahashi, Katsuaki; Tsuboi, Takao

    1999-07-01

    The objective of the study is to clarify experimentally the variation of the vapor concentration of binary mixture generated during nucleate boiling in a saturated pool under various boiling conditions. The generated vapor concentrations in the bulk vapor layer were measured for the binary mixtures of water-ethanol and ethanol-acetone under various liquid concentrations, the heat fluxes and the liquid layer heights from the heated thin wires at the atmospheric pressure. The main experimental apparatus for measuring concentration of bulk vapor in the boiling and condensation system is shown. Two methods of measuring concentration, i.e., the dew point method and the laser absorption method were adopted. The dew point measurement was carried out by utilizing the copper heat transfer block installed in the central part of the vapor layer in the vessel. The commencement of the condensation was observed directly for determining the dew point by controlling its temperature. The laser light having wavelength of 3.39 micron meters was used for the laser light absorption method utilizing its absorptive property against ethanol vapor. The measured results by using both methods coincided well with each other. The measured concentrations of the bulk vapor for various superheatings of heated wires, the depth of liquid mixture layer and liquid concentrations were almost independent of those parameters and were almost in equilibrium with bulk liquid conditions even under the higher surface superheating and the lower liquid heights.

  19. Composition dependent structural organization in trihexyl(tetradecyl)phosphonium chloride ionic liquid-methanol mixtures

    SciTech Connect

    Gupta, Aditya; Sharma, Shobha; Kashyap, Hemant K.

    2015-04-07

    This article reports results from the molecular dynamics simulations on the structural arrangement of the ions and molecules in the mixtures of trihexyl(tetradecyl)phosphonium chloride ([P{sub 666,14}{sup +}][Cl{sup −}]) ionic liquid (IL) and methanol (MeOH) over the entire composition range. Effects of composition on the charge and polarity orderings have been investigated via computation of X-ray scattering structure function, S(q), and by using a partitioning scheme proposed for such multi-component mixtures. Except for the neat methanol liquid, the total S(q) shows two peaks in its intermolecular region for all the mole-fractions. The lowest q peak is dominated primarily by anion-anion, cation-anion, and methanol-anion correlations. Our results signify that the methanol bulk structure, which predominantly has short-distance characteristic correlations and is governed by polar group of methanol, is retained for x{sub IL} ≤ 0.1. Then, the mixture goes through gradual structural changes from methanol-like to the IL-like for 0.1 < x{sub IL} ≤ 0.7. The dipolar interaction between methanol molecules weakens in this range, and the structural landscape of the mixture is steered by strong ion-ion, anion-methanol, and nonpolar interactions. The IL-like structural arrangement is virtually recovered for x{sub IL} > 0.7. At all the compositions studied, while the cation head groups are predominantly solvated by anions and subsequently by methanol molecules, the polar hydroxyl group of methanol is preferentially solvated by the anions. The radial distribution functions of selected pair of atomic species have also confirmed these observations.

  20. Method for removing organic liquids from aqueous solutions and mixtures

    DOEpatents

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  1. The determination of viscosity at liquid mixtures - Comparison of approaches

    NASA Astrophysics Data System (ADS)

    Michal, Schmirler; Hana, Netřebská; Jan, Kolínský

    2017-09-01

    The research of flow field parameters for non-stationary flow of non-Newtonian fluids carried out at the Institute of Fluid Mechanics and Thermodynamics of CTU showed the need for knowledge of determination of the resulting viscosity of a mixture of several liquids. There are several sources for determining viscosity of mixtures. It is possible either to find theoretical relations in the literature or use technical tables based on experimentally measured data. This article focuses on comparing these approaches with an experiment. The experiment was performed by a Rheotest RN 4.1 rotating viscometer produced by the company RHEOTEST Medingen. The research was carried out using a solution of glycerol and water. The research has shown great differences in results in different approaches for determining the viscosity of the liquid mixtures. The result of this paper is to determine the method of viscosity calculation that is closest to the experimental data.

  2. Extension of Compressibility-Route Cubic Equations of State and the Radial Distribution Functions at Contact to Multi-Component Hard-Sphere Mixtures

    NASA Astrophysics Data System (ADS)

    Sun, Jiu-Xun; Jin, Ke; Cai, Ling-Cang; Wu, Qiang

    2014-08-01

    The equation of state (EOS) for hard-sphere fluid derived from compressibility routes of Percus-Yevick theory (PYC) is extended. The two parameters are determined by fitting well-known virial coefficients of pure fluid. The extended cubic EOS can be directly extended to multi-component mixtures, merely demanding the EOS of mixtures also is cubic and combining two physical conditions for the radial distribution functions at contact (RDFC) of mixtures. The calculated virial coefficients of pure fluid and predicted compressibility factors and RDFC for both pure fluid and mixtures are excellent as compared with the simulation data. The values of RDFC for mixtures with extremely large size ratio 10 are far better than the BGHLL expressions in literature.

  3. Generalized cubic equation of state and the radial distribution functions at contact for multi-component hard-sphere mixtures with large size ratio

    NASA Astrophysics Data System (ADS)

    Sun, Jiu-Xun; Wu, Qiang; Cai, Ling-Cang; Jin, Ke

    2014-06-01

    A generalized cubic (GC) equation of state (EOS) with two independent parameters is proposed. The GC EOS can include EOS from both virial and compressibility routes of Percus-Yevick theory in it as special cases. The two parameters are determined by fitting well-known virial coefficients of pure fluid. The generalized cubic EOS can be directly and consistently extended to multi-component mixtures merely demanding of the EOS of mixtures also is cubic, and combining two strict physical conditions for the radial distribution functions at contact (RDFC) of mixtures. The calculated virial coefficients of pure fluid and predicted compressibility factors and RDFC for both pure fluid and mixtures are excellent as compared with the simulation data. The values of RDFC for mixtures with extremely large size ratio are far better than the expressions in literature.

  4. Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal-organic frameworks: diffusion of H2/CH4 mixtures in CuBTC.

    PubMed

    Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S

    2008-08-05

    Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.

  5. A simple method for the titration of multicomponent acid-base mixtures.

    PubMed

    Moisio, T; Heikonen, M

    1996-01-01

    A titration method has been developed to analyze acid mixtures, in which the pK values differed by 0.5 to 1 pH units. Instead of the use of equivalence points a buffer capacity curve is numerically derived from the titration curve resulting in a presentation similar to chromatograms and spectra. The consumption of the NaOH titrant is determined within pH intervals of 0.2-0.6 units around the pK values of the components. The buffer capacity measured is expressed as the consumption of NaOH over the pH interval. The amounts of compounds are found from these results using simple models of chemometrics. The method has been applied to a mixture of formic and acetic acids with concentrations of 0-3 mmol/20 ml with an error of 0-0.05 mmol. Furthermore a curve-fitting method based on a theoretical equation of buffer capacity can be applied with an error slightly larger than with the previous method. In this case, the pK values were also computed. For titrations beyond the pH range 4-10, the buffer capacity of water has to be subtracted from the titration results. The whole procedure requires including the computations about 3-6 min.

  6. Confinement-Driven Phase Separation of Quantum Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Prisk, T. R.; Pantalei, C.; Kaiser, H.; Sokol, P. E.

    2012-08-01

    We report small-angle neutron scattering studies of liquid helium mixtures confined in Mobil Crystalline Material-41 (MCM-41), a porous silica glass with narrow cylindrical nanopores (d=3.4nm). MCM-41 is an ideal model adsorbent for fundamental studies of gas sorption in porous media because its monodisperse pores are arranged in a 2D triangular lattice. The small-angle scattering consists of a series of diffraction peaks whose intensities are determined by how the imbibed liquid fills the pores. Pure He4 adsorbed in the pores show classic, layer-by-layer film growth as a function of pore filling, leaving the long range symmetry of the system intact. In contrast, the adsorption of He3-He4 mixtures produces a structure incommensurate with the pore lattice. Neither capillary condensation nor preferential adsorption of one helium isotope to the pore walls can provide the symmetry-breaking mechanism. The scattering is consistent with the formation of randomly distributed liquid-liquid microdomains ˜2.3nm in size, providing evidence that confinement in a nanometer scale capillary can drive local phase separation in quantum liquid mixtures.

  7. The Liquid Glass Transition in Sugars and Sugar Mixtures

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Ah; Oh, Jiyoung; Kwon, Hyun-Joung; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2006-05-01

    The liquid-glass transition in sugars and sugar mixtures was studied with calorimetry, Brillouin scattering, and dielectric spectroscopy. Sugars are particular interest among other glass forming materials because sugars are main constitution of the biological system and sugar glasses play an important role in preservation and protection of biological cells. We studied a number of sugars and sugar mixtures including glucose, galactose, sucrose, maltose, trehalose, glucose/sucrose, sucrose/trehalose, using calorimetry (DTA and DSC), Brillouin scattering, and dielectric spectroscopy. We found the following: (1) Brillouin scattering technique can be used to determine the glass transition temperature. (2) In sugar mixtures, the volume compression effect from the molecule size and shape played an important role in the glass transition temperature. (3) The origin of the secondary relaxation in glucose-water mixtures maybe relate to the rotation-translation coupling constant in the schematic mode coupling theory.

  8. Ultrafast photophysical studies of a multicomponent sunscreen: Oxybenzone-titanium dioxide mixtures

    NASA Astrophysics Data System (ADS)

    Baker, Lewis A.; Grosvenor, Lucy C.; Ashfold, Michael N. R.; Stavros, Vasilios G.

    2016-11-01

    Recent studies of the sunscreen constituent oxybenzone have suggested that the dominant mechanism underlying the efficient photoprotection it offers relies on an initial ultrafast enol → keto tautomerisation, followed by nonadiabatic transfer to the ground electronic state. Subsequent collisions with the solvent bath then reform the original enol-tautomer. Utilising femtosecond transient electronic absorption spectroscopy we explore the dissipation of electronic excitation energy in oxybenzone in the presence of titanium dioxide, a widely used, and complementary sunscreen component. We find the relaxation dynamics of this popular organic filter are unaltered by the presence of this favoured inorganic scatterer and the overall dynamics can be described by the additive contribution of the individual constituents. The combination of the two components provides broadband photoprotective properties justifying the widely used organic filter and inorganic scatterer mixtures in commercial sunscreen products.

  9. Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures

    SciTech Connect

    Donev, Aleksandar Bhattacharjee, Amit Kumar; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.

    2015-03-15

    We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a

  10. Gas-liquid chromatographic determination of total cholesterol in multicomponent foods.

    PubMed

    Punwar, J K

    1975-07-01

    A method is described for the determination of total cholesterol in multicomponent foods and also other products such as nonfat dry milk, dried whole egg solids, and certain candy bars. The lipid is extracted from the sample by a mixed solvent and saponified. The unsaponifiable fraction which contains the cholesterol and other sterols is extracted with benzene. An aliquot is evaporated to dryness and the residue is dissolved in dimethylformamide. The sterols are derivatized to form trimethylsilyl (TMS) ethers. The TMS-cholesterol derivative is quantitatively determined by gas-liquid chromatography, using 5alpha-cholestane as an internal standard. Nine laboratories participated in a collaborative study of the determination of total cholesterol in deviled ham sandwich spread, vegetable beef stew, corned beef hash, frozen chicken pot pie, pizza pepperoni, fish sticks, breaded shrimp, chocolate-covered candy bars, dried whole egg solids, and nonfat dry milk and the results are reported here. The coefficient of variation ranged from 5.64 to 23.2%, with an average coefficient of variation of 14.8%.

  11. Some Correlations for Saturated-Liquid Density of Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Maezawa, Yukishige; Sato, Haruki; Watanabe, Koichi

    Three methods to correlate and estimate the saturated-1iquid density of refrigerant mixtures are compared and evaluated on the basis of the measurements for five bibary and one ternary mixtures performed by the present authors. The first of them is a method using Peng-Robinson equation (PR-method) proposed originally by Peneloux et al. Since this method dose not require any measurements of the saturated-liquid density of mixture, it is useful for the estimation. However, the applicability of this method to various substances may be restricted. The second is the modified Rackett equation proposed by Spencer and Dannar (mR-method). The temperature functional form of this equation is quite simple, so it is useful to use it as a functional form of the fitting. Unfortunately this method can not be used for strongly non-ideal mixtures. The last one is the Hankinson-Brobst-Thomson equation (HBT-method). This method can provide the most accurate density values among the three methods with two kinds of binary parameters where these binary parameters are introduced by the present authors. In the case that many experimental saturated liquid densities of mixtures are available in the wide range of temperatures, the HBT-method is recommended for the practical use.

  12. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage.

    PubMed

    Ke, Jie; Parrott, Andrew J; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C; Poliakoff, Martyn; George, Michael W

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  13. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Ke, Jie; Parrott, Andrew J.; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C.; Poliakoff, Martyn; George, Michael W.

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  14. Density measurements of compressed-liquid dimethyl ether + pentane mixtures

    PubMed Central

    Outcalt, Stephanie L.; Lemmon, Eric W.

    2016-01-01

    Compressed-liquid densities of three compositions of the binary mixture dimethyl ether (CAS No. 115-10-6) + pentane (CAS No. 109-66-0) have been measured with a vibrating U-tube densimeter. Measurements were made at temperatures from 270 K to 390 K with pressures from 1.0 MPa to 50 MPa. The overall combined uncertainty (k=2) of the density data is 0.81 kg·m−3. Data presented here have been used to improve a previously formulated Helmholtz energy based mixture model. The newly derived parameters are given. PMID:27840450

  15. Density measurements of compressed-liquid dimethyl ether + pentane mixtures.

    PubMed

    Outcalt, Stephanie L; Lemmon, Eric W

    2016-01-01

    Compressed-liquid densities of three compositions of the binary mixture dimethyl ether (CAS No. 115-10-6) + pentane (CAS No. 109-66-0) have been measured with a vibrating U-tube densimeter. Measurements were made at temperatures from 270 K to 390 K with pressures from 1.0 MPa to 50 MPa. The overall combined uncertainty (k=2) of the density data is 0.81 kg·m(-3). Data presented here have been used to improve a previously formulated Helmholtz energy based mixture model. The newly derived parameters are given.

  16. Liquid-Gas Mixtures in Contact with Walls: Molecular Simulations

    NASA Astrophysics Data System (ADS)

    Markus Dammer, Stephan

    2005-11-01

    We perform molecular dynamics simulations of liquid-gas mixtures in contact to solid walls. We present results concerning Lennard-Jones systems composed of three particle species, namely liquid, foreign gas, and wall particles, which are frozen on a lattice: (i) Close to the wall we observe a layering of the fluid which becomes more pronounced for increasingly hydrophilic walls. (ii) Close to smooth hydrophobic walls we find a two orders of magnitude increase in the number density of gas, which will favor bubble nucleation. (iii) To characterize the walls, we determined the contact angle by simulations of droplets and compare the result to Laplace's estimate of surface energies.

  17. Phase behaviour and conductivity study on multi-component mixtures for electrodeposition in supercritical fluids.

    PubMed

    Bartlett, Philip N; Cook, David C; George, Michael W; Ke, Jie; Levason, William; Reid, Gillian; Su, Wenta; Zhang, Wenjian

    2010-01-14

    Electrochemistry in supercritical CO(2) (scCO(2)) is difficult because the very low dielectric constant of the fluid restricts the solubility of ionic species and the conductivity of dissolved electrolytes. To overcome this problem to allow us to carry out electrodeposition at macroelectrodes from scCO(2) we have investigated the use of co-solvents and modified electrolyte salts chosen to increase their solubility and dissociation in the supercritical fluid. Here we report results of phase behaviour studies for mixtures of CO(2) with [NBu(n)(4)][BF(4)] and either methanol (CH(3)OH) or acetonitrile (CH(3)CN) as the co-solvent. These show that the solubility of [NBu(n)(4)][BF(4)] is approximately 5 times larger when CH(3)CN is the co-solvent rather than CH(3)OH. Consequently the phase behaviour of the ternary of CO(2)-[NBu(n)(4)][BF(4)]-CH(3)CN was studied in greater detail over a range of compositions. To enhance the conductivity of scCO(2)-CH(3)CN a range of electrolyte salts was synthesised in which the [NBu(n)(4)](+) and/or [BF(4)](-) ion were replaced by different derivatives. Results for the phase behaviour and conductivity of these modified electrolyte salts in scCO(2)-CH(3)CN are reported for several different compositions. We find that increasing the degree of fluorination and size of the ions increases the solubility of the electrolyte salt in scCO(2)-CH(3)CN. Of the 11 electrolytes investigated [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] appears the most suitable for use in scCO(2)-CH(3)CN with a molar conductivity of 22-26 S cm(2) mol(-1) and a maximum measured conductivity of approximately 3 mS cm(-1) for 0.07 M [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] dissolved in scCO(2)-CH(3)CN (molar ratio CH(3)CN : CO(2) approximately 0.12) at 20 MPa and 328.15 K. This is an order of magnitude improvement over similar results for the [NBu(n)(4)][BF(4)] parent. Studies of the conductance as a function of the electrolyte concentration suggest that triple ions make an

  18. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  19. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  20. Salt-induced microheterogeneities in binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Bier, Markus; Mars, Julian; Li, Hailong; Mezger, Markus

    2017-08-01

    The salt-induced microheterogeneity (MH) formation in binary liquid mixtures is studied by small-angle x-ray scattering (SAXS) and liquid state theory. Previous experiments have shown that this phenomenon occurs for antagonistic salts, whose cations and anions prefer different components of the solvent mixture. However, so far the precise mechanism leading to the characteristic length scale of MHs has remained unclear. Here, it is shown that MHs can be generated by the competition of short-ranged interactions and long-ranged monopole-dipole interactions. The experimental SAXS patterns can be reproduced quantitatively by fitting to the derived correlation functions without assuming any specific model. The dependency of the MH structure with respect to ionic strength and temperature is analyzed. Close to the demixing phase transition, critical-like behavior occurs with respect to the spinodal line in the phase diagram.

  1. Fuel compositions comprising coal-liquid fuel mixture

    SciTech Connect

    Kobayashi, T.; Niimi, H.; Nobe, T.; Wada, T.

    1981-01-20

    The invention provides: a fuel composition comprising 100 parts by weight of a coal-liquid fuel mixture and 0.02 to 1.0 part by weight of at least one additive selected from the group consisting of dibenzylidene sorbitol, ditoluylidene sorbitol, tribenzylidene sorbitol, tritoluylidene sorbitol and hydrogenated castor oil; and a fuel composition comprising 100 parts by weight of a coal-liquid fuel mixture, 0.02 to 1.0 part by weight of at least one additive selected from the group consisting of dibenzylidene sorbitol, ditoluylidene sorbitol, tribenzylidene sorbitol, tritoluylidene sorbitol and hydrogenated castor oil, and 1 to 10 parts by weight of water. The composition shows high stability over a prolonged period of time, preventing the separation into layers of the components.

  2. Viscosity minima in binary mixtures of ionic liquids + molecular solvents.

    PubMed

    Tariq, M; Shimizu, K; Esperança, J M S S; Canongia Lopes, J N; Rebelo, L P N

    2015-05-28

    The viscosity (η) of four binary mixtures (ionic liquids plus molecular solvents, ILs+MSs) was measured in the 283.15 < T/K < 363.15 temperature range. Different IL/MS combinations were selected in such a way that the corresponding η(T) functions exhibit crossover temperatures at which both pure components present identical viscosity values. Consequently, most of the obtained mixture isotherms, η(x), exhibit clear viscosity minima in the studied T-x range. The results are interpreted using auxiliary molecular dynamics (MD) simulation data in order to correlate the observed η(T,x) trends with the interactions in each mixture, including the balance between electrostatic forces and hydrogen bonding.

  3. Inelastic x-ray scattering measurements of liquid waterglycerol mixtures

    NASA Astrophysics Data System (ADS)

    Kajihara, Yukio; Shibata, Nanako; Inui, Masanori; Matsuda, Kazuhiro; Tsutsui, Satoshi

    2017-08-01

    We have carried out inelastic x-ray scattering measurements on liquid water-glycerol mixtures. The data are analyzed by a damped harmonic oscillator model with two excitations, longitudinal and transverse modes. The sound velocity of the longitudinal mode is almost constant (about 3.1 km/s), being independent of the composition. Thus the strength of 'fast sound' which we define the ratio of this IXS sound velocity to ultrasonic one is largest at pure water and gradually decrease with increasing mole fraction of glycerol. This result indicates that the relaxation phenomena of pure water gradually reduce with increasing the fraction of the solute: the scenario which we proposed for water-monohydric alcohol mixtures hold true for this water-trihydric alcohol mixtures.

  4. Molecular thermodynamics of some highly asymmetric liquid mixtures

    NASA Astrophysics Data System (ADS)

    Wu, Jianzhong

    1998-11-01

    To advance understanding of the thermodynamic properties of complex liquid mixtures, molecular-thermodynamic attention is given to several types of asymmetric mixtures: asphaltene-containing crude oils, water- hydrocarbon mixtures with or without salt, and aqueous saline solutions of proteins and colloids. The phase behavior of these liquid mixtures is important for optimum design of industrial processes including production of petroleum and natural gas, separation of protein mixtures, and synthesis of new materials. The objective is to provide molecular-thermodynamic models for describing thermodynamic properties of these industry-oriented liquid mixtures. Our model for an asphaltene-containing crude oil represents asphaltenes by attractive hard spheres, resins by attractive hard-sphere chains, and all other components by a continuous medium that affects interactions between asphaltene-asphaltene, asphaltene- resin, and resin-resin pairs. We consider explicitly associations between asphaltene and asphaltene, and between asphaltene and resin. Thermodynamic properties are described in the McMillan-Mayer framework using the statistical-associated-fluid theory (SAFT). Our model can semi-quantitatively explain essentially all experimental observations concerning asphaltene precipitation from crude oils. This model has been applied to identify approximately the operating conditions at the onset of asphaltene precipitation, and the amount of precipitation under various petroleum-reservoir conditions. For the prevention of asphaltene precipitation, we recommend the use of amphiphiles that like both asphaltenes and the oil medium, but not the resins. For water-hydrocarbon mixtures with or without salt, we have developed theoretically-based extensions of the Peng-Robinson equation of state by including associations and electrostatic interactions. Illustrative examples show that these extensions are successful for correlating vapor-liquid equilibria for hydrocarbon

  5. Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza.

    PubMed

    Bi, Xiaolin; Liu, Xuan; Di, Liuqing; Zu, Qiang

    2016-04-08

    The active ingredients of salvia (dried root of Salvia miltiorrhiza) include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I) and hydrophilic (e.g., danshensu and salvianolic acid B) constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS) was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%-80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route.

  6. Solid-liquid equilibria of binary mixtures of fluorinated ionic liquids.

    PubMed

    Teles, Ana Rita R; Correia, Helga; Maximo, Guilherme J; Rebelo, Luís P N; Freire, Mara G; Pereiro, Ana B; Coutinho, João A P

    2016-09-28

    Within ionic liquids, fluorinated ionic liquids (FILs) present unique physico-chemical properties and potential applications in several fields. However, the melting point of these neoteric compounds is usually higher due to the presence of fluorine atoms. This drawback may be resolved by, for instance, mixing different FILs to create eutectic mixtures. In this work, binary mixtures of fluoro-containing and fluorinated ionic liquids were considered with the aim of decreasing their melting temperatures as well as understanding and characterizing these mixtures and their phase transitions. Five FILs were selected, allowing the investigation of four binary mixtures, each of them with a common ion. Their solid-liquid and solid-solid equilibria were studied by differential scanning calorimetry and the non-ideality of the mixtures was investigated. Overall, a variety of solid-liquid equilibria with systems exhibiting eutectic behavior, polymorphs with solid-solid phase transitions, and the formation of intermediate compounds and solid solutions were surprisingly found. In addition to these intriguing behaviours, novel FILs with lower melting temperatures were obtained by the formation of binary systems, thus enlarging the application range of FILs at lower temperatures.

  7. Statistical Model of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth; LeClercq, Patrick; Bellan, Josette

    2007-01-01

    An improved statistical model has been developed to describe the chemical composition of an evaporating multicomponent- liquid drop and of the mixture of gases surrounding the drop. The model is intended for use in computational simulations of the evaporation and combustion of sprayed liquid fuels, which are typically mixtures of as many as hundreds of different hydrocarbon compounds. The present statistical model is an approximation designed to afford results that are accurate enough to contribute to understanding of the simulated physical and chemical phenomena, without imposing an unduly large computational burden.

  8. Universal cubic equation of state and contact values of the radial distribution functions for multi-component additive hard-sphere mixtures

    NASA Astrophysics Data System (ADS)

    Sun, Jiu-Xun; Wu, Qiang; Cai, Ling-Cang; Jin, Ke

    2013-11-01

    A universal cubic equation of state (UC EOS) is proposed based on a modification of the virial Percus-Yevick (PY) integral equation EOS for hard-sphere fluid. The UC EOS is extended to multi-component hard-sphere mixtures based on a modification of Lebowitz solution of PY equation for hard-sphere mixtures. And expressions of the radial distribution functions at contact (RDFC) are improved with the form as simple as the original one. The numerical results for the compressibility factor and RDFC are in good agreement with the simulation results. The average errors of the compressibility factor relative to MC data are 3.40%, 1.84% and 0.92% for CP3P, BMCSL equations and UC EOS, respectively. The UC EOS is a unique cubic one with satisfactory precision among many EOSs in the literature both for pure and mixture fluids of hard spheres.

  9. Fractionation in Gay-Berne liquid crystal mixtures.

    PubMed

    Moreno-Razo, J Antonio; Díaz-Herrera, Enrique; Klapp, Sabine H L

    2007-10-01

    We present a constant-pressure molecular dynamics simulation study of the phase behavior of binary (50:50) Gay-Berne liquid crystal mixtures consisting of elongated particles with different lengths (LA>LB) and equal diameters. We focus on systems at dense liquid-state conditions. Considering three mixtures characterized by different values of LA(B) and different length ratios q=LB/LA<1, we find complex fluid-fluid phase behavior resulting from the interplay between nematic, smectic-A-type, or smectic-B-type orientational ordering, on the one hand, and demixing into two phases of different composition (fractionation), on the other hand. The driving "forces" of demixing transitions are the temperature and the length ratio. Indeed, in the system characterized by the largest value of q (q=0.86) orientational order occurs already in mixed states, whereas full fractionation is found at q=0.71. The two resulting states are either of type smectic-B-nematic (intermediate temperatures) or smectic-B-smectic-B (low temperatures). In the intermediate case q=0.80 we observe a stepwise ordering and demixing behavior on cooling the system from high temperatures. Moreover, our results show that the stability range of (partially) nematic structures in mixtures of sufficiently small q can be significantly larger than in the pure counterparts, in qualitative agreement with experimental observations.

  10. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    SciTech Connect

    Stout, R B

    2001-04-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  11. Improvement in device performance from a mixture of a liquid crystal and photosensitive acrylic prepolymer with the photoinduced vertical alignment method

    PubMed Central

    Ho, Czung-Yu; Lin, Fa-Hsin; Tao, Yu-Tai; Lee, Jiunn-Yih

    2011-01-01

    In a multicomponent nematic liquid crystal (NLC) mixture of a liquid crystal (negative-type NLC) and a photosensitive acrylic prepolymer, photopolymerization upon UV irradiation induces the separation of the LC and photosensitive acrylic prepolymer layers, thereby leading to a vertical arrangement of LC molecules. In this study, we propose a simple vertical alignment method for LC molecules, by adding a chiral smectic A (SmA∗) liquid crystal having homeotropic texture characteristics to an NLC mixture solution. Measurements of electro-optical properties revealed that the addition of the SmA∗ LC not only strengthened the anchoring force of the copolymer alignment film surface, but also significantly enhanced the contrast ratio (∼73%), response time and grayscale switching performance of the device. PMID:27877462

  12. Rheology of protic ionic liquids and their mixtures.

    PubMed

    Smith, J A; Webber, Grant B; Warr, Gregory G; Atkin, Rob

    2013-11-07

    The rheological properties of five pure protic ionic liquids (ILs), ethylammonium nitrate (EAN), propylammonium nitrate (PAN), ethanolammonium nitrate (EtAN), ethylammonium formate (EAF), and dimethylethylammonium formate (DMEAF), are characterized and interpreted by considering the effects of both the H-bond network and the solvophobic nanostructure of the liquids. The results demonstrate that these effects are not, however, independent or simply additive. At 20 °C, EtAN has the highest zero shear viscosity of 156.1 mPa·s, followed by PAN (89.3 mPa·s), EAN (35.9 mPa·s), EAF (23.1 mPa·s), and DMEAF (9.8 mPa·s). The primary ammonium ILs behave as Newtonian fluids at low shear rates but shear thin at high shear. Fits to the Vogel-Fulcher-Tammann model reveal that nanostructure is not affected appreciably by temperature and that all the ILs studied are of intermediate fragility. The rheology of binary mixtures of these ILs was analyzed and used to demonstrate fundamental differences in the way IL cations and anions interact. IL mixtures containing both nitrate and formate anions resist flow more strongly than the pure liquids, which is a consequence of the difference in hydrogen bonding capacity of the anions. Mixing cations can give rise to complex behavior due to the offsetting effects of hydrogen bonding and solvophobic nanostructure formation.

  13. New design of fiber-optic reflectometer for determining the phase boundary of multicomponent fluid mixtures at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Wu, Weize; Ke, Jie; Poliakoff, Martyn

    2006-02-01

    A dynamic synthetic method based on an optic fiber sensor has been developed to measure phase boundaries of multicomponent fluid at high temperatures >300°C and pressures >30MPa. The breakthrough has been the design of the equilibrium cell containing the optic fiber, which gives highly reproducible signals for the phase transition. We demonstrate that this method can clearly distinguish between dew points and bubble points in the phase transitions of mixtures. Overall, the method is characterized by speed, simplicity, high pressures, and high temperatures.

  14. Mathematical modeling of planar and spherical vapor-liquid phase interfaces for multicomponent fluids

    NASA Astrophysics Data System (ADS)

    Celný, David; Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2016-03-01

    Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor-liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC-SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  15. Effects of Mixtures on Liquid and Solid Fragment Size Distributions

    DTIC Science & Technology

    2016-05-01

    treated steel ; 67.0/ mn Table 11 gives examples of size distributions taken from the research literature on atomization and sprays where mn...impact (0.5–2.0 km/s) on thin steel plates.” More specifically, he studied “spherical porous aluminum projectiles 2.51 cm in diameter … cut from a...Effects of Mixtures on Liquid and Solid Fragment Size Distributions Distribution Statement A. Approved for public release; distribution is unlimited

  16. Optical cell with periodic resistive heating for the measurement of heat, mass, and thermal diffusions in liquid mixtures.

    PubMed

    Hartung, M; Köhler, W

    2007-08-01

    A new technique for the measurement of heat, mass, and thermal diffusions in liquids has been developed. Similar to laser induced dynamic gratings, a temperature grating is created in the sample. Thermal expansion transforms the temperature into a refractive-index grating, which is read by diffraction of a readout laser beam. In a multicomponent mixture an additional concentration grating is formed by thermal diffusion driven by the temperature gradients of the temperature grating. Differently to laser induced dynamic grating experiments we use Joule heating instead of optical heating. For that purpose we have built cuvettes which have a grating of transparent conducting strips on the inner side of one of their windows. If heated by an electric current a temperature grating will build up in the sample. Both the heat equation and the extended diffusion equation have been solved in two dimensions to allow for quantitative data analysis. Our apparatus and method of analysis have been validated by measurements of heat, mass, and thermal diffusions in pure and binary liquids. Heat diffusion can be correctly determined as was shown for pure toluene, pure dodecane, and the symmetric mixture of isobutylbenzene dodecane. Mass and thermal diffusions were studied in the three symmetric mixtures of dodecane, isobutylbenzene, and tetralin. The obtained diffusion and Soret coefficients agree with the literature values within the experimental errors. Uncompensated transient heating effects limit the resolution of the experimental technique.

  17. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-08-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation.

  18. Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids.

    PubMed

    Podgoršek, A; Jacquemin, J; Pádua, A A H; Costa Gomes, M F

    2016-05-25

    A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism.

  19. Collapse of granular-liquid mixtures over rigid, inclined beds.

    PubMed

    Berzi, D; Bossi, F C; Larcan, E

    2012-05-01

    This work deals with the propagation of granular-liquid waves over rigid beds, originated by the sudden removal of a sluice gate in a rectangular, inclined flume. In particular, we experimentally investigate the role of the initial volume ratio of granular material-monodispersed plastic cylinders-to water, the flume width, and the bed roughness on the time evolution of the granular front. Due to the presence of the interstitial liquid, we observed previously unreported types of collapse: (i) discontinuous flows, where the granular material stops after an initial spreading, and then flows again when the liquid, initially slower than the particles, reaches the front and remobilizes it; (ii) flows evolving into uniformly progressive waves at an angle of inclination of the flume well below the angle of repose of the dry granular material. We also noticed an unusual influence of the lateral confinement on the wave propagation. Indeed, the constant front velocity in the uniformly progressive state decreases when the channel width increases. We claim that the latter observation and the presence of discontinuous flows, strongly support the idea that only two-phase, stratified mathematical models can predict the behavior of unsteady, granular-liquid mixtures at high concentration, such as debris flows.

  20. Algorithms for GPU-based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals.

    PubMed

    Kazachenko, Sergey; Giovinazzo, Mark; Hall, Kyle Wm; Cann, Natalie M

    2015-09-15

    A custom code for molecular dynamics simulations has been designed to run on CUDA-enabled NVIDIA graphics processing units (GPUs). The double-precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse-grained and atomistic models, holonomic constraints, Nosé-Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard-Jones and Gay-Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n-hexane/2-propanol mixture; and a liquid crystal mesogen, 2-(4-butyloxyphenyl)-5-octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33-119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69-287 fold improvement and three GPUs yield a 101-377 fold speedup.

  1. Mutual diffusion in binary mixtures of ionic liquids and molecular liquids by dynamic light scattering (DLS).

    PubMed

    Rausch, Michael Heinrich; Lehmann, Julia; Leipertz, Alfred; Fröba, Andreas Paul

    2011-05-28

    The present study shows that dynamic light scattering (DLS) is capable of measuring mutual diffusion coefficients for binary mixtures of ionic liquids (ILs) with different molecular liquids over the complete composition range. Evidence is given that the light scattering signals are related to true molecular binary diffusion. The method stands out due to its ability to work non-invasively in macroscopic thermodynamic equilibrium with reasonable accuracy and within convenient measurement periods. Compared with other techniques, mixtures with distinctly higher viscosities can be probed. For exemplary binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO(4)]) with acetone, acetonitrile, dichloromethane, ethanol, or water as well as of 1-ethyl-3-methylimidazolium methanesulfonate ([EMIM][MeSO(3)]) with acetone, water, or methanol, mutual diffusivity data were measured over a wide range of composition at a temperature of 293.15 K. In general, the mutual diffusivity increases with increasing mole fraction of the molecular liquid and similarities to aqueous solutions of classical inorganic salts can be found. The characteristic behavior of the mutual diffusion coefficients is influenced by the nature of the chosen molecular liquid. For IL water mixtures, low light scattering intensities were observed despite the large refractive index difference of the pure components. The reason for this behavior may be the existence of water clusters in the mixtures. Additional measurements for IL acetone mixtures at temperatures ranging from 278.15 K to 323.15 K showed that the temperature dependence of the mutual diffusivity can be represented by Arrhenius functions and is increasing for decreasing mole fractions of acetone.

  2. High vacuum distillation of ionic liquids and separation of ionic liquid mixtures.

    PubMed

    Taylor, Alasdair W; Lovelock, Kevin R J; Deyko, Alexey; Licence, Peter; Jones, Robert G

    2010-02-28

    The vaporisation of ionic liquids has been investigated using temperature programmed desorption (TPD) and ultra-high vacuum (UHV) distillation. 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C(n)C(1)Im][Tf(2)N] (n = 2, 8), have been distilled at UHV and T > 500 K in a specially designed still. The distillation process yielded spectroscopically pure ionic liquid distillates with complete removal of volatile impurities such as water, argon and 1-methylimidazole. Such UHV distillation offers a method of obtaining high purity ionic liquids for analytical applications. The vapour phase of the ionic liquid mixtures [C(2)C(1)Im](0.05)[C(8)C(1)Im](0.95)[Tf(2)N] and [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N][EtSO(4)] has been analysed by TPD using line-of-sight mass spectrometry (LOSMS). The vapour phase consisted of all possible combinations of neutral ion pairs (NIPs) from the liquid mixture. Neither mixture showed evidence of decomposition during TPD, and the [C(2)C(1)Im](0.05)[C(8)C(1)Im](0.95)[Tf(2)N] mixture was shown to obey Raoult's law. Based on the TPD results, fractional distillations were attempted for [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N](2) and [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N][EtSO(4)] mixtures. The distillate from [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N](2) was enhanced in the more volatile [C(2)C(1)Im][Tf(2)N] components, but the [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N][EtSO(4)] mixture underwent significant decomposition. The similarities and differences between UHV TPD, and high vacuum distillation, of ionic liquids, are discussed. Design parameters are outlined for a high vacuum ionic liquid still that will minimise decomposition and maximise separation of ILs of differing volatility.

  3. The Soret Effect in Liquid Mixtures - A Review

    NASA Astrophysics Data System (ADS)

    Köhler, Werner; Morozov, Konstantin I.

    2016-07-01

    The Soret effect describes diffusive motion that originates from a temperature gradient. It is observed in mixtures of gases, liquids and even solids. Although there is a formal phenomenological description based on linear nonequilibrium thermodynamics, the Soret effect is a multicause phenomenon and there is no univocal microscopic picture. After a brief historical overview and an outline of the fundamental thermodynamic concepts, this review focuses on thermodiffusion in binary and ternary liquid mixtures. The most important experimental techniques used nowadays are introduced. Then, a modern development in studying thermal diffusion, the discovery of both integral and specific additivity laws, is discussed. The former relate to the general behavior of the substances in a temperature field according to their thermophobicities, which prove to be pure component properties. The thermophobicities allow for a convenient classification of the phenomenon, a simple interpretation and a proper estimation and prediction of the thermodiffusion parameters. The specific laws relate to the additivity of the particular contributions. Among the latter, we discuss the isotopic Soret effect and the so-called chemical contribution. From the theoretical side, there are kinetic and thermodynamic theories, and the nature of the driving forces of thermodiffusion can be either of volume or surface type. Besides analytical models, computer simulations become increasingly important. Polymer solutions are special as they represent highly asymmetric molecular systems with a molar mass-independent thermophoretic mobility. Its origin is still under debate, and draining and non-draining models are presently discussed. Finally, some discussion is devoted to ternary mixtures, which only recently have been investigated in more detail.

  4. Thermochromic Behavior of a Novel Nematic Liquid Crystal Mixture:. Effects of Chiral Doping

    NASA Astrophysics Data System (ADS)

    Kapila, Shikha; Raina, K. K.

    Chirality was induced in a room temperature nematic liquid crystalline mixture. The phase transitions of doped samples were studied and thermochromic response of the mixture was investigated via RGB (Red-Green-Blue) and Hue measurements.

  5. Qualitative Analysis of Liquid Hydrocarbon Mixtures by Absorption Spectra of Their Vapors

    NASA Astrophysics Data System (ADS)

    Vesnin, V. L.

    2016-11-01

    Absorption spectra of saturated vapors of hydrocarbons and their mixtures were studied near their first overtones. Absorption spectra of hydrocarbons in the liquid and vapor states were compared. The ability to analyze qualitatively the compositions of liquid hydrocarbon mixtures using absorption spectra of their vapors was demonstrated. Indirect evidence suggested that the nonlinear absorption as a function of concentration that was seen in liquid hydrocarbon mixtures was negligible in their vapors.

  6. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    SciTech Connect

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  7. Multicomponent high-performance liquid chromatography/tandem mass spectrometry analysis of ten chemotherapeutic drugs in wipe samples.

    PubMed

    Maeda, Shinichiro; Miwa, Yoshihiro

    2013-03-15

    Progress in chemotherapy leads to increased numbers and variety of chemotherapeutic drugs, and multicomponent analysis of these drugs is a necessary step. We used liquid chromatography-tandem mass spectrometry and developed a multicomponent analysis of ten drugs used in chemotherapy: vindesine, vincristine, vinblastine, doxorubicin, epirubicin, ifosfamide, cyclophosphamide, irinotecan, docetaxel, and paclitaxel. We selected five internal standards for each category of drug, because the ionization efficiencies of product ions varied widely. The total run time was 22min, applying a gradient elution of water and acetonitrile in the presence of 0.1% formic acid. The lower limit of quantification was 50ng/wipe samples for vindesine, vincristine, and vinblastine, and 5ng/wipe samples for the remaining seven drugs. Accuracy (88.6-112.9%, 85.2-111.7%) and precision (1.0-11.5%CV, 3.6-14.4%CV) in within-run and between-run assays of QC solutions were acceptable. Without outliers, in within-run and between-run assays of QC samples, accuracy was 90.6-113.9% and 91.1-130.4%, respectively, and precision was 2.2-19.0%CV and 4.8-14.9%CV, respectively. Accuracy and precision of High QC samples of irinotecan were deviated. Our analysis procedure has sufficient sensitivity and is convenient enough for regular monitoring.

  8. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    SciTech Connect

    Martínez-Ruiz, F. J.; Blas, F. J.; Moreno-Ventas Bravo, A. I.

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  9. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Martínez-Ruiz, F. J.; Moreno-Ventas Bravo, A. I.; Blas, F. J.

    2015-09-01

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ11 = σ22, with the same dispersive energy between like species, ɛ11 = ɛ22, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janec̆ek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances rc and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance rc is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules

  10. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture.

    PubMed

    Martínez-Ruiz, F J; Moreno-Ventas Bravo, A I; Blas, F J

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ11 = σ22, with the same dispersive energy between like species, ϵ11 = ϵ22, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janec̆ek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances rc and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance rc is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules

  11. Critical Casimir effect in classical binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Gambassi, A.; Maciołek, A.; Hertlein, C.; Nellen, U.; Helden, L.; Bechinger, C.; Dietrich, S.

    2009-12-01

    If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems. We report on the direct measurement of critical Casimir forces by total internal reflection microscopy with femtonewton resolution. The corresponding potentials are determined for individual colloidal particles floating above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces acting in film geometries within the Ising universality class and with equal or opposing boundary conditions, we provide the corresponding theoretical predictions for the sphere—planar wall geometry of the experiment. The experimental data for the effective potential can be interpreted consistently in terms of these predictions and a remarkable quantitative agreement is observed.

  12. Critical Casimir effect in classical binary liquid mixtures.

    PubMed

    Gambassi, A; Maciołek, A; Hertlein, C; Nellen, U; Helden, L; Bechinger, C; Dietrich, S

    2009-12-01

    If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems. We report on the direct measurement of critical Casimir forces by total internal reflection microscopy with femtonewton resolution. The corresponding potentials are determined for individual colloidal particles floating above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces acting in film geometries within the Ising universality class and with equal or opposing boundary conditions, we provide the corresponding theoretical predictions for the sphere-planar wall geometry of the experiment. The experimental data for the effective potential can be interpreted consistently in terms of these predictions and a remarkable quantitative agreement is observed.

  13. Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers

    USGS Publications Warehouse

    Kwicklis, E.M.; Wolfsberg, A.V.; Stauffer, P.H.; Walvoord, M.A.; Sully, M.J.

    2006-01-01

    Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to

  14. Multi-component determination and chemometric analysis of Paris polyphylla by ultra high performance liquid chromatography with photodiode array detection.

    PubMed

    Chen, Pei; Jin, Hong-Yu; Sun, Lei; Ma, Shuang-Cheng

    2016-09-01

    Multi-source analysis of traditional Chinese medicine is key to ensuring its safety and efficacy. Compared with traditional experimental differentiation, chemometric analysis is a simpler strategy to identify traditional Chinese medicines. Multi-component analysis plays an increasingly vital role in the quality control of traditional Chinese medicines. A novel strategy, based on chemometric analysis and quantitative analysis of multiple components, was proposed to easily and effectively control the quality of traditional Chinese medicines such as Chonglou. Ultra high performance liquid chromatography was more convenient and efficient. Five species of Chonglou were distinguished by chemometric analysis and nine saponins, including Chonglou saponins I, II, V, VI, VII, D, and H, as well as dioscin and gracillin, were determined in 18 min. The method is feasible and credible, and enables to improve quality control of traditional Chinese medicines and natural products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures

    SciTech Connect

    Sabourin, J.L.; Yetter, R.A.; Risha, G.A.; Son, S.F.; Tappan, B.C.

    2008-08-15

    An experimental investigation of the combustion characteristics of nanoaluminum (nAl), liquid water (H{sub 2}O{sub (l)}), and hydrogen peroxide (H{sub 2}O{sub 2}) mixtures has been conducted. Linear and mass-burning rates as functions of pressure, equivalence ratio ({phi}), and concentration of H{sub 2}O{sub 2} in H{sub 2}O{sub (l)} oxidizing solution are reported. Steady-state burning rates were obtained at room temperature using a windowed pressure vessel over an initial pressure range of 0.24 to 12.4 MPa in argon, using average nAl particle diameters of 38 nm, {phi} from 0.5 to 1.3, and H{sub 2}O{sub 2} concentrations between 0 and 32% by mass. At a nominal pressure of 3.65 MPa, under stoichiometric conditions, mass-burning rates per unit area ranged between 6.93 g/cm{sup 2} s (0% H{sub 2}O{sub 2}) and 37.04 g/cm{sup 2} s (32% H{sub 2}O{sub 2}), which corresponded to linear burning rates of 9.58 and 58.2 cm/s, respectively. Burning rate pressure exponents of 0.44 and 0.38 were found for stoichiometric mixtures at room temperature containing 10 and 25% H{sub 2}O{sub 2}, respectively, up to 5 MPa. Burning rates are reduced above {proportional_to}5 MPa due to the pressurization of interstitial spaces of the packed reactant mixture with argon gas, diluting the fuel and oxidizer mixture. Mass burning rates were not measured above {proportional_to}32% H{sub 2}O{sub 2} due to an anomalous burning phenomena, which caused overpressurization within the quartz sample holder, leading to tube rupture. High-speed imaging displayed fingering or jetting ahead of the normal flame front. Localized pressure measurements were taken along the sample length, determining that the combustion process proceeded as a normal deflagration prior to tube rupture, without significant pressure buildup within the tube. In addition to burning rates, chemical efficiencies of the combustion reaction were determined to be within approximately 10% of the theoretical maximum under all conditions

  16. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay.

    PubMed

    Xu, Xue; Li, Yan; Wang, Yuan; Wang, Yonghua

    2011-02-01

    The toxicities of copper, lead, zinc and cadmium ions and various concentrations of mixtures of them were studied using sea urchin (Strongylocentyotus intermedius) embryo-larval bioassay. Toxic unit analysis was used to determine type of joint action for each mixture combination (binary, ternary and quaternary). For the majority of the binary combinations, the interactions were of synergistic nature, but in ternary or quaternary mixtures, the joint action was mainly concentration additive, while antagonism was only observed for two mixtures (Cu+Pb and Zn+Cd) among all the 11 combinations. Two prevailing theoretical models: the concentration addition (CA) model and the independent action (IA) model were used to predict the mixture toxicities. The weak correlation obtained (R≃0.55) indicated that the hypotheses of mode of action involved in the two models to some extent failed to describe the behavior of the mixture system. Then a novel bio-concentration factor-based model was developed and was successful to predict the toxicities of mixtures, with an obtained R of 0.92. This model indicated that in a mixture system of heavy metals, the joint toxicity was mainly determined by the combined action of bio-concentrations of metals other than the simply similar (CA) or dissimilar (IA) modes of action of the mixture components.

  17. A new developed velocity of sound measurement device for characterization of multi-component gas mixtures under elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Seibel, C.; Suedmeyer, J.; Fieback, T. M.

    2014-07-01

    Inline process control by measurement of velocity of sound of fluids is a direct and comprehensive technique [J. D. N. Cheeke and Z. Wang, "Acoustic wave gas sensors," Sens. Actuators B 59, 146-153 (1999); J. W. Grate, S. J. Martin, and R. M. White, "Acoustic wave microsensors," Anal. Chem. 65, 1868 (1993)]. Depending on the varying conditions of measuring fluid(s), temperatures and pressures, it is a challenging task to find the best possible acoustic setup. Taking this background into account, a velocity of sound measurement device for temperatures up to 475 K and pressures up to 24 MPa was designed and assembled that is to be used for testing different resonator types. Two bulk acoustic wave resonators out of the commonly used lead zirconatetitanate compound (PZT) were tested at different test fluids under temperatures up to 423.15 K and pressures up to 24 MPa [S. Gebhardt, L. Seffner, F. Schlenkirch, and A. Schönecker, "PZT thick films for sensor and actuator applications," J. Eur. Ceram. Soc. 27, 4177-4180 (2007)]. Initially the pure gases methane, ethane, carbon dioxide, nitrogen, and helium were measured, followed by multi-component gas mixtures. Beside methane-based binary and ternary gas mixtures, a quaternary gas mixture comprising methane, ethane, carbon dioxide, and helium was analyzed. Results for all measurement fluids in a broad temperature and pressure range show a relative deviation to theoretical values derived from GERG-2008 smaller than 0.5%.

  18. A new developed velocity of sound measurement device for characterization of multi-component gas mixtures under elevated temperatures and pressures.

    PubMed

    Seibel, C; Suedmeyer, J; Fieback, T M

    2014-07-01

    Inline process control by measurement of velocity of sound of fluids is a direct and comprehensive technique [J. D. N. Cheeke and Z. Wang, "Acoustic wave gas sensors," Sens. Actuators B 59, 146-153 (1999); J. W. Grate, S. J. Martin, and R. M. White, "Acoustic wave microsensors," Anal. Chem. 65, 1868 (1993)]. Depending on the varying conditions of measuring fluid(s), temperatures and pressures, it is a challenging task to find the best possible acoustic setup. Taking this background into account, a velocity of sound measurement device for temperatures up to 475 K and pressures up to 24 MPa was designed and assembled that is to be used for testing different resonator types. Two bulk acoustic wave resonators out of the commonly used lead zirconatetitanate compound (PZT) were tested at different test fluids under temperatures up to 423.15 K and pressures up to 24 MPa [S. Gebhardt, L. Seffner, F. Schlenkirch, and A. Schönecker, "PZT thick films for sensor and actuator applications," J. Eur. Ceram. Soc. 27, 4177-4180 (2007)]. Initially the pure gases methane, ethane, carbon dioxide, nitrogen, and helium were measured, followed by multi-component gas mixtures. Beside methane-based binary and ternary gas mixtures, a quaternary gas mixture comprising methane, ethane, carbon dioxide, and helium was analyzed. Results for all measurement fluids in a broad temperature and pressure range show a relative deviation to theoretical values derived from GERG-2008 smaller than 0.5%.

  19. Biomass Pretreatment using Ionic Liquid and Glycerol Mixtures

    NASA Astrophysics Data System (ADS)

    Lynam, Joan Goerss

    Lignocellulosic biomass is a renewable, sustainable resource that can replace or supplement fossil fuels use for liquid fuels and chemicals. However, its recalcitrant structure including interwoven cellulose, hemicelluloses, and lignin biomacromolecules is challenging to deconstruct. Pretreating biomass so that it can be converted to useful liquids dominates process economics. Many pretreatment methods exist, but most require hazardous chemicals or processing conditions. Many ionic liquids (ILs), salts molten below 100°C, can be used to deconstruct lignocellulosic biomass and are less hazardous than the volatile organic compounds typically used. While effective, relatively safe, and recyclable, ILs are expensive. To reduce costs, dilution with other safe compounds is desirable, if there is no impact on deconstruction efficiency. Glycerol, a food additive, is inexpensive and becoming even more so since it is a by-product of the burgeoning biodiesel industry. Use of glycerol as an additive or diluent for ILs is extensively evaluated in this work. Rice hulls are an abundant biomass, with over 100 million tons produced per year, but with little practical use. The IL 1-ethyl-3-methylimidazolium formate ([C2mim][O2CH] or EMIM Form) when mixed with an equal amount of glycerol has been shown to be effective in pretreating rice hulls. Ambient pressure, a pretreatment temperature of 110°C, and a reaction time of three hours produced rice hulls that could be enzymatically hydrolyzed to give reasonably good glucose and xylose yields considering the recalcitrance of this silica-armored biomass. The IL [C2mim][O2CH] was also effective when mixed with an equal amount of glycerol to pretreat loblolly pine, a fast-growing softwood. Loblolly pine was pretreated at 140°C for three hours to produce a solid rich in cellulose and hemicelluloses, while a lignin-rich product could be precipitated from the IL. Similar products were obtained from pretreatment with a mixture of 75% 1

  20. Correlations and scaling properties of nonequilibrium fluctuations in liquid mixtures

    NASA Astrophysics Data System (ADS)

    Brogioli, Doriano; Croccolo, Fabrizio; Vailati, Alberto

    2016-08-01

    Diffusion in liquids is accompanied by nonequilibrium concentration fluctuations spanning all the length scales comprised between the microscopic scale a and the macroscopic size of the system, L . Up to now, theoretical and experimental investigations of nonequilibrium fluctuations have focused mostly on determining their mean-square amplitude as a function of the wave vector. In this work, we investigate the local properties of nonequilibrium fluctuations arising during a stationary diffusion process occurring in a binary liquid mixture in the presence of a uniform concentration gradient, ∇ c0 . We characterize the fluctuations by evaluating statistical features of the system, including the mean-square amplitude of fluctuations and the corrugation of the isoconcentration surfaces; we show that they depend on a single mesoscopic length scale l =√{a L } representing the geometric average between the microscopic and macroscopic length scales. We find that the amplitude of the fluctuations is very small in practical cases and vanishes when the macroscopic length scale increases. The isoconcentration surfaces, or fronts of diffusion, have a self-affine structure with corrugation exponent H =1 /2 . Ideally, the local fractal dimension of the fronts of diffusion would be Dl=d -H , where d is the dimensionality of the space, while the global fractal dimension would be Dg=d -1 . The transition between the local and global regimes occurs at a crossover length scale of the order of the microscopic length scale a . Therefore, notwithstanding the fact that the fronts of diffusion are corrugated, they appear flat at all the length scales probed by experiments, and they do not exhibit a fractal structure.

  1. Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-04-01

    In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O

  2. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  3. Exploring the Use of Ionic Liquid Mixtures to Enhance the Performance of Dicationic Ionic Liquids

    DOE PAGES

    Lall-Ramnarine, Sharon I.; Suarez, Sophia N.; Fernandez, Eddie D.; ...

    2017-05-06

    Dicationic ionic liquids (DILs) of diverse structural architectures (including symmetrical and asymmetrical ammonium, phosphonium and heterodications and the bis(trifluoromethylsulfonyl)amide (NTf2-) anion) have been prepared and used as additives to N-methyl-N-ethoxyethylpyrrolidinium (P1EOE) NTf2, a relatively high-performing IL in terms of its transport properties (viscosity 53 mPa s). The three-ion, binary IL mixtures were characterized for their thermal and transport properties using differential scanning calorimetry, temperature dependent viscosity, conductivity and Pulsed Gradient Spin Echo (PGSE) NMR. Variable temperature 1H, 19F and 31P self-diffusion coefficients were determined at 25, 60 and 75°C. The order of the diffusion coefficients was D(P1EOE+) > D(anion) >more » D(dication), and the composition of the dication had a strong effect on the degree to which diffusion of all three species is more or less coupled. IL mixtures containing about 30 mol % of the dicationic NTf2 and 70 mol % of P1EOE NTf2 resulted in a significant decrease in glass transition temperatures and viscosities compared to the pure DIL. The mixtures extended the liquid range and potential for practical applications significantly. Finally, the data obtained here provides insight into the future design of dicationic salts tailored to exhibit lower viscosity and higher conductivities.« less

  4. Metastable sound speed in gas-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1979-01-01

    A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.

  5. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOEpatents

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  6. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOEpatents

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  7. Crystallization of classical multicomponent plasmas

    SciTech Connect

    Medin, Zach; Cumming, Andrew

    2010-03-15

    We develop a method for calculating the equilibrium properties of the liquid-solid phase transition in a classical, ideal, multicomponent plasma. Our method is a semianalytic calculation that relies on extending the accurate fitting formulas available for the one-, two-, and three-component plasmas to the case of a plasma with an arbitrary number of components. We compare our results to those of C. J. Horowitz et al. [Phys. Rev. E 75, 066101 (2007)], who used a molecular-dynamics simulation to study the chemical properties of a 17-species mixture relevant to the ocean-crust boundary of an accreting neutron star at the point where half the mixture has solidified. Given the same initial composition as Horowitz et al., we are able to reproduce to good accuracy both the liquid and solid compositions at the half-freezing point; we find abundances for most species within 10% of the simulation values. Our method allows the phase diagram of complex mixtures to be explored more thoroughly than possible with numerical simulations. We briefly discuss the implications for the nature of the liquid-solid boundary in accreting neutron stars.

  8. From Trioleoyl glycerol to extra virgin olive oil through multicomponent triacylglycerol mixtures: Crystallization and polymorphic transformation examined with differential scanning calorimetry and X-ray diffration techniques.

    PubMed

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2017-09-01

    The polymorphic crystallization and transformation behavior of extra virgin olive oil (EVOO) was examined by using differential scanning calorimetry (DSC) and X-ray diffraction with both laboratory-scale (XRD) and synchrotron radiation source (SR-XRD). The complex behavior observed was studied by previously analyzing mixtures composed by its main 2 to 6 triacylglycerol (TAG) components. Thus, component TAGs were successively added to simulate EVOO composition, until reaching a 6 TAGs mixture, composed by trioleoyl glycerol (OOO), 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1,2-dioleoyl-3-linoleoyl glycerol (OOL), 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), 1,2-dipalmitoyl-3-oleoyl glycerol (PPO) and 1-stearoyl-2,3-dioleoyl glycerol (SOO). Molten samples were cooled from 25°C to -80°C at a controlled rate of 2°C/min and subsequently heated at the same rate. The polymorphic behavior observed in multicomponent TAG mixtures was interpreted by considering three main groups of TAGs with different molecular structures: triunsaturated OOO and OOL, saturated-unsaturated-unsaturated POO, POL and SOO, and saturated-saturated-unsaturated PPO. As confirmed by our previous work, TAGs belonging to the same structural group displayed a highly similar polymorphic behavior. EVOO exhibited two different β'-2L polymorphic forms (β'2-2L and β'1-2L), which transformed into β'-3L when heated. Equivalent polymorphic pathways were detected when the same experimental conditions were applied to the 6 TAG components mixture. Hence, minor components may not exert a strong influence in this case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Determination of solubility parameters of ionic liquids and ionic liquid/solvent mixtures from intrinsic viscosity.

    PubMed

    Weerachanchai, Piyarat; Wong, Yuewen; Lim, Kok Hwa; Tan, Timothy Thatt Yang; Lee, Jong-Min

    2014-11-10

    The total and partial solubility parameters (dispersion, polar and hydrogen-bonding solubility parameters) of ten ionic liquids were determined. Intrinsic viscosity approaches were used that encompassed a one-dimensional method (1D-Method), and two different three-dimensional methods (3D-Method1 and 3D-Method2). The effect of solvent type, the dimethylacetamide (DMA) fraction in the ionic liquid, and dissolution temperature on solubility parameters were also investigated. For all types of effect, both the 1D-Method and 3D-Method2 present the same trend in the total solubility parameter. The partial solubility parameters are influenced by the cation and anion of the ionic liquid. Considering the effect on partial solubility parameters of the solvent type in the ionic liquid, it was observed that in both 3D methods, the dispersion and polar parameters of a 1-ethyl-3-methylimidazolium acetate/solvent (60:40 vol %) mixture tend to increase as the total solubility parameter of the solvent increases.

  10. Highly viscous liquid crystalline mixtures: the alternative to liquid crystalline elastomers

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Schlesier, Cristina; Newman, Leah; McDonald, Scott

    2012-02-01

    Novel highly viscous liquid crystalline materials based on mixtures of glass forming oligomers and low molar mass liquid crystals were recently designed [1, 2] and studied. In this communication the novel data are presented, the analysis and discussion are extended. It is shown that viscoelastic properties of the materials are due to the physical entanglements between cyclic oligomers and low molar mass mesogens, not due to the chemical crosslinks between molecular moities. However, the mechanical properties of these viscoelastic materials resemble those of chemically crosslinked elastomers (elasticity and reversibility of deformations). The properties of chiral and non-chiral materials loaded with ferromagnetic nanoparticles are discussed in detail. Cholesteric materials undergo gigantic color changes in the wide spectral range under the deformation that allows distant detection of deformation and determination the anisotropy of deformation and its type. The materials doped with laser dyes become mechanically tunable lasers themselves and emit coherent light while pumped by external laser. A simple model is suggested to account for the observed effects; physical properties of the novel materials and liquid crystalline elastomers are compared and discussed. [4pt] [1] P.V. Shibaev, C. Schlesier, R. Uhrlass, S. Woodward, E. Hanelt, Liquid Crystals, 37:12, 1601-1604 [0pt] [2] P.V. Shibaev, P. Riverra, D. Teter, S. Marsico, M. Sanzari, V. Ramakrishnan, E. Hanelt, Optics Express, 16, 2965 (2008)

  11. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Khani, Rouhollah; Ghasemi, Jahan B.; Shemirani, Farzaneh

    2014-03-01

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL-1, respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL-1, respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples.

  12. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction.

    PubMed

    Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh

    2014-03-25

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples.

  13. A direct method for calculating thermodynamic factors for liquid mixtures using the Permuted Widom test particle insertion method

    NASA Astrophysics Data System (ADS)

    Prasaad Balaji, Sayee; Schnell, Sondre K.; McGarrity, Erin S.; Vlugt, Thijs J. H.

    2013-01-01

    Understanding mass transport in liquids by mutual diffusion is an important topic for many applications in chemical engineering. The reason for this is that diffusion is often the rate limiting step in chemical reactors and separators. In multicomponent liquid mixtures, transport diffusion can be described by both generalized Fick's law and the Maxwell-Stefan theory. The Maxwell-Stefan and Fick approaches in an n-component system are related by the so-called thermodynamic factor [R. Taylor and H.A. Kooijman, Chem. Eng. Commun, 102, 87 (1991)]. As Fick diffusivities can be measured in experiments and Maxwell-Stefan diffusivities can be obtained from molecular simulations/theory, the thermodynamic factors bridge the gap between experiments and molecular simulations/theory. It is therefore desirable to be able to compute thermodynamic factors from molecular simulations. Unfortunately, presently used simulation techniques for computing thermodynamic factors are inefficient and often require numerical differentiation of simulation results. In this work, we propose a modified version of the Widom test-particle method to compute thermodynamic factors from a single simulation. This method is found to be more efficient than the conventional Widom test particle insertion method combined with numerical differentiation of simulation results. The approach is tested for binary systems consisting of Lennard-Jones particles. The thermodynamic factors computed from the simulation and from numerically differentiating the activity coefficients obtained from the conventional Widom test particle insertion method are in excellent agreement.

  14. Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples.

    PubMed

    Lam, Maggie P Y; Lau, Edward; Siu, S O; Ng, Dominic C M; Kong, Ricky P W; Chiu, Philip C N; Yeung, William S B; Lo, Clive; Chu, Ivan K

    2011-11-01

    In this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP-RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11-protein mixture, we found that the system could efficiently separate native peptides and released N-glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP-RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A-extracted glycoproteome from human serum; in total, 134 potentially N-glycosylated serum proteins, 151 possible N-glycosylation sites, and more than 40 possible N-glycan structures recognized by concanavalin A were simultaneously detected.

  15. Determination of low concentrations of aromatic hydrocarbons in multicomponent mixtures with iso-octane and n-heptane

    NASA Astrophysics Data System (ADS)

    Vesnin, V. L.; Muradov, V. G.

    2011-11-01

    We have experimentally studied the absorption spectra of hydrocarbon mixtures based on n-heptane and isooctane with small (1%-2%) additions of aromatic hydrocarbons (benzene, toluene, xylene). The study was conducted in the region of the first overtones of the vibrational spectra for the hydrocarbon groups CH3, CH2, CH. We show that four-component modeling of the absorption spectrum of the hydrocarbon mixture and minimization of the deviation of the model spectrum from the experimental spectrum allow us to separately determine the content of the aromatic additives for concentrations from 1%.

  16. Understanding positive and negative deviations in polarity of ionic liquid mixtures by pseudo-solvent approach.

    PubMed

    Beniwal, Vijay; Kumar, Anil

    2016-08-24

    Physico-chemical properties of liquid mixtures in general display large deviations from linear behaviour, arising out of complex specific and non-specific intermolecular interactions. The polarity of liquid mixtures displaying large positive and negative deviations can be minimized and linear mixing can be achieved in liquids using a pseudo-solvent methodology. The work described herein is designed to investigate the influence of different physical parameters on the linear pseudo-solvent composition in ionic liquid mixtures. For this purpose, we have determined the deviations from linearity, ΔE values (defined as given by ) for binary mixtures of a variety of ionic liquids, including two molecular solvents, DMSO and formamide. Firstly, the investigations were carried out in three 1-butyl-3-methylimidazolium cation based aprotic ionic liquids and the roles of anionic structure and hydrogen bond acceptor basicities (β values) of the ionic liquids were determined. The influence of the cationic structure, i.e., the hydrogen bond donor acidity (α values) and non-associative nature of the ionic liquids, was determined using C2-methylated analogs, 1-butyl-2,3-dimethylimidazolium cation based ionic liquids. The role of the protic nature of ionic liquids was studied in two protic ionic liquids, viz., 1-methylimidazolium formate and 1-methylimidazolium acetate. The effects of the temperature, pseudo-solvent structure and solvatochromic probe structure on the ΔE values were also explored.

  17. Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Webeler, R.; Bedard, F.

    1961-01-01

    The absence of experimental data in the literature concerning a viscosity difference for normal and equilibrium liquid hydrogen may be attributed to the limited reproducibility of "oscillating disk" measurements in a liquid-hydrogen environment. Indeed, there is disagreement over the viscosity values for equilibrium liquid hydrogen even without proton spin considerations. Measurements presented here represent the first application of the piezoelectric alpha quartz torsional oscillator technique to liquid-hydrogen viscosity measurements.

  18. Calculation of the viscosity of binary liquid mixtures

    SciTech Connect

    Nadirov, N.K.; Urazgaliev, B.U.; Ni, E.A.

    1986-11-01

    The authors construct an equation for the kinematic viscosity of binary petroleum mixtures which incorporates the dependence of this property on temperature and hydrocarbon composition and density. The equation is applied to crudes and their mixtures from the Kalamkas and karazhanbas fields in the Soviet Union.

  19. Study of solid surface interactions with binary liquid mixtures and liquid crystals

    NASA Astrophysics Data System (ADS)

    Polak, Robert Dale

    The adsorption profile of a binary liquid mixture against a solid substrate was studied using an optical probe. The effective surface field was controlled by partially coating one half of the glass surface with octadecyltrichlorosilane, while the other half remained bare. On the bare surface, one component of the binary liquid mixture was strongly adsorbed to the surface, and, in the one-phase region, adsorption could be observed far from the bulk transition temperature. This adsorption scales as expected by a normal surface transition in which the surface orders at a higher temperature than the bulk. On the partially coated surface, the adsorption could only be observed very near the bulk critical temperature. Over the course of the first several days of the experiment, the adsorption profile changed, but it eventually became stable. Scaling analysis of the stable surface suggests the possibility that the surface was in the crossover region between normal and ordinary (where the surface and bulk order at the same temperature) surface transitions. In a separate series of experiments, the interaction between a nematic liquid crystal and substrate was studied, in particular, the energetic cost to deviate the surface director from its preferred orientation. To accurately determine the energetic cost, denoted by the polar anchoring coefficient W, of a typical alignment layer/liquid crystal was measured using three techniques. The first is the 'high-electric-field' (HEF) technique was found to give the largest value of W. In the course of the study, the HEF technique was improved by no longer requiring the measurement of capacitance of the sample liquid crystal cell. Also, the source of the large value of W is detected, and a protocol was developed to determine the reliability of the results given by the HEF technique. Two other techniques are used to determine W: the measurement of capacitance in a magnetic field and the measurement of the Frederiks transition at

  20. Amphiphile Meets Amphiphile: Beyond the Polar-Apolar Dualism in Ionic Liquid/Alcohol Mixtures.

    PubMed

    Russina, Olga; Sferrazza, Alessio; Caminiti, Ruggero; Triolo, Alessandro

    2014-05-15

    The mesoscopic morphology of binary mixtures of ethylammonium nitrate (EAN), the protic ionic liquid par excellence, and methanol is explored using neutron/X-ray diffraction and computational techniques. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network: surprisingly, though macroscopically homogeneous, these mixtures turn out to be mesoscopically highly heterogeneous. Our study reveals that even in methanol-rich mixtures, a wide distribution of clusters exists where EAN preserves its bulk, sponge-like morphology. Accordingly methanol does not succeed in fully dissociating the ionic liquid that keeps on organizing in a bulk-like fashion. This behavior represents the premises to the more dramatic phenomenology observed with longer alcohols that eventually phase separate from EAN. These results challenge the commonly accepted polar and apolar moieties segregation in ionic liquids/molecular liquids mixtures and the current understanding of technologically relevant solvation processes.

  1. Liquid-liquid equilibria of binary mixtures of a lipidic ionic liquid with hydrocarbons.

    PubMed

    Green, Blane D; Badini, Alexander J; O'Brien, Richard A; Davis, James H; West, Kevin N

    2016-01-28

    Although structurally diverse, many ionic liquids (ILs) are polar in nature due to the strong coulombic forces inherent in ionic compounds. However, the overall polarity of the IL can be tuned by incorporating significant nonpolar content into one or more of the constituent ions. In this work, the binary liquid-liquid equilibria of one such IL, 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide, with several hydrocarbons (n-hexane, n-octane, n-decane, cyclohexane, methylcyclohexane, 1-octene) is measured over the temperature range 0-70 °C at ambient pressure using a combination of cloud point and gravimetric techniques. The phase behavior of the systems are similar in that they exhibit two phases: one that is 60-90 mole% hydrocarbon and a second phase that is nearly pure hydrocarbon. Each phase exhibits a weak dependence of composition on temperature (steep curve) above ∼10 °C, likely due to swelling and restructuring of the nonpolar nano-domains of the IL being limited by energetically unfavorable restructuring in the polar nano-domains. The solubility of the n-alkanes decreases with increasing size (molar volume), a trend that continues for the cyclic alkanes, for which upper critical solution temperatures are observed below 70 °C. 1-Octene is found to be more soluble than n-octane, attributable to a combination of its lower molar volume and slightly higher polarity. The COSMO-RS model is used to predict the T-x'-x'' diagrams and gives good qualitative agreement of the observed trends. This work presents the highest known solubility of n-alkanes in an IL to date and tuning the structure of the ionic liquid to maximize the size/shape trends observed may provide the basis for enhanced separations of nonpolar species.

  2. On the Crystallization of Compacted and Chunky Graphite from Liquid Multicomponent Iron-Carbon-Silicon-Based Melts

    NASA Astrophysics Data System (ADS)

    Stefanescu, D. M.; Huff, R.; Alonso, G.; Larrañaga, P.; De la Fuente, E.; Suarez, R.

    2016-08-01

    Extensive SEM work was carried out on deep-etched specimens to reveal the evolution of compacted and chunky graphite in magnesium-modified multicomponent Fe-C-Si alloys during early solidification and at room temperature. The findings of this research were then integrated in the current body of knowledge to produce an understanding of the crystallization of compacted and chunky graphite. It was confirmed that growth from the liquid for both compacted and chunky graphite occurs radially from a nucleus, as foliated crystals and dendrites. The basic building blocks of the graphite aggregates are hexagonal faceted graphite platelets with nanometer height and micrometer width. Thickening of the platelets occurs through growth of additional graphene layers nucleated at the ledges of the graphite prism. Additional thickening resulting in complete joining of the platelets may occur from the recrystallization of the amorphous carbon that has diffused from the liquid through the austenite, once the graphite aggregate is enveloped in austenite. With increasing magnesium levels, the foliated graphite platelets progressively aggregate along the c-axis forming clusters. The clusters that have random orientation, eventually produce blocky graphite, as the spaces between the parallel platelets disappear. This is typical for compacted graphite irons and tadpole graphite. The chunky graphite aggregates investigated are conical sectors of graphite platelets stacked along the c-axis. The foliated dendrites that originally develop radially from a common nucleus may aggregate along the c-axis forming blocky graphite that sometimes exhibits helical growth. The large number of defects (cavities) observed in all graphite aggregates supports the mechanism of graphite growth as foliated crystals and dendrites.

  3. Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries.

    PubMed

    Vogl, T; Menne, S; Balducci, A

    2014-12-07

    In this study we investigated the chemical-physical properties of mixtures containing the protic ionic liquid (PIL) N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRH4TFSI), propylene carbonate (PC) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in view of their use as electrolytes for lithium-ion batteries (LIBs). We showed that these electrolytic solutions might display conductivity and viscosity comparable to those of conventional electrolytes. Depending on the amount of PIL present inside the mixtures, such mixtures might also display the ability to suppress the anodic dissolution of Al. Furthermore, we showed that the coordination of lithium ions by TFSI in PIL-PC mixtures appears to be different than the one observed for mixtures of PC and aprotic ionic liquids (AILs). When used in combination with a battery electrode, e.g. lithium iron phosphate (LFP), these mixtures allow the achievement of high performance also at a very high C-rate.

  4. Nanoscale Density Fluctuations in Ionic Liquid Binary Mixtures with Nonamphiphilic Compounds: First Experimental Evidence.

    PubMed

    Mariani, Alessandro; Dattani, Rajeev; Caminiti, Ruggero; Gontrani, Lorenzo

    2016-10-04

    A complex mesoscopic organization is observed in systems containing ethylammonium nitrate (EAN) and two nonamphiphilic compounds, using wide and small angle X-ray scattering and molecular dynamics simulations. The macroscopically homogeneous mixtures exhibit a separation where an ionic liquid-rich region is percolating a molecular liquid-rich one, but no unmixing is observed. This effect was already reported in EAN-alcohol mixtures, but the models proposed so far cannot explain this behavior for a nonamphiphilic compound.

  5. Characterizing droplet combustion of pure and multi-component liquid fuels in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Jackson, Gregory S.; Avedisian, C. Thomas

    1993-01-01

    The importance of understanding the effects of fuel composition, length scales, and other parameters on the combustion of liquid fuels has motivated the examination of simple flames which have easily characterized flow fields and hence, the potential of being modeled accurately. One such flame for liquid fuel combustion is the spherically symmetric droplet flame which can be achieved in an environment with sufficiently low gravity (i.e., low buoyancy). To examine fundamental characteristics of spherically symmetric droplet combustion, a drop tower facility has been employed to provide a microgravity environment to study droplet combustion. This paper gives a brief review of results obtained over the past three years under NASA sponsorship (grant NAG3-987).

  6. Development of low anchoring strength liquid crystal mixtures for bistable nematic displays

    NASA Astrophysics Data System (ADS)

    Stoenescu, D.; Gallaire, D.; Faget, L.; Lamarque-Forget, S.; Joly, S.; Dubois, J.-C.; Martinot-Lagarde, Ph.; Dozov, I.

    2006-02-01

    The recent Bistable Nematic (BiNem (R)) LCD technology presents long term bistability, high level passive matrix multiplexing and high optical quality. The BiNem device, based on anchoring breaking, needs specific low anchoring strength materials - alignment layers and liquid crystal mixtures. We present here our approach to develop nematic mixtures with wide enough temperature range and low zenithal anchoring energy.

  7. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    SciTech Connect

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studies the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.

  8. Recent advances in liquid mixtures in electric fields

    NASA Astrophysics Data System (ADS)

    Katsir, Yael; Tsori, Yoav

    2017-02-01

    When immiscible liquids are subject to electric fields interfacial forces arise due to a difference in the permittivity or the conductance of the liquids, and these forces lead to shape change in droplets or to interfacial instabilities. In this topical review we discuss recent advances in the theory and experiments of liquids in electric fields with an emphasis on liquids which are initially miscible and demix under the influence of an external field. In purely dielectric liquids demixing occurs if the electrode geometry leads to sufficiently large field gradients. In polar liquids field gradients are prevalent due to screening by dissociated ions irrespective of the electrode geometry. We examine the conditions for these ‘electro prewetting’ transitions and highlight few possible systems where they might be important, such as in stabilization of colloids and in gating of pores in membranes.

  9. Nanostructural organization and anion effects in the optical Kerr effect spectra of binary ionic liquid mixtures.

    PubMed

    Xiao, Dong; Rajian, Justin Rajesh; Hines, Larry G; Li, Shengfu; Bartsch, Richard A; Quitevis, Edward L

    2008-10-23

    This article reports a study of the effect of anions on the optical Kerr effect (OKE) spectra of binary ionic liquid mixtures with one mixture comprising the 3-methyl-1-pentylimidazolium ([C 5mim] (+)) cation and the anions PF 6 (-) and CF 3CO 2 (-) (TFA (-)), and another mixture comprising the [C 5mim] (+) cation and the anions Br (-) and bis(trifluomethanesulfonyl)imide (NTf 2 (-)). The spectra were obtained by the use of optical heterodyne-detected Raman-induced Kerr Effect Spectroscopy at 295 K. The OKE spectra of the mixtures are compared with the calculated mole-fraction weighted sum of the normalized OKE spectra of the neat liquids. The OKE spectra are nearly additive for [C 5mim]Br/[C 5mim][NTf 2] mixtures, but nonadditive for [C 5mim][PF 6]/[C 5mim][TFA] mixtures. In the case of the equimolar [C 5mim][PF 6]/[C 5mim][TFA] mixture, the nonadditivity is such that the experimental OKE spectrum is narrower than the calculated OKE spectrum. The additivity or nonadditivity of OKE spectra for IL mixtures can be explained by assuming ionic liquids are nanostructurally organized into nonpolar regions and ionic networks. The ionic networks in mixtures will be characterized by "random co-networks" for anions that are nearly the same in size (PF 6 (-) and TFA (-)) and by "block co-networks" for anions that differ greatly in size (Br (-) and NTf 2 (-)).

  10. Playing with ionic liquid mixtures to design engineered CO2 separation membranes.

    PubMed

    Tomé, Liliana C; Florindo, Catarina; Freire, Carmen S R; Rebelo, Luís Paulo N; Marrucho, Isabel M

    2014-08-28

    Ionic liquids have been explored as attractive alternative media for CO2 separation not only due to their low volatility but also due to their highly tuneable nature. Aiming at designing highly efficient liquid phases for flue gas separation and natural gas purification, this work focuses on the use of binary ionic liquid mixtures containing sulfate and/or cyano-functionalized anions. Several mixtures were prepared and their gas transport properties through supported ionic liquid membranes (SILMs) were investigated. The thermophysical properties of these mixtures, namely viscosity and density (data presented and discussed in ESI), were also measured so that trends between transport properties and thermophysical properties could be evaluated. The results obtained indicate that depending on the anions mixed, membranes with fine-tuned gas permeabilities, diffusivities and solubilities can be obtained. Additionally, SILMs prepared with these ionic liquid mixtures are on the upper bound of the CO2/N2 separation, or even may surpass it, indicating their potential for separating CO2 in low-pressure post-combustion processes. Overall, the use of ionic liquid mixtures combining the most selective anions with the least viscous anions is a highly promising strategy to design advanced engineered liquid phases for CO2 separation membranes.

  11. Transient Numerical Modeling of the Combustion of Bi-Component Liquid Droplets: Methanol/Water Mixture

    NASA Technical Reports Server (NTRS)

    Marchese, A. J.; Dryer, F. L.

    1994-01-01

    This study shows that liquid mixtures of methanol and water are attractive candidates for microgravity droplet combustion experiments and associated numerical modeling. The gas phase chemistry for these droplet mixtures is conceptually simple, well understood and substantially validated. In addition, the thermodynamic and transport properties of the liquid mixture have also been well characterized. Furthermore, the results obtained in this study predict that the extinction of these droplets may be observable in ground-based drop to tower experiments. Such experiments will be conducted shortly followed by space-based experiments utilizing the NASA FSDC and DCE experiments.

  12. On inferring liquid-liquid phase boundaries and tie lines from ternary mixture light scattering

    NASA Astrophysics Data System (ADS)

    Wahle, Chris W.; Ross, David S.; Thurston, George M.

    2012-07-01

    We investigate the possibility of using light scattering data in the single-phase regions of a ternary liquid mixture phase diagram to infer ternary mixture coexistence curves, and to infer tie lines joining the compositions of isotropic liquid phases in thermodynamic equilibrium. Previous analyses of a nonlinear light scattering partial differential equation (LSPDE) show that it provides for reconstruction of ternary [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008), 10.1063/1.2937902; C. Wahle, D. Ross, and G. Thurston, J. Chem. Phys. 137, 034201 (2012), 10.1063/1.4731694] and quaternary [C. Wahle, D. Ross, and G. Thurston, J. Chem. Phys. 137, 034202 (2012)] mixing free energies from light scattering data, and that if the coexistence curves are already known, it can also yield ternary tie lines and triangles [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008), 10.1063/1.2937902]. Here, we show that the LSPDE can be used more generally, to infer phase boundaries and tie lines from light scattering data in the single-phase region, without prior knowledge of the coexistence curve, if the single-phase region is connected. The method extends the fact that the reciprocal light scattering intensity approaches zero at the thermodynamic spinodal. Expressing the free energy as the sum of ideal and excess parts leads to a natural family of Padé approximants for the reciprocal Rayleigh ratio. To test the method, we evaluate the single-phase reciprocal Rayleigh ratio resulting from the mean-field, regular solution model on a fine grid. We then use a low-order approximant to extrapolate the reciprocal Rayleigh ratio into metastable and unstable regions. In the metastable zone, the extrapolation estimates light scattering prior to nucleation and growth of a new phase. In the unstable zone, the extrapolation produces a negative function that in the present context is a computational convenience. The original and extrapolated reciprocal

  13. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    PubMed

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  14. Reversible and non-reactive cellulose separations from ionic liquid mixtures with compressed carbon dioxide.

    PubMed

    Minnick, David L; Scurto, Aaron M

    2015-08-14

    A novel physical (non-reactive) separation of cellulose from an ionic liquid (IL)/cosolvent mixture by compressed carbon dioxide is presented. The precipitation is completely reversible and rapid within small changes of pressure i.e. liquid phase CO2 composition. High pressure phase equilibrium, high pressure NMR, and solid state NMR have been utilized to understand the separation phenomena.

  15. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    EPA Science Inventory

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  16. Reversible and Non-Reactive Cellulose Separations from Ionic Liquid Mixtures with Compressed Carbon Dioxide

    PubMed Central

    Minnick, David L.; Scurto, Aaron M.

    2016-01-01

    A novel physical (non-reactive) separation of cellulose from an ionic liquid (IL) / cosolvent mixture by compressed carbon dioxide is presented. The precipitation is completely reversible and rapid within small changes of pressure i.e. liquid phase CO2 composition. High pressure phase equilibrium, high pressure NMR, and solid state NMR have been utilized to understand the separation phenomena. PMID:26159829

  17. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    EPA Science Inventory

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  18. Intermolecular forces in acetonitrile + ethanol binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Elangovan, A.; Shanmugam, R.; Arivazhagan, G.; Mahendraprabu, A.; Karthick, N. K.

    2015-10-01

    FTIR spectral measurements have been carried out on the binary mixtures of acetonitrile with ethanol at 1:0 (acetonitrile:ethanol), 1:1, 1:2, 1:3 and 0:1 at room temperature. DFT and isosurface calculations have been performed. The acetonitrile + ethanol binary mixtures consist of 1:1, 1:2, 1:3 and 1:4 complexes formed through both the red and blue shifting H-bonds. Inter as well as intra molecular forces are found to exist in 1:3 and 1:4 complexes.

  19. Nano bubbles in liquid of a noble-gas mixture.

    PubMed

    Yamamoto, Takenori; Ohnishi, Shuhei

    2010-02-07

    Large-scale molecular dynamics (MD) simulations with over one million atoms are used to investigate nano bubbles in Ar-Ne liquid. The simulations demonstrate cavitations in the stretched liquid, and bubble creation and collapse. We find that a small cavity created in the stretched liquid spontaneously transforms into a nano bubble with the homogeneous vapor region. The equilibrium spherical bubble of 11.4 nm in radius is obtained after the long-time MD run. The surface tension of the nano bubble is found to be larger than that of the flat surface.

  20. Shock Hugoniot equations of state for binary water-alcohol liquid mixtures

    NASA Astrophysics Data System (ADS)

    Moore, David; Bolme, Cynthia; Brown, Kathryn; McGrane, Shawn; Schulze, Peter

    2015-06-01

    Shock Hugoniot data were obtained using laser generated shock and ultrafast dynamic ellipsometry (UDE) methods for several non-ideal water-alcohol liquid mixtures, using methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and t-butanol (a.k.a., 2-methyl-2-propanol or tert-butanol). The sound speeds of the mixtures were obtained using Brillouin scattering when not available in the literature. The shock and particle velocities obtained from the UDE data were compared to expectations of the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. The shock Hugoniot trends for all these mixtures, represented as deviations from predictions of the ULH, versus fraction of alcohol are quite similar to each other and suggest that complex hydrogen bonding networks in water-alcohol mixtures alter the compressibility of the mixtures. Data and trends will be presented. LA-UR-15-20328.

  1. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid.

    PubMed

    Dobson, Richard; Schroth, Martin H; Zeyer, Josef

    2007-12-07

    Light nonaqueous-phase liquids (LNAPLs) such as gasoline and diesel fuel are among the most common causes of soil and groundwater contamination. Dissolution and subsequent advective transport of LNAPL components can negatively impact water supplies, while biodegradation is thought to be an important sink for this class of contaminants. We present a laboratory investigation of the effect of a water-table fluctuation on dissolution and biodegradation of a multi-component LNAPL (85% hexadecane, 5% toluene, 5% ethylbenzene, and 5% 2-methylnapthalene on a molar basis) in a pair of similar model aquifers (80 cm x 50 cm x 3 cm), one of which was subjected to a water-table fluctuation. Water-table fluctuation resulted in LNAPL and air entrapment below the water table, an increase in the vertical extent of the LNAPL source zone (by factor 6.7), and an increase in the volume of water passing through the source zone (by factor ~18). Effluent concentrations of dissolved LNAPL components were substantially higher and those of dissolved nitrate lower in the model aquifer where a fluctuation had been induced. Thus, water-table fluctuation led to enhanced biodegradation activity (28.3 mmol of nitrate consumed compared to 16.3 mmol in the model without fluctuation) as well as enhanced dissolution of LNAPL components. Despite the increased biodegradation, fluctuation led to increased elution of dissolved LNAPL components from the system (by factors 10-20). Hence, water-table fluctuations in LNAPL-contaminated aquifers might be expected to result in increased exposure of downgradient receptors to LNAPL components. Accordingly, water-table fluctuations in contaminated aquifers are probably undesirable unless the LNAPL is of minimal solubility or the dissolved-phase plume is not expected to reach a receptor due to distance or the presence of some form of containment.

  2. Kirkwood correlation factors in liquid mixtures from an extended Onsager-Kirkwood-Fröhlich equation.

    PubMed

    Reis, João Carlos R; Iglesias, T P

    2011-06-14

    Two approaches for applying the Onsager-Kirkwood-Fröhlich equation to liquid mixtures are revisited at the light of recent developments leading to the estimation of relative permittivities and refractive indices of thermodynamically ideal liquid mixtures. From the one-liquid approach, the squared permanent dipole moment of the mixture molecular-equivalent species M is demonstrated to be a mole-fraction average of squared permanent dipole moments of the components. An expression is obtained for calculating the ideal Kirkwood correlation factor of M at any composition by using only pure-constituent properties. From the two-liquid approach (Böttcher's equation), equations are obtained to describe the dependence on composition of the Kirkwood correlation factor of both components in the ideal mixture, even in mixtures of Onsager liquids. This dependency is tentatively ascribed to London dispersion forces acting between unlike molecules. It is demonstrated that Böttcher's equation can only be applied to mixtures where the relative permittivity of each component is larger than the squared refractive index of the other component. From the interplay of one- and two-liquid approaches, the ideal Kirkwood correlation factor of M and of both constituents are inter-related. Thermodynamic expressions are given for the calculation of excess Kirkwood correlation factors. In the case where permanent dipole moments are unknown, the ratio excess/ideal, termed the relative excess Kirkwood correlation factor for components and species M can still be evaluated. These ratios are related to more conventional excess properties. Density, relative permittivity and refractive index data are reported for binary mixtures of 2,2,2-trifluoroethanol with mono-, di-, tri- or tetra-glyme over the whole composition range at 288 K and 298 K. For these systems, ideal, excess and relative excess and Kirkwood correlation factors are calculated and discussed. In particular, by regarding Kirkwood

  3. "Zahraa", a Unani multicomponent herbal tea widely consumed in Syria: components of drug mixtures and alleged medicinal properties.

    PubMed

    Carmona, M D; Llorach, R; Obon, C; Rivera, D

    2005-12-01

    In Unani system of medicine, drugs consist of complex formulae with more than three components, for which, literature analysing these mixtures as they are sold in the market is scarce. In this paper, the main botanical components of the herbal tea known as "Zahraa" in Damascus, which contains between 6 and 14 species components is elucidated: Alcea damascena (Mout.) Mout. (Malvaceae), Aloysia triphylla (L'Herit.) Britt. (Malvaceae), Astragalus cf. amalecitanus Boiss., Cercis siliquastrum L. subsp. hebecarpa (Bornm.) Yalt. and subsp. siliquastrum. (Leguminosae), Colutea cilicica Boiss. et Bal. in Boiss. (Leguminosae), Crataegus aronia (L.) Bosc. ex DC. (Rosaceae), Cytisopsis pseudocytisus (Boiss.) Fertig. (Leguminosae), Eleagnus angustifolia L. (Eleagnaceae), Equisetum telmateia Ehrh. (Equisetaceae), Helichrysum stoechas (L.) Moench. subsp. barrelieri (Ten.) Nyman. (Compositae), Matricaria recutita L. (Compositae), Mentha longifolia L. subsp. noeana (Boiss. ex. Briq.) Briq. (Labiatae), Mentha spicata L. subsp. condensata (Briq.) Greuter and Burdet (Labiatae), Micromeria myrtifolia Boiss. and Hohen. in Boiss. (Labiatae), Paronychia argentea Lam. (Caryophyllaceae), Phlomis syriaca Boiss. (Labiatae), Rosa damascena Mill. (Rosaceae), Salvia fruticosa Mill. (Labiatae), Sambucus nigra L. (Caprifoliaceae), Spartium junceum L. (Leguminosae), Zea mays L. (Gramineae).

  4. Phase equilibria in ionic liquid-aromatic compound mixtures, including benzene fluorination effects.

    PubMed

    Blesic, Marijana; Lopes, José N Canongia; Pádua, Agílio A H; Shimizu, Karina; Gomes, Margarida F Costa; Rebelo, Luís Paulo N

    2009-05-28

    This work extends the scope of previous studies on the phase behavior of mixtures of ionic liquids with benzenes or its derivatives by determining the solid-liquid and liquid-liquid phase diagrams of mixtures containing an ionic liquid and a fluorinated benzene. The systems studied include 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide plus hexafluorobenzene or 1,3,5-trifluorobenzene and 1-ethyl-3-methylimidazolium triflate or N-ethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide plus benzene. The phase diagrams exhibit different kinds of solid-liquid behavior: the (usual) occurrence of eutectic points; the (not-so-usual) presence of congruent melting points and the corresponding formation of inclusion crystals; or the observation of different ionic liquid crystalline phases (polymorphism). These different types of behavior can be controlled by temperature annealing during crystallization or by the nature of the aromatic compound and can be interpreted, at a molecular level, taking into account the structure of the crystals or liquid mixtures, together with the unique characteristics of ionic liquids, namely the dual nature of their interactions with aromatic compounds.

  5. Formation of Multicomponent Star Structures at the Liquid/Solid Interface.

    PubMed

    Tahara, Kazukuni; Kaneko, Kyohei; Katayama, Keisuke; Itano, Shintaro; Nguyen, Chi Huan; Amorim, Deborah D D; De Feyter, Steven; Tobe, Yoshito

    2015-06-30

    To demonstrate key roles of multiple interactions between multiple components and multiple phases in the formation of an uncommon self-assembling pattern, we present here the construction of a porous hexagonal star (h-star) structure using a trigonal molecular building block at the liquid/solid interface. For this purpose, self-assembly of hexaalkoxy-substituted dehydrobenzo[12]annulene derivatives DBA-OCns was investigated at the tetradecane/graphite interface by means of scanning tunneling microscopy (STM). Monolayer structures were significantly influenced by coadsorbed tetradecane molecules depending on the alkyl chains length (C13-C16) of DBA-OCn. However, none of DBA-OCn molecules formed the expected trigonal complexes, indicating that an additional driving force is necessary for the formation of the trigonal complex and its assembly into the h-star structure. As a first approach, we employed the "guest induced structural change" for the formation of the h-star structure. In the presence of two guest molecules, nonsubstituted DBA and hexakis(phenylethynyl)benzene which fit the respective pores, an h-star structure was formed by DBA-OC15 at the tetradecane/graphite interface. Moreover, a tetradecane molecule was coadsorbed between a pair of alkyl chains of DBA-OC15, thereby blocking the interdigitation of the alkyl chain pairs. Therefore, the h-star structure results from the self-assembly of the four molecular components including the solvent molecule. The second approach is based on aggregation of perfluoroalkyl chains via fluorophilicity of DBA-F, in which the perfluoroalkyl groups are substituted at the end of three alkyl chains of DBA-OCn via p-phenylene linkers. A trigonal complex consisting of DBA-F and three tetradecane molecules formed an h-star structure, in which the perfluoroalkyl groups that orient into the alkane solution phase aggregated at the hexagonal pore via fluorophilicity. The present result provides useful insight into the design and

  6. Estimation of interfacial tension between organic liquid mixtures and water.

    PubMed

    Yoon, Hongkyu; Oostrom, Mart; Werth, Charles J

    2009-10-15

    Knowledge of IFT values for chemical mixtures helps guide the design and analysis of various processes, including NAPL remediation with surfactants or alcohol flushing, enhanced oil recovery, and chemical separation technologies, yet available literature values are sparse. A comprehensive comparison of thermodynamic and empirical models for estimating interfacial tension (IFT) of organic chemical mixtures with water is conducted, mainly focusing on chlorinated organic compounds for 14 ternary, three quaternary, and one quinary systems. Emphasis is placed on novel results for systems with three and four organic chemical compounds, and for systems with composite organic compounds like lard oil and mineral oil. Seven models are evaluated: the ideal and nonideal monolayer models (MLID and MLNID), the ideal and nonideal mutual solubility models (MSID and MSNID), an empirical model for ternary systems (EM), a linear mixing model based on mole fractions (LMMM), and a newly developed linear mixing model based on volume fractions of organic mixtures (LMMV) for higher order systems. The two ideal models (MLID and MSID) fit ternary systems of chlorinated organic compounds without surface active compounds relatively well. However, both ideal models did not perform well for the mixtures containing a surface active compound. However, for these systems, both the MLNID and MSNID models matched the IFT data well. It is shown that the MLNID model with a surface coverage value (0.00341 mmol/m2) obtained in this study can practically be used for chlorinated organic compounds. The LMMM results in poorer estimates of the IFT as the difference in IFT values of individual organic compounds in a mixture increases. The EM, with two fitting parameters, provided accurate results for all 14 ternarysystems including composite organic compounds. The new LMMV method for quaternary and higher component systems was successfully tested. This study shows that the LMMV may be able to be used for

  7. Estimation of Interfacial Tension between Organic Liquid Mixtures and Water

    SciTech Connect

    Yoon, Hongkyu; Oostrom, Martinus; Werth, Charles J.

    2009-10-15

    Knowledge of IFT values for chemical mixtures helps guide the design and analysis of various processes, including NAPL remediation with surfactants or alcohol flushing, enhanced oil recovery, and chemical separation technologies, yet available literature values are sparse. A comprehensive comparison of thermodynamic and empirical models for estimating interfacial tension (IFT) of organic chemical mixtures with water is conducted, mainly focusing on chlorinated organic compounds for 14 ternary, three quaternary, and one quinary systems. Emphasis is placed on novel results for systems with three and four organic chemical compounds, and for systems with composite organic compounds like lard oil and mineral oil. Seven models are evaluated: the ideal and nonideal monolayer models (MLID and MLNID), the ideal and nonideal mutual solubility models (MSID and MSNID), an empirical model for ternary systems (EM), a linear mixing model based on mole fractions (LMMM), and a newly developed linear mixing model based on volume fractions of organic mixtures (LMMV) for higher order systems. The two ideal models (MLID and MSID) fit ternary systems of chlorinated organic compounds without surface active compounds relatively well. However, both ideal models did not perform well for the mixtures containing a surface active compound. However, for these systems, both the MLNID and MSNID models matched the IFT data well. It is shown that the MLNID model with a surface coverage value (0.00341 mmol/m2) obtained in this study can practically be used for chlorinated organic compounds. The LMMM results in poorer estimates of the IFT as the difference in IFT values of individual organic compounds in a mixture increases. The EM, with two fitting parameters, provided accurate results for all 14 ternary systems including composite organic compounds. The new LMMV method for quaternary and higher component systems was successfully tested. This study shows that the LMMV may be able to be used for

  8. Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids.

    PubMed

    Wang, Zhuang; Zhang, Fan; Wang, Se; Peijnenburg, Willie J G M

    2017-10-01

    Graphene and ionic liquids (ILs) released into the environment will interact with each other. So far however, the risks associated with the concurrent exposure of biota to graphene and ILs in the environment have received little attention. The research reported here focused on observing and predicting the joint toxicity effects in the green alga Scenedesmus obliquus exposed to binary mixtures of intrinsic graphene (iG)/graphene oxide (GO) and five ILs of varying anionic and cationic types. The isolated ILs in the binary mixtures were the main contributors to toxicity. The binary GO-IL mixtures resulted in more severe joint toxicity than the binary iG-IL mixtures, irrespective of mixture ratios. The mechanism of the joint toxicity may be associated with the adsorption capability of the graphenes for the ILs, the dispersion stability of the graphenes in aquatic media, and modulation of the binary mixtures-induced oxidative stress. A toxic unit assessment showed that the graphene and IL toxicities were additive at low concentration of the mixtures but antagonistic at high concentration of the mixtures. Predictions made using the concentration addition and independent action models were close to the observed joint toxicities regardless of mixture types and mixture ratios. These findings provide new insights that are of use in the risk assessment of mixtures of engineered nanoparticles and other environmentally relevant contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Solid–liquid equilibria of binary mixtures of fluorinated ionic liquids†

    PubMed Central

    Teles, Ana Rita R.; Correia, Helga; Maximo, Guilherme J.; Rebelo, Luís P. N.; Freire, Mara G.; Pereiro, Ana B.; Coutinho, João A. P.

    2016-01-01

    Within ionic liquids, fluorinated ionic liquids (FILs) present unique physico-chemical properties and potential applications in several fields. However, the melting point of these neoteric compounds is usually higher due to the presence of fluorine atoms. This drawback may be resolved by, for instance, mixing different FILs to create eutectic mixtures. In this work, binary mixtures of fluoro-containing and fluorinated ionic liquids were considered with the aim of decreasing their melting temperatures as well as understanding and characterizing these mixtures and their phase transitions. Five FILs were selected, allowing the investigation of four binary mixtures, each of them with a common ion. Their solid–liquid and solid–solid equilibria were studied by differential scanning calorimetry and the non-ideality of the mixtures was investigated. Overall, a variety of solid–liquid equilibria with systems exhibiting eutectic behavior, polymorphs with solid–solid phase transitions, and the formation of intermediate compounds and solid solutions were surprisingly found. In addition to these intriguing behaviours, novel FILs with lower melting temperatures were obtained by the formation of binary systems, thus enlarging the application range of FILs at lower temperatures. PMID:27603428

  10. Synergistic effects and correlating polarity parameters in binary mixtures of ionic liquids.

    PubMed

    Beniwal, Vijay; Kumar, Anil

    2015-04-07

    Understanding how a chemical reaction proceeds in solution requires precise knowledge of solute-solvent interactions. Certain issues involved in ionic liquid binary mixtures are still not clearly understood, including: 1) the effects of hydrogen-bond-acceptor basicity (β) of solvents on the "synergistic effects" found in ionic liquid-alcohol mixtures, 2) the interrelation between the polarity parameters in binary mixtures, and 3) the application of a model for the description of normalised electronic transition energy for all the binary mixtures. Here, a detailed analysis of polarity parameters in both hydrophilic and hydrophobic ionic liquids has been carried out. A three-parameter model developed by Roses et al. [J. Chem. Soc. Perkin Trans. 2 1997, 1341-1348] was found to be applicable to all the binary mixtures, and synergistic effects are generated as a result of high β values of alcohols compared with those of the ionic liquids. A strong correlation was observed in the β values and hydrophobicities of pure ionic liquids, suggesting that β values can play a role in describing synergism.

  11. Surface Tension, Adsorption, and Molecular Orientations at the Liquid-Vapor Interface of Molecular Mixtures.

    NASA Astrophysics Data System (ADS)

    Thurtell, John Harland

    A generalized van der Waal's Mean Field Theory and Molecular Dynamics computer simulations have been used to study the liquid-vapor interface of simple liquid crystals, atomic mixtures, polar mixtures, and polar solvent-surfactant mixtures. Surface tensions, density profiles, and orientational order parameters have been calculated at the planar liquid -vapor interfaces of liquid crystals, argon-krypton mixtures, and polar mixtures using a mean field theory of molecular liquids. The effect of size, shape and dipole strength on the thickness, concentration and orientational ordering of adsorbed layers have been studied in detail. These parameters yield widely varying interfacial structures and can lead to interfacial and bulk phase transitions. Molecular dynamics simulations of simple surfactant models in a polar solvent have been carried out for varying intermolecular potentials. In particular the effect of the surfactant dipole strength, orientation and position were examined. The dipole has a large influence on the surface tension, molecular orientations and thickness of the interfacial region of these systems. We find a number of competing effects which result in unpredictable behavior in some situations.

  12. Structure of molecular liquids: hard rod-disk mixtures.

    PubMed

    Cheung, David L; Anton, Lucian; Allen, Michael P; Masters, Andrew J

    2008-01-01

    The structure of hard rod-disk mixtures is studied using Monte Carlo simulations and integral equation theory, for a range of densities in the isotropic phase. By extension of methods used in single component fluids, the pair correlation functions of the molecules are calculated and comparisons between simulation and integral equation theory, using a number of different closure relations, are made. Comparison is also made for thermodynamic data and phase behavior.

  13. Nonexponential Solvation Dynamics of Simple Liquids and Mixtures

    DTIC Science & Technology

    1991-05-06

    benzonitrile .(Aldrich) was purified by vac- ics simulations of various model probes in water and uum distillation from PO. The other solvents (re- other... benzonitrile . carbonate Emission transients for various mixtures, recorded Propanol 4.54 33.7 52.4 at the so-calleLi near wavelengthsee above). ar DMSO 2.08 2.76...parameters for acetonitrile- benzonitrile Dielectric continuum model calculations of Sol% ation dnamics mi\\tures measured with coumann 152 as a probe

  14. Symmetry energy in the liquid-gas mixture

    NASA Astrophysics Data System (ADS)

    López, J. A.; Terrazas Porras, S.

    2017-01-01

    Results from classical molecular dynamics simulations of infinite nuclear systems with varying density, temperature and isospin content are used to calculate the symmetry energy at low densities. The results show an excellent agreement with the experimental data and corroborate the claim that the formation of clusters has a strong influence on the symmetry energy in the liquid-gas coexistence region.

  15. Hazards Induced by Breach of Liquid Rocket Fuel Tanks: Conditions and Risks of Cryogenic Liquid Hydrogen-Oxygen Mixture Explosions

    NASA Technical Reports Server (NTRS)

    Osipov, Viatcheslav; Muratov, Cyrill; Hafiychuk, Halyna; Ponizovskya-Devine, Ekaterina; Smelyanskiy, Vadim; Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary

    2011-01-01

    We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI tests. We present an overview of the HOVI tests to make conclusion on the risk of strong explosions in possible liquid rocket incidents and provide a semi-quantitative interpretation of the HOVI data based on aerosol combustion. We uncover the most dangerous situations and discuss the foreseeable risks which can arise in space missions and lead to tragic outcomes. Our analysis relates to only unconfined mixtures that are likely to arise as a result of liquid propellant space vehicle incidents.

  16. Combustion Characteristics of Nanoaluminum, Liquid Water, and Hydrogen Peroxide Mixtures

    DTIC Science & Technology

    2008-01-01

    test peroxide ( HTP , 85% H2O2) as the oxidizer [22– 26]. Problems with the use of H2O2 systems include its sensitivity to shock and its tendency to...reported that the mix- ture would not self-deflagrate without the addition of the thickening agent into the mixture. At their maximum test pressure, 7...A pycnometer test determined particle density to be 3.205 g/cm3, which is inclusive of the oxide passiva- tion layer (∼3.97 g/cm3), which explains

  17. Bubble nucleation in a Lennard-Jones binary liquid mixture

    NASA Astrophysics Data System (ADS)

    Baidakov, Vladimir G.; Protsenko, Sergey P.; Bryukhanov, Vasiliy M.

    2016-10-01

    We report a molecular dynamics (MD) study of homogeneous bubble nucleation in a stretched Lennard-Jones binary mixture at a temperature close to the solvent triple point. The pressure of the limiting stretching pn corresponding to a fixed value of the nucleation rate has been determined. The values of pn achieved in MD simulation are lower than those calculated from classical nucleation theory (CNT). The discrepancy between the data of MD simulation and CNT may be connected with the neglect in the latter of the size dependence of the surface tension of critical bubbles.

  18. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field

    SciTech Connect

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  19. Elastic Waves in Binary Solid Liquid Mixtures, Similarities at Macro and Nono Scales

    NASA Astrophysics Data System (ADS)

    Tavossi, Hasson M.

    2007-04-01

    Stress wave propagation in solid liquid mixtures at ultrasonic frequencies, in some cases, resembles wave propagation behaviors of materials at nanometer or atomic scales. For instance, it can be shown that wave; dispersion, attenuation, and cutoff-frequency effects depend on the same structural parameters as those observed at nano or atomic levels and can have similar interpretations at both scales. It follows that, to investigate theoretical models of wave and matter interactions at nano scale it is more convenient to use, as experimental tools, the readily analyzable models of propagation at macro-scales. Experimental findings on elastic wave propagation in the mixtures of liquid and solid particles will be presented and discussed. Results of wave dispersion, attenuation, band-pass, and cutoff frequency measured for ultrasonic waves in inhomogeneous mixtures of solid and liquid will be presented showing these similarities at the radically different scales.

  20. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dinariev, Oleg Yu.; Evseev, Nikolay V.

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  1. Velocity of large bubble in liquid-solid mixture in a vertical tube

    SciTech Connect

    Hamaguchi, H.; Sakaguchi, T.

    1995-09-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V{sub o} in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V{sup *}(=V/V{sub o}), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V{sup *} decreases linearly against the volumetric solid fraction {epsilon} of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V{sup *} and {epsilon} is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid.

  2. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  3. A non-equilibrium state diagram for liquid/fluid/particle mixtures.

    PubMed

    Velankar, Sachin S

    2015-11-21

    The equilibrium structures of ternary oil/water/surfactant systems are often represented within a triangular composition diagram with various regions of the triangle corresponding to different equilibrium states. We transplant this idea to ternary liquid/fluid/particle systems that are far from equilibrium. Liquid/liquid/particle mixtures or liquid/gas/particle mixtures yield a wide diversity of morphologies including Pickering emulsions, bijels, pendular aggregates, spherical agglomerates, capillary suspensions, liquid marbles, powdered liquids, and particle-stabilized foams. This paper argues that such ternary liquid/fluid/particle mixtures can be unified into a non-equilibrium state diagram. What is common among all these systems is that the morphology results from an interplay between the preferential wettability of the particles, capillarity, and viscous forces encountered during mixing. Therefore all such systems share certain universal features, regardless of the details of the particles or fluids used. These features guide the construction of a non-equilibrium state diagram which takes the form of a triangular prism, where each triangular cross-section of the prism corresponds to a different relative affinity of the particles towards the two fluids. We classify the prism into regions in which the various morphologies appear and also emphasize the major difference between systems in which the particles are fully-wetted by one of the fluids vs. partially-wetted by both fluids. We also discuss how the state diagram may change with mixing intensity or with interparticle attractions.

  4. Induced stabilization of columnar phases in binary mixtures of discotic liquid crystals.

    PubMed

    Cienega-Cacerez, Octavio; García-Alcántara, Consuelo; Moreno-Razo, José Antonio; Díaz-Herrera, Enrique; Sambriski, Edward John

    2016-01-28

    Three discotic liquid-crystalline binary mixtures, characterized by their extent of bidispersity in molecular thickness, were investigated with molecular dynamics simulations. Each equimolar mixture contained A-type (thin) and B-type (thick) discogens. The temperature-dependence of the orientational order parameter reveals that A-type liquid samples produce ordered phases more readily, with the (hexagonal) columnar phase being the most structured variant. Moderately and strongly bidisperse mixtures produce globally-segregated samples for temperatures corresponding to ordered phases; the weakly bidisperse mixture displays microheterogeneities. Ordered phases in the B-type liquid are induced partially by the presence of the A-type fluid. In the moderately bidisperse mixture, order is induced through orientational frustration: a mixed prenematic-like phase precedes global segregation to yield nematic and columnar mesophases upon further cooling. In the strongly bidisperse mixture, order is induced less efficiently through a paranematic-like mechanism: a highly-ordered A-type fluid imparts order to B-type discogens found at the interface of a fully-segregated sample. This ordering effect permeates into the disordered B-type domain until nematic and columnar phases emerge upon further cooling. At sufficiently low temperatures, all samples investigated exhibit the (hexagonal) columnar mesophase.

  5. Binary mixtures of ionic liquids: a joint approach to investigate their properties and catalytic ability.

    PubMed

    D'Anna, Francesca; Marullo, Salvatore; Vitale, Paola; Noto, Renato

    2012-05-14

    The growing interest in the properties and applications of ionic liquids has recently led to research into the possibility of using their binary mixtures. This work reports on the effects of binary mixtures of ionic liquids on the outcome of organic reactions such as the mononuclear rearrangement of heterocycles and the solvatochromic behavior of Nile Red. Binary mixtures formed by ionic liquids differing in the structure of the cation and the anion are taken into account. In particular, ionic liquids such as 1-benzyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-(2,3,4,5,6-pentafluorobenzyl)-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, and 1-benzyl-3-butylimidazolium tetrafluoroborate, are studied. To achieve a deep understanding of the properties of ionic-liquid binary mixtures, their three-dimensional organization was analyzed by a combination of resonance light scattering, UV/Vis spectroscopy, and (1)H and (19)F NMR spectroscopy. Data collected herein evidence that the most significant changes in the ionic lattice structure, and consequently the most pronounced effects exerted as solvent media, occur when the studied system involves a blend of different anions.

  6. [Analysis of psychotropic drug mixtures using high-pressure liquid chromatography in acute poisoning cases].

    PubMed

    Kazlauskiene, Daiva; Vainauskas, Paulius; Kazlauskas, Saulius

    2002-01-01

    The qualitative and quantitative method of determination of amitryptilin, codeine and fluoxetine in the mixture using high-pressure liquid chromatography is described in this paper. Chromatogram is presented which shows, that preparations are fully separated and do not interfere each others analysis. Tables with chromatographical separation characteristics are also presented. Proposed calibration curves of quantitative analysis and calculated medium relative error of quantitative ascertainment for every preparation of the mixture are shown. Final conclusion: method is applicable for qualitative and quantitative analysis of amitryptiline, fluoxetine and codeine in the mixture in hasty poisoning cases.

  7. Molecular dynamics simulations of the structural and thermodynamic properties of imidazolium-based ionic liquid mixtures.

    PubMed

    Méndez-Morales, T; Carrete, J; Cabeza, O; Gallego, L J; Varela, L M

    2011-09-29

    In this work, extensive molecular dynamics simulations of mixtures of alcohols of several chain lengths (methanol and ethanol) with the ionic liquids (ILs) composed of the cation 1-hexyl-3-methylimidazolium and several anions of different hydrophobicity degrees (Cl(-), BF(4)(-), PF(6)(-)) are reported. We analyze the influence of the nature of the anion, the length of the molecular chain of the alcohol, and the alcohol concentration on the thermodynamic and structural properties of the mixtures. Densities, excess molar volumes, total and partial radial distribution functions, coordination numbers, and hydrogen bond degrees are reported and analyzed for mixtures of the ILs with methanol and ethanol. The aggregation process is shown to be highly dependent on the nature of the anion and the size of the alcohol, since alcohol molecules tend to interact predominantly with the anionic part of the IL, especially in mixtures of the halogenated IL with methanol. Particularly, our results suggest that the formation of an apolar network similar to that previously reported in mixtures of ILs with water does not take place in mixtures with alcohol when the chloride anion is present, the alcohol molecules being instead homogeneously distributed in the polar network of IL. Moreover, the alcohol clusters formed in mixtures of [HMIM][PF(6)] with alcohol were found to have a smaller size than in mixtures with water. Additionally, we provide a semiquantitative analysis of the dependence of the hydrogen bonding degree of the mixtures on the alcohol concentration. © 2011 American Chemical Society

  8. Separation of a 2-propanol/n-heptane mixture by liquid membrane perstraction

    SciTech Connect

    Papadopoulos, T.; Sirkar, K.K. )

    1993-04-01

    The effectiveness of perstraction separation of a 2 vol% 2-propanol-n-heptane mixture using dodecane as the strip liquid was studied using a hollow fiber contained liquid membrane permeator (HFCLMP). The liquid membranes used were pure water and 3 wt% water in sulfolane. Both liquid membranes yielded similar mass-transfer coefficients and 2-propanol removal rates. Pure water, however, exhibited 3 times higher selectivity for 2-propanol than 3 wt % water in sulfolane. Selectivities of 2-propanol over n-heptane as high as 447 were experimentally obtained. The observed fluxes and selectivities at 25C are close to those obtained in prevaporation of a 10% 2-propanol-n-hexane mixture through cellulose ester films at 60C. A first-order mathematical model was developed using partition coefficients that are functions of solute concentrations, and it predicts the observed behavior of the two systems relatively well.

  9. Probing Intermolecular Interactions in Binary Liquid Mixtures Using Femtosecond Laser-Induced Self-Defocusing.

    PubMed

    Maurya, Sandeep Kumar; Das, Dhiman; Goswami, Debabrata

    2016-06-13

    Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔTP-V) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid. © The Author(s) 2016.

  10. Protonic Ammonium Nitrate Ionic Liquids and Their Mixtures: Insights into Their Thermophysical Behavior.

    PubMed

    Canongia Lopes, José N; Esperança, José M S S; de Ferro, André Mão; Pereiro, Ana B; Plechkova, Natalia V; Rebelo, Luis P N; Seddon, Kenneth R; Vázquez-Fernández, Isabel

    2016-03-10

    This study is centered on the thermophysical characterization of different families of alkylammonium nitrate ionic liquids and their binary mixtures, namely the determination at atmospheric pressure of densities, electric conductivities and viscosities in the 288.15 < T/K < 353.15 range. First, measurements focusing on ethylammonium, propylammonium and butylammonium nitrate systems, and their binary mixtures, were determined. These were followed by studies involving binary mixtures composed of ethylammonium nitrate (with three hydrogen bond donor groups) and different homologous ionic liquids with differing numbers of hydrogen bond donor groups: diethylammonium nitrate (two hydrogen bond donors), triethylammonium nitrate (one hydrogen bond donor) and tetraethylammonium nitrate (no hydrogen bond donors). Finally, the behavior of mixtures with different numbers of equivalent carbon atoms in the alkylammonium cations was analyzed. The results show a quasi-ideal behavior for all monoalkylammonium nitrate mixtures. In contrast, the other mixtures show deviations from ideality, namely when the difference in the number of carbon atoms present in the cations increases or the number of hydrogen bond donors present in the cation decreases. Overall, the results clearly show that, besides the length and distribution of alkyl chains present in a cation such as alkylammonium, there are other structural and interaction parameters that influence the thermophysical properties of both pure compounds and their mixtures.

  11. Prediction of acute toxicity of chemicals in mixtures: worms Tubifex tubifex and gas/liquid distribution.

    PubMed

    Tichý, M; Borek-Dohalský, V; Matousová, D; Rucki, M; Feltl, L; Roth, Z

    2002-03-01

    The aim of this contribution is to support our proposal of the procedure for predicting acute toxicity of binary mixtures by QSAR analysis techniques. The changes of a mixture composition are described by molar ratio R and visualized in the R-plot (QCAR--quantitative composition-activity relationships). The approach was inspired by Rault and Dalton's laws, their positive and negative deviations in the behavior of a mixture of real gases, by Loewe and Muischnek isoboles and by the Finney test of additivity. Acute toxicity was determined by the laboratory test with woms Tubifex tubifex. The additivity of the acute toxicity in the binary mixture benzene + nitrobenzene was confirmed and a new interaction is described: "mixed interaction" with the binary mixture aniline + ethanol. The "mixed interaction" means that depending on mixture composition, both potentiation and inhibition can occur. As the first physicochemical descriptor of the changes caused by the changing composition of binary mixtures, the gas/liquid equilibrium was studied and a composition of the gaseous phase was determined by a gas chromatographic method. The method for determination of concentrations in the gaseous phase was described. The gaseous phase composition of benzene + nitrobenzene. benzene + ethanol, benzene + aniline and ethanol + aniline mixtures was analyzed. It was found that if the concentrations of the mixture's components in the gaseous phase behave nonideally (they are not additive), the acute toxicity of the same mixture is not additive as well. Another descriptor to distinguish between potentiation and inhibition will be, however, necessary. The properties, both gaseous phase composition and the acute toxicity, of the benzene + nitrobenzene mixture are additive. In mixtures with the mixed interaction, the R-plot of the composition of the gaseous phase is complex with a large variation of results.

  12. Molecular dynamics simulations of mixtures of protic and aprotic ionic liquids.

    PubMed

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Rodríguez, Julio R; López-Lago, Elena; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M

    2016-09-14

    Molecular dynamics simulations of mixtures of the protic ionic liquid ethylammonium nitrate (EAN) and the aprotic 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) are reported and the results are compared with experimental density and electrical conductivity measurements. Essentially ideal mixing of the ionic liquids is seen to take place by means of experimental and simulated excess molar volumes, whose very low values suggest a gradual transition between the structures of the two end constituents of the mixture. A weak dominance of the structure of the protic ionic liquid is nevertheless registered, due to a slight preferential formation of the network of hydrogen bonds, as reflected in the coordination number and the number of hydrogen bonds in the mixture. A novel conductivity curve showing pronounced deviations from the simple ideal mixing rule is reported, with three different regions defined by a local maximum - reflecting enhanced translational dynamics relative to ideal mixture behaviour - and a global minimum at intermediate concentrations. The physical origin of this behaviour is discussed along with the structure and single-particle dynamics of the mixture, and it is seen that these regions are defined by the onset of the formation of the EAN hydrogen bonded network (xEAN = 0.2) and the virtual disappearance of the structure of the aprotic ionic liquid at xEAN = 0.7. It is concluded that the delicate interplay between both networks has a deep effect on the placement and mobility of [EMIM](+) cations in the mixture all throughout the different stages of the structural transition, which seems to be the driving force behind the reported transport properties of the mixture at intermediate to high EAN concentrations.

  13. Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture

    NASA Astrophysics Data System (ADS)

    Murata, Ken-Ichiro; Tanaka, Hajime

    2012-05-01

    The existence of more than two liquid states in a single-component substance and the ensuing liquid-liquid transitions (LLTs) has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. Here we report direct experimental evidence for a genuine (isocompositional) LLT without macroscopic phase separation in an aqueous solution of glycerol. We show that liquid I transforms into liquid II by way of two types of kinetics: nucleation and growth, and spinodal decomposition. Although liquid II is metastable against crystallization, we could access both its static and dynamical properties experimentally. We find that liquids I and II differ in density, refractive index, structure, hydrogen bonding state, glass transition temperature and fragility, and that the transition between the two liquids is mainly driven by the local structuring of water rather than of glycerol, suggesting a link to a plausible LLT inpure water.

  14. Mixing Enthalpies of TbBr3-MBr Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Rycerz, L.; Gaune-Escard, M.

    2001-12-01

    The molar enthalpies of mixing, Δmix Hm in the binary liquid systems TbBr3-MBr (M = Li, Na, K, Rb, Cs) have been m easured with a Calvet-type high-tem perature microcalorimeter over the entire composition range with an accuracy of about 6 %. Mixing of the two liquid components was achieved by using the "break-off am poule" technique. All the investigated systems show negative enthalpies of mixing with a minim um value of approxim ately -1.25, - 8 .3 , -17.0, - 2 0 . 0 and -22.5 kJ mol -1, for M = Li, Na, K, Rb and Cs, respectively. The mixing enthalpy in the TbBr3- LiBr system is positive in the TbBr3-rich region. For all the systems, the enthalpy minimum occurs at mole fraction xTbBr3 ≈ 0.3 - 0.4. The molar enthalpies of form ation Δ formHm (3MBr, TbBr3, 1) for M = Li, Na, K, Rb and Cs at 1113 K (arising from the reaction 3M Br(1) +TbBr3(1) = (3MBr, TbBr3) (1)) are found to be -4 .8 , -31.3, -63.3, -70.3 and -8 1 .2 kJ mol-1 , respectively. The leastsquares coefficients A, B, C, D and E in the equation λ (kJ mol-1) = A + B x + C x2 + Dx3 + Ex4, where A is an interaction param eter and x = xTbBr , are also reported.

  15. Use of neural networks for prediction of vapor/liquid equilibrium K values for light-hydrocarbon mixtures

    SciTech Connect

    Habiballah, W.A.; Startzman, R.A.; Barrufet, M.A.

    1996-05-01

    Equilibrium ratios play a fundamental role in the understanding of phase behavior of hydrocarbon mixtures. They are important in predicting compositional changes under varying temperature and pressure in reservoirs, surface separators, and production and transportation facilities. In particular, they are critical for reliable and successful compositional reservoir simulation. This paper presents a new approach for predicting K values with neural networks (NN`s). The method is applied to binary and multicomponent mixtures, and K-value prediction accuracy is on the order of the traditional methods. However, computing speed is significantly faster.

  16. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    ERIC Educational Resources Information Center

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  17. Dissolution of carbon from alumina-carbon mixtures into liquid iron: Influence of carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Khanna, Rita; Sahajwalla, Veena; Rodgers, Brenton; McCarthy, Fiona

    2006-08-01

    Due to their excellent thermal shock and wear resistance at high temperatures, alumina-carbon based refractories are used extensively in the steel industry. A clear understanding of factors affecting the dissolution of carbon from refractories is of crucial importance, as carbon depletion from the refractory can significantly deteriorate refractory performance and metal quality. Atomistic simulations on the alumina-graphite/liquid iron system have shown that nonwetting between alumina and liquid iron is an important factor inhibiting the penetration of liquid metal in the refractory matrix and limiting carbon dissolution. This study investigates the role played by the carbonaceous material in the dissolution of carbon from the refractory composite. Two carbonaceous materials, namely, petroleum coke and natural graphite, respectively, containing 0.35 and 5.26 pct ash, were used in this study. Substrates were prepared from mixtures of alumina and carbon over a wide concentration range. Using a sessile drop arrangement, carbon pickup by liquid iron from alumina-carbon mixtures was measured at 1550 °C and was compared with the carbon pickup from alumina-synthetic graphite mixtures. These studies were supplemented with wettability measurements and microscopic investigations on the interfacial region. For high alumina concentrations (>40 wt pct), carbon dissolution from refractory mixtures was found to be negligible for all carbonaceous materials under investigation. Significant differences however were observed at lower alumina concentrations. Carbon dissolution from alumina-petroleum coke mixtures was much lower than the corresponding dissolution from alumina synthetic graphite-mixtures and was attributed to poor wettability of petroleum coke with liquid iron, its structural disorder, and the presence of sulfur. Very high levels of carbon dissolution, however, were observed from alumina-natural graphite mixtures, with carbon pickup by liquid iron from mixtures with up

  18. Orientational order of some liquid crystal/dye mixtures obtained from optical birefringence

    NASA Astrophysics Data System (ADS)

    Bielejewska, Natalia

    2016-04-01

    This study presents optical birefringence measurements as a function of temperature for the liquid crystal/dye mixtures. The optical birefringence of the liquid crystals used in liquid crystal displays technology is related to the order parameter , which is crucial from the development point of view. The properties of the dyes (4-dimethylamino-4‧-nitrostilbene and N,N‧-bis(2,5-di-tert-buthylphenyl)-3,4,9,10-perylenedicarboximide) as a guest molecule are tested over the whole region of nematic phase occurrence by three different methods: measurement with use of the plano-convex lens, Berek's compensator and photoelastic modulator.

  19. Molecular simulation of fluid mixtures in bulk and at solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Kern, Jesse L.

    The properties of a diverse range of mixture systems at interfaces are investigated using a variety of computational techniques. Molecular simulation is used to examine the thermodynamic, structural, and transport properties of heterogeneous systems of theoretical and practical importance. The study of binary hard-sphere mixtures at a hard wall demonstrates the high accuracy of recently developed classical-density functionals. The study of aluminum--gallium solid--liquid heterogeneous interfaces predicts a significant amount of prefreezing of the liquid by adopting the structure of the solid surface. The study of ethylene-expanded methanol within model silica mesopores shows the effect of confinement and surface functionalzation on the mixture composition and transport inside of the pores. From our molecular-dynamics study of binary hard-sphere fluid mixtures at a hard wall, we obtained high-precision calculations of the wall-fluid interfacial free energies, gamma. We have considered mixtures of varying diameter ratio, alpha = 0.7,0.8,0.9; mole fraction, x 1 = 0.25,0.50,0.75; and packing fraction, eta < 0.50. Using Gibbs-Cahn Integration, gamma is calculated from the system pressure, chemical potentials, and density profiles. Recent classical density-functional theory predictions agree very well with our results. Structural, thermodynamic, and transport properties of the aluminum--gallium solid--liquid interface at 368 K are obtained for the (100), (110), and (111) orientations using molecular dynamics. Density, potential energy, stress, and diffusion profiles perpendicular to the interface are calculated. The layers of Ga that form on the Al surface are strongly adsorbed and take the in-plane structure of the underlying crystal layers for all orientations, which results in significant compressive stress on the Ga atoms. Bulk methanol--ethylene mixtures under vapor-liquid equilibrium conditions have been characterized using Monte Carlo and molecular dynamics. The

  20. Switching the Structural Force in Ionic Liquid-Solvent Mixtures by Varying Composition.

    PubMed

    Smith, Alexander M; Lee, Alpha A; Perkin, Susan

    2017-03-03

    The structure and interactions in electrolytes at high concentration have implications from energy storage to biomolecular interactions. However, many experimental observations are yet to be explained in these mixtures, which are far beyond the regime of validity of mean-field models. Here, we study the structural forces in a mixture of ionic liquid and solvent that is miscible in all proportions at room temperature. Using the surface force balance to measure the force between macroscopic smooth surfaces across the liquid mixtures, we uncover an abrupt increase in the wavelength above a threshold ion concentration. Below the threshold concentration, the wavelength is determined by the size of the solvent molecule, whereas above the threshold, it is the diameter of a cation-anion pair that determines the wavelength.

  1. Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.

    1976-01-01

    A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.

  2. Switching the Structural Force in Ionic Liquid-Solvent Mixtures by Varying Composition

    NASA Astrophysics Data System (ADS)

    Smith, Alexander M.; Lee, Alpha A.; Perkin, Susan

    2017-03-01

    The structure and interactions in electrolytes at high concentration have implications from energy storage to biomolecular interactions. However, many experimental observations are yet to be explained in these mixtures, which are far beyond the regime of validity of mean-field models. Here, we study the structural forces in a mixture of ionic liquid and solvent that is miscible in all proportions at room temperature. Using the surface force balance to measure the force between macroscopic smooth surfaces across the liquid mixtures, we uncover an abrupt increase in the wavelength above a threshold ion concentration. Below the threshold concentration, the wavelength is determined by the size of the solvent molecule, whereas above the threshold, it is the diameter of a cation-anion pair that determines the wavelength.

  3. Excess heat capacity in liquid binary alkali-fluoride mixtures.

    PubMed

    Beilmann, M; Beneš, O; Capelli, E; Reuscher, V; Konings, R J M; Fanghänel, Th

    2013-03-04

    Using drop calorimetry, we measured enthalpy increments of the LiF-KF, LiF-RbF, and LiF-CsF binary systems at temperatures above the melting point. Ten samples with different compositions (four compositions for LiF-KF, one composition for LiF-RbF, and five compositions for LiF-CsF) were prepared and measured between 884 K and 1382 K. To protect the calorimeter from corrosive fluoride vapor at high temperature, an encapsulating technique developed for this purpose was used. The samples were filled in nickel containers that were sealed by laser welding and afterward used for the measurements. From the obtained results, we derived the molar heat capacity functions of the respective samples. The heat capacities of the samples, having different compositions of the same binary system, were compared with the values for ideal behavior and the excess heat capacity function was determined for the entire composition range of the liquid solution. It was found that the excess heat capacities clearly depend on the cation radius and increase in the following order: LiF-NaF < LiF-KF < LiF-RbF < LiF-CsF.

  4. Development of Gravity Thinned Wetting in a Liquid Mixture

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Schirato, Becky S.

    1996-03-01

    As was pointed out by Kayser, Moldover, and Schmidt, wetting layers in binary liquids at two phase coexistence are very susceptible to non-equilibrium effects because of the slowness of bulk diffusion relative to unintended convection. We have recently examined measurements of carbon disulfide and nitromethane on borosilicate glass in our group by Xiao-lun Wu in light of these concerns: Together with Thomas Van Vechten we applied a criterion for the importance of temperature gradients and find good support for the claim that these experiments equilibrated, in contrast to other contemporary work. Using data from reliable single phase adsorption measurements we get quantitative agreement with an equilibrium model for wetting based on a long range force due to substrate surface ionization. The final stage kinetics are simply understandable as due to bulk diffusion. Finally, we have observed for the first time a novel wetting structure at initial stages of a quench from the single phase into the two phase regime that appears to be gravity-determined, but with a gravitational controlling height that we can identify with the thickness of the wetting layer itself, rather the spectator phase as in equilibrium. Supported by the NSF under DMR-9320910, the central facilities of the Materials Science Center at Cornell U., and with fellowship support to B.S.

  5. Influence of organic solvent on the separation of an ionic liquid from a lignin-ionic liquid mixture.

    PubMed

    Weerachanchai, Piyarat; Lim, Kok Hwa; Lee, Jong-Min

    2014-03-01

    Sixteen solvents added in lignin-ionic liquid mixture provide four types of solubility characteristics. The distinct characteristics can be classified by considering solubility parameters including ET Scale, Kamlet-Taft parameters and solubility parameters. Group 1 solvent shows promising solvents for lignin-ionic liquid separation, contributing full dissolution of ionic liquid with lignin precipitation. Isopropanol, the most potential solvent has solubility properties as following normalized molar electronic transition energies (ET(N))=0.57, hydrogen-bond acidity (α)=0.76 and Hildebrand solubility parameter (δT)=23.58. This study examines potential solvents for ionic recovery, provides simple method of separation and leads to the feasibility of using ionic liquids in industrial applications.

  6. Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?

    PubMed

    Ueno, Kazuhide; Yoshida, Kazuki; Tsuchiya, Mizuho; Tachikawa, Naoki; Dokko, Kaoru; Watanabe, Masayoshi

    2012-09-13

    To demonstrate a new family of ionic liquids (ILs), i.e., "solvate" ionic liquids, the properties (thermal, transport, and electrochemical properties, Lewis basicity, and ionicity) of equimolar molten mixtures of glymes (triglyme (G3) and tetraglyme (G4)) and nine different lithium salts (LiX) were investigated. By exploring the anion-dependent properties and comparing them with the reported data on common aprotic ILs, two different classes of liquid regimes, i.e., ordinary concentrated solutions and "solvate" ILs, were found in the glyme-Li salt equimolar mixtures ([Li(glyme)]X) depending on the anionic structures. The class a given [Li(glyme)]X belonged to was governed by competitive interactions between the glymes and Li cations and between the counteranions (X) and Li cations. [Li(glyme)]X with weakly Lewis basic anions can form long-lived [Li(glyme)](+) complex cations. Thus, they behaved as typical ionic liquids. The lithium "solvate" ILs based on [Li(glyme)]X have many desirable properties for lithium-conducting electrolytes, including high ionicity, a high lithium transference number, high Li cation concentration, and high oxidative stability, in addition to the common properties of ionic liquids. The concept of "solvate" ionic liquids can be utilized in an unlimited number of combinations of other metal salts and ligands, and will thus open a new field of research on ionic liquids.

  7. Absorption spectrum of atomic impurities in isotopic mixtures of liquid helium

    NASA Astrophysics Data System (ADS)

    Mateo, David; Hernando, Alberto; Barranco, Manuel; Mayol, Ricardo; Pi, Martí

    2011-05-01

    We theoretically describe the absorption spectrum of atomic impurities in isotopic mixtures of liquid helium within a zero-temperature density functional approach. Two situations are considered. In the first one, the absorption spectrum of Na atoms attached to He41000-He3N3 droplets with N3 values from 100 to 3000 is presented as a case study of an impurity that does not dissolve into helium droplets. In the second one, the absorption spectrum of Mg atoms in liquid He3-He4 mixtures is presented as a case study of an impurity dissolved into liquid helium. We have found that the absorption spectrum of the impurity is rather insensitive to the isotopic composition because the line shift is mostly affected by the total He density around the impurity, not by its actual composition. For bulk liquid mixtures, results are presented as a function of pressure at selected values of the He3 concentration. The results for isotopically pure He3 and He4 liquids doped with Mg are compared with available experimental data.

  8. Nanostructured solvation in mixtures of protic ionic liquids and long-chained alcohols.

    PubMed

    Montes-Campos, Hadrián; Otero-Mato, José M; Méndez-Morales, Trinidad; López-Lago, Elena; Russina, Olga; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M

    2017-03-28

    The structural and dynamical properties of bulk mixtures of long-chained primary and secondary alcohols (propanol, butanol, and 2-pentanol) with protic ionic liquids (ethylammonium and butylammonium nitrate) were studied by means of molecular dynamics simulations and small angle X-ray scattering (SAXS). Changes in the structure with the alcohol concentration and with the alkyl chain length of the alcohol moieties were found, showing variations in the radial distribution function and in the number of hydrogen bonds in the bulk liquids. Moreover, the structural behaviour of the studied mixtures is further clarified with the spatial distribution functions. The global picture in the local scale is in good agreement with the nanostructured solvation paradigm [T. Méndez-Morales et al. Phys. Chem. B 118, 761 (2014)], according to which alcohols are accommodated into the hydrogen bonds' network of the ionic liquid instead of forming clusters in the bulk. Indeed, our study reveals that the alcohol molecules are placed with their polar heads at the interfaces between polar and nonpolar nanodomains in the ionic liquid, with their alkyl chains inside the nonpolar organic nanodomains. The influence of alcohol chain length in the single-particle dynamics of the mixtures is also reported calculating the velocity autocorrelation function and vibrational densities of states of the different species in the ionic liquid-alcohol mixtures, and a weak caging effect for the ethylammonium cations independent of the chain size of the alcohols was found. However, the SAXS data collected for the studied mixtures show an excess of the scattering intensities which indicates that there are also some structural heterogeneities at the nanoscale.

  9. Nanostructured solvation in mixtures of protic ionic liquids and long-chained alcohols

    NASA Astrophysics Data System (ADS)

    Montes-Campos, Hadrián; Otero-Mato, José M.; Méndez-Morales, Trinidad; López-Lago, Elena; Russina, Olga; Cabeza, Oscar; Gallego, Luis J.; Varela, Luis M.

    2017-03-01

    The structural and dynamical properties of bulk mixtures of long-chained primary and secondary alcohols (propanol, butanol, and 2-pentanol) with protic ionic liquids (ethylammonium and butylammonium nitrate) were studied by means of molecular dynamics simulations and small angle X-ray scattering (SAXS). Changes in the structure with the alcohol concentration and with the alkyl chain length of the alcohol moieties were found, showing variations in the radial distribution function and in the number of hydrogen bonds in the bulk liquids. Moreover, the structural behaviour of the studied mixtures is further clarified with the spatial distribution functions. The global picture in the local scale is in good agreement with the nanostructured solvation paradigm [T. Méndez-Morales et al. Phys. Chem. B 118, 761 (2014)], according to which alcohols are accommodated into the hydrogen bonds' network of the ionic liquid instead of forming clusters in the bulk. Indeed, our study reveals that the alcohol molecules are placed with their polar heads at the interfaces between polar and nonpolar nanodomains in the ionic liquid, with their alkyl chains inside the nonpolar organic nanodomains. The influence of alcohol chain length in the single-particle dynamics of the mixtures is also reported calculating the velocity autocorrelation function and vibrational densities of states of the different species in the ionic liquid-alcohol mixtures, and a weak caging effect for the ethylammonium cations independent of the chain size of the alcohols was found. However, the SAXS data collected for the studied mixtures show an excess of the scattering intensities which indicates that there are also some structural heterogeneities at the nanoscale.

  10. Mixtures of protic ionic liquids and molecular cosolvents: a molecular dynamics simulation.

    PubMed

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R; Cabeza, Óscar; Gallego, Luis J; Varela, Luis M

    2014-06-07

    In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3](-) anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3](-) in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures.

  11. Mixtures of protic ionic liquids and molecular cosolvents: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R.; Cabeza, Óscar; Gallego, Luis J.; Varela, Luis M.

    2014-06-01

    In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3]- anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3]- in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures.

  12. Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents.

    PubMed

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-11-22

    Mixtures of solid chemicals may become liquid under certain conditions. These liquids are characterized by the formation of strong ionic (ionic liquids) or hydrogen bonds (deep eutectic solvents). Due to their extremely low vapor pressure, they are now widely used in polymer chemistry and synthetic organic chemistry, yet little attention has been paid to their use as extraction solvents of natural products. This review summarizes the preparation of ionic liquids and deep eutectic solvents with natural product components and recent progress in their applications to the extraction and analysis of natural products as well as the recovery of extracted compounds from their extracts. Additionally, various factors affecting extraction features of ionic liquids and deep eutectic solvents, as well as potential useful technologies including microwave and ultrasound to increase the extraction efficiency, are discussed.

  13. Porous silicon optical template for determination of chromatic dispersion of transparent liquid mixture

    NASA Astrophysics Data System (ADS)

    Cafe, Arven I.; Lopez, Joybelle; Lopez, Lorenzo; Faustino, Maria Angela; Mabilangan, Arvin; Salvador, Arnel; Somintac, Armando

    2017-03-01

    Porous silicon was fabricated through electrochemical etching and is used as an optical template for liquid sensing application. Using reflectance spectroscopy, change in optical properties such as refractive index and reflectivity upon liquid introduction were obtained. Chromatic dispersion of porous silicon upon detection of transparent liquids such as absolute ethanol, methanol, 2-propanol and distilled water were determined for spectral range 450nm to 1100nm. Mixture of the organic transparent liquid and water was also tested. In this study, porosity and liquid's concentration were varied to establish the sensitivity of detection. Expected ideal values were also simulated for comparison and correction factor computation. Results provide calibration basis for water quality assessment, environmental monitoring, and diagnostic application.

  14. Phase equilibrium calculations of ternary liquid mixtures with binary interaction parameters and molecular size parameters determined from molecular dynamics.

    PubMed

    Oh, Suk Yung; Bae, Young Chan

    2010-07-15

    The method presented in this paper was developed to predict liquid-liquid equilibria in ternary liquid mixtures by using a combination of a thermodynamic model and molecular dynamics simulations. In general, common classical thermodynamic models have many parameters which are determined by fitting a model with experimental data. This proposed method, however, provides a simple procedure for calculating liquid-liquid equilibria utilizing binary interaction parameters and molecular size parameters determined from molecular dynamics simulations. This method was applied to mixtures containing water, hydrocarbons, alcohols, chlorides, ketones, acids, and other organic liquids over various temperature ranges. The predicted results agree well with the experimental data without the use of adjustable parameters.

  15. Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Lennon, Erin M.; Tsao, Heng-Kwong; Sheng, Yu-Jane; Jiang, Shaoyi

    2005-06-01

    In this work, we report a dual-control-volume grand canonical molecular dynamics simulation study of the transport of a water and methanol mixture under a fixed concentration gradient through nanotubes of various diameters and surface chemistries. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is intermediate between nonpolar and strongly polar molecules. Carboxyl acid (-COOH) groups are anchored onto the inner wall of a carbon nanotube to alter the hydrophobic surface into a hydrophilic one. Results show that the transport of the mixture through hydrophilic tubes is faster than through hydrophobic nanotubes although the diffusion of the mixture is slower inside hydrophilic than hydrophobic pores due to a hydrogen network. Thus, the transport of the liquid mixture through the nanotubes is controlled by the pore entrance effect for which hydrogen bonding plays an important role.

  16. Nonaqueous Phase Liquid Dissolution in Porous Media: Multi-Scale Effects of Multi-Component Dissolution Kinetics on Cleanup Time

    SciTech Connect

    McNab, W; Ezzedine, S; Detwiler, R

    2007-02-26

    Industrial organic solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE) constitute a principal class of groundwater contaminants. Cleanup of groundwater plume source areas associated with these compounds is problematic, in part, because the compounds often exist in the subsurface as dense nonaqueous phase liquids (DNAPLs). Ganglia (or 'blobs') of DNAPL serve as persistent sources of contaminants that are difficult to locate and remediate (e.g. Fenwick and Blunt, 1998). Current understanding of the physical and chemical processes associated with dissolution of DNAPLs in the subsurface is incomplete and yet is critical for evaluating long-term behavior of contaminant migration, groundwater cleanup, and the efficacy of source area cleanup technologies. As such, a goal of this project has been to contribute to this critical understanding by investigating the multi-phase, multi-component physics of DNAPL dissolution using state-of-the-art experimental and computational techniques. Through this research, we have explored efficient and accurate conceptual and numerical models for source area contaminant transport that can be used to better inform the modeling of source area contaminants, including those at the LLNL Superfund sites, to re-evaluate existing remediation technologies, and to inspire or develop new remediation strategies. The problem of DNAPL dissolution in natural porous media must be viewed in the context of several scales (Khachikian and Harmon, 2000), including the microscopic level at which capillary forces, viscous forces, and gravity/buoyancy forces are manifested at the scale of individual pores (Wilson and Conrad, 1984; Chatzis et al., 1988), the mesoscale where dissolution rates are strongly influenced by the local hydrodynamics, and the field-scale. Historically, the physico-chemical processes associated with DNAPL dissolution have been addressed through the use of lumped mass transfer coefficients which attempt to quantify the

  17. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases.

    PubMed

    Bouwstra, J A; Gooris, G S; Dubbelaar, F E; Ponec, M

    2001-11-01

    The lipid regions in the outermost layer of the skin (stratum corneum) form the main barrier for diffusion of substances through the skin. In this layer the main lipid classes are ceramides, cholesterol (CHOL), and FFA. Previous studies revealed a coexistence of two crystalline lamellar phases with periodicities of approximately 13 nm (referred to as long periodicity phase) and 6 nm (short periodicity phase). Additional studies showed that lipid mixtures prepared with isolated pig ceramides (pigCER) mimic lipid phase behavior in stratum corneum closely. Because the molecular structure of pigCER differs in some important aspects from that of human ceramides (HCER), in the present study the phase behavior of mixtures prepared with HCER has been examined. Phase behavior studies of mixtures based on HCER revealed that in CHOL:HCER mixtures the long periodicity phase dominates. In the absence of HCER1 the short periodicity phase is dominant. Addition of FFA promotes the formation of the short periodicity phase and induces a transition from a hexagonal sublattice to an orthorhombic sublattice. Furthermore, the presence of FFA promotes the formation of a liquid phase. Finally, cholesterol sulfate, a minor but important lipid in the stratum corneum, reduces the amount of cholesterol that phase separates in crystalline domains. From these observations it can be concluded that the phase behavior of mixtures prepared from HCER differs in some important aspects from that prepared from pigCER. The most prevalent differences are the following: i) the addition of FFA promotes the formation of the short periodicity phase; and ii) liquid lateral packing is obviously present in CHOL:HCER:FFA mixtures. These changes in phase behavior might be due to a larger amount of linoleic acid moiety in HCER mixtures compared with that in pigCER mixtures.

  18. Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.

    PubMed

    Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N

    2016-09-15

    The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications.

  19. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    SciTech Connect

    Govindaiah, T. N. Sreepad, H. R.; Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N.

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  20. Water-in-ionic liquid microemulsion formation in solvent mixture of aprotic and protic imidazolium-based ionic liquids.

    PubMed

    Kusano, Takumi; Fujii, Kenta; Hashimoto, Kei; Shibayama, Mitsuhiro

    2014-10-14

    We report that water-in-ionic liquid microemulsions (MEs) are stably formed in an organic solvent-free system, i.e., a mixture of aprotic (aIL) and protic (pIL) imidazolium-based ionic liquids (ILs) containing the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT). Structural investigations using dynamic light, small-angle X-ray, and small-angle neutron scatterings were performed for MEs formed in mixtures of aprotic 1-octyl-3-methylimidazolium ([C8mIm(+)]) and protic 1-alkylimidazolium ([CnImH(+)], n = 4 or 8) IL with a common anion, bis(trifluoromethanesulfonyl)amide ([TFSA(-)]). It was found that the ME structure strongly depends on the mixing composition of the aIL/pIL in the medium. The ME size appreciably increases with increasing pIL content in both [C8mIm(+)][TFSA(-)]/[C8ImH(+)][TFSA(-)] and [C8mIm(+)][TFSA(-)]/[C4ImH(+)][TFSA(-)] mixtures. The size is larger for the n = 8 system than that for the n = 4 system. These results indicate that the shell part of MEs is composed of both AOT and pIL cation, and the ME size can be tuned by pIL content in the aIL/pIL mixtures.

  1. Infrared Study of Liquid / Solid Hydrocarbons and their Mixtures under Titan Conditions

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Chevrier, V.; Roe, L.; Luspay-Kuti, A.; Wagner, A.

    2013-10-01

    This study presents the first experimental investigation of the infrared properties of hydrocarbons under Titan simulated conditions. Infrared spectra of liquid and solid CH4, C2H6 and their mixtures are taken to characterize infrared properties of Titan’s liquid and solids. We also monitor continuous change in mass of the compounds to emphasize the presence or absence of these compounds during evaporation/sublimation processes which are also quantified using IR spectra. Using our experimental evaporation/sublimation rates in the liquid-liquid and solid-liquid hydrocarbon mixtures we can determine the amount of CH4 that accumulates in the arid equatorial regions to produce liquid flows. Dark patches in the surface reflectance at 2 and 5 µm have been observed by Cassini spacecraft as seasonal formation of hydrocarbons lakes through a CH4 cycle. Identification of solid versus liquid phase states of CH4 and C2H6 on Titan requires laboratory measurements at relevant temperatures. The results for both CH4 and C2H6, reflectivity change as their phase changes from liquid to solid. In CH4 the band-depth of absorption bands decrease over time due to sublimation. Whereas in ethane, the band-depth is increasing over time due to its non-volatile nature. We have also investigated C2H2, as it was detected on the surface of Titan by the infrared spectrum in two of VIMS atmospheric windows at 1.54 µm and in the 2 µm region. The absorption features seen in the laboratory spectra are large enough to be potentially detected in VIMS. Currently, the solubility experiments of C2H2, CH3CN, and C4H10 in liquid CH4 and C2H6 are undergoing in our lab at 94 K and 1.5 bar. Since the amount of C2H2 present in Titan lakes can be several times the atmospheric amount, and is thought to be major soluble component in Titan lakes. We can correlate the laboratory experiments to the evaporites detected on the shoreline of Ontario Lacus by Cassini VIMS. Analyzing the Infrared spectra of the liquid-liquid

  2. Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid-water mixtures.

    PubMed

    Qi, Xinhua; Watanabe, Masaru; Aida, Taku M; Smith, Richard L

    2012-04-01

    A method for converting glucose into 5-hydroxymethylfurfural (5-HMF) without using chromium-containing catalysts was developed. The method uses ionic liquid-water mixtures with a ZrO(2) catalyst. Addition of a certain amount of water (10-50 wt.%) into the 1,3-dialkylimidazolium chloride ionic liquid promoted the formation of 5-HMF from glucose compared with that in either pure water or in the pure ionic liquid. A 5-HMF yield of 53% was obtained within 10 min at 200 °C in a 50:50 w/w% 1-hexyl-3-methyl imidazolium chloride-water mixture in the presence of ZrO(2). The 1,3-dialkylimidazolium ionic liquids having Cl(-) or HSO(4)(-) anions were effective for promoting 5-HMF formation. Addition of protic solvents such as methanol and ethanol to the ionic liquid had a similar synergistic effect as water and promoted fructose and 5-HMF formation. The results reported in this work can be extended to other fields, where the ratio of ionic liquid and protic solvent can be adjusted to promote the desired reactions.

  3. Fundamental Insights into the Dissolution and Precipitation of Cellulosic Biomass from Ionic Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Minnick, David L.

    Lignocellulose is the most abundant biopolymer on earth making it a promising feedstock for the production of renewable chemicals and fuels. However, utilization of biomass remains a challenge as recalcitrance of cellulose and hemicellulose hinder separation and conversion of these carbohydrates. For instance, the complex inter- and intra- molecular hydrogen bonding network of cellulose renders it insoluble in nearly all aqueous and organic solvents. Alternatively, select ionic liquids (ILs) dissolve significant quantities. Through an ionic liquid mediated dissolution and precipitation process cellulose crystallinity is significantly reduced consequently enhancing subsequent chemical and biochemical reaction processes. Therefore, understanding the thermodynamics of ionic liquid - cellulose mixtures is imperative to developing an IL based biomass processing system. This dissertation illustrates solid-liquid phase equilibrium results for the dissolution and precipitation of cellulose in various IL/cosolvent, IL/antisolvent, and IL/mixed solvent systems with the ionic liquid 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIm][DEP]). Molecular interactions between the ionic liquid, organic solvents, and cellulose are assessed by spectroscopic techniques including Kamlet-Taft solvatochromic analysis, FTIR, and NMR. Additionally, this dissertation discusses how preferential solvation of the IL cation and anion by co- and anti-solvents impact the ability of IL ions to interact with cellulose thus affecting the cellulose dissolution capacity of the various IL-solvent mixtures.

  4. Shock Hugoniot equations of state for binary water-alcohol liquid mixtures

    NASA Astrophysics Data System (ADS)

    Schulze, Peter A.; Ivanov, Trevor W.; Bolme, Cynthia A.; Brown, Kathryn E.; McGrane, Shawn D.; Moore, David S.

    2014-01-01

    Shock Hugoniot data were obtained using laser generated shock and ultrafast dynamic ellipsometry (UDE) methods for several non-ideal water-alcohol liquid mixtures, with the alcohols being methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and t-butanol (a.k.a., 2-methyl-2-propanol or tert-butanol). The sound speeds of the mixtures were obtained using Brillouin scattering when not available in the literature. The shock and particle velocities obtained from the UDE data were compared to expectations of the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. The ethanol/water data were presented in a previous publication [Schulze et al., J. Phys. Chem. A 117, 6158-6163 (2013)]. The shock Hugoniot trends for all these mixtures, here represented as deviations from predictions of the ULH, versus fraction of alcohol are quite similar to each other and suggest that complex hydrogen bonding networks in alcohol-water mixtures alter the compressibility of the mixtures.

  5. Enhanced self-assembly for the solubilization of cholesterol in molecular solvent/ionic liquid mixtures.

    PubMed

    Jin, Wenbin; Ke, Yuqi; Liu, Xianxian; Yang, Qiwei; Bao, Zongbi; Su, Baogen; Ren, Qilong; Yang, Yiwen; Xing, Huabin

    2017-04-07

    The development of new solvents combining greatly enhanced solubility for sparingly soluble compounds and good kinetic properties is challenging. In this study, we constructed a family of new molecular solvent/ionic liquid (IL) mixtures with amphiphilic, anionic functional long-chain carboxylate ionic liquids (LCC-ILs) as a key component for the solubilization of sparingly soluble compounds, using cholesterol as a model solute. Polarized optical microscopy (POM), wide angle X-ray diffraction (WAXD), Fourier-transform infrared (FTIR) spectra and (1)H NMR showed that ordered mesoscopic structures, such as liquid crystals (LCs), were formed when cholesterol was dissolved in the mixtures, presenting a self-assembly induced dissolution mechanism driven by H-bond interaction and van der Waals forces in the mixtures. A synergistic effect between the molecular solvents and LCC-ILs was revealed, which contributed to enhanced solute-solvent self-assembly in dissolution over pure LCC-ILs and thus elevated solubility. Additionally, the effect of IL concentration, solvent type and anionic alkyl-chain length on self-assembly and solubility was investigated. These mixtures showed unparalleled solubilities for cholesterol, while maintaining a low viscosity. The quantitative solubilities (g g(-1)) of cholesterol were as high as 0.70, 0.84 and 0.82, respectively, at 25 °C in ethyl acetate/[P4444][C15H31COO] (50 wt%), n-heptane/[P4444][C15H31COO] (40 wt%) and ethyl acetate/[P4444][C17H35COO] (50 wt%) mixtures, which were the highest solubilities of cholesterol ever reported, six- to 980-fold higher than traditional molecular solvents and even one- to seven-fold higher compared to pure LCC-ILs. These results demonstrated the considerable potential of molecular solvent/LCC-ILs mixtures as promising solvents for solubilization and advanced separation processes.

  6. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    SciTech Connect

    Liang, Min; Khatun, Sufia; Castner, Edward W.

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C6D14 with this ionic liquid. High- energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C6D14. NMR self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C6D14 is on average a factor of 21 times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.

  7. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    SciTech Connect

    Liang, Min; Khatun, Sufia; Castner, Edward W.

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C{sub 6}D{sub 14} with this ionic liquid. High-energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C{sub 6}D{sub 14}. Nuclear magnetic resonance self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C{sub 6}D{sub 14} is on average a factor of 21 times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.

  8. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    DOE PAGES

    Liang, Min; Khatun, Sufia; Castner, Edward W.

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C6D14 with this ionic liquid. High- energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C6D14. NMR self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C6D14 is on average a factor of 21more » times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less

  9. Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under extreme conditions

    NASA Astrophysics Data System (ADS)

    Xiao-Xu, Jiang; Guan-Yu, Chen; Yu-Tong, Li; Xin-Lu, Cheng; Cui-Ming, Tang

    2016-02-01

    Thermodynamic and chemical properties of liquid carbon dioxide and nitrogen (CO2-N2) mixture under the conditions of extremely high densities and temperatures are studied by using quantum molecular dynamic (QMD) simulations based on density functional theory including dispersion corrections (DFT-D). We present equilibrium properties of liquid mixture for 112 separate density and temperature points, by selecting densities ranging from ρ = 1.80 g/cm3 to 3.40 g/cm3 and temperatures from T = 500 K to 8000 K. In the range of our study, the liquid CO2-N2 mixture undergoes a continuous transition from molecular to atomic fluid state and liquid polymerization inferred from pair correlation functions (PCFs) and the distribution of various molecular components. The insulator-metal transition is demonstrated by means of the electronic density of states (DOS). Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217, 11135012, and 11375262) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11176020).

  10. A molecular dynamics simulation study of dynamic process and mesoscopic structure in liquid mixture systems

    NASA Astrophysics Data System (ADS)

    Yang, Peng

    The focus of this dissertation is the Molecular Dynamics (MD) simulation study of two different systems. In thefirst system, we study the dynamic process of graphene exfoliation, particularly graphene dispersion using ionic surfactants (Chapter 2). In the second system, we investigate the mesoscopic structure of binary solute/ionic liquid (IL) mixtures through the comparison between simulations and corresponding experiments (Chapter 3 and 4). In the graphene exfoliation study, we consider two separation mechanisms: changing the interlayer distance and sliding away the relative distance of two single-layer graphene sheets. By calculating the energy barrier as a function of separation (interlayer or sliding-away) distance and performing sodium dodecyl sulfate (SDS) structure analysis around graphene surface in SDS surfactant/water + bilayer graphene mixture systems, we find that the sliding-away mechanism is the dominant, feasible separation process. In this process, the SDS-graphene interaction gradually replaces the graphene-graphene Van der Waals (VdW) interaction, and decreases the energy barrier until almost zero at critical SDS concentration. In solute/IL study, we investigate nonpolar (CS2) and dipolar (CH 3CN) solute/IL mixture systems. MD simulation shows that at low concentrations, IL is nanosegregated into an ionic network and nonpolar domain. It is also found that CS2 molecules tend to be localized into the nonpolar domain, while CH3CN interacts with nonpolar domain as well as with the charged head groups in the ionic network because of its amphiphilicity. At high concentrations, CH3CN molecules eventually disrupt the nanostructural organization. This dissertation is organized in four chapters: (1) introduction to graphene, ionic liquids and the methodology of MD; (2) MD simulation of graphene exfoliation; (3) Nanostructural organization in acetonitrile/IL mixtures; (4) Nanostructural organization in carbon disulfide/IL mixtures; (5) Conclusions. Results

  11. Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Perkin, Susan

    2013-01-01

    The confinement of liquids to thin films can lead to dramatic changes in their structural arrangement and dynamic properties. Ionic liquids display nano-structures in the bulk of the liquid, consisting of polar and non-polar domains, whereas a solid surface can induce layered structures in the near-surface liquid. Here we compare and contrast the layer structures in a series of imidazolium and pyrrolidinium-based ionic liquids upon confinement of the liquids to films of approximately 0-20 nm between two negatively charged mica surfaces. Using a surface force balance (SFB) we measured the force between the two atomically smooth mica surfaces with ionic liquid between, directly revealing the ion packing and dimensions of layered structures for each liquid. The ionic liquids with shorter alkyl chain substituents form alternating cation-anion monolayer structures on confinement, whilst a longer alkyl chain leads to alignment of the cations in bilayer formation. The crossover from monolayers to bilayers, however, occurs at different alkyl chain lengths for imidazolium- and pyrrolidinium-based ionic liquids with a common anion. In addition, we find that imidazolium cation bilayers are arranged in toe-to-toe orientation, whereas pyrrolidinium cations form bilayers consisting of fully interdigitated alkyl chains. Results for a mixture of monolayer-preferring (i.e. short alkyl chain) and bilayer-preferring (i.e. long alkyl chain) liquids indicate alkyl chain segregation and bilayer-like structures. We discuss the driving forces for these self-assembly effects, and the contrasting behaviour of the imidazolium and pyrrolidinium-type ionic liquids.

  12. Mesomorphic and physicochemical properties of liquid crystal mixture composed of chiral molecules with perfluorinated terminal chains

    NASA Astrophysics Data System (ADS)

    Tomczyk, Wojciech; Marzec, Monika; Juszyńska-Gałązka, Ewa; Węgłowska, Dorota

    2017-02-01

    New binary mixture of thermotropic liquid crystalline compounds, possessing both ferro- and antiferroelectric smectic C* phases, has been studied by complementary methods: calorimetric, X-ray powder diffractometry and electro-optic. Additionally, quantum-chemical model based on the density functional theory was also applied. It was found that mixture studied did not exhibit antiferroelectric phase at any rate of heating or cooling in contradiction to its ingredients. On the other hand it has a wide temperature range of ferroelectric smectic C* phase, which is invariant with respect to different heating and cooling rates within the range of thermal hysteresis. Furthermore, temperature dependence of switching time and spontaneous polarization were measured.

  13. Structure, thermodynamics, and dynamics of the liquid/vapor interface of water/dimethylsulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Benjamin, Ilan

    1999-04-01

    Molecular dynamics computer simulations are used to study the structure, thermodynamics and dynamics of the liquid/vapor interface of water/DMSO (dimethylsulfoxide) mixtures. Both the infinite dilution limit (single DMSO molecule) and four different finite concentration mixtures are investigated. Considered are the potential of mean force for the adsorption of DMSO and the dependence of several surface structural properties (orientation, hydrogen bonding) and surface potential on the bulk concentration of DMSO. The adsorption dynamics are also investigated and compared with a diffusion model. In general, the results are in good agreement with recent experimental measurements.

  14. Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons

    SciTech Connect

    Chao, K.C.

    1990-01-01

    Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

  15. Maxwell-Stefan diffusivities in binary mixtures of ionic liquids with dimethyl sulfoxide (DMSO) and H2O.

    PubMed

    Liu, Xin; Vlugt, Thijs J H; Bardow, André

    2011-07-07

    Ionic liquids (ILs) are promising solvents for applications ranging from CO2 capture to the pretreatment of biomass. However, slow diffusion often restricts their applicability. A thorough understanding of diffusion in ILs is therefore highly desirable. Previous research largely focused on self-diffusion in ILs. For practical applications, mutual diffusion is by far more important than self-diffusion. For describing mutual diffusion in multicomponent systems, the Maxwell-Stefan (MS) approach is commonly used. Unfortunately, it is difficult to obtain MS diffusivities from experiments, but they can be directly extracted from molecular dynamics (MD) simulations. In this work, MS diffusivities were computed in binary systems containing 1-alkyl-3-methylimidazolium chloride (C(n)mimCl, n = 2, 4, 8), water, and/or dimethyl sulfoxide (DMSO) using MD. The dependence of self- and MS diffusivities on mixture composition was investigated. Our results show the following: (1) For solutions of ILs in water and DMSO, self-diffusivities decrease strongly with increasing IL concentration. For DMSO-IL, a single exponential decay is observed. (2) In both water-IL and DMSO-IL, MS diffusivities vary by a factor of 10 within the concentration range which is, however, still significantly smaller than the variation of the self-diffusion coefficients. (3) The MS diffusivities of the IL are almost independent of the alkyl chain length. (4) ILs stay in a form of isolated ions in C(n)mimCl-H2O mixtures; however, dissociation into ions is much less observed in C(n)mimCl-DMSO systems. This has a large effect on the concentration dependence of MS diffusivities. (5) Recently, we proposed a new model for predicting the MS diffusivity at infinite dilution, that is, Đ(ij)(x(k-->)1) (Ind. Eng. Chem. Res. 2011, 50, 4776-4782). This quantity describes the friction between components i and j when both are infinitely diluted in component k. In contrast to earlier empirical models, our model is based on

  16. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids

    SciTech Connect

    Finotello Alexia; Bara Jason E.; Narayan Suguna; Campder Dean; Noble Richard D.

    2008-07-01

    This study focuses on the solubility behaviors of CO{sub 2}, CH{sub 4}, and N{sub 2} gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using l-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ((C{sub 2}mim)(Tf{sub 2}N)) and l-ethyl-3-methylimidazolium tetrafluoroborate ((C{sub 2}mim)(BF{sub 4})) at 40{sup o}C and low pressures (about 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % (C{sub 2}mim)(BF{sub 4}) in (C{sub 2}-mim)(Tf2{sub N}). Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO{sub 2} with N{sub 2} or CH{sub 4} in pure (C{sub 2}mim)(BF4) can be enhanced by adding 5 mol% (C{sub 2}-mim)(Tf{sub 2}N).

  17. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids.

    PubMed

    Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D

    2008-02-28

    This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

  18. Ethanol, acetic acid, and water adsorption from binary and ternary liquid mixtures on high-silica zeolites.

    PubMed

    Bowen, Travis C; Vane, Leland M

    2006-04-11

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a high-silica beta zeolite were also compared. The amounts adsorbed were measured using a recently developed technique that accurately measures the changes in adsorbent/liquid mixture density and liquid concentration. This technique allows the adsorption of each compound in a liquid mixture to be measured. Adsorption data for binary mixtures were fit with the dual-site extended Langmuir model, and the parameters were used to predict ternary adsorption isotherms for each compound with reasonable accuracy. In ternary mixtures, acetic acid competed with ethanol and water for adsorption sites and reduced ethanol adsorption more than it reduced water adsorption.

  19. Analytical performances of two liquid crystals and their mixture as stationary phases in capillary gas chromatography.

    PubMed

    Bélaïdi, D; Sebih, S; Boudah, S; Guermouche, M H; Bayle, J P

    2005-09-16

    Comparative gas chromatographic applications of two new liquid crystals called LCa and LCb and their equimolar mixture LC(a+b) were investigated. The thermal properties of LCa, LCb and LC(a+b) were established with differential scanning calorimetry (DSC) and polarizing microscopy. Differential scanning calorimetry of LC(a+b) showed that the melting or clearing temperature was intermediate between the corresponding temperatures of the pure compounds. Polarizing microscopy showed that the liquid crystal phase of A + B was nematic. The chromatographic separation abilities LCa, LCb and LC(a+b) were studied using fused silica capillary columns. Interesting analytical performances were obtained: isomeric separation of aromatics, polyaromatics, phenols.

  20. Sedimentation of a two-dimensional colloidal mixture exhibiting liquid-liquid and gas-liquid phase separation: a dynamical density functional theory study.

    PubMed

    Malijevský, Alexandr; Archer, Andrew J

    2013-10-14

    We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this.

  1. Topological and spatial structure in the liquid-water-acetonitrile mixture

    NASA Astrophysics Data System (ADS)

    Bergman, Dan L.; Laaksonen, Aatto

    1998-10-01

    We have studied the structure of the liquid-water-acetonitrile mixture using molecular configurations obtained by molecular dynamics simulation. Spatial distribution functions have been used to analyze the local structures surrounding the molecules. The effective hydrogen-bond definition has been used to study basic hydrogen-bond properties and topological properties of the hydrogen-bond network. The topology of the network depends on the acetonitrile concentration. Up to a critical concentration, there is an infinite network of hydrogen-bonded water molecules. At higher concentrations, the network cannot be supported, and finite water clusters form. In order to characterize the networks and clusters, we have calculated some properties of loops and chains of water molecules. The patterns of hydrogen bonds surrounding the molecules and the size distribution of the clusters have also been calculated. We suggest that this approach can be useful when studying the structure of other liquid mixtures where hydrogen bonds are an important mode of interaction.

  2. Wetting layers caused by surface ionization in a near-critical binary liquid mixture

    NASA Astrophysics Data System (ADS)

    Ripple, Dean; Wu, Xiao-Lun; Franck, Carl

    1988-11-01

    Kayser [Phys. Rev. Lett. 56, 1831 (1986)] has proposed that surface ionization provides the long-range force responsible for the wetting layers seen in the binary liquid mixture CS2+CH3NO2 on borosilicate glass substrates. We use scaling theory to find the equation of state for the near-critical mixtures, and then derive a free-energy functional for the wetting layer that incorporates surface ionization forces. This model includes critical adsorption effects and is well suited for calculations of wetting layers in the single-phase region. Within the uncertainties of the material properties, reflectivities of the glass-liquid interface derived from the theoretical concentration profiles do agree with experimental reflectivity values for wetting layers in the one-phase region. We confirm that surface ionization produces the dominant long-range force in CS2+CH3NO2 on glass.

  3. Emerging Evidences of Mesoscopic-Scale Complexity in Neat Ionic Liquids and Their Mixtures.

    PubMed

    Russina, Olga; Lo Celso, Fabrizio; Plechkova, Natalia V; Triolo, Alessandro

    2017-03-16

    Ionic liquids (ILs) represent a blooming class of continuously developing advanced materials, with the aiming of a green chemical industry. Their appealing physical and chemical properties are largely influenced by their micro- and mesoscopic structure that is known to possess a high degree of hierarchical organization. High-impact application fields are largely affected by the complex morphology of neat ionic liquids and their mixtures. This Perspective highlights new arising research directions that point to an enhanced level of structural complexity in several IL-based systems, including mixtures. The latter represent a change in paradigm in the approach to formulate new, task-specific IL-based media, and the reported phenomenology has the potential to further expand their range of applications by calling for a revisitation of the nature of interactions in these exciting media.

  4. Microcantilever sensors for monitoring the evaporation of microdrops of pure liquids and mixtures.

    PubMed

    Liu, Chuanjun; Bonaccurso, Elmar

    2010-01-01

    We describe in detail a nonimaging technique that allows the measurement of the mass, the radius, and the contact angle of evaporating sessile microdrops of pure liquids and binary mixtures. The microdrops were deposited onto hydrophobized silicon microcantilevers whose bending and resonance frequency were monitored during drop evaporation. We verify the laws of evaporation kinetics for microdrops with diameters from 80 down to 10 microm. The evaporation of mixtures of water/ethanol drops confirmed previous results with millimeter sized drops. N,N-dimethylformamide drops undergo a transformation from an initial spherical shape to a thin film. Flattening of the drop causes a slowdown of the evaporation kinetics at the end. Two concurring factors are at its origin: the rising disjoining pressure stabilizes the thin liquid film and the increasing radius of curvature of the drop reduces the vapor pressure.

  5. Microcantilever sensors for monitoring the evaporation of microdrops of pure liquids and mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Chuanjun; Bonaccurso, Elmar

    2010-01-01

    We describe in detail a nonimaging technique that allows the measurement of the mass, the radius, and the contact angle of evaporating sessile microdrops of pure liquids and binary mixtures. The microdrops were deposited onto hydrophobized silicon microcantilevers whose bending and resonance frequency were monitored during drop evaporation. We verify the laws of evaporation kinetics for microdrops with diameters from 80 down to 10 μm. The evaporation of mixtures of water/ethanol drops confirmed previous results with millimeter sized drops. N,N-dimethylformamide drops undergo a transformation from an initial spherical shape to a thin film. Flattening of the drop causes a slowdown of the evaporation kinetics at the end. Two concurring factors are at its origin: the rising disjoining pressure stabilizes the thin liquid film and the increasing radius of curvature of the drop reduces the vapor pressure.

  6. Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices.

    PubMed

    Peroukidis, Stavros D; Lichtner, Ken; Klapp, Sabine H L

    2015-08-14

    We investigate the self-organization of a binary mixture of similar sized rods and dipolar soft spheres by means of Monte-Carlo simulations. We model interparticle interactions by employing anisotropic Gay-Berne, dipolar and soft-sphere interactions. In the limit of vanishing magnetic moments we obtain a variety of fully miscible liquid crystalline phases including nematic, smectic and lamellar phases. For the magnetic mixture, we find that the liquid crystalline matrix supports the formation of orientationally ordered ferromagnetic chains. Depending on the relative size of the species the chains align parallel or perpendicular to the director of the rods forming uniaxial or biaxial nematic, smectic and lamellar phases. As an exemplary external perturbation we apply a homogeneous magnetic field causing uniaxial or biaxial ordering to an otherwise isotropic state.

  7. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.

    PubMed

    Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib

    2015-10-14

    Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added. Hence, determining the thermophysical properties and understanding these novel mixtures at the molecular level are of both fundamental and practical importance. In this context, here we report the synthesis of two nontoxic guanidinium cation based ILs, tetramethylguanidinium benzoate [TMG][BEN] and tetramethylguanidinium salicylate [TMG][SAL], and present a detailed comparison of their thermophysical properties in the presence of water. The results show that the [TMG][SAL]/water mixtures have higher density and higher apparent molar volume, but a lower viscosity and higher compressibility than the [TNG][BEN]/water mixtures. The measured viscosity and compressibility data are explained from ab initio quantum mechanical calculations and liquid-phase molecular dynamics simulations, where salicylate anions of denser [TMG][SAL]/water were found to exist as isolated ions due to intramolecular H-bonding. On the contrary, intermolecular H-bonding among the benzoate anions and their strong tendency to form an extended H-bonding network with water made [TMG][BEN]/water solutions more viscous and less compressible. This study shows the importance of probing these emerging solvents at the molecular-to-atomic level, which could be helpful in their optimal usage for task-specific applications.

  8. Understanding lignin treatment in dialkylimidazolium-based ionic liquid-water mixtures.

    PubMed

    Yan, Bing; Li, Kunlan; Wei, Ligang; Ma, Yingchong; Shao, Guolin; Zhao, Deyang; Wan, Wenying; Song, Lili

    2015-11-01

    The treatment of enzymatically hydrolyzed lignin (EHL) in dialkylimidazolium-based ionic liquid (IL)-water mixtures (50-100wt% IL content) was investigated at 150°C for 3h. pH, IL type, and IL content were found to greatly influence the degradation of lignin and the structure of regenerated lignin. 1-Butyl-3-methylimidazolium methylsulfonate-water mixtures with low pH facilitated lignin depolymerization but destroyed the regenerated lignin substructure. Regenerated lignin with low molecular weight and narrow polydispersity index (2.2-7.7) was obtained using a 1-butyl-3-methylimidazolium acetate-based system. Water addition inhibited lignin depolymerization at 50-100wt% IL content, except for 70wt% 1-butyl-3-methylimidazolium chloride-water mixture. Compared with pure IL treatment, obvious differences were observed in the breakdown of inter-unit linkages and ratio of syringyl to guaiacyl units in regenerated lignin with IL-water treatment.

  9. Dynamics of binary phase separation in liquid He-3-He-4 mixtures

    NASA Technical Reports Server (NTRS)

    Hoffer, J. K.; Sinha, D. N.

    1986-01-01

    Binary phase-separation dynamics in liquid mixtures of He-3 and He-4 has been investigated near the tricritical point with laser-light scattering techniques. Rapid decompression of the mixtures results in quenches into the miscibility gap so that both the metastable and unstable (spinodal) regions can be probed. Quenches into the unstable region allowed measurements of the normalized dynamic structure factor S(k,t) that confirm the dynamical scaling hypotheses for spinodal decomposition. Measurements made for concentrations well away from the tricritical value show different behavior and suggest the presence of a spinodal boundary. Forward scattering intensities for shallow quenches probe nucleation phenomena and permit quantitative measurements of anomalous super-cooling as a function of quench rate. Comparisons with data in organic binary mixtures are given.

  10. The accurate estimation of physicochemical properties of ternary mixtures containing ionic liquids via artificial neural networks.

    PubMed

    Cancilla, John C; Díaz-Rodríguez, Pablo; Matute, Gemma; Torrecilla, José S

    2015-02-14

    The estimation of the density and refractive index of ternary mixtures comprising the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate, 2-propanol, and water at a fixed temperature of 298.15 K has been attempted through artificial neural networks. The obtained results indicate that the selection of this mathematical approach was a well-suited option. The mean prediction errors obtained, after simulating with a dataset never involved in the training process of the model, were 0.050% and 0.227% for refractive index and density estimation, respectively. These accurate results, which have been attained only using the composition of the dissolutions (mass fractions), imply that, most likely, ternary mixtures similar to the one analyzed, can be easily evaluated utilizing this algorithmic tool. In addition, different chemical processes involving ILs can be monitored precisely, and furthermore, the purity of the compounds in the studied mixtures can be indirectly assessed thanks to the high accuracy of the model.

  11. Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.

  12. Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water.

    PubMed

    Liu, Hanbin; Sale, Kenneth L; Simmons, Blake A; Singh, Seema

    2011-09-01

    Some ionic liquids (ILs) have great promise as effective solvents for biomass pretreatment, and there are several that have been reported that can dissolve large amounts of cellulose. The solubilized cellulose can then be recovered by addition of antisolvents, such as water or ethanol, and this regeneration process plays an important role in the subsequent enzymatic saccharification reactions and in the recovery of the ionic liquid. To date, little is known about the fundamental intermolecular interactions that drive the dissolution and subsequent regeneration of cellulose in complex mixtures of ionic liquids, water, and cellulose. To investigate these interactions, in this work, molecular dynamics (MD) simulations were carried out to study binary and ternary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) with water and a cellulose oligomer. Simulations of a cellulose oligomer dissolved in three concentrations of binary mixtures of [C2mim][OAc] and water were used to represent the ternary system in the dissolution phase (high [C2mim][OAc] concentration) and present during the initial phase of the regeneration step (intermediate and low [C2mim][OAc] concentrations). The MD analysis of the structure and dynamics that exist in these binary and ternary mixtures provides information on the key intermolecular interactions between cellulose and [C2mim][OAc] that lead to dissolution of cellulose and the key intermolecular interactions in the intermediate states of cellulose precipitation as a function of water content in the cellulose/IL/water system. The analysis of this intermediate state provides new insight into the molecular driving forces present in this ternary system.

  13. Reaction of singlet oxygen with thioanisole in ionic liquid-acetonitrile binary mixtures.

    PubMed

    Baciocchi, Enrico; Chiappe, Cinzia; Fasciani, Chiara; Lanzalunga, Osvaldo; Lapi, Andrea

    2010-11-19

    A study of the reaction of thioanisole with singlet oxygen in different ionic liquid-acetonitrile binary mixtures has shown that ILs are able to accelerate the thioanisole sulfoxidation when used as additives. With imidazolium ILs, the maximum efficiency is reached at x(IL) ∼ 0.1-0.2, whereas for the pyrrolidinium IL a plateau is reached. These results are discussed in terms of the ILs' tendency to form ionic aggregates and of differences in sulfoxidation reaction mechanism.

  14. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  15. Magnetization of multicomponent ferrofluids.

    PubMed

    Szalai, I; Dietrich, S

    2011-08-17

    The solution of the mean spherical approximation (MSA) integral equation for isotropic multicomponent dipolar hard sphere fluids without external fields is used to construct a density functional theory (DFT), which includes external fields, in order to obtain an analytical expression for the external field dependence of the magnetization of ferrofluidic mixtures. This DFT is based on a second-order Taylor series expansion of the free energy density functional of the anisotropic system around the corresponding isotropic MSA reference system. The ensuing results for the magnetic properties are in quantitative agreement with our canonical ensemble Monte Carlo simulation data presented here.

  16. Association structures of ionic liquid/DMSO mixtures studied by high-pressure infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Jyh-Chiang; Lin, Kuan-Hung; Li, Sz-Chi; Shih, Pao-Ming; Hung, Kai-Chan; Lin, Sheng Hsien; Chang, Hai-Chou

    2011-01-01

    Using high-pressure infrared methods, we have investigated close interactions of charge-enhanced C-H-O type in ionic liquid/dimethyl sulfoxide (DMSO) mixtures. The solvation and association of the 1-butyl-3-methylimidazolium tetrafluoroborate (BMI^ + BF_4^ - ) and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMM^ + BF_4^ - ) in DMSO-d6 were examined by analysis of C-H spectral features. Based on our concentration-dependent results, the imidazolium C-H groups are more sensitive sites for C-H-O than the alkyl C-H groups and the dominant imidazolium C-H species in dilute ionic liquid/DMSO-d6 should be assigned to the isolated (or dissociated) structures. As the dilute mixtures were compressed by high pressures, the loss in intensity of the bands attributed to the isolated structures was observed. In other words, high pressure can be used to perturb the association-dissociation equilibrium in the polar region. This result is remarkably different from what is revealed for the imidazolium C-H in the BMM^ + BF_4^ - /D2O mixtures. DFT-calculations are in agreement with our experimental results indicating that C4-H-O and C5-H-O interactions seem to play non-negligible roles for BMM^ + BF_4^ - /DMSO mixtures.

  17. Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures

    DOE PAGES

    Lian, C.; Liu, K.; Van Aken, Katherine L.; ...

    2016-04-18

    Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF4– anion relative to the TFSI– anion and the EMI+ cation. A volcano-shaped trend is identified for the capacitance versus the composition of the RTIL mixture.more » The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.« less

  18. Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures

    SciTech Connect

    Lian, C.; Liu, K.; Van Aken, Katherine L.; Gogotsi, Yury G.; Wesolowski, David J.; Liu, Honglai; Jiang, D. E.; Wu, Jianzhong

    2016-04-18

    Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF4 anion relative to the TFSI anion and the EMI+ cation. A volcano-shaped trend is identified for the capacitance versus the composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.

  19. Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures

    SciTech Connect

    Lian, C.; Liu, K.; Van Aken, Katherine L.; Gogotsi, Yury G.; Wesolowski, David J.; Liu, Honglai; Jiang, D. E.; Wu, Jianzhong

    2016-04-18

    Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF4 anion relative to the TFSI anion and the EMI+ cation. A volcano-shaped trend is identified for the capacitance versus the composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.

  20. True molecular solutions of natural cellulose in the binary ionic liquid-containing solvent mixtures.

    PubMed

    Rein, Dmitry M; Khalfin, Rafail; Szekely, Noemi; Cohen, Yachin

    2014-11-04

    Evidence is presented for the first time of true molecular dissolution of cellulose in binary mixtures of common polar organic solvents with ionic liquid. Cryogenic transmission electron microscopy, small-angle neutron-, X-ray- and static light scattering were used to investigate the structure of cellulose solutions in mixture of dimethyl formamide and 1-ethyl-3-methylimidazolium acetate. Structural information on the dissolved chains (average molecular weight ∼ 5 × 10(4)g/mol; gyration radius ∼ 36 nm, persistence length ∼ 4.5 nm), indicate the absence of significant aggregation of the dissolved chains and the calculated value of the second virial coefficient ∼ 2.45 × 10(-2)mol ml/g(2) indicates that this solvent system is a good solvent for cellulose. More facile dissolution of cellulose could be achieved in solvent mixtures that exhibit the highest electrical conductivity. Highly concentrated cellulose solution in pure ionic liquid (27 wt.%) prepared according to novel method, utilizing the rapid evaporation of a volatile co-solvent in binary solvent mixtures at superheated conditions, shows insignificant cellulose molecular aggregation.

  1. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    PubMed

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.

  2. Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics.

    PubMed

    Liu, Xin; Schnell, Sondre K; Simon, Jean-Marc; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J H

    2011-11-10

    A methodology for computing Fick diffusivities directly from equilibrium molecular dynamics (MD) simulations is presented and validated for acetone-methanol and acetone-tetrachloromethane liquid mixtures. Fick diffusivities are obtained from Maxwell-Stefan (MS) diffusivities and the so-called thermodynamic factor. MS diffusivities describe the friction between different components, while the thermodynamic factor is the concentration derivative of the activity describing the deviation from ideal mixing behavior. It is important to note that all mutual diffusion experiments measure Fick diffusion coefficients, while molecular simulation provides MS diffusivities. The required thermodynamic factor to convert MS into Fick diffusivities and vice versa, however, is usually difficult to extract from both simulations and experiments leaving a gap between theory and application. Here, we employ our novel method to compute the thermodynamic factor from small-scale density fluctuations in equilibrium MD simulations [Chem. Phys. Lett.2011, 504, 199-201]. Previously, this method was developed and validated for molecules with single interaction sites only. In this work, we applied this method to acetone-methanol and acetone-tetrachloromethane liquid mixtures and show that the method also works well in these more complex systems. This provides the missing step to extract Fick diffusion coefficients directly from equilibrium MD simulations. The computed Fick diffusivities of acetone-methanol and acetone-tetrachloromethane mixtures are in excellent agreement with experimental values. The suggested framework thus provides an efficient route to model diffusion in liquids on the basis of a consistent molecular picture.

  3. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran

    2016-03-01

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  4. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride.

    PubMed

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y Mauricio; Vrabec, Jadran

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  5. Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures

    NASA Astrophysics Data System (ADS)

    Genetier, M.; Osmont, A.; Baudin, G.

    2014-05-01

    The objective is to compare the ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al. universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first few microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes only the detonation into account, the secondary combustion DP - air is not considered. To solve this problem a secondary combustion model has been developed to take the OB effect into account. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.

  6. Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures

    NASA Astrophysics Data System (ADS)

    Genetier, Marc; Osmont, Antoine; Baudin, Gerard

    2013-06-01

    The objective is to compare ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes into account only the detonation, the secondary combustion DP - air being not considered. To solve this problem a secondary combustion model has been developed to take into account the OB effect. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.

  7. Theoretical performance of liquid ammonia, hydrazine and mixture of liquid ammonia and hydrazine as fuels with liquid oxygen biflouride as oxidant for rocket engines : I-mixture of liquid ammonia and hydrazine

    NASA Technical Reports Server (NTRS)

    Huff, Vearl N; Gordon, Sanford

    1952-01-01

    Theoretical performance for mixture of 36.3 percent liquid ammonia and 63.7 percent hydrazine with liquid oxygen bifluoride as rocket propellant was calculated on assumption of equilibrium composition during expansion for a wide range of fuel-oxidant and expansios ratios. Parameters included were specific impulse, combustion-chamber temperature, nozzle exit temperature, composition mean molecular weight, characteristic velocity, coefficient of thrust and ratio of nozzle-exit area to throat area. For chamber pressure of 300 pounds per square inch absolute and expansion to 1 atmosphere, maximum specific impulse was 295.8 pound-seconds per pound. Five percent by weight of water in the hydrazine lowered specific impulse from about one to three units over a wide range of weight-percent fuel.

  8. Combustion and micro-explosion of multicomponent droplets

    SciTech Connect

    Wang, C.H.

    1983-01-01

    An experimental investigation of the gasification, combustion, and micro-explosion of droplets of miscible multicomponent fuel mixtures and water/oil emulsions in hot, oxidizing, pressurized environments is described. The experiment involves generating a stream of droplets of uniform and controllable size, spacing, and velocity by the ink-jet printing technique, injecting them into the continuously flowing combustion environment produced by a flat-flame burner, and examining the subsequent combustion processes using high-speed photography. Results show that the gasification mechanism of miscible multicomponent droplets consist of an initial phase of transient adjustment of the droplet surface layer such that it becomes more concentrated with the less volatile component, and a second phase of liquid-phase-diffusion-limited steady-state combustion with the fractional gasification rate of the constituents being equal to their respective initial mass fractions in the mixture. Micro-explosion of miscible multicomponent droplets is found to be favored with an unstable droplet generation mode, with increasing the system pressure, and with light alcohol addition. The internal bubble growth process is a relatively slow one, occupying about 10% of the droplet lifetime. Micro-explosion of water/oil emulsion droplets occurs under both normal and high pressure environments. Results also show that prior to the onset of micro-explosion in the nominally opaque droplet becomes transparent, indicating deterioration of the emulsion structure. Results and insights on the ignition, extinction, and soot formation characteristics are also documented.

  9. How do liquid mixtures solubilize insoluble gelators? Self-assembly properties of pyrenyl-linker-glucono gelators in tetrahydrofuran-water mixtures.

    PubMed

    Yan, Ni; Xu, Zhiyan; Diehn, Kevin K; Raghavan, Srinivasa R; Fang, Yu; Weiss, Richard G

    2013-06-19

    The self-assembly behavior of a series of glucono-appended 1-pyrenesulfonyl derivatives containing α,ω-diaminoalkane spacers (Pn, where n, the number of methylene units separating the amino groups, is 2, 3, 4, 6, 7, and 8) in v:v tetrahydrofuran (THF):water mixtures is examined at room temperature. The Pn at 2 w/v % concentrations do not dissolve in either THF or water at room temperature. However, the Pn can be dissolved in some THF:water mixtures, and they form gels spontaneously in other compositions without dissolving completely. The self-assembly of the Pn in the liquid mixtures has been investigated using a variety of techniques. The particle sizes of the Pn in their solutions/sols, critical gelation concentrations, microstructures, thermal and mechanical stabilities of the gels, and molecular packing modes of Pn molecules in their gel networks are found to be very dependent on the composition of the liquid mixtures. Correlations between the self-assembly behavior of the Pn and the polarity of the liquid mixtures, as probed by E(T)(30) and Hansen solubility parameters, yield both qualitative and quantitative insights into why self-assembly of the Pn can or cannot be achieved in different liquid compositions. As revealed by UV-vis and fluorescence spectroscopy studies, π-π stacking of the pyrenyl groups occurs as part of the aggregation process. Correlations between the rheological properties of the gels and the Hansen solubility parameters of the Pn and the solvent mixtures indicate that hydrogen-bonding interactions are a major contributor to the mechanical stability. Overall, the results of this study offer a new strategy to investigate the balance between dissolution and aggregation of molecular gelators. To the best of our knowledge, this is the first example of the spontaneous formation of molecular gels without heating by placing gelators in mixtures of liquids in which they are insoluble in the neat components.

  10. The suitability of concentration addition for predicting the effects of multi-component mixtures of up to 17 anti-androgens with varied structural features in an in vitro AR antagonist assay

    SciTech Connect

    Ermler, Sibylle; Scholze, Martin; Kortenkamp, Andreas

    2011-12-15

    The risks associated with human exposures to chemicals capable of antagonising the effects of endogenous androgens have attracted considerable recent interest. Exposure is typically to large numbers of chemicals with androgen receptor (AR) antagonist activity, yet there is limited evidence of the combined effects of multi-component mixtures of these chemicals. A few in vitro studies with mixtures of up to six AR antagonists suggest that the concept of concentration addition (CA) provides good approximations of experimentally observed mixture effects, but studies with larger numbers of anti-androgens, and with more varied structural features, are missing. Here we show that the mixture effects of up to 17 AR antagonists, comprising compounds as diverse as UV-filter substances, parabens, perfluorinated compounds, bisphenol-A, benzo({alpha})pyrene, synthetic musks, antioxidants and polybrominated biphenyls, can be predicted well on the basis of the anti-androgenicity of the single components using the concept of CA. We tested these mixtures in an in vitro AR-dependent luciferase reporter gene assay, based on MDA-kb2 cells. The effects of further mixtures, composed of four and six anti-androgens, could be predicted accurately by CA. However, there was a shortfall from expected additivity with a ten-component mixture at two different mixture ratios, but attempts to attribute these deviations to differential expression of hormone-metabolising CYP isoforms did not produce conclusive results. CA provides good approximations of in vitro mixture effects of anti-androgens with varying structural features. -- Highlights: Black-Right-Pointing-Pointer Humans are exposed to a large number of androgen receptor antagonists. Black-Right-Pointing-Pointer There is limited evidence of the combined effects of anti-androgenic chemicals. Black-Right-Pointing-Pointer We modelled the predictability of combined effects of up to 17 anti-androgens. Black-Right-Pointing-Pointer We tested the

  11. Stokes shift dynamics in (ionic liquid + polar solvent) binary mixtures: composition dependence.

    PubMed

    Daschakraborty, Snehasis; Ranjit, Biswas

    2011-04-14

    An approximate semimolecular theory has been developed to investigate the composition dependence of Stokes shift dynamics of a fluorescent dye molecule dissolved in binary mixtures of an ionic liquid (IL) with a conventional polar solvent at different mole fractions. The theory expresses the dynamic Stokes shift as a sum of contributions from the dye-IL and the dye-polar solvent interactions and suggests substantial solute-cation dipole-dipole interaction contribution to the solvation energy relaxation. The theory, when applied to aqueous mixtures of 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]) and tetrafluoroborate ([Bmim][BF(4)]), and binary mixtures of ([Bmim][BF(4)] + acetonitrile), predicts reduction of Stokes shift but acceleration of the dynamics upon increasing the polar solvent concentration for the most part of the mixture composition. The decrease in dynamic Stokes shift values has been found to occur due to decrease of the dye-IL interaction in the presence of the added polar solvent. For aqueous binary mixtures of IL, the predicted results are in semiquantitative agreement with the available experimental results. However, the calculated dynamics suggest much weaker composition dependence than that observed in experiments. In addition, the theory predicts a turn around for dynamic Stokes shift in its composition dependence for ([Bmim][BF(4)] + acetonitrile) mixtures at higher dilutions of the IL. Interestingly, effective dipolar medium calculations for Stokes shift dynamics in ([Bmim][BF(4)] + dichloromethane) binary mixtures predict a very weak or even nonexistent nonlinear composition dependence. These predictions should be reexamined in experiments.

  12. Multiphase, multicomponent phase behavior prediction

    NASA Astrophysics Data System (ADS)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using

  13. Liquid-liquid equilibrium measurement of ternary system containing β-caryophyllene in the water and 2-propanol mixture

    NASA Astrophysics Data System (ADS)

    Tetrisyanda, Rizky; Kuswandi, Wibawa, Gede

    2017-01-01

    To obtain a high purity of clove oil, it is needed to separate β-caryophyllene from the oil mixtures.The separation of this component could be obtained by solvent extraction. In this work, liquid-liquid equilibrium (LLE) data were measured for the ternary system of water β-caryophyllene (1) + 2-propanol (2) + water (3) at temperature 303.15 K, 313.15 K and 323.15K under atmospheric pressure. The experimental LLE data were correlated with the NRTL and UNIQUAC models. The reliability of these models is tested by comparison with experimental results. The varied temperatures studied in this work have significant influence to the two-phase area and the solubility of 2-propanol and β-caryophyllene in the aqueous phase.

  14. A microwave and ohmic combination heater for uniform heating of liquid-particle food mixtures.

    PubMed

    Choi, Won; Nguyen, Loc T; Lee, Seung Hyun; Jun, Soojin

    2011-01-01

    Microwave and ohmic combination heating was proposed to improve the uniformity of thermal processing of particulate foods. Thermal patterns of a liquid-particle mixture in a small test cell were studied using both experimental and simulation approaches. Carrot cubes (10 mm × 10 mm × 10 mm) and 0.1% NaCl salt solution were used as model foods. The temperature distribution of solid and liquid phases was examined using individual and combination heating methods. Under ohmic heating, the liquid was heated faster by 18.9 °C after 250 s. The heating rate of a carrot cube was faster than liquid under microwave heating and temperature rise of carrot was approximately 11.2 °C higher than that of solution after heating of 70 s. Samples experienced different heating patterns over time during the combination heating. Carrot samples showed a thermal lead initially when heated under microwave and the trend reversed during the second stage when ohmic heating was applied. Liquid-particle temperature difference was reduced as the combination heating proceeded, and came to be less than 2 °C at the end. Results obtained from simulation showed similar patterns and all prediction data agreed well with the experimental data. The prediction errors for sample temperatures ranged from 5.7% to 11.6%. The results provided better understanding for designing a continuous flow combination heater that can produce uniform temperature of solid-liquid mixtures. If successful, this combination heating technique will find its way to effective aseptic or sterile processing of low acid multiphase foods containing large particulates (such as soups with meatballs or vegetables) that has not been a commercial reality in the United States. © 2011 Institute of Food Technologists®

  15. CHROMATOGRAPHIC ALTERATION OF A NONIONIC SURFACTANT MIXTURE DURING TRANSPORT IN DENSE NONAQUEOUS PHASE LIQUID CONTAMINATED SEDIMENT (R826650)

    EPA Science Inventory

    Chromatographic alteration of a nonionic surfactant mixture during transport through DNAPL-contaminated aquifer sediment may occur due to differential loss of oligomers to sediment and to dense nonaqueous phase liquid (DNAPL). These losses may significantly alter the solubilizing...

  16. Another glimpse over the salting-out assisted liquid-liquid extraction in acetonitrile/water mixtures.

    PubMed

    Valente, Inês Maria; Gonçalves, Luís Moreira; Rodrigues, José António

    2013-09-20

    The use of the salting-out effect in analytical chemistry is very diverse and can be applied to increase the volatility of the analytes in headspace extractions, to cause the precipitation of proteins in biological samples or to improve the recoveries in liquid-liquid extractions. In the latter, the salting-out process can be used to create a phase separation between water-miscible organic solvents and water. Salting-out assisted liquid-liquid extraction (SALLE) is an advantageous sample preparation technique aiming HPLC-UV analysis when developing analytical methodologies. In fact, some new extraction methodologies like QuEChERS include the SALLE concept. This manuscript discusses another point of view over SALLE with particular emphasis over acetonitrile-water mixtures for HPLC-UV analysis; the influence of the salting-out agents, their concentration and the water-acetonitrile volume ratios were the studied parameters. α-dicarbonyl compounds and beer were used as test analytes and test samples, respectively. The influence of the studied parameters was characterized by the obtained phase separation volume ratio and the fraction of α-dicarbonyls extracted to the acetonitrile phase. Results allowed the distribution of salts within three groups according to the phase separation and their extractability: (1) chlorides and acetates, (2) carbonates and sulfates and (3) magnesium sulfate; of all tested salts, sodium chloride had the highest influence on the α-dicarbonyls fraction extracted.

  17. TMVOC-MP: a parallel numerical simulator for Three-PhaseNon-isothermal Flows of Multicomponent Hydrocarbon Mixtures inporous/fractured media

    SciTech Connect

    Zhang, Keni; Yamamoto, Hajime; Pruess, Karsten

    2008-02-15

    TMVOC-MP is a massively parallel version of the TMVOC code (Pruess and Battistelli, 2002), a numerical simulator for three-phase non-isothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous/fractured media. TMVOC-MP was developed by introducing massively parallel computing techniques into TMVOC. It retains the physical process model of TMVOC, designed for applications to contamination problems that involve hydrocarbon fuels or organic solvents in saturated and unsaturated zones. TMVOC-MP can model contaminant behavior under 'natural' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. With its sophisticated parallel computing techniques, TMVOC-MP can handle much larger problems than TMVOC, and can be much more computationally efficient. TMVOC-MP models multiphase fluid systems containing variable proportions of water, non-condensible gases (NCGs), and water-soluble volatile organic chemicals (VOCs). The user can specify the number and nature of NCGs and VOCs. There are no intrinsic limitations to the number of NCGs or VOCs, although the arrays for fluid components are currently dimensioned as 20, accommodating water plus 19 components that may be either NCGs or VOCs. Among them, NCG arrays are dimensioned as 10. The user may select NCGs from a data bank provided in the software. The currently available choices include O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, ethane, ethylene, acetylene, and air (a pseudo-component treated with properties averaged from N{sub 2} and O{sub 2}). Thermophysical property data of VOCs can be selected from a chemical data bank, included with TMVOC-MP, that provides parameters for 26 commonly encountered chemicals. Users also can input their own data for other fluids. The fluid components may partition (volatilize and/or dissolve) among gas, aqueous, and NAPL

  18. Viscosity of liquid mixtures: The Vesovic-Wakeham method for chain molecules

    NASA Astrophysics Data System (ADS)

    de Wijn, Astrid S.; Riesco, Nicolas; Jackson, George; Martin Trusler, J. P.; Vesovic, Velisa

    2012-02-01

    New expressions for the viscosity of liquid mixtures, consisting of chain-like molecules, are derived by means of Enskog-type analysis. The molecules of the fluid are modelled as chains of equally sized, tangentially joined, and rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by instantaneous collisions. We determine the molecular size parameters from the viscosity of each pure species and show how the different effective parameters can be evaluated by extending the Vesovic-Wakeham (VW) method. We propose and implement a number of thermodynamically consistent mixing rules, taking advantage of SAFT-type analysis, in order to develop the VW method for chain molecules. The predictions of the VW-chain model have been compared in the first instance with experimental viscosity data for octane-dodecane and methane-decane mixtures, thus, illustrating that the resulting VW-chain model is capable of accurately representing the viscosity of real liquid mixtures.

  19. Phase behavior of chromonic liquid crystal mixtures of Sunset Yellow and Disodium Cromoglycate

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akihiro; Smith, Gregory; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Clark, Noel

    2014-03-01

    Chromonic liquid crystals (CLCs) are formed when planar molecules dissolved in water stack into rod-like aggregates that can order as liquid crystals. Isotropic, nematic, and M-phases can be observed depending on the degree of molecular orientational and positional order by variation of the CLC concentration. We focused on mixtures of two well-known CLCs, Sunset Yellow, a food dye, and disodium cromoglycate (DSCG), an asthma medication. In order to study the phase behaviors of these mixtures, we observed their textures in glass cells and capillaries using polarized light microscopy. We report here a ternary phase diagram describing the complete phase behavior of the CLC mixtures. We observed a variety of phase behaviors depending on species ratio and concentration. In the isotropic phase, no clear phase separation of the two dyes was observed, while separation did occur in many nematic and M-phase combinations. We will also describe phase observations made using a light spectroscopy and bulk centrifugal partitioning. Grant support: NSF DMR 1207606 and NSF MRSEC DMR-0820579.

  20. Structural properties of geminal dicationic ionic liquid/water mixtures: a theoretical and experimental insight.

    PubMed

    Serva, Alessandra; Migliorati, Valentina; Lapi, Andrea; Aquilanti, Giuliana; Arcovito, Alessandro; D'Angelo, Paola

    2016-06-28

    The structural behavior of geminal dicationic ionic liquid 1,n-bis[3-methylimidazolium-1-yl] alkane bromide ([Cn(mim)2]Br2)/water mixtures has been studied using extended X-ray absorption fine structure (EXAFS) spectroscopy in combination with molecular dynamics (MD) simulations. The properties of the mixtures are investigated as a function of both water concentration and alkyl-bridge chain length. The very good agreement between the EXAFS experimental data and the theoretical curves calculated from the MD structural results has proven the validity of the theoretical framework used for all of the investigated systems. In all the solutions the water molecules are preferentially coordinated with the Br(-) ion, even if a complex network of interactions among dications, anions and water molecules takes place. The local molecular arrangement around the bromide ion is found to change with increasing water content, as more and more water molecules are accomodated in the Br(-) first coordination shell. Moreover, with the decrease of the alkyl-bridge chain length, the interactions between dications and anions increase, with Br(-) forming a bridge between the two imidazolium rings of the same dication. On the other hand, in [Cn(mim)2]Br2/water mixtures with long alkyl-bridge chains peculiar internal arrangements of the dications are found, leading to different structural features of geminal dicationic ionic liquids as compared to their monocationic counterparts.

  1. Ultrasonic and IR study of intermolecular association through hydrogen bonding in ternary liquid mixtures.

    PubMed

    Awasthi, Aashees; Shukla, J P

    2003-08-01

    Complex formation in ternary liquid mixtures of dimethylsulfoxide (DMSO) with phenol and o-cresol in carbontetrachloride has been studied by measuring ultrasonic velocity at 2 MHz, in the concentration range of 0.019-0.162 (in mole fraction of DMSO) at varying temperatures of 20, 30 and 40 degrees C. Using measured values of ultrasonic velocity, other parameters such as adiabatic compressibility, intermolecular free length, molar sound velocity, molar compressibility, specific acoustic impedance and molar volume have been evaluated. These parameters have been utilized to study the solute-solute interactions in these systems. The ultrasonic velocity shows a maxima and adiabatic compressibility a corresponding minima as a function of concentration for these mixtures. The results indicate the occurrence of complex formation between unlike molecules through intermolecular hydrogen bonding between oxygen atom of DMSO molecule and hydrogen atom of phenol and o-cresol molecules. The excess values of adiabatic compressibility and intermolecular free length have also been evaluated. The variation of both these parameters with concentration also indicates the possibility of the complex formation in these systems. Further, to investigate the presence of O-HO bond complexes and the strength of molecular association with concentrations, the infrared spectra of both the systems, DMSO-phenol and DMSO-o-cresol, have been recorded for various concentrations at room temperature (20 degrees C). The results obtained using infrared spectroscopy for both the systems also support the occurrence of complex formation through intermolecular hydrogen bonding in these ternary liquid mixtures.

  2. Ultrafast molecular dynamics of liquid aromatic molecules and the mixtures with CCl4

    NASA Astrophysics Data System (ADS)

    Shirota, Hideaki

    2005-01-01

    The ultrafast molecular dynamics of liquid aromatic molecules, benzene, toluene, ethylbenzene, cumene, and 1,3-diphenylpropane, and the mixtures with CCl4 have been investigated by means of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The picosecond Kerr transients of benzene, toluene, ethylbenzene, and cumene and the mixtures with CCl4 show a biexponential feature. 1,3-Diphenylpropane and the mixtures with CCl4 show triexponential picosecond Kerr transients. The slow relaxation time constants of the aromatic molecules and the mixtures with CCl4 are qualitatively described by the Stoke-Einstein-Debye hydrodynamic model. The ultrafast dynamics have been discussed based on the Kerr spectra in the frequency range of 0-800 cm-1 obtained by the Fourier transform analysis of the Kerr transients. The line shapes of the low-frequency intermolecular spectra located at 0-180 cm-1 frequency range have been analyzed by two Brownian oscillators (˜11 cm-1 and ˜45 cm-1 peaks) and an antisymmetric Gaussian function (˜65 cm-1 peak). The spectrum shape of 1,3-diphenylpropane is quite different from the spectrum shapes of the other aromatic molecules for the low magnitude of the low-frequency mode of 1,3-diphenylpropane and/or an intramolecular vibration. Although the concentration dependences of the low- and intermediate-frequency intermolecular modes (Brownian oscillators) do not show a significant trend, the width of high-frequency intermolecular mode (antisymmetric Gaussian) becomes narrower with the higher CCl4 concentration for all the aromatics mixtures with CCl4. The result indicates that the inhomogeneity of the intermolecular vibrational mode in aromatics/CCl4 mixtures is decreasing with the lower concentration of aromatics. The intramolecular vibrational modes of the aromatic molecules observed in the Kerr spectra are also shown with the calculation results based on the density functional theory.

  3. A two-fluid model for reactive dilute solid-liquid mixtures with phase changes

    NASA Astrophysics Data System (ADS)

    Reis, Martina Costa; Wang, Yongqi

    2017-03-01

    Based on the Eulerian spatial averaging theory and the Müller-Liu entropy principle, a two-fluid model for reactive dilute solid-liquid mixtures is presented. Initially, some averaging theorems and properties of average quantities are discussed and, then, averaged balance equations including interfacial source terms are postulated. Moreover, constitutive equations are proposed for a reactive dilute solid-liquid mixture, where the formation of the solid phase is due to a precipitation chemical reaction that involves ions dissolved in the liquid phase. To this end, principles of constitutive theory are used to propose linearized constitutive equations that account for diffusion, heat conduction, viscous and drag effects, and interfacial deformations. A particularity of the model is that the mass interfacial source term is regarded as an independent constitutive variable. The obtained results show that the inclusion of the mass interfacial source term into the set of independent constitutive variables permits to easily describe the phase changes associated with precipitation chemical reactions.

  4. Coarse-Grained Molecular Monte Carlo Simulations of Liquid Crystal-Nanoparticle Mixtures

    NASA Astrophysics Data System (ADS)

    Neufeld, Ryan; Kimaev, Grigoriy; Fu, Fred; Abukhdeir, Nasser M.

    Coarse-grained intermolecular potentials have proven capable of capturing essential details of interactions between complex molecules, while substantially reducing the number of degrees of freedom of the system under study. In the domain of liquid crystals, the Gay-Berne (GB) potential has been successfully used to model the behavior of rod-like and disk-like mesogens. However, only ellipsoid-like interaction potentials can be described with GB, making it a poor fit for many real-world mesogens. In this work, the results of Monte Carlo simulations of liquid crystal domains using the Zewdie-Corner (ZC) potential are presented. The ZC potential is constructed from an orthogonal series of basis functions, allowing for potentials of essentially arbitrary shapes to be modeled. We also present simulations of mixtures of liquid crystalline mesogens with nanoparticles. Experimentally these mixtures have been observed to exhibit microphase separation and formation of long-range networks under some conditions. This highlights the need for a coarse-grained approach which can capture salient details on the molecular scale while simulating sufficiently large domains to observe these phenomena. We compare the phase behavior of our simulations with that of a recently presented continuum theory. This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.

  5. A two-fluid model for reactive dilute solid-liquid mixtures with phase changes

    NASA Astrophysics Data System (ADS)

    Reis, Martina Costa; Wang, Yongqi

    2016-12-01

    Based on the Eulerian spatial averaging theory and the Müller-Liu entropy principle, a two-fluid model for reactive dilute solid-liquid mixtures is presented. Initially, some averaging theorems and properties of average quantities are discussed and, then, averaged balance equations including interfacial source terms are postulated. Moreover, constitutive equations are proposed for a reactive dilute solid-liquid mixture, where the formation of the solid phase is due to a precipitation chemical reaction that involves ions dissolved in the liquid phase. To this end, principles of constitutive theory are used to propose linearized constitutive equations that account for diffusion, heat conduction, viscous and drag effects, and interfacial deformations. A particularity of the model is that the mass interfacial source term is regarded as an independent constitutive variable. The obtained results show that the inclusion of the mass interfacial source term into the set of independent constitutive variables permits to easily describe the phase changes associated with precipitation chemical reactions.

  6. Bubble curves and saturated liquid molar volumes for chlorofluorohydrocarbon-hydrocarbon mixtures: Experimental data and modeling

    SciTech Connect

    Laugier, S. ); Richon, D.; Renon, H. . Lab. de Thermodynamique)

    1994-01-01

    Vapor-liquid equilibria and liquid densities were obtained using a static apparatus fitted with a variable-volume cell which was described in detail by Valtz et al. (1). Results are given at four temperatures for the binary systems butane--1,2,2-trichlorotrifluoroethane, pentane--1,2-dichloro-1,1,2,2-tetrafluoroethane, hexane--1,2-dichloro-1,1,2,2-tetrafluoroethane, heptane--1,12-trichloro-1,2,2-trifluoromethane, heptane--1,2-dichloro-1,1,2,2-tetrafluoroethane, and benzene--1,2-dichloro-1,1,2,2-tetrafluoroethane and the ternary system 1,2-dichloro-1,1,2,2-tetrafluoroethane--1,1,2-trichloro-1,2,2-trifluoromethane--heptane. The best simultaneous representation of pressures and saturated liquid molar volumes at a given temperature and liquid composition for these mixtures is obtained using either the Patel-Teja or Trebble-Bishnoi-Salim equation of state (TBS EOS) in either their standard or generalized form (maximum deviation 0.7% in pressure and 3.1% in saturated liquid molar volume with the TBS EOS).

  7. Density functional theory of gas-liquid phase separation in dilute binary mixtures.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-22

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas [Formula: see text] (the Gibbs energy of transfer) is considerably larger than the thermal energy [Formula: see text] for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by [Formula: see text], where [Formula: see text] is the solute density added in liquid. For [Formula: see text], phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  8. Phase separation and liquid crystallization of complementary sequences in mixtures of nanoDNA oligomers

    PubMed Central

    Zanchetta, Giuliano; Nakata, Michi; Buscaglia, Marco; Bellini, Tommaso; Clark, Noel A.

    2008-01-01

    Using optical microscopy, we have studied the phase behavior of mixtures of 12- to 22-bp-long nanoDNA oligomers. The mixtures are chosen such that only a fraction of the sample is composed of mutually complementary sequences, and hence the solutions are effectively mixtures of single-stranded and double-stranded (duplex) oligomers. When the concentrations are large enough, such mixtures phase-separate via the nucleation of duplex-rich liquid crystalline domains from an isotropic background rich in single strands. We find that the phase separation is approximately complete, thus corresponding to a spontaneous purification of duplexes from the single-strand oligos. We interpret this behavior as the combined result of the energy gain from the end-to-end stacking of duplexes and of depletion-type attractive interactions favoring the segregation of the more rigid duplexes from the flexible single strands. This form of spontaneous partitioning of complementary nDNA offers a route to purification of short duplex oligomers and, if in the presence of ligation, could provide a mode of positive feedback for the preferential synthesis of longer complementary oligomers, a mechanism of possible relevance in prebiotic environments. PMID:18212117

  9. Optical studies of a binary liquid crystal mixture exhibiting induced smectic A phase

    NASA Astrophysics Data System (ADS)

    Thingujam, Kiranmala; Bhattacharjee, Ayon; Choudhury, Basana; Sarkar, S. D.

    2016-08-01

    A binary liquid crystalline mixture of a monotropic polar compound 4-cyanophenyl 4'- n-pentyl benzoate (CPPB) and an enantiotropic non-polar compound 4- n-hexyl phenyl 4- n'-pentyloxy benzoate (ME5O.6) shows the presence of an induced smectic A phase in the region 0.1 ≤ x CPPB ≤ 0.82, where x CPPB is the mole fraction of CPPB. The results of texture study, density study and refractive index measurements of the eutectic mixture along with those of the pure samples are reported in this paper. The density values of the eutectic mixture are found to be much higher than that of the pure samples. The determination of order parameters of the pure samples and eutectic mixture has been carried out. In order to determine the order parameters of the samples, we have used different methods, Vuks', Neugebauer's, modified Vuks' and direct extrapolation method. The results of order parameters obtained from the different approaches are compared and analysed in detail.

  10. Interfacial tension and vapor-liquid equilibria in the critical region of mixtures

    NASA Technical Reports Server (NTRS)

    Moldover, Michael R.; Rainwater, James C.

    1988-01-01

    In the critical region, the concept of two-scale-factor universality can be used to accurately predict the surface tension between near-critical vapor and liquid phases from the singularity in the thermodynamic properties of the bulk fluid. In the present work, this idea is generalized to binary mixtures and is illustrated using the data of Hsu et al. (1985) for CO2 + n-butane. The pressure-temperature-composition-density data for coexisting, near-critical phases of the mixtures are fitted with a thermodynamic potential comprised of a sum of a singular term and nonsingular terms. The nonuniversal amplitudes characterizing the singular term for the mixtures are obtained from the amplitudes for the pure components by interpolation in a space of thermodynamic 'field' variables. The interfacial tensions predicted for the mixtures from the singular term are within 10 percent of the data on three isotherms in the pressure range (Pc - P)/Pc of less than 0.5. This difference is comparable to the combined experimental and model errors.

  11. Dynamical properties of alcohol + 1-hexyl-3-methylimidazolium ionic liquid mixtures: a computer simulation study.

    PubMed

    Méndez-Morales, Trinidad; Carrete, Jesús; García, Manuel; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M

    2011-12-29

    In this work, extensive molecular dynamics simulations of the dynamics of mixtures of ionic liquids (ILs) composed of the cation 1-hexyl-3-methylimidazolium and several anions of different hydrophobicity degrees (Cl(-), BF(4)(-), PF(6)(-)) with alcohols of different chain lengths (methanol and ethanol) are reported. We evaluated the influence of the nature of the anion, the length of the molecular chain of the alcohol, and the alcohol concentration on some dynamical properties of the mixtures, such as self-diffusion coefficients of all the species, mean square displacements (with an analysis of both ballistic and diffusive regimes), and velocity autocorrelation functions of alcohol molecules. The diffusivity of the mixtures was found to be highly dependent on the nature of the anion since the interaction between chloride and alcohols is greater than that with fluorinated anions and leads to slower dynamics. Additionally, our results show that self-diffusion coefficients increase with alcohol concentration. On the other hand, a subdiffusive regime over thousands of picoseconds was detected at intermediate times through analysis of the center-of-mass mean square displacements of alcohol molecules, a region that becomes narrower as alcohol concentration increases. Finally, the study of the role of the anion and of solvent concentration on velocity autocorrelation functions reflects an increase in mean collision times as the amount of alcohol increases until the value of pure alcohols is reached. These collision times are smaller in mixtures with halogenated ILs. © 2011 American Chemical Society

  12. Two-step switching in dual-frequency nematic liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Mrukiewicz, M.; Perkowski, P.; Piecek, W.; Mazur, R.; Chojnowska, O.; Garbat, K.

    2015-11-01

    The so-called dual-frequency nematic mixtures are very promising components for applications in fast operating devices. Compared with classical nematics, they exhibit positive or negative anisotropy of the electric permittivity depending on the applied frequencies of an external electric field. Owing to this property, an overall switching process from planar to homeotropic orientations, and vice versa, can be shortened by using the electric field with two different frequencies. Electro-optical switching characteristics of transmission versus time as a function of applied voltage were obtained for two different dual-frequency mixtures in twisted nematic cells. For one of the investigated mixtures, unusual decrease in the light transmission at switching from the homeotropic to planar orientation at threshold voltage was observed. The switching process apparently occurs in two steps. The mechanism of the two-step switching at twisted dual-frequency nematic structures was discussed. The explanation of the switching mechanism takes into account the influence of the electric field with different frequencies on molecules with transverse and longitudinal dipole moments. Moreover, molecular structure of compounds constituting the mixtures was analyzed. Additionally, response times of the switching driven with low and high frequency pulses were shown. This work helps to understand the molecular interaction and electro-optical switching in the dual-frequency nematic liquid crystals.

  13. Evidence for liquid-like and nonideal behavior of a mixture of organic aerosol components

    PubMed Central

    Cappa, Christopher D.; Lovejoy, Edward R.; Ravishankara, A. R.

    2008-01-01

    The condensation, evaporation, and repartitioning of semivolatile organic compounds (SVOCs) in the atmosphere depends both on the phase of condensed material and the effective condensed phase vapor pressures of the SVOCs. Although direct measurements of vapor pressures of individual SVOCs exist, there are limited measurements of how the properties of a given compound changes in mixtures of multiple components that exist in the atmosphere. Here, the evaporation behavior of mixtures of dicarboxylic acids, which are common atmospheric aerosol constituents, is investigated. These measurements demonstrate that complex mixtures of the individually solid organic compounds take on liquid-like properties. Additionally, the vapor pressures of individual components show strong, identity-dependent deviations from ideality (i.e., Raoult's Law), with the vapor pressures of the smaller, more volatile compounds decreased significantly in the mixtures. The addition of an inorganic compound (NaNO3) further influences the nonideal behavior, again in a compound-specific manner. These results suggest that nonideal behavior of particle-phase compounds influences the abundances of organic aerosol observed in the atmosphere and in the laboratory. PMID:19020087

  14. Serpentine diffusion trajectories and the Ouzo effect in partially miscible ternary liquid mixtures.

    PubMed

    Krishna, Rajamani

    2015-11-07

    This work investigates the transient equilibration process when partially miscible ternary liquid mixtures of two different compositions are brought into contact with each other. Diffusional coupling effects are shown to become increasingly significant as the mixture compositions approach the meta-stable regions of the phase equilibrium diagrams. The proper modelling of coupled diffusion phenomena requires the use of a Fick diffusivity matrix [D], with inclusion of non-zero off-diagonal elements. The primary objective of this article is to develop a simple, robust, procedure for the estimation of the matrix [D], using the Maxwell-Stefan (M-S) formulation as a convenient starting point. In the developed simplified approach, the Fick diffusivity matrix [D] is expressed as the product of a scalar diffusivity and the matrix of thermodynamic correction factors [Γ]. By detailed examination of experimental data for the matrix [D] in a wide variety of ternary mixtures, it is deduced that the major contribution of diffusional coupling arises from the contributions of non-ideal solution thermodynamics, quantified by the matrix of thermodynamic correction factors [Γ]. An important consequence of strong thermodynamic coupling is that equilibration trajectories are serpentine in shape and may exhibit incursions into meta-stable zones opening up the possibility of spontaneous emulsification and the Ouzo effect. If diffusional coupling effects are ignored, the equilibration trajectory is linear in composition space. For a wide variety of partially miscible ternary mixtures, it is demonstrated that the corresponding linear equilibration trajectories do not anticipate the possibility of emulsification.

  15. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for liquid mixtures

    SciTech Connect

    Ploetz, Elizabeth A.; Smith, Paul E.

    2015-03-07

    Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations.

  16. Surface segregation in binary mixtures of imidazolium-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2010-09-01

    Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf 2N -) is enriched at the surface relative to hexafluorophosphate (PF 6-). The surface of an equimolar mixture of Li[Tf 2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF 6]) has a nominal composition of [bmim][Tf 2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.

  17. Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures.

    PubMed

    Hou, Xue-Dan; Li, Ning; Zong, Min-Hua

    2013-05-01

    Pretreatment of rice straw by using renewable cholinium lysine ionic liquid ([Ch][Lys] IL)-water mixtures and subsequent enzymatic hydrolysis of the residues were conducted in this work. There is a clear correlation between the delignification capacity of the pretreatment solvent and its basicity. After pretreatment, surface area and pore volume of rice straw increased significantly, which substantially improved polysaccharides accessibility to enzymes and thus enhanced polysaccharides digestion. By carefully controlling the pretreatment severity (IL content, temperature and duration), loss of readily extractable xylan could be minimized. The sugar yields of 81% for glucose and 48% for xylose were achieved in the enzymatic hydrolysis of rice straw after pretreatment with 20% [Ch][Lys]-water mixture at 90 °C for 1 h. This pretreatment process is highly promising for industrial application because of high sugar yields, low energy input, short pretreatment time, and being environmentally benign and highly tolerant to moisture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Direct Conversion of Mono- and Polysaccharides into 5-Hydroxymethylfurfural Using Ionic-Liquid Mixtures.

    PubMed

    Siankevich, Sviatlana; Fei, Zhaofu; Scopelliti, Rosario; Jessop, Philip G; Zhang, Jiaguang; Yan, Ning; Dyson, Paul J

    2016-08-23

    Platform chemicals are usually derived from petrochemical feedstocks. A sustainable alternative commences with lignocellulosic biomass, a renewable feedstock, but one that is highly challenging to process. Ionic liquids (ILs) are able to solubilize biomass and, in the presence of catalysts, convert the biomass into useful platform chemicals. Herein, we demonstrate that mixtures of ILs are powerful systems for the selective catalytic transformation of cellulose into 5-hydroxymethylfurfural (HMF). Combining ILs with continuous HMF extraction into methyl-isobutyl ketone or 1,2-dimethoxyethane, which form a biphase with the IL mixture, allows the online separation of HMF in high yield. This one-step process is operated under relatively mild conditions and represents a significant step forward towards sustainable HMF production.

  19. Effect of near-resonant energy transfer on vibrational relaxation in liquid dichloromethane-benzene mixtures

    NASA Astrophysics Data System (ADS)

    Choi, Pak-Kon; Takagi, Kenshiro; Negishi, Katsuo

    1981-01-01

    The velocity and absorption of sound waves are measured in liquid dichloromethane-benzene mixtures in the frequency range from 3 MHz to 6 GHz using three ultrasonic techniques, high-resolution Bragg reflection, Brillouin scattering, and pulse-echo overlap. Vibrational double relaxation is observed in every mixture studied. The higher-frequency relaxation is assigned to the lowest mode of benzene, and the lower-frequency one to all but the lowest mode of both molecules. These modes of both molecules are shown to be coupled with each other by the near-resonant intermolecular vibrational-vibrational energy transfers between the second lowest mode (704 cm-1) of dichloromethane and the modes (707, 675 cm-1) of benzene. The concentration dependence of the relaxation frequency is analyzed with the binary collision theory, and the rates of vibrational-translational energy transfer in collisions between different kinds of molecules are estimated.

  20. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for liquid mixtures

    PubMed Central

    2015-01-01

    Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations. PMID:25747091

  1. Formation of smectic phases in binary liquid crystal mixtures with a huge length ratio

    PubMed Central

    Knecht, Friederike; Hartley, C Scott; Roberts, Jeffrey C; Lemieux, Robert P; Giesselmann, Frank

    2012-01-01

    Summary A system of two liquid-crystalline phenylpyrimidines differing strongly in molecular length was studied. The phase diagram of these two chemically similar mesogens, with a length ratio of 2, was investigated, and detailed X-ray diffraction and electrooptical measurements were performed. The phase diagram revealed a destabilization of the nematic phase, which is present in the pure short compound, while the smectic state was stabilized. The short compound forms smectic A and smectic C phases, whereas the longer compound forms a broad smectic C phase and a narrow higher-ordered smectic phase. Nevertheless, in the mixtures, the smectic C phase is destabilized and disappears rapidly, whereas smectic A is the only stable phase observed over a broad concentration range. In addition, the smectic translational order parameters as well as the tilt angles of the mixtures are reduced. The higher-ordered smectic phase of the longer mesogen was identified as a smectic F phase. PMID:23019439

  2. Globulin 11S and its mixture with L-dipalmitoylphosphatidylcholine at the air/liquid interface.

    PubMed

    Garcia-Gonzalez, A; Flores-Vazquez, A L; Maldonado, E; de la Rosa, A P Barba; Ruiz-Garcia, J

    2009-12-31

    Langmuir films of globulin 11S protein, l-dipalmitoylphosphatidylcholine (L-DPPC), and mixtures of both on water and on buffer subphases were studied. Brewster angle microscopy (BAM) was used to characterize in situ the films morphology along Pi-A isotherms at the air/liquid interface. The L-DPPC monolayer on water behaved as has been reported extensively in the literature but a slight increase on surface pressure and a notable change in domain morphology is observed on buffer. This difference in domain behavior is due to the stabilization interaction of the LE phase by the buffer ions. On the other hand, the protein monolayer was prepared by direct deposit or injection below the surface. Both methods formed mostly a condensed film, with a multilayer formed by globular aggregates in the first method with the two subphases. However, the second method showed different behavior of the protein films depending on the subphase; on water the protein formed a homogeneous film with some globule aggregates, but on buffer a remarkably well-organized monolayer was observed by atomic force microscopy (AFM). Mixtures of globulin 11S and L-DPPC were prepared using both methods for the protein film formation at the air/fluid interface. BAM showed that the mixtures formed coexistence regions between two condensed phases, whose domains of both phases behave like liquids. Fingering phenomena were observed at the interface between protein-rich and L-DPPC-rich domains, which indicates that both phases are fluid. AFM images of the mixtures show the formation of protein- or L-DPPC-rich domains. The liquidlike behavior could be explained due to different sizes of the protein and the L-DPPC, the minority compound in each kind of domain produces defects making them behave as liquids. Interestingly enough, as the monolayer is compressed to higher surface pressure, the lipid molecules are squeezed out and complete separation of the protein and L-DPPC is produced. Furthermore, we present

  3. Impact of Liquid-Vapor to Liquid-Liquid-Vapor Phase Transitions on Asphaltene-Rich Nanoaggregate Behavior in Athabasca Vacuum Residue + Pentane Mixtures

    SciTech Connect

    Long, Bingwen; Chodakowski, Martin; Shaw, John M.

    2013-06-05

    The bulk phase behavior of heavy oil + alkane mixtures and the behavior of the asphaltenes that they contain are topics of importance for the design and optimization of processes for petroleum production, transport, and refining and for performing routine saturates, aromatics, resins, and asphaltenes (SARA) analyses. In prior studies, partial phase diagrams and phase behavior models for Athabasca vacuum residue (AVR) comprising 32 wt % pentane asphaltenes + n-alkanes were reported. For mixtures with pentane, observed phase behaviors included single-phase liquid as well as liquid–liquid, liquid–liquid–vapor, and liquid–liquid–liquid–vapor regions. Dispersed solids were detected under some conditions as well but not quantified. In this work, small-angle X-ray scattering (SAXS) is used to study nanostructured materials in liquid phases present in AVR + n-pentane mixtures from 50 to 170 °C at mixture bubble pressure. The investigation focuses on the impact of the transition from a single AVR-rich liquid to co-existing pentane-rich and AVR-rich liquids on the nanostructure and the nanostructures most resistant to aggregation as the pentane composition axis is approached. Background scattering subtraction was performed using global mixture composition. The robustness of this assumption with respect to values obtained for coefficients appearing in a two level Beaucage unified equation fit is demonstrated. The nanostructured material is shown to arise at two length scales from 1 to 100 wt % AVR. Smaller nanostructures possess mean radii less than 50 Å, while the larger nanostructures possess mean radii greater than 250 Å. The addition of pentane to the AVR causes an increasingly large fraction of the large and small nanostructures to grow in size. Only nanostructures resistant to aggregation remain in the pentane-rich phase as the 0 wt % AVR axis is approached. Step changes in aggregation identified from changes in average radius of gyration, scattering

  4. Theoretical Rocket Performance of Liquid Methane with Several Fluorine-Oxygen Mixtures Assuming Frozen Composition

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Kastner, Michael E

    1958-01-01

    Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.

  5. Thermophysical Properties of Energetic Ionic Liquids/Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations

    DTIC Science & Technology

    2013-01-01

    W L. Physical properties of concentrated nitric acid . UNT Digital Library. http://digital.library.unt.edu/ark:/67531/metadc56640/.) 23 M. Engelmann... Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations 5a. CONTRACT NUMBER FA9300-11-C-3012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Rev. 8-98) Prescribed by ANSI Std. 239.18 1     Thermophysical  Properties  of  Energetic  Ionic  Liquids/ Nitric   Acid

  6. Tuning the electronic environment of the anion by using binary ionic liquid mixtures

    NASA Astrophysics Data System (ADS)

    Men, Shuang; Licence, Peter

    2017-08-01

    The electronic environment of the anion is tuned by using binary ionic liquid mixtures employing a common anion and two cations with large difference in acidity. X-ray photoelectron spectroscopy is used to monitor the change of the electronic environment of the anion by measuring the binding energy of elements present in the anion. It is found that due to the large difference in acidity of the two cations, noticeable shifts can be observed for all anion-based components, no matter how basic the anion is.

  7. Universal amplitude ratios and the interfacial tension near consolute points of binary liquid mixtures

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Schmidt, J. W.; Chaar, H.

    1986-01-01

    The interfacial tension of the binary liquid mixtures triethylamine/heavy water, triethylamine/water, and cyclohexane/methanol near their consolute temperatures is determined experimentally by measuring the densities of the phases and the capillary lengths. The results are presented in tables and graphs and compared with published data obtained by other methods and with theoretical predictions. The findings are shown to be in good agreement with previous experiments, confirming the discrepancy between temperature-independent universal amplitude ratios calculated from such data and those predicted by renormalization-group calculations or Monte Carlo simulations of Ising models.

  8. Closed-loop phase diagrams, vaporization, and multicriticality in binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Caflisch, Robert G.; Walker, James S.

    1983-09-01

    The coupled Potts-Ising models of Walker and Vause, which successfully describe closed-loop phase diagrams in hydrogen-bonding mixtures, are generalized to encompass the vapor phase, and are studied using position-space renormalization-group techniques. Global phase diagrams are generated, exhibiting such features as miscibility-immiscibility criticality, liquid-vapor critical points, critical end points, and bicritical and tricritical points. In addition, new types of phase diagrams are found, involving upper and lower azeotropes, for example, which are expected to be physically realizable in experimental systems.

  9. Vapor-liquid equilibria of binary mixtures with ethyl tert-butyl ether

    SciTech Connect

    Steinhagen, V. . Inst. fuer Thermodynamik und Reaktionstechnik); Sandler, S.I. . Dept. of Chemical Engineering)

    1994-07-01

    In this work P-T-x-y vapor-liquid equilibria were obtained for ethyl tert-butyl ether (ETBE) + toluene at temperatures of 273.15, 311.15, and 333.15 K and for 2-methylbutane (isopentane) + ETBE at temperatures of 293.15 and 303.15 K. These mixtures are found to be almost ideal, and the reported data are well described using a Peng-Robinson equation of state, modified by Stryjek and Vera with the van der Waals one-fluid mixing rule.

  10. Process and catalyst for converting synthesis gas to liquid hydrocarbon mixture

    DOEpatents

    Rao, V. Udaya S.; Gormley, Robert J.

    1987-01-01

    Synthesis gas containing CO and H.sub.2 is converted to a high-octane hydrocarbon liquid in the gasoline boiling point range by bringing the gas into contact with a heterogeneous catalyst including, in physical mixture, a zeolite molecular sieve, cobalt at 6-20% by weight, and thoria at 0.5-3.9% by weight. The contacting occurs at a temperature of 250.degree.-300.degree. C., and a pressure of 10-30 atmospheres. The conditions can be selected to form a major portion of the hydrocarbon product in the gasoline boiling range with a research octane of more than 80 and less than 10% by weight aromatics.

  11. Vapor-Liquid Equilibrium of the Mixture H2O + H2O2 (LB3902, EVLM 1112)

    NASA Astrophysics Data System (ADS)

    Wichterle, I.; Linek, J.; Wagner, Z.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A2 `Binary Liquid Systems of Nonelectrolytes, Part 2' of Volume 13 `Vapor-Liquid Equilibrium in Mixtures and Solutions' of Landolt-Börnstein Group IV `Physical Chemistry'. It corresponds to the entry LB3902 of the Print Version and the ELBT Database, respectively.

  12. Vibrational energy relaxation rates via the linearized semiclassical approximation: applications to neat diatomic liquids and atomic-diatomic liquid mixtures.

    PubMed

    Ka, Being J; Shi, Qiang; Geva, Eitan

    2005-06-30

    We report the results obtained from the application of our previously proposed linearized semiclassical method for computing vibrational energy relaxation (VER) rates (J. Phys. Chem. A 2003, 107, 9059, 9070) to neat liquid oxygen, neat liquid nitrogen, and liquid mixtures of oxygen and argon. Our calculations are based on a semiclassical approximation for the quantum-mechanical force-force correlation function, which puts it in terms of the Wigner transforms of the force and the product of the Boltzmann operator and the force. The calculation of the multidimensional Wigner integrals is made feasible by the introduction of a local harmonic approximation. A systematic analysis has been performed of the temperature and mole-fraction dependences of the VER rate constant, as well as the relative contributions of centrifugal and potential forces, and of different types of quantum effects. The results were found to be in very good quantitative agreement with experiment, and they suggest that this semiclassical approximation can capture the quantum enhancement, by many orders of magnitude, of the experimentally observed VER rate constants over the corresponding classical predictions.

  13. Excess enthalpy of monoethanolamine + ionic liquid mixtures: how good are COSMO-RS predictions?

    PubMed

    Gonzalez-Miquel, Maria; Massel, Marjorie; DeSilva, Aruni; Palomar, Jose; Rodriguez, Francisco; Brennecke, Joan F

    2014-10-02

    Mixtures of ionic liquids (ILs) and molecular amines have been suggested for CO2 capture applications. The basic idea is to replace water, which volatilizes in the amine regeneration step and increases the parasitic energy load, with a nonvolatile ionic liquid solvent. To fully understand the thermodynamics of these systems, here experimental excess enthalpies for binary mixtures of monoethanolamine (MEA) and two ILs: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [hmim][NTf2], and 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [OHemim][NTf2], were obtained by calorimetry, using a Setaram C80 calorimeter, over the whole range of compositions at 313.15 K. Since it is the temperature derivative of the Gibbs energy, enthalpy is a sensitive measure of intermolecular interactions. MEA + [hmim][NTf2] is endothermic and MEA + [OHemim][NTf2] is exothermic. The reliability of COSMO-RS to predict the excess enthalpy of the (MEA+IL) systems was tested based on the implementation of two different molecular models to define the structure of the IL: the IL as separate cation and anion [C+A] and the IL as a bonded single specie [CA]. Quantum-chemical calculations were performed to gain additional insight into the intermolecular interactions between the components of the mixture. For MEA + [hmim][NTf2] both the [C+A] and [CA] models predict endothermic behavior, but the [CA] model is in better agreement with the experimental results. For MEA + [OHemim][NTf2] the [C+A] model provides the best match to the experimental exothermic results. However, what is really surprising is that two different conformations of the cation-anion pair with nearly identical energies in the [CA] model result in completely different (exothermic vs endothermic) predictions of the excess enthalpy. Nonetheless, the results do show that the influence of the structure of the IL on the thermodynamic behavior of the mixture (endothermic vs exothermic) can be attributed

  14. Solid-liquid equilibria for binary mixtures composed of acenaphthene, dibenzofuran, fluorene, phenanthrene, and diphenylmethane

    SciTech Connect

    Lee, M.J.; Chen, C.H.; Lin, H.

    1999-09-01

    The liquidus lines were determined with a solid-disappearance method for binary mixtures composed of acenaphthene, dibenzofuran, fluorene, phenanthrene, and diphenylmethane. While the first four substances are model compounds of wash oil, which has widely been used as a solvent to remove aromatics from coal oven gas, diphenylmethane is a high-boiling and low-melting compound that is a potential additive to modify the performance of wash oil. Each of the seven binaries appears to be a simple eutectic system, as evidenced by the experimental results. The Wilson and the NRTL models were employed to correlate the solid-liquid equilibrium data. Both activity coefficient models were found to represent accurately the nonideality of the liquid-phase for the investigated systems.

  15. Effect of electric field on reentrance transition in a binary mixture of liquid crystals

    NASA Astrophysics Data System (ADS)

    Kumari, Sunita; Singh, S.

    2015-12-01

    Employing a phenomenological mean field theory, we analyze the effect of an electric field on the N - SmA phase transition for pure liquid crystal and on the reentrant nematic phase in a binary mixture of liquid crystals exhibiting the phase sequence I - N - SmA - NR on cooling. The basic idea of the work is to explain the phase transition behavior of the system by assuming that certain Landau coefficients associated with the order parameters coupling terms of the free-energy density expansion are field dependent. These parameters play a crucial role and show a rapid variation at the SmA - NR transition as compared to the SmA - N transition.

  16. Comparative study of acoustic relaxation time of cholesteric liquid crystal and mixtures

    NASA Astrophysics Data System (ADS)

    Bhave, Manisha G.; Gharde, Rita; Radha, S.

    2016-09-01

    The present study focuses on the relaxation processes in Cholesteric Liquid Crystal and mixtures. We have dispersed two different monomers in CLC to form Polymer dispersed liquid crystals (PDCLCs). PDLC films have a remarkable electro-optical behavior since they can be switched from highly light scattering state (OFF) to transparent state (ON) simply by application of an electric field. We have also doped ferroelectric nano - powder (NP) in CLC. The phase transitions occurred at temperatures lower than those exhibited by the mesogenic component before doping. The viscosity, ultrasonic velocity and density show variation with change in the material as well as temperature. The acoustic relaxation time and ultrasonic attenuation decrease with increase in temperature for CLC and CLC+NP. The parameters of PDCLC2 in comparison with PDCLC1 are more linear in isotropic and anisotropic regions. For PDCLC2 the values reach maximum value at the Cholesteric-isotropic transition.

  17. Combinatorial approach for the rapid determination of thermochromic behavior of binary and ternary cholesteric liquid crystalline mixtures.

    PubMed

    van der Werff, Louise C; Robinson, Andrea J; Kyratzis, Ilias L

    2012-11-12

    A combinatorial approach was developed for the rapid determination of thermochromic behavior of a large number of binary and ternary sterol based thermochromic liquid crystalline formulations. A binary mixture containing cholesteryl oleyl carbonate and cholesteryl nonanoate, and ternary mixtures also containing a third component, either cholesteryl oleate, cholesteryl benzoate, cholesteryl 2,4-dichlorobenzoate or cholesteryl propionate, were formulated via solvent deposition into a black Teflon coated aluminum 96 well plate. The temperature of the well plate was then varied, and the color appearance of the deposited mixture in each well was recorded. This approach allowed expedient examination of the thermochromic behavior for a large range of liquid crystal formulations. The accuracy of the rapid combinatorial technique was validated on selected thermochromic liquid crystal mixture compositions by comparing well thermochromic output with that observed using UV-vis spectroscopy on material produced in gram quantities.

  18. Liquid Mixtures Involving Hydrogenated and Fluorinated Alcohols: Thermodynamics, Spectroscopy, and Simulation.

    PubMed

    Morgado, Pedro; Garcia, Ana Rosa; Ilharco, Laura M; Marcos, João; Anastácio, Martim; Martins, Luís F G; Filipe, Eduardo J M

    2016-09-19

    This article reports a combined thermodynamic, spectroscopic, and computational study on the interactions and structure of binary mixtures of hydrogenated and fluorinated substances that simultaneously interact through strong hydrogen bonding. Four binary mixtures of hydrogenated and fluorinated alcohols have been studied, namely, (ethanol + 2,2,2-trifluoroethanol (TFE)), (ethanol + 2,2,3,3,4,4,4-heptafluoro-1-butanol), (1-butanol (BuOH) + TFE), and (BuOH + 2,2,3,3,4,4,4-heptafluoro-1-butanol). Excess molar volumes and vibrational spectra of all four binary mixtures have been measured as a function of composition at 298 K, and molecular dynamics simulations have been performed. The systems display a complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The combined analysis of the results from different approaches indicates that this results from a balance between preferential hydrogen bonding between the hydrogenated and fluorinated alcohols and the unfavorable dispersion forces between the hydrogenated and fluorinated chains. As the chain length increases, the contribution of dispersion increases and overcomes the contribution of H-bonds. In terms of the liquid structure, the simulations suggest the possibility of segregation between the hydrogenated and fluorinated segments, a hypothesis corroborated by the spectroscopic results. Furthermore, a quantitative analysis of the infrared spectra reveals that the presence of fluorinated groups induces conformational changes in the hydrogenated chains from the usually preferred all-trans to more globular arrangements involving gauche conformations. Conformational rearrangements at the CCOH dihedral angle upon mixing are also disclosed by the spectra.

  19. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal

  20. Preparation of ibuprofen-loaded liquid suppository using eutectic mixture system with menthol.

    PubMed

    Yong, Chul Soon; Oh, Yu-Kyoung; Jung, Se Hyun; Rhee, Jong-Dal; Kim, Ho-Dong; Kim, Chong-Kook; Choi, Han-Gon

    2004-12-01

    To prepare an ibuprofen-loaded liquid suppository using eutectic mixture with menthol, the effects of menthol and poloxamer 188 (P 188) on the aqueous solubility of ibuprofen were investigated. The physicochemical properties such as gelation temperature, gel strength and bioadhesive force of various formulations composed of ibuprofen, menthol and P 188 were investigated. Then, the pharmacokinetic study of ibuprofen delivered by the liquid suppositories composed of P 188 and menthol were then performed. In the absence of P 188, the solubility of ibuprofen increased until the ratio of menthol to ibuprofen increased from 0:10 to 4:6 followed by an abrupt decrease in solubility above the ratio of 4:6, indicating that four parts of ibuprofen formed eutectic mixture with six parts of menthol. In the presence of P 188, the solutions with the same ratio showed abrupt increase in the solubility of ibuprofen. Furthermore, the solution with ratio of 4:6 showed more than 2.5- and 6-fold increase in the solubility of ibuprofen compared with that without additives and that without menthol, respectively. The poloxamer gel with menthol/ibuprofen ratio of 1:9 and higher than 15% poloxamer 188 showed the maximum solubility of ibuprofen, 1.2mg/ml. Ibuprofen increased the gelation temperature and weakened the gel strength and bioadhesive force of liquid suppositories. However, menthol did the opposite due to forming the eutectic mixture with ibuprofen. The ibuprofen-loaded liquid suppository [P 188/menthol/ibuprofen (15/0.25/2.5%)] with the maximum ibuprofen solubility of 1.2mg/ml was administered easily to the anus and to remain at the administered site without leakage after the dose. Furthermore, it gave significantly higher initial plasma concentrations, Cmax and AUC of ibuprofen than did solid suppository, indicating that the drug from poloxamer gel could be more absorbed than that from solid one in rats. Thus, the liquid suppository system with P 188 and menthol, a more

  1. Surface freezing and molecular miscibility of binary alkane-alkane and fluoroalkane-alkane liquid mixtures.

    PubMed

    Takiue, Takanori; Shimasaki, Mayuko; Tsuura, Miyako; Sakamoto, Hiroyasu; Matsubara, Hiroki; Aratono, Makoto

    2014-02-13

    The surface freezing (SF) of liquid n-heptadecane (C17)-n-octadecane (C18) and 1-perfluorooctyl decane (F8H10)-C18 mixtures were studied by surface tension and external reflection absorption FTIR (ERA-FTIR) measurements. The surface tension versus temperature curves of all pure liquids show a sharp break point at Ts corresponding to a surface liquid (SL)-SF transition. The entropy of surface formation is very negative, indicating a well-ordered structure of the SF layer. The ERA-FTIR spectra in the SF state suggested that the C18 molecules are densely packed in the solid state, while the packing of the hydrocarbon (HC) part of F8H10 is a little looser than the fluorocarbon (FC) part because of the difference in the cross-sectional area. In the C17-C18 mixture, the SL-SF transition was found at all bulk compositions. The estimation of the surface composition suggested that two components are miscible both in SL and SF states. The excess entropy of the surface is almost zero in both states, and thus, it was concluded that the two components are mixed almost ideally at the surface. In the case of the F8H10-C18 system, on the other hand, the SL layer is enriched in F8H10 with lower surface tension than C18 compared to bulk liquid. The surface composition in the SF state is almost zero or unity, indicating that F8H10 and C18 molecules are practically immiscible mainly due to the weak interaction between different components. Furthermore, the negative excess entropy in the SL layer suggests domain formation of F8H10 molecules at the surface.

  2. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  3. Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures.

    PubMed

    Abbott, Andrew P; Capper, Glen; Davies, David L; Rasheed, Raymond

    2004-05-31

    The synthesis of ionic liquids based upon functionalized quaternary ammonium salts and metal salts of zinc, tin, or iron is demonstrated. The freezing point of these ionic liquids was studied as a function of the quaternary ammonium cation. The complex anions were identified and quantified using mass spectrometry and potentiometry. It is shown that the primary zinc anion is Zn(2)Cl(5)(-) with Zn(3)Cl(7)(-) becoming more abundant in more Lewis basic solutions. Similar results were observed for ionic liquids containing SnCl(2). The surface tension was also measured and was used to explain the high viscosity of the ionic liquids in terms of the large ion:hole size ratio and the small probability of finding a hole of suitable dimensions adjacent to a given ion to permit movement. The phase behavior of a variety of quaternary ammonium halides/ZnCl(2) mixtures is characterized and it is shown that the depression of freezing point is related to the increase in size of the component ions.

  4. Nanostructure of mixtures of protic ionic liquids and lithium salts: effect of alkyl chain length.

    PubMed

    Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R; Cabeza, Óscar; Gallego, Luis J; Russina, Olga; Varela, Luis M

    2015-02-21

    The bulk structure of mixtures of two protic ionic liquids, propylammonium nitrate and butylammonium nitrate, with a salt with a common anion, is analyzed at room temperature by means of small angle X-ray scattering and classical molecular dynamics simulations. The study of several structural properties, such as density, radial distribution functions, spatial distribution functions, hydrogen bonds, coordination numbers and velocity autocorrelation functions, demonstrates that increasing the alkyl chain length of the alkylammonium cation results in more segregated, better defined polar and apolar domains, the latter having a larger size. This increase, ascribed to the erosion of the H-bond network in the ionic liquid polar regions as salt is added, is confirmed by means of small angle X-ray scattering measurements, which show a clear linear increase of the characteristic spatial sizes of the studied protic ionic liquids with salt concentration, similar to that previously reported for ethylammonium nitrate (J. Phys. Chem. B, 2014, 118, 761-770). In addition, larger ionic liquid cations lead to a lower degree of hydrogen bonding and to more sparsely packed three-dimensional structures, which are more easily perturbed by the addition of lithium salts.

  5. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  6. Research and Design of Thermophysical Gas-Liquid Mixture Parameters in Product Pipelines

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Zemenkov, Yu D.; Maier, A. V.; Shabarov, A. B.

    2016-10-01

    Operational problems are hard to overcome because of the temperature and pressure conditions of the hydrocarbon flow in the pipe, as well as the composition of the hydrocarbon system and the geometry of the pipeline. It is known that energy costs to pump a unit mass of RH in the form of gas 2-3 times exceed energy costs to pump a unit mass of RH in the form of liquid. As far as energy conservation during RH transportation is concerned, an important task is development and application of a method to calculate the gas-liquid hydrocarbons flow, and heat and mass transfer in process and trunk pipelines during their design and operation. The authors have developed a calculation method which is used to analyze the hydrodynamic state and composition of the hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change. The developed technique was tested on the hydrocarbon mixture of de-ethanized condensate and oil transported from northern oil and gas condensate fields via the main gas condensate line to the refinery.

  7. The vapour-liquid interface for a Lennard-Jones model of argon-krypton mixtures

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Telo da Gama, M. M.; Gubbins, K. E.

    We report a molecular dynamics study of the planar vapour-liquid interface for mixtures of Ar and Kr modelled by truncated Lennard-Jones potentials at 115·77 K and at two compositions. The simulations yield the density profiles, surface tension, surface of tension, adsorption, and normal and transverse components of the pressure tensor. Both the Irving-Kirkwood (IK) and Harasima (H) forms of the pressure tensor are calculated. The values of the surface tension calculated by the thermodynamic and mechanical (for both the IK and H pressure tensors) routes are in agreement, but the IK and H pressure tensors yield different values for the surface of tension, as expected. These results are compared with predictions of the mean field theory (MFT) of the interface. The agreement is generally good, the principal differences being due to the fact that the MFT predicts too low a liquid density. The MFT is also used to predict properties of the mixture interface for the full Lennard-Jones potential. For low concentrations of argon, the argon density profile is predicted to be weakly non-monotonic; this effect is larger for the full than for the truncated Lennard-Jones potential.

  8. Estimates of Liquid Species Diffusivities in N-Propanol/Glycerol Mixture Droplets Burning in Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Vang, C. L.; Shaw, B. D.

    2015-07-01

    Results from International Space Station experiments on combustion of n-propanol/glycerol droplets are reported. The initial n-propanol mass fraction was 0.95 and droplets had initial diameters in the 2 - 5 mm range. Some droplets were fiber supported while others were free floating, and the environment was either an oxygen/nitrogen mixture at 1 atm or an oxygen/helium mixture at pressures of 1 and 3 atm. The droplets burned in a multi-stage manner where n-propanol was preferentially evaporated during the early stages of combustion. The resulting buildup of glycerol in the liquid at the droplet surface led to sudden droplet heating and flame contraction. The experimental data are evaluated to provide burning rates, radiometer outputs, and droplet diameters as functions of time. These data are used to calculate effective liquid species diffusivities, D, using asymptotic theory. The D values can be substantially larger than molecular diffusivities in some cases, indicative of the presence of strong convective mixing. It was found that support fibers can decrease D values and that high burning rates can substantially increase D. These variations are attributed to changes in droplet internal flow patterns.

  9. Solid-liquid equilibrium for mixtures containing cresols, piperazine, and dibutyl ether

    SciTech Connect

    Mingjer Lee; Peichi Chi )

    1993-04-01

    The solid-liquid phase diagrams have been determined for six binary and one ternary system composed of m-cresol, p-cresol, piperazine, and dibutyl ether. The results indicate the existence of 1-2 complexes in the p-cresol + m-cresol, piperazine + m-cresol, and piperazine + p-cresol systems. The observed melting points were correlated with composition by an empirical equation. Dissociation extractive crystallization is one of the potential methods for separating a compound from close boiling point mixtures such as p-cresol + 2,6-xylenol (1) and m-cresol + p-cresol systems. Gaikar et al. reported that using piperazine as a neutralizing agent and dibutyl ether as a solvent enables the recovery of 91% of p-cresol from a m-cresol + p-cresol mixture. This attractive method is of interest for further investigations. This attractive method is of interest for further investigations. To obtain better insight into this separation process, the authors measured the melting points of the mixtures composed of m-cresol, p-cresol, piperazine, and dibutyl ether by the solid-disappearance method over a temperature range from 246 and 382 K and atmospheric pressure.

  10. Hydrogen bonding in a mixture of protic ionic liquids: a molecular dynamics simulation study.

    PubMed

    Paschek, Dietmar; Golub, Benjamin; Ludwig, Ralf

    2015-04-07

    We report results of molecular dynamics (MD) simulations characterising the hydrogen bonding in mixtures of two different protic ionic liquids sharing the same cation: triethylammonium-methylsulfonate (TEAMS) and triethylammonium-triflate (TEATF). The triethylammonium-cation acts as a hydrogen-bond donor, being able to donate a single hydrogen-bond. Both, the methylsulfonate- and the triflate-anions can act as hydrogen-bond acceptors, which can accept multiple hydrogen bonds via their respective SO3-groups. In addition, replacing a methyl-group in the methylsulfonate by a trifluoromethyl-group in the triflate significantly weakens the strength of a hydrogen bond from an adjacent triethylammonium cation to the oxygen-site in the SO3-group of the anion. Our MD simulations show that these subtle differences in hydrogen bond strength significantly affect the formation of differently-sized hydrogen-bonded aggregates in these mixtures as a function of the mixture-composition. Moreover, the reported hydrogen-bonded cluster sizes can be predicted and explained by a simple combinatorial lattice model, based on the approximate coordination number of the ions, and using statistical weights that mostly account for the fact that each anion can only accept three hydrogen bonds.

  11. Thermophysical properties of energetic ionic liquids/nitric acid mixtures: insights from molecular dynamics simulations.

    PubMed

    Hooper, Justin B; Smith, Grant D; Bedrov, Dmitry

    2013-09-14

    Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3(-)] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P(®) potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3(-)] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.

  12. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids.

    PubMed

    Costa, Mariana C; Sardo, Mariana; Rolemberg, Marlus P; Coutinho, João A P; Meirelles, Antonio J A; Ribeiro-Claro, Paulo; Krähenbühl, M A

    2009-08-01

    For the first time, the solid-liquid phase diagrams of five binary mixtures of saturated fatty acids are here presented. These mixtures are formed of caprylic acid (C(8:0))+capric acid (C(10:0)), capric acid (C(10:0))+lauric acid (C(12:0)), lauric acid (C(12:0))+myristic acid (C(14:0)), myristic acid (C(14:0))+palmitic acid (C(16:0)) and palmitic acid (C(16:0))+stearic acid (C(18:0)). The information used in these phase diagrams was obtained by differential scanning calorimetry (DSC), X-ray diffraction (XRD), FT-Raman spectrometry and polarized light microscopy, aiming at a complete understanding of the phase diagrams of the fatty acid mixtures. All of the phase diagrams reported here presented the same global behavior and it was shown that this was far more complex than previously imagined. They presented not only peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common in fatty acids and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules, with implications in various industrial applications.

  13. Predicting the Virial coefficients and thermodynamic properties of a multicomponent mixture with application to the ternary mixture of CH{sub 2}F{sub 2} + CF{sub 3}CHF{sub 2} + CF{sub 3}CH{sub 2}F

    SciTech Connect

    Weber, L.A.

    1997-01-01

    A model for estimating second and third virial coefficients, which has been used successfully to represent the behavior of pure gases and binary mixtures, was applied to a ternary mixture. An estimate for the ternary third virial coefficient, C{sub 123}, was added to the model. Three experimentally determined binary interaction parameters were also used. The model has been applied to the ternary mixture CH{sub 2}F{sub 2} + CF{sub 3}CHF{sub 2} + CF{sub 3}CH{sub 2}F (R32 + R125 + R134a). The results are useful for calculating gas-phase densities, thermodynamic properties, and fugacities for phase equilibrium calculations. The use of such models leads to a considerable economy of effort in the case of multicomponent mixtures. Examples of the thermodynamic properties are given for the equimolar ternary mixture in the range from the dew-point temperature to 400 K at pressures of 0.5, 1, and 2 MPa. Calculated densities and speeds of sound are compared with new experimental values for a near-equimolar composition.

  14. Ionic Liquid-Catalyzed Green Protocol for Multi-Component Synthesis of Dihydropyrano[2,3-c]pyrazoles as Potential Anticancer Scaffolds.

    PubMed

    Nimbalkar, Urja D; Seijas, Julio A; Vazquez-Tato, Maria Pilar; Damale, Manoj G; Sangshetti, Jaiprakash N; Nikalje, Anna Pratima G

    2017-09-28

    A series of 6-amino-4-substituted-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles 5a-j were synthesized via one-pot, four-component condensation reactions of aryl aldehydes 1a-j, propanedinitrile (2), hydrazine hydrate (3) and ethyl acetoacetate (4) under solvent-free conditions. We report herein the use of the Brønsted acid ionic liquid (BAIL) triethylammonium hydrogen sulphate [Et₃NH][HSO₄] as catalyst for this multi-component synthesis. Compared with the available reaction methodology, this new method has consistent advantages, including excellent yields, a short reaction time, mild reaction conditions and catalyst reusability. Selected synthesized derivatives were evaluated for in vitro anticancer activity against four human cancer cell lines viz. melanoma cancer cell line (SK-MEL-2), breast cancer cell line(MDA-MB-231), leukemia cancer cell line (K-562) and cervical cancer cell line (HeLa). Compounds 5b, 5d, 5g, 5h and 5j exhibited promising anticancer activity against all selected human cancer cell lines, except HeLa. Molecular docking studies also confirmed 5b and 5d as good lead molecules. An in silico ADMET study of the synthesized anticancer agents indicated good oral drug-like behavior and non-toxic nature.

  15. Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Caro, Miguel A.; Laurila, Tomi; Lopez-Acevedo, Olga

    2016-12-01

    We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.

  16. Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations.

    PubMed

    Caro, Miguel A; Laurila, Tomi; Lopez-Acevedo, Olga

    2016-12-28

    We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.

  17. A Sustainable Approach to the Stereoselective Synthesis of Diazaheptacyclic Cage Systems Based on a Multicomponent Strategy in an Ionic Liquid.

    PubMed

    Suresh Kumar, Raju; Almansour, Abdulrahman I; Arumugam, Natarajan; Altaf, Mohammad; Menéndez, José Carlos; Kumar, Raju Ranjith; Osman, Hasnah

    2016-01-29

    The microwave-assisted three-component reactions of 3,5-bis(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones, acenaphthenequinone and cyclic α-amino acids in an ionic liquid, 1-butyl-3-methylimidazolium bromide, occurred through a domino sequence affording structurally intriguing diazaheptacyclic cage-like compounds in excellent yields.

  18. Pressure in the Landau-Ginzburg functional: Pascal's law, nucleation in fluid mixtures, a meanfield theory of amphiphilic action, and interface wetting in glassy liquids

    NASA Astrophysics Data System (ADS)

    Chan, Ho Yin; Lubchenko, Vassiliy

    2015-09-01

    We set up the problem of finding the transition state for phase nucleation in multi-component fluid mixtures, within the Landau-Ginzburg density functional. We establish an expression for the coordinate-dependent local pressure that applies to mixtures, arbitrary geometries, and certain non-equilibrium configurations. The expression allows one to explicitly evaluate the pressure in spherical geometry, à la van der Waals. Pascal's law is recovered within the Landau-Ginzburg density functional theory, formally analogously to how conservation of energy is recovered in the Lagrangian formulation of mechanics. We establish proper boundary conditions for certain singular functional forms of the bulk free energy density that allow one to obtain droplet solutions with thick walls in essentially closed form. The hydrodynamic modes responsible for mixing near the interface are explicitly identified in the treatment; the composition at the interface is found to depend only weakly on the droplet size. Next we develop a Landau-Ginzburg treatment of the effects of amphiphiles on the surface tension; the amphiphilic action is seen as a violation of Pascal's law. We explicitly obtain the binding potential for the detergent at the interface and the dependence of the down-renormalization of the surface tension on the activity of the detergent. Finally, we argue that the renormalization of the activation barrier for escape from long-lived structures in glassy liquids can be viewed as an action of uniformly seeded, randomly oriented amphiphilic molecules on the interface separating two dissimilar aperiodic structures. This renormalization is also considered as a "wetting" of the interface. The resulting conclusions are consistent with the random first order transition theory.

  19. Pressure in the Landau-Ginzburg functional: Pascal's law, nucleation in fluid mixtures, a meanfield theory of amphiphilic action, and interface wetting in glassy liquids.

    PubMed

    Chan, Ho Yin; Lubchenko, Vassiliy

    2015-09-28

    We set up the problem of finding the transition state for phase nucleation in multi-component fluid mixtures, within the Landau-Ginzburg density functional. We establish an expression for the coordinate-dependent local pressure that applies to mixtures, arbitrary geometries, and certain non-equilibrium configurations. The expression allows one to explicitly evaluate the pressure in spherical geometry, à la van der Waals. Pascal's law is recovered within the Landau-Ginzburg density functional theory, formally analogously to how conservation of energy is recovered in the Lagrangian formulation of mechanics. We establish proper boundary conditions for certain singular functional forms of the bulk free energy density that allow one to obtain droplet solutions with thick walls in essentially closed form. The hydrodynamic modes responsible for mixing near the interface are explicitly identified in the treatment; the composition at the interface is found to depend only weakly on the droplet size. Next we develop a Landau-Ginzburg treatment of the effects of amphiphiles on the surface tension; the amphiphilic action is seen as a violation of Pascal's law. We explicitly obtain the binding potential for the detergent at the interface and the dependence of the down-renormalization of the surface tension on the activity of the detergent. Finally, we argue that the renormalization of the activation barrier for escape from long-lived structures in glassy liquids can be viewed as an action of uniformly seeded, randomly oriented amphiphilic molecules on the interface separating two dissimilar aperiodic structures. This renormalization is also considered as a "wetting" of the interface. The resulting conclusions are consistent with the random first order transition theory.

  20. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    PubMed

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions.

  1. Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures

    NASA Astrophysics Data System (ADS)

    Mishra, Anil Kumar; Ohtsubo, Masami; Li, Loretta Y.; Higashi, Takahiro; Park, Junboum

    2009-05-01

    Effect of the various concentrations of NaCl and CaCl2 on the four different soil-bentonite mixtures has been evaluated. The results show that the liquid limit of the mixtures decreases with an increase in the salt concentration. Liquid limit decreased significantly with an increase in CaCl2 concentration from 0 to 0.1 N. However, a further increase in the concentration did not produce any significant decrease in liquid limit. A quite opposite trend was observed for the NaCl solution. An increase in NaCl concentration from 0 to 0.1 N did not produce any major decrease in the liquid limit, but a further increase in concentration from 0.1 to 1 N decreased the liquid limit significantly. Consolidation tests were carried out on the mixtures to evaluate the effect of mineralogical composition of the bentonite on the hydraulic conductivity ( k) of the mixture in the presence of various salts concentrations. The k for any mixtures was found to be decreasing with decrease in the salt concentration. At relatively low concentration, Ca2+ had more effect on the k in comparison to the same concentration of Na+. However, at 1 N of NaCl and CaCl2 almost an equal value of k was observed. A comparison of the performance of four bentonites showed that the mixture with bentonite having highest exchangeable sodium percentage (ESP) exhibited the lowest k when permeated with de-ionized (DI) water, however, k increased with an increase in the salt concentration. Similarly, mixture with a bentonite of lower ESP exhibited a higher k with DI water but with the increase in the salt concentration alteration in the k, compared to all other mixtures, was relatively less.

  2. Probing intermolecular interactions in water/ionic liquid mixtures by far-infrared spectroscopy.

    PubMed

    Dominguez-Vidal, Ana; Kaun, Nina; Ayora-Cañada, Maria Jose; Lendl, Bernhard

    2007-05-03

    Far-infrared spectra in the range from 600 to 20 cm-1 of two hydrophilic (1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate) and one hydrophobic (1-butyl-3-methylimidazolium hexafluorophosphate) ionic liquids and their mixtures with water at different concentrations are reported. Shifts of the librational water bands depending on the nature of the anion are found to be related to the strength of the interaction between the water molecules and the anions. For both hydrophilic ionic liquids, the librational band is centered around 460 cm-1, whereas for the hydrophobic ionic liquid, it is shifted to 388 cm-1, indicating less hindered rotation of single water molecules. Multivariate curve resolution, paying special attention to the spectral range from 50 to 350 cm-1, was used to investigate the presence of different species with increasing water concentration. For both hydrophilic ionic liquids, a band located at 153 cm-1 was resolved into two different contributions. A small contribution at 202 cm-1 can be attributed to intermolecular interactions between water molecules forming dimers. The major contribution (centered at 148 cm-1) corresponds to water molecules that do not bond to each other via H-bonding. It is therefore assigned to a hindered translation arising from the stretching of the hydrogen bond between BF4- anions and water molecules. Formation of water dimers in the hydrophobic ionic liquid does not occur. Furthermore, the spectral contribution of the stretching of H-bonds between water molecules and PF6- cannot be unambiguously detected, which indicates an extremely weak interaction between water molecules and this anion.

  3. Density functional theory of gas-liquid phase separation in dilute binary mixtures

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-01

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  4. Delineating solute-solvent interactions in binary mixtures of ionic liquids in molecular solvents and preferential solvation approach.

    PubMed

    Khupse, Nageshwar D; Kumar, Anil

    2011-02-03

    The effect of solute-solvent and solvent-solvent interactions on the preferential solvation of solvatochromic indicators in binary mixtures of ionic liquids with molecular solvents has been investigated. The binary mixtures of the pyridinium-based ionic liquids 1-butylpyridinium tetrafluoroborate ([BP][BF4]), 1-butyl-3-methylpyridinium tetrafluoroborate ([3-MBP][BF4]), and 1-butyl-4-methylpyridinium tetrafluoroborate ([4-MBP][BF4]) with molecular solvents like water, methanol, and dichloromethane have been selected for this investigation. The effect of addition of ionic liquids to molecular solvents on the polarity parameters E(T)(N), Kamlet-Taft parameters, hydrogen bond donor ability (HBD) (α), hydrogen bond acceptor ability (HBA) (β), and polarizability (π*) was obtained. The polarity parameters of the mixture display nonideality on addition of ionic liquids to water and dichloromethane. On the other hand, strong synergetic effects were seen in the ionic liquid-methanol binary mixtures. The preferential solvation models have been employed to analyze the collected data in order to achieve information on solute-solvent interactions in these binary mixtures.

  5. Stokes shift dynamics in (non-dipolar ionic liquid + dipolar solvent) binary mixtures: a semi-molecular theory.

    PubMed

    Pal, Tamisra; Biswas, Ranjit

    2014-10-28

    A semi-molecular theory for studying composition dependent Stokes shift dynamics of a dipolar solute in binary mixtures of (non-dipolar ionic liquid + common dipolar solvent) is developed here. The theory provides microscopic expressions for solvation response functions in terms of static and dynamic structure factors of the mixture components and solute-solvent static correlations. In addition, the theory provides a framework for examining the interrelationship between the time dependent solvation response in and frequency dependent dielectric relaxation of a binary mixture containing electrolyte. Subsequently, the theory has been applied to predict ionic liquid (IL) mole fraction dependent dynamic Stokes shift magnitude and solvation energy relaxation for a dipolar solute, C153, in binary mixtures of an ionic liquid, trihexyltetradecylphosphonium chloride ([P(14,666)][Cl]) with a common dipolar solvent, methanol (MeOH). In the absence of suitable experimental data, necessary input parameters have been obtained from approximate methods. Dynamic shifts calculated for these mixtures exhibit a linear increase with IL mole fraction for the most part of the mixture composition, stressing the importance of solute-IL dipole-ion interaction. Average solvation rates, on the other hand, show a nonlinear IL mole fraction dependence which is qualitatively similar to what has been observed for such binary mixtures with imidazolium (dipolar) ILs. These predictions should be re-examined in suitable experiments.

  6. Liquid Disordered-Liquid Ordered Phase Coexistence in Lipid/Cholesterol Mixtures: A Deuterium 2D NMR Exchange Study.

    PubMed

    Schmidt, Miranda L; Davis, James H

    2017-02-28

    Model membranes composed of two types of long chain phospholipids, one unsaturated and one saturated, along with cholesterol can exhibit two coexisting fluid phases (liquid disordered ([Formula: see text]) and liquid ordered ([Formula: see text])) at various temperatures and compositions. Here we used 1D and 2D (2)H NMR to compare the behavior of multilamellar dispersions, magnetically oriented bicelles, and mechanically aligned bilayers on glass plates, all of which contain the same proportions of dipalmitoleoylphosphatidylcholine (DPoPC), dimyristoylphosphatidylcholine (DMPC), and cholesterol. We found that multilamellar dispersions and bilayers aligned on glass plates behave very similarly. These samples were close to a critical composition and exhibit exchange of the lipids between the two fluid phases at temperatures near the [Formula: see text] to [Formula: see text]-[Formula: see text] phase boundary. On the other hand, when a short chain lipid is added to the ternary long chain lipid/cholesterol mixture to form bicelles, the phase behavior is changed significantly and the [Formula: see text] phase occurs at a higher than expected temperature. In addition, there was no evidence of exchange of lipids between the [Formula: see text] and [Formula: see text] phases or critical fluctuations at the temperature where the bulk of the sample enters the two-phase region for these bicelles. It appears that the addition of the short chain lipid results in these samples no longer being near a critical composition.

  7. Calculation of multicomponent chemical equilibria in gas-solid- liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens

    USGS Publications Warehouse

    Symonds, R.B.; Reed, M.H.

    1993-01-01

    This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. Examples of gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mount St. Helens are shown. -from Authors

  8. Abundance estimation of solid and liquid mixtures in hyperspectral imagery with albedo-based and kernel-based methods

    NASA Astrophysics Data System (ADS)

    Rand, Robert S.; Resmini, Ronald G.; Allen, David W.

    2016-09-01

    This study investigates methods for characterizing materials that are mixtures of granular solids, or mixtures of liquids, which may be linear or non-linear. Linear mixtures of materials in a scene are often the result of areal mixing, where the pixel size of a sensor is relatively large so they contain patches of different materials within them. Non-linear mixtures are likely to occur with microscopic mixtures of solids, such as mixtures of powders, or mixtures of liquids, or wherever complex scattering of light occurs. This study considers two approaches for use as generalized methods for un-mixing pixels in a scene that may be linear or non-linear. One method is based on earlier studies that indicate non-linear mixtures in reflectance space are approximately linear in albedo space. This method converts reflectance to single-scattering albedo (SSA) according to Hapke theory assuming bidirectional scattering at nadir look angles and uses a constrained linear model on the computed albedo values. The other method is motivated by the same idea, but uses a kernel that seeks to capture the linear behavior of albedo in non-linear mixtures of materials. The behavior of the kernel method can be highly dependent on the value of a parameter, gamma, which provides flexibility for the kernel method to respond to both linear and non-linear phenomena. Our study pays particular attention to this parameter for responding to linear and non-linear mixtures. Laboratory experiments on both granular solids and liquid solutions are performed with scenes of hyperspectral data.

  9. Self-aggregation of cationic dimeric surfactants in water-ionic liquid binary mixtures.

    PubMed

    Martín, Victoria Isabel; Rodríguez, Amalia; Laschewsky, André; Moyá, María Luisa

    2014-09-15

    The micellization of four dimeric cationic surfactants ("gemini surfactants") derived from N-dodecyl-N,N,N-trimethylammonium chloride was studied in pure water and in water-ionic liquid (IL) solutions by a wide range of techniques. The dimeric surfactants are distinguished by their rigid spacer groups separating the two surfactant motifs, which range from C3 to C5 in length. In order to minimize organic ion pairing effects as well as the role of the ionic liquids as potential co-surfactants, ILs with inorganic hydrophilic anions and organic cations of limited hydrophobicity were chosen, namely ethyl, butyl, and hexyl-3-imidazolium chlorides. (1)H NMR two-dimensional, 2D, rotating frame nuclear Overhauser effect spectroscopy measurements, ROESY, supported this premise. The spacer nature hardly affects the micellization process, neither in water nor in water-IL solutions. However, it does influence the tendency of the dimeric surfactants to form elongated micelles when surfactant concentration increases. In order to have a better understanding of the ternary water-IL surfactant systems, the micellization of the surfactants was also studied in aqueous NaCl solutions, in water-ethylene glycol and in water-formamide binary mixtures. The combined results show that the ionic liquids play a double role in the mixed systems, operating simultaneously as background electrolytes and as polar organic solvents. The IL role as organic co-solvent becomes more dominant when its concentration increases, and when the IL alkyl chain length augments.

  10. Bubbles in liquids with phase transition—part 2: on balance laws for mixture theories of disperse vapor bubbles in liquid with phase change

    NASA Astrophysics Data System (ADS)

    Dreyer, Wolfgang; Hantke, Maren; Warnecke, Gerald

    2014-07-01

    We study averaging methods for the derivation of mixture equations for disperse vapor bubbles in liquids. The carrier liquid is modeled as a continuum, whereas simplified assumptions are made for the disperse bubble phase. An approach due to Petrov and Voinov is extended to derive mixture equations for the case that there is a phase transition between the carrier liquid and the vapor bubbles in water. We end up with a system of balance laws for a multi-phase mixture, which is completely in divergence form. Additional non-differential source terms describe the exchange of mass, momentum and energy between the phases. The sources depend explicitly on evolution laws for the total mass, the radius and the temperature of single bubbles. These evolution laws are derived in a prior article (Dreyer et al. in Cont Mech Thermodyn. doi:10.1007/s00161-0225-6, 2011) and are used to close the system. Finally, numerical examples are presented.

  11. Efficient capture of SO2 by a binary mixture of caprolactam tetrabutyl ammonium bromide ionic liquid and water.

    PubMed

    Duan, Erhong; Guo, Bin; Zhang, Miaomiao; Guan, Yanan; Sun, Hua; Han, Jing

    2011-10-30

    The solubility of SO(2) in a binary mixture of water and caprolactam tetrabutyl ammonium bromide ionic liquid (CPL-TBAB IL) was investigated. Though the ionic liquid and water were fully miscible, a phase separation occurred when SO(2) was introduced into the mixture. The SO(2) concentrated in the lower layer, and it could be released by heating the solution under reduced pressure (382.2K, 10.1 kPa). After desorption, the mixture could be reused to absorb SO(2). It was found that SO(2) acts as a switch to cause the water and CPL-TBAB IL to phase separate, and the mechanics of this phase separation process was studied by gas chromatography-mass spectrometry, fourier transform-infrared spectroscopy and Karl-Fisher titration. The absorption and desorption of SO(2) in the CPL-TBAB/water mixtures were reversible.

  12. Kinematic viscosities of binary and ternary liquid mixtures involving chloroform, 2-propanol, and 2-butanol at several temperatures

    SciTech Connect

    Sovilj, M.N.

    1995-09-01

    A knowledge of the viscosity of liquids and liquid mixtures is required for the solution of many engineering problems concerning heat transfer, mass transfer, and fluid flow. Experimental kinematic viscosity data are presented for chloroform + 2-propanol + 2-butanol and also for the three constituent binary mixtures at 20, 25, 30, and 35 C. The binary kinematic viscosities have been correlated by the empirical equation obtained by extension of the model of ideal kinematic viscosity of a liquid mixtures. Predicted data agree fairly well with the experimental observations. The ternary kinematic viscosities were fitted by correlations suggested by Al-Besharah et al., Vijayaraghavan et al., and Iulian et al. The best fit was obtained with the relation by Al-Besharah et al.

  13. Multicomponent fuel vaporization at high pressures.

    SciTech Connect

    Torres, D. J.; O'Rourke, P. J.

    2002-01-01

    We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

  14. Density and molar volumes of imidazolium-based ionic liquid mixtures and prediction by the Jouyban-Acree model

    NASA Astrophysics Data System (ADS)

    Ghani, Noraini Abd; Sairi, Nor Asrina; Mat, Ahmad Nazeer Che; Khoubnasabjafari, Mehry; Jouyban, Abolghasem

    2016-11-01

    The density of imidazolium-based ionic liquid, 1-ethyl-3-methylimidazolium diethylphosphate with sulfolane were measured at atmospheric pressure. The experiments were performed at T= (293 - 343) K over the complete mole fractions. Physical and thermodynamic properties such as molar volumes, V0, and excess molar volumes, VE for this binary mixtures were derived from the experimental density data. The Jouyban-Acree model was exploited to correlate the physicochemical properties (PCPs) of binary mixtures at various mole fractions and temperatures.

  15. Segregation of ions at the interface: molecular dynamics studies of the bulk and liquid-vapor interface structure of equimolar binary mixtures of ionic liquids.

    PubMed

    Palchowdhury, Sourav; Bhargava, B L

    2015-08-14

    The structures of three different equimolar binary ionic liquid mixtures and their liquid-vapor interface have been studied using atomistic molecular dynamics simulations. Two of these binary mixtures were composed of a common cation 1-n-butyl-3-methylimidazolium and varying anions (chloride and hexafluorophosphate in one of the mixtures and chloride and trifluoromethanesulfonate in the other) and the third binary mixture was composed of a common anion, trifluoromethanesulfonate and two imidazolium cations with ethyl and octyl side chains. Binary mixtures with common cations are found to be homogeneous. The anions are preferentially located near the ring hydrogen atoms due to H-bonding interactions. Segregation of ions is observed at the interface with an enrichment of the liquid-vapor interface layer by longer alkyl chains and bigger anions with a distributed charge. The surface composition is drastically different from that of the bulk composition, with the longer alkyl tail groups and bigger anions populating the outermost layer of the interface. The longer alkyl chains of the cations and trifluoromethanesulfonate anions with a smaller charge density show orientational ordering at the liquid-vapor interface.

  16. The Precise Measurement of Vapor-Liquid Equilibrium Properties of the CO2/Isopentane Binary Mixture, and Fitted Parameters for a Helmholtz Energy Mixture Model

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Shoji, Y.; Akasaka, R.; Lemmon, E. W.

    2017-10-01

    Natural working fluid mixtures, including combinations of CO2, hydrocarbons, water, and ammonia, are expected to have applications in energy conversion processes such as heat pumps and organic Rankine cycles. However, the available literature data, much of which were published between 1975 and 1992, do not incorporate the recommendations of the Guide to the Expression of Uncertainty in Measurement. Therefore, new and more reliable thermodynamic property measurements obtained with state-of-the-art technology are required. The goal of the present study was to obtain accurate vapor-liquid equilibrium (VLE) properties for complex mixtures based on two different gases with significant variations in their boiling points. Precise VLE data were measured with a recirculation-type apparatus with a 380 cm3 equilibration cell and two windows allowing observation of the phase behavior. This cell was equipped with recirculating and expansion loops that were immersed in temperature-controlled liquid and air baths, respectively. Following equilibration, the composition of the sample in each loop was ascertained by gas chromatography. VLE data were acquired for CO2/ethanol and CO2/isopentane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were used to fit interaction parameters in a Helmholtz energy mixture model. Comparisons were made with the available literature data and values calculated by thermodynamic property models.

  17. Wetting phenomenon in the liquid-vapor phase coexistence of a partially miscible Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Díaz-Herrera, Enrique; Moreno-Razo, J. Antonio; Ramírez-Santiago, Guillermo

    2004-11-01

    We have carried out extensive equilibrium molecular dynamics simulations to study the structure and the interfacial properties in the liquid-vapor phase coexistence of partially miscible binary Lennard-Jones mixtures. By analyzing the structural properties as a function of the miscibility parameter, α , we found that at relatively low temperatures the system separates forming a liquid A-liquid B interface in coexistence with the vapor phase. At higher temperatures and, 0<α⩽0.5 , we found a temperature range, Tw*(α)⩽T*liquid phases are wet by the vapor phase. Here, Tw*(α) represents the wetting transition temperature and TCons*(α) is the consolute temperature of the mixture. However, for 0.5<α<1 , no wetting phenomenon occurs. For the particular value, α=0.25 , we analyzed quantitatively the T* versus ρ* , and P* versus T* phase diagrams and found, Tc*≃1.25 , and TCons*≃1.25 . We also studied quantitatively, as a function of temperature, the surface tension and the adsorption of molecules at the liquid-liquid interface. It was found that the adsorption shows a jump from a finite negative value up to minus infinity, when the vapor wets the liquid phases, suggesting that the wetting transition is of first order. The calculated phase diagram, together with the wetting phenomenon, strongly suggests the existence of a tricritical point. These results agree well with some experiments carried out in fluid binary mixtures.

  18. Atomistic Insight into Tetraalkylphosphonium Bis(oxalato)borate Ionic Liquid/Water Mixtures. 2. Volumetric and Dynamic Properties.

    PubMed

    Wang, Yong-Lei; Shimpi, Manishkumar R; Sarman, Sten; Antzutkin, Oleg N; Glavatskih, Sergei; Kloo, Lars; Laaksonen, Aatto

    2016-08-04

    Atomistic molecular dynamics simulations have been performed to investigate volumetric quantities and dynamic properties of binary trihexyltetradecylphosphonium bis(oxalato)borate ([P6,6,6,14][BOB]) ionic liquid (IL)/water mixtures with different water concentrations. The predicted liquid densities for typical [P6,6,6,14][BOB] IL/water mixtures are consistent with available experimental data with a relative discrepancy of less than 3%. The liquid densities and excess molar volumes of all studied [P6,6,6,14][BOB] IL/water mixtures are characterized by concave and convex features, respectively, within full water concentration range. The dynamic properties of [P6,6,6,14] cations, [BOB] anions, and water molecules are particularly analyzed through calculation of velocity autocorrelation functions, diffusion coefficients, and reorientational autocorrelation functions and correlation times. The translational and reorientational mobilities of three species become faster upon increasing water concentration in [P6,6,6,14][BOB] IL/water mixtures and present complex dynamical characteristics arising from three distinct microscopic diffusion features within the full water concentration range. The obtained striking volumetric quantities and particular dynamic properties are well correlated to microscopic liquid structural organization and distinct local ionic environment of all studied [P6,6,6,14][BOB] IL/water mixtures.

  19. On the Stability of the Detonation Wave Front in the High Explosive Liquid Mixture Tetranitromethane/Nitrobenzene

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Mikhaylov, A. L.; Men'Shikh, A. V.; Nazarov, D. V.; Finyushin, S. A.; Davydov, V. A.

    2010-10-01

    We performed experimental studies on the stability of the detonation wave front in mixtures of the liquids tetranitromethane (TNM) and nitrobenzene (NB). Tetranitromethane is an oxygen-rich explosive and nitrobenzene was used as a solvent or dilutant. (NB is not classed as an explosive but as an explosive would be oxygen poor and fuel rich.) The primary diagnostic was a laser velocimetry method with high temporal resolution. Data obtained were compared with the detonation parameters of the TNM/NB mixtures. In previous experimental work [1,2] it was shown that the detonation wave front in liquid explosives may be either smooth or rough. Rough detonation fronts have been reported in nitromethane, as well as nitromethane mixed with a solvent. Smooth detonation fronts have been reported in tetranitromethane. Previously, we conducted studies on the structure of the detonation wave front in liquid explosives containing tetranitromethane [3-5]. Smooth, stable fronts were recorded in pure tetranitromethane and in a 46/54 mixture of tetranitromethane and nitromethane. A pulsating, unstable detonation wave front was recorded in a 74/26 mixture of tetranitromethane and nitrobenzene. The goal of the present work is to extend our research on the structure of the detonation wave front in mixtures of tetranitromethane diluted with less energetic nitrobenzene. To this end, the following TNM/NB mixtures were studied: 95/5, 90/10, 85/15, 80/20, 74/26, and 50/50.

  20. Non-ideal mixing behaviour of hydrogen bonding in mixtures of protic ionic liquids.

    PubMed

    Fumino, Koichi; Bonsa, Anne-Marie; Golub, Benjamin; Paschek, Dietmar; Ludwig, Ralf

    2015-02-02

    Ionic liquids (ILs) attract interest in science and technology as a result of their unique properties. Binary and ternary mixtures of ILs significantly increase the number of possible cation/anion combinations, resulting in targeted physical and chemical properties. In this work, we study the mixing behaviour of two protic ILs: triethyl ammonium methylsulfonate [Et3 NH][CH3 SO3 ] and triethylammonium triflate [Et3 NH][CF3 SO3 ]. We find a characteristic deviation from ideal mixing by means of low-frequency infrared spectroscopy. By using molecular dynamics simulations, we explain this behaviour as being the result of different strengths of anion/cation hydrogen bonding. This non-ideality of non-random H-bond mixing is also reflected in macroscopic properties such as the viscosity. Mixing suitable ILs may, thus, result in new ILs with targeted physical properties.

  1. A simulation study on terahertz absorption of liquid crystal mixture E7

    NASA Astrophysics Data System (ADS)

    Dong, Jian-qi; Cheng, Wen-qi; Li, Meng-ge; Wang, Kai-li; Chen, Ze-zhang; Ma, Heng

    2017-09-01

    A simulation work on a broad THz absorption of liquid crystal mixture E7 consisting of 5CB, 7CB, 8OCB and 5CT is reported. Based on the density functional theory, the molecular structures of the monomers were optimized and calculated using the Gaussian package with base set B3LYP and 6-311g. The results indicate that the simulation of the characteristic absorption spectra is accurate compared to the experimental and literature report in the infrared band. By analyzing contribution of the benzene ring, C-O and alkyl bonds on THz absorption, it is found that there are no significant effects from the cyano group and the alkyl radical. The addition of a benzene ring leads to an increase in absorption intensity and redshift. By discussing the atomic mass distribution and the structural symmetry of the monomers, a reason for the strong THz absorption of 8OCB is proposed.

  2. Binary Solvent Organization at Silica/Liquid Interfaces: Preferential Ordering in Acetonitrile-Methanol Mixtures.

    PubMed

    Gobrogge, Eric A; Walker, Robert A

    2014-08-07

    Nonlinear vibrational spectroscopy experiments examined solvent organization at the silica/binary solvent interface where the binary solvent consisted of methanol and acetonitrile in varying mole fractions. Data were compared with surface vibrational spectra acquired from silica surfaces exposed to a vapor phase saturated with the same binary solvent mixtures. Changes in vibrational band intensities suggest that methanol ideally adsorbs to the silica/vapor interface but acetonitrile accumulates in excess relative to vapor-phase composition. At the silica/liquid interface, acetonitrile's signal increases until a solution phase mole fraction of ∼0.85. At higher acetonitrile concentrations, acetonitrile's signal decreases dramatically until only a weak signature persists with the neat solvent. This behavior is ascribed to dipole-paired acetonitrile forming a bilayer with the first sublayer associating with surface silanol groups and a second sublayer consisting of weakly associating, antiparallel partners. On the basis of recent simulations, we propose that the second sublayer accumulates in excess.

  3. Mathematical modeling and microbiological verification of ohmic heating of a multicomponent mixture of particles in a continuous flow ohmic heater system with electric field parallel to flow.

    PubMed

    Kamonpatana, Pitiya; Mohamed, Hussein M H; Shynkaryk, Mykola; Heskitt, Brian; Yousef, Ahmed E; Sastry, Sudhir K

    2013-11-01

    To accomplish continuous flow ohmic heating of a low-acid food product, sufficient heat treatment needs to be delivered to the slowest-heating particle at the outlet of the holding section. This research was aimed at developing mathematical models for sterilization of a multicomponent food in a pilot-scale ohmic heater with electric-field-oriented parallel to the flow and validating microbial inactivation by inoculated particle methods. The model involved 2 sets of simulations, one for determination of fluid temperatures, and a second for evaluating the worst-case scenario. A residence time distribution study was conducted using radio frequency identification methodology to determine the residence time of the fastest-moving particle from a sample of at least 300 particles. Thermal verification of the mathematical model showed good agreement between calculated and experimental fluid temperatures (P > 0.05) at heater and holding tube exits, with a maximum error of 0.6 °C. To achieve a specified target lethal effect at the cold spot of the slowest-heating particle, the length of holding tube required was predicted to be 22 m for a 139.6 °C process temperature with volumetric flow rate of 1.0 × 10(-4) m3/s and 0.05 m in diameter. To verify the model, a microbiological validation test was conducted using at least 299 chicken-alginate particles inoculated with Clostridium sporogenes spores per run. The inoculated pack study indicated the absence of viable microorganisms at the target treatment and its presence for a subtarget treatment, thereby verifying model predictions. © 2013 Institute of Food Technologists®

  4. CHARACTERIZATION AND REMEDIATION TECHNOLOGIES FOR LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Light nonaqueous phase liquids (LNAPLs), principally petroleum products, affect ground-water quality at numerous sites across this country and throughout the world. Petroleum products are typically multi-component organic mixtures composed of chemicals with a wide range of solubi...

  5. CHARACTERIZATION AND REMEDIATION TECHNOLOGIES FOR LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Light nonaqueous phase liquids (LNAPLs), principally petroleum products, affect ground-water quality at numerous sites across this country and throughout the world. Petroleum products are typically multi-component organic mixtures composed of chemicals with a wide range of solubi...

  6. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering

    NASA Astrophysics Data System (ADS)

    Wahle, Chris W.; Ross, David S.; Thurston, George M.

    2013-09-01

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  7. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering.

    PubMed

    Wahle, Chris W; Ross, David S; Thurston, George M

    2013-09-28

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  8. Structure and dynamics of binary liquid mixtures near their continuous demixing transitions

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa; Dietrich, S.; Höfling, Felix

    2016-10-01

    The dynamic and static critical behavior of a family of binary Lennard-Jones liquid mixtures, close to their continuous demixing points (belonging to the so-called model H' dynamic universality class), are studied computationally by combining semi-grand canonical Monte Carlo simulations and large-scale molecular dynamics (MD) simulations, accelerated by graphic processing units (GPU). The symmetric binary liquid mixtures considered cover a variety of densities, a wide range of compressibilities, and various interactions between the unlike particles. The static quantities studied here encompass the bulk phase diagram (including both the binodal and the λ-line), the correlation length, and the concentration susceptibility, of the finite-sized systems above the bulk critical temperature Tc, the compressibility and the pressure at Tc. Concerning the collective transport properties, we focus on the Onsager coefficient and the shear viscosity. The critical power-law singularities of these quantities are analyzed in the mixed phase (above Tc) and non-universal critical amplitudes are extracted. Two universal amplitude ratios are calculated. The first one involves static amplitudes only and agrees well with the expectations for the three-dimensional Ising universality class. The second ratio includes also dynamic critical amplitudes and is related to the Einstein-Kawasaki relation for the interdiffusion constant. Precise estimates of this amplitude ratio are difficult to obtain from MD simulations, but within the error bars our results are compatible with theoretical predictions and experimental values for model H'. Evidence is reported for an inverse proportionality of the pressure and the isothermal compressibility at the demixing transition, upon varying either the number density or the repulsion strength between unlike particles.

  9. Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces.

    PubMed

    Somasundaran, P; Huang, L

    2000-12-11

    Adsorption of surfactants and polymers at solid-liquid interfaces is used widely to modify interfacial properties in a variety of industrial processes such as flotation, ceramic processing, flocculation/dispersion, personal care product formulation and enhanced oil recovery. The behavior of surfactants and polymers at interfaces is determined by a number of forces, including electrostatic attraction, covalent bonding, hydrogen bonding, hydrophobic bonding, and solvation and desolvation of various species. The extent and type of the forces involved varies depending on the adsorbate and the adsorbent, and also the composition and other characteristics of the solvent and dissolved components in it. The influence of such forces on the adsorption behavior is reviewed here from a thermodynamics point of view. The experimental results from microcalorimetric and spectroscopic studies of adsorbed layers of different surfactant and polymer systems at solid-liquid interfaces are also presented. Calorimetric data from the adsorption of an anionic surfactant, sodium octylbenzenesulfonate, and a non-ionic surfactant, dodecyloxyheptaethoxyethylalcohol, and their mixtures on alumina, yielded important thermodynamic information. It was found that the adsorption of anionic surfactants alone on alumina was initially highly exothermic due to the electrostatic interaction with the substrate. Further adsorption leading to a solloid (hemimicelle) formation is proposed to be mainly an entropy-driven process. The entropy effect was found to be more pronounced for the adsorption of anionic-non-ionic surfactant mixtures than for the anionic surfactant alone. Fluorescence studies using a pyrene probe on an adsorbed surfactant and polymer layers, along with electron spin resonance (ESR) spectroscopy, reveal the role of surface aggregation and the conformation of the adsorbed molecules in controlling the dispersion and wettability of the system.

  10. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    SciTech Connect

    Dan, Kaustabh Roy, Madhusudan Datta, Alokmay

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  11. Volumetric, Viscometric, and Ultrasonic Properties of Liquid Mixtures of Cyclohexane with Alkanols at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Tasneem, Shadma; Nabi, Firdosa

    2010-09-01

    The densities (ρ), viscosities (η), and ultrasonic speeds (u) of pure cyclohexane, 1-butanol, 2- butanol, and those of their binary mixtures, with cyclohexane as common component, covering the whole composition range have been measured at 293.15, 298.15, 303.15, 308.15, 313.15, and 318.15 K. From the experimental data the excess molar volume (VE), deviations in isentropic compressibility (Δks), deviations in viscosity (Δη), deviations in ultrasonic speed (Δu), deviations in acoustic impedance (ΔZ), deviations in internal pressure (ΔPi), excess Gibbs free energy of activation (ΔG*E), entropies (ΔS*), and enthalpies (ΔH*) of activation of viscous flow have been determined. The sign and magnitude of these parameters were found to be sensitive towards interactions prevailing in the studied systems. Partial molar volumes (V0φ,2) and partial molar compressibilities (K0φ,2) of 1-butanol and 2-butanol in cyclohexane have also been evaluated. Moreover, VE values were theoretically predicted by using Flory's statistical theory. The variations of derived parameters mentioned above with composition offer a convenient method to study the nature and extent of interactions between the component molecules of the liquid mixtures, not easily obtained by other means

  12. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  13. Density and Viscosity of Binary Mixtures of Thiocyanate Ionic Liquids + Water as a Function of Temperature.

    PubMed

    Domańska, U; Królikowska, M

    2012-09-01

    Densities and viscosities have been determined for binary mixtures of the ionic liquids (ILs) 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-butyl-4-methylpyridinium thiocyanate [BMPy][SCN], or 1-butyl-1-methylpyrrolidinium thiocyanate [BMPYR][SCN], or 1-butyl-1-methylpiperidinium thiocyanate [BMPIP][SCN] with water over wide range of temperatures (298.15-348.15) K and ambient pressure. The thermal properties of [BMPy][SCN], i.e. glass transition temperature and the heat capacity at glass transition, have been measured using a differential scanning microcalorimetry, DSC. The decomposition of [BMPy][SCN] was detected. The density and viscosity correlations for these systems have been made using an empirical second-order polynomial and by the Vogel-Fulcher-Tammann equation, respectively. The concentration dependences have been described by polynomials. The excess molar volumes and deviations in viscosity have been calculated from the experimental values and were correlated by Redlich-Kister polynomial expansions. The variations of these parameters, with compositions of the mixtures and temperature, have been discussed in terms of molecular interactions. A qualitative analysis of the trend of properties with composition and temperature was performed. Further, the excess partial molar volumes, [Formula: see text] and [Formula: see text], were calculated and discussed. The isobaric expansivities (coefficient of thermal expansion), α, and the excess isobaric expansivities, α(E), were determined for four ILs and their mixtures with water. The results indicate that the interactions of thiocyanate ILs with water is not as strong as with alcohols, which is shown by the positive/slightly negative excess molar volumes in these binary systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10953-012-9875-7) contains supplementary material, which is available to authorized users.

  14. Ionic liquid crystalline phases in 3-hexadecylimidazolium bromide and binary mixtures with 1-decanol.

    PubMed

    Li, Cuihua; He, Jinhua; Chen, Jiahui; Liu, Jianhong; Zhang, Qianling; Yu, Zhenqiang

    2011-07-15

    3-Hexadecylimidazolium bromide was synthesized and characterized showing formation of thermotropic smectic liquid crystals at temperatures above its melting point from 48.5 to 150.9°C. With decreasing temperature, the peak intensities in XRD patterns increase and full widths at half-maximum decrease, suggesting structural order increases with decreasing temperature. Compared with 1,2-dimethyl-3-hexadecyl-imidazolium bromide and hexafluorophosphate, the IL shows a lower melting point and less degree of chain interdigitation. The main reason is due to a more symmetrical structure and denser assembly of the IL molecules, which results in more steric resistance for the alkyl chain to interdigitate. The self-assembly behavior of the hydrophobic IL in an organic solvent was investigated showing SmA(2) lyotropic liquid crystalline phases. The first-order scattering peak shifts to lower q values with increasing IL content, which is opposite to the shift directions of the binary mixtures of the soluble imidazolium IL and water, indicating a different packing behavior of the hydrophobic IL in 1-decanol.

  15. Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.

    2013-01-01

    The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.

  16. Liquid crystalline phases and their dispersions in aqueous mixtures of glycerol monooleate and glyceryl monooleyl ether.

    PubMed

    Popescu, Georgeta; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2007-01-16

    The aqueous phase behavior of mixtures of 1-glycerol monooleate (GMO) and its ether analogue, 1-glyceryl monooleyl ether (GME) has been investigated by a combination of polarized microscopy, X-ray diffraction, and NMR techniques. Three phase diagrams of the ternary GMO/GME/water system have been constructed at 25, 40, and 55 degrees C. The results demonstrate that the increasing amount of GME favors the formation of the reversed phases, evidenced by the transformation of the lamellar and bicontinuous cubic liquid crystalline phases of the binary GMO/water system into reversed micellar or reversed hexagonal phases. For a particular liquid crystalline phase, increasing the GME content has no effect on the structural characteristics and hydration properties, thus suggesting ideal mixing with GMO. Investigations of dispersed nanoparticle samples using shear and a polymeric stabilizer, Pluronic F127, show the possibility of forming two different kinds of bicontinuous cubic phase nanoparticles by simply changing the GMO/GME ratio. Also NMR self-diffusion measurements confirm that the block copolymer, Pluronic F127, used to facilitate dispersion formation, is associated with nanoparticles and provides steric stabilization.

  17. Liquid mixture detection by InGaAsP semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Zhu, Xiang; Cassidy, Daniel T.

    1997-01-01

    Compact liquid sensors were constructed by using the output of near-infrared semiconductor diode lasers to measure transmission. Multiple short external cavities were used to force diode lasers to provide a wide spectral coverage (approximately equals 72 nm) for the detection of broad absorption features of liquids. The transmission at discrete laser modes were processed by the principal component regression (PCR) and the partial least squares (PLS) algorithms. A root mean square error of prediction of 0.092% and a correlation coefficient R2 of 0.998 were obtained for the detection of water concentration in D2O. The rms value of 0.056% from 30 independent measurements of 0.5% water in D2P showed that the method was sensitive to detect 0.1% concentration difference. The application of the PCR and the PLS algorithms in the scheme was studied in a three mixture system of water, acetone and methanol in terms of optimizing factors and detection of 'outliers'. The limiting noise sources were determined by modeling synthetic data.

  18. Hydrogen self-dynamics in liquid H2-D2 mixtures studied through inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Colognesi, Daniele; Bafile, Ubaldo; Celli, Milva; Neumann, Martin; Orecchini, Andrea

    2015-07-01

    We have measured the dynamic structure factor of liquid para-hydrogen mixed with normal deuterium (T =20 K ) at two different concentration levels using incoherent inelastic neutron scattering. This choice has been made since the presence of D2 modifies the self-dynamics of H2 in a highly nontrivial way, acting both on its pseudophononic and its diffusive parts in a tunable way. After an accurate data reduction, recorded neutron spectra were studied through the modified Young and Koppel model and the H2 center-of-mass self-dynamics structure factor was finally extracted for the two mixtures. Some physical quantities (i.e., self-diffusion coefficient and mean kinetic energy) were determined and compared with accurate quantum calculations, which, in addition, also provided estimates of the velocity autocorrelation function for the H2 centers of mass. These estimates, in conjunction with the Gaussian approximation, were used to simulate the H2 center-of-mass self-dynamics structure factor in the same range as the experimental one. The agreement between measured and calculated spectra was globally good, but some discrepancies proved the unquestionable breakdown of the Gaussian approximation in these semiquantum systems at a level comparable to that already observed in pure liquid para-hydrogen.

  19. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles

    PubMed Central

    Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe

    2016-01-01

    Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947

  20. Vapor-Liquid Equilibrium in the Mixture Trichloromethane CHCl3 + C6H10O Cyclohexanone (EVLM1111, LB5654_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture Trichloromethane CHCl3 + C6H10O Cyclohexanone (EVLM1111, LB5654_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  1. Molecular dynamics simulations of liquid binary mixtures: Partial properties of mixing and transport coefficients

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.

    1992-02-01

    Equilibrium molecular dynamics (MD) computer simulations have been used to determine the transport coefficients of model Ar-Kr, Ar-CH4, and CH4-N2 mixtures at a large number of liquid and dense fluid state points for which experimental data are available. Both species in each mixture are represented by single-site Lennard-Jones pair potentials with Lorentz-Berthelot mixing rules for the unlike interactions. Green-Kubo formulas and mean-square displacements are used to calculate the self-diffusion coefficients for each species and mutual-diffusion coefficients. The shear and bulk moduli and viscosities, thermal conductivity and the thermal diffusion coefficient are determined by Green-Kubo in the [NVE] and [NVT] ensembles. The thermotransport coefficients employ a rigorous definition for the heat flux, which includes the partial enthalpy of the two species, used for the first time to compute these transport coefficients. The partial volumes and enthalpies, and chemical potentials for each species, were obtained from separate computations carried out at constant pressure in the [NPT] ensemble. The simulated density at fixed pressure, shear viscosity, and thermal conductivity of the Ar-Kr mixtures are in excellent agreement with experiment. However, the bulk viscosity shows a significant qualitative difference in the composition and temperature dependence (the latter even in the single component fluids). Agreement with experiment deteriorates as the quasispherical molecules progressively depart from spherical shape. For Ar-CH4 the density (obtained using [NPT] MD) is in good agreement with experiment, whereas the shear viscosity is in progressively poorer agreement with increasing methane content. This is caused by an overestimation of the methane viscosity (˜50% higher than experiment for pure methane). For CH4-N2 there are substantial differences between the simulated quantities and experiment. The average simulated densities are ˜5% higher than experiment over a

  2. ETHANOL, ACETIC ACID, AND WATER ADSORPTION FROM BINARY AND TERNARY LIQUID MIXTURES ON HIGH-SILICA ZEOLITES

    EPA Science Inventory

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...

  3. ETHANOL, ACETIC ACID, AND WATER ADSORPTION FROM BINARY AND TERNARY LIQUID MIXTURES ON HIGH-SILICA ZEOLITES

    EPA Science Inventory

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...

  4. Understanding the Effect of Solvent Structure on Organic Reaction Outcomes When Using Ionic Liquid/Acetonitrile Mixtures.

    PubMed

    Keaveney, Sinead T; Greaves, Tamar L; Kennedy, Danielle F; Harper, Jason B

    2016-12-15

    The rate constant for the reaction between hexan-1-amine and 4-methoxybenzaldehyde was determined in ionic liquids containing an imidazolium cation. The effect on the rate constant of increasing the length of the alkyl substituent on the cation was examined in a number of ionic liquid/acetonitrile mixtures. In general it was found that there was no significant effect of changing the alkyl substituent on the rate constant of this process, suggesting that any nanodomains in these mixtures do not have a significant effect on the outcome of this process. A series of small-angle X-ray scattering and wide-angle X-ray scattering experiments were performed on mixtures of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][N(CF3SO2)2]) and acetonitrile; this work indicated that the main structural changes in the mixtures occur by about a 0.2 mole fraction of ionic liquid in the mixture (χIL). This region at which the main changes in the solvent structuring occurs corresponds to the region at which the main changes in the rate constant and activation parameters occur for SN2 and condensation reactions examined previously; this is the first time that such a correlation has been observed. To examine the ordering of the solvent about the nucleophile hexan-1-amine, WAXS experiments were performed on a number of [Bmim][N(CF3SO2)2]/acetonitrile/hexan-1-amine mixtures, where it was found that some of the patterns featured asymmetric peaks as well as additional peaks not observed in the [Bmim][N(CF3SO2)2]/acetonitrile mixtures; this suggests that the addition of hexan-1-amine to the mixture affects the bulk structure of the liquid. The SAXS/WAXS patterns of mixtures of 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([Bm2im][N(CF3SO2)2]) and acetonitrile were also determined, with the results suggesting that [Bm2im][N(CF3SO2)2] is more ordered than [Bmim][N(CF3SO2)2] due to an enhancement in the short-range interactions.

  5. Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions.

    PubMed

    Oliveira, Filipe S; Cabrita, Eurico J; Todorovic, Smilja; Bernardes, Carlos E S; Lopes, José N Canongia; Hodgson, Jennifer L; MacFarlane, Douglas R; Rebelo, Luís P N; Marrucho, Isabel M

    2016-01-28

    In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.

  6. Understanding liquid mixture phase miscibility via pair energy parameter behaviors with respect to temperatures determined from molecular simulations.

    PubMed

    Oh, Suk Yung; Bae, Young Chan

    2011-05-19

    The miscibility behaviors of binary liquid mixtures were studied by a combination of molecular simulations and thermodynamic theories. Pairwise interaction parameters were obtained from molecular simulations that accounted for the effect of temperature. From a thermodynamic perspective, different types of liquid-liquid equilibrium (LLE) and different degrees of miscibility can be expressed in terms of energy behaviors with respect to temperature. Our simulation results proved this viewpoint by showing a correspondence between the simulation results and experimental observations. To describe phase diagrams, thermodynamic modeling is presented using the energy parameters obtained from the simulations. Correlations are needed to correct size mismatches between the simulations and the thermodynamic model. Using this method, not only the upper critical solution temperature (UCST) but also the closed-loop miscibility phase diagrams could be calculated without requiring additional parameters for specific interactions. The utility of this method is demonstrated for mixtures containing water, hydrocarbon, alcohols, aldehydes, ketones, chlorides, amines, nitriles, sulfides, and other organic liquids in various temperature ranges. The method presented in this paper can facilitate the understanding of the miscibilities in binary liquid mixtures from the viewpoint of thermal energy behaviors.

  7. Working process study of a novel scroll type multiphase pump for the transportation of gas-liquid mixtures

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zha, H. B.; Zhang, X. H.; Zhang, D. H.

    2012-11-01

    A novel scroll type multiphase pump was proposed to transport gas-liquid two-phase mixture. There is a pressure unloading gap from compression chambers to the discharge port by constructing scroll wrap profile with variational meshing clearance in this scroll multiphase pump. In the working process when the volume of working chamber decreases, the pressure of gas-liquid mixtures increases gradually, at the same time small amounts of gas-liquid mixture are pushed to the discharge port from compression chambers through the pressure unloading gap. Therefore, this multiphase pump has an advantage of unloading pressure method automatically, and the frequently problem of liquid impacting in volume multiphase pump is solved. The safety and reliability of volumetric multiphase pump are improved, and the scope of multiphase pump of the gas-liquid ratio is expanded. The working process and the performance characteristics of scroll multiphase pump were analyzed too, and the generation method of scroll wrap profile with variational meshing clearance was investigated. The equations of the profile were obtained, and the changing principle of the working volume and the meshing clearance were analyzed. The geometric theory of scroll multiphase pump was formed. All of that lay the theoretical foundation for engineering design of this novel scroll.

  8. Anisotropic pair correlations in binary and multicomponent hard-sphere mixtures in the vicinity of a hard wall: A combined density functional theory and simulation study.

    PubMed

    Härtel, Andreas; Kohl, Matthias; Schmiedeberg, Michael

    2015-10-01

    The fundamental measure approach to classical density functional theory has been shown to be a powerful tool to predict various thermodynamic properties of hard-sphere systems. We employ this approach to determine not only one-particle densities but also two-particle correlations in binary and six-component mixtures of hard spheres in the vicinity of a hard wall. The broken isotropy enables us to carefully test a large variety of theoretically predicted two-particle features by quantitatively comparing them to the results of Brownian dynamics simulations. Specifically, we determine and compare the one-particle density, the total correlation functions, their contact values, and the force distributions acting on a particle. For this purpose, we follow the compressibility route and theoretically calculate the direct correlation functions by taking functional derivatives. We usually observe an excellent agreement between theory and simulations, except for small deviations in cases where local crystal-like order sets in. Our results set the course for further investigations on the consistency of functionals as well as for structural analysis on, e.g., the primitive model. In addition, we demonstrate that due to the suppression of local crystallization, the predictions of six-component mixtures are better than those in bidisperse or monodisperse systems. Finally, we are confident that our results of the structural modulations induced by the wall lead to a deeper understanding of ordering in anisotropic systems in general, the onset of heterogeneous crystallization, caging effects, and glassy dynamics close to a wall, as well as structural properties in systems with confinement.

  9. Anisotropic pair correlations in binary and multicomponent hard-sphere mixtures in the vicinity of a hard wall: A combined density functional theory and simulation study

    NASA Astrophysics Data System (ADS)

    Härtel, Andreas; Kohl, Matthias; Schmiedeberg, Michael

    2015-10-01

    The fundamental measure approach to classical density functional theory has been shown to be a powerful tool to predict various thermodynamic properties of hard-sphere systems. We employ this approach to determine not only one-particle densities but also two-particle correlations in binary and six-component mixtures of hard spheres in the vicinity of a hard wall. The broken isotropy enables us to carefully test a large variety of theoretically predicted two-particle features by quantitatively comparing them to the results of Brownian dynamics simulations. Specifically, we determine and compare the one-particle density, the total correlation functions, their contact values, and the force distributions acting on a particle. For this purpose, we follow the compressibility route and theoretically calculate the direct correlation functions by taking functional derivatives. We usually observe an excellent agreement between theory and simulations, except for small deviations in cases where local crystal-like order sets in. Our results set the course for further investigations on the consistency of functionals as well as for structural analysis on, e.g., the primitive model. In addition, we demonstrate that due to the suppression of local crystallization, the predictions of six-component mixtures are better than those in bidisperse or monodisperse systems. Finally, we are confident that our results of the structural modulations induced by the wall lead to a deeper understanding of ordering in anisotropic systems in general, the onset of heterogeneous crystallization, caging effects, and glassy dynamics close to a wall, as well as structural properties in systems with confinement.

  10. Local fluctuations in solution mixtures

    PubMed Central

    Ploetz, Elizabeth A.; Smith, Paul E.

    2011-01-01

    An extension of the traditional Kirkwood-Buff (KB) theory of solutions is outlined which provides additional fluctuating quantities that can be used to characterize and probe the behavior of solution mixtures. Particle-energy and energy-energy fluctuations for local regions of any multicomponent solution are expressed in terms of experimentally obtainable quantities, thereby supplementing the usual particle-particle fluctuations provided by the established KB inversion approach. The expressions are then used to analyze experimental data for pure water over a range of temperatures and pressures, a variety of pure liquids, and three binary solution mixtures – methanol and water, benzene and methanol, and aqueous sodium chloride. In addition to providing information on local properties of solutions it is argued that the particle-energy and energy-energy fluctuations can also be used to test and refine solute and solvent force fields for use in computer simulation studies. PMID:21806137

  11. Lubrication of starch in ionic liquid-water mixtures: Soluble carbohydrate polymers form a boundary film on hydrophobic surfaces.

    PubMed

    Yakubov, Gleb E; Zhong, Lei; Li, Ming; Boehm, Michael W; Xie, Fengwei; Beattie, David A; Halley, Peter J; Stokes, Jason R

    2015-11-20

    Soluble starch polymers are shown to enhance the lubrication of ionic liquid-water solvent mixtures in low-pressure tribological contacts between hydrophobic substrates. A fraction of starch polymers become highly soluble in 1-ethyl-3-methylimidazolium acetate (EMIMAc)-water solvents with ionic liquid fraction ≥60wt%. In 65wt% EMIMAc, a small amount of soluble starch (0.33wt%) reduces the boundary friction coefficient by up to a third in comparison to that of the solvent. This low-friction is associated with a nanometre thick film (ca. 2nm) formed from the amylose fraction of the starch. In addition, under conditions where there is a mixture of insoluble starch particles and solubilised starch polymers, it is found that the presence of dissolved amylose enhances the lubrication of starch suspensions between roughened substrates. These findings open up the possibility of utilising starch biopolymers, as well as other hydrocolloids, for enhancing the performance of ionic liquid lubricants.

  12. Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory

    NASA Astrophysics Data System (ADS)

    Daschakraborty, Snehasis; Biswas, Ranjit

    2016-03-01

    A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (xIL). At higher IL concentrations (xIL > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with xIL, deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the xIL dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume ( Vmol dip ) for the rotating dipolar moiety in the present theory and suggests that only a fraction of Vmol dip is involved at high xIL. Expectedly, nice agreement between theory and experiments appears when experimental

  13. Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory.

    PubMed

    Daschakraborty, Snehasis; Biswas, Ranjit

    2016-03-14

    A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (x(IL)). At higher IL concentrations (x(IL) > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with x(IL), deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the x(IL) dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume (V(mol)(dip)) for the rotating dipolar moiety in the present theory and suggests that only a fraction of V(mol)(dip) is involved at high x(IL). Expectedly, nice agreement between theory and experiments appears when

  14. Surface and Interfacial Properties of Nonaqueous-Phase Liquid Mixtures Released to the Subsurface at the Hanford Site

    SciTech Connect

    Nellis, Scott; Yoon, Hongkyu; Werth, Charlie; Oostrom, Martinus; Valocchi, Albert J.

    2009-05-01

    Surface and interfacial tensions that arise at the interface between different phases are key parameters affecting Nonaqueous Phase Liquid (NAPL) movement and redistribution in the vadose zone after spill events. In this study, the impact of major additive components on surface and interfacial tensions for organic mixtures and wastewater was investigated. Organic mixture and wastewater compositions are based upon carbon tetrachloride (CT) mixtures released at the Hanford site, where CT was discharged simultaneously with dibutyl butyl phosphonate (DBBP), tributyl phosphate (TBP), dibutyl phosphate (DBP), and a machining lard oil (LO). A considerable amount of wastewater consisting primarily of nitrates and metal salts was also discharged. The tension values measured in this study revealed that the addition of these additive components caused a significant lowering of the interfacial tension with water or wastewater and the surface tension of the wastewater phase in equilibrium with the organic mixtures, compared to pure CT, but had minimal effect on the surface tension of the NAPL itself. These results lead to large differences in spreading coefficients for several mixtures, where the additives caused both a higher (more spreading) initial spreading coefficient and a lower (less spreading) equilibrium spreading coefficient. This indicates that if these mixtures migrate into uncontaminated areas, they will tend to spread quickly, but form a higher residual NAPL saturation after equilibrium, as compared to pure CT. Over time, CT likely volatilizes more rapidly than other components in the originally disposed mixtures and the lard oil and phosphates would become more concentrated in the remaining NAPL, resulting in a lower interfacial tension for the mixture. Spreading coefficients are expected to increase and perhaps change the equilibrated organic mixtures from nonspreading to spreading in water-wetting porous media. These results show that the behavior of organic

  15. Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2003-09-01

    Acetone and water mixtures covering the whole solubility range were measured by Fourier transform infrared attenuated total reflectance spectroscopy. In this system, only water can supply the hydrogen atoms necessary for hydrogen bonding. Using spectral windowing with factor analysis (FA), 10 principal factors were retrieved, five water and five acetone. Hydrogen bonding is observed on the carbonyl stretch band as water is introduced in the solution, redshifting the band further from its gas position than that observed in pure liquid acetone. This indicates that the hydrogen bonding is stronger than the acetone dipole-dipole interactions because it overrides them. A water molecule isolated in acetone is twice H bonded through its two H atoms; although both OH groups are H-bond donors, the OH stretch band is less redshifted (˜138 cm-1) than that of pure liquid water (˜401 cm-1). This is attributable to the two lone electron pairs remaining on the oxygen atom that sustain a large part of the OH valence bond strength. Hydrogen bonds on the water oxygen weaken both its OH valence bonds and modify the OH stretch band when water is added to the solution. The oxygen atoms of both water and acetone can accept 0, 1, and 2 H bonds given by water to yield three water and three acetone situations. Since these six situations are far less than the 10 principal factors retrieved by FA, other perturbations must be present to account for the difference. Although acetone and water are intermingled through H bonds, hydrates in the sense of an acetone molecule sequestering a number of water molecules or altering the H-bonding water network are not present because the principal factors evolve independently.

  16. Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures.

    PubMed

    Jiang, Wei; Wang, Yanting; Voth, Gregory A

    2007-05-10

    Molecular dynamics simulations have been carried out to investigate nanostructural organization in mixtures of 1-octyl-3-methylimidazolium nitrate ionic liquid and water at multiple water concentrations. Evolution of the polar network, water network, and micelle structures is visualized and analyzed via partial radial distribution functions. The calculated static partial structure factors show that within the range of water contents examined, polar networks, water networks, and micelles possess an approximately invariant characteristic length at around 20 A. Furthermore, the above calculations point out that, as the amount of water increases, the polar network is continuously broken up (screened) by the intruding water, while the structural organization of the water network and the micelle exhibits a turnover. At the turnover point, the most ordered micelle (cation-cation) structure and water (water-anion-water) network are formed. Thereafter, the structural organization abates drastically, and only loose micelle structure exists due to the dominant water-water interactions. The simulated turnover of structural organization agrees with the sharpest peak in the experimentally obtained structure factor in aqueous solutions of similar ionic liquids; the simulated water structure reveals that water can form liquidlike associated aggregates due to the planar symmetry and strong basicity of NO(3)-, in agreement with experiment. The turnover of structural organization of micelles results from the persistent competition between the hydrophobic interactions of the nonpolar groups and the breakup of the charged polar network with increasing water content, whereas the turnover of the water network results from the competition between the water-water and water-anion interactions.

  17. Unusual solvatochromic absorbance probe behaviour within mixtures of poly(ethylene glycol)-400 + ionic liquid, [bmim][Tf2N

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Ali, Maroof; Malik, Nisar Ahmad; Uzair, Sahar

    2014-03-01

    The potentially green solvents made up of ionic liquids (ILs) and poly(ethylene glycols) may have wide range of the applications in many chemical and biochemical fields. In the present work, solvatochromic absorbance probe behaviour is used to assess the physicochemical properties of the mixtures composed of PEG-400 + IL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., ETN , indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][Tf2N] + PEG-400 mixtures to be even higher than that of neat [bmim][Tf2N], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (π∗) obtained separately from the electronic absorbance response of probe N,N-diethyl-4-nitroaniline, and the HBD acidity (α) of PEG-400 + [bmim][Tf2N] mixtures are also observed to be anomalously high. A comparative study of the PEG + IL mixtures has also been done with PEG-400 + molecular organic solvents (protic polar [methanol], aprotic polar [N,N-dimethylformamide], and non polar, [benzene]) mixtures, but these mixtures do not show this type of unusual behaviour. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within PEG-400 + different solvent mixtures.

  18. TMVOC, A Numerical Simulator for Three-Phase Non-isothermal Flowsof Multicomponent Hydrocarbon Mixtures in Variably SaturatedHeterogeneous Media

    SciTech Connect

    Pruess, Karsten; Battistelli, Alfredo

    2005-08-20

    TMVOC is designed for studying subsurface contamination by volatile organic compounds (VOCs), such as hydrocarbon fuels and industrial solvents. It can model the one-, two-, or three-dimensional migration of non-aqueous phase liquids (NAPLs) through the unsaturated and saturated zones, the formation of an oil lens on the water table, the dissolution and subsequent transport of VOCs in groundwater, as well as the vaporization and migration of VOCs in the interstitial air of the unsaturated zone, and the reversible sorption of VOCs on the rock matrix of a porous medium. TMVOC accounts for differences in aqueous solubility and volatility of different VOCs that may be present in a NAPL. Thermal remediation treatments such as steam injection or electric resistance heating and associated phase change and flow effects can also be modeled. A simple half-life model for biodegradation is included as well.

  19. Temperature-dependent formation and transformation of mesostructures in water-ionic liquid mixtures.

    PubMed

    Kattnig, Daniel R; Hinderberger, Dariush

    2012-05-01

    The temperature-dependent formation and transformation of mesostructures in binary mixtures of the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim(+)][BF(4)(-)]) and water are characterized. Through addition of nitroxide radicals as paramagnetic spin probes, the temperature dependence of the solution structure can be assessed by using electron paramagnetic resonance (EPR) spectroscopy from typical solutes' points of view. Additionally, the phase behavior on cooling and reheating is probed by differential scanning calorimetry (DSC). Thermal hysteresis and memory effects are observed, and DSC is used to identify the crystallization and thawing of ice as the pertinent phase transition. The EPR data of the nitroxide radicals before and after freezing and thawing reveal a transformation of the mesostructures, probably triggered by the crystallization of water pools to ice. A more polar state results after thawing, thereby suggesting a rupture and dissolution of the ordered IL-rich mesostructures. If the thawed solutions are not agitated, the system relaxes very slowly, that is, at room temperature with a time constant of approximately 90 h, to its equilibrium state of mesophase-separated IL-rich and bulk-like water regions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phase conversion and interface growth in phase-separated 3He - 4He liquid mixtures

    NASA Astrophysics Data System (ADS)

    Abe, Haruka; Satoh, Takeo; Burmistrov, Serguei N.

    2005-10-01

    We have developed a method for measuring the transmission coefficient of a sound propagating through the interface in phase-separated He3-He4 liquid mixtures. The method and the results are described with discussions by examining the phase-conversion process of He3 quasiparticles driven to flow across the interface. From the data, we have determined the kinetic growth coefficient of the interface, ξ(T,P,ω) , as a function of temperature, pressure, and frequency. The temperature range of the present investigation is about 2-100mK at the pressure mainly around 1bar with sound frequency 9.64, 14.4, and 32.4MHz . The main specific features observed for the kinetic growth coefficient are, as follows: (i) there is a maximum at some temperature Tm(ω) depending on the frequency, (ii) above Tm(ω) , ξ decreases with the increase of temperature as ∝ω5/2T-3 , and (iii) below Tm(ω) , ξ becomes frequency independent and diminishes as a cube of temperature, T3 .

  1. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    NASA Astrophysics Data System (ADS)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  2. Adsorption from n-heptane/benzene liquid mixture on acid leached bentonite powders

    NASA Astrophysics Data System (ADS)

    Sarıkaya, Yüksel; Baykal, Mehmet; Önal, Müşerref; Yener, Nilgün

    2013-10-01

    In this study, adsorption excess isotherms of n-heptane/benzene liquid mixture on hydrochloric acid leached bentonite powders were determined. Adsorptions were conducted at 25 °C for 48 h. Experimental results were evaluated with both Schay-Nagy (SN) and Everett (E) methods. Specific surface areas (SSN and SE) of the powders were calculated regarding monolayer adsorption capacity of the preferentially adsorbed benzene. Adsorption equilibrium constants (K ≫ 1) were obtained by the E-method. The SE and SSN values are closed to each other. SE-values were found much lower than the corresponding Brunauer, Emmett and Teller (BET)-values. This difference was discussed with respect to the interaction of adsorbed molecules with solid surface, their collision diameter, molar cross sectional surface area and orientation in dense monolayer. Even the maximum for the SE was not associated with the maxima for K and nanopore volume (V), their values changed approximately parallel to each other with respect to the HCl% by the leaching.

  3. Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent.

    PubMed

    Gericke, Martin; Schaller, Jens; Liebert, Tim; Fardim, Pedro; Meister, Frank; Heinze, Thomas

    2012-06-20

    The tosylation of cellulose in ionic liquids (ILs) was studied. Due to the beneficial effect of different co-solvents, the reaction could be performed at 25°C without the need of heating (in order to reduce viscosity) or cooling (in order to prevent side reactions). The effects of reaction parameters, such as time, molar ratio, and type of base, on the degree of substitution (DS) with tosyl- and chloro-deoxy groups as well as on the molecular weight were evaluated. Products with a DStosyl≤1.14 and DSCl≤0.16 were obtained and characterized by means of NMR- and FT-IR spectroscopy in order to evaluate their purity and distribution of functional groups within the modified anhydroglucose unit (AGU). Tosylation of cellulose in mixtures of IL and a co-solvent was found to result in predominant substitution at the primary hydroxyl group. Size exclusion chromatography (SEC) revealed only a moderate degradation of the polymer backbone at a reaction time of 4-8h. Finally, the nucleophilic displacement (SN) of tosyl- and chloro-deoxy groups by azide as well as recycling of the ILs was studied.

  4. Highly selective GC stationary phases consisting of binary mixtures of polymeric ionic liquids.

    PubMed

    Zhao, Qichao; Anderson, Jared L

    2010-01-01

    GC stationary phases composed of binary mixtures of two polymeric ionic liquids (PILs), namely, poly(1-vinyl-3-hexylimidazolium) bis[(trifluoromethyl)sulfonyl]imide (poly(ViHIm-NTf(2)))/poly(1-vinyl-3-hexylimidazolium) chloride (poly(ViHIm-Cl)) and poly(1-vinyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl]imide (poly(ViHDIm-NTf(2)))/poly(1-vinyl-3-hexadecylimidazolium) chloride (poly(ViHDIm-Cl)), were evaluated in terms of their on-set bleed temperature and separation selectivity. A total of six neat or binary PIL stationary phases were characterized using the solvation parameter model to investigate the effects of the polymeric cation and anion and PIL composition on the system constants of the resulting stationary phases. The hydrogen bond basicity of the mixed poly(ViHIm-NTf(2))/poly(ViHIm-Cl) stationary phases was enriched linearly with the increase in the poly(ViHIm-Cl) content. Results revealed that tuning the composition of the stationary phase allowed for fine control of the retention factors and separation selectivity for alcohols and carboxylic acids as well as selected ketones, aldehydes, and aromatic compounds. A reversal of elution order was observed for particular classes of analytes when the weight percentage of the chloride-based PIL was increased.

  5. DETERMINATION OF SOLID-LIQUID EQUILIBRIA DATA FOR MIXTURES OF HEAVY HYDROCARBONS IN A LIGHT SOLVENT

    SciTech Connect

    F.V. Hanson; J.V. Fletcher; Karthik R.

    2003-06-01

    A methodology was developed using an FT-IR spectroscopic technique to obtain solid-liquid equilibria (SLE) data for mixtures of heavy hydrocarbons in significantly lighter hydrocarbon diluents. SLE was examined in multiple Model Oils that were assembled to simulate waxes. The various Model oils were comprised of C-30 to C-44 hydrocarbons in decane. The FT-IR technique was used to identify the wax precipitation temperature (WPT). The DSC technique was also used in the identification of the onset of the two-phase equilibrium in this work. An additional Model oil made up of C-20 to C-30 hydrocarbons in decane was studied using the DSC experiment. The weight percent solid below the WPT was calculated using the FT-IR experimental results. The WPT and the weight percent solid below the WPT were predicted using an activity coefficient based thermodynamic model. The FT-IR spectroscopy method is found to successfully provide SLE data and also has several advantages over other laboratory-based methods.

  6. A Method for Microscale Combustion of Near Stoichiometric Energy Dense Liquid Fuel Mixtures

    NASA Astrophysics Data System (ADS)

    Tolmachoff, E. D.; Allmon, W. R.; Waits, C. M.

    2013-12-01

    This paper reports on the potential of a heterogeneous/homogeneous (HH) reactor for use as a fuel-flexible heat source, meeting the needs of the next generation of high temperature thermal-to-electric (TEC) portable power converters. In this class of reactor, low activation energy catalytic reactions provide a means to stabilize high activation energy homogeneous reactions. Diffusion limited surface reactions play a critical role in HH reactor operation. Surface conversion must be sufficiently fast to generate the high temperatures (~1000 K) necessary to initiate gas phase reactions. Therefore, fuel diffusivity and the reactor dimension are important parameters in governing HH reactor operation. We examine the performance of an HH reactor fuelled by propane and n-dodecane, representing two extremes of liquid hydrocarbon diffusivity, as a function of confining reactor dimension. Unburned fuel/air mixtures are close to stoichiometric, which is an important factor in minimizing the amount of excess air and, therefore, balance of plant energy costs. At moderate levels of confinement, the reactor is capable producing high, uniform temperatures for both fuels.

  7. Method of extracting iodine from liquid mixtures of iodine, water and hydrogen iodide

    DOEpatents

    Mysels, Karol J.

    1979-01-01

    The components of a liquid mixture consisting essentially of HI, water and at least about 50 w/o iodine are separated in a countercurrent extraction zone by treating with phosphoric acid containing at least about 90 w/o H.sub.3 PO.sub.4. The bottom stream from the extraction zone is substantially completely molten iodine, and the overhead stream contains water, HI, H.sub.3 PO.sub.4 and a small fraction of the amount of original iodine. When the water and HI are present in near-azeotropic proportions, there is particular advantage in feeding the overhead stream to an extractive distillation zone wherein it is treated with additional concentrated phosphoric acid to create an anhydrous HI vapor stream and bottoms which contain at least about 85 w/o H.sub.3 PO.sub.4. Concentration of these bottoms provides phosphoric acid infeed for both the countercurrent extraction zone and for the extractive distillation zone.

  8. Ether and siloxane functionalized ionic liquids and their mixtures as electrolyte for lithium-ion batteries.

    PubMed

    Chavan, Santosh N; Tiwari, Aarti; Nagaiah, Tharamani C; Mandal, Debaprasad

    2016-06-28

    The present study deals with an investigation of two novel imidazolium ionic liquids bearing ether-ether (1O2O2-Im-2O1) or ether-siloxane (1O2O2-Im-1SiOSi) functionalities with TFSI anion and their mixtures with propylene carbonate as electrolytes in lithium-ion batteries. The electrochemical stability and conductivity of these novel ILs were analyzed by electrochemical studies, such as cyclic voltammetry, linear sweep voltammetry and impedance measurements. The applicability of these ILs as electrolytes in Li-ion batteries was studied in the presence of a high concentration of LiTFSI (1 mol kg(-1) electrolyte) and the ether-ether IL was shown to possess a high electrochemical stability window (ESW) of 5.9 V and good conductivity of 2.2 mS cm(-1). The electrochemical stability and conductivity were further complimented by self-diffusion of different ions using pulsed gradient spin-echo (PGSE) NMR, viscosity and thermal properties like TGA and DSC analysis. More importantly, we explored the effect of temperature on the electrochemical stability and conductivity of these ILs by electrochemical impedance spectroscopy.

  9. Morphology and Ionic Conductivity of Oriented Block Copolymer/Ionic Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Sharick, Sharon; Winey, Karen I.

    2015-03-01

    Ion-containing block copolymers with increased continuity and long-range order of ion-containing microdomains were prepared to probe the impact of grain boundaries and microdomain orientation on ion transport. We studied poly(styrene- b-methyl methacrylate) diblock copolymers swollen with 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonylimide) (SbMMA/IL), and characterized the thermal transitions, morphologies, and ionic conductivities by differential scanning calorimetry, small-angle X-ray scattering, and electrochemical impedance spectroscopy over a range of compositions. Two glass transition temperatures (Tgs) are observed, corresponding to PS and PMMA/IL microdomains, and Tg,PMMA/IL is modeled well by the Gordon-Taylor expression. SbMMA/IL films prepared by solvent evaporation exhibit strongly microphase-separated lamellar morphology with long-range order. Slower rates of solvent evaporation produce films with lamellae preferentially oriented to be in the plane. In-plane conductivities increase with both increasing ionic liquid content and with better parallel alignment of lamellae. The Sax and Ottino model will be used to compare the conductivity of SbMMA/IL with the homopolymer/IL mixture, PMMA/IL, and to discuss the ion transport mechanism.

  10. Interfacial Dynamics in Liquid-Solid Mixtures: A Study of Solidification and Coarsening

    NASA Astrophysics Data System (ADS)

    Gibbs, John W.

    The microstructural evolution of liquid-solid mixtures is examined using X-ray computed tomography to make in-situ, 4D (three spatial dimensions and time) measurements of the interfaces between the liquid and solid phases. Samples are a variety of hypo-eutectic Al-Cu alloys and the total characterized volume is approximately 1 mm3. The coarsening datasets span solid volume fractions of 30% to 80% and have durations of up to 15 hours, making them some of the largest, most comprehensive coarsening datasets. This data is used show that the solid fraction does not have a significant effect on the coarsening rate, unlike in a system of spherical particles. The interfacial curvature and velocity data that is made possible by the 4D measurements is used to develop a relationship between interface shape and the average normal velocity for a piece of interface with that shape. This model accounts for both capillarity and shape-related diffusional effects. Neighborhood related diffusional effects lead to a distribution in velocities about the mean; these distributions are examined and shown to follow a Gaussian distribution. A novel new data collection and processing algorithm for X-ray computed tomography, time-interlaced model-based iterative reconstruction, is used to achieve 4D data with micrometer level spatial resolution and 1.8 second temporal resolution. This is approximately an order of magnitude better than what has been achieved before and yields the first data with sufficient spatial and temporal resolutions to characterize the microstructure during solidification. The resulting data of dendritic growth in an Al-24wt%Cu alloy that is being cooled at 2°C/minute shows the formation of split tip secondary dendrite arms that have not been seen before in transparent organic analogues. A single free-growing dendrite is isolated from this data and analyzed as a function of distance from the tip, resulting in relationships for the volume of solid, Vs proportional to

  11. Effects of variation in chain length on ternary polymer electrolyte - Ionic liquid mixture - A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya

    2015-10-01

    Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.

  12. The Amphiphilic Character of Cellulose Molecules in True Solution in Solvent Mixtures Containing Ionic Liquid and its Utilization in Emulsification

    NASA Astrophysics Data System (ADS)

    Napso, Sofia; Cohen, Yachin; Rein, Dmitry; Khalfin, Rafail; Szekely, Noemi

    2015-03-01

    Cellulose is the most abundant renewable material in nature that is utilized as a raw material for fabrication of synthetic products. Although it is not soluble in common solvents, there is significant interest in the use of solvent mixtures containing ionic liquids (IL) and polar organic solvents for cellulose dissolution. We present evidence for true molecular dissolution of cellulose in binary mixtures of common polar organic solvents with an ionic liquid, using cryogenic transmission electron microscopy, small-angle neutron-, x-ray- and static light scattering. In particular, the measured low values of the molecular, gyration radius and persistence length indicate the absence of significant aggregation of the dissolved chains. We conjecture that the dissolved cellulose chains are amphiphilic. This can be inferred from the facile fabrication of cellulose-encapsulated colloidal oil-in-water or water-in-oil dispersions. This may be done by mixing water, oil and cellulose solution in an ionic liquid. A more practical alternative is to form first a hydrogel from the cellulose/ionic liquid solution by coagulation with water and applying it to sonicated water/oil or oil/water mixtures. Apparently the dissolution/ regeneration process affords higher mobility to the cellulose molecules so an encapsulation coating can be formed at the water-oil interface.

  13. New insight into phase equilibria involving imidazolium bistriflamide ionic liquids and their mixtures with alcohols and water.

    PubMed

    Pereiro, Ana B; Deive, Francisco J; Rodríguez, Ana; Ruivo, Diana; Canongia Lopes, José N; Esperança, José M S S; Rebelo, Luís P N

    2010-07-15

    The fluid phase equilibria (liquid-liquid demixing behavior (LLE)) of mixtures of ionic liquids of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide family, [C(n)mim][NTf(2)], with 2-methylpropanol or n-octanol were investigated. Binary mixtures of [C(4)mim][NTf(2)] + alcohol and [C(6)mim][NTf(2)] + alcohol were compared to pseudobinary mixtures of (0.5[C(2)mim] + 0.5[C(6)mim])[NTf(2)] + alcohol and (0.5[C(2)mim] + 0.5[C(10)mim])[NTf(2)] + alcohol, respectively. Additionally, the presence of water in the studied alcohols or as a third component in the system was analyzed in order to check any possible deviation from the LLE observed for the anhydrous systems. Systems containing small fractions of ionic liquid show similar LLE between the corresponding binary and pseudobinary systems; however, large differences are observed in the presence of water when the IL mass fraction is increased.

  14. Excess Volumes and Excess Isentropic Compressibilities of Binary Liquid Mixtures of Trichloroethylene with Esters at 303.15 K

    NASA Astrophysics Data System (ADS)

    Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.

    2015-11-01

    Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.

  15. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Peng, Zeng-Hui; Liu, Yong-Gang; Zheng, Zhi-Gang; Xuan, Li

    2009-10-01

    Fully atomistic molecular dynamics (MD) simulations at 293, 303 and 313 K have been performed for the four-component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions (TCFs) were calculated from MD trajectories. The rotational viscosity coefficients (RVCs) of the mixture were calculated using the Nemtsov-Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detail. Reasonable agreement between the simulated and experimental values was found.

  16. A theoretical and experimental chemist's joint view on hydrogen bonding in ionic liquids and their binary mixtures.

    PubMed

    Stark, Annegret; Brehm, Martin; Brüssel, Marc; Lehmann, Sebastian B C; Pensado, Alfonso S; Schöppke, Matthias; Kirchner, Barbara

    2014-01-01

    A combined experimental and theoretical approach including quantum chemistry tools and computational simulation techniques can provide a holistic description of the nature of the interactions present in ionic liquid media. The nature of hydrogen bonding in ionic liquids is an especially intriguing aspect, and it is affected by all types of interactions occurring in this media. Overall, these interactions represent a delicate balance of forces that influence the structure and dynamics, and hence the properties of ionic liquids. An understanding of the fundamental principles can be achieved only by a combination of computations and experimental work. In this contribution we show recent results shedding light on the nature of hydrogen bonding, for certain cases the formation of a three-dimensional network of hydrogen bonding, and its dynamics by comparing 1-ethyl-3-methylimidazolium based acetate, chloride and thiocyanate ionic liquids.A particularly interesting case to study hydrogen bonding and other interactions is the investigation of binary mixtures of ionic liquids of the type [cation1][anion1]/[cation1][anion2]. In these mixtures, competing interactions are to be expected. We present both a thorough property meta-analysis of the literature and new data covering a wide range of anions, i.e., mixtures of 1-ethyl-3-methylimidazolium acetate with either trifluoroacetate, tetrafluoroborate, methanesulfonate, or bis(trifluoromethanesulfonyl)imide. In most cases, ideal mixing behavior is found, a surprising result considering the multitude of interactions present. However, ideal mixing behavior allows for the prediction of properties such as density, refractive index, surface tension, and, in most cases, viscosity as function of molar composition. Furthermore, we show that the prediction of properties such as the density of binary ionic liquid mixtures is possible by making use of group contribution methods which were originally developed for less complex non

  17. New methods for determination of cinnarizine in mixture with piracetam by spectrodensitometry, spectrophotometry, and liquid chromatography.

    PubMed

    Metwally, Fadia H; Elzeany, B A; Darwish, H W

    2005-01-01

    Four new methods were developed and validated for the determination of cinnarizine HCl in its binary mixture with piracetam in pure and pharmaceutical preparations. The first one was a densitometric analysis that provides a simple and rapid method for the separation and quantification of cinnarizine HCI. The method depends on the quantitative densitometric evaluation of thin-layer chromatograms of cinnarizine HCI at 252 nm over concentration range of 1-6 microg/spot, with a mean accuracy of 100.05 +/- 0.91%. The second method was determination of the drug using a colorimetric method that utilizes the reaction of 3-methyl-benzothiazolin-2-one in the presence of FeCl3 as an oxidant. The green color of the resulting product was measured at 630 nm over concentration range 10-40 microg/mL, with a mean accuracy of 100.10 +/- 1.13%. The third method was a direct spectrophotometric determination of cinnarizine HCI at 252 nm over the concentration range 7-20 microg/mL, while piracetam was determined by derivative ratio spectrophotometry at 221.6 nm over concentration range 5-30 microg/mL, with a mean accuracy of 100.14 +/- 0.79 and 100.26 +/- 1.24% for cinnarizine HCI and piracetam, respectively. The last method was a liquid chromatography analysis of both cinnarizine HCI and piracetam, depending on quantitative evaluation of chromatograms of cinnarizine HCI and piracetam at 252 and 212 nm, respectively, over the concentration range 10-200 microg/mL for cinnarizine HCI and 20-500 microg/mL for piracetam, with a mean accuracy of 100.03 +/- 0.89 and 100.40 +/- 0.94% for cinnarizine HCI and piracetam, respectively. The proposed procedures were checked using laboratory-prepared mixtures and successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed procedures was further assessed by applying the standard addition technique. Recoveries were quantitative, and the results obtained agreed with those obtained by other reported methods.

  18. An investigation of solute-solvent interactions in binary liquid mixtures of 3'-methoxyacetophenone: using Raman spectroscopy and DFT calculations.

    PubMed

    Yamini, D; Ramakrishnan, V

    2013-07-01

    Raman spectral measurements have been carried out for neat 3'-methoxy acetophenone (3'-MAP) and binary liquid mixtures of 3'-MAP in three solvents of different polarity. Also Density Functional Theory (DFT) geometry optimization and vibrational wavenumber calculation have been performed on monomer and dimer structures of 3'-MAP to analyze the experimentally observed Raman spectrum. Mulliken charge analysis has also been made on optimized geometries of 3'-MAP with solvents. The changes associated with the observed peak position, intensity and linewidth in the carbonyl stretching mode of 3'-MAP are explained as a consequence of intermolecular interactions between solute-solute and solute-solvent molecules. This analysis reports that the solute-solvent interaction is dominant in the case of binary liquid mixtures of 3'-MAP with ethanol compared to DMF and benzene.

  19. Shock Hugoniot equations of state for binary ideal (toluene/fluorobenzene) and nonideal (ethanol/water) liquid mixtures.

    PubMed

    Schulze, Peter A; Dang, Nhan C; Bolme, Cynthia A; Brown, Kathryn E; McGrane, Shawn D; Moore, David S

    2013-07-25

    Laser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent χ(ethanol) = 0%, 3.4%, 5.4%, 7.5%, 9.7%, 11%, 18%, 33%, 56%, 100%) and ideal liquid mixtures (toluene/fluorobenzene solutions with mole percent χ(toluene) = 0%, 26.0%, 49.1%, 74.9%, 100%). The shock and particle velocities obtained from the UDE data were compared to the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. It was found that the water UDE data fit to a ULH-form equation suggests an intercept of 1.32 km/s, lower than the literature ambient sound speed in water of 1.495 km/s (Mijakovic et al. J. Mol. Liq. 2011, 164, 66-73). Similarly, the ethanol UDE data fit to a ULH-form equation suggests an intercept of 1.45 km/s, which lies above the literature ambient sound speed in ethanol of 1.14 km/s. Both the literature plate impact and UDE Hugoniot data lie below the ULH for water. Likewise, the literature plate impact and UDE Hugoniot data lie above the ULH for ethanol. The UDE Hugoniot data for the mixtures of water and ethanol cross the predictions of the ULH near the same concentration where the sound speed reaches a maximum. In contrast, the UDE data from the ideal liquids and their mixtures are well behaved and agree with ULH predictions across the concentration range. The deviations of the nonideal ethanol/water data from the ULH suggest that complex hydrogen bonding networks in ethanol/water mixtures alter the compressibility of the mixture.

  20. Atomistic Insight into Tetraalkylphosphonium-Bis(oxalato)borate Ionic Liquid/Water Mixtures. I. Local Microscopic Structure.

    PubMed

    Wang, Yong-Lei; Sarman, Sten; Glavatskih, Sergei; Antzutkin, Oleg N; Rutland, Mark W; Laaksonen, Aatto

    2015-04-23

    Atomistic simulations have been performed to investigate the microscopic structural organization of aqueous solutions of trihexyltetradecylphosphonium bis(oxalato)borate ([P6,6,6,14][BOB]) ionic liquid (IL). The evolution of the microscopic liquid structure and the local ionic organization of IL/water mixtures as a function of the water concentration is visualized and systematically analyzed via radial and spatial distribution functions, coordination numbers, hydrogen bond network, and water clustering analysis. The microscopic liquid structure in neat IL is characterized by a connected apolar network composed of the alkyl chains of [P6,6,6,14] cations and isolated polar domains consisting of the central segments of [P6,6,6,14] cations and [BOB] anions, and the corresponding local ionic environment is described by direct contact ion pairs. In IL/water mixtures with lower water mole fractions, the added water molecules are dispersed and embedded in cavities between neighboring ionic species and the local ionic structure is characterized by solvent-shared ion pairs through cation-water-anion triple complexes. With a gradual increase in the water concentration in IL/water mixtures, the added water molecules tend to aggregate and form small clusters, intermediate chain-like structures, large aggregates, and eventually a water network in water concentrated simulation systems. A further progressive dilution of IL/water mixtures leads to the formation of self-organized micelle-like aggregates characterized by a hydrophobic core and hydrophilic shell consisting of the central polar segments in [P6,6,6,14] cations and [BOB] anions in a highly branched water network. The striking structural evolution of the [P6,6,6,14][BOB] IL/water mixtures is rationalized by the competition between favorable hydrogen bonded interactions and strong electrostatic interactions between the polar segments in ionic species and the dispersion interactions between the hydrophobic alkyl chains in

  1. Molecular dynamics of a binary mixture of twist-bend nematic liquid crystal dimers studied by dielectric spectroscopy.

    PubMed

    Robles-Hernández, Beatriz; Sebastián, Nerea; Salud, Josep; Diez-Berart, Sergio; Dunmur, David A; Luckhurst, Geoffrey R; López, David O; de la Fuente, M Rosario

    2016-06-01

    We report a comprehensive dielectric characterization of a liquid crystalline binary mixture composed of the symmetric mesogenic dimer CB7CB and the nonsymmetric mesogenic dimer FFO9OCB. In addition to the high-temperature nematic phase, such a binary mixture shows a twist-bend nematic phase at room temperature which readily vitrifies on slow cooling. Changes in the conformational distribution of the dimers are reflected in the dielectric permittivity and successfully analyzed by means of an appropriate theoretical model. It is shown that the dielectric spectra of the mixture reflect the different molecular dipole properties of the components, resembling in the present case the characteristic dielectric spectra of nonsymmetric dimers. Comparison of the nematic and twist-bend nematic phases reveals that molecular dynamics are similar despite the difference in the molecular environment.

  2. Equation of state modeling of the phase equilibria of ionic liquid mixtures at low and high pressure.

    PubMed

    Karakatsani, Eirini K; Economou, Ioannis G; Kroon, Maaike C; Bermejo, Maria D; Peters, Cor J; Witkamp, Geert-Jan

    2008-10-28

    Accurate design of processes based on ionic liquids (ILs) requires knowledge of the phase behavior of the systems involved. In this work, the truncated perturbed chain polar statistical associating fluid theory (tPC-PSAFT) is used to correlate the phase behavior of binary and ternary IL mixtures. Both non-polar and polar solvents are examined, while methyl imidazolium ILs are used in all cases. tPC-PSAFT accounts explicitly for weak dispersion interactions, highly directive polar interactions between permanent dipolar and quadrupolar molecules and association between hydrogen bonding molecules. For mixtures of non-polar solvents, tPC-PSAFT predicts accurately the binary mixture data. For the case of polar solvents, a binary interaction parameter is fitted to the experimental data and the agreement between experiment and correlation is very good in all cases.

  3. Cellulose amorphization by swelling in ionic liquid/water mixtures: a combined macroscopic and second-harmonic microscopy study.

    PubMed

    Glas, Daan; Paesen, Rik; Depuydt, Daphne; Binnemans, Koen; Ameloot, Marcel; De Vos, Dirk E; Ameloot, Rob

    2015-01-01

    Amorphization of cellulose by swelling in ionic liquid (IL)/water mixtures at room temperature is a suitable alternative to the dissolution-precipitation pretreatment known to facilitate enzymatic digestion. When soaking microcrystalline cellulose in the IL 1-ethyl-3-methylimidazolium acetate containing 20 wt % water, the crystallinity of the cellulose sample is strongly reduced. As less than 4 % of the cellulose dissolves in this mixture, this swelling method makes a precipitation step and subsequent energy-intensive IL purification redundant. Second-harmonic generation (SHG) microscopy is used as a structure-sensitive technique for in situ monitoring of the changes in cellulose crystallinity. Combined optical and SHG observations confirm that in the pure IL complete dissolution takes place, while swelling without dissolution in the optimal IL/water mixture yields a solid cellulose with a significantly reduced crystallinity in a single step. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparative Study of the Intermolecular Dynamics of Benzene/Ionic Liquid Mixtures and Benzyl Functionalized Ionic Liquids: Femtosecond OKE Spectroscopic Measurements

    NASA Astrophysics Data System (ADS)

    Quitevis, Edward; Xue, Lianjie; Tamas, George

    2014-03-01

    Ionic liquids (ILs) are salts with melting points below 100 °C that are comprised of an organic cation and an inorganic or organic anion. There is great interest in obtaining a molecular level understanding of their unique physical and chemical properties, of which one of them is their ability, despite being inherently polar liquids, to dissolve large quantities of nonpolar aromatic compounds. In order to understand further the solvation of aromatic molecules in ILs, we have performed optical effect (OKE) spectroscopic measurements on 1-benzyl-3-methylimidazolum bistriflate, 1,3-dibenzylimidazolum bistriflate and the corresponding 1:1 and 2:1 benzene/1,3-dimethylimazolium bistrifate (C6H6/C1C1) mixtures. In contrast to being free in benzene/IL mixtures, the benzene rings are tethered to the imidazolium ring via methylene linkages in the case of first two ILs. The intermolecular Kerr spectra indicate that the motion of the benzene rings becomes increasingly more restricted in going from neat benzene to benzene dissolved in 1,3-dimethylimazolium bistrifate to benzene rings tethered to the imidazolium ring. This restriction causes the Kerr spectra effectively to shift to higher frequency in going from neat liquid benzene to C6H6/C1C1 mixtures to benzylimidazolium ILs. This work was supported by NSF Grant CHE-1153077.

  5. Biosurfactant-enhanced solubilization of NAPL mixtures.

    PubMed

    McCray, J E; Bai, G; Maier, R M; Brusseau, M L

    2001-03-01

    Remediation of nonaqueous phase liquids (NAPLs) by conventional pump-and-treat methods (i.e., water flushing) is generally considered to be ineffective due to low water solubilities of NAPLs and to mass-transfer constraints. Chemical flushing techniques, such as surfactant flushing, can great