Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water.
Baker, Matthew B; Gosens, Ronald P J; Albertazzi, Lorenzo; Matsumoto, Nicholas M; Palmans, Anja R A; Meijer, E W
2016-02-02
The formation of multicomponent and bioactive supramolecular polymers is a promising strategy for the formation of biomaterials that match the dynamic and responsive nature of biological systems. In order to fully realize the potential of this strategy, knowledge of the location and behavior of bioactive components within the system is crucial. By employing synthetic strategies to create multifunctional monomers, coupled with FRET and STORM techniques, we have investigated the formation and behavior of a bioactive and multicomponent supramolecular polymer. By creating a peptide-dye-monomer conjugate, we were able to measure high degrees of monomer incorporation and to visualize the equal distribution of monomers within the supramolecular polymer. Furthermore, by tracking the movement of monomers, we uncovered small differences in the dynamics of the bioactive monomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Young, Nicholas Philip
The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS environment was developed to allow measurement of blend miscibility in the presence of scCO2. The pressure-temperature phase behavior of the system could be mapped by approaching the point of phase separation by spinodal decomposition through pressure increases at constant temperature. For a roughly symmetric mixture of SAN and dPMMA, the temperature at which phase separation occurred could be decreased by over 125 °C. The extent to which the phase behavior of the multicomponent system could be tuned motivated further investigation into the interactions present within the homogeneous mixtures. Analysis of the SANS results for homogeneous mixtures was undertaken using a new multicomponent formalism of the random phase approximation theory. The scattering profiles obtained from the scCO2-SAN-dPMMA system could be predicted with reasonable success. The success of the theoretical predictions was facilitated by directly employing the interactions found in the binary experiments. Exploitation of the condition of homogeneity with respect to chemical potential allowed determination of interaction parameters for scCO2-SAN and 2-dPMMA within the multicomponent mixture (chi12 and chi13, respectively). Studying this system over a large range of the supercritical regime yielded insight on the nature of interactions in the system. Near the critical point of scCO 2, chi12 and chi13 increase monotonically as a function of pressure. Conversely, at elevated temperature away from the critical point, the interaction parameters are found to go through a minimum as a pressure increases. Analysis of the critical phenomenon associated with scCO2 suggests that the observed dependence of chi12 and chi13 on pressure are related to the magnitude of scCO 2 density fluctuations and the proximity of the system to the so-called density fluctuation ridge. By tuning the system parameters of the multicomponent mixture, the phase behavior can be altered through the balance of pairwise interactions been the constituent species. The presence of scCO2 in the mixtures appears to eliminate the existence of the metastable state that epitomizes most polymer-polymer mixtures. Thus it is shown that knowledge of the individual pairwise interactions in such multicomponent mixtures can greatly influence the resulting phase behavior, and provide insight into the design of improved functional materials with decreased environmental impacts.
Innovative NMR strategies for complex macromolecules
USDA-ARS?s Scientific Manuscript database
In recent years there has been an increasing research emphasis on complex macromolecular systems. These include polymers with precise control of structures, multicomponent systems with higher degrees of organization, polymers involved in micelles, interfaces, and confined environments, nanochemistr...
Modeling and simulation of surfactant-polymer flooding using a new hybrid method
NASA Astrophysics Data System (ADS)
Daripa, Prabir; Dutta, Sourav
2017-04-01
Chemical enhanced oil recovery by surfactant-polymer (SP) flooding has been studied in two space dimensions. A new global pressure for incompressible, immiscible, multicomponent two-phase porous media flow has been derived in the context of SP flooding. This has been used to formulate a system of flow equations that incorporates the effect of capillary pressure and also the effect of polymer and surfactant on viscosity, interfacial tension and relative permeabilities of the two phases. The coupled system of equations for pressure, water saturation, polymer concentration and surfactant concentration has been solved using a new hybrid method in which the elliptic global pressure equation is solved using a discontinuous finite element method and the transport equations for water saturation and concentrations of the components are solved by a Modified Method Of Characteristics (MMOC) in the multicomponent setting. Numerical simulations have been performed to validate the method, both qualitatively and quantitatively, and to evaluate the relative performance of the various flooding schemes for several different heterogeneous reservoirs.
Multicomponent Diffusion of Penetrant Mixtures in Rubbery Polymers: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Bringuier, Stefan; Varady, Mark; Knox, Craig; Cabalo, Jerry; Pearl, Thomas; Mantooth, Brent
The importance of understanding transport of chemical species across liquid-solid boundaries is of particular interest in the decontamination of harmful chemicals absorbed within polymeric materials. To characterize processes associated with liquid-phase extraction of absorbed species from polymers, it is necessary to determine an appropriate physical description of species transport in multicomponent systems. The Maxwell-Stefan (M-S) formulation is a rigorous description of mass transport in multicomponent solutions, in which, mutual diffusivities determine the degree of relative motion between interacting molecules in response to a chemical potential gradient. The work presented focuses on the determination of M-S diffusivities from molecular dynamics (MD) simulations of nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX), water, and methanol mixtures within a poly(dimethylsiloxane) matrix. We investigate the composition dependence of M-S diffusivities and compare the results to values predicted using empirical relations for binary and ternary mixtures. Finally, we highlight the pertinent differences in molecular mechanisms associated with species transport and employ non-equilibrium MD to probe transport across the mixture-polymer interface.
Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.
1988-01-01
A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.
Morphology-property relationships in wood-fibre-based polyurethanes
Timothy G. Rials; Michael P. Wolcott
1998-01-01
Many of the advances in material performance over the last decade can be attributed to developments in multicomponent polymer systems and, specifically, to multiphase materials such as incompatible polymer blends and fibre-reinforced composites. In these types of material, performance properties are not often dominated by the interphase that defines the transition...
NASA Technical Reports Server (NTRS)
Bowlin, Gary L.; Simpson, David G.; Lam, Philippe; Wnek, Gary E.
2001-01-01
Significant opportunities exist for the processing of synthetic and biological polymers using electric fields ('electroprocessing'). We review casting of multi-component films and the spinning of fibers in electric fields, and indicate opportunities for the creation of smart polymer systems using these approaches. Applications include 2-D substrates for cell growth and diagnostics, scaffolds for tissue engineering and repair, and electromechanically active biosystems.
From supramolecular polymers to multi-component biomaterials.
Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W
2017-10-30
The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.
Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz.
Vieira, Alexandre Couto Carneiro; Ferreira Fontes, Danilo Augusto; Chaves, Luise Lopes; Alves, Lariza Darlene Santos; de Freitas Neto, José Lourenço; de La Roca Soares, Monica Felts; Soares-Sobrinho, Jose L; Rolim, Larissa Araújo; Rolim-Neto, Pedro José
2015-10-05
Efavirenz (EFZ) is one of the most used drugs in the treatment of AIDS and is the first antiretroviral choice. However, since it has low solubility, it does not exhibit suitable bioavailability, which interferes with its therapeutic action and is classified as a class II drug according Biopharmaceutical Classification System (low solubility and high permeability). Among several drug delivery systems, the multicomponent systems with cyclodextrins and hydrophilic polymers are a promising alternative for increasing the aqueous solubility of the drug. The present study aimed to develop and characterize in a ternary system of EFZ, MβCD and PVP K30. The results showed that the solid ternary system provided a large increase in the dissolution rate which was greater than 80% and was characterized by DSC, TG, XRD, FT-IR and SEM. The use of the ternary system (EFZ, MβCD and PVP K30 1%) proved to be a viable, effective and safe delivery of the drug. The addition of the hydrophilic polymer appeared to be suitable for the development of a solid oral pharmaceutical product, with possible industrial scale-up and with low concentration of CDs (cyclodextrins). Copyright © 2015 Elsevier Ltd. All rights reserved.
Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities.
Qiu, Zijie; Han, Ting; Lam, Jacky W Y; Tang, Ben Zhong
2017-08-01
Polymers synthesized from acetylenic monomers often possess electronically unsaturated fused rings and thus show versatile optoelectronic properties and advanced functionalities. To expand the family of acetylenic polymers, development of new catalyst systems and synthetic routes is critically important. We summarize herein recent research progress on development of new methodologies towards functional polymers using alkyne building blocks since 2014. The polymerizations are categorized by the number of monomer components, namely homopolymerizations, two-component polymerizations, and multicomponent polymerizations. The properties and applications of acetylenic polymers, such as aggregation-induced emission, fluorescent photopatterning, light refraction, chemosensing, mechanochromism, chain helicity, etc., are also discussed.
Multifunctional and biologically active matrices from multicomponent polymeric solutions
NASA Technical Reports Server (NTRS)
Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)
2010-01-01
The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.
Yoon, Ki-Young; Dong, Guangbin
2018-05-23
Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2010-05-12
multicomponent steady-state model for liquid -feed solid polymer electrolyte DBFCs. These fuel cells use sodium borohydride (NaBH4) in alkaline media...layers, diffusion layers and the polymer electrolyte membrane for a liquid feed DBFC. Diffusion of reactants within and between the pores is accounted...projected for futuristic portable applications. In this project we developed a three- dimensional, multicomponent steady-state model for liquid -feed solid
Salehi, Ali; Zhao, Jin; Cabelka, Tim D; Larson, Ronald G
2016-02-28
We propose a new transport model of drug release from hydrophilic polymeric matrices, based on Stefan-Maxwell flux laws for multicomponent transport. Polymer stress is incorporated in the total mixing free energy, which contributes directly to the diffusion driving force while leading to time-dependent boundary conditions at the tablet interface. Given that hydrated matrix tablets are dense multicomponent systems, extended Stefan-Maxwell (ESM) flux laws are adopted to ensure consistency with the Onsager reciprocity principle and the Gibbs-Duhem thermodynamic constraint. The ESM flux law for any given component takes into account the friction exerted by all other species and is invariant with respect to reference velocity, thus satisfying Galilean translational invariance. Our model demonstrates that penetrant-induced plasticization of polymer chains partially or even entirely offsets the steady decline of chemical potential gradients at the tablet-medium interface that drive drug release. Utilizing a Flory-Huggins thermodynamic model, a modified form of the upper convected Maxwell constitutive equation for polymer stress and a Fujita-type dependence of mutual diffusivities on composition, depending on parameters, Fickian, anomalous or case II drug transport arises naturally from the model, which are characterized by quasi-power-law release profiles with exponents ranging from 0.5 to 1, respectively. A necessary requirement for non-Fickian release in our model is that the matrix stress relaxation time is comparable to the time scale for water diffusion. Mutual diffusivities and their composition dependence are the most decisive factors in controlling drug release characteristics in our model. Regression of the experimental polymer dissolution and drug release profiles in a system of Theophylline/cellulose (K15M) demonstrate that API-water mutual diffusivity in the presence of excipient cannot generally be taken as a constant. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).
A solid-state NMR method to determine domain sizes in multi-component polymer formulations
NASA Astrophysics Data System (ADS)
Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon
2015-12-01
Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).
Adsorption and flocculation by polymers and polymer mixtures.
Gregory, John; Barany, Sandor
2011-11-14
Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.
Galdámez, J Román; Danner, Ronald P; Duda, J Larry
2007-07-20
The application of a mass spectrometer detector in capillary column inverse gas chromatography is shown to be a valuable tool in the measurement of diffusion and solubility in polymer-solvent systems. The component specific detector provides excellent results for binary polymer-solvent systems, but it is particularly valuable because it can be readily applied to multicomponent systems. Results for a number of infinitely dilute solvents in poly(vinyl acetate) (PVAc) are reported over a range of temperature from 60 to 150 degrees C. Results are also reported for finite concentrations of toluene and methanol in PVAc from 60 to 110 degrees C. Finally, the technique was applied to study the effect of finite concentrations of toluene on the diffusion coefficients of THF and cyclohexane in PVAc. The experimental data compare well with literature values for both infinite and finite concentrations, indicating that the experimental protocol described in this work is sound.
Multifunctional and biologically active matrices from multicomponent polymeric solutions
NASA Technical Reports Server (NTRS)
Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)
2012-01-01
A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.
Dynamic Self-Consistent Field Theories for Polymer Blends and Block Copolymers
NASA Astrophysics Data System (ADS)
Kawakatsu, Toshihiro
Understanding the behavior of the phase separated domain structures and rheological properties of multi-component polymeric systems require detailed information on the dynamics of domains and that of conformations of constituent polymer chains. Self-consistent field (SCF) theory is a useful tool to treat such a problem because the conformation entropy of polymer chains in inhomogeneous systems can be evaluated quantitatively using this theory. However, when we turn our attention to the dynamic properties in a non-equilibrium state, the basic assumption of the SCF theory, i.e. the assumption of equilibrium chain conformation, breaks down. In order to avoid such a difficulty, dynamic SCF theories were developed. In this chapter, we give a brief review of the recent developments of dynamic SCF theories, and discuss where the cutting-edge of this theory is.
Flotability and flotation separation of polymer materials modulated by wetting agents.
Wang, Hui; Wang, Chong-qing; Fu, Jian-gang; Gu, Guo-hua
2014-02-01
The surface free energy, surface tension and contact angles were performed to investigate the properties of wetting agents. Adsorption of wetting agents changes wetting behavior of polymer resins. Flotability of polymer materials modulated by wetting agents was studied, and wetting agents change significantly flotability of polymer materials. The flotability decreases with increasing the concentration of wetting agents, and the wetting ability is lignin sulfonate (LS)>tannic acid (TA)>methylcellulose (MC)>triton X-100 (TX-100) (from strong to weak). There is significant difference in the flotability between polymer resins and plastics due to the presence of additives in the plastics. Flotation separation of two-component and multicomponent plastics was conducted based on the flotability modulated by wetting agents. The two-component mixtures can be efficiently separated using proper wetting agent through simple flotation flowsheet. The multicomponent plastic mixtures can be separated efficiently through multi-stage flotation using TA and LS as wetting agents, and the purity of separated component was above 94%, and the recovery was more than 93%. Copyright © 2013 Elsevier Ltd. All rights reserved.
General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles.
Yang, Hui; Bradley, Siobhan J; Wu, Xin; Chan, Andrew; Waterhouse, Geoffrey I N; Nann, Thomas; Zhang, Jian; Kruger, Paul E; Ma, Shengqian; Telfer, Shane G
2018-04-18
Nanoparticles comprising three or more different metals are challenging to prepare. General methods that tackle this challenge are highly sought after as multicomponent metal nanoparticles display favorable properties in applications such as catalysis, biomedicine, and imaging. Herein, we report a practical and versatile approach for the synthesis of nanoparticles composed of up to four different metals. This method relies on the thermal decomposition of nanostructured composite materials assembled from platinum nanoparticles, a metal-organic framework (ZIF-8), and a tannic acid coordination polymer. The controlled integration of multiple metal cations (Ni, Co, Cu, Mn, Fe, and/or Tb) into the tannic acid shell of the precursor material dictates the composition of the final multicomponent metal nanoparticles. Upon thermolysis, the platinum nanoparticles seed the growth of the multicomponent metal nanoparticles via coalescence with the metallic constituents of the tannic acid coordination polymer. The nanoparticles are supported in the walls of hollow nitrogen-doped porous carbon capsules created by the decomposition of the organic components of the precursor. The capsules prevent sintering and detachment of the nanoparticles, and their porosity allows for efficient mass transport. To demonstrate the utility of producing a broad library of supported multicomponent metal nanoparticles, we tested their electrocatalytic performance toward the hydrogen evolution reaction and oxygen evolution reaction. We discovered functional relationships between the composition of the nanoparticles and their electrochemical activity and identified the PtNiCu and PtNiCuFe nanoparticles as particularly efficient catalysts. This highlights how to generate diverse libraries of multicomponent metal nanoparticles that can be synthesized and subsequently screened to identify high-performance materials for target applications.
Coarse-grained simulation of polymer-filler blends
NASA Astrophysics Data System (ADS)
Legters, Gregg; Kuppa, Vikram; Beaucage, Gregory; Univ of Dayton Collaboration; Univ of Cincinnati Collaboration
The practical use of polymers often relies on additives that improve the property of the mixture. Examples of such complex blends include tires, pigments, blowing agents and other reactive additives in thermoplastics, and recycled polymers. Such systems usually exhibit a complex partitioning of the components. Most prior work has either focused on fine-grained details such as molecular modeling of chains at interfaces, or on coarse, heuristic, trial-and-error approaches to compounding (eg: tire industry). Thus, there is a significant gap in our understanding of how complex hierarchical structure (across several decades in length) develops in these multicomponent systems. This research employs dissipative particle thermodynamics in conjunction with a pseudo-thermodynamic parameter derived from scattering experiments to represent polymer-filler interactions. DPD simulations will probe how filler dispersion and hierarchical morphology develops in these complex blends, and are validated against experimental (scattering) data. The outcome of our approach is a practical solution to compounding issues, based on a mutually validating experimental and simulation methodology. Support from the NSF (CMMI-1636036/1635865) is gratefully acknowledged.
High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization.
Boukis, Andreas C; Llevot, Audrey; Meier, Michael A R
2016-04-01
A novel and straightforward one-pot multicomponent polycondensation method was established in this work. The Biginelli reaction is a versatile multicomponent reaction of an aldehyde, a β-ketoester (acetoacetate) and urea, which can all be obtained from renewable resources, yielding diversely substituted 3,4-dihydropyrimidin-2(1H)-ones (DHMPs). In this study, renewable diacetoacetate monomers with different spacer chain lengths (C3, C6, C10, C20) were prepared via simple transesterification of renewable diols and commercial acetoacetates. The diacetoacetate monomers were then reacted with renewable dialdehydes, i.e., terephthalaldehyde and divanillin in a Biginelli type step-growth polymerization. The obtained DHMP polymers (polyDHMPs) displayed high molar masses, high glass transition temperatures (Tg) up to 203 °C and good thermal stability (Td5%) of 280 °C. The Tg of the polyDHMPs could be tuned by variation of the structure of the dialdehyde or the diacetoacetate component. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Encapsulation system for the immunoisolation of living cells
NASA Technical Reports Server (NTRS)
Lacik, Igor (Inventor); Brissova, Marcela (Inventor); Wang, Taylor G. (Inventor); Anikumar, Amrutur V. (Inventor); Prokop, Ales (Inventor); Powers, Alvin C. (Inventor)
1999-01-01
The present invention is drawn to a composition of matter comprising high viscosity sodium alginate, cellulose sulfate and a multi-component polycation. Additionally, the present invention provides methods for making capsules, measuring capsule permeability to immunologically-relevant proteins and treating disease in an animal using encapsulated cells. Over one thousand combinations of polyanions and polycations were examined as polymer candidates suitable for encapsulation of living cells and thirty-three pairs were effective. The combination of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine) hydrochloride, calcium chloride, and sodium chloride produced the most desirable results. Pancreatic islets encapsulated in this multicomponent capsule demonstrated glucose-stimulated insulin secretion in vitro and reversed diabetes without stimulating immune reaction in mice. The capsule formulation and system of the present invention allows independent adjustments of capsule size, wall thickness, mechanical strength and permeability, and offers distinct advantages for immunoisolating cells.
A Theoretically Informed Model for the Rheology of Entangled Block Copolymer Nanocomposites
NASA Astrophysics Data System (ADS)
Su, Yongrui; Ramirez-Hernandez, Abelardo; Peters, Brandon; de Pablo, Juan J.
2014-03-01
The addition of nanoparticles to block copolymer systems has been shown to have important effects on their equilibrium structure and properties. Less is known about the non-equilibrium behavior of block polymer nanocomposites. A new particle-based, theoretically informed coarse-grained model for multicomponent nanocomposites is proposed to examine the effects of nanoparticles on the rheology of entangled block copolymer melts. Entanglements are treated at the two-molecule level, through slip-springs that couple the dynamics of neighboring pairs of chains. The inclusion of slip-springs changes the polymer dynamics from unentangled to entangled. The nanoparticles are functionalized with short polymer chains that can entangle with the copolymers. We study the nonlinear rheology of the resulting nanocomposites under shear flow with a dissipative particle dynamics (DPD) thermostat.
Porous multi-component material for the capture and separation of species of interest
Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A
2016-06-21
A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.
Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.
Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester
2015-05-26
Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.
High aspect ratio template and method for producing same
NASA Technical Reports Server (NTRS)
Sakamoto, Jeff S. (Inventor); Weiss, James R. (Inventor); Fleurial, Jean-Pierre (Inventor); Kisor, Adam (Inventor); Tuszynski, Mark (Inventor); Stokols, Shula (Inventor); Holt, Todd Edward (Inventor); Welker, David James (Inventor); Breckon, Christopher David (Inventor)
2010-01-01
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers.
Biggs, Kevin B; Balss, Karin M; Maryanoff, Cynthia A
2012-05-29
Drug release from and coating morphology on a CYPHER sirolimus-eluting coronary stent (SES) during in vitro elution were studied by correlated confocal Raman and atomic force microscopy (CRM and AFM, respectively). Chemical surface and subsurface maps of the SES were generated in the same region of interest by CRM and were correlated with surface topography measured by AFM at different elution times. For the first time, a direct correlation between drug-rich regions and the coating morphology was made on a drug-eluting medical device, linking drug release with pore formation, pore throats, and pore networks. Drug release was studied on a drug-eluting stent (DES) system with a multicomponent carrier matrix (poly(n-butyl methacrylate) [PBMA] and poly(ethylene-co-vinyl acetate) [PEVA]). The polymer was found to rearrange postelution because confluence of the carrier polymer matrix reconstituted the voids created by drug release.
Highly Selective Ionic Block Copolymer Membranes
2010-11-10
Multicomponent Diffusion and Sorption in an Ionic Polymer Membrane We recently measured the diffusion and sorption of methanol/water mixtures in Nafion (most...methanol feed concentration (17 M). Figure 1 shows one experiment where hydrated Nafion was exposed to a 2 M methanol/water liquid mixture resulting...copolymer membranes revealed several surprising results. Contrary to what has been observed in most ionic polymer membranes (e.g., Nafion ), the proton
Wang, Shu; Robertson, Megan L
2015-06-10
Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between polystyrene and short-chain polyacrylates (n ≤ 10). To our knowledge, this is the first study to explore the thermodynamic interactions between polystyrene and long-chain poly(n-alkyl acrylates) with n > 10. This work lays the groundwork for the development of multicomponent structured systems (i.e., blends and copolymers) in this class of sustainable materials.
Analysis of positron lifetime spectra in polymers
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.
1988-01-01
A new procedure for analyzing multicomponent positron lifetime spectra in polymers was developed. It requires initial estimates of the lifetimes and the intensities of various components, which are readily obtainable by a standard spectrum stripping process. These initial estimates, after convolution with the timing system resolution function, are then used as the inputs for a nonlinear least squares analysis to compute the estimates that conform to a global error minimization criterion. The convolution integral uses the full experimental resolution function, in contrast to the previous studies where analytical approximations of it were utilized. These concepts were incorporated into a generalized Computer Program for Analyzing Positron Lifetime Spectra (PAPLS) in polymers. Its validity was tested using several artificially generated data sets. These data sets were also analyzed using the widely used POSITRONFIT program. In almost all cases, the PAPLS program gives closer fit to the input values. The new procedure was applied to the analysis of several lifetime spectra measured in metal ion containing Epon-828 samples. The results are described.
Diffuse polymer interfaces in lobed nanoemulsions preserved in aqueous media.
Kim, Ginam; Sousa, Alioscka; Meyers, Deborah; Shope, Marilyn; Libera, Matthew
2006-05-24
Using valence electron energy loss spectroscopy (EELS) in the cryo-scanning transmission electron microscopy (STEM), we found that the polymer-polymer interface in two-phase nanocolloids of polydimethyl siloxane (PDMS) and copolymer (methyl acrylate (MA)-methyl methacrylate (MMA)-vinyl acetate (VA)) preserved in water was diffuse despite the fact that equilibrium thermodynamics indicates it should only be on the order of a few nanometers. The diffuse interface is a result of the kinetic trapping of the copolymer within the PDMS phase, and this finding suggests new nonequilibrium pathways to control interfaces during the synthesis of multicomponent polymeric nanostructures.
Separation of polar gases from nonpolar gases
Kulprathipanja, S.
1986-08-19
The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.
NASA Astrophysics Data System (ADS)
Harmon, Tyler S.; Holehouse, Alex S.; Pappu, Rohit V.
2018-04-01
Intracellular biomolecular condensates are membraneless organelles that encompass large numbers of multivalent protein and nucleic acid molecules. The bodies assemble via a combination of liquid–liquid phase separation and gelation. A majority of condensates included multiple components and show multilayered organization as opposed to being well-mixed unitary liquids. Here, we put forward a simple thermodynamic framework to describe the emergence of spatially organized droplets in multicomponent systems comprising of linear multivalent polymers also known as associative polymers. These polymers, which mimic proteins and/or RNA have the architecture of domains or motifs known as stickers that are interspersed by flexible spacers known as linkers. Using a minimalist numerical model for a four-component system, we have identified features of linear multivalent molecules that are necessary and sufficient for generating spatially organized droplets. We show that differences in sequence-specific effective solvation volumes of disordered linkers between interaction domains enable the formation of spatially organized droplets. Molecules with linkers that are preferentially solvated are driven to the interface with the bulk solvent, whereas molecules that have linkers with negligible effective solvation volumes form cores in the core–shell architectures that emerge in the minimalist four-component systems. Our modeling has relevance for understanding the physical determinants of spatially organized membraneless organelles.
NASA Astrophysics Data System (ADS)
Pond, Mark J.; Errington, Jeffrey R.; Truskett, Thomas M.
2011-09-01
Partial pair-correlation functions of colloidal suspensions with continuous polydispersity can be challenging to characterize from optical microscopy or computer simulation data due to inadequate sampling. As a result, it is common to adopt an effective one-component description of the structure that ignores the differences between particle types. Unfortunately, whether this kind of simplified description preserves or averages out information important for understanding the behavior of the fluid depends on the degree of polydispersity and can be difficult to assess, especially when the corresponding multicomponent description of the pair correlations is unavailable for comparison. Here, we present a computer simulation study that examines the implications of adopting an effective one-component structural description of a polydisperse fluid. The square-well model that we investigate mimics key aspects of the experimental behavior of suspended colloids with short-range, polymer-mediated attractions. To characterize the partial pair-correlation functions and thermodynamic excess entropy of this system, we introduce a Monte Carlo sampling strategy appropriate for fluids with a large number of pseudo-components. The data from our simulations at high particle concentrations, as well as exact theoretical results for dilute systems, show how qualitatively different trends between structural order and particle attractions emerge from the multicomponent and effective one-component treatments, even with systems characterized by moderate polydispersity. We examine consequences of these differences for excess-entropy based scalings of shear viscosity, and we discuss how use of the multicomponent treatment reveals similarities between the corresponding dynamic scaling behaviors of attractive colloids and liquid water that the effective one-component analysis does not capture.
Vieira, Vânia M. P.; Hay, Laura L.
2017-01-01
This paper reports self-assembled multi-component hybrid hydrogels including a range of nanoscale systems and characterizes the extent to which each component maintains its own unique functionality, demonstrating that multi-functionality can be achieved by simply mixing carefully-chosen constituents. Specifically, the individual components are: (i) pH-activated low-molecular-weight gelator (LMWG) 1,3;2,4-dibenzylidenesorbitol-4′,4′′-dicarboxylic acid (DBS–COOH), (ii) thermally-activated polymer gelator (PG) agarose, (iii) anionic biopolymer heparin, and (iv) cationic self-assembled multivalent (SAMul) micelles capable of binding heparin. The LMWG still self-assembles in the presence of PG agarose, is slightly modified on the nanoscale by heparin, but is totally disrupted by the micelles. However, if the SAMul micelles are bound to heparin, DBS–COOH self-assembly is largely unaffected. The LMWG endows hybrid materials with pH-responsive behavior, while the PG provides mechanical robustness. The rate of heparin release can be controlled through network density and composition, with the LMWG and PG behaving differently in this regard, while the presence of the heparin binder completely inhibits heparin release through complexation. This study demonstrates that a multi-component approach can yield exquisite control over self-assembled materials. We reason that controlling orthogonality in such systems will underpin further development of controlled release systems with biomedical applications. PMID:29147525
Functional and Multifunctional Polymers: Materials for Smart Structures
NASA Technical Reports Server (NTRS)
Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.
1996-01-01
The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three examples of multifunctional polymers developed in our labs will be reported. The first class of multifunctional polymers are the microphase separated mixed (ionic and electronic) conducting or MIEC block copolymers. The second class being developed in our labs are the biocompatible conductive materials and the conductive fluids. The final class may be considered microwave active smart polymers.
Multi-component nanofibrous scaffolds with tunable properties for bone tissue engineering
NASA Astrophysics Data System (ADS)
Jose, Moncy V.
Bone is a highly complex tissue which is an integral part of vertebrates and hence any damage has a major negative effect on the quality of life. Tissue engineering is regarded as an ideal route to resolve the issues related to the scarcity of tissue and organ for transplantation. Apart from cell line and growth factors, the choice of materials and fabrication technique for scaffold are equally important. The goal of this work was to develop a multi-component nanofibrous scaffold based on a synthetic polymer (poly(lactic-co-glycolide) (PLGA)), a biopolymer (collagen) and a biomineral (nano-hydroxyapatite (nano-HA)) by electrospinning technique, which mimics the nanoscopic, chemical, and anisotropic features of bone. Preliminary studies involved fabrication of nanocomposite scaffolds based on PLGA and nano-HA. Morphological and mechanical characterizations revealed that at low concentrations, nano-HA acted as reinforcements, whereas at higher concentrations the presence of aggregation was detrimental to the scaffold. Hydrolytic degradation studies revealed the scaffold had a little mass loss and the mechanical property was maintained for a period of 6 weeks. This study was followed by evaluation of a blend system based on PLGA and collagen. Collagen addition provides hydrophilicity and the necessary cell binding sites in PLGA. The structural characterization revealed that the blend had limited interactions between the two components. The mechanical characterization revealed that with increasing collagen concentration, there was a decline in mechanical properties. However, crosslinking of the blend system, with carbodiimide (EDC) resulted in improving the mechanical properties of the scaffolds. A multi-component system was developed by adding different concentrations of nano-HA to a fixed PLGA/collagen blend composition (80/20). Morphological and mechanical characterizations revealed properties similar to the PLGA/HA system. Cyto-compatibility studies revealed favorable cell adhesion and proliferation. Protein adsorption studies showed the higher surface area as well as the presence of collagen resulted in higher fibronectin and vitronectin adsorption. Crosslinking by EDC resulted in enhanced mechanical property in hydrated state and enhanced degradation stability. These results suggest that such a multi-component system can take advantage of the mechanical benefit available from the individual components and also provide specific biological cues necessary for a successful scaffold.
Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy
2018-01-01
Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958
Separation of polar gases from nonpolar gases
Kulprathipanja, Santi; Kulkarni, Sudhir S.
1986-01-01
Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.
Separation of polar gases from nonpolar gases
Kulprathipanja, S.; Kulkarni, S.S.
1986-08-26
Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.
Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz
2015-02-01
In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. Copyright © 2014 Elsevier B.V. All rights reserved.
Fugacity and concentration gradients in a gravity field
NASA Technical Reports Server (NTRS)
May, C. E.
1986-01-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
Chen, Lei; Yan, Bing
2015-02-01
Some multi-component hybrids based on zeolite L/A are prepared. Firstly, zeolite A/L is loaded with lanthanide complexes (Eu-DBM or Tb-AA (acetylacetone = AA, dibenzoylmethane = DBM)) into its channels. Secondly, 3-methacryloyloxypropyltrimethoxysilane (γ-MPS) is used to covalently graft onto the surface of functionalized zeolite A/L (Si-[ZA/L⊃Eu-DBM(Tb-AA)]). Thirdly, lanthanide ions (Eu(3+)/Tb(3+)) are coordinated to the functionalized zeolite A/L and ligands (phen(1,10-phenanthroline) or bipy (2,2'-bipyridyl)) are introduced by a ship-in-bottle method. The inside-outside double modifications of ZA/L with lanthanide complexes afford the final hybrids and these are characterized by means of XRD, FT-IR, UV-vis DRS, SEM and luminescence spectroscopy, some of which display white or near-white light emission. Furthermore, selected above-mentioned hybrids are incorporated into PEMA/PMMA (poly ethyl methylacryate/poly methyl methacrylate) hosts to prepare luminescent polymer films. These results provide abundant data that these hybrid materials can be expected to have potential application in various practical fields.
Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines).
Lee, In-Hwan; Kim, Hyunseok; Choi, Tae-Lim
2013-03-13
We report a versatile Cu-catalyzed multicomponent polymerization (MCP) technique that enables the synthesis of high-molecular-weight, defect-free poly(N-sulfonylamidines) from monomers of diynes, sulfonyl azides, and diamines. Through a series of optimizations, we discovered that the addition of excess triethylamine and the use of N,N'-dimethylformamide as a solvent are key factors to ensure efficient MCP. Formation of cyclic polyamidines was a side reaction during polymerization, but it was readily controlled by using diynes or diamines with long or rigid moieties. In addition, this polymerization is highly selective for three-component reactions over click reactions. The combination of the above factors enables the synthesis of high-molecular-weight polymers, which was challenging in previous MCPs. All three kinds of monomers (diynes, sulfonyl azides, and diamines) are readily accessible and stable under the reaction conditions, with various monomers undergoing successful polymerization regardless of their steric and electronic properties. Thus, we synthesized various high-molecular-weight, defect-free polyamidines from a broad range of monomers while overcoming the limitations of previous MCPs, such as low conversion and defects in the polymer structures.
Yamada, Masanori; Hori, Minako; Tabuchi, Shinya
2010-08-01
Water-soluble beta-cyclodextrin-immobilized poly(ethyleneimine) (PEICD) was synthesized by the grafting of beta-cyclodextrin to the branched poly(ethyleneimine). In an aqueous solution, this PEICD polymer could encapsulate bisphenol A, known to be a harmful compound. Additionally, the stability constant of bisphenol A to the PEICD polymer was 1.1 x 10(4)M(-1). However, the water-solubility of PEICD has been making it difficult to utilize it as an environmental material. Therefore, we prepared the DNA-PEICD composite material by mixing the double-stranded DNA and PEICD. This DNA-PEICD composite material was extremely stable in water and possessed both properties of the intercalation into the double-stranded DNA and the encapsulation into the CD cavity. As a result, this material can accumulate various harmful compounds, such as dioxin- and polychlorobiphenyl (PCB)-derivatives and bisphenol A, from a multi-component solution. Therefore, the DNA-PEICD composite material may have the potential to be used as an environmental material. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Daripa, Prabir
2015-11-01
Surfactant-polymer flooding is a widely used method of chemical enhanced oil recovery (EOR) in which an array of complex fluids containing suitable and varying amounts of surfactant or polymer or both mixed with water is injected into the reservoir. This is an example of multiphase, multicomponent and multiphysics porous media flow which is characterized by the spontaneous formation of complex viscous fingering patterns and is modeled by a system of strongly coupled nonlinear partial differential equations with appropriate initial and boundary conditions. Here we propose and discuss a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics to accurately solve the system. Several types of flooding schemes and rheological properties of the injected fluids are used to numerically study the effectiveness of various injection policies in minimizing the viscous fingering and maximizing oil recovery. Numerical simulations are also performed to investigate the effect of various other physical and model parameters such as heterogeneity, relative permeability and residual saturation on the quantities of interest like cumulative oil recovery, sweep efficiency, fingering intensity to name a few. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).
NASA Astrophysics Data System (ADS)
Han, Charles
Institute for Advanced Study, Shenzhen University, Shenzhen, China In memory of Professor John Kohn at this symposium, a time resolved SANS study for the early stage of spinodal decomposition kinetics of deuterated polycarbonate/poly(methylmethacrylate) blend will be reviewed which gives a clear proof of the Cahn-Hillard-Cook theory. This early stage of spinodal decomposition kinetics has been observed starting from the dimension (q-l) comparable to the single chain radius of gyration, Rg\\ , for a binary polymer mixture. The results provide an unequivocal quantitative measure of the virtual structure factor, S (q, ∞); the relationship of qm and qc through rate of growth, Cahn-plot analysis, and singularity in S (q, ∞); the growth of fluctuation of qRg <1 and intra-chain relaxation of qRg >1. More recent study of using mixed suspensions of polystyrene microspheres and poly(N-isopropylacrylamide) microgels as a molecular model system which has a long range repulsive interaction potential and a short range attractive potential, will also be discussed. In this model system, dynamic gelation, transition to soft glass state and cross-over to hard glass state will be demonstrated and compared with available theories for glass transition in structural materials. Acknowledgements go to: Polymers Division, and NCNR of NIST, and to ICCAS, Beijing, China. Also to my colleagues: M. Motowoka, H. Jinnai, T. Hashimoto, G.C. Yuan and H. Cheng.
Impact of multilayered compression bandages on sub-bandage interface pressure: a model.
Al Khaburi, J; Nelson, E A; Hutchinson, J; Dehghani-Sanij, A A
2011-03-01
Multi-component medical compression bandages are widely used to treat venous leg ulcers. The sub-bandage interface pressures induced by individual components of the multi-component compression bandage systems are not always simply additive. Current models to explain compression bandage performance do not take account of the increase in leg circumference when each bandage is applied, and this may account for the difference between predicted and actual pressures. To calculate the interface pressure when a multi-component compression bandage system is applied to a leg. Use thick wall cylinder theory to estimate the sub-bandage pressure over the leg when a multi-component compression bandage is applied to a leg. A mathematical model was developed based on thick cylinder theory to include bandage thickness in the calculation of the interface pressure in multi-component compression systems. In multi-component compression systems, the interface pressure corresponds to the sum of the pressures applied by individual bandage layers. However, the change in the limb diameter caused by additional bandage layers should be considered in the calculation. Adding the interface pressure produced by single components without considering the bandage thickness will result in an overestimate of the overall interface pressure produced by the multi-component compression systems. At the ankle (circumference 25 cm) this error can be 19.2% or even more in the case of four components bandaging systems. Bandage thickness should be considered when calculating the pressure applied using multi-component compression systems.
NASA Astrophysics Data System (ADS)
Davis, Peter Kennedy
Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a rather controversial topic about IGC experiments near the polymer glass transition temperature. Using a new IGC model capable of describing both bulk absorption and surface adsorption, IGC behavior around the glass transition was able to be better understood. Finally, Chapter 6 presents an IGC model that can be used to separate bulk effects from surface effects in capillary column IGC experiments.
High aspect ratio template and method for producing same for central and peripheral nerve repair
NASA Technical Reports Server (NTRS)
Sakamoto, Jeff S. (Inventor); Chan, Christina (Inventor); Tuszynski, Mark Henry (Inventor); Mehrotra, Sumit (Inventor); Gros, Thomas (Inventor)
2011-01-01
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves. Scaffolds for the repair of peripheral nerves may include a reservoir for the sustained release of nerve growth factor. The scaffolds may also include a multifunctional polyelectrolyte layer for the sustained release of nerve growth factor and enhance biocompatibility.
Mechanical response of biopolymer double networks
NASA Astrophysics Data System (ADS)
Carroll, Joshua; Das, Moumita
We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.
Non-invasive analysis of swelling in polymer dispersions by means of time-domain(TD)-NMR.
Nestle, Nikolaus; Häberle, Karl
2009-11-03
In this contribution, we discuss the potential of low-field time-domain(TD)-NMR to study the swelling of (aqueous) polymer dispersions by a volatile solvent. Due to the sensitivity of transverse relaxation times (T2) to swelling-induced changes in the molecular dynamics of the polymer component, the effects of swelling can be measured without spectral resolution. The measurement is performed on polymer dispersions in native state with solids contents around 50% in a non-invasive way without separating the polymeric phase and the water phase from each other. Using acetone in two polyurethane (PU) dispersions with different hard phase contents, we explore the sensitivity of the method and present a data evaluation strategy based on multicomponent fitting and proton balancing. Furthermore, we report exchange continualization as a further effect that needs to be taken into account for correct interpretation of the data.
Alternative polymer separation technology by centrifugal force in a melted state.
Dobrovszky, Károly; Ronkay, Ferenc
2014-11-01
In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee
2015-05-13
Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less
Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee; ...
2015-04-02
Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Lastly, multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less
Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu
2016-05-25
We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component.
Combinatorial Methods for Exploring Complex Materials
NASA Astrophysics Data System (ADS)
Amis, Eric J.
2004-03-01
Combinatorial and high-throughput methods have changed the paradigm of pharmaceutical synthesis and have begun to have a similar impact on materials science research. Already there are examples of combinatorial methods used for inorganic materials, catalysts, and polymer synthesis. For many investigations the primary goal has been discovery of new material compositions that optimize properties such as phosphorescence or catalytic activity. In the midst of the excitement generated to "make things", another opportunity arises for materials science to "understand things" by using the efficiency of combinatorial methods. We have shown that combinatorial methods hold potential for rapid and systematic generation of experimental data over the multi-parameter space typical of investigations in polymer physics. We have applied the combinatorial approach to studies of polymer thin films, biomaterials, polymer blends, filled polymers, and semicrystalline polymers. By combining library fabrication, high-throughput measurements, informatics, and modeling we can demonstrate validation of the methodology, new observations, and developments toward predictive models. This talk will present some of our latest work with applications to coating stability, multi-component formulations, and nanostructure assembly.
NASA Technical Reports Server (NTRS)
2007-01-01
Topics include: Noise-Canceling Helmet Audio System; Program Analyzes Spacecraft/Ground Radio Links; Two-Way Communication Using RFID Equipment and Techniques; Six-Message Electromechanical Display System; Scanning Terahertz Heterodyne Imaging Systems; Master Clock and Time-Signal-Distribution System; Synchronous Phase-Resolving Flash Range Imaging; Integrated Radial Probe Transition From MMIC to Waveguide; Bar-Code System for a Microbiological Laboratory; MMIC Amplifier Produces Gain of 10 dB at 235 GHz; Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots; Digital Beam Deflectors Based Partly on Liquid Crystals; Narrow-Band WGM Optical Filters With Tunable FSRs; Better Finite-Element Analysis of Composite Shell Structures; Computing Spacecraft-Pointing Vectors for Limb Tracking; Enhanced Master Controller Unit Tester; Rover Graphical Simulator; Increasing Durability of Flame-Sprayed Strain Gauges; Multifunctional, High-Temperature Nanocomposites; Multilayer Impregnated Fibrous Thermal Insulation Tiles; Radiation-Shielding Polymer/Soil Composites; Film/Adhesive Processing Module for Fiber-Placement Processing of Composites; Fabrication of Submillimeter Axisymmetric Optical Components; Electrochemical Disposal of Hydrazines in Water; Statistical Model of Evaporating Multicomponent Fuel Drops; Resistively Heated SiC Nozzle for Generating Molecular Beams; Compact Packaging of Photonic Millimeter-Wave Receiver; Diffractive Combiner of Single-Mode Pump Laser-Diode Beams; Wide-Band, High-Quantum-Efficiency Photodetector; A Robustly Stabilizing Model Predictive Control Algorithm; Modeling Evaporation of Drops of Different Kerosenes; Development of Vapor-Phase Catalytic Ammonia Removal System; Several Developments in Space Tethers; Design Concept for a Nuclear Reactor-Powered Mars Rover; Formation-Initialization Algorithm for N Spacecraft; and DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence.
Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system
NASA Astrophysics Data System (ADS)
Sun, Baonan; Lian, Zhan
2018-02-01
By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.
Cuetos, Alejandro; Patti, Alessandro
2015-08-01
We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.
Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.
Mieszawska, Aneta J; Kim, YongTae; Gianella, Anita; van Rooy, Inge; Priem, Bram; Labarre, Matthew P; Ozcan, Canturk; Cormode, David P; Petrov, Artiom; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M
2013-09-18
For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.
Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology
NASA Astrophysics Data System (ADS)
Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.
2011-11-01
Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. Furthermore, the commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: fractional model description of physical gelation, high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 1000000 /s and the influence of transient extensional rheology in the jet breakup. We show that high deformation rates can be obtained in jetting flows, and the growth and evolution of instability during jetting and break-up of these viscoelastic fluids shows the influence of both elasticity and extensibility.
Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology
NASA Astrophysics Data System (ADS)
Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.
2010-03-01
Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. The commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 10^6 s-1 and the influence of transientextensional rheology in the jet breakup. The presence of inertial, elastic and viscous effects typically leads to complex dynamics in a necking fluid thread. We show that by carefully controlling the excitation frequency, it is possible to drive the break-up in a particularly simple and symmetric mode, which can be used to extract extensional viscosity information using capillary thinning analysis.
Variable Gap Conjugated Polymers
2005-12-01
conducting gold interfacial layer interjected between the ITO glass electrode and the PEDOT/PSS hole transport layer . A family of low band gap, and near IR...which can be used as both electrochromics and as the hole transport layers in light emitting diodes. Hybrid electrochromic and electroluminescent (EC...MEH-PPV, P3HT, etc.) in order to blanket the solar spectrum. Initial device results on these multi-component blends are promising. In addition, we
Smart Polymers with Special Wettability.
Chang, Baisong; Zhang, Bei; Sun, Taolei
2017-01-01
Surface wettability plays a key role in addressing issues ranging from basic life activities to our daily life, and thus being able to control it is an attractive goal. Learning from nature, both of its structure and function, brings us much inspiration in designing smart polymers to tackle this major challenge. Life functions particularly depend on biomolecular recognition-induced interfacial properties from the aqueous phase onto either "soft" cell and tissue or "hard" inorganic bone and tooth surfaces. The driving force is noncovalent weak interactions rather than strong covalent combinations. An overview is provided of the weak interactions that perform vital actions in mediating biological processes, which serve as a basis for elaborating multi-component polymers with special wettabilities. The role of smart polymers from molecular recognitions to macroscopic properties are highlighted. The rationale is that highly selective weak interactions are capable of creating a dynamic synergetic communication in the building components of polymers. Biomolecules could selectively induce conformational transitions of polymer chains, and then drive a switching of physicochemical properties, e.g., roughness, stiffness and compositions, which are an integrated embodiment of macroscopic surface wettabilities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seka, A M; Van De Wiele, T; Verstraete, W
2001-08-01
Instantaneous improvement of the settling of bulking filamentous activated sludge can be achieved by the addition of a polymer or a large amount (up to 100% of the MLSS concentration) of talc powder to the sludge. Long-term improvement relies on repeated additions, as these additives have no adverse effects on the causative filaments. A multi-component additive was compared to the traditional additives in lab-scale activated sludge units using three highly filamentous sludges from different industrial treatment plants. The study demonstrated that the multi-component additive was superior to the traditional remedies. It was shown that, in the case of severe filamentous bulking, a single addition of the new additive immediately improved sludge settling and exerted a destructive effect on the causative filamentous bacteria. Thus, the latter additive also ensured a long-term sludge sedimentation improvement. The traditional additives exhibited an immediate and short-term effect. The novel additive also retarded sludge rising due to denitrification and it improved sludge dewaterability. The study revealed Nostocoido limicola II, with slightly hydrophobic cell wall, to be somewhat resistant to the quaternary ammonium salt present as biocide in the additive.
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Nagarajan, R.
1985-01-01
Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.
Laser ultrasonic multi-component imaging
Williams, Thomas K [Federal Way, WA; Telschow, Kenneth [Des Moines, WA
2011-01-25
Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.
Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.
Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W
2016-06-23
The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.
Crosslinking of Perfluorocarbon Polymers
1977-04-01
absorption in the 8.0-8.7 M region, the presence of oxide can be excluded and thus the higher than to date reported melting point is most likely due...did not produce any epoxide. Apparently the stabilizer present in the Mallinckrodt hydrogen peroxide ( acetanilide ) promoted degradation of the epoxide...DTA curve (see Figure 3) Freon E-7 has a boiling point above 2500C. The broadness of the endotherm indicates that it is a multi-component mixture
[Study on high accuracy detection of multi-component gas in oil-immerse power transformer].
Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang
2013-12-01
In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.
(n, N) type maintenance policy for multi-component systems with failure interactions
NASA Astrophysics Data System (ADS)
Zhang, Zhuoqi; Wu, Su; Li, Binfeng; Lee, Seungchul
2015-04-01
This paper studies maintenance policies for multi-component systems in which failure interactions and opportunistic maintenance (OM) involve. This maintenance problem can be formulated as a Markov decision process (MDP). However, since an action set and state space in MDP exponentially expand as the number of components increase, traditional approaches are computationally intractable. To deal with curse of dimensionality, we decompose such a multi-component system into mutually influential single-component systems. Each single-component system is formulated as an MDP with the objective of minimising its long-run average maintenance cost. Under some reasonable assumptions, we prove the existence of the optimal (n, N) type policy for a single-component system. An algorithm to obtain the optimal (n, N) type policy is also proposed. Based on the proposed algorithm, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that failure interactions and OM pose significant effects on a maintenance policy.
Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems
DOE R&D Accomplishments Database
Shizgal, B.; Karplus, M.
1970-10-01
The nonequilibrium contribution to the reaction rate of an isothermal multicomponent system is obtained by solution of the appropriate Chapman-Enskog equation; the system is composed of reactive species in contact with a heat bath of inert atoms M.
Rapid correction of electron microprobe data for multicomponent metallic systems
NASA Technical Reports Server (NTRS)
Gupta, K. P.; Sivakumar, R.
1973-01-01
This paper describes an empirical relation for the correction of electron microprobe data for multicomponent metallic systems. It evaluates the empirical correction parameter, a for each element in a binary alloy system using a modification of Colby's MAGIC III computer program and outlines a simple and quick way of correcting the probe data. This technique has been tested on a number of multicomponent metallic systems and the agreement with the results using theoretical expressions is found to be excellent. Limitations and suitability of this relation are discussed and a model calculation is also presented in the Appendix.
Kim, YongTae; Chung, Bomy Lee; Ma, Mingming; Mulder, Willem J. M.; Fayad, Zahi A.; Farokhzad, Omid C.; Langer, Robert
2012-01-01
Lipid-polymer hybrid (LPH) nanoparticles can deliver a wide range of therapeutic compounds in a controlled manner. LPH nanoparticle syntheses using microfluidics improve the mixing process, but are restricted by a low throughput. In this study we present a pattern-tunable microvortex platform that allows mass production and size control of LPH nanoparticles with superior reproducibility and homogeneity. We demonstrate that by varying flow rates (i.e. Reynolds number (30∼150)) we can control the nanoparticle size (30∼170nm) with high productivity (∼3g/hour) and low polydispersity (∼0.1). Our approach may contribute to efficient development and optimization of a wide range of multicomponent nanoparticles for medical imaging and drug delivery. PMID:22716029
Dispersive—diffusive transport of non-sorbed solute in multicomponent solutions
NASA Astrophysics Data System (ADS)
Hu, Qinhong; Brusseau, Mark L.
1995-10-01
The composition of fuels, mixed-solvent wastes and other contaminants that find their way into the subsurface are frequently chemically complex. The dispersion and diffusion characteristics of multicomponent solutions in soil have rarely been compared to equivalent single-solute systems. The purpose of this work was to examine the diffusive and dispersive transport of single- and multi-component solutions in homogeneous porous media. The miscible displacement technique was used to investigate the transport behavior of 14C-labelled 2,4-dichlorophenoxyacetic acid ( 2,4-D) in two materials for which sorption of 2,4-D was minimal. Comparison of breakthrough curves collected for 2,4-D in single- and multi-component solutions shows that there is little, if any, difference in transport behavior over a wide range of pore-water velocities (70, 7, 0.66 and 0.06 cm h -1). Thus, dispersivities measured with a non-sorbing single-solute solution should be applicable to multicomponent systems.
Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.
Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir
2016-03-01
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.
Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...
2016-03-04
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
Wittgren, Bengt; Stefansson, Morgan; Porsch, Bedrich
2005-08-05
The novel approach described allows to characterise the surfactant-polymer interaction under several sodium dodecyl sulphate (SDS) concentrations (0-20 mM) using size exclusion chromatography (SEC) with online multi-angle light scattering (MALS) and refractometric (RI) detection. Three different cellulose derivatives, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose (HEC), have been studied in solution containing 10 mM NaCl and various concentrations of sodium dodecyl sulphate. It is shown that this approach is well suited for successful application of both Hummel-Dreyer and multi-component light scattering principles and yields reliable molecular masses of both the polymer complex and the polymer itself within the complex, the amount of surfactant bound into the complex as well as appropriate values of the refractive index increment (dn/dc)micro, of both the complex and the polymer in question. The more hydrophobic derivatives HPC and HPMC adsorbed significantly more SDS than HEC. The inter-chain interactions close to critical aggregation concentration (cac) were clearly seen for HPC and HPMC as an almost two-fold average increase in polymer molecular mass contained in the complex.
Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends
Schmitt, Michael; Zhang, Jianan; Lee, Jaejun; ...
2016-12-23
The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. Here, we demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomainmore » structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies.« less
Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends
Schmitt, Michael; Zhang, Jianan; Lee, Jaejun; Lee, Bongjoon; Ning, Xin; Zhang, Ren; Karim, Alamgir; Davis, Robert F.; Matyjaszewski, Krzysztof; Bockstaller, Michael R.
2016-01-01
The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. We demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomain structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies. PMID:28028538
Kor, Mohammad; Korczyk, Piotr M; Addai-Mensah, Jonas; Krasowska, Marta; Beattie, David A
2014-10-14
The adsorption of carboxymethylcellulose polymers on molybdenite was studied using spectroscopic ellipsometry and atomic force microscopy imaging with two polymers of differing degrees of carboxyl group substitution and at three different electrolyte conditions: 1 × 10(-2) M KCl, 2.76 × 10(-2) M KCl, and simulated flotation process water of multicomponent electrolyte content, with an ionic strength close to 2.76 × 10(-2) M. A higher degree of carboxyl substitution in the adsorbing polymer resulted in adsorbed layers that were thinner and with more patchy coverage; increasing the ionic strength of the electrolyte resulted in increased polymer layer thickness and coverage. The use of simulated process water resulted in the largest layer thickness and coverage for both polymers. The effect of the adsorbed polymer layer on bubble-particle attachment was studied with single bubble-surface collision experiments recorded with high-speed video capture and image processing and also with single mineral molybdenite flotation tests. The carboxymethylcellulose polymer with a lower degree of substitution resulted in almost complete prevention of wetting film rupture at the molybdenite surface under all electrolyte conditions. The polymer with a higher degree of substitution prevented rupture only when adsorbed from simulated process water. Molecular kinetic theory was used to quantify the effect of the polymer on the dewetting dynamics for collisions that resulted in wetting film rupture. Flotation experiments confirmed that adsorbed polymer layer properties, through their effect on the dynamics of bubble-particle attachment, are critical to predicting the effectiveness of polymers used to prevent mineral recovery in flotation.
Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri
2016-05-02
Mucoadhesive buccal films (MBFs) provide an innovative way to facilitate the efficient site-specific delivery of active compounds while simultaneously separating the lesions from the environment of the oral cavity. The structural diversity of these complex multicomponent and mostly multiphase systems as well as an experimental strategy for their structural characterization at molecular scale with atomic resolution were demonstrated using MBFs of ciclopirox olamine (CPX) in a poly(ethylene oxide) (PEO) matrix as a case study. A detailed description of each component of the CPX/PEO films was followed by an analysis of the relationships between each component and the physicochemical properties of the MBFs. Two distinct MBFs were identified by solid-state NMR spectroscopy: (i) at low API (active pharmaceutical ingredient) loading, a nanoheterogeneous solid solution of CPX molecularly dispersed in an amorphous PEO matrix was created; and (ii) at high API loading, a pseudoco-crystalline system containing CPX-2-aminoethanol nanocrystals incorporated into the interlamellar space of a crystalline PEO matrix was revealed. These structural differences were found to be closely related to the mechanical and physicochemical properties of the prepared MBFs. At low API loading, the polymer chains of PEO provided sufficient quantities of binding sites to stabilize the CPX that was molecularly dispersed in the highly amorphous semiflexible polymer matrix. Consequently, the resulting MBFs were soft, with low tensile strength, plasticity, and swelling index, supporting rapid drug release. At high CPX content, however, the active compounds and the polymer chains simultaneously cocrystallized, leaving the CPX to form nanocrystals grown directly inside the spherulites of PEO. Interfacial polymer-drug interactions were thus responsible not only for the considerably enhanced plasticity of the system but also for the exclusive crystallization of CPX in the thermodynamically most stable polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids.
NASA Astrophysics Data System (ADS)
Varady, Mark; Bringuier, Stefan; Pearl, Thomas; Stevenson, Shawn; Mantooth, Brent
Decontamination of polymers exposed to chemical warfare agents (CWA) often proceeds by application of a liquid solution. Absorption of some decontaminant components proceed concurrently with extraction of the CWA, resulting in multicomponent diffusion in the polymer. In this work, the Maxwell-Stefan equations were used with the Flory-Huggins model of species activity to mathematically describe the transport of two species within a polymer. This model was used to predict the extraction of the nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX) from a silicone elastomer into both water and methanol. Comparisons with experimental results show good agreement with minimal fitting of model parameters from pure component uptake data. Reaction of the extracted VX with sodium hydroxide in the liquid-phase was also modeled and used to predict the overall rate of destruction of VX. Although the reaction proceeds more slowly in the methanol-based solution compared to the aqueous solution, the extraction rate is faster due to increasing VX mobility as methanol absorbs into the silicone, resulting in an overall faster rate of VX destruction.
Qin, Tianshi; Zajaczkowski, Wojciech; Pisula, Wojciech; Baumgarten, Martin; Chen, Ming; Gao, Mei; Wilson, Gerry; Easton, Christopher D; Müllen, Klaus; Watkins, Scott E
2014-04-23
Extensive efforts have been made to develop novel conjugated polymers that give improved performance in organic photovoltaic devices. The use of polymers based on alternating electron-donating and electron-accepting units not only allows the frontier molecular orbitals to be tuned to maximize the open-circuit voltage of the devices but also controls the optical band gap to increase the number of photons absorbed and thus modifies the other critical device parameter-the short circuit current. In fact, varying the nonchromophoric components of a polymer is often secondary to the efforts to adjust the intermolecular aggregates and improve the charge-carrier mobility. Here, we introduce an approach to polymer synthesis that facilitates simultaneous control over both the structural and electronic properties of the polymers. Through the use of a tailored multicomponent acceptor-donor-acceptor (A-D-A) intermediate, polymers with the unique structure A-D1-A-D2 can be prepared. This approach enables variations in the donor fragment substituents such that control over both the polymer regiochemistry and solubility is possible. This control results in improved intermolecular π-stacking interactions and therefore enhanced charge-carrier mobility. Solar cells using the A-D1-A-D2 structural polymer show short-circuit current densities that are twice that of the simple, random analogue while still maintaining an identical open-circuit voltage. The key finding of this work is that polymers with an A-D1-A-D2 structure offer significant performance benefits over both regioregular and random A-D polymers. The chemical synthesis approach that enables the preparation of A-D1-A-D2 polymers therefore represents a promising new route to materials for high-efficiency organic photovoltaic devices.
The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors
NASA Astrophysics Data System (ADS)
Treat, Neil D.; Westacott, Paul; Stingelin, Natalie
2015-07-01
The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.
Liu, Yang; Wang, Gang; Dong, Ling; Tang, Ming-Min; Zhu, Mei-Ling; Dong, Hong-Huant; Hou, Cheng-Bo
2014-12-01
The evaluation of permeability in biopharmaceutics classification system of Chinese materia medica (CMMBCS) requires multicomponent as a whole in order to conduct research, even in the study of a specific component, should also be put in the multicomponent environment. Based on this principle, the high content components in Gegen Qinlian decoction were used as multicomponent environmental impact factors in the experiment, and the relevant parameters of intestinal permeability about puerarin were measured with using in situ single-pass intestinal perfusion model, to investigate and evaluate the intestinal permeability of puerarin with other high content components. The experimental results showed that different proportions of baicalin, glycyrrhizic acid and berberine had certain influence on intestinal permeability of puerarin, and glycyrrhizic acid could significantly inhibit the intestinal absorption of puerarin, moreover, high concentration of berberine could promote the absorption of puerarin. The research results indicated that the important research ideas of permeability evaluation in biopharmaceutics classification system of Chinese materia medica with fully considering the effects of other ingredients in multicomponent environment.
Shi, Yingge; Jiang, Ruming; Liu, Meiying; Fu, Lihua; Zeng, Guangjian; Wan, Qing; Mao, Liucheng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-08-01
Polymeric fluorescent organic nanoparticles (polymer-FONs) have raised considerable research attention for biomedical applications owing to their advantages as compared with fluorescent inorganic nanoparticles and small organic molecules. In this study, we presented an efficient, facile and environment-friendly strategy to produce polymer-FONs, which relied on the self-polymerization of dopamine and polyethyleneimine (PEI) in rather mild conditions. To obtain the final polymer-FONs, aldehyde group-containing copolymers (named as poly(UA-co-PEGMA)) were synthesized by reversible addition-fragmentation chain-transfer polymerization using polyethylene glycol methyl ether methacrylate (PEGMA) and 1-undecen-10-al (UA) as monomers. The dopamine was conjugated onto poly(UA-co-PEGMA) through a multicomponent reaction between UA and dopamine to obtain poly(UA-co-PEGMA)-DA, which was further utilized for preparation of polymer-FONs through self-polymerization of dopamine and PEI. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy and fluorescence spectroscopy were employed to characterize the structure, morphology, compositions and optical properties of these polymer-FONs. Cell viability and cell uptake behavior results suggested that these polymer-FONs possess good biocompatibility and can be potentially utilized for biomedical applications. More importantly, the method can be also applied to fabricate many other multifunctional polymer-FONs with great potential for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
Kanna, T; Sakkaravarthi, K; Tamilselvan, K
2013-12-01
We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.
Gauge transformation and symmetries of the commutative multicomponent BKP hierarchy
NASA Astrophysics Data System (ADS)
Li, Chuanzhong
2016-01-01
In this paper, we defined a new multi-component B type Kadomtsev-Petviashvili (BKP) hierarchy that takes values in a commutative subalgebra of {gl}(N,{{C}}). After this, we give the gauge transformation of this commutative multicomponent BKP (CMBKP) hierarchy. Meanwhile, we construct a new constrained CMBKP hierarchy that contains some new integrable systems, including coupled KdV equations under a certain reduction. After this, the quantum torus symmetry and quantum torus constraint on the tau function of the commutative multi-component BKP hierarchy will be constructed.
The Solidification of Multicomponent Alloys
Boettinger, William J.
2017-01-01
Various topics taken from the author’s research portfolio that involve multicomponent alloy solidification are reviewed. Topics include: ternary eutectic solidification and Scheil-Gulliver paths in ternary systems. A case study of the solidification of commercial 2219 aluminum alloy is described. Also described are modifications of the Scheil-Gulliver analysis to treat dendrite tip kinetics and solid diffusion for multicomponent alloys. PMID:28819348
GROUNDWATER MASS TRANSPORT AND EQUILIBRIUM CHEMISTRY MODEL FOR MULTICOMPONENT SYSTEMS
A mass transport model, TRANQL, for a multicomponent solution system has been developed. The equilibrium interaction chemistry is posed independently of the mass transport equations which leads to a set of algebraic equations for the chemistry coupled to a set of differential equ...
Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning
NASA Astrophysics Data System (ADS)
Cohen, Yachin; Dror, Yael; Khalfin, Rafail L.; Salalha, Wael; Yarin, Alexander L.; Zussman, Eyal
2004-03-01
The electrospinning process was used successfully to fabricate nanofibers of poly(ethylene oxide) [PEO] in which carbon nanotubes, either multi-walled (MWCNT) or single-walled (SWCNT) are embedded. MWCNTs were dispersed in water using SDS or Gum Arabic - a highly branched polyelectrolyte. Aqueous dispersion of SWCNT's was achieved using an alternating copolymer of styrene and maleic anhydride, hydrolyzed with NaOH. The focus of this work is on the development of axial orientations in the multi-component nanofibers. The degree of orientation of polymers, surfactants and nanotubes was studied using X-ray diffraction and transmission electron microscopy. Individual nanotubes were successfully embedded in the polymer nanofibers with good axial alignment. A high degree of alignment of PEO crystals and SDS layers was also found in the electrospun nanofibers containing SWCNT's. Oriented ropes of the nanofibers were fabricated in a converging electric field by a rotating disc with a tapered edge. These results can lead to further usage of the nanofibers with embedded carbon nanotubes in applications such as nano-scale energy storage devices.
Dissipative effects in multi-component systems
NASA Astrophysics Data System (ADS)
El, Andrej; Bouras, Ioannis; Xu, Zhe; Greiner, Carsten
2013-05-01
Using a smooth initial condition of Glauber type in the kinetic transport algorithm BAMPS we investigate differences in behavior of a multi-component system and its one-component equivalent with the same η/s value. Flow harmonic coefficients v2 and v4 are shown to have very low sensitivity to the details of microscopic interactions in the system.
Alternative polymer separation technology by centrifugal force in a melted state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrovszky, Károly; Ronkay, Ferenc, E-mail: ronkay@pt.bme.hu
2014-11-15
Highlights: • Waste separation should take place at high purity. • Developed a novel, alternative separation method, where the separation occurred in a melted state by centrifugal forces. • Possibility of separation two different plastics into neat fractions. • High purity fractions were established at granulates and also at prefabricated blend. • Results were verified by DSC, optical microscopy and Raman spectroscopy. - Abstract: In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal forcemore » in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy.« less
[Construction of biopharmaceutics classification system of Chinese materia medica].
Liu, Yang; Wei, Li; Dong, Ling; Zhu, Mei-Ling; Tang, Ming-Min; Zhang, Lei
2014-12-01
Based on the characteristics of multicomponent of traditional Chinese medicine and drawing lessons from the concepts, methods and techniques of biopharmaceutics classification system (BCS) in chemical field, this study comes up with the science framework of biopharmaceutics classification system of Chinese materia medica (CMMBCS). Using the different comparison method of multicomponent level and the CMMBCS method of overall traditional Chinese medicine, the study constructs the method process while setting forth academic thoughts and analyzing theory. The basic role of this system is clear to reveal the interaction and the related absorption mechanism of multicomponent in traditional Chinese medicine. It also provides new ideas and methods for improving the quality of Chinese materia medica and the development of new drug research.
NASA Astrophysics Data System (ADS)
Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela
2015-09-01
Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.
Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics
NASA Astrophysics Data System (ADS)
Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi
2018-05-01
A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.
Okesola, Babatunde O; Mata, Alvaro
2018-05-21
Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.
Fabrics for fire resistant passenger seats in aircraft
NASA Technical Reports Server (NTRS)
Tesoro, G. C.
1978-01-01
The essential elements of the problem and of approaches to improved fire resistance in aircraft seats are reviewed. The performance requirements and availability of materials, delay in the ignition of upholstery fabric by a small source are considered a realistic objective. Results of experimental studies on the thermal response of fabrics and fabric/foam combinations suggest significant conclusions regarding: (1) the ignition behavior of a commercial 90/10 wool/nylon upholstery fabric relative to fabrics made from thermally stable polymers; (2) the role of the foam backing; (3) the behavior of seams. These results, coupled with data from other sources, also confirm the importance of materials' interactions in multicomponent assemblies, and the need for system testing prior to materials' selection. The use of an interlinear or thermal barrier between upholstery fabric and foam is a promising and viable approach to improved fire resistance of the seat assembly, but experimental evaluation of specific combinations of materials or systems is an essential part of the selection process.
Protein-Based Drug-Delivery Materials.
Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao
2017-05-09
There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function-including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments-are summarized at the end of this review.
Panidi, Julianna; Paterson, Alexandra F; Khim, Dongyoon; Fei, Zhuping; Han, Yang; Tsetseris, Leonidas; Vourlias, George; Patsalas, Panos A; Heeney, Martin; Anthopoulos, Thomas D
2018-01-01
Improving the charge carrier mobility of solution-processable organic semiconductors is critical for the development of advanced organic thin-film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small-molecules, polymers, and small-molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C 6 F 5 ) 3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C 6 F 5 ) 3 is shown to have a remarkable impact are the blends of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF-TESADT:PTAA) and 2,7-dioctyl[1]-benzothieno[3,2-b][1]benzothiophene:poly(indacenodithiophene-co-benzothiadiazole) (C8-BTBT:C16-IDTBT), for which hole mobilities of 8 and 11 cm 2 V -1 s -1 , respectively, are obtained. Doping of the 6,13-bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C 6 F 5 ) 3 is also shown to increase the maximum hole mobility to 3.7 cm 2 V -1 s -1 . Analysis of the single and multicomponent materials reveals that B(C 6 F 5 ) 3 plays a dual role, first acting as an efficient p-dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p-doping and dopant-induced long-range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.
Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications
NASA Astrophysics Data System (ADS)
Mehlem, Jeremy John
Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well as in their final state. Using these methods the size of the high and low cross-link density phase was examined and determined to be on the order of 50--150 nanometers. Model compounds based on phenylethyl methacrylate were formulated to determine how of nadic methyl anhydride and maleic anhydride incorporate into dimethacrylate resin systems.
Spatially resolved multicomponent gels
NASA Astrophysics Data System (ADS)
Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.
2015-10-01
Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.
NASA Astrophysics Data System (ADS)
Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David
2013-04-01
Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.
Protecting wood from mould, decay, and termites with multi-component biocide systems
Carol A. Clausen
2007-01-01
Biocides must be developed for controlling mould establishment on cellulose-based building materials. Accordingly, biocides intended for indoor applications must be non- toxic, non-volatile, odourless, hypoallergenic, and able to provide long-term protection under conditions of high humidity. Multi-component biocide systems were tested in American Wood-Preserversâ...
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-01-01
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-11-16
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.
Bioactive composites with designed interfaces
NASA Astrophysics Data System (ADS)
Orefice, Rodrigo Lambert
Bioactive glasses can bond to bone and even soft tissue. However, they are usually weak, brittle and hard to process in specific shapes. The goal of this work is to produce polymer composites having bioactive materials as a reinforcing phase that would display both bioactive behavior and mechanical properties compatible to bone. Polysulfone and bioactive glass particulate were combined in composites with different volume fractions. Composites with 40 vol.% of particulate were submitted to in vitro tests in simulated body fluids. The recorded rates of hydroxy-carbonate-apatite layer deposition were close to the ones observed for pure bioactive glasses. Mechanical properties showed values of elastic modulus, strain at failure and strength within the range of cortical bone for composites with high volume fraction of particles. Fibers can usually favor higher levels of reinforcement in composites than particles. Novel multicomponent fibers were prepared by using the sol-gel method. They were determined to be bioactive in vitro and were successfully used as a reinforcing phase in polysulfone composites. Properties of the bioactive composites were modified by altering the chemistry and structure of the interfaces. Polymers with sulfonic acid and silane groups were specially designed to interact with both the silica surface and the polymer matrix. Nano-composites with a structure and chemistry in between the macrocomponents of the composite were prepared by combining a silanated polymer and silica sol-gel. When applied as interfacial agents, these nano-composites as well as the modified polymers improved the overall properties of the bioactive system. A decay in mechanical properties was observed for composites submitted to an in vitro test. The developed interfacial agents successfully reduced the degree of degradation in properties. Interactions occurring at the interfaces of bioactive composites were studied using Atomic Force Microscopy (AFM). The effect of the structure and chemistry of interfaces was correlated to physical and chemical processes occurring at the interfaces and to the overall properties of composites.
Calculation of open and closed system elastic coefficients for multicomponent solids
NASA Astrophysics Data System (ADS)
Mishin, Y.
2015-06-01
Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.
Komro, Kelli A; Flay, Brian R; Biglan, Anthony; Wagenaar, Alexander C
2016-03-01
Major advances in population health will not occur unless we translate existing knowledge into effective multicomponent interventions, implement and maintain these in communities, and develop rigorous translational research and evaluation methods to ensure continual improvement and sustainability. We discuss challenges and offer approaches to evaluation that are key for translational research stages 3 to 5 to advance optimized adoption, implementation, and maintenance of effective and replicable multicomponent strategies. The major challenges we discuss concern (a) multiple contexts of evaluation/research, (b) complexity of packages of interventions, and (c) phases of evaluation/research questions. We suggest multiple alternative research designs that maintain rigor but accommodate these challenges and highlight the need for measurement systems. Longitudinal data collection and a standardized continuous measurement system are fundamental to the evaluation and refinement of complex multicomponent interventions. To be useful to T3-T5 translational research efforts in neighborhoods and communities, such a system would include assessments of the reach, implementation, effects on immediate outcomes, and effects of the comprehensive intervention package on more distal health outcomes.
NASA Astrophysics Data System (ADS)
Kavner, A.
2017-12-01
In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.
Predicting new multicomponent materials for hydrogen storage using first-principles calculations
NASA Astrophysics Data System (ADS)
Aidhy, Dilpuneet; Wolverton, Chris
2010-03-01
Wide research has unraveled some very promising hydrogen storage materials such as metal borohydrides, amides and alanates. However, all of these materials are limited either thermodynamically or kinetically. The recent observation of mixing in these systems (e.g., borohydride-amide mixing in Li4(BH4)(NH2)3 [1] and metal mixing in NaZn2(BH4)3) [2] has demonstrated the possibility of forming new multicomponent ordered compounds that may have desirable hydrogen storage properties. However, these multicomponent systems are largely unexplored. Here, we use density functional theory (DFT) along with Monte Carlo-based crystal structure prediction methods to search for new multicomponent hydrides. We find evidence for stable compounds in the Mg(BH4)2/Mg(NH2)2 system, which have not yet been observed. In addition, we also study a wide range of mixed metal borohydride systems, and find evidence of ordered stable structures such as Li2Na(BH4)3. 1. F. E. Pinkerton, M. S. Meyer, G. P. Meisner and M. P. Balogh, J. Phys. Chem. B 110, 7967 (2006). 2. D. Ravnsbeak, Y. Filinchuk, Y. Cerenius, H. J. Jakobsen, F. Besenbacher, J. Skibsted and T. R. Jensen, Angew. Chem. 48, 6659 (2009).
Highly scalable, closed-loop synthesis of drug-loaded, layer-by-layer nanoparticles.
Correa, Santiago; Choi, Ki Young; Dreaden, Erik C; Renggli, Kasper; Shi, Aria; Gu, Li; Shopsowitz, Kevin E; Quadir, Mohiuddin A; Ben-Akiva, Elana; Hammond, Paula T
2016-02-16
Layer-by-layer (LbL) self-assembly is a versatile technique from which multicomponent and stimuli-responsive nanoscale drug carriers can be constructed. Despite the benefits of LbL assembly, the conventional synthetic approach for fabricating LbL nanoparticles requires numerous purification steps that limit scale, yield, efficiency, and potential for clinical translation. In this report, we describe a generalizable method for increasing throughput with LbL assembly by using highly scalable, closed-loop diafiltration to manage intermediate purification steps. This method facilitates highly controlled fabrication of diverse nanoscale LbL formulations smaller than 150 nm composed from solid-polymer, mesoporous silica, and liposomal vesicles. The technique allows for the deposition of a broad range of polyelectrolytes that included native polysaccharides, linear polypeptides, and synthetic polymers. We also explore the cytotoxicity, shelf life and long-term storage of LbL nanoparticles produced using this approach. We find that LbL coated systems can be reliably and rapidly produced: specifically, LbL-modified liposomes could be lyophilized, stored at room temperature, and reconstituted without compromising drug encapsulation or particle stability, thereby facilitating large scale applications. Overall, this report describes an accessible approach that significantly improves the throughput of nanoscale LbL drug-carriers that show low toxicity and are amenable to clinically relevant storage conditions.
Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery
NASA Astrophysics Data System (ADS)
Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan
2013-11-01
A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.
Chromatographic properties PLOT multicapillary columns.
Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N
2017-03-10
Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less
Interface conditions of two-shot molded parts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at; Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at
2014-05-15
The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes,more » a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.« less
Protein-Based Drug-Delivery Materials
Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao
2017-01-01
There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review. PMID:28772877
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2003-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
A continuum theory for multicomponent chromatography modeling.
Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc
2016-05-13
A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.
Hou, Cheng-Bo; Wang, Guo-Peng; Zhang, Qiang; Yang, Wen-Ning; Lv, Bei-Ran; Wei, Li; Dong, Ling
2014-12-01
To illustrate the solubility involved in biopharmaceutics classification system of Chinese materia medica (CMMBCS) , the influences of artificial multicomponent environment on solubility were investigated in this study. Mathematical model was built to describe the variation trend of their influence on the solubility of puerarin. Carried out with progressive levels, single component environment: baicalin, berberine and glycyrrhizic acid; double-component environment: baicalin and glycyrrhizic acid, baicalin and berberine and glycyrrhizic acid and berberine; and treble-component environment: baicalin, berberin, glycyrrhizic acid were used to describe the variation tendency of their influences on the solubility of puerarin, respectively. And then, the mathematical regression equation model was established to characterize the solubility of puerarin under multicomponent environment.
Spitzer, Jan
2013-04-01
The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.
Theory and Simulation of Multicomponent Osmotic Systems
Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E.
2012-01-01
Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly2 and Gly3 in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems. PMID:23329894
Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers
NASA Astrophysics Data System (ADS)
He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai
2017-12-01
Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Mehta, Neeraj
2017-06-01
The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78- x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume ( V h), formation energy ( E h) of micro-voids in the glassy network and modulus of elasticity ( E) have been determined and their variation with glass composition has been investigated.
Toolan, Daniel T W; Adlington, Kevin; Isakova, Anna; Kalamiotis, Alexis; Mokarian-Tabari, Parvaneh; Dimitrakis, Georgios; Dodds, Christopher; Arnold, Thomas; Terrill, Nick J; Bras, Wim; Hermida Merino, Daniel; Topham, Paul D; Irvine, Derek J; Howse, Jonathan R
2017-08-09
Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.
1991-12-31
AD-A252 218 The Deposition of Multicomponent Films for Electrooptic Applications via a Computer Controlled Dual Ion Beam Sputtering System ONR...6 3 2. Deposition of Electrooptic Thin Films ................................... 11 3. High Resolution Imaging of Twin and Antiphase...Domain Boundaries in Perovskite KNbO3 Thin Films .......... 30 4. Microstructural Characterization of the Epitaxial3 (111) KNbO3 on (0001) Sapphire
A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor.
Gopalan, A I; Muthuchamy, N; Komathi, S; Lee, K-P
2016-10-15
The fabrication of a highly sensitive electrochemical non-enzymatic glucose sensor based on copper nanoparticles (Cu NPs) dispersed in a graphene (G)-ferrocene (Fc) redox polymer multicomponent nanobead (MCNB) is reported. The preparation of MCNB involves three major steps, namely: i) the preparation of a poly(aniline-co-anthranilic acid)-grafted graphene (G-PANI(COOH), ii) the covalent linking of ferrocene to G-PANI(COOH) via a polyethylene imine (PEI), and iii) the electrodeposition of Cu NPs. The prepared MCNB (designated as G-PANI(COOH)-PEI-Fc/Cu-MCNB), contains a conductive G-PANI(COOH), electron mediating Fc, and electrocatalytic Cu NPs that make it suitable for ultrasensitive non-enzymatic electrochemical sensing. The morphology, structure, and electro activities of MCNB were characterized. Electrochemical measurements showed that the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE modified electrode exhibited good electrocatalytic behavior towards the detection of glucose in a wide linear range (0.50 to 15mM), with a low detection limit (0.16mM) and high sensitivity (14.3µAmM(-1)cm(-2)). Besides, the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE sensor electrode did not respond to the presence of electroactive interferrants (such as uric acid, ascorbic acid, and dopamine) and saccharides or carbohydrates (fructose, lactose, d-isoascorbic acid, and dextrin), demonstrating its selectivity towards glucose. The fabricated NEG sensor exhibited high precision for measuring glucose in serum samples, with an average RSD of 4.3% and results comparable to those of commercial glucose test strips. This reliability and stability of glucose sensing indicates that G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE would be a promising material for the non-enzymatic detection of glucose in physiological fluids. Copyright © 2015 Elsevier B.V. All rights reserved.
Toxicity of combustion products from burning polymers: development and evaluation of methods
Wright, P. L.; Adams, C. H.
1976-01-01
Laboratory and room-scale experiments were conducted with natural and synthetic polymers: cotton, paper, wood, wool, acetate, acrylic, nylon, and urethane. Smoke and off-gases from single materials were generated in a dual-compartment 110-liter exposure chamber. Multicomponent, composite fuel loads were burned within a 100 m3 facility subdivided into rooms. In chamber experiments, mortality depended on the amount of material burned, i.e., fuel consumption (FC). Conventional dose (FC)/mortality curves were obtained, and the amount of fuel required to produce 50% mortality (FC50) was calculated. With simple flame ignition, cotton was the only material that produced smoke concentrations lethal to rats; FC50 values for cotton ranged from 2 g to 9 g, depending on the configuration of the cotton sample burned. When supplemental conductive heat was added to flame ignition, the following FC50 values were obtained; nylon, 7 g; acrylic, 8 g; newsprint, 9 g; cotton, 10 g; and wood, 11 g. Mortality resulting from any given material depended upon the specific conditions employed for its thermal decomposition. Toxicity of off-gasses from pyrolysis of phosphorus-containing trimethylol propane—polyurethane foams was markedly decreased by addition of a flame ignition source. Further studies are needed to determine the possible relevance of single-material laboratory scale smoke toxicity experiments. Room-scale burns were conducted to assess the relative contributions of single materials to toxicity of smoke produced by a multicomponent self-perpetuating fire. Preliminary results suggest that this approach permits a realistic evaluation of the contribution of single materials to the toxicity of smoke from residential fires. ImagesFIGURE 2. PMID:1026420
Predicting structural properties of fluids by thermodynamic extrapolation
NASA Astrophysics Data System (ADS)
Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.
2018-05-01
We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.
Marwani, Hadi M; Lowry, Mark; Keating, Patrick; Warner, Isiah M; Cook, Robert L
2007-11-01
This study introduces a newly developed frequency segmentation and recombination method for frequency-domain fluorescence lifetime measurements to address the effects of changing fractional contributions over time and minimize the effects of photobleaching within multi-component systems. Frequency segmentation and recombination experiments were evaluated using a two component system consisting of fluorescein and rhodamine B. Comparison of experimental data collected in traditional and segmented fashion with simulated data, generated using different changing fractional contributions, demonstrated the validity of the technique. Frequency segmentation and recombination was also applied to a more complex system consisting of pyrene with Suwannee River fulvic acid reference and was shown to improve recovered lifetimes and fractional intensity contributions. It was observed that photobleaching in both systems led to errors in recovered lifetimes which can complicate the interpretation of lifetime results. Results showed clear evidence that the frequency segmentation and recombination method reduced errors resulting from a changing fractional contribution in a multi-component system, and allowed photobleaching issues to be addressed by commercially available instrumentation.
Experimental evidence for excess entropy discontinuities in glass-forming solutions.
Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas
2012-02-21
Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics
Panidi, Julianna; Paterson, Alexandra F.; Khim, Dongyoon; Fei, Zhuping; Han, Yang; Tsetseris, Leonidas; Vourlias, George; Patsalas, Panos A.; Heeney, Martin
2017-01-01
Abstract Improving the charge carrier mobility of solution‐processable organic semiconductors is critical for the development of advanced organic thin‐film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small‐molecules, polymers, and small‐molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C6F5)3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C6F5)3 is shown to have a remarkable impact are the blends of 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF‐TESADT:PTAA) and 2,7‐dioctyl[1]‐benzothieno[3,2‐b][1]benzothiophene:poly(indacenodithiophene‐co‐benzothiadiazole) (C8‐BTBT:C16‐IDTBT), for which hole mobilities of 8 and 11 cm2 V−1 s−1, respectively, are obtained. Doping of the 6,13‐bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C6F5)3 is also shown to increase the maximum hole mobility to 3.7 cm2 V−1 s−1. Analysis of the single and multicomponent materials reveals that B(C6F5)3 plays a dual role, first acting as an efficient p‐dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p‐doping and dopant‐induced long‐range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics. PMID:29375962
Programmed packaging of multicomponent envelope-type nanoparticle system for gene delivery
NASA Astrophysics Data System (ADS)
Pozzi, Daniela; Marianecci, Carlotta; Carafa, Maria; Marchini, Cristina; Montani, Maura; Amici, Augusto; Caracciolo, Giulio
2010-05-01
A programmed packaging strategy to develop a multicomponent envelope-type nanoparticle system (MENS) is presented. To this end, we took specific advantage of using in-house tailored liposomes that have been recently shown to exhibit intrinsic endosomal rupture properties that allow plasmid DNA to escape from endosomes and to enter the nucleus with extremely high efficiency. Transfection efficiency experiments on NIH 3T3 mouse fibroblasts indicate that MENS is a promising transfection candidate.
Kumar, Basuvaraj Suresh; Pitchumani, Kasi
2018-05-01
A concise account on the use of transition metals copper (Cu) and palladium (Pd), as their cations as well as nanoparticles exchanged/immobilized onto porous frameworks such as zeolites, metal organic frameworks (MOFs), covalent organic polymers (COPs) and hollow nanostructures, functioning as catalysts in organic synthesis is presented. This biomimetic account, "focusing on catalytic systems in confinement" within zero-dimensional microenvironments and second sphere coordination covers primarily results from our group on N-sulfonylketenimine mediated cycloaddition, hydrogenation and C-C bond forming reactions, thus providing an interesting insight into the versatility and utility of these Cu and Pd catalysts. Other significant advantages and green credentials of confinement such as stability, selectivity, reusability, promotion of multicomponent reactions, use of green solvents, atom economy, and use of ambient conditions are highlighted at appropriate places. In the final section, our views on the current achievements and the future prospects in this area are summarized. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multicomponent Implant Releasing Dexamethasone
NASA Astrophysics Data System (ADS)
Nikkola, L.; Vapalahti, K.; Ashammakhi, N.
2008-02-01
Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.
Dynamics Determine Signaling in a Multicomponent System Associated with Rheumatoid Arthritis.
Lindgren, Cecilia; Tyagi, Mohit; Viljanen, Johan; Toms, Johannes; Ge, Changrong; Zhang, Naru; Holmdahl, Rikard; Kihlberg, Jan; Linusson, Anna
2018-05-24
Strategies that target multiple components are usually required for treatment of diseases originating from complex biological systems. The multicomponent system consisting of the DR4 major histocompatibility complex type II molecule, the glycopeptide CII259-273 from type II collagen, and a T-cell receptor is associated with development of rheumatoid arthritis (RA). We introduced non-native amino acids and amide bond isosteres into CII259-273 and investigated the effect on binding to DR4 and the subsequent T-cell response. Molecular dynamics simulations revealed that complexes between DR4 and derivatives of CII259-273 were highly dynamic. Signaling in the overall multicomponent system was found to depend on formation of an appropriate number of dynamic intramolecular hydrogen bonds between DR4 and CII259-273, together with the positioning of the galactose moiety of CII259-273 in the DR4 binding groove. Interestingly, the system tolerated modifications at several positions in CII259-273, indicating opportunities to use analogues to increase our understanding of how rheumatoid arthritis develops and for evaluation as vaccines to treat RA.
An evaporation model of multicomponent solution drops
NASA Astrophysics Data System (ADS)
Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.
2010-11-01
Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.
Optical Fibre Sensor For Measuring pH In Physiological Range
NASA Astrophysics Data System (ADS)
Golunski, Witold; Hypszer, Ryszard; Plucinski, Jerzy
1990-01-01
The principle of fibre optic pH sensor operation is given in this paper. PH measurement in 7.0-7.5 range is based on changing of optical property of a indicator. The indicator is sensitive to the hydrogen ion concentration in the water solution. Microspheres of the polymer XAD-2 (a styrene-divinylbenzene copolymer) containing bound phenol red were used as a indicator. Such prepared indicator was inserted in optrode. The optrode was connected with transmitter and receiver by a bundle of glass fibres (multicomponent glass). Transmitter was done by using green LED while receiver construction was based on pin photodiode.
Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals
Ye, Xingchen; Zhu, Chenhui; Ercius, Peter; ...
2015-12-02
Multicomponent nanocrystal superlattices represent an interesting class of material that derives emergent properties from mesoscale structure, yet their programmability can be limited by the alkyl-chain-based ligands decorating the surfaces of the constituent nanocrystals. Polymeric ligands offer distinct advantages, as they allow for more precise tuning of the effective size and ‘interaction softness’ through changes to the polymer’s molecular weight, chemical nature, architecture, persistence length and surrounding solvent. Here we show the formation of 10 different binary nanocrystal superlattices (BNSLs) with both two- and three-dimensional order through independent adjustment of the core size of spherical nanocrystals and the molecular weight ofmore » densely grafted polystyrene ligands. These polymer-brush-based ligands introduce new energetic contributions to the interparticle potential that stabilizes various BNSL phases across a range of length scales and interparticle spacings. In conclusion, our study opens the door for nanocrystals to become modular elements in the design of functional particle brush solids with controlled nanoscale interfaces and mesostructures.« less
Automated Design of Board and MCM Level Digital Systems.
1997-10-01
Partitioning for Multicomponent Synthesis 159 Appendix K: Resource Constrained RTL Partitioning for Synthesis of Multi- FPGA Designs 169 Appendix L...digital signal processing) ar- chitectures. These target architectures, illustrated in Figure 1, can contain application-specific ASICS, FPGAs ...synthesis tools for ASIC, FPGA and MCM synthesis (Figure 8). Multicomponent Partitioning Engine The par- titioning engine is a hierarchical partitioning
Nasiri, Rasoul; Luo, Kai H
2017-07-10
For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.
NASA Astrophysics Data System (ADS)
Takahara, Atsushi; Kawahara, Seiichi
2009-09-01
Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y aimed to provide recent advances in polymer synthesis, self-assembling processes and morphologies, and functionalization of nano-soft-materials in order to initiate mutual and collaborative research interest that is essential to develop revolutionarily new nano-soft-materials in the decades ahead. Four Keynote lectures, 15 invited talks and 30 posters presented important new discoveries in polymeric nano-soft-materials, precision polymer synthesis, self-assembling and their functionalization. As for the precision polymer synthesis, the latest results were provided for studies on synthesis of polyrotaxane with movable graft chains, organic-inorganic hybridization of polymers, supra-molecular coordination assembly of conjugated polymers, precision polymerization of adamantane-containing monomers, production of high density polymer brush and synthesis of rod coil type polymer. The state-of-the-art results were introduced for the formation of nano-helical-structure of block copolymer containing asymmetric carbon atoms, self-assembling of block copolymers under the electric field, self-assembling of liquid crystalline elastomers, preparation of nano cylinder template films and mesoscopic simulation of phase transition of polymers and so forth. Moreover, recent advantages of three-dimensional electron microtomography and scanning force microscopy were proposed for analyses of nano-structures and properties of polymeric multi-component systems. Syntheses, properties and functions of slide-ring-gel, organic-inorganic hybrid hydrogels, hydrogel nano-particles, liquid-crystalline gels, the self-oscillating gels, and double network gels attracted participants' attention. Modifications of naturally occurring polymeric materials with supercritical carbon dioxide were introduced as a novel technology. Some of the attractive topics are presented in this issue. We are grateful to all the speakers and participants for valuable contributions and active discussions. Organizing committee of Symposium Y (IUMRS-ICA 2008) Chair Seiichi Kawahara (Nagaoka University of Technology, Japan) Vice Chairs Rong-Ming Ho (National Tsing Hua University, Taiwan) Hiroshi Jinnai (Kyoto Institute of Technology, Japan) Masami Kamigaito (Nagoya University, Japan) Takashi Miyata (Kansai University, Japan) Hiroshi Morita (National Institute of Advanced Industrial Science and Technology, Japan) Hideyuki Otsuka (Kyushu University, Japan) Daewon Sohn (Hanyang University, Korea) Keiji Tanaka (Kyushu University, Japan)
Microbial ingrowth around single- and multi-component adhesives studied in vitro.
Preussker, S; Klimm, W; Pöschmann, M; Koch, R
2003-01-01
The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ninety-four mixed standardized Class V cavities of human caries-free extracted premolars were filled with eight different composite adhesive systems using a one-layer (groups 1-4) or a two-layer technique (groups 5-8). After thermocycling and incubation in a broth culture of Streptococcus mutans and Lactobacillus acidophilus, followed by decalcification and staining, the extent and the type of microbial leakage were measured histologically. The extent of microbial leakage in the composite restorations was very low in all groups and there were no significant differences between adhesives. Z100 MP in combination with single- and multi-component adhesives showed a significantly higher microbial leakage than Tetric Flow systems (U test: p=0.037). XRV Herculite adhesive systems showed significantly less extensive microbial leakage than Arabesk Top adhesive systems (U test: p<0.001). The single-component dental adhesives achieved a marginal adaptation of composites comparable to that of multi-component adhesives in vitro. Copyright 2003 S. Karger AG, Basel
Stefani, I; Cooper-White, J J
2016-05-01
Cardiovascular diseases remain the largest cause of death worldwide, and half of these deaths are the result of failure of the vascular system. Tissue engineering promises to provide new, and potentially more effective therapeutic strategies to replace damaged or degenerated vessels with functional vessels. However, these engineered vessels have substantial performance criteria, including vessel-like tubular shape, structure and mechanical property slate. Further, whether implanted without or with prior in vitro culture, such tubular scaffolds must provide a suitable environment for cell adhesion and growth and be of sufficient porosity to permit cell colonization. This study investigates the fabrication of slowly degradable, composite tubular polymer scaffolds made from polycaprolactone (PCL) and acrylated l-lactide-co-trimethylene carbonate (aPLA-co-TMC). The addition of acrylate groups permits the 'in-process' formation of crosslinks between aPLA-co-TMC chains during electrospinning of the composite system, exemplifying a novel process to produce multicomponent, elastomeric electrospun polymer scaffolds. Although PCL and aPLA-co-TMC were miscible in a co-solvent, a criteria for electrospinning, due to thermodynamic incompatibility of the two polymers as melts, solvent evaporation during electrospinning drove phase separation of these two systems, producing 'core-shell' fibres, with the core being composed of PCL, and the shell of crosslinked elastomeric aPLA-co-TMC. The resulting elastic fibrous scaffolds displayed burst pressures and suture retention strengths comparable with human arteries. Cytocompatibility testing with human mesenchymal stem cells confirmed adhesion to, and proliferation on the three-dimensional fibrous network, as well as alignment with highly-organized fibres. This new processing methodology and resulting mechanically-robust composite scaffolds hold significant promise for tubular tissue engineering applications. Autologous small diameter blood vessel grafts are unsuitable solutions for vessel repair. Engineered solutions such as tubular biomaterial scaffolds however have substantial performance criteria to meet, including vessel-like tubular shape, structure and mechanical property slate. We detail herein an innovative methodology to co-electrospin and 'in-process' crosslink composite mixtures of Poly(caprolactone) and a newly synthesised acrylated-Poly(lactide-co-trimethylene-carbonate) to create elastomeric, core-shell nanofibrous porous scaffolds in a one-step process. This novel composite system can be used to make aligned scaffolds that encourage stem cell adhesion, growth and morphological control, and produce robust tubular scaffolds of tunable internal diameter and wall thickness that possess mechanical properties approaching those of native vessels, ideal for future applications in the field of vessel tissue engineering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Liu, Yang; Yin, Xiu-Wen; Wang, Zi-Yu; Li, Xue-Lian; Pan, Meng; Li, Yan-Ping; Dong, Ling
2017-11-01
One of the advantages of biopharmaceutics classification system of Chinese materia medica (CMMBCS) is expanding the classification research level from single ingredient to multi-components of Chinese herb, and from multi-components research to holistic research of the Chinese materia medica. In present paper, the alkaloids of extract of huanglian were chosen as the main research object to explore their change rules in solubility and intestinal permeability of single-component and multi-components, and to determine the biopharmaceutical classification of extract of Huanglian from holistic level. The typical shake-flask method and HPLC were used to detect the solubility of single ingredient of alkaloids from extract of huanglian. The quantitative research of alkaloids in intestinal absorption was measured in single-pass intestinal perfusion experiment while permeability coefficient of extract of huanglian was calculated by self-defined weight coefficient method. Copyright© by the Chinese Pharmaceutical Association.
Multicomponent Dark Matter in Radiative Seesaw Models
NASA Astrophysics Data System (ADS)
Aoki, Mayumi; Kaneko, Daiki; Kubo, Jisuke
2017-11-01
We discuss radiative seesaw models, in which an exact Z_2¥times Z_2' symmetry is imposed. Due to the exact Z_2¥times Z_2' symmetry, neutrino masses are generated at a two-loop level and at least two extra stable electrically neutral particles are predicted. We consider two models: one has a multi-component dark matter system and the other one has a dark radiation in addition to a dark matter. In the multi-component dark matter system, non-standard dark matter annihilation processes exist. We find that they play important roles in determining the relic abundance and also responsible for the monochromatic neutrino lines resulting from the dark matter annihilation process. In the model with the dark radiation, the structure of the Yukawa coupling is considerably constrained and gives an interesting relationship among cosmology, lepton flavor violating decay of the charged leptons and the decay of the inert Higgs bosons.
Morris, Christopher G.; Jacques, Nicholas M.; Godfrey, Harry G. W.; Mitra, Tamoghna; Fritsch, Detlev; Lu, Zhenzhong; Murray, Claire A.; Potter, Jonathan; Cobb, Tom M.; Yuan, Fajin
2017-01-01
The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties (e.g., adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(VIII) under (i) five different CO2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO2/N2. The study has successfully captured the structural dynamics underpinning CO2 uptake as a function of surface coverage. Moreover, MFM-300(VIII) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO2/N2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO2/N2 separation based on the ideal selectivity. PMID:28507700
Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties
NASA Astrophysics Data System (ADS)
Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.
2014-04-01
Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.
Characterization of Emissions from Open Burning of Meals ...
Emissions from burning current and candidate Meals Ready-to-Eat (MRE) packaging and shipping containers were characterized in an effort to assuage concerns that combustive disposal of waste at forward operating bases could pose an environmental or inhalation threat. Four types of container materials, both box and liners, including the currently used fiberboard, new corrugated fiberboard with Spektrakote polymer, new fiberboard without Spektrakote polymer, and the current fiberboard without wet strength were burned in an open burn test facility that simulated the burn pit disposal methods in Iraq and Afghanistan. MREs, including both current and proposed packaging materials, were added to a single container type to examine their effect on emissions. One quarter of the food was left in the packaging to represent unused meal components. The proposed packaging, consisting of a nano-composite polymer, was added in 25 % increments compared to traditional MRE packaging to create a range of usage levels. Emission factors, mass of pollutant per mass of burned material, were increased over the emission factors of the package containers themselves by the addition of the multi-component MREs, with the exception of Volatile Organic Compounds (VOCs). In general, little distinction was observed when comparing emission factors from the four container materials and when comparing the four MRE compositions. The majority of Particulate Matter (PM) emissions were of particles that
NASA Astrophysics Data System (ADS)
Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.
2016-02-01
The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.
Monakhova, Yulia B; Mushtakova, Svetlana P
2017-05-01
A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.
Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.
2013-07-01
Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel
2009-04-07
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
1990-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
Hook, Andrew L; Scurr, David J
2016-04-01
Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information-rich nature of ToF-SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C 6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono-functional from multi-functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure-function relationships based upon ToF-SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.
Improved Cook-off Modeling of Multi-component Cast Explosives
NASA Astrophysics Data System (ADS)
Nichols, Albert
2017-06-01
In order to understand the hazards associated with energetic materials, it is important to understand their behavior in adverse thermal environments. These processes have been relatively well understood for solid explosives, however, the same cannot be said for multi-component melt-cast explosives. Here we describe the continued development of ALE3D, a coupled thermal/chemical/mechanical code, to improve its description of fluid explosives. The improved physics models include: 1) Chemical potential driven species segregation. This model allows us to model the complex flow fields associated with the melting and decomposing Comp-B, where the denser RDX tends to settle and the decomposing gasses rise, 2) Automatically scaled stream-wise diffusion model for thermal, species, and momentum diffusion. These models add sufficient numerical diffusion in the direction of flow to maintain numerical stability when the system is under resolved, as occurs for large systems. And 3) a slurry viscosity model, required to properly define the flow characteristics of the multi-component fluidized system. These models will be demonstrated on a simple Comp-B system. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug.
Yu, Deng-Guang; Gao, Li-Dong; White, Kenneth; Branford-White, Christopher; Lu, Wei-Yue; Zhu, Li-Min
2010-11-01
To design and fabricate multicomponent amorphous electrospun nanofibers for synergistically improving the dissolution rate and permeation profiles of poorly water-soluble drugs. Nanofibers were designed to be composed of a poorly water soluble drug, helicid, a hydrophilic polymer polyvinylpyrrolidone as filament-forming matrix, sodium dodecyl sulfate as transmembrane enhancer and mannitol as taste masking agent, and were prepared from hot aqueous co-dissolving solutions of them. An elevated temperature electrospinning process was developed to fabricate the composite nanofibers, which were characterized using FESEM, DSC, XRD, ATR-FTIR, in vitro dissolution and permeation tests. The composite nanofibers were homogeneous with smooth surfaces and uniform structure, and the components were combined together in an amorphous state because of the favorable interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among them. In vitro dissolution and permeation tests demonstrated that the composite nanofibers had a dissolution rate over 26-fold faster than that of crude helicid particles and a 10-fold higher permeation rate across sublingual mucosa. A new type of amorphous material in the form of nanofibers was prepared from hot aqueous solutions of multiple ingredients using an electrospinning process. The amorphous nanofibers were able to improve the dissolution rate and permeation rate of helicid.
NASA Astrophysics Data System (ADS)
Goyal, Abheeti; Toschi, Federico; van der Schoot, Paul
2017-11-01
We study the morphological evolution and dynamics of phase separation of multi-component mixture in thin film constrained by a substrate. Specifically, we have explored the surface-directed spinodal decomposition of multicomponent mixture numerically by Free Energy Lattice Boltzmann (LB) simulations. The distinguishing feature of this model over the Shan-Chen (SC) model is that we have explicit and independent control over the free energy functional and EoS of the system. This vastly expands the ambit of physical systems that can be realistically simulated by LB simulations. We investigate the effect of composition, film thickness and substrate wetting on the phase morphology and the mechanism of growth in the vicinity of the substrate. The phase morphology and averaged size in the vicinity of the substrate fluctuate greatly due to the wetting of the substrate in both the parallel and perpendicular directions. Additionally, we also describe how the model presented here can be extended to include an arbitrary number of fluid components.
Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen
2015-09-18
This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM model is tuned, trained and tested with different feature subsets to obtain the optimal model. In addition, a comparison is made between the partial least square (PLS) model and the LS-SVM model. Finally, the optimal LS-SVM model with the optimal feature subset is applied to inline measurement of particle concentrations in the mixing process. The results show that the proposed method is reliable and accurate for inline measuring the particle concentrations in multicomponent suspensions and the measurement accuracy is sufficiently high for industrial application. Furthermore, the proposed method is applicable to the modeling of the nonlinear system dynamically and provides a feasible way to monitor industrial processes.
The triel bond: a potential force for tuning anion-π interactions
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Mousavian, Parisasadat
2018-02-01
Using ab-initio calculations, the mutual influence between anion-π and B···N or B···C triel bond interactions is investigated in some model complexes. The properties of these complexes are studied by molecular electrostatic potential, noncovalent interaction index, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the results, the formation of B···N or B···C triel bond interactions in the multi-component systems makes a significant shortening of anion-π distance. Such remarkable variation in the anion-π distances has not been reported previously. The strengthening of the anion-π bonding in the multi-component systems depend significantly on the nature of the anion, and it becomes larger in the order Br- > Cl- > F-. The parameters derived from the QTAIM and NBO methodologies are used to study the mechanism of the cooperativity between the anion-π and triel bond interactions in the multi-component complexes.
Berry, David J; Steed, Jonathan W
2017-08-01
As small molecule drugs become harder to develop and less cost effective for patient use, efficient strategies for their property improvement become increasingly important to global health initiatives. Improvements in the physical properties of Active Pharmaceutical Ingredients (APIs), without changes in the covalent chemistry, have long been possible through the application of binary component solids. This was first achieved through the use of pharmaceutical salts, within the last 10-15years with cocrystals and more recently coamorphous systems have also been consciously applied to this problem. In order to rationally discover the best multicomponent phase for drug development, intermolecular interactions need to be considered at all stages of the process. This review highlights the current thinking in this area and the state of the art in: pharmaceutical multicomponent phase design, the intermolecular interactions in these phases, the implications of these interactions on the material properties and the pharmacokinetics in a patient. Copyright © 2017 Elsevier B.V. All rights reserved.
Black, Maureen M.; Saavedra, Jose M.
2016-01-01
Interventions targeting parenting focused modifiable factors to prevent obesity and promote healthy growth in the first 1000 days of life are needed. Scale-up of interventions to global populations is necessary to reverse trends in weight status among infants and toddlers, and large scale dissemination will require understanding of effective strategies. Utilizing nutrition education theories, this paper describes the design of a digital-based nutrition guidance system targeted to first-time mothers to prevent obesity during the first two years. The multicomponent system consists of scientifically substantiated content, tools, and telephone-based professional support delivered in an anticipatory and sequential manner via the internet, email, and text messages, focusing on educational modules addressing the modifiable factors associated with childhood obesity. Digital delivery formats leverage consumer media trends and provide the opportunity for scale-up, unavailable to previous interventions reliant on resource heavy clinic and home-based counseling. Designed initially for use in the United States, this system's core features are applicable to all contexts and constitute an approach fostering healthy growth, not just obesity prevention. The multicomponent features, combined with a global concern for optimal growth and positive trends in mobile internet use, represent this system's future potential to affect change in nutrition practice in developing countries. PMID:27635257
Thermodynamic Modelling of Phase Transformation in a Multi-Component System
NASA Astrophysics Data System (ADS)
Vala, J.
2007-09-01
Diffusion in multi-component alloys can be characterized by the vacancy mechanism for substitutional components, by the existence of sources and sinks for vacancies and by the motion of atoms of interstitial components. The description of diffusive and massive phase transformation of a multi-component system is based on the thermodynamic extremal principle by Onsager; the finite thickness of the interface between both phases is respected. The resulting system of partial differential equations of evolution with integral terms for unknown mole fractions (and additional variables in case of non-ideal sources and sinks for vacancies), can be analyzed using the method of lines and the finite difference technique (or, alternatively, the finite element one) together with the semi-analytic and numerical integration formulae and with certain iteration procedure, making use of the spectral properties of linear operators. The original software code for the numerical evaluation of solutions of such systems, written in MATLAB, offers a chance to simulate various real processes of diffusional phase transformation. Some results for the (nearly) steady-state real processes in substitutional alloys have been published yet. The aim of this paper is to demonstrate that the same approach can handle both substitutional and interstitial components even in case of a general system of evolution.
Quantum Approximate Methods for the Atomistic Modeling of Multicomponent Alloys. Chapter 7
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Garces, Jorge; Mosca, Hugo; Gargano, pablo; Noebe, Ronald D.; Abel, Phillip
2007-01-01
This chapter describes the role of quantum approximate methods in the understanding of complex multicomponent alloys at the atomic level. The need to accelerate materials design programs based on economical and efficient modeling techniques provides the framework for the introduction of approximations and simplifications in otherwise rigorous theoretical schemes. As a promising example of the role that such approximate methods might have in the development of complex systems, the BFS method for alloys is presented and applied to Ru-rich Ni-base superalloys and also to the NiAI(Ti,Cu) system, highlighting the benefits that can be obtained from introducing simple modeling techniques to the investigation of such complex systems.
NASA Astrophysics Data System (ADS)
Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.
2005-01-01
Three-dimensional models of atmospheric inorganic aerosols need accurate and computationally efficient parameterizations of activity coefficients of various electrolytes in multicomponent aqueous solutions. In this paper, we extend the Taylor's series expansion mixing rule used by C. Wagner in 1952 for estimating activity coefficients in dilute alloy solutions to aqueous electrolyte solutions at any concentration. The resulting method, called the multicomponent Taylor expansion method (MTEM), estimates the mean activity coefficient of an electrolyte in a multicomponent solution on the basis of its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. MTEM is applied here for atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+, SO42-, HSO4-, NO3-, and Cl- ions. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson (ZSR) method. For self-consistency, most of the MTEM and ZSR parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K and are valid for an aw range of 0.2-0.97. Because CaSO4 is sparingly soluble, it is treated as a solid in the model over the entire aw range. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols and is contrasted against the mixing rule of C. L. Kusik and H. P. Meissner and of L. A. Bromley and the newer approach of S. Metzger and colleagues. Predictions of MTEM are found to be generally within a factor of 0.8-1.25 of the comprehensive Pitzer-Simonson-Clegg model and are shown to be significantly more accurate than predictions of the other three methods. MTEM also yields a noniterative solution of the bisulfate ion dissociation in sulfate-rich systems: a major computational advantage over other ionic-strength-based methods that require an iterative solution. CPU time requirements of MTEM relative to other methods for sulfate-poor and sulfate-rich systems are also discussed.
Soft X-ray Spectromicroscopy of Polymers
NASA Astrophysics Data System (ADS)
Ade, Harald
1997-03-01
The development of Near Edge X-ray Absorption Fine Structure (NEXAFS) microscopy^1 and linear dichroism microscopy^2 over the last few years utilizing the X1-Scanning Transmission X-ray Microscope (X1-STXM) at the National Synchrotron Light Source provides excellent specificity to various functional groups and moieties in organic molecules and polymeric materials at a spatial resolution of 50 nm. This chemical specificity can be utilized to map the distribution of various compounds in a material, or to micro-chemically analyze small sample areas. Examples of applications include the study of various phase-separated polymers (polyurethanes, liquid crystalline polyesters), multicomponent polymer blends, polymer laminates, and other organic materials such as coal^3. Linear dichroism microscopy furthermore explores the polarization dependence of NEXAFS in (partially) oriented materials, and can determine the orientation of specific functional groups. Applications of linear dichroism microscopy have focused so far on determining the relative degree of radial orientation in Kevlar fibers^3. ^1 H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, and S. Williams, Science 258, 972 (1992). ^2 H. Ade and B. Hsiao, Science 262, 1427 (1993). ^3 Acknowledgement: My callaborators are B. Hsiao, S. Subramoney, B. Wood, I. Plotzker, E. Rightor, G. Mitchell, C. Sloop, D.-J. Liu, S.-C. Liu, J. Marti, C. Zimba, A. P. Smith, R. Spontak, R. Fornes, R. Gilbert, C. Cody, A. Hitchcock and S. Urquhart. The X1-STXM is built and maintained by J. Kirz and C. Jacobsen and their groups. Work supported by: NSF Young Investigator Award (DMR-9458060), DuPont Young Professor Grant, and Dow Chemical.
Kang, Jia-Jhen; Yang, Tsung-Yu; Lan, Yi-Kang; Wu, Wei-Ru; Su, Chun-Jen; Weng, Shih-Chang; Yamada, Norifumi L; Su, An-Chung; Jeng, U-Ser
2018-04-01
Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC 71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC 71 BM more than that of the polymer. The deeper penetration of PC 71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.
2016-01-01
The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications. PMID:26883390
NASA Astrophysics Data System (ADS)
Zemenkova, M. Yu; Zemenkov, Yu D.; Shantarin, V. D.
2016-10-01
The paper reviews the development of methodology for calculation of hydrocarbon emissions during seepage and evaporation to monitor the reliability and safety of hydrocarbon storage and transportation. The authors have analyzed existing methods, models and techniques for assessing the amount of evaporated oil. Models used for predicting the material balance of multicomponent two-phase systems have been discussed. The results of modeling the open-air hydrocarbon evaporation from an oil spill are provided and exemplified by an emergency pit. Dependences and systems of differential equations have been obtained to assess parameters of mass transfer from the open surface of a liquid multicomponent mixture.
First-order curvature corrections to the surface tension of multicomponent systems.
Boltachev, Grey Sh; Baidakov, Vladimir G; Schmelzer, Jürn W P
2003-08-01
The dependence of surface tension on curvature is investigated for the case of an equilibrium phase coexistence in multicomponent systems. Employing Gibbs's method of description of heterogeneous systems, an equation is derived to determine the dependence of surface tension on curvature for widely arbitrary paths of variation of the independent thermodynamic parameters. It is supposed hereby merely that the temperature is kept constant and that the variations of the different molar fractions are such that the radius of the dividing surface varies monotonically in dependence on the change of the state parameters of the ambient phase along any of the chosen paths. In the analysis, an approach developed by Blokhuis and Bedeaux for one-component systems is utilized. It relies on the expansion of the surface free energy on curvature of the dividing surface. An equation is derived that connects the first-order correction term in the expansion with the interaction potential of the particles in the multicomponent solution and with the two-particle distribution functions in the planar interfacial layer between the two phases coexisting in equilibrium at planar interfaces. The connection of the first-order curvature correction to the surface tension and the first moment of the pressure tensor at a planar interface is analyzed as well.
Integrable multi-component generalization of a modified short pulse equation
NASA Astrophysics Data System (ADS)
Matsuno, Yoshimasa
2016-11-01
We propose a multi-component generalization of the modified short pulse (SP) equation which was derived recently as a reduction of Feng's two-component SP equation. Above all, we address the two-component system in depth. We obtain the Lax pair, an infinite number of conservation laws and multisoliton solutions for the system, demonstrating its integrability. Subsequently, we show that the two-component system exhibits cusp solitons and breathers for which the detailed analysis is performed. Specifically, we explore the interaction process of two cusp solitons and derive the formula for the phase shift. While cusp solitons are singular solutions, smooth breather solutions are shown to exist, provided that the parameters characterizing the solutions satisfy certain conditions. Last, we discuss the relation between the proposed system and existing two-component SP equations.
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Anderson, J. L.; Moncrieff, M.; Collins, N.; Danabasoglu, G.; Hoar, T.; Karspeck, A. R.; Neale, R. B.; Raeder, K.; Tribbia, J. J.
2014-12-01
We present a quantitative evaluation of the simulated MJO in analyses produced with a coupled data assimilation (CDA) framework developed at the National Center for Atmosphere Research. This system is based on the Community Earth System Model (CESM; previously known as the Community Climate System Model -CCSM) interfaced to a community facility for ensemble data assimilation (Data Assimilation Research Testbed - DART). The system (multi-component CDA) assimilates data into each of the respective ocean/atmosphere/land model components during the assimilation step followed by an exchange of information between the model components during the forecast step. Note that this is an advancement over many existing prototypes of coupled data assimilation systems, which typically assimilate observations only in one of the model components (i.e., single-component CDA). The more realistic treatment of air-sea interactions and improvements to the model mean state in the multi-component CDA recover many aspects of MJO representation, from its space-time structure and propagation (see Figure 1) to the governing relationships between precipitation and sea surface temperature on intra-seasonal scales. Standard qualitative and process-based diagnostics identified by the MJO Task Force (currently under the auspices of the Working Group on Numerical Experimentation) have been used to detect the MJO signals across a suite of coupled model experiments involving both multi-component and single-component DA experiments as well as a free run of the coupled CESM model (i.e., CMIP5 style without data assimilation). Short predictability experiments during the boreal winter are used to demonstrate that the decay rates of the MJO convective anomalies are slower in the multi-component CDA system, which allows it to retain the MJO dynamics for a longer period. We anticipate that the knowledge gained through this study will enhance our understanding of the MJO feedback mechanisms across the air-sea interface, especially regarding ocean impacts on the MJO as well as highlight the capability of coupled data assimilation systems for related tropical intraseasonal variability predictions.
Ji, Yanzhou; Heo, Tae Wook; Zhang, Fan; ...
2015-12-21
Here we present our theoretical assessment of the kinetic pathways during phase transformations of multi-component Ti alloys. Employing the graphical thermodynamic approach and an integrated free energy function based on the realistic thermodynamic database and assuming that a displacive structural transformation occurs much faster than long-range diffusional processes, we analyze the phase stabilities of Ti-6Al -4V (Ti-6wt.%Al -4wt.%V). Our systematic analyses predict a variety of possible kinetic pathways for β to (α + β) transformations leading to different types of microstructures under various heat treatment conditions. In addition, the possibility of unconventional kinetic pathways is discussed. Lastly, we also brieflymore » discuss the application of our approach to general multicomponent/multiphase alloy systems.« less
Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara
2016-05-24
Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.
2015-01-01
We report the latent production of free radicals from energy stored in a redox potential through a 2e–/1H+ transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically hindered amine reductant and an onium salt oxidant. This enables light-initiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination and beyond the spatial reach of light by diffusion of the metastable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a 2e–/1H+ shuttle mechanism, as opposed to the 1e– transfer process typical of organometallic-based and conventional organic multicomponent photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light absorption and enables the “storage” of light-energy without spontaneous initiation of the polymerization. Latent energy release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporally controlled redox initiation of polymer syntheses under low-intensity short exposure conditions and permits visible-light-mediated synthesis of polymers at least 1 order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes. PMID:24786755
Aguirre-Soto, Alan; Lim, Chern-Hooi; Hwang, Albert T; Musgrave, Charles B; Stansbury, Jeffrey W
2014-05-21
We report the latent production of free radicals from energy stored in a redox potential through a 2e(-)/1H(+) transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically hindered amine reductant and an onium salt oxidant. This enables light-initiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination and beyond the spatial reach of light by diffusion of the metastable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a 2e(-)/1H(+) shuttle mechanism, as opposed to the 1e(-) transfer process typical of organometallic-based and conventional organic multicomponent photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light absorption and enables the "storage" of light-energy without spontaneous initiation of the polymerization. Latent energy release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporally controlled redox initiation of polymer syntheses under low-intensity short exposure conditions and permits visible-light-mediated synthesis of polymers at least 1 order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes.
Time-of-flight expansion of binary Bose–Einstein condensates at finite temperature
NASA Astrophysics Data System (ADS)
Lee, K. L.; Jørgensen, N. B.; Wacker, L. J.; Skou, M. G.; Skalmstang, K. T.; Arlt, J. J.; Proukakis, N. P.
2018-05-01
Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of 87Rb–39K Bose–Einstein condensates (BECs) with tunable interactions both theoretically and experimentally. Such multi-component systems can be characterized by their miscibility, where miscible components lead to a mixed ground state and immiscible components form a phase-separated state. Here we perform the first full simulation of the dynamical expansion of this system including both BECs and thermal clouds, which allows for a detailed comparison with experimental results. In particular we show that striking features emerge in time-of-flight (TOF) for BECs with strong interspecies repulsion, even for systems which were separated in situ by a large gravitational sag. An analysis of the centre of mass positions of the BECs after expansion yields qualitative agreement with the homogeneous criterion for phase-separation, but reveals no clear transition point between the mixed and the separated phases. Instead one can identify a transition region, for which the presence of a gravitational sag is found to be advantageous. Moreover, we analyse the situation where only one component is condensed and show that the density distribution of the thermal component also shows some distinct features. Our work sheds new light on the analysis of multi-component systems after TOF and will guide future experiments on the detection of miscibility in these systems.
Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertoni, G.; Martino, M.; Galli, E.
The toluene/o-xylene monooxygenase cloned from Pseudomonas stutzeri OX1 displays a very broad range of substrates and a very peculiar regioselectivity, because it is able to hydroxylate more than one position on the aromatic ring of several hydrocarbons and phenols. The nucleotide sequence of the gene cluster coding for this enzymatic system has been determined. The sequence analysis revealed the presence of six open reading frames (ORFs) homologous to other genes clustered in operons coding for multicomponent monooxygenases found in benzene- and toluene-degradative pathways cloned from Pseudomonas strains. Significant similarities were also found with multicomponent monooxygenase systems for phenol, methane, alkene,more » and dimethyl sulfide cloned from different bacterial strains. The knockout of each ORF and complementation with the wild-type allele indicated that all six ORFs are essential for the full activity of the toluene/o-xylene monooxygenase in Escherichia coli. This analysis also shows that despite its activity on both hydrocarbons and phenols, toluene/o-xylene monooxygenase belongs to a toluene multicomponent monooxygenase subfamily rather than to the monooxygenases active on phenols.« less
NASA Astrophysics Data System (ADS)
Chou, George; Vaughn, Mark; Cheng, K.
2011-10-01
Multicomponent lipid bilayers represent an important model system for studying cell membranes. At present, an ordered multicomponent phospholipid/cholesterol bilayer system involving charged lipid is still not available. Using a lipid superlattice (SL) model, a 13 x 15 x 15 nm^3 ternary phosphatidylcholine/phosphatidylserine/cholesterol bilayer system in water with simultaneous headgroup SL and acyl chain SL at different depths, or epitaxial SL, of the bilayer has been designed with atomistic detail. The arrangements of this epitaxial SL system were optimized by only two molecular parameters, lattice space and rotational angle of the lipids. Using atomistic MD simulations, we demonstrated the stability of the ordered structures for more than 100 ns. A positional restrained system was also used as a control. This system will provide new insights into understanding the nanodomain structures of cell membranes at the molecular level.
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Apparatus Characterizes Transient Voltages in Real Time; Measuring Humidity in Sealed Glass Encasements; Adaptable System for Vehicle Health and Usage Monitoring; Miniature Focusing Time-of-Flight Mass Spectrometer; Cryogenic High-Sensitivity Magnetometer; Wheel Electrometer System; Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells; Patch Antenna Fed via Unequal-Crossed-Arm Aperture; LC Circuits for Diagnosing Embedded Piezoelectric Devices; Nanowire Thermoelectric Devices; Code for Analyzing and Designing Spacecraft Power System Radiators; Decision Support for Emergency Operations Centers; NASA Records Database; Real-Time Principal- Component Analysis; Fuzzy/Neural Software Estimates Costs of Rocket- Engine Tests; Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings; Reactive Additives for Phenylethynyl-Containing Resins; Improved Gear Shapes for Face Worm Gear Drives; Alternative Way of Shifting Mass to Move a Spherical Robot; Parylene C as a Sacrificial Material for Microfabrication; In Situ Electrochemical Deposition of Microscopic Wires; Improved Method of Manufacturing SiC Devices; Microwave Treatment of Prostate Cancer and Hyperplasia; Ferroelectric Devices Emit Charged Particles and Radiation; Dusty-Plasma Particle Accelerator; Frozen-Plug Technique for Liquid-Oxygen Plumbing; Shock Waves in a Bose-Einstein Condensate; Progress on a Multichannel, Dual-Mixer Stability Analyzer; Development of Carbon- Nanotube/Polymer Composites; Thermal Imaging of Earth for Accurate Pointing of Deep-Space Antennas; Modifications of a Composite-Material Combustion Chamber; Modeling and Diagnostic Software for Liquefying- Fuel Rockets; and Spacecraft Antenna Clusters for High EIRP.
Haines, Seth S.; Lee, Myung W.; Collett, Timothy S.; Hardage, Bob A.
2011-01-01
In-situ characterization and quantification of natural gas hydrate occurrences remain critical research directions, whether for energy resource, drilling hazard, or climate-related studies. Marine multicomponent seismic data provide the full seismic wavefield including partial redundancy, and provide a promising set of approaches for gas hydrate characterization. Numerous authors have demonstrated the possibilities of multicomponent data at study sites around the world. We expand on this work by investigating the utility of very densely spaced (10’s of meters) multicomponent receivers (ocean-bottom cables, OBC, or ocean-bottom seismometers, OBS) for gas hydrate studies in the Gulf of Mexico and elsewhere. Advanced processing techniques provide high-resolution compressional-wave (PP) and converted shearwave (PS) reflection images of shallow stratigraphy, as well as P-wave and S-wave velocity estimates at each receiver position. Reflection impedance estimates can help constrain velocity and density, and thus gas hydrate saturation. Further constraint on velocity can be determined through identification of the critical angle and associated phase reversal in both PP and PS wideangle data. We demonstrate these concepts with examples from OBC data from the northeast Green Canyon area and numerically simulated OBS data that are based on properties of known gas hydrate occurrences in the southeast (deeper water) Green Canyon area. These multicomponent data capabilities can provide a wealth of characterization and quantification information that is difficult to obtain with other geophysical methods.
Simulation of multicomponent light source for optical-electronic system of color analysis objects
NASA Astrophysics Data System (ADS)
Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.
2016-04-01
Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.
A self-calibrating multicomponent force/torque measuring system
NASA Astrophysics Data System (ADS)
Marangoni, Rafael R.; Schleichert, Jan; Rahneberg, Ilko; Hilbrunner, Falko; Fröhlich, Thomas
2018-07-01
A multicomponent self-calibrating force and torque sensor is presented. In this system, the principle of a Kibble balance is adapted for the traceable force and torque measurement in three orthogonal directions. The system has two operating modes: the velocity mode and the force/torque sensing mode. In the velocity mode, the calibration of the sensor is performed, while in the force/torque sensing mode, forces and torques are measured by using the principle of the electromagnetic force compensation. Details about the system are provided, with the main components of the sensor and a description of the operational procedure. A prototype of the system is currently being implemented for measuring forces and torques in a range of ±2 N and ±0.1 N · m respectively. A maximal relative expanded measurement uncertainty (k = 2) of 1 · 10‑4 is expected for the force and torque measurements.
Dissipative hydrodynamics for multi-component systems
NASA Astrophysics Data System (ADS)
El, Andrej; Bouras, Ioannis; Wesp, Christian; Xu, Zhe; Greiner, Carsten
2012-11-01
Second-order dissipative hydrodynamic equations for each component of a multi-component system are derived using the entropy principle. Comparison of the solutions with kinetic transport results demonstrates validity of the obtained equations. We demonstrate how the shear viscosity of the total system can be calculated in terms of the involved cross-sections and partial densities. The presence of the inter-species interactions leads to a characteristic time dependence of the shear viscosity of the mixture, which also means that the shear viscosity of a mixture cannot be calculated using the Green-Kubo formalism the way it has been done recently. This finding is of interest for understanding of the shear viscosity of a quark-gluon plasma extracted from comparisons of hydrodynamic simulations with experimental results from RHIC and LHC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir
An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less
El Garah, Mohamed; Marets, Nicolas; Mauro, Matteo; Aliprandi, Alessandro; Bonacchi, Sara; De Cola, Luisa; Ciesielski, Artur; Bulach, Véronique; Hosseini, Mir Wais; Samorì, Paolo
2015-07-08
The self-assembly of multiple molecular components into complex supramolecular architectures is ubiquitous in nature and constitutes one of the most powerful strategies to fabricate multifunctional nanomaterials making use of the bottom-up approach. When spatial confinement in two dimensions on a solid substrate is employed, this approach can be exploited to generate periodically ordered structures from suitably designed molecular tectons. In this study we demonstrate that physisorbed directional periodic arrays of monometallic or heterobimetallic coordination polymers can be generated on a highly oriented pyrolitic graphite surface by combinations of a suitably designed directional organic tecton or metallatecton based on a porphyrin or nickel(II) metalloporphyrin backbone bearing both a pyridyl unit and a terpyridyl unit acting as coordinating sites for CoCl2. The periodic architectures were visualized at the solid/liquid interface with a submolecular resolution by scanning tunneling microscopy and corroborated by combined density functional and time-dependent density functional theory calculations. The capacity to nanopattern the surface for the first time with two distinct metallic centers exhibiting different electronic and optical properties is a key step toward the bottom-up construction of robust multicomponent and, thus, multifunctional molecular nanostructures and nanodevices.
Development of cost-effective surfactant flooding technology. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1996-11-01
Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less
Tagami, Tatsuaki; Nagata, Noriko; Hayashi, Naomi; Ogawa, Emi; Fukushige, Kaori; Sakai, Norihito; Ozeki, Tetsuya
2018-05-30
3D-printed tablets are a promising new approach for personalized medicine. In this study, we fabricated composite tablets consisting of two components, a drug and a filler, by using a fused deposition modeling-type 3D printer. Polyvinylalcohol (PVA) polymer containing calcein (a model drug) was used as the drug component and PVA or polylactic acid (PLA) polymer without drug was used as the water-soluble or water-insoluble filler, respectively. Various kinds of drug-PVA/PVA and drug-PVA/PLA composite tablets were designed, and the 3D-printed tablets exhibited good formability. The surface area of the exposed drug component is highly correlated with the initial drug release rate. Composite tablets with an exposed top and a bottom covered with a PLA layer were fabricated. These tablets showed zero-order drug release by maintaining the surface area of the exposed drug component during drug dissolution. In contrast, the drug release profile varied for tablets whose exposed surface area changed. Composite tablets with different drug release lag times were prepared by changing the thickness of the PVA filler coating the drug component. These results which used PVA and PLA filler will provide useful information for preparing the tablets with multi-components and tailor-made tablets with defined drug release profiles using 3D printers. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Chuanzhong; He, Jingsong
2016-06-01
We construct Virasoro-type additional symmetries of a kind of constrained multicomponent Kadomtsev-Petviashvili (KP) hierarchy and obtain the Virasoro flow equation for the eigenfunctions and adjoint eigenfunctions. We show that the algebraic structure of the Virasoro symmetry is retained under discretization from the constrained multicomponent KP hierarchy to the discrete constrained multicomponent KP hierarchy.
Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Yinbo; Qin, Lu; Liao, Xing
2015-10-01
Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. A multicomponent treatment that consisted of the residual rice straw remaining after rice harvest and Trichoderma sp. Tri-1 (Tri-1) formulated with the oilseed rape seedcake fertilizer was used in field soil infested with S. sclerotiorum. This treatment resulted in oilseed rape seed yield that was significantly greater than the nontreated control or when the fungicide carbendizem was used in the presence of this pathogen in field trials. Yield data suggested that the rice straw, oilseed rape seedcake, and Tri-1 components of this treatment all contributed incrementally. Similar treatment results were obtained regarding reduction in disease incidence. Slight improvements in yield and disease incidence were detected when this multicomponent treatment was combined with a fungicide spray. Inhibition of sclerotial germination by this multicomponent treatment trended greater than the nontreated control at 90, 120, and 150 days in field studies but was not significantly different from this control. This multicomponent treatment resulted in increased yield relative to the nontreated control in the absence of pathogen in a greenhouse pot study, while the straw alone and the straw plus oilseed rape seedcake treatments did not; suggesting that Tri-1 was capable of promoting growth. Experiments reported here indicate that a treatment containing components of a rice-oilseed rape production system augmented with Tri-1 can control S. sclerotiorum on oilseed rape, be used in integrated strategies containing fungicide sprays for control of this pathogen, and promote plant growth.
NASA Astrophysics Data System (ADS)
Al-abadleh, H. A.; Tofan-Lazar, J.; Situm, A.; Ruffolo, J.; Slikboer, S.
2013-12-01
Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.
Harmonically mode-locked erbium-doped waveguide laser
NASA Astrophysics Data System (ADS)
Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.
2004-08-01
The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.
Liu, Yang; Luo, Zhi-Qiang; Lv, Bei-Ran; Zhao, Hai-Yu; Dong, Ling
2016-04-01
The multiple components in Chinese herbal medicines (CHMS) will experience complex absorption and metabolism before entering the blood system. Previous studies often lay emphasis on the components in blood. However, the dynamic and sequential absorption and metabolism process following multi-component oral administration has not been studied. In this study, the in situ closed-loop method combined with LC-MS techniques were employed to study the sequential process of Chuanxiong Rhizoma decoction (RCD). A total of 14 major components were identified in RCD. Among them, ferulic acid, senkyunolide J, senkyunolide I, senkyunolide F, senkyunolide G, and butylidenephthalide were detected in all of the samples, indicating that the six components could be absorbed into blood in prototype. Butylphthalide, E-ligustilide, Z-ligustilide, cnidilide, senkyunolide A and senkyunolide Q were not detected in all the samples, suggesting that the six components may not be absorbed or metabolized before entering the hepatic portal vein. Senkyunolide H could be metabolized by the liver, while senkyunolide M could be metabolized by both liver and intestinal flora. This study clearly demonstrated the changes in the absorption and metabolism process following multi-component oral administration of RCD, so as to convert the static multi-component absorption process into a comprehensive dynamic and continuous absorption and metabolism process. Copyright© by the Chinese Pharmaceutical Association.
Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.
Kim, Jeongmin; Sung, Bong June
2015-06-17
The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.
Multicomponent gas sorption Joule-Thomson refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)
1991-01-01
The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.
Design of magnetic and fluorescent nanoparticles for in vivo MR and NIRF cancer imaging
NASA Astrophysics Data System (ADS)
Key, Jaehong
One big challenge for cancer treatment is that it has many errors in detection of cancers in the early stages before metastasis occurs. Using a current imaging modality, the detection of small tumors having potential metastasis is still very difficult. Thus, the development of multi-component nanoparticles (NPs) for dual modality cancer imaging is invaluable. The multi-component NPs can be an alternative to overcome the limitations from an imaging modality. For example, the multi-component NPs can visualize small tumors in both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF) imaging, which can help find the location of the tumors deep inside the body using MRI and subsequently guide surgeons to delineate the margin of tumors using highly sensitive NIRF imaging during a surgical operation. In this dissertation, we demonstrated the potential of the MRI and NIRF dual-modality NPs for skin and bladder cancer imaging. The multi-component NPs consisted of glycol chitosan, superparamagnetic iron oxide, NIRF dye, and cancer targeting peptides. We characterized the NPs and evaluated them with tumor bearing mice as well as various cancer cells. The findings of this research will contribute to the development of cancer diagnostic imaging and it can also be extensively applied to drug delivery system and fluorescence-guided surgical removal of cancer.
General Model for Multicomponent Ablation Thermochemistry
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)
1994-01-01
A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).
Structure-induced microalloying effect in multicomponent alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Gu -Qing; Yang, Liang; Wu, Shi -Yang
2016-04-28
In this study, the microalloying effect on glass-forming ability (GFA) has been investigated from the structural aspect, by performing synchrotron radiation x-ray diffraction and absorption measurements coupled with simulations in the NiNbZr ternary system. We propose a new parameter which counts the fraction of the fivefold symmetries in all clusters and find it is strongly associated with the GFA. In particular, this structural parameter has the highest value in a composition where the best GFA is achieved. The present work provides an in-depth understanding of microalloying-induced high GFAs in multicomponent alloys.
Scale-invariance underlying the logistic equation and its social applications
NASA Astrophysics Data System (ADS)
Hernando, A.; Plastino, A.
2013-01-01
On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
Gibs, J.; Wicklund, A.; Suffet, I.H.
1986-01-01
The 'rule of thumb' that large volumes of water can be sampled for trace organic pollutants by XAD resin columns which are designed by small column laboratory studies or pure compounds is examined and shown to be a problem. A theory of multicomponent breakthrough is presented as a frame of reference to help solve the problem and develop useable criteria to aid the design of resin columns. An important part of the theory is the effect of humic substances on the breakthrough character of multicomponent chemical systems.
NASA Astrophysics Data System (ADS)
Anyalebechi, P. N.
Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.
NASA Astrophysics Data System (ADS)
Hochstetler, D. L.; Kitanidis, P. K.
2009-12-01
Modeling the transport of reactive species is a computationally demanding problem, especially in complex subsurface media, where it is crucial to improve understanding of geochemical processes and the fate of groundwater contaminants. In most of these systems, reactions are inherently fast and actual rates of transformations are limited by the slower physical transport mechanisms. There have been efforts to reformulate multi-component reactive transport problems into systems that are simpler and less demanding to solve. These reformulations include defining conservative species and decoupling of reactive transport equations so that fewer of them must be solved, leaving mostly conservative equations for transport [e.g., De Simoni et al., 2005; De Simoni et al., 2007; Kräutle and Knabner, 2007; Molins et al., 2004]. Complex and computationally cumbersome numerical codes used to solve such problems have also caused De Simoni et al. [2005] to develop more manageable analytical solutions. Furthermore, this work evaluates reaction rates and has reaffirmed that the mixing rate,▽TuD▽u, where u is a solute concentration and D is the dispersion tensor, as defined by Kitanidis [1994], is an important and sometimes dominant factor in determining reaction rates. Thus, mixing of solutions is often reaction-limiting. We will present results from analytical and computational modeling of multi-component reactive-transport problems. The results have applications to dissolution of solid boundaries (e.g., calcite), dissolution of non-aqueous phase liquids (NAPLs) in separate phases, and mixing of saltwater and freshwater (e.g. saltwater intrusion in coastal carbonate aquifers). We quantify reaction rates, compare numerical and analytical results, and analyze under what circumstances which approach is most effective for a given problem. References: DeSimoni, M., et al. (2005), A procedure for the solution of multicomponent reactive transport problems, Water Resources Research, 41(W11410). DeSimoni, M., et al. (2007), A mixing ratios-based formulation for multicomponent reactive transport, Water Resources Research, 43(W07419). Kitanidis, P. (1994), The Concept of the Dilution Index, Water Resources Research, 30(7), 2011-2026. Kräutle, S., and P. Knabner (2007), A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions Water Resources Research, 43. Molins, S., et al. (2004), A formulation for decoupling components in reactive transport porblems, Water Resources Research, 40, 13.
Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim
2016-02-16
The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.
Multi-component Wronskian solution to the Kadomtsev-Petviashvili equation
NASA Astrophysics Data System (ADS)
Xu, Tao; Sun, Fu-Wei; Zhang, Yi; Li, Juan
2014-01-01
It is known that the Kadomtsev-Petviashvili (KP) equation can be decomposed into the first two members of the coupled Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy by the binary non-linearization of Lax pairs. In this paper, we construct the N-th iterated Darboux transformation (DT) for the second- and third-order m-coupled AKNS systems. By using together the N-th iterated DT and Cramer's rule, we find that the KPII equation has the unreduced multi-component Wronskian solution and the KPI equation admits a reduced multi-component Wronskian solution. In particular, based on the unreduced and reduced two-component Wronskians, we obtain two families of fully-resonant line-soliton solutions which contain arbitrary numbers of asymptotic solitons as y → ∓∞ to the KPII equation, and the ordinary N-soliton solution to the KPI equation. In addition, we find that the KPI line solitons propagating in parallel can exhibit the bound state at the moment of collision.
Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.
Treatment of an assaultive, sensory-impaired adolescent through a multicomponent behavioral program.
Luiselli, J K
1984-03-01
This project examined the effects of a multicomponent behavioral treatment program on assaultive behavior in a deaf, visually-impaired adolescent boy. Two types of assaultiveness were monitored: aggression towards adults and destruction of the physical environment. Intervention consisted of a token economy system, a response cost procedure, a "relaxation" technique, and skill training sessions. Through use of a multiple baseline across behaviors design, it was demonstrated that differentially reinforcing the absence of target behaviors on a weekly basis was the crucial ingredient in the treatment package. During a maintenance programming phase, the boy was gradually weaned off the token system. At 1- and 2-year follow-ups, no aggressive or destructive acts had occurred and the boy was showing improved communication and interpersonal skills.
Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene
NASA Astrophysics Data System (ADS)
Conti, S.; Perali, A.; Peeters, F. M.; Neilson, D.
2017-12-01
Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap Eg˜80 - 120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.
Vöhringer, Paul A; Castro, Ariel; Martínez, Pablo; Tala, Álvaro; Medina, Simón; Rojas, Graciela
2016-08-01
Although evidence from Latin America and the Caribbean suggests that depression can be effectively treated in primary care settings, depression management remains unevenly performed. This systematic review evaluates all the international evidence on healthcare team training programs aimed at improving the outcomes of patients with depression. Three databases were searched for articles in English or Spanish indexed up to November 20, 2014. Studies were included if they fulfilled the following conditions: clinical trials, meta-analyses, or systematic reviews; and if they evaluated a training or educational program intended to improve the management of depression by primary healthcare teams, and assessed change in depressive symptoms, diagnosis or response rates, referral rates, patients' satisfaction and/or quality of life, and the effectiveness of treatments. Nine studies were included in this systematic review. Five trials tested the effectiveness of multi-component interventions (training included), and the remaining studies evaluated the effectiveness of specific training programs for depression management. All the studies that implemented multi-component interventions were efficacious, and half of the training trials were shown to be effective. Contribution of training programs alone to the effectiveness of multi-component interventions is yet to be established. The lack of specificity regarding health providers' characteristics might be a confounding factor. The review conducted suggests that stand-alone training programs are less effective than multi-component interventions. In applying the evidence gathered from developed countries to Latin America and the Caribbean, these training programs must consider and address local conditions of mental health systems, and therefore multi-component interventions may be warranted. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krishnan, Arjun Sitaraman
Block copolymers have received significant research attention in recent times due to their ability to spontaneously self-assemble into a variety of nanostructures. Thermoplastic elastomers composed of styrenic triblock copolymers are of great importance in applications such as adhesives and vibration dampening due to their shape memory, resilience and facile processing. The swelling of these polymers by adding midblock selective solvents or oligomers provides an easy route by which to modify the morphology and mechanical behavior of these systems. We first consider a ternary blend of a poly[styrene- b-(ethylene-co-butylene)-b-styrene] triblock copolymer (SEBS) and mixtures of two midblock selective co-solvents, with significantly different physical states. We use dynamic rheology to study the viscoelastic response of a wide variety of systems under oscillatory shear. Frequency spectra acquired at ambient temperature display viscoelastic behavior that shifts in the frequency domain depending on the co-solvent composition. For each copolymer concentration, all the frequency data can be shifted by time-composition superpositioning (tCS) to yield a single master-curve. tCS fails at low frequencies due to presence of endblock pullout, which is a fundamentally different relaxation process from segmental relaxation of the midblock. As an emerging technology, we examine SEBS-oil gels as dielectric elastomers. Dielectric elastomers constitute one class of electroactive polymers (EAPs), polymeric materials that respond to an electric stimulus by changing their macroscopic dimensions, thereby converting electrical energy into mechanical work. We use standard configuration of EAP devices involving stretching, or "prestraining," the elastomer film biaxially. The effect of experimental parameters such as film thickness and amount of prestrain on the (electro)mechanical properties of the material become apparent by recasting as-obtained electroactuation data into compressive electromechanical stress-strain curves. The ultimate dielectric properties of the specimen are strongly correlated with specimen composition and experimental conditions. We shed light on the effect of biaxial prestrain on copolymer morphology. We use small-angle X-ray scattering (SAXS) to probe the nanostructure of SEBS-oil gels by systematically changing the concentration of polymer and the biaxial prestrain. Azimuthally integrated intensity profiles are used to ascertain the extent of deformation of polystyrene microdomains. The structure factor data correlates with prestrain, and is fitted using the Percus-Yevick approximation for interacting spheres. While a hard sphere interaction model is sufficient for unstrained gels, the additional attractive potentials observed in stretched samples are indicative of soft coronal interactions due to interpenetration brought about by strain.
Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaworotko, Michael; Mohamed, Mona H.; Elsaidi, Sameh
Embodiments of the present disclosure provide for multi-component metal-organic materials (MOMs), systems including the MOM, systems for separating components in a gas, methods of separating polarizable gases from a gas mixture, and the like.
NASA Astrophysics Data System (ADS)
Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin
2008-03-01
We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.
Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent.
Prasad, Murari; Xu, Huan-yan; Saxena, Sona
2008-06-15
Multi-component sorption studies were carried out for attenuation of divalent heavy metal cations (Pb2+, Cu2+ and Zn2+) by a low-cost mineral adsorbent from the aqueous solution. Kinetic and equilibrium batch-type sorption experiments were conducted under variable conditions for multi-component using low-grade (<12%P2O5) phosphate rock. Percentage of multiple heavy metal species removal increases with decreasing initial metals concentration and particle size. The equilibrium data were well described to a lesser extent by Freundlich model but Langmuir model seemed to be more appropriate with the fixation capacity obtained at room temperature for Pb2+, Cu2+ and Zn2+ was 227.2, 769.2 and 666.6 micromol g(-1), respectively. Two simple kinetic models were tested to investigate the adsorption mechanism. Rate constants have been found nearly constant at all metal concentrations for first order. The comparison of adsorption capacity of low-grade phosphate rock decreases in multi-component system as compared to single component due to ionic interactions. X-ray powder diffraction (XRPD) technique was used to ascertain the formation of new metal phases followed by surface complexation. Used adsorbents have been converted into a value added product by utilizing innovative Zero-waste concept to solve the used adsorbents disposal problem and thus protecting the environment.
Alagha, Lana; Wang, Shengqun; Yan, Lujie; Xu, Zhenghe; Masliyah, Jacob
2013-03-26
Quartz crystal microbalance with dissipation (QCM-D) was applied to investigate the adsorption characteristics of polyacrylamide-based polymers (PAMs) on anisotropic basal planes of kaolinite. Kaolinite basal planes were differentiated by depositing kaolinite nanoparticles (KNPs) on silica and alumina sensors in solutions of controlled pH values. Adsorption of an in-house synthesized organic-inorganic Al(OH)3-PAM (Al-PAM) as an example of cationic hybrid PAM and a commercially available partially hydrolyzed polyacrylamide (MF1011) as an example of anionic PAM was studied. Cationic Al-PAM was found to adsorb irreversibly and preferentially on tetrahedral silica basal planes of kaolinite. In contrast, anionic MF1011 adsorbed strongly on aluminum-hydroxy basal planes, while its adsorption on tetrahedral silica basal planes was weak and reversible. Adsorption study revealed that both electrostatic attraction and hydrogen-bonding mechanisms contribute to adsorption of PAMs on kaolinite. The adsorbed Al-PAM layer was able to release trapped water overtime and became more compact, while MF1011 film became more dissipative as backbones stretched out from kaolinite surface with minimal overlapping. Experimental results obtained from this study provide clear insights into the phenomenon that governs flocculation-based solid-liquid separation processes using multicomponent flocculants of anionic and cationic nature.
Multicomponent Supramolecular Systems: Self-Organization in Coordination-Driven Self-Assembly
Zheng, Yao-Rong; Yang, Hai-Bo; Ghosh, Koushik; Zhao, Liang; Stang, Peter J.
2009-01-01
The self-organization of multicomponent supramolecular systems involving a variety of two-dimensional (2-D) polygons and three-dimensional (3-D) cages is presented. Nine self-organizing systems, SS1–SS9, have been studied. Each involving the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self-assembly into three to four specific 2-D (rectangular, triangular, and rhomboid) and/or 3-D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). In all cases, the self-organization process is directed by: (1) the geometric information encoded within the molecular subunits and (2) a thermodynamically driven dynamic self-correction process. The result is the selective self-assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables – temperature and solvent – on the self-correction process and the fidelity of the resulting self-organization systems is also described. PMID:19544512
The Kirkendall and Frenkel effects during 2D diffusion process
NASA Astrophysics Data System (ADS)
Wierzba, Bartek
2014-11-01
The two-dimensional approach for inter-diffusion and voids generation is presented. The voids evolution and growth is discussed. This approach is based on the bi-velocity (Darken) method which combines the Darken and Brenner concepts that the volume velocity is essential in defining the local material velocity in multi-component mixture at non-equilibrium. The model is formulated for arbitrary multi-component two-dimensional systems. It is shown that the voids growth is due to the drift velocity and vacancy migration. The radius of the void can be easily estimated. The distributions of (1) components, (2) vacancy and (3) voids radius over the distance is presented.
Castel, Antoni; Cascón, Rosalia; Padrol, Anna; Sala, José; Rull, Maria
2012-03-01
This study compared the efficacy of 2 psychological treatments for fibromyalgia with each other and with standard care. Ninety-three patients with fibromyalgia (FM) were randomly assigned to 1 of the 3 experimental conditions: 1) multicomponent cognitive-behavioral therapy (CBT); 2) multicomponent CBT with hypnosis; and 3) pharmacological treatment (standard care control group). The outcome measures of pain intensity, catastrophizing, psychological distress, functionality, and sleep disturbances were assessed before treatment, immediately after treatment, and at 3- and 6-month follow-up visits. CBT and CBT with hypnosis participants received the standard pharmacological management plus 14 weekly, 120-minute-long sessions of psychological treatment. All but 1 session followed a group format; the remaining session was individual. The analyses indicated that: 1) patients with FM who received multicomponent CBT alone or multicomponent CBT with hypnosis showed greater improvements than patients who received only standard care; and 2) adding hypnosis enhanced the effectiveness of multicomponent CBT. This study presents new evidence about the efficacy of multicomponent CBT for FM and about the additional effects of hypnosis as a complement to CBT. The relevance and implications of the obtained results are discussed. This article highlights the beneficial effects of adding hypnosis in a multicomponent cognitive-behavioral group treatment of fibromyalgia patients. Also, this research showed that by adding hypnosis the length of treatment did not increase. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Moghaddam, Kamran S.; Usher, John S.
2011-07-01
In this article, a new multi-objective optimization model is developed to determine the optimal preventive maintenance and replacement schedules in a repairable and maintainable multi-component system. In this model, the planning horizon is divided into discrete and equally-sized periods in which three possible actions must be planned for each component, namely maintenance, replacement, or do nothing. The objective is to determine a plan of actions for each component in the system while minimizing the total cost and maximizing overall system reliability simultaneously over the planning horizon. Because of the complexity, combinatorial and highly nonlinear structure of the mathematical model, two metaheuristic solution methods, generational genetic algorithm, and a simulated annealing are applied to tackle the problem. The Pareto optimal solutions that provide good tradeoffs between the total cost and the overall reliability of the system can be obtained by the solution approach. Such a modeling approach should be useful for maintenance planners and engineers tasked with the problem of developing recommended maintenance plans for complex systems of components.
Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Rolle, Massimo
2016-04-01
Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between the transported ions in the flow-through system. The results of purely forward simulations show a very good agreement with the high-resolution measurements performed at the outlet of the flow-through setup and illustrate the importance of charge effects on pH fronts propagation in porous media. [1] Giambalvo, E. R., C. I. Steefel, A. T. Fisher, N. D. Rosenberg, and C. G. Wheat (2002), Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge, Geochim. Cosmochim. Acta, 66, 1739-1757. [2] Appelo, C. A. J., and P. Wersin (2007), Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in opalinus clay, Environ. Sci. Technol., 41, 5002-5007. [3] Rolle, M., M. Muniruzzaman, C. M. Haberer, and P. Grathwohl (2013), Coulombic effects in advection-dominated transport of electrolytes in porous media: Multicomponent ionic dispersion, Geochim. Cosmochim. Acta, 120, 195-205. [4] Muniruzzaman, M., C. M. Haberer, P. Grathwohl, and M. Rolle (2014), Multicomponent ionic dispersion during transport of electrolytes in heterogeneous porous media: Experiments and model-based interpretation, Geochim. Cosmochim. Acta, 141, 656-669. [5] Rolle, M., G. Chiogna, D. L. Hochstetler, and P. K. Kitanidis (2013), On the importance of diffusion and compound-specific mixing for groundwater transport: An investigation from pore to field scale, J. Contam. Hydrol., 153, 51-68.
Calisto, Vânia; Jaria, Guilaine; Silva, Carla Patrícia; Ferreira, Catarina I A; Otero, Marta; Esteves, Valdemar I
2017-05-01
This work describes the adsorptive removal of three widely consumed psychiatric pharmaceuticals (carbamazepine, paroxetine and oxazepam) from ultrapure water. Two different adsorbents were used: a commercial activated carbon and a non-activated waste-based carbon (PS800-150-HCl), produced by pyrolysis of primary paper mill sludge. These adsorbents were used in single, binary and ternary batch experiments in order to determine the adsorption kinetics and equilibrium isotherms of the considered pharmaceuticals. For the three drugs and both carbons, the equilibrium was quickly attained (with maximum equilibrium times of 15 and 120 min for the waste-based and the commercial carbons, respectively) even in binary and ternary systems. Single component equilibrium data were adequately described by the Langmuir model, with the commercial carbon registering higher maximum adsorption capacities (between 272 ± 10 and 493 ± 12 μmol g -1 ) than PS800-150-HCl (between 64 ± 2 and 74 ± 1 μmol g -1 ). Multi-component equilibrium data were also best fitted by the single component Langmuir isotherm, followed by the Langmuir competitive model. Overall, competitive effects did not largely affect the performance of both adsorbents. Binary and ternary systems maintained fast kinetics, the individual maximum adsorption capacities were not lower than half of the single component systems and both carbons presented improved total adsorption capacities for multi-component solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficient propagation of citrus rootstocks by stem cuttings
USDA-ARS?s Scientific Manuscript database
A simple multicomponent system is described that is effective for rapid propagation of a diversity of citrus rootstock genotypes by single node cuttings, including new hybrids and those that are most commonly used as rootstocks. Efficiency of this system for rooting shoot explants of six important r...
Simultaneous multi-component seismic denoising and reconstruction via K-SVD
NASA Astrophysics Data System (ADS)
Hou, Sian; Zhang, Feng; Li, Xiangyang; Zhao, Qiang; Dai, Hengchang
2018-06-01
Data denoising and reconstruction play an increasingly significant role in seismic prospecting for their value in enhancing effective signals, dealing with surface obstacles and reducing acquisition costs. In this paper, we propose a novel method to denoise and reconstruct multicomponent seismic data simultaneously. This method lies within the framework of machine learning and the key points are defining a suitable weight function and a modified inner product operator. The purpose of these two processes are to perform missing data machine learning when the random noise deviation is unknown, and building a mathematical relationship for each component to incorporate all the information of multi-component data. Two examples, using synthetic and real multicomponent data, demonstrate that the new method is a feasible alternative for multi-component seismic data processing.
Boyle, M A; O'Donnell, M J; Russell, R J; Galvin, N; Swan, J; Coleman, D C
2015-10-01
Decontaminating dental chair unit (DCU) suction systems in a convenient, safe and effective manner is problematic. This study aimed to identify and quantify the extent of the problems using 25 DCUs, methodically eliminate these problems and develop an efficient approach for reliable, effective, automated disinfection. DCU suction system residual contamination by environmental and human-derived bacteria was evaluated by microbiological culture following standard aspiration disinfection with a quaternary ammonium disinfectant or alternatively, a novel flooding approach to disinfection. Disinfection of multicomponent suction handpieces, assembled and disassembled, was also studied. A prototype manual and a novel automated Suction Tube Cleaning System (STCS) were developed and tested, as were novel single component suction handpieces. Standard aspiration disinfection consistently failed to decontaminate DCU suction systems effectively. Semi-confluent bacterial growth (101-500 colony forming units (CFU) per culture plate) was recovered from up to 60% of suction filter housings and from up to 19% of high and 37% of low volume suction hoses. Manual and automated flood disinfection of DCU suction systems reduced this dramatically (ranges for filter cage and high and low volume hoses of 0-22, 0-16 and 0-14CFU/plate, respectively) (P<0.0001). Multicomponent suction handpieces could not be adequately disinfected without prior removal and disassembly. Novel single component handpieces, allowed their effective disinfection in situ using the STCS, which virtually eliminated contamination from the entire suction system. Flood disinfection of DCU suction systems and single component handpieces radically improves disinfection efficacy and considerably reduces potential cross-infection and cross-contamination risks. DCU suction systems become heavily contaminated during use. Conventional disinfection does not adequately control this. Furthermore, multicomponent suction handpieces cannot be adequately disinfected without disassembly, which is costly in time, staff and resources. The automated STCS DCU suction disinfection system used with single component handpieces provides an effective solution. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Marmisollé, Waldemar A.; Azzaroni, Omar
2016-05-01
The construction of hybrid polymer-inorganic nanoarchitectures for electrochemical purposes based on the layer-by-layer assembly of conducting polymers and carbon nanomaterials has become increasingly popular over the last decade. This explosion of interest is primarily related to the increasing mastery in the design of supramolecular constructs using simple wet chemical approaches. Concomitantly, this continuous research activity paved the way to the rapid development of nanocomposites or ``nanoblends'' readily integrable into energy storage and sensing devices. In this sense, the layer-by-layer (LbL) assembly technique has allowed us to access three-dimensional (3D) multicomponent carbon-based network nanoarchitectures displaying addressable electrical, electrochemical and transport properties in which conducting polymers, such as polyaniline, and carbon nanomaterials, such as carbon nanotubes or nanographene, play unique roles without disrupting their inherent functions - complementary entities coexisting in harmony. Over the last few years the level of functional sophistication reached by LbL-assembled carbon-based 3D network nanoarchitectures, and the level of knowledge related to how to design, fabricate and optimize the properties of these 3D nanoconstructs have advanced enormously. This feature article presents and discusses not only the recent advances but also the emerging challenges in complex hybrid nanoarchitectures that result from the layer-by-layer assembly of polyaniline, a quintessential conducting polymer, and diverse carbon nanomaterials. This is a rapidly developing research area, and this work attempts to provide an overview of the diverse 3D network nanoarchitectures prepared up to now. The importance of materials processing and LbL integration is explored within each section and while the overall emphasis is on energy storage and sensing applications, the most widely-used synthetic strategies and characterization methods for ``nanoblend'' formation and performance evaluation are also presented.
NASA Astrophysics Data System (ADS)
Chu, Baojin
Miniature of power electronics, scaling-down of microelectronics and other electrical and electronic systems, and development of many technologies (such as hybrid vehicles or implantable heart defibrillators) require capacitors with high energy density to improve the weight and volume efficiency of the whole system. Various capacitor technologies are investigated to meet the requirements of developing future technologies. Among these technologies, polymer film capacitor technology is one of the most promising. Besides high energy density, polymer-based capacitors possess the merits of high power density, low loss, high reliability (self-healing), easy processing, and feasibility (in size, shape and energy level). Due to the ferroelectricity of polyvinylidene fluoride (PVDF)-based polymers, they exhibit much higher polarization response under an electric field, in comparison with other linear dielectric polymers for capacitor applications. The maximum polarization level of PVDF-based polymers can be as high as 0.1 C/m2 and the breakdown field can be higher than 600 MV/m. An estimated energy density of around 30 J/cm3 can be expected in this class of materials. However, this value is much higher than the energy density that can be achieved in the PVDF homopolymer and the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymers due to the polarization hysteresis in these polymers. Therefore, in this thesis, PVDF-based polymer materials were investigated and developed to approach this expected energy density by various strategies. An energy density of higher than 24 J/cm 3, which is close to the predicted value, was found in PVDF-based copolymers. Recently, the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer was developed in Prof. Qiming Zhang's group. Previous works have shown that incorporation of CTE into P(VDF-TrFE) copolymers, in which bulky CFE acts as a defect, could convert the copolymer into relaxor ferroelectrics. P(VDF-TrFE-CFE) terpolymers possess a high dielectric constant (larger than 50 at 1 kHz) at room temperature and excellent electromechanical properties. Here, the P(VDF-TrFE-CFE) terpolymers were studied as dielectric materials for capacitor applications. The electrical, thermal and microstructure characterizations were performed on the terpolymers. The terpolymers exhibit a high breakdown field (higher than 400 MV/m) and energy density (larger than 9 J/cm 3). The energy discharge characteristics of the terpolymer were studied by directly discharging the stored energy in the terpolymers to a load resistor. Due to the highly field-dependent nonlinear and frequency dependent dielectric response of the terpolymers, the discharge energy density and equivalent series resistance strongly depend on the load resistor and discharge speed. This study found that for high energy density dielectric materials, a very high dielectric constant might not be an advantage. In the case of terpolymers, this leads to early polarization saturation, i.e., polarization response saturates under an electric field much lower than the breakdown field and causes lower than expected energy density. Due to the dielectric nonlinearity and early saturation of polarization, the energy density of the terpolymers increases linearly with the applied electric fields. It was also found that the polymer-metal interface played an important role for conduction and the breakdown field in the terpolymers, which was related to the charge injection from the metal to the polymer. Due to highly nonlinear dielectric behavior and early polarization saturation in the terpolymers, it was proposed that a high dielectric constant might not be desirable to obtain high energy density. Poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDFCTFE), 10, 15 and 20 wt% CTFE) and Poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP), 10 and 12 wt% HFP) copolymers, which possess a much lower dielectric constant (about 12 at 1 kHz at room temperature), were further investigated for dielectric materials of high energy density. Due to the lower dielectric constant, the early polarization saturation was avoided and these polymers showed a very high breakdown field and energy density. For the P(VDF-CTFE) copolymer with 15 wt% CTFE, an energy density of higher than 24 J/cm 3 at an electric field higher than 650 MV/m could be obtained. Based on thermal and microstructure studies, the high energy density was found to be caused by the structural modification of PVDF by bulky CTFE or HFP, which also act as defects, similar to the terpolymers. The discharge behavior of the copolymers mainly relies on the load resistors, suggesting that the copolymers have lower equivalent series resistance. Multi-component material system based on current available materials was found to be a useful strategy to tailor and improve the performance of dielectric materials. Nanocomposites composed of the P(VDF-TrFE-CFE) terpolymers and ZrO2 or TiO2 nanoparticles were found to greatly enhance the polarization response and energy density of terpolymers (from 9 J/cm3 to 10.5 J/cm3). Based on comprehensive thermal, dielectric and microstructure studies, the enhancement was believed to be related to the large amount of interfaces in the nanocomposites. In the interfaces, the chain mobility is increased and the energy barrier between the polar and nonpolar phases is reduced, resulting in higher polarization response and energy density at a reduced electric field. The P(VDF-TrFE-CFE) terpolymer/P(VDF-CTFE) copolymer and the P(VDFTrFE-CFE) terpolymer/PMMA blends were also studied. It was found that the P(VDFTrFE-CFE) terpolymers could not be completely miscible with the P(VDF-CTFE) copolymer. In the P(VDF-TrFE-CFE) terpolymer/P(VDF-CTFE) copolymer blends, with a small amount of the copolymer (5 and 10 wt%) in the terpolymer, enhancement of the polarization response similar to that observed in the terpolymer/ZrO 2 nanocomposites was observed. This enhancement was also thought to be mainly caused by the interface effect. The breakdown field of blends was also greatly improved, which resulted in a significant improvement in energy density (from 9 J/cm3 to 11.5 J/cm3). The P(VDF-TrFE-CFE) terpolymers are miscible with PMMA. Addition of PMMA was found to reduce the dielectric response of blends, but also to improve the breakdown field due to the improvement of mechanical properties. The optimum composition of the blends is around 2.5 wt% PMMA. With this composition, the breakdown field of the blends can be improved without reduction of energy density.
Single-stranded DNA and RNA origami.
Han, Dongran; Qi, Xiaodong; Myhrvold, Cameron; Wang, Bei; Dai, Mingjie; Jiang, Shuoxing; Bates, Maxwell; Liu, Yan; An, Byoungkwon; Zhang, Fei; Yan, Hao; Yin, Peng
2017-12-15
Self-folding of an information-carrying polymer into a defined structure is foundational to biology and offers attractive potential as a synthetic strategy. Although multicomponent self-assembly has produced complex synthetic nanostructures, unimolecular folding has seen limited progress. We describe a framework to design and synthesize a single DNA or RNA strand to self-fold into a complex yet unknotted structure that approximates an arbitrary user-prescribed shape. We experimentally construct diverse multikilobase single-stranded structures, including a ~10,000-nucleotide (nt) DNA structure and a ~6000-nt RNA structure. We demonstrate facile replication of the strand in vitro and in living cells. The work here thus establishes unimolecular folding as a general strategy for constructing complex and replicable nucleic acid nanostructures, and expands the design space and material scalability for bottom-up nanotechnology. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Carrier generation and electronic properties of a single-component pure organic metal
NASA Astrophysics Data System (ADS)
Kobayashi, Yuka; Terauchi, Takeshi; Sumi, Satoshi; Matsushita, Yoshitaka
2017-01-01
Metallic conduction generally requires high carrier concentration and wide bandwidth derived from strong orbital interaction between atoms or molecules. These requisites are especially important in organic compounds because a molecule is fundamentally an insulator; only multi-component salts with strong intermolecular interaction--namely, only charge transfer complexes and conducting polymers--have demonstrated intrinsic metallic behaviour. Herein we report a single-component electroactive molecule, zwitterionic tetrathiafulvalene(TTF)-extended dicarboxylate radical (TED), exhibiting metallic conduction even at low temperatures. TED exhibits d.c. conductivities of 530 S cm-1 at 300 K and 1,000 S cm-1 at 50 K with copper-like electronic properties. Spectroscopic and theoretical investigations of the carrier-generation mechanism and the electronic states of this single molecular species reveal a unique electronic structure with a spin-density gradient in the extended TTF moieties that becomes, in itself, a metallic state.
Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing
Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul
2014-01-01
Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329
Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton
NASA Astrophysics Data System (ADS)
Sackmann, E.; Bausch, A. R.; Vonna, L.
1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex
NASA Astrophysics Data System (ADS)
Mamun, A. A.
2017-10-01
The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.
Consistency criteria for generalized Cuddeford systems
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Morganti, Lucia
2010-01-01
General criteria to check the positivity of the distribution function (phase-space consistency) of stellar systems of assigned density and anisotropy profile are useful starting points in Jeans-based modelling. Here, we substantially extend previous results, and present the inversion formula and the analytical necessary and sufficient conditions for phase-space consistency of the family of multicomponent Cuddeford spherical systems: the distribution function of each density component of these systems is defined as the sum of an arbitrary number of Cuddeford distribution functions with arbitrary values of the anisotropy radius, but identical angular momentum exponent. The radial trend of anisotropy that can be realized by these models is therefore very general. As a surprising byproduct of our study, we found that the `central cusp-anisotropy theorem' (a necessary condition for consistency relating the values of the central density slope and of the anisotropy parameter) holds not only at the centre but also at all radii in consistent multicomponent generalized Cuddeford systems. This last result suggests that the so-called mass-anisotropy degeneracy could be less severe than what is sometimes feared.
Liesegang banding and multiple precipitate formation in cobalt phosphate systems
NASA Astrophysics Data System (ADS)
Karam, Tony; El-Rassy, Houssam; Zaknoun, Farah; Moussa, Zeinab; Sultan, Rabih
2012-02-01
We study a cobalt phosphate Liesegang pattern from cobalt(II) and phosphate ions in a 1D tube. The system yields a complex, multi-component pattern. Characterization of the different precipitates by FTIR, SEM and XRD reveals that they are cobalt phosphate polymorphs with different degrees of hydration.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-07-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.
Clustering biomolecular complexes by residue contacts similarity.
Rodrigues, João P G L M; Trellet, Mikaël; Schmitz, Christophe; Kastritis, Panagiotis; Karaca, Ezgi; Melquiond, Adrien S J; Bonvin, Alexandre M J J
2012-07-01
Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a plethora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the root mean square deviation (RMSD) of atomic positions. Albeit widely used, these measures suffer from several theoretical and technical limitations (e.g., choice of regions for fitting) that impair their application in multicomponent systems (N > 2), large-scale studies (e.g., interactomes), and other time-critical scenarios. We present here a simple similarity measure for structural clustering based on atomic contacts--the fraction of common contacts--and compare it with the most used similarity measure of the protein docking community--interface backbone RMSD. We show that this method produces very compact clusters in remarkably short time when applied to a collection of binary and multicomponent protein-protein and protein-DNA complexes. Furthermore, it allows easy clustering of similar conformations of multicomponent symmetrical assemblies in which chain permutations can occur. Simple contact-based metrics should be applicable to other structural biology clustering problems, in particular for time-critical or large-scale endeavors. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Hand, David W.; Crittenden, John C.; Ali, Anisa N.; Bulloch, John L.; Hokanson, David R.; Parrem, David L.
1996-01-01
This thesis includes the development and verification of an adsorption model for analysis and optimization of the adsorption processes within the International Space Station multifiltration beds. The fixed bed adsorption model includes multicomponent equilibrium and both external and intraparticle mass transfer resistances. Single solute isotherm parameters were used in the multicomponent equilibrium description to predict the competitive adsorption interactions occurring during the adsorption process. The multicomponent equilibrium description used the Fictive Component Analysis to describe adsorption in unknown background matrices. Multicomponent isotherms were used to validate the multicomponent equilibrium description. Column studies were used to develop and validate external and intraparticle mass transfer parameter correlations for compounds of interest. The fixed bed model was verified using a shower and handwash ersatz water which served as a surrogate to the actual shower and handwash wastewater.
Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.
The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficientsmore » of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO 3) 3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO 3) 3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO 3) 3 activity coefficients for the binary Ln(NO 3) 3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO 3) 3 activity coefficients in the ternary Nd(NO 3) 3/HNO 3/H2O, Eu(NO 3) 3/HNO 3/H 2O, and Eu(NO 3) 3/NaNO 3/H 2O systems. The main achievement of this work is the verified pathway for the estimation of the activity coefficients in the multicomponent aqueous electrolyte systems. The accurate Bromley electrolytes contributions obtained in this work for the entire series of lanthanide(III) nitrates (except Pm) can be applied for predicting activity coefficients and non-ideality effects for multi-component systems containing these species. This work also provides the proof-of-principle of extending the model to more complex multicomponent systems. Moreover, this approach can also be applied to actinide-containing electrolyte systems, for determination of the activity coefficients in concentrated radioactive solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Yanzhou; Heo, Tae Wook; Zhang, Fan
Here we present our theoretical assessment of the kinetic pathways during phase transformations of multi-component Ti alloys. Employing the graphical thermodynamic approach and an integrated free energy function based on the realistic thermodynamic database and assuming that a displacive structural transformation occurs much faster than long-range diffusional processes, we analyze the phase stabilities of Ti-6Al -4V (Ti-6wt.%Al -4wt.%V). Our systematic analyses predict a variety of possible kinetic pathways for β to (α + β) transformations leading to different types of microstructures under various heat treatment conditions. In addition, the possibility of unconventional kinetic pathways is discussed. Lastly, we also brieflymore » discuss the application of our approach to general multicomponent/multiphase alloy systems.« less
Multicomponent synthesis of 4,4-dimethyl sterol analogues and their effect on eukaryotic cells.
Alonso, Fernando; Cirigliano, Adriana M; Dávola, María Eugenia; Cabrera, Gabriela M; García Liñares, Guadalupe E; Labriola, Carlos; Barquero, Andrea A; Ramírez, Javier A
2014-06-01
Most sterols, such as cholesterol and ergosterol, become functional only after the removal of the two methyl groups at C-4 from their biosynthetic precursors. Nevertheless, some findings suggest that 4,4-dimethyl sterols might be involved in specific physiological processes. In this paper we present the synthesis of a collection of analogues of 4,4-dimethyl sterols with a diamide side chain and a preliminary analysis of their in vitro activity on selected biological systems. The key step for the synthesis involves an Ugi condensation, a versatile multicomponent reaction. Some of the new compounds showed antifungal and cytotoxic activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai
2009-09-01
The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.
New eutectic alloys and their heats of transformation
NASA Technical Reports Server (NTRS)
Farkas, D.; Birchenall, C. E.
1985-01-01
Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.
Salicylaldehydes as privileged synthons in multicomponent reactions
NASA Astrophysics Data System (ADS)
Momahed Heravi, M.; Zadsirjan, V.; Mollaiye, M.; Heydari, M.; Taheri Kal Koshvandi, A.
2018-06-01
Salicylaldehyde (2-hydroxybenzaldehyde) bearing two different active functional groups, namely, a hydroxy group and an aldehyde group, finds wide application as a key chemical in a variety of industrial processes, especially in the large-scale production of pharmaceuticals. Salicylaldehyde and most of its derivatives are commercially available or readily accessible, and hence are ideal starting materials for multicomponent reactions (MCRs), mostly in pseudo-three and four-component ones, giving rise to a plethora of heterocyclic systems. The importance of salicylaldehyde and an impressive amount of studies concerning its applications in MCRs prompted us to highlight in this review the important role of this compound as a privileged synthon in the synthesis of heterocycles. The bibliography includes 276 references.
Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC
López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2018-01-01
The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC) is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials. PMID:29401725
40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false How do I demonstrate compliance if I manufacture multi-component kits? 59.506 Section 59.506 Protection of Environment ENVIRONMENTAL PROTECTION... § 59.506 How do I demonstrate compliance if I manufacture multi-component kits? (a) If you manufacture...
Hu, Lei; Zuo, Peng; Ye, Bang-Ce
2010-10-01
An automated multicomponent mesofluidic system (MCMS) based on biorecognitions carried out on meso-scale glass beads in polydimethylsiloxane (PDMS) channels was developed. The constructed MCMS consisted of five modules: a bead introduction module, a bioreaction module, a solution handling module, a liquid driving module, and a signal collection module. The integration of these modules enables the assay to be automated and reduces it to a one-step protocol. The MCMS has successfully been applied toward the detection of veterinary drug residues in animal-derived foods. The drug antigen-coated beads (varphi250 microm) were arrayed in the PDMS channels (varphi300 microm). The competitive immunoassay was then carried out on the surface of the glass beads. After washing, the Cy3-labeled secondary antibody was introduced to probe the antigen-antibody complex anchored to the beads. The fluorescence intensity of each bead was measured and used to determine the residual drug concentration. The MCMS is highly sensitive, with its detection limits ranging from 0.02 (salbutamol) to 3.5 microg/L (sulfamethazine), and has a short assay time of 45 min or less. The experimental results demonstrate that the MCMS proves to be an economic, efficient, and sensitive platform for multicomponent detection of compound residues for contamination in foods or the environment. Copyright 2010 Elsevier Inc. All rights reserved.
Schuster, M J; Wu, G Y; Walton, C M; Wu, C H
1999-01-01
Genes can be targeted to hepatocytes in vitro and in vivo by the use of asialoorosomucoid-polylysine conjugates. After systemic application, this nonviral vector is recognized by highly selective asialoglycoprotein (AsGP) receptors on the sinusoidal liver cell membrane and is taken up via receptor-mediated endocytosis. As most of the DNA is rapidly transferred to lysosomes where it is degraded, transfection efficiency is low and gene expression transient. To address this problem, we incorporated a pH-dependent synthetic hemolytic peptide derived of the G-protein of Vesicular Stomatitis Virus (VSV) into the gene transfer system, to increase endosomal escape of internalized DNA. The multicomponent carrier binds DNA in a nondamaging way, is still recognized by the AsGP receptor, and is targeted to the liver in vivo. Injection of DNA complexes containing a luciferase marker gene resulted in luciferase expression of 29 000 pg/g liver which corresponded to an increase of a factor of 10(3) overexpression after injection of DNA complexes without endosomolytic peptide. Furthermore, the amount of intact transgene within isolated liver cell nuclei was increased by a factor of 10(1)-10(2) by the use of the multicomponent carriers. These results demonstrate that incorporation of a hemolytic peptide into a nonviral vector can greatly increase gene expression while retaining cell type targetability in vivo.
He, Fuyuan; Deng, Kaiwen; Shi, Jilian; Liu, Wenlong; Pi, Fengjuan
2011-11-01
To establish the unitive multicomponent quality system bridged macrostate mathematic model parameters of material quality and microstate component concentration for Chinese materia medica (CMM). According to law of biologic laws of thermodynamics, the state functions of macrostate qulity of the CMM were established. The validation test was carried out as modeling drug as alcohol extract of Radix Rhozome (AERR), their enthalpy of combustion was determined, and entropy and the capability of information by chromatographic fingerprint were assayed, and then the biologic apparent macrostate parameters were calculated. The biologic macrostate mathematic models, for the CMM quality controll, were established as parameters as the apparent equilibrium constant, biologic enthalpy, Gibbs free energy and biologic entropy etc. The total molarity for the 10 batchs of AERR were 0.153 4 mmol x g(-1) with 28.26% of RSD, with the average of apparent equilibrium constants, biologic enthalpy, Gibbs free energy and biologic entropy were 0.039 65, 8 005 J x mol(-1), -2.408 x 10(7) J x mol(-1) and - 8.078 x 10(4) J x K(-1) with RSD as 6.020%, 1.860%, 42.32% and 42.31%, respectively. The macrostate quality models for CMM can represent their intrinsic quality for multicomponent dynamic system such as the CMM, to manifest out as if the forest away from or tree near from to see it.
System Applies Polymer Powder To Filament Tow
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.
1993-01-01
Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.
Surface pretreatments for medical application of adhesion
Erli, Hans J; Marx, Rudolf; Paar, Othmar; Niethard, Fritz U; Weber, Michael; Wirtz, Dieter C
2003-01-01
Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body. PMID:14561228
Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine
2017-06-21
The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.
Analysis of possible designs of processing units with radial plasma flows
NASA Astrophysics Data System (ADS)
Kolesnik, V. V.; Zaitsev, S. V.; Vashilin, V. S.; Limarenko, M. V.; Prochorenkov, D. S.
2018-03-01
Analysis of plasma-ion methods of obtaining thin-film coatings shows that their development goes along the path of the increasing use of sputter deposition processes, which allow one to obtain multicomponent coatings with varying percentage of particular components. One of the methods that allow one to form multicomponent coatings with virtually any composition of elementary components is the method of coating deposition using quasi-magnetron sputtering systems [1]. This requires the creation of an axial magnetic field of a defined configuration with the flux density within the range of 0.01-0.1 T [2]. In order to compare and analyze various configurations of processing unit magnetic systems, it is necessary to obtain the following dependencies: the dependency of magnetic core section on the input power to inductors, the distribution of magnetic induction within the equatorial plane in the corresponding sections, the distribution of the magnetic induction value in the area of cathode target location.
Possibility of determination of the level of antioxidants in human body using spectroscopic methods
NASA Astrophysics Data System (ADS)
Timofeeva, E.; Gorbunova, E.
2016-08-01
In this work, the processes of antioxidant defence against aggressive free radicals in human body were investigated theoretically; and the existing methods of diagnosis of oxidative stress and disturbance of antioxidant activity were reviewed. Also, the kinetics of free radical reactions in the oxidation of luminol and interaction antioxidants (such as chlorophyll in the multicomponent system of plant's leaves and ubiquinone) with the UV radiation were investigated experimentally by spectroscopic method. The results showed that this method is effective for recording the luminescence of antioxidants, free radicals, chemiluminescent reactions and fluorescence. In addition these results reveal new opportunities for the study of the antioxidant activity and antioxidant balance in a multicomponent system by allocating features of the individual components in spectral composition. A creation of quality control method for drugs, that are required for oxidative stress diagnosis, is a promising direction in the development of given work.
A generalized procedure for the prediction of multicomponent adsorption equilibria
Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas
2015-04-07
Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model,more » for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.« less
Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space
NASA Technical Reports Server (NTRS)
Mukherjee, S. P.
1982-01-01
The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.
Gels and gel-derived glasses in the system Na2O-B2O3-SiO2
NASA Technical Reports Server (NTRS)
Mukherjee, S. P.
1983-01-01
The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.
Method of joining ITM materials using a partially or fully-transient liquid phase
Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis
2006-03-14
A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.
[Exploration of one-step preparation of Ganoderma lucidum multicomponent microemulsion].
He, Jun-Jie; Chen, Yan; Du, Meng; Cao, Wei; Yuan, Ling; Zheng, Li-Yan
2013-03-01
To explore one-step method for the preparation of Ganoderma lucidum multicomponent microemulsion, according to the dissolution characteristics of triterpenes and polysaccharides in Ganoderma lucidum, formulation of the microemulsion was optimized. The optimal blank microemulsion was used as a solvent to sonicate the Ganoderma lucidum powder to prepare the multicomponent microemulsion, besides, its physicochemical properties were compared with the microemulsion made by conventional method. The results showed that the multicomponent microemulsion was characterized as (43.32 +/- 6.82) nm in size, 0.173 +/- 0.025 in polydispersity index (PDI) and -(3.98 +/- 0.82) mV in zeta potential. The contents of Ganoderma lucidum triterpenes and polysaccharides were (5.95 +/- 0.32) and (7.58 +/- 0.44) mg x mL(-1), respectively. Sonicating Ganoderma lucidum powder by blank microemulsion could prepare the multicomponent microemulsion. Compared with the conventional method, this method is simple and low cost, which is suitable for industrial production.
NASA Astrophysics Data System (ADS)
German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong
2004-07-01
Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).
NASA Astrophysics Data System (ADS)
Nishida, Maki
The feasibility of Raman correlation spectroscopy (RCS) is investigated as a new temporal optical fluctuation spectroscopy in this dissertation. RCS analyzes the correlations of the intensity fluctuations of Raman scattering from particles in a suspension that undergo Brownian motion. Because each Raman emission line arises from a specific molecular bond, the RCS method could yield diffusion behavior of specific chemical species within a dispersion. Due to the nature of Raman scattering as a coherent process, RCS could provide similar information as acquired in dynamic light scattering (DLS) and be practical for various applications that requires the chemical specificity in dynamical information. The theoretical development is discussed, and four experimental implementations of this technique are explained. The autocorrelation of the intensity fluctuations from a beta-carotene solution is obtained using the some configurations; however, the difficulty in precise alignment and weak nature of Raman scattering prevented the achievement of high sensitivity and resolution. Possible fluctuations of the phase of Raman scattering could also be affecting the results. A possible explanation of the observed autocorrelation in terms of number fluctuations of particles is also examined to test the feasibility of RCS as a new optical characterization method. In order to investigate the complex systems for which RCS would be useful, strategies for the creation of a multicomponent nanoparticle system are also explored. Using regular solution theory along with the concept of Hansen solubility parameters, an analytical model is developed to predict whether two or more components will form single nanoparticles, and what effect various processing conditions would have. The reprecipitation method was used to demonstrate the formation of the multi-component system of the charge transfer complex perylene:TCNQ (tetracyanoquinodimethane) and the active pharmaceutical ingredient cocrystal of CBZ:NCT (carbamazepine:nicotinamide). The experimental results with various characterization methods including DLS, absorption spectroscopy, powder x-ray diffraction, and SEM imaging, verify formation of the multicomponent cocrystals. The observation of the self-assembly of TCNQ crystals is also discussed.
Shakoor, Rana A; Kim, Heejin; Cho, Woosuk; Lim, Soo Yeon; Song, Hannah; Lee, Jung Woo; Kang, Jeung Ku; Kim, Yong-Tae; Jung, Yousung; Choi, Jang Wook
2012-07-18
As an attempt to develop lithium ion batteries with excellent performance, which is desirable for a variety of applications including mobile electronics, electrical vehicles, and utility grids, the battery community has continuously pursued cathode materials that function at higher potentials with efficient kinetics for lithium insertion and extraction. By employing both experimental and theoretical tools, herein we report multicomponent pyrophosphate (Li(2)MP(2)O(7), M = Fe(1/3)Mn(1/3)Co(1/3)) cathode materials with novel and advantageous properties as compared to the single-component analogues and other multicomponent polyanions. Li(2)Fe(1/3)Mn(1/3)Co(1/3)P(2)O(7) is formed on the basis of a solid solution among the three individual transition-metal-based pyrophosphates. The unique crystal structure of pyrophosphate and the first principles calculations show that different transition metals have a tendency to preferentially occupy either octahedral or pyramidal sites, and this site-specific transition metal occupation leads to significant improvements in various battery properties: a single-phase mode for Li insertion/extraction, improved cell potentials for Fe(2+)/Fe(3+) (raised by 0.18 eV) and Co(2+)/Co(3+) (lowered by 0.26 eV), and increased activity for Mn(2+)/Mn(3+) with significantly reduced overpotential. We reveal that the favorable energy of transition metal mixing and the sequential redox reaction for each TM element with a sufficient redox gap is the underlying physical reason for the preferential single-phase mode of Li intercalation/deintercalation reaction in pyrophosphate, a general concept that can be applied to other multicomponent systems. Furthermore, an extremely small volume change of ~0.7% between the fully charged and discharged states and the significantly enhanced thermal stability are observed for the present material, the effects unseen in previous multicomponent battery materials.
Numerical modelling of multiphase multicomponent reactive transport in the Earth's interior
NASA Astrophysics Data System (ADS)
Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio; Diez, Pedro
2018-01-01
We present a conceptual and numerical approach to model processes in the Earth's interior that involve multiple phases that simultaneously interact thermally, mechanically and chemically. The approach is truly multiphase in the sense that each dynamic phase is explicitly modelled with an individual set of mass, momentum, energy and chemical mass balance equations coupled via interfacial interaction terms. It is also truly multicomponent in the sense that the compositions of the system and its constituent phases are expressed by a full set of fundamental chemical components (e.g. SiO2, Al2O3, MgO, etc.) rather than proxies. These chemical components evolve, react with and partition into different phases according to an internally consistent thermodynamic model. We combine concepts from Ensemble Averaging and Classical Irreversible Thermodynamics to obtain sets of macroscopic balance equations that describe the evolution of systems governed by multiphase multicomponent reactive transport (MPMCRT). Equilibrium mineral assemblages, their compositions and physical properties, and closure relations for the balance equations are obtained via a `dynamic' Gibbs free-energy minimization procedure (i.e. minimizations are performed on-the-fly as needed by the simulation). Surface tension and surface energy contributions to the dynamics and energetics of the system are taken into account. We show how complex rheologies, that is, visco-elasto-plastic, and/or different interfacial models can be incorporated into our MPMCRT ensemble-averaged formulation. The resulting model provides a reliable platform to study the dynamics and nonlinear feedbacks of MPMCRT systems of different nature and scales, as well as to make realistic comparisons with both geophysical and geochemical data sets. Several numerical examples are presented to illustrate the benefits and limitations of the model.
Polymeric membrane systems of potential use for battery separators
NASA Technical Reports Server (NTRS)
Philipp, W. H.
1977-01-01
Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.
Creep behaviour of a polymer-based underground support liner
NASA Astrophysics Data System (ADS)
Guner, Dogukan; Ozturk, Hasan
2017-09-01
All underground excavations (tunnels, mines, caverns, etc.) need a form of support to ensure that excavations remain safe and stable for the designed service lifetime. In the last decade, a new support material, thin spray-on liner (TSL) has started to take place of traditional underground surface supports of bolts and shotcrete. TSLs are generally cement, latex, polymer-based and also reactive or non-reactive, multi-component materials applied to the rock surface with a layer of few millimeter thickness. They have the advantages of low volume, logistics, rapid application and low operating cost. The majority of current TSLs are two-part products that are mixed on site before spraying onto excavation rock surfaces. Contrary to the traditional brittle supports, the high plastic behaviour of TSLs make them to distribute the loads on larger lining area. In literature, there is a very limited information exist on the creep behavior of TSLs. In this study, the creep behavior of a polymer-based TSL was investigated. For this purpose, 7-day cured dogbone TSL specimens were tested under room temperature and humidity conditions according to ASTM-D2990 creep testing standard. A range of dead weights (80, 60, 40, and 20 % of the tensile strength) were applied up to 1500 hours. As a result of this study, the time-dependent strain behavior of a TSL was presented for different constant load conditions. Moreover, a new equation was derived to estimate tensile failure time of the TSL for a given loading condition. If the tensile stress acting on the TSL is known, the effective permanent support time of the TSL can be estimated by the proposed relationship.
Matcha, Kiran; Antonchick, Andrey P
2014-10-27
The development of multicomponent reactions for indole synthesis is demanding and has hardly been explored. The present study describes the development of a novel multicomponent, cascade approach for indole synthesis. Various substituted indole derivatives were obtained from simple reagents, such as unfunctionalized alkenes, diazonium salts, and sodium triflinate, by using an established straightforward and regioselective method. The method is based on the radical trifluoromethylation of alkenes as an entry into Fischer indole synthesis. Besides indole synthesis, the application of the multicomponent cascade reaction to the synthesis of pyrazoles and pyridazinones is described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
Some aspects of multicomponent excess free energy models with subregular binaries
NASA Astrophysics Data System (ADS)
Cheng, Weiji; Ganguly, Jibamitra
1994-09-01
We have shown that two of the most commonly used multicomponent formulations of excess Gibbs free energy of mixing, those by WOHL (1946, 1953) and REDLICH and KISTER (1948), are formally equivalent if the binaries are constrained to have subregular properties, and also that other subregular multicomponent formulations developed in the mineralogical and geochemical literature are equivalent to, or higher order extensions of, these formulations. We have also presented a compact derivation of a multicomponent subregular solution leading to the same expression as derived by HELFFRICH and WOOD (1989). It is shown that Wohl's multicomponent formulation involves combination of binary excess free energies, which are calculated at compositions obtained by normal projection of the multicomponent composition onto the bounding binary joins, and is, thus, equivalent to the formulation developed by MUGGIANU et al. (1975). Finally, following the lead of HILLERT (1980), we have explored the limiting behavior of regular and subregular ternary solutions when a pair of components become energetically equivalent, and have, thus, derived an expression for calculating the ternary interaction parameter in a ternary solution from a knowledge of the properties of the bounding binaries, when one of these binaries is nearly ideal.
Patzer, Rachel E; Smith, Kayla; Basu, Mohua; Gander, Jennifer; Mohan, Sumit; Escoffery, Cam; Plantinga, Laura; Melanson, Taylor; Kalloo, Sean; Green, Gary; Berlin, Alex; Renville, Gary; Browne, Teri; Turgeon, Nicole; Caponi, Susan; Zhang, Rebecca; Pastan, Stephen
2017-05-01
The United Network for Organ Sharing (UNOS) implemented a new Kidney Allocation System (KAS) in December 2014 that is expected to substantially reduce racial disparities in kidney transplantation among waitlisted patients. However, not all dialysis facility clinical providers and end stage renal disease (ESRD) patients are aware of how the policy change could improve access to transplant. We describe the ASCENT (Allocation System Changes for Equity in KidNey Transplantation) study, a randomized controlled effectiveness-implementation study designed to test the effectiveness of a multicomponent intervention to improve access to the early steps of kidney transplantation among dialysis facilities across the United States. The multicomponent intervention consists of an educational webinar for dialysis medical directors, an educational video for patients and an educational video for dialysis staff, and a dialysis-facility specific transplant performance feedback report. Materials will be developed by a multidisciplinary dissemination advisory board and will undergo formative testing in dialysis facilities across the United States. This study is estimated to enroll ~600 U.S. dialysis facilities with low waitlisting in all 18 ESRD Networks. The co-primary outcomes include change in waitlisting, and waitlist disparity at 1 year; secondary outcomes include changes in facility medical director knowledge about KAS, staff training regarding KAS, patient education regarding transplant, and a medical director's intent to refer patients for transplant evaluation. The results from the ASCENT study will demonstrate the feasibility and effectiveness of a multicomponent intervention designed to increase access to the deceased-donor kidney waitlist and reduce racial disparities in waitlisting.
Phase transitions in mixed gas hydrates: experimental observations versus calculated data.
Schicks, Judith M; Naumann, Rudolf; Erzinger, Jörg; Hester, Keith C; Koh, Carolyn A; Sloan, E Dendy
2006-06-15
This paper presents the phase behavior of multicomponent gas hydrate systems formed from primarily methane with small amounts of ethane and propane. Experimental conditions were typically in a pressure range between 1 and 6 MPa, and the temperature range was between 260 and 290 K. These multicomponent systems have been investigated using a variety of techniques including microscopic observations, Raman spectroscopy, and X-ray diffraction. These techniques, used in combination, allowed for measurement of the hydrate structure and composition, while observing the morphology of the hydrate crystals measured. The hydrate formed immediately below the three-phase line (V-L --> V-L-H) and contained crystals that were both light and dark in appearance. The light crystals, which visually were a single solid phase, showed a spectroscopic indication for the presence of occluded free gas in the hydrate. In contrast, the dark crystals were measured to be structure II (sII) without the presence of these occluded phases. Along with hydrate measurements near the decomposition line, an unexpected transformation process was visually observed at P-T-conditions in the stability field of the hydrates. Larger crystallites transformed into a foamy solid upon cooling over this transition line (between 5 and 10 K below the decomposition temperature). Below the transition line, a mixture of sI and sII was detected. This is the first time that these multicomponent systems have been investigated at these pressure and temperature conditions using both visual and spectroscopic techniques. These techniques enabled us to observe and measure the unexpected transformation process showing coexistence of different gas hydrate phases.
NASA Technical Reports Server (NTRS)
Hshieh, Fu-Yu; Beeson, Harold D.
2004-01-01
One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.
Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine.
Piluso, Susanna; Soultan, Al Halifa; Patterson, Jennifer
2017-01-01
Polymer-based systems are attractive in drug delivery and regenerative medicine due to the possibility of tailoring their properties and functions to a specific application. The present review provides several examples of molecularly engineered polymer systems, including stimuli responsive polymers and supramolecular polymers. The advent of controlled polymerization techniques has enabled the preparation of polymers with controlled molecular weight and well-defined architecture. By using these techniques coupled to orthogonal chemical modification reactions, polymers can be molecularly engineered to incorporate functional groups able to respond to small changes in the local environment or to a specific biological signal. This review highlights the properties and applications of stimuli-responsive systems and polymer therapeutics, such as polymer-drug conjugates, polymer-protein conjugates, polymersomes, and hyperbranched systems. The applications of polymeric membranes in regenerative medicine are also discussed. The examples presented in this review suggest that the combination of membranes with polymers that are molecularly engineered to respond to specific biological functions could be relevant in the field of regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Network motifs – recurring circuitry components in biological systems
Environmental perturbations, elicited by chemicals, dietary supplements, and drugs, can alter the dynamics of the molecular circuits and networks operating in cells, leading to multiple disease endpoints. Multi-component signal transduction pathways and gene regulatory circuits u...
Interlocked molecules: Moving into another dimension
NASA Astrophysics Data System (ADS)
Fournel-Marotte, Karine; Coutrot, Frédéric
2017-02-01
Molecular daisy-chain structures are typically made up of two interlocked components and can exhibit muscle-like contraction and extension in one dimension. Zinc-based multicomponent systems that can operate in two and three dimensions have now been designed and synthesized.
Peetoom, K K B; Crutzen, R; Bohnen, J M H A; Verhoeven, R; Nelissen-Vrancken, H J M G; Winkens, B; Dinant, G J; Cals, J W L
2017-07-26
Evidence has shown that children 0-4 year-old attending childcare are prone to acquire infections compared to children cared for at home, with fever being the most common symptom. Illness absenteeism due to fever and common infections is substantial and mostly driven by unrealistic concerns and negative attitude towards fever of both childcare staff and parents, resulting in illness absenteeism from childcare, work absenteeism among parents and healthcare service use. The objective of this study is to optimise decision making among childcare staff on illness absenteeism due to fever and common infections in childcare. Underlying determinants of behavioural change were targeted by means of a multicomponent intervention. A multicomponent intervention was developed to improve decision making, using the stepwise approach of Intervention Mapping, and in close collaboration with stakeholders and experts. The intervention consisted of 1) a two-hour educational session on fever among childcare staff; 2) an online video for childcare staff and parents emphasising key information of the educational session; 3) a decision tool for childcare staff and parents in the format of a traffic light system to estimate the severity of illness and corresponding advices for childcare staff and parents; 4) an information booklet regarding childhood fever, common infections, and self-management strategies for childcare staff and parents. The multicomponent intervention will be evaluated in a cluster randomised trial with a 12-week follow-up period and absenteeism due to illness (defined as the percentage of childcare days absent due to illness on the total of childcare days during a 12-week period) as primary outcome measure. Secondary outcome measures are: incidence rate and duration of illness episodes, knowledge, attitude, self-efficacy, and risk perception on fever and common infections of childcare staff and parents, healthcare service use in general and paracetamol use, and work absenteeism of parents. This study aims to develop a multicomponent intervention and to evaluate to what extent illness absenteeism due to fever and common infections can be affected by implementing a multicomponent intervention addressing decision making and underlying determinants among childcare staff and parents of children attending daycare. NTR6402 (registered on 21-apr-2017).
Harbers, Gregory M.; Emoto, Kazunori; Greef, Charles; Metzger, Steven W.; Woodward, Heather N.; Mascali, James J.; Grainger, David W.; Lochhead, Michael J.
2008-01-01
This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications. PMID:18815622
Laser-induced periodic surface structures of thin, complex multi-component films
NASA Astrophysics Data System (ADS)
Reif, Juergen; Varlamova, Olga; Ratzke, Markus; Uhlig, Sebastian
2016-04-01
Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.
Modeling charge transport in organic photovoltaic materials.
Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M
2009-11-17
The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse-grained structural simulation method. Finally, we quantitatively reproduce the field-effect mobility in disordered C60 films. On the basis of these results, we conclude that all of the necessary building blocks are in place for the predictive simulation of charge transport in macromolecular electronic materials and that such methods can be used as a tool toward the future rational design of functional organic electronic materials.
Puigmartí-Luis, Josep; Rubio-Martínez, Marta; Imaz, Inhar; Cvetković, Benjamin Z; Abad, Llibertat; Pérez Del Pino, Angel; Maspoch, Daniel; Amabilino, David B
2014-01-28
A spatially controlled synthesis of nanowire bundles of the functional crystalline coordination polymer (CP) Ag(I)TCNQ (tetracyanoquinodimethane) from previously fabricated and trapped monovalent silver CP (Ag(I)Cys (cysteine)) using a room-temperature microfluidic-assisted templated growth method is demonstrated. The incorporation of microengineered pneumatic clamps in a two-layer polydimethylsiloxane-based (PDMS) microfluidic platform was used. Apart from guiding the formation of the Ag(I)Cys coordination polymer, this microfluidic approach enables a local trapping of the in situ synthesized structures with a simple pneumatic clamp actuation. This method not only enables continuous and multiple chemical events to be conducted upon the trapped structures, but the excellent fluid handling ensures a precise chemical activation of the amino acid-supported framework in a position controlled by interface and clamp location that leads to a site-specific growth of Ag(I)TCNQ nanowire bundles. The synthesis is conducted stepwise starting with Ag(I)Cys CPs, going through silver metal, and back to a functional CP (Ag(I)TCNQ); that is, a novel microfluidic controlled ligand exchange (CP → NP → CP) is presented. Additionally, the pneumatic clamps can be employed further to integrate the conductive Ag(I)TCNQ nanowire bundles onto electrode arrays located on a surface, hence facilitating the construction of the final functional interfaced systems from solution specifically with no need for postassembly manipulation. This localized self-supported growth of functional matter from an amino acid-based CP shows how sequential localized chemistry in a fluid cell can be used to integrate molecular systems onto device platforms using a chip incorporating microengineered pneumatic tools. The control of clamp pressure and in parallel the variation of relative flow rates of source solutions permit deposition of materials at different locations on a chip that could be useful for device array preparation. The in situ reaction and washing procedures make this approach a powerful one for the fabrication of multicomponent complex nanomaterials using a soft bottom-up approach.
Unbinding transition from fluid membranes with associated polymers.
Benhamou, M; Kaidi, H
2013-10-01
We consider two neighboring fluid membranes that are associated with long flexible polymers (proteins or other macromolecules). We are interested in two physical systems consisting of i) two adjacent membranes with end-grafted (or adsorbed) polymers (system I), or ii) two membranes confining a polymer solution (system II). In addition to the pure interactions between membranes, the presence of polymers gives rise to new induced mediated interactions, which are repulsive, for system I, and attractive, for system II. In fact, repulsive induced interactions are caused by the excluded-volume forces between grafted polymers, while attractive ones, by entropy loss, due to free motion of polymers between membranes. The main goal is a quantitative study of the unbinding transition thermodynamics that is drastically affected by the associated polymers. For system I, the repulsive polymer-mediated force delays this transition that can happen at low temperature. To investigate the unbinding phenomenon, we first present an exact mathematical analysis of the total potential that is the sum of the primitive and induced potentials. This mathematical study enables us to classify the total interaction potentials, in terms of all parameters of the problem. Second, use is made of the standard variational method to calculate the first moments of the membrane separation. Special attention is paid to the determination of the unbinding temperature. In particular, we discuss its dependence on the extra parameters related to the associated polymers, which are the surface coverage and the polymer layer thickness on each membrane (for system I) or the polymer density and the gyration radius of coils (for system II). Third, we compute the disjoining pressure upon membrane separation. Finally, we emphasize that the presence of polymers may be a mechanism to delay or to accentuate the appearance of the unbinding transition between fluid membranes.
General relation between the group delay and dwell time in multicomponent electron systems
NASA Astrophysics Data System (ADS)
Zhai, Feng; Lu, Junqiang
2016-10-01
For multicomponent electron scattering states, we derive a general relation between the Wigner group delay and the Bohmian dwell time. It is found that the definition of group delay should account for the phase of the spinor wave functions of propagating modes. The difference between the group delay and dwell time comes from both the interference delay and the decaying modes. For barrier tunneling of helical electrons on a surface of topological insulators, our calculations including the trigonal-warping term show that the decaying modes can contribute greatly to the group delay. The derived relation between the group delay and the dwell time is helpful to unify the two definitions of tunneling time in a quite general situation.
Single-Pulse Multi-Point Multi-Component Interferometric Rayleigh Scattering Velocimeter
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.; Gaffney, Richard L., Jr.; Cutler, Andrew D.
2006-01-01
A simultaneous multi-point, multi-component velocimeter using interferometric detection of the Doppler shift of Rayleigh, Mie, and Rayleigh-Brillouin scattered light in supersonic flow is described. The system uses up to three sets of collection optics and one beam combiner for the reference laser light to form a single collimated beam. The planar Fabry-Perot interferometer used in the imaging mode for frequency detection preserves the spatial distribution of the signal reasonably well. Single-pulse multi-points measurements of up to two orthogonal and one non-orthogonal components of velocity in a Mach 2 free jet were performed to demonstrate the technique. The average velocity measurements show a close agreement with the CFD calculations using the VULCAN code.
Viscosity and diffusivity in melts: from unary to multicomponent systems
NASA Astrophysics Data System (ADS)
Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun
2014-05-01
Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.
A Multicomponent Fall Prevention Strategy Reduces Falls at an Academic Medical Center.
France, Dan; Slayton, Jenny; Moore, Sonya; Domenico, Henry; Matthews, Julia; Steaban, Robin L; Choma, Neesha
2017-09-01
While the reduction in fall rates has not kept pace with the reduction of other hospital-acquired conditions, patient safety research and quality improvement (QI) initiatives at the system and hospital levels have achieved positive results and provide insights into potentially effective risk reduction strategies. An academic medical center developed a QI-based multicomponent strategy for fall prevention and pilot tested it for six months in three high-risk units-the Neuroscience Acute Care Unit, the Myelosuppression/Stem Cell Transplant Unit, and the Acute Care for the Elderly Unit-before implementing and evaluating the strategy hospitalwide. The multicomponent fall strategy was evaluated using a pre-post study design. The main outcome measures were falls and falls with harm measured in events per 1,000 patient-days. Fall rates were monitored and compared for three classes of falls: (1) accidental, (2) anticipated physiologic, and (3) unanticipated physiologic. Statistical process control charts showed that the pilot units had achieved significant reductions in falls with harm during the last five months of data collection. Wald test and segmented regression analyses revealed significant improvements in pooled postintervention fall rates, stratified by fall type. The hospitalwide implementation of the program resulted in a 47% overall reduction in falls in the postintervention period. A fall prevention strategy that targeted the spectrum of risk factors produced measurable improvement in fall rates and rates of patient harm. Hospitals must continue developing, rigorously testing, and sharing their results and experiences in implementing and sustaining multicomponent fall prevention strategies. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
DEVELOPMENT OF A DATA EVALUATION/DECISION SUPPORT SYSTEM FOR REMEDIATION OF SUBSURFACE CONTAMINATION
Subsurface contamination frequently originates from spatially distributed sources of multi-component nonaqueous phase liquids (NAPLs). Such chemicals are typically persistent sources of ground-water contamination that are difficult to characterize. This work addresses the feasi...
Laver, Kate; Milte, Rachel; Dyer, Suzanne; Crotty, Maria
2016-01-01
Objective: The aim of this study was to compare the efficacy of two approaches: multicomponent interventions that focus on working with the carer and dyadic interventions that work with both the carer and the person with dementia. Method: A systematic review involving a search of Medline, EMBASE, and PsycINFO in October 2015 was performed. Randomized controlled trials involving carers of people with dementia and comparing multicomponent interventions with usual care were included. Results: Pooling of all studies demonstrated that multicomponent interventions can reduce depressive symptoms, improve quality of life, reduce carer impact, and reduce behavioral and psychological symptoms of dementia as well as caregiver upset with these symptoms. We were unable to find a significant difference in the effects of dyadic interventions in comparison with carer focused interventions for these outcomes. Discussion: Although effect sizes associated with intervention are small, multicomponent interventions are relatively inexpensive to deliver, acceptable, and widely applicable. PMID:27458254
Antibiotic-containing polymers for localized, sustained drug delivery
Stebbins, Nicholas D.; Ouimet, Michelle A.; Uhrich, Kathryn E.
2014-01-01
Many currently used antibiotics suffer from issues such as systemic toxicity, short half-life, and increased susceptibility to bacterial resistance. Although most antibiotic classes are administered systemically through oral or intravenous routes, a more efficient delivery system is needed. This review discusses the chemical conjugation of antibiotics to polymers, achieved by forming covalent bonds between antibiotics and a pre-existing polymer or by developing novel antibiotic-containing polymers. Through conjugating antibiotics to polymers, unique polymer properties can be taken advantage of. These polymeric antibiotics display controlled, sustained drug release and vary in antibiotic class type, synthetic method, polymer composition, bond lability, and antibacterial activity. The polymer synthesis, characterization, drug release, and antibacterial activities, if applicable, will be presented to offer a detailed overview of each system. PMID:24751888
NASA Astrophysics Data System (ADS)
Nouri, N. M.; Mostafapour, K.; Kamran, M.
2018-02-01
In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.
A Weibull characterization for tensile fracture of multicomponent brittle fibers
NASA Technical Reports Server (NTRS)
Barrows, R. G.
1977-01-01
A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.
Guise, Jeanne-Marie; Chang, Christine; Viswanathan, Meera; Glick, Susan; Treadwell, Jonathan; Umscheid, Craig A; Whitlock, Evelyn; Fu, Rongwei; Berliner, Elise; Paynter, Robin; Anderson, Johanna; Motu'apuaka, Pua; Trikalinos, Tom
2014-11-01
The purpose of this Agency for Healthcare Research and Quality Evidence-based Practice Center methods white paper was to outline approaches to conducting systematic reviews of complex multicomponent health care interventions. We performed a literature scan and conducted semistructured interviews with international experts who conduct research or systematic reviews of complex multicomponent interventions (CMCIs) or organizational leaders who implement CMCIs in health care. Challenges identified include lack of consistent terminology for such interventions (eg, complex, multicomponent, multidimensional, multifactorial); a wide range of approaches used to frame the review, from grouping interventions by common features to using more theoretical approaches; decisions regarding whether and how to quantitatively analyze the interventions, from holistic to individual component analytic approaches; and incomplete and inconsistent reporting of elements critical to understanding the success and impact of multicomponent interventions, such as methods used for implementation the context in which interventions are implemented. We provide a framework for the spectrum of conceptual and analytic approaches to synthesizing studies of multicomponent interventions and an initial list of critical reporting elements for such studies. This information is intended to help systematic reviewers understand the options and tradeoffs available for such reviews. Copyright © 2014 Elsevier Inc. All rights reserved.
Integrated Personnel and Pay System-Army Increment 2 (IPPS-A Inc 2)
2016-03-01
2016 Major Automated Information System Annual Report Integrated Personnel and Pay System-Army Increment 2 (IPPS-A Inc 2) Defense Acquisition...703-325-3747 DSN Phone: 865-2915 DSN Fax: 221-3747 Date Assigned: May 2, 2014 Program Information Program Name Integrated Personnel and Pay System...Program Description The Integrated Personnel and Pay System-Army (IPPS-A) will provide the Army with an integrated, multi-Component (Active, National
DEVELOPMENT OF AN IMPROVED SIMULATOR FOR CHEMICAL AND MICROBIAL IOR METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad
2001-10-01
This is the final report of a three-year research project on further development of a chemical and microbial improved oil recovery reservoir simulator. The objective of this research was to extend the capability of an existing simulator (UTCHEM) to improved oil recovery methods which use surfactants, polymers, gels, alkaline chemicals, microorganisms and foam as well as various combinations of these in both conventional and naturally fractured oil reservoirs. The first task was the addition of a dual-porosity model for chemical IOR in naturally fractured oil reservoirs. They formulated and implemented a multiphase, multicomponent dual porosity model for enhanced oil recoverymore » from naturally fractured reservoirs. The multiphase dual porosity model was tested against analytical solutions, coreflood data, and commercial simulators. The second task was the addition of a foam model. They implemented a semi-empirical surfactant/foam model in UTCHEM and validated the foam model by comparison with published laboratory data. The third task addressed several numerical and coding enhancements that will greatly improve its versatility and performance. Major enhancements were made in UTCHEM output files and memory management. A graphical user interface to set up the simulation input and to process the output data on a Windows PC was developed. New solvers for solving the pressure equation and geochemical system of equations were implemented and tested. A corner point grid geometry option for gridding complex reservoirs was implemented and tested. Enhancements of physical property models for both chemical and microbial IOR simulations were included in the final task of this proposal. Additional options for calculating the physical properties such as relative permeability and capillary pressure were added. A microbiological population model was developed and incorporated into UTCHEM. They have applied the model to microbial enhanced oil recovery (MEOR) processes by including the capability of permeability reduction due to biomass growth and retention. The formations of bio-products such as surfactant and polymer surfactant have also been incorporated.« less
Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies
NASA Astrophysics Data System (ADS)
Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger
2018-02-01
Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.
Greiner, Maximilian; Sonnleitner, Bettina; Mailänder, Markus; Briesen, Heiko
2014-02-01
Additional benefits of foods are an increasing factor in the consumer's purchase. To produce foods with the properties the consumer demands, understanding the micro- and nanostructure is becoming more important in food research today. We present molecular dynamics (MD) simulations as a tool to study complex and multi-component food systems on the example of chocolate conching. The process of conching is chosen because of the interesting challenges it provides: the components (fats, emulsifiers and carbohydrates) contain diverse functional groups, are naturally fluctuating in their chemical composition, and have a high number of internal degrees of freedom. Further, slow diffusion in the non-aqueous medium is expected. All of these challenges are typical to food systems in general. Simulation results show the suitability of present force fields to correctly model the liquid and crystal density of cocoa butter and sucrose, respectively. Amphiphilic properties of emulsifiers are observed by micelle formation in water. For non-aqueous media, pulling simulations reveal high energy barriers for motion in the viscous cocoa butter. The work for detachment of an emulsifier from the sucrose crystal is calculated and matched with detachment of the head and tail groups separately. Hydrogen bonding is shown to be the dominant interaction between the emulsifier and the crystal surface. Thus, MD simulations are suited to model the interaction between the emulsifier and sugar crystal interface in non-aqueous media, revealing detailed information about the structuring and interactions on a molecular level. With interaction parameters being available for a wide variety of chemical groups, MD simulations are a valuable tool to understand complex and multi-component food systems in general. MD simulations provide a substantial benefit to researchers to verify their hypothesis in dynamic simulations with an atomistic resolution. Rapid rise of computational resources successively increases the complexity and the size of the systems that can be studied.
PREDICTION OF MULTICOMPONENT INORGANIC ATMOSPHERIC AEROSOL BEHAVIOR. (R824793)
Many existing models calculate the composition of the atmospheric aerosol system by solving a set of algebraic equations based on reversible reactions derived from thermodynamic equilibrium. Some models rely on an a priori knowledge of the presence of components in certain relati...
SORPTION OF TOXIC ORGANIC COMPOUNDS ON WATERWATER SOLIDS: MECHANISMS AND MODELING
It is proposed that sorption is a combination of two fundamentally different processes: adsorption and partitioning. A sorption model was developed for both single-component and multicomponent systems. The model was tested using single-component experimental isotherm data of eig...
A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems
NASA Technical Reports Server (NTRS)
Hshieh, Fu-Yu; Beeson, Harold D.
2005-01-01
One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.
Modeling the Hydrogen Solubility in Liquid Aluminum Alloys
NASA Astrophysics Data System (ADS)
Harvey, Jean-Philippe; Chartrand, Patrice
2010-08-01
The modeling of hydrogen solubility in multicomponent Al-(Li, Mg, Cu, and Si) liquid phase has been performed with a thermodynamic approach using the modified quasichemical model with the pair approximation (MQMPA). All hydrogen solubility data available in literature was assessed critically to obtain the binary parameters of the MQMPA model for the Al-H, Li-H, Mg-H, Cu-H, Zn-H, and Si-H melts. For the Li-H system, a new thermodynamic description of the stable solid lithium hydride was determined based on the c p found in literature. The thermodynamic model for the Al-Li system also was reassessed in this work to take into account the short-range ordering observed for this system. Built-in interpolation techniques allow the model to estimate the thermodynamic properties of the multicomponent liquid solution from the liquid model parameters of the lower order subsystems. A comparison of the calculated hydrogen solubility performed at various equilibrium conditions of temperature, pressure, and composition with the available experimental data found in the literature is presented in this work, as well as a comparison with some results from previous modeling.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2004-01-01
Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.
Inverse design of multicomponent assemblies
NASA Astrophysics Data System (ADS)
Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.
2018-03-01
Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.
Gladys, Granero; Claudia, Garnero; Marcela, Longhi
2003-11-01
A novel complexation of sulfisoxazole with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was studied. Two systems were used: binary complexes prepared with HP-beta-CD and multicomponent system (HP-beta-CD and the basic compound triethanolamine (TEA)). Inclusion complex formation in aqueous solutions and in solid state were investigated by the solubility method, thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)), Fourier-transform infrared spectroscopy (FT-IR) and dissolution studies. The solid complexes of sulfisoxazole were prepared by freeze-drying the homogeneous concentrated aqueous solutions in molar ratios of sulfisoxazole:HP-beta-CD 1:1 and 1:2, and sulfisoxazole:TEA:HP-beta-CD 1:1:2. FT-IR and thermal analysis showed differences among sulfisoxazole:HP-beta-CD and sulfisoxazole:TEA:HP-beta-CD and their corresponding physical mixtures and individual components. The HP-beta-CD solubilization of sulfisoxazole could be improved by ionization of the drug molecule through pH adjustments. However, larger improvements of the HP-beta-CD solubilization are obtained when multicomponent systems are used, allowing to reduce the amount of CD necessary to prepare the target formulation.
Enhancement of Electrical Conductivity in Multicomponent Nanocomposites.
NASA Astrophysics Data System (ADS)
Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Liu, Feng
To date, very limited theoretical or numerical analyses have been carried out to understand the electrical percolation properties in multicomponent nanocomposite systems. In this work, a disk-stick percolation model was developed to investigate the electrical percolation behavior of an electrically insulating matrix reinforced with one-dimensional (1D) and two-dimensional (2D) conductors via Monte Carlo simulation. The effective electrical conductivity was evaluated through Kirchhoff's current law by transforming it into an equivalent resistor network. The percolation threshold, equivalent resistance and conductivity were obtained from the distribution of nodal voltages by solving a system of linear equations with Gaussian elimination method. The effects of size, aspect ratio, relative concentration and contact patterns of 1D/2D inclusions on conductivity performance were examined. Our model is able to predict the electrical percolation threshold and evaluate the conductivity for hybrid systems with multiple components. The results suggest that carbon-based nanocomposites can have a high potential for applications where favorable electrical properties and low specific weight are required. We acknowledge the financial support from DOE-BES (No. DE-FG02-04ER46148).
NASA Astrophysics Data System (ADS)
Wong, Michael S.; Lee, Gil U.
2005-07-01
This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic systems and tissue engineering; nanotechnology for drug delivery and imaging; bionanotechnology in cancer and cardiovascular disease; nanostructured biomaterials; nanotechnology in bioengineering; nanofabrication of biosensing devices. We are pleased to present a selection of research papers in this special issue of Nanotechnology on behalf of the Nanoscale Science and Engineering Forum (NSEF). NSEF was established in 2001 as a new division of AIChE to promote nanotechnology efforts in chemical engineering. The chemical engineering discipline deals with the production and processing of chemicals and materials, and does so through a fundamental understanding of the core issues of transport, thermodynamics, and kinetics that exist at multiple length scales. Thus, it should come as no surprise that chemical engineers have been pursuing nanotechnology research for the last fifty years. For example, fuel production has benefited immensely from improved catalysts in which their pore structure is controlled with nanoscale precision, and polymer properties have been improved by controlling the polymer supramolecular structure at the nanometre scale. Chemical engineering will continue to make important contributions to nanotechnology, and will play a critical role in the transition from basic science and engineering research to commercial applications. We would like to thank all of the authors who contributed to this special issue; the three NSEF poster presentation award winners for their papers (Sureshkumar, Sunkara, and Rinaldi groups); Dr Nina Couzin, Publisher of Nanotechnology, for her support and enthusiasm for this project; Drs Sharon Glotzer and Dan Coy who chaired the topical conference; and Drs Meyya Meyyappan and Brett Cruden (NASA Ames Research Center) for their assistance in the initial planning stages. We also take this opportunity to thank the many people and organizations who have supported the 2004 topical conference along the way, which include all the session chairs, Hyperion Catalysis International, Inc., Nanophase Technologies, Inc., and the executive board of the NSEF.
Hubert, Brian N.; Wu, Xin Di
1998-01-01
A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.
Tejwani, Vijay; Schmitt, Franz-Josef; Wilkening, Svea; Zebger, Ingo; Horch, Marius; Lenz, Oliver; Friedrich, Thomas
2017-01-01
Ralstonia eutropha is a hydrogen-oxidizing ("Knallgas") bacterium that can easily switch between heterotrophic and autotrophic metabolism to thrive in aerobic and anaerobic environments. Its versatile metabolism makes R. eutropha an attractive host for biotechnological applications, including H 2 -driven production of biodegradable polymers and hydrocarbons. H 2 oxidation by R. eutropha takes place in the presence of O 2 and is mediated by four hydrogenases, which represent ideal model systems for both biohydrogen production and H 2 utilization. The so-called soluble hydrogenase (SH) couples reversibly H 2 oxidation with the reduction of NAD + to NADH and has already been applied successfully in vitro and in vivo for cofactor regeneration. Thus, the interaction of the SH with the cellular NADH/NAD + pool is of major interest. In this work, we applied the fluorescent biosensor Peredox to measure the [NADH]:[NAD + ] ratio in R. eutropha cells under different metabolic conditions. The results suggest that the sensor operates close to saturation level, indicating a rather high [NADH]:[NAD + ] ratio in aerobically grown R. eutropha cells. Furthermore, we demonstrate that multicomponent analysis of spectrally-resolved fluorescence lifetime data of the Peredox sensor response to different [NADH]:[NAD + ] ratios represents a novel and sensitive tool to determine the redox state of cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantum turbulence in cold multicomponent matter
NASA Astrophysics Data System (ADS)
Pshenichnyuk, Ivan A.
2018-02-01
Quantum vortices are pivotal for understanding of phenomena in quantum hydrodynamics. Vortices were observed in different physical systems like trapped dilute Bose-Einstein condensates, liquid helium, exciton-polariton condensates and other types of systems. Foreign particles attached to the vortices often serve for a visualization of the vortex shape and kinematics in superfluid experiments. Fascinating discoveries were made in the field of cold quantum mixtures, where vortices created in one component may interact with the other component. This works raise the fundamental question of the interaction between quantum vortices and matter. The generalized nonlinear Schrodinger equation based formalism is applied here to model three different processes involving the interaction of quantum vortices with foreign particles: propagation of a fast classical particle in a superfluid under the influence of sound waves, scattering of a single fermion by a quantized vortex line and dynamics of vortex pairs doped with heavy bosonic matter. The obtained results allow to to clarify the details of recent experiments and acquire a better understanding of the multicomponent quantum turbulence.
ZN graded discrete Lax pairs and Yang-Baxter maps
NASA Astrophysics Data System (ADS)
Fordy, Allan P.; Xenitidis, Pavlos
2017-05-01
We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper, we introduce the corresponding Yang-Baxter maps. Many well-known examples belong to this scheme for N=2, so, for N≥3, our systems may be regarded as generalizations of these. In particular, for each N we introduce a class of multi-component Yang-Baxter maps, which include HBIII (of Papageorgiou et al. 2010 SIGMA 6, 003 (9 p). (doi:10.3842/SIGMA.2010.033)), when N=2, and that associated with the discrete modified Boussinesq equation, for N=3. For N≥5 we introduce a new family of Yang-Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang-Baxter maps FIV and FV (given in the classification of Adler et al. 2004 Commun. Anal. Geom. 12, 967-1007. (doi:10.4310/CAG.2004.v12.n5.a1)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Bradley M.; Stuckelberger, Michael; Jeffries, April
The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less
[Formula: see text] graded discrete Lax pairs and Yang-Baxter maps.
Fordy, Allan P; Xenitidis, Pavlos
2017-05-01
We recently introduced a class of [Formula: see text] graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper, we introduce the corresponding Yang-Baxter maps. Many well-known examples belong to this scheme for N =2, so, for N ≥3, our systems may be regarded as generalizations of these. In particular, for each N we introduce a class of multi-component Yang-Baxter maps, which include H B III (of Papageorgiou et al. 2010 SIGMA 6, 003 (9 p). (doi:10.3842/SIGMA.2010.033)), when N =2, and that associated with the discrete modified Boussinesq equation, for N =3. For N ≥5 we introduce a new family of Yang-Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang-Baxter maps F IV and F V (given in the classification of Adler et al. 2004 Commun. Anal. Geom. 12, 967-1007. (doi:10.4310/CAG.2004.v12.n5.a1)).
West, Bradley M.; Stuckelberger, Michael; Jeffries, April; ...
2017-01-01
The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less
ZN graded discrete Lax pairs and Yang–Baxter maps
Fordy, Allan P.
2017-01-01
We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper, we introduce the corresponding Yang–Baxter maps. Many well-known examples belong to this scheme for N=2, so, for N≥3, our systems may be regarded as generalizations of these. In particular, for each N we introduce a class of multi-component Yang–Baxter maps, which include HBIII (of Papageorgiou et al. 2010 SIGMA 6, 003 (9 p). (doi:10.3842/SIGMA.2010.033)), when N=2, and that associated with the discrete modified Boussinesq equation, for N=3. For N≥5 we introduce a new family of Yang–Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang–Baxter maps FIV and FV (given in the classification of Adler et al. 2004 Commun. Anal. Geom. 12, 967–1007. (doi:10.4310/CAG.2004.v12.n5.a1)). PMID:28588406
Hetényi, Anasztázia; Szakonyi, Zsolt; Klika, Karel D; Pihlaja, Kalevi; Fülöp, Ferenc
2003-03-21
Both cis and trans isomers of amino diols 3-6 were prepared stereoselectively. In the reactions between 3-6 and phenyl isothiocyanate, the ring closure proceeded regioselectively and resulted only in spiro derivatives of 2-phenyliminooxazolidines 9, 10, 13, and 14. The reaction of cis- (or trans-)1-aminomethylcyclohexane-1,2-diol 4 (or 6) with 1 equiv of an aromatic aldehyde 15a-g in EtOH at room temperature resulted in a complex, multicomponent equilibrium mixture of 16a-g and 18a-g (or 17a-g and 19a-g), in each case consisting of a five-component, ring-chain tautomeric system 16A-E (or 17A-E), involving the Schiff base, two epimeric spirooxazolidines, two epimeric condensed 1,3-oxazines, and some of the four tricyclic compounds 18A-D (or 19A-D). The five-component, ring-chain equilibria were found to be adequately described by the Hammett-Brown linear free energy equation.
2001-08-08
entropy inequality with independent variables consistent with several natural systems and apply the resulting constitutive theory near equi- librium...1973. [3] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - I: Balance laws. International Journal of...Engineering Science, 34(2):125–145, 1996. [4] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - II: Constitutive
Modeling of a complex, polar system with a modified Soave-Redlich-Kwong equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturnfield, E.A.; Matherne, J.L.
1988-01-01
It is computationally feasible to use a simple equation of state (like a Redlich-Kwong) to calculate liquid fugacity but the simpler equations work well only for moderately non-ideal systems. More complex equations (like Ghemling-Lui-Prausnitz) predict system behavior more accurately but are much more complicated to use and can require fitting many parameters to data. This paper illustrates success in using a modified Redlich-Kwong to model a complex system including water, hydrogen, sub and supercritical ammonia, and amines. The binary interaction parameter ({Kappa}/sub ij/) of the Soave-Redlich-Kwong equation has been modified to be both asymmetric and temperature dependent. Further, the aimore » constant was determined by fitting vapor pressure data. Predicted model results are compared to literature (example 1) or plant data (examples 2-4) for four systems: 1. The ammonia-water binary over a wide range of pressure and temperature including ammonia above its critical. 2. A multicomponent Vapor-Liquid equilibrium flash tank and condenser containg hydrogen, amonia, water, and other heavier compounds. 3. A multicomponent vapor-liquid equilibrium flash tank containing water, heavier mines, and the amine salts. 4. A Liquid-Liquid-Vapor equilibrium decanter system containing water, ammonia, and an organic chloride.« less
Yakubova, Gulnoza; Taber-Doughty, Teresa
2013-06-01
The effects of a multicomponent intervention (a self-operated video modeling and self-monitoring delivered via an electronic interactive whiteboard (IWB) and a system of least prompts) on skill acquisition and interaction behavior of two students with autism and one student with moderate intellectual disability were examined using a multi-probe across students design. Students were taught to operate and view video modeling clips, perform a chain of novel tasks and self-monitor task performance using a SMART Board IWB. Results support the effectiveness of a multicomponent intervention in improving students' skill acquisition. Results also highlight the use of this technology as a self-operated and interactive device rather than a traditional teacher-operated device to enhance students' active participation in learning.
Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; ...
2016-02-10
We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less
Multicomponent Droplet Evaporation on Chemical Micro-Patterned Surfaces
He, Minghao; Liao, Dong; Qiu, Huihe
2017-01-01
The evaporation and dynamics of a multicomponent droplet on a heated chemical patterned surface were presented. Comparing to the evaporation process of a multicomponent droplet on a homogenous surface, it is found that the chemical patterned surface can not only enhance evaporation by elongating the contact line, but also change the evaporation process from three regimes for the homogenous surface including constant contact line (CCL) regime, constant contact angle (CCA) regime and mix mode (MM) to two regimes, i.e. constant contact line (CCL) and moving contact line (MCL) regimes. The mechanism of contact line stepwise movement in MCL regimes in the microscopic range is investigated in detail. In addition, an improved local force model on the contact line was employed for analyzing the critical receding contact angles on homogenous and patterned surfaces. The analysis results agree well for both surfaces, and confirm that the transition from CCL to MCL regimes indicated droplet composition changes from multicomponent to monocomponent, providing an important metric to predict and control the dynamic behavior and composition of a multicomponent droplet using a patterned surface. PMID:28157229
Characterization of structural connections for multicomponent systems
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Huckelbridge, Arthur A.
1988-01-01
This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so that the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.
Multicomponent Oxide Systems for Corrosion Protection.
1980-11-15
hydroxides on film growth. New types of mixed oxide coatings deposited from nonaqueous solutions of organometallic compounds were developed. Titanium -aluminum...mixed oxide coatings, deposited from solutions of titanium alkoxides in isopropanol, served as a prototype system for much of this work. It was found...45 13. Coating Steps and Analysis... ...................... 50 14. Auger Depth Profiles of Titanium -Aluminum Mixed Oxide *Coatings Deposited
Zhang, Lei; Zhao, Haiyu; Liu, Yang; Dong, Honghuan; Lv, Beiran; Fang, Min; Zhao, Huihui
2016-06-01
This study was conducted to establish the multicomponent sequential metabolism (MSM) method based on comparative analysis along the digestive system following oral administration of licorice (Glycyrrhiza uralensis Fisch., leguminosae), a traditional Chinese medicine widely used for harmonizing other ingredients in a formulae. The licorice water extract (LWE) dissolved in Krebs-Ringer buffer solution (1 g/mL) was used to carry out the experiments and the comparative analysis was performed using HPLC and LC-MS/MS methods. In vitro incubation, in situ closed-loop and in vivo blood sampling were used to measure the LWE metabolic profile along the digestive system. The incubation experiment showed that the LWE was basically stable in digestive juice. A comparative analysis presented the metabolic profile of each prototype and its corresponding metabolites then. Liver was the major metabolic organ for LWE, and the metabolism by the intestinal flora and gut wall was also an important part of the process. The MSM method was practical and could be a potential method to describe the metabolic routes of multiple components before absorption into the systemic blood stream. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Xu, Tao; Chen, Yong
2018-04-01
In this paper, we extend the one-component Gross-Pitaevskii (GP) equation to the two-component coupled GP system including damping term, linear and parabolic density profiles. The Lax pair with nonisospectral parameter and infinitely-many conservation laws of this coupled GP system are presented. Actually, the Darboux transformation (DT) for this kind of nonautonomous system is essentially different from the autonomous case. Consequently, we construct the DT of the coupled GP equations, besides, nonautonomous multi-solitons, one-breather and the first-order rogue wave are also obtained. Various kinds of one-soliton solution are constructed, which include stationary one-soliton and nonautonomous one-soliton propagating along the negative (positive) direction of x-axis. The interaction of two solitons and two-soliton bound state are demonstrated respectively. We get the nonautonomous one-breather on a curved background and this background is completely controlled by the parameter β. Using a limiting process, the nonautonomous first-order rogue wave can be obtained. Furthermore, some dynamic structures of these analytical solutions are discussed in detail. In addition, the multi-component generalization of GP equations are given, then the corresponding Lax pair and DT are also constructed.
Chen, Jie; Kline, Steven R; Liu, Yun
2015-02-28
Depletion attraction induced by non-adsorbing polymers or small particles in colloidal solutions has been widely used as a model colloidal interaction to understand aggregation behavior and phase diagrams, such as glass transitions and gelation. However, much less attention has been paid to study the effective colloidal interaction when small particles/molecules can be reversibly attracted to large colloidal particles. At the strong attraction limit, small particles can introduce bridging attraction as it can simultaneously attach to neighbouring large colloidal particles. We use Baxter's multi-component method for sticky hard sphere systems with the Percus-Yevick approximation to study the bridging attraction and its consequence to phase diagrams, which are controlled by the concentration of small particles and their interaction with large particles. When the concentration of small particles is very low, the bridging attraction strength increases very fast with the increase of small particle concentration. The attraction strength eventually reaches a maximum bridging attraction (MBA). Adding more small particles after the MBA concentration keeps decreasing the attraction strength until reaching a concentration above which the net effect of small particles only introduces an effective repulsion between large colloidal particles. These behaviors are qualitatively different from the concentration dependence of the depletion attraction on small particles and make phase diagrams very rich for bridging attraction systems. We calculate the spinodal and binodal regions, the percolation lines, the MBA lines, and the equivalent hard sphere interaction line for bridging attraction systems and have proposed a simple analytic solution to calculate the effective attraction strength using the concentrations of large and small particles. Our theoretical results are found to be consistent with experimental results reported recently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbard, F.; Fitzgerald, J.W.; Hoppel, W.A.
1998-07-01
We present the theoretical framework and computational methods that were used by {ital Fitzgerald} {ital et al.} [this issue (a), (b)] describing a one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. The concepts and limitations of modeling spatially varying multicomponent aerosols are elucidated. New numerical sectional techniques are presented for simulating multicomponent aerosol growth, settling, and eddy transport, coupled to time-dependent and spatially varying condensing vapor concentrations. Comparisons are presented with new exact solutions for settling and particle growth by simultaneous dynamic condensation of one vapor and by instantaneous equilibration with a spatially varying secondmore » vapor. {copyright} 1998 American Geophysical Union« less
A FORTRAN source library for quaternion algebra. Application to multicomponent seismic data
NASA Astrophysics Data System (ADS)
Benaïssa, A.; Benaïssa, Z.; Ouadfeul, S.
2012-04-01
The quaternions, named also hypercomplex numbers, constituted of a real part and three imaginary parts, allow a representation of multi-component physical signals in geophysics. In FORTRAN, the need for programming new applications and extend programs to quaternions requires to enhance capabilities of this language. In this study, we develop, in FORTRAN 95, a source library which provides functions and subroutines making development and maintenance of programs devoted to quaternions, equivalent to those developed for the complex plane. The systematic use of generic functions and generic operators: 1/ allows using FORTRAN statements and operators extended to quaternions without renaming them and 2/ makes use of this statements transparent to the specificity of quaternions. The portability of this library is insured by the standard FORTRAN 95 strict norm which is independent of operating systems (OS). The execution time of quaternion applications, sometimes crucial for huge data sets, depends, generally, of compilers optimizations by the use of in lining and parallelisation. To show the use of the library, Fourier transform of a real one dimensional quaternionic seismic signal is presented. Furthermore, a FORTRAN code, which computes the quaternionic singular values decomposition (QSVD), is developed using the proposed library and applied to wave separation in multicomponent vertical seismic profile (VSP) synthetic and real data. The extracted wavefields have been highly enhanced, compared to those obtained with median filter, due to QSVD which takes into account the correlation between the different components of the seismic signal. Taken in total, these results demonstrate that use of quaternions can bring a significant improvement for some processing on three or four components seismic data. Keywords: Quaternion - FORTRAN - Vectorial processing - Multicomponent signal - VSP - Fourier transform.
Rao, Shasha; Prestidge, Clive A
2016-01-01
A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.
NASA Astrophysics Data System (ADS)
Shokoohi, Shirin
2015-11-01
Polypropylene (PP)/polyamide6 (PA6)/ethylene propylene diene rubber (EPDM) (70/15/15) ternary polymer blends compatibilized with maleic anhydride-grafted EPDM (EPDM-g-MA) were prepared under various processing parameters (barrel temperature, screw speed, and blending sequence). Thermal studies on the prepared blend samples were carried out using differential scanning calorimetry and dynamic mechanical thermal analysis. According to the results, heterogeneous nucleation phenomenon was observed due to the solidification of the PA6 particles dispersed within the PP melt leading to a significant increase in the crystallinity degree and exotherm crystallization peak temperature of PP compared to the pure homopolymer. This was suppressed in the samples with core-shell morphology due to the reduced PP/PA6 interfacial contact. Fractionated crystallization was observed when PA6 droplets dispersed too fine within the matrix (in this case bar{d}_M˜ 0.3 \\upmu {m}). Scanning electron microscopy micrographs were consistent with the melting and crystallization behavior of the blend samples.
Control and measurement of the phase behavior of aqueous solutions using microfluidics
Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth
2008-01-01
A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Daripa, Prabir; Fluids Team
2015-11-01
One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).
A sample preparation method for recovering suppressed analyte ions in MALDI TOF MS.
Lou, Xianwen; de Waal, Bas F M; Milroy, Lech-Gustav; van Dongen, Joost L J
2015-05-01
In matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin-layer sample preparation method that significantly reduces the analyte suppression effect (ASE). In our method, analytes are deposited on top of the surface of matrix preloaded on the MALDI plate. To prevent embedding of analyte into the matrix crystals, the sample solution were prepared without matrix and efforts were taken not to re-dissolve the preloaded matrix. The results with model mixtures of peptides, synthetic polymers and lipids show that detection of analyte ions, which were completely suppressed using the conventional dried-droplet method, could be effectively recovered by using our method. Our findings suggest that the incorporation of analytes in the matrix crystals has an important contributory effect on ASE. By reducing ASE, our method should be useful for the direct MALDI MS analysis of multicomponent mixtures. Copyright © 2015 John Wiley & Sons, Ltd.
Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions
NASA Astrophysics Data System (ADS)
Nam, Minwoo; Cha, Minjeong; Lee, Hyun Hwi; Hur, Kahyun; Lee, Kyu-Tae; Yoo, Jaehong; Han, Il Ki; Kwon, S. Joon; Ko, Doo-Hyun
2017-01-01
A major impediment to the commercialization of organic photovoltaics (OPVs) is attaining long-term morphological stability of the bulk heterojunction (BHJ) layer. To secure the stability while pursuing optimized performance, multi-component BHJ-based OPVs have been strategically explored. Here we demonstrate the use of quaternary BHJs (q-BHJs) composed of two conjugated polymer donors and two fullerene acceptors as a novel platform to produce high-efficiency and long-term durable OPVs. A q-BHJ OPV (q-OPV) with an experimentally optimized composition exhibits an enhanced efficiency and extended operational lifetime than does the binary reference OPV. The q-OPV would retain more than 72% of its initial efficiency (for example, 8.42-6.06%) after a 1-year operation at an elevated temperature of 65 °C. This is superior to those of the state-of-the-art BHJ-based OPVs. We attribute the enhanced stability to the significant suppression of domain growth and phase separation between the components via kinetic trapping effect.
Hygroscopic growth and cloud droplet activation of xanthan gum as a proxy for marine hydrogels
NASA Astrophysics Data System (ADS)
Dawson, K. W.; Petters, M. D.; Meskhidze, N.; Petters, S. Suda; Kreidenweis, S. M.
2016-10-01
Knowledge of the physical characteristics and chemical composition of marine organic aerosols is needed for the quantification of their effects on cloud microphysical processes and solar radiative transfer. Here we use xanthan gum (XG)—a bacterial biopolymer—as a proxy for marine hydrogels. Measurements were performed for pure XG particles and mixtures of XG with sodium chloride, calcium nitrate, and calcium carbonate. The aerosol hygroscopicity parameter (κ) is derived from hygroscopic growth factor measurements (κgf) at variable water activity (aw) and from cloud condensation nuclei activation efficiency (κccn). The Zdanovskii, Stokes, and Robinson (ZSR) hygroscopicity parameter derived for multicomponent systems (κmix, sol) is used to compare measurements of κgf and κccn. Pure XG shows close agreement of κgf (at aw = 0.9) and κccn of 0.09 and 0.10, respectively. Adding salts to the system results in deviations of κgf (at aw = 0.9) from κccn. The measured κgf and ZSR-derived hygroscopicity parameter (κmix, sol) values for different solutions show close agreement at aw > 0.9, while κgf is lower in comparison to κmix, sol at aw < 0.9. The differences between predicted κmix, sol and measured κgf and κccn values are explained by the effects of hydration and presence of salt ions on the structure of the polymer networks. Results from this study imply that at supersaturations of 0.1 and 0.5%, the presence of 30% sea salt by mass can reduce the activation diameter of pure primary marine organic aerosols from 257 to 156 nm and from 87 to 53 nm, respectively.
Model systems for single molecule polymer dynamics
Latinwo, Folarin
2012-01-01
Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980
Biodegradable polymers for targeted delivery of anti-cancer drugs.
Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid
2016-06-01
Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.
Modularity, Working Memory and Language Acquisition
ERIC Educational Resources Information Center
Baddeley, Alan D.
2017-01-01
The concept of modularity is used to contrast the approach to working memory proposed by Truscott with the Baddeley and Hitch multicomponent model. This proposes four sub components comprising the "central executive," an executive control system of limited attentional capacity that utilises storage based on separate but interlinked…
Working Memory and Down Syndrome
ERIC Educational Resources Information Center
Baddeley, A.; Jarrold, C.
2007-01-01
A brief account is given of the evolution of the concept of working memory from a unitary store into a multicomponent system. Four components are distinguished, the phonological loop which is responsible for maintaining speech-based information, the visuospatial sketchpad performing a similar function for visual information, the central executive…
Hubert, B.N.; Wu, X.D.
1998-10-13
A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.
[The structure of financial planning of public health in Ukraine during the transitional period].
Koretskiy, V L
1995-01-01
Based on the newly developed concept of multilevel functional system of primary health care which is to replace the current multicomponent system, the author discusses the computer-aided realization of the system for estimation and analysis of the integral model of outpatient and inpatient medical care of the population of the Ukraine. This system is intended to solve the problems associated with intensification of the resources of the public health system of the Republic (district).
Lee, Norman; Schrode, Katrina M; Bee, Mark A
2017-09-01
Diverse animals communicate using multicomponent signals. How a receiver's central nervous system integrates multiple signal components remains largely unknown. We investigated how female green treefrogs (Hyla cinerea) integrate the multiple spectral components present in male advertisement calls. Typical calls have a bimodal spectrum consisting of formant-like low-frequency (~0.9 kHz) and high-frequency (~2.7 kHz) components that are transduced by different sensory organs in the inner ear. In behavioral experiments, only bimodal calls reliably elicited phonotaxis in no-choice tests, and they were selectively chosen over unimodal calls in two-alternative choice tests. Single neurons in the inferior colliculus of awake, passively listening subjects were classified as combination-insensitive units (27.9%) or combination-sensitive units (72.1%) based on patterns of relative responses to the same bimodal and unimodal calls. Combination-insensitive units responded similarly to the bimodal call and one or both unimodal calls. In contrast, combination-sensitive units exhibited both linear responses (i.e., linear summation) and, more commonly, nonlinear responses (e.g., facilitation, compressive summation, or suppression) to the spectral combination in the bimodal call. These results are consistent with the hypothesis that nonlinearities play potentially critical roles in spectral integration and in the neural processing of multicomponent communication signals.
Heymsfield, Steven B.; Ebbeling, Cara B.; Zheng, Jolene; Pietrobelli, Angelo; Strauss, Boyd J.; Silva, Analiza M.; Ludwig, David S.
2015-01-01
Excess adiposity is the main phenotypic feature that defines human obesity and that plays a pathophysiological role in most chronic diseases. Measuring the amount of fat mass present is thus a central aspect of studying obesity at the individual and population levels. Nevertheless, a consensus is lacking among investigators on a single accepted “reference” approach for quantifying fat mass in vivo. While the research community generally relies on the multicomponent body-volume class of “reference” models for quantifying fat mass, no definable guide discerns among different applied equations for partitioning the four (fat, water, protein, and mineral mass) or more quantified components, standardizes “adjustment” or measurement system approaches for model-required labeled water dilution volumes and bone mineral mass estimates, or firmly establishes the body temperature at which model physical properties are assumed. The resulting differing reference strategies for quantifying body composition in vivo leads to small but under some circumstances important differences in the amount of measured body fat. Recent technological advances highlight opportunities to expand model applications to new subject groups and measured components such as total body protein. The current report reviews the historical evolution of multicomponent body volume-based methods in the context of prevailing uncertainties and future potential. PMID:25645009
A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.
Fischer, D; de la Fuente, G F; Jansen, M
2012-04-01
The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. © 2012 American Institute of Physics
Mirzaei, Nasrin; Poursina, Farkhondeh; Moghim, Sharareh; Rashidi, Niloufar; Ghasemian Safaei, Hajieh
2017-09-01
Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.
Polymer therapeutics: concepts and applications.
Haag, Rainer; Kratz, Felix
2006-02-13
Polymer therapeutics encompass polymer-protein conjugates, drug-polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer-protein conjugates with improved stability and pharmacokinetic properties have been developed, for example, by anchoring enzymes or biologically relevant proteins to polyethylene glycol components (PEGylation). Several polymer-protein conjugates have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conjugates of doxorubicin, camptothecin, paclitaxel, and platinum(II) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. These include polyanionic polymers for the inhibition of virus attachment, polycationic complexes with DNA or RNA (polyplexes), and dendritic core-shell architectures for the encapsulation of drugs. In this Review an overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.
Gittelsohn, Joel; Trude, Angela C; Poirier, Lisa; Ross, Alexandra; Ruggiero, Cara; Schwendler, Teresa; Anderson Steeves, Elizabeth
2017-11-10
The multifactorial causes of obesity require multilevel and multicomponent solutions, but such combined strategies have not been tested to improve the community food environment. We evaluated the impact of a multilevel (operating at different levels of the food environment) multicomponent (interventions occurring at the same level) community intervention. The B'more Healthy Communities for Kids (BHCK) intervention worked at the wholesaler ( n = 3), corner store ( n = 50), carryout ( n = 30), recreation center ( n = 28), household ( n = 365) levels to improve availability, purchasing, and consumption of healthier foods and beverages (low-sugar, low-fat) in low-income food desert predominantly African American zones in the city of Baltimore (MD, USA), ultimately intending to lead to decreased weight gain in children (not reported in this manuscript). For this paper, we focus on more proximal impacts on the food environment, and measure change in stocking, sales and purchase of promoted foods at the different levels of the food system in 14 intervention neighborhoods, as compared to 14 comparison neighborhoods. Sales of promoted products increased in wholesalers. Stocking of these products improved in corner stores, but not in carryouts, and we did not find any change in total sales. Children more exposed to the intervention increased their frequency of purchase of promoted products, although improvement was not seen for adult caregivers. A multilevel food environment intervention in a low-income urban setting improved aspects of the food system, leading to increased healthy food purchasing behavior in children.
Gittelsohn, Joel; Trude, Angela C.; Poirier, Lisa; Ross, Alexandra; Ruggiero, Cara; Schwendler, Teresa; Anderson Steeves, Elizabeth
2017-01-01
The multifactorial causes of obesity require multilevel and multicomponent solutions, but such combined strategies have not been tested to improve the community food environment. We evaluated the impact of a multilevel (operating at different levels of the food environment) multicomponent (interventions occurring at the same level) community intervention. The B’more Healthy Communities for Kids (BHCK) intervention worked at the wholesaler (n = 3), corner store (n = 50), carryout (n = 30), recreation center (n = 28), household (n = 365) levels to improve availability, purchasing, and consumption of healthier foods and beverages (low-sugar, low-fat) in low-income food desert predominantly African American zones in the city of Baltimore (MD, USA), ultimately intending to lead to decreased weight gain in children (not reported in this manuscript). For this paper, we focus on more proximal impacts on the food environment, and measure change in stocking, sales and purchase of promoted foods at the different levels of the food system in 14 intervention neighborhoods, as compared to 14 comparison neighborhoods. Sales of promoted products increased in wholesalers. Stocking of these products improved in corner stores, but not in carryouts, and we did not find any change in total sales. Children more exposed to the intervention increased their frequency of purchase of promoted products, although improvement was not seen for adult caregivers. A multilevel food environment intervention in a low-income urban setting improved aspects of the food system, leading to increased healthy food purchasing behavior in children. PMID:29125558
Koffman, D M; Lee, J W; Hopp, J W; Emont, S L
1998-01-01
To determine the effectiveness of a multicomponent smoking cessation program supplemented by incentives and team competition. A quasi-experimental design was employed to compare the effectiveness of three different smoking cessation programs, each assigned to separate worksite. The study was conducted from 1990 to 1991 at three aerospace industry worksites in California. All employees who were current, regular tobacco users were eligible to participate in the program offered at their site. The multicomponent program included a self-help package, telephone counseling, and other elements. The incentive-competition program included the multicomponent program plus cash incentives and team competition for the first 5 months of the program. The traditional program offered a standard smoking cessation program. Self-reported questionnaires and carbon monoxide tests of tobacco use or abstinence were used over a 12-month period. The incentive-competition program had an abstinence rate of 41% at 6 months (n = 68), which was significantly better than the multicomponent program (23%, n = 81) or the traditional program (8%, n = 36). At 12 months, the quit rates for the incentive and multicomponent-programs were statistically indistinguishable (37% vs. 30%), but remained higher than the traditional program (11%). Chi-square tests, t-tests, and logistic regression were used to compare smoking abstinence across the three programs. Offering a multicomponent program with telephone counseling may be just as effective for long-term smoking cessation as such a program plus incentives and competition, and more effective than a traditional program.
NASA Astrophysics Data System (ADS)
Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.
2014-11-01
Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.
Engineered Polymers for Advanced Drug Delivery
Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam
2009-01-01
Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434
Song, Yihu; Xu, Chunfeng; Zheng, Qiang
2014-04-21
We report a facile kinetic strategy in combination with styrene-butadiene-styrene (SBS) copolymer compatibilizers for preparing carbon black (CB) filled immiscible polypropylene (PP)/polystyrene (PS) (1/1) blends with finely tuned morphologies and show the important role of location and migration of CB nanoparticles in determining the electrical conductivity and rheological behaviour of the composites. A novel method of mixing a SBS/CB (5/3) masterbatch with the polymers allowed producing composites with CB aggregates dispersed partially in the unfavorable PP phase and partially in the PP side of the interface to exhibit diverse phase connectivity and electrical conductivity depending on the compounding sequences. A cocontinuous morphology with CB enrichment along the interface was formed in the composite prepared by mixing the SBS/CB masterbatch with the premixed PP/PS blend, giving rise to a highest electrical conductivity and dynamic moduli at low frequencies. On the other hand, mixing the masterbatch with one and then with another polymer yielded droplet (PS)-in-matrix (filled PP) composites. The composites underwent phase coalescence and CB redistribution accompanied by marked dynamic electrical conduction and modulus percolations as a function of time during thermal annealing at 180 °C. The composites with the initial droplet-in-matrix morphology progressed anomalously into the cocontinuous morphology, reflecting a common mechanism being fairly nonspecific for understanding the processing of filled multicomponent composites with tailored performances of general concern.
Rocketdyne/Westinghouse nuclear thermal rocket engine modeling
NASA Technical Reports Server (NTRS)
Glass, James F.
1993-01-01
The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.
Neptune - Unexpected and predicted: Prognosis of theory and Voyager-2 observations
NASA Astrophysics Data System (ADS)
Chechel'Nitskii, A. M.
1992-08-01
The impact of the Voyager-2 discoveries at Neptune on theory are reviewed. The theories of the shell structure of astronomical systems, shell hierarchy, the multicomponent cosmic medium, weak and power elite orbits, quantization of dynamic parameters, and transspheres are summarized and their relevance to the Neptune system, particularly the rings, is considered in the context of the findings of Voyager-2.
Shape memory polymer medical device
Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA
2010-06-29
A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.
ERIC Educational Resources Information Center
DiBiase, Ann-Marie
2010-01-01
This study examined the effectiveness of a multicomponent psychoeducational prevention program ("EQUIP for Educators") Two aspects were examined: (1) if there was a significant relationship among the three psychometric measures: Social Skills Rating System (SSRS), Children's Inventory of Anger (ChIA), Sociomoral Reflection and…
Rapid and Complete Enzyme Hydrolysis of Lignocellulosic Nanofibrils
Raquel Martin-Sampedro; Ilari Filpponen; Ingrid C. Hoeger; J.Y. Zhu; Janne Laine; Orlando J. Rojas
2012-01-01
Rapid enzymatic saccharification of lignocellulosic nanofibrils (LCNF) was investigated by monitoring nanoscale changes in mass via quartz crystal microgravimetry and also by measuring reducing sugar yields. In only a few minutes LCNF thin films were completely hydrolyzed upon incubation in multicomponent enzyme systems. Conversion to sugars and oligosaccharides of...
This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...
OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400
Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of bipheny...
Networking at the Protein Society symposium.
McKnight, C James; Cordes, Matthew H J
2005-10-01
From the complex behavior of multicomponent signaling networks to the structures of large protein complexes and aggregates, questions once viewed as daunting are now being tackled fearlessly by protein scientists. The 19th Annual Symposium of the Protein Society in Boston highlighted the maturation of systems biology as applied to proteins.
The input variables for a numerical model of reactive solute transport in groundwater include both transport parameters, such as hydraulic conductivity and infiltration, and reaction parameters that describe the important chemical and biological processes in the system. These pa...
A Parametric Study of Nonlinear Seismic Response Analysis of Transmission Line Structures
Wang, Yanming; Yi, Zhenhua
2014-01-01
A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures. PMID:25133215
Designing polymers with sugar-based advantages for bioactive delivery applications.
Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E
2015-12-10
Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.
Electrically conducting polymers for aerospace applications
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.
1991-01-01
Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.
Temperature extrapolation of multicomponent grand canonical free energy landscapes
NASA Astrophysics Data System (ADS)
Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.
2017-08-01
We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent fluid system from one temperature to another. Previously, we introduced this statistical mechanical framework for the case where kinetic energy contributions to the classical partition function were neglected for simplicity [N. A. Mahynski et al., J. Chem. Phys. 146, 074101 (2017)]. Here, we generalize the derivation to admit these contributions in order to explicitly illustrate the differences that result. Specifically, we show how factoring out kinetic energy effects a priori, in order to consider only the configurational partition function, leads to simpler mathematical expressions that tend to produce more accurate extrapolations than when these effects are included. We demonstrate this by comparing and contrasting these two approaches for the simple cases of an ideal gas and a non-ideal, square-well fluid.
NASA Astrophysics Data System (ADS)
Holm, D. D.; Ivanov, R. I.
2010-12-01
The Lax pair formulation of the two-component Camassa-Holm equation (CH2) is generalized to produce an integrable multi-component family, CH(n, k), of equations with n components and 1 <= |k| <= n velocities. All of the members of the CH(n, k) family show fluid-dynamics properties with coherent solitons following particle characteristics. We determine their Lie-Poisson Hamiltonian structures and give numerical examples of their soliton solution behaviour. We concentrate on the CH(2, k) family with one or two velocities, including the CH(2, -1) equation in the Dym position of the CH2 hierarchy. A brief discussion of the CH(3, 1) system reveals the underlying graded Lie-algebraic structure of the Hamiltonian formulation for CH(n, k) when n >= 3. Fondly recalling our late friend Jerry Marsden.
Preemptive vortex-loop proliferation in multicomponent interacting Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahl, E. K.; Kragset, S.; Sudboe, A.
2008-04-01
We use analytical arguments and large-scale Monte Carlo calculations to investigate the nature of the phase transitions between distinct complex superfluid phases in a two-component Bose-Einstein condensate when a nondissipative drag between the two components is being varied. We focus on understanding the role of topological defects in various phase transitions and develop vortex-matter arguments, allowing an analytical description of the phase diagram. We find the behavior of fluctuation induced vortex matter to be much more complex and substantially different from that of single-component superfluids. We propose and numerically investigate a drag-induced ''preemptive vortex loop proliferation'' scenario. Such a transitionmore » may be a quite generic feature in many multicomponent systems where symmetry is restored by a gas of several kinds of competing vortex loops.« less
Phase-field modeling of isothermal quasi-incompressible multicomponent liquids
NASA Astrophysics Data System (ADS)
Tóth, Gyula I.
2016-09-01
In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.
2016-01-01
A new way of developing novel synthesis strategies for the construction of monocyclic rings found in organic molecules is presented. The method is based on the visual application of integer partitioning to chemical structures. Two problems are addressed: (1) the determination of the total number of possible ways to construct a given ring by 2-, 3-, and 4-component couplings; and (2) the systematic enumeration of those possibilities. The results of the method are illustrated using cyclohexanone, pyrazole, and the Biginelli adduct as target ring systems with a view to discover new and greener strategies for their construction using multicomponent reactions. The application of the method is also extended to various heterocycles found in many natural products and pharmaceuticals. PMID:28144310
NASA Astrophysics Data System (ADS)
Yamamoto, Kaichi; Kanematsu, Yusuke; Nagashima, Umpei; Ueda, Akira; Mori, Hatsumi; Tachikawa, Masanori
2017-04-01
We theoretically investigated a significant contraction of the hydrogen-bonding O⋯O distance upon H/D substitution in our recently developed purely organic crystals, κ-H3(Cat-EDT-ST)2 (H-ST) and its isotopologue κ-D3(Cat-EDT-ST)2 (D-ST), having π-electron systems coupled with hydrogen-bonding fluctuation. The origin of this geometrical H/D isotope effect was elucidated by using the multicomponent DFT method, which takes the H/D nuclear quantum effect into account. The optimized O⋯O distance in H-ST was found to be longer than that in D-ST due to the anharmonicity of the potential energy curve along the Osbnd H bond direction, which was in reasonable agreement with the experimental trend.
Blinov, Michael L.; Moraru, Ion I.
2011-01-01
Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833
Dynamic Multi-Component Hemiaminal Assembly
You, Lei; Long, S. Reid; Lynch, Vincent M.
2012-01-01
A simple approach to generating in situ metal templated tris-(2-picolyl)amine-like multi-component assemblies with potential applications in molecular recognition and sensing is reported. The assembly is based on the reversible covalent association between di-(2-picolyl)amine and aldehydes. Zinc ion is the best for inducing assembly among the metal salts investigated, while 2-picolinaldehyde is the best among the heterocyclic aldehydes studied. Although an equilibrium constant of 6.6 * 103 M-1 was measured for the assembly formed by 2-picolinaldehdye, di-(2-picolyl)amine, and zinc triflate, the equilibrium constants for other systems are in the 102 M-1 range. X-ray structural analysis revealed that zinc adopts a trigonal bipyramidal geometry within the assembled ligand. The diversity and equilibrium of the assemblies are readily altered by simply changing concentrations, varying components, or adding counter anions. PMID:21919095
Ultra fast polymer network blue phase liquid crystals
NASA Astrophysics Data System (ADS)
Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar
2011-06-01
Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).
Polymers for hydrogen infrastructure and vehicle fuel systems :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.
2013-10-01
This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.
Polymers for Drug Delivery Systems
Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.
2012-01-01
Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577
NASA Astrophysics Data System (ADS)
Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.
2017-03-01
We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.
Multicomponent Separation Potential. Generalization of the Dirac Theory
NASA Astrophysics Data System (ADS)
Palkin, V. A.; Gadel‧shin, V. M.; Aleksandrov, O. E.; Seleznev, V. D.
2014-05-01
Formulas for the separation potential and the separative power have been obtained in the present work by generalizing the classical theory of Dirac, with the observance of his two axioms, to the case of a multicomponent mixture without considering a concrete cascade scheme. The resulting expressions are general characteristics of a separation process, since they are applicable to any separation methods and are independentof the form of the components in the mixture. They can be used in constructing actual cascades for separation of multicomponent mixtures and in determining the indices of their effi ciency.
Chervanyov, A I
2016-12-28
By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.
MICROWAVE-ACCELERATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS
The application of microwave-accelerated solventless synthetic protocols in multicomponent (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of valuable heterocyclic compounds from in situ generated intermed...
Surface-slip equations for multicomponent nonequilibrium air flow
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Scott, C. D.; Moss, J. N.
1985-01-01
Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.
Surface-slip equations for multicomponent, nonequilibrium air flow
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene
1985-01-01
Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.
Song, Hui-Peng; Wu, Si-Qi; Hao, Haiping; Chen, Jun; Lu, Jun; Xu, Xiaojun; Li, Ping; Yang, Hua
2016-03-30
Two concepts involving natural products were proposed and demonstrated in this paper. (1) Natural product libraries (e.g. herbal extract) are not perfect for bioactivity screening because of the vast complexity of compound compositions, and thus a library reconstruction procedure is necessary before screening. (2) The traditional mode of "screening single compound" could be improved to "screening single compound, drug combination and multicomponent interaction" due to the fact that herbal medicines work by integrative effects of multi-components rather than single effective constituents. Based on the two concepts, we established a novel strategy aiming to make screening easier and deeper. Using thrombin as the model enzyme, we firstly uncovered the minor lead compounds, potential drug combinations and multicomponent interactions in an herbal medicine of Dan-Qi pair, showing a significant advantage over previous methods. This strategy was expected to be a new and promising mode for investigation of herbal medicines.
Polymers for 3D Printing and Customized Additive Manufacturing.
Ligon, Samuel Clark; Liska, Robert; Stampfl, Jürgen; Gurr, Matthias; Mülhaupt, Rolf
2017-08-09
Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.
Polymers for 3D Printing and Customized Additive Manufacturing
2017-01-01
Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems. PMID:28756658
Di Paola, Cono; P. Brodholt, John
2016-01-01
Knowledge of the melting properties of materials, especially at extreme pressure conditions, represents a long-standing scientific challenge. For instance, there is currently considerable uncertainty over the melting temperatures of the high-pressure mantle mineral, bridgmanite (MgSiO3-perovskite), with current estimates of the melting T at the base of the mantle ranging from 4800 K to 8000 K. The difficulty with experimentally measuring high pressure melting temperatures has motivated the use of ab initio methods, however, melting is a complex multi-scale phenomenon and the timescale for melting can be prohibitively long. Here we show that a combination of empirical and ab-initio molecular dynamics calculations can be used to successfully predict the melting point of multicomponent systems, such as MgSiO3 perovskite. We predict the correct low-pressure melting T, and at high-pressure we show that the melting temperature is only 5000 K at 120 GPa, a value lower than nearly all previous estimates. In addition, we believe that this strategy is of general applicability and therefore suitable for any system under physical conditions where simpler models fail. PMID:27444854
NASA Astrophysics Data System (ADS)
Sarakinos, Kostas
2016-09-01
Synthesis of multicomponent thin films using vapor fluxes with a modulated deposition pattern is a potential route for accessing a wide gamut of atomic arrangements and morphologies for property tuning. In the current study, we present a research concept that allows for understanding the combined effect of flux modulation, kinetics and thermodynamics on the growth of multinary thin films. This concept entails the combined use of thin film synthesis by means of multiatomic vapor fluxes modulated with sub-monolayer resolution, deterministic growth simulations and nanoscale microstructure probes. Using this research concept we study structure formation within the archetype immiscible Ag-Cu binary system showing that atomic arrangement and morphology at different length scales is governed by diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. Moreover, we explore the relevance of the mechanism outlined above for morphology evolution and structure formation within the miscible Ag-Au binary system. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems.
A new formal graphic language for the representation of complex energy distribution systems
NASA Astrophysics Data System (ADS)
Benes, E.; Viehboeck, F. P.
A schematic notation system for the representation in design and analysis of multi-component heating systems is presented. This graphic language is clear and rigorous and allows quick changes between two basic levels of abstraction, as shown by two examples: a swimming pool with combined solar/electric heating system and the low temperature heating system of the Institute of Molecular Biology in Salzburg, Austria. The notation's 'energy path graphs' are more adequate for judging the relative merits of alternative system configurations than commonly used simplified installation schemes.
Sleeping of a Complex Brain Networks with Hierarchical Organization
NASA Astrophysics Data System (ADS)
Zhang, Ying-Yue; Yang, Qiu-Ying; Chen, Tian-Lun
2009-01-01
The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.
Neshige, Shuichiro; Matsuhashi, Masao; Kobayashi, Katsuya; Sakurai, Takeyo; Shimotake, Akihiro; Hitomi, Takefumi; Kikuchi, Takayuki; Yoshida, Kazumichi; Kunieda, Takeharu; Matsumoto, Riki; Takahashi, Ryosuke; Miyamoto, Susumu; Maruyama, Hirofumi; Matsumoto, Masayasu; Ikeda, Akio
2018-06-18
To assess the feasibility of multi-component electrocorticography (ECoG)-based mapping using "wide-spectrum, intrinsic-brain activities" for identifying the primary sensori-motor area (S1-M1) by comparing that using electrical cortical stimulation (ECS). We evaluated 14 epilepsy patients with 1514 subdural electrodes implantation covering the perirolandic cortices at Kyoto University Hospital between 2011 and 2016. We performed multi-component, ECoG-based mapping (band-pass filter, 0.016-300/600 Hz) involving combined analyses of the single components: movement-related cortical potential (<0.5-1 Hz), event-related synchronization (76-200 Hz), and event-related de-synchronization (8-24 Hz) to identify the S1-M1. The feasibility of multi-component mapping was assessed through comparisons with single-component mapping and ECS. Among 54 functional areas evaluation, ECoG-based maps showed significantly higher rate of localization concordances with ECS maps when the three single-component maps were consistent than when those were inconsistent with each other (p < 0.001 in motor, and p = 0.02 in sensory mappings). Multi-component mapping revealed high sensitivity (89-90%) and specificity (94-97%) as compared with ECS. Wide-spectrum, multi-component ECoG-based mapping is feasible, having high sensitivity/specificity relative to ECS. This safe (non-stimulus) mapping strategy, alternative to ECS, would allow clinicians to rule in/out the possibility of brain function prior to resection surgery. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
System for diffusing light from an optical fiber or light guide
Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [
2008-06-10
A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.
Polymer in a pore: Effect of confinement on the free energy barrier
NASA Astrophysics Data System (ADS)
Kumar, Sanjiv; Kumar, Sanjay
2018-06-01
We investigate the transfer of a polymer chain from cis- side to trans- side through two types of pores: cone-shaped channel and flat-channel. Using the exact enumeration technique, we obtain the free energy landscapes of a polymer chain for such systems. We have also calculated the free-energy barrier of a polymer chain attached to the edge of the pore. The model system allows us to calculate the force required to pull polymer from the pore and stall-force to confine polymer within the pore.
Smart and functional polymer materials for smart and functional microfluidic instruments
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2014-04-01
As microfluidic systems evolve from "chip-in-the-lab" to true portable lab-on-a-chip (LoC) or lab-in-a-package (LiP) microinstrumentation, there is a need for increasingly miniaturized sensors, actuators, and integration/interconnect technologies with high levels of functionality and self-direction. Furthermore, as microfluidic instruments are increasingly realized in polymer-based rather than glass- or silicon- based platforms, there is a need to realize these highly functional components in materials that are polymer-compatible. Polymers that are altered to possess basic functionality, and even higher-functioning "smart" polymer materials, may help to realize high-functioning and selfdirecting portable microinstrumentation. Stimuli-responsive hydrogels have been recognized for over a decade as beneficial to the development of smart microfluidics systems and instrumentation. In addition, functional materials such as conductive and magnetic composite polymers are being increasingly employed to push microfluidics systems to greater degrees of functionality, portability, and/or flexibility for wearable/implantable systems. Functional and smart polymer materials can be employed to realize electrodes, electronic routing, heaters, mixers, valves, pumps, sensors, and interconnect structures in polymer-based microfluidic systems. Stimuli for such materials can be located on-chip or in a small package, thus greatly increasing the degree of portability and the potential for mechanical flexibility of such systems. This paper will examine the application of functional polymer materials to the development of high-functioning microfluidics instruments with a goal towards self-direction.
MICROWAVE-FACILITATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS
The application of microwave-expedited solvent-free synthetic protocols in multi-component (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of heterocyclic compounds from in situ generated intermediates. R...
Incorporation of additives into polymers
McCleskey, T. Mark; Yates, Matthew Z.
2003-07-29
There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.
Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morse, David C.
2006-10-15
Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules,more » and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of binary homopolymer blends and diblock copolymer melts.« less
Photosynthesis at the Microscale
2013-03-25
cobalt(II) system reported by Lehn and co- workers, 10 the photocatalytic activity of the dyads decreased by a factor of 1/3 on addition of water to...more active than the corresponding multi-component systems, the non-conjugated bridge (A7) exhibited higher activity for hydrogen production.38 There...water as a feedstock, many potential hydrogen-evolving catalysts are tested for catalytic activity in organic solvents, as they often are not
System for analysis of explosives
Haas, Jeffrey S [San Ramon, CA
2010-06-29
A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.
Phase Diagram of Fractional Quantum Hall Effect of Composite Fermions in Multi-Component Systems
NASA Astrophysics Data System (ADS)
Coimbatore Balram, Ajit; Töke, Csaba; Wójs, Arkadiusz; Jain, Jainendra
2015-03-01
The fractional quantum Hall effect (FQHE) of composite fermions (CFs) produces delicate states arising from a weak residual interaction between CFs. We study the spin phase diagram of these states, motivated by the recent experimental observation by Liu et al. of several spin-polarization transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/13 in GaAs systems. We show that the FQHE of CFs is much more prevalent in multicomponent systems, and consider the feasibility of such states for systems with N components for an SU(N) symmetric interaction. Our results apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum wells and graphene, wherein electrons have four components (two spins and two valleys), and to an H-terminated Si(111) surface, which can have six components. We provide a fairly comprehensive list of possible incompressible FQH states of CFs, their SU(N) spin content, their energies, and their phase diagram as a function of the generalized ``Zeeman'' energy. The results are in good agreement with available experiments. DOE Grant No. DE-SC0005042, Hungarian Scientific Research Funds No. K105149 (CT), the Polish NCN grant 2011/01/B/ST3/04504 and the EU Marie Curie Grant PCIG09-GA-2011-294186.
The path to achieving molecular dispersion in an extremely dense reactive mixture
NASA Astrophysics Data System (ADS)
Patel, Jigneshkumar; Xiang, Zou; Hsu, Shaw; Schoch, Andrew
2015-03-01
In any multicomponent reactive system, a uniform and continuous dispersion of reactants is necessary to achieve a complete reaction. In this study, we have examined the role of one additional component to disperse two seemingly unlikely reactants, including a highly crystalline hexamethylenetetramine (hexa) and strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to decipher the role of specific intermolecular interactions in order for this additional component to dissolve the highly crystalline hexa and to plasticize the phenol formaldehyde resin in this crosslinking reaction. It is clear that the presence of the third component increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of hexa. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to understand the miscibility behavior of this multicomponent system. By designing the additional component to form a hydrogen bond with one or more N of the highly symmetric hexamethylenetetramine, it is then possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. The understanding of this system is applicable to a broad range of reactive systems.
Transmission electron microscopy of polymer blends and block copolymers
NASA Astrophysics Data System (ADS)
Gomez, Enrique Daniel
Transmission electron microscopy (TEM) of soft matter is a field that warrants further investigation. Developments in sample preparation, imaging and spectroscopic techniques could lead to novel experiments that may further our understanding of the structure and the role structure plays in the functionality of various organic materials. Unlike most hard materials, TEM of organic molecules is limited by the amount of radiation damage the material can withstand without changing its structure. Despite this limitation, TEM has been and will be a powerful tool to study polymeric materials and other soft matter. In this dissertation, an introduction of TEM for polymer scientists is presented. The fundamentals of interactions of electrons with matter are described using the Schrodinger wave equation and scattering cross-sections to fully encompass coherent and incoherent scattering. The intensity, which is the product of the wave function and its complex conjugate, shows no perceptible change due to the sample. Instead, contrast is generated through the optical system of the microscope by removing scattered electrons or by generating interference due to material-induced phase changes. Perhaps the most challenging aspect of taking TEM images, however, is sample preparation, because TEM experiments require materials with approximately 50 nm thickness. Although ultramicrotomy is a well-established powerful tool for preparing biological and polymeric sections for TEM, the development of cryogenic Focused Ion Beam may enable unprecedented cross-sectional TEM studies of polymer thin films on arbitrary substrates with nanometer precision. Two examples of TEM experiments of polymeric materials are presented. The first involves quantifying the composition profile across a lamellar phase obtained in a multicomponent blend of saturated poly(butadiene) and poly(isobutylene), stabilized by a saturated poly(butadiene) copolymer serving as a surfactant, using TEM and self-consistent field theory (SCFT). The liquid-like nature of this system at room temperature makes traditional staining methods for the enhancement of contrast ineffective. As an alternative, we take advantage of the large inelastic scattering cross-section of soft materials to generate contrast in zero-loss TEM images. Independent spatially resolved thickness measurements enable quantification of electron scattering. This enabled a comparison between the TEM data and predictions based on SCFT without any adjustable parameters. The second example involves the utilization of energy-filtered transmission electron microscopy (EFTEM) to compute elemental maps by taking advantage of ionization events. Elemental mapping of lithium is used to determine the distribution of salt in nanostructured poly(styrene-block-ethylene oxide) (SEO) copolymer/lithium salt electrolytes. Surprisingly, the concentration of lithium within a poly(ethylene oxide) (PEO) domain is found to be inhomogeneous; the salt is localized to the middle of the channels. Self-consistent field theory simulations suggest that localization of lithium is due to chain stretching at the interface, which increases with molecular weight. EFTEM and SCFT results show that the segregation of lithium salt to the middle of the PEO lamellae is greater for higher molecular weight polymers. This is correlated with the ionic conductivity of the copolymer electrolyte, which is found to show a higher conductivity for thinner lithium lamellae.
Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng
2016-10-01
To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems); while drug released much slower than the polymer when molecular level mixing or drug-polymer interaction was absent (SDD-PB systems). For ASDs without drug-polymer interaction (i.e., KTZ/HPMC systems), the mixing homogeneity had little impact on the release rate of either the drug or the polymer thus SDD and SDD-PB demonstrated the same drug or polymer release rate, while the drug released slowly and independently of polymer release. The initial drug release from an ASD was controlled by 1) the polymer release rate; 2) the strength of drug-polymer interaction, including the intrinsic interaction caused by the chemistry of the drug and the polymer (measured by the χ value), as well as that the apparent interaction caused by the drug-polymer ratio (measure by the extent of peak shift on spectroscopic analysis); and 3) the level of mixing homogeneity between the drug and polymer. In summary, the selection of polymer, drug-polymer ratio, and ASD processing conditions have profound impacts on the dissolution behavior of ASDs. Graphical Abstract Relationship between initial drug and polymer dissolution rates from amorphous solid dispersions with different mixing uniformity and drug-polymer interactions.
A pilot-scale test to evaluate the performance of a vertical recirculation well equipped with an in-well air stripper was conducted at Hill AFB, Utah, in an aquifer contaminated with petroleum and chlorinated solvents. During the two months of operation, the air stripping system ...
ERIC Educational Resources Information Center
Bergman, Jacqueline J.; Linnell, Jessica D.; Scherr, Rachel E.; Ginsburg, David C.; Brian, Kelley M.; Carter, Rosemary; Donohue, Susan; Klisch, Shannon; Lawry-Hall, Suzanne; Pressman, Jona; Soule, Katherine; Zidenberg-Cherr, Sheri
2018-01-01
We conducted a process evaluation of the Shaping Healthy Choices Program, a multicomponent school-based nutrition program, when implemented in partnership with University of California (UC) CalFresh and UC Cooperative Extension (UCCE). There were positive impacts on participating students, but results varied across counties, possibly due to…
A new approximate sum rule for bulk alloy properties
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John
1991-01-01
A new, approximate sum rule is introduced for determining bulk properties of multicomponent systems, in terms of the pure components properties. This expression is applied for the study of lattice parameters, cohesive energies, and bulk moduli of binary alloys. The correct experimental trends (i.e., departure from average values) are predicted in all cases.
MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR
A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...
Thermodynamic analysis and purifying an amorphous phase of frozen crystallization centers
NASA Astrophysics Data System (ADS)
Lysov, V. I.; Tsaregradskaya, T. L.; Turkov, O. V.; Saenko, G. V.
2017-12-01
The possibility of dissolving frozen crystallization centers in amorphous alloys of the Fe-B system is considered by means of thermodynamic calculations. This can in turn improve the thermal stability of an amorphous alloy. The effect isothermal annealing has on the thermal stability of multicomponent amorphous alloys based on iron is investigated via the highly sensitive dilatometric technique, measurements of microsolidity, and electron microscopic investigations. The annealing temperature is determined empirically on the basis of the theses of the thermodynamic theory of the high temperature stability of multicomponent amorphous alloys, according to which there exists a range of temperatures that is characterized by a negative difference between the chemical potentials of phases in a heterogeneous amorphous matrix-frozen crystallization centers system. The thermodynamic condition of the possible dissolution of frozen crystallization centers is thus met. It is shown that introducing regimes of thermal processing allows us to expand the ranges of the thermal stability of iron-based amorphous alloys by 20-40 K through purifying an amorphous matrix of frozen crystallization centers. This conclusion is proved via electron microscopic investigations.
Isocyanide-mediated multicomponent synthesis of C-oximinoamidines.
Mercalli, Valentina; Meneghetti, Fiorella; Tron, Gian Cesare
2013-11-15
By capitalizing on the different reactivity of nitrile N-oxides with isocyanides and amine, α-oximinoamidines, a so far elusive class of compounds, have been synthesized in a straightforward way by reacting isocyanides, syn-chlorooximes, and amines in a multicomponent fashion.
Direct observation of the photodegradation of anthracene and pyrene adsorbed onto mangrove leaves.
Wang, Ping; Wu, Tun-Hua; Zhang, Yong
2014-01-01
An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR) and anthracene (ANT) adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L.) Blanco (Ac) and Kandelia obovata (Ko) in multicomponent mixtures (mixture of the ANT and PYR). Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs.
Direct Observation of the Photodegradation of Anthracene and Pyrene Adsorbed onto Mangrove Leaves
Wang, Ping; Wu, Tun-Hua; Zhang, Yong
2014-01-01
An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR) and anthracene (ANT) adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L.) Blanco (Ac) and Kandelia obovata (Ko) in multicomponent mixtures (mixture of the ANT and PYR). Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs. PMID:25144741
Normetex Pump Alternatives Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Elliot A.
2013-04-25
A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine,more » chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying resistances to ionizing radiation - aromatic polymers such as polyimide Vespel (TM) and the elastomer EPDM (ethylene propylene diene monomer) have been found to be more resistant to degradation in tritium than other polymers. This report presents information to help select replacement pumps for Normetex pumps in tritium systems. Several pumps being considered as Normetex replacement pumps are discussed.« less
NASA Astrophysics Data System (ADS)
Liu, Yiming; Shi, Yimin; Bai, Xuchao; Zhan, Pei
2018-01-01
In this paper, we study the estimation for the reliability of a multicomponent system, named N- M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.
Drovetskaya, T V; Kreeger, R L; Amos, J L; Davis, C B; Zhou, S
2004-01-01
A new class of cationic conditioning polymers (Polymer SL) has been prepared and evaluated in shampoo formulations. Polymer SL is a family of high viscosity quaternized hydroxyethyl cellulose (HEC) polymers with cationic substitution of trimethyl ammonium and dimethyldodecyl ammonium (Figure 1). SL compositions benefit from hydrophobic character to deliver superior conditioning performance in hair care applications. At the same time, low levels of hydrophobes have been chosen to assure good compatibility with surfactant systems without the complications of associative thickening. The polymers have been evaluated in clear shampoo formulations and two-in-one silicone containing shampoos using objective lab methods and subjective panel evaluation on hair tresses. Commercial conditioning polymers: Polyquaternium-10 (PQ-10) (UCARE Polymer LR-30M) and Guar Hydroxypro-pyltrimethylammonium Chloride (Jaguar C-13S) were used as performance benchmarks. The new hydrophobically-modified cationic polymers demonstrated superior performance in all major categories of conditioning and showed improved silicone deposition from two-in-one systems. Moreover, they retained other good qualities of their PQ-10 structural analogs such as enabling crystal clear formulations and showing no build-up or volume-down effects on hair. These new olymers were also found to be efficient conditioning agents in different surfactant systems with or without silicones.
Sourty, Erwan; van Bavel, Svetlana; Lu, Kangbo; Guerra, Ralph; Bar, Georg; Loos, Joachim
2009-06-01
Two purely carbon-based functional polymer systems were investigated by bright-field conventional transmission electron microscopy (CTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). For a carbon black (CB) filled polymer system, HAADF-STEM provides high contrast between the CB agglomerates and the polymer matrix so that details of the interface organization easily can be revealed and assignment of the CB phase is straightforward. For a second system, the functional polymer blend representing the photoactive layer of a polymer solar cell, details of its nanoscale organization could be observed that were not accessible with CTEM. By varying the camera length in HAADF-STEM imaging, the contrast can be enhanced between crystalline and amorphous compounds due to diffraction contrast so that nanoscale interconnections between domains are identified. In general, due to its incoherent imaging characteristics HAADF-STEM allows for reliable interpretation of the data obtained.
The Development for Polymer Actuator Active Catheter System
Sewa, S.; Onishi, K.; Oguro, K.; Asaka, K.; Taki, W.; Toma, N.
2001-01-01
Summary Electric stimuli polymer-metal composite actuator material has been developed for active catheter system and other widely new applications. The polymer actuator is made of ion exchange polymer and gold as electrode, and a pulse voltage of 3 volts on the actuator gave a quick bend 90 degree angle. This composite material is possible to make small size, light and soft actuator. So now we can actually develop an active catheter for the interventional radiology surgery. The prototype polymer actuator active catheter has been developed by using polymer actuator technology and Micro Electronics Mechanical System (MEMS) technologies. The active catheter is controllable from the outside of the body by electric signal. The tip part of the catheter is made of the polymer actuator tube and bends 90 degree angles. The animal tests (dog) showed good actuator performance to control right direction and bending angle at bifurcation of blood vessel and aneurysms. PMID:20663388
Chemistry of the metal-polymer interfacial region.
Leidheiser, H; Deck, P D
1988-09-02
In many polymer-metal systems, chemical bonds are formed that involve metal-oxygen-carbon complexes. Infrared and Mössbauer spectroscopic studies indicate that carboxylate groups play an important role in some systems. The oxygen sources may be the polymer, the oxygen present in the oxide on the metal surface, or atmospheric oxygen. Diffusion of metal ions from the substrate into the polymer interphase may occur in some systems that are cured at elevated temperatures. It is unclear whether a similar, less extensive diffusion occurs over long time periods in systems maintained at room temperature. The interfacial region is dynamic, and chemical changes occur with aging at room temperature. Positron annihilation spectroscopy may have application to characterizing the voids at the metal-polymer interface.
An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks
NASA Astrophysics Data System (ADS)
Shigemitsu, Hajime; Fujisaku, Takahiro; Tanaka, Wataru; Kubota, Ryou; Minami, Saori; Urayama, Kenji; Hamachi, Itaru
2018-02-01
Novel soft materials should comprise multiple supramolecular nanostructures whose responses (for example, assembly and disassembly) to external stimuli can be controlled independently. Such multicomponent systems are present in living cells and control the formation and break-up of a variety of supramolecular assemblies made of proteins, lipids, DNA and RNA in response to external stimuli; however, artificial counterparts are challenging to make. Here, we present a hybrid hydrogel consisting of a self-sorting double network of nanofibres in which each network responds to an applied external stimulus independent of the other. The hydrogel can be made to change its mechanical properties and rates of release of encapsulated proteins by adding Na2S2O4 or bacterial alkaline phosphatase. Notably, the properties of the gel depend on the order in which the external stimuli are applied. Multicomponent hydrogels comprising orthogonal stimulus-responsive supramolecular assemblies would be suitable for designing novel adaptive materials.
Continuous electrophoretic purification of individual analytes from multicomponent mixtures.
McLaren, David G; Chen, David D Y
2004-04-15
Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.
M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurray, Jake W.; Brese, Robert G.; Silva, Chinthaka M.
2015-09-01
Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this frameworkmore » are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.« less
Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand
NASA Technical Reports Server (NTRS)
Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg
1990-01-01
Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.
NASA Astrophysics Data System (ADS)
Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik
2018-04-01
We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.
Toward a patient-based paradigm for blood transfusion.
Farrugia, Albert; Vamvakas, Eleftherios
2014-01-01
The current "manufacturing paradigm" of transfusion practice has detached transfusion from the clinical environment. As an example, fresh whole blood in large-volume hemorrhage may be superior to whole blood reconstituted from multiple components. Multicomponent apheresis can overcome logistical difficulties in matching patient needs with fresh component availability and can deliver the benefits of fresh whole blood. Because of the different transfusion needs of patients in emerging economies and the vulnerability of these blood systems to emerging infections, fresh whole blood and multicomponent apheresis can better meet patient needs when compared with transplants of the "manufacturing paradigm". We propose that patient blood management, along with panels of repeat, paid, accredited apheresis and fresh whole-blood donors can be used in emerging economies to support decentralized blood services. This alternative transfusion-medicine paradigm could eventually also be adopted by established economies to focus transfusion medicine on local patient needs and to alleviate the problem of the aging volunteer donor base.
Electroepitaxy of multicomponent systems - Ternary and quarternary compounds
NASA Technical Reports Server (NTRS)
Bryskiewicz, T.; Lagowski, J.; Gatos, H. C.
1980-01-01
A theoretical model is presented which accounts for the electroepitaxial growth kinetics and composition of multicomponent compounds in terms of mass transport in the liquid and phase diagram relationships. The mass transport in the interface is dominated by electromigration in the absence of convection and by diffusion in the presence of convection. The composition of the solid is controlled by the Peltier effect at the growth interface and by the diffusion and mobility constants of the solute components and the growth velocity (current density). Thus, for a given solution composition, the composition of the solid can be varied by varying the current density. For a given current density the composition remains constant even in the case of relatively thick epitaxial layers. All aspects of the model were found to be in good agreement with the growth and composition characteristics of Ga/x-1/Al/x/As layers.
Ion conducting polymers and polymer blends for alkali metal ion batteries
DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra
2017-08-29
Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.
Conservation and Renewable Energy Program: Bibliography, 1988 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.
(Energetics of silicate melts from thermal diffusion studies)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
Research during the past year has been concentrated in four major areas. We are continuing work initiated during the first two years on modelling thermal diffusion on multicomponent silicate liquids. We have derived appropriate relations for ternary and quaternary systems and reanalyzed experimental thermal diffusion data for the ternary system fayalite-leucite-silica. In our manuscript entitled Thermal Diffusion in Petrology'', to be published in Adv. in Phy. Geochem., we show that these model results independently recover the compositional extent and temperature of liquid immiscibility in this system. Such retrieval provides a rigorous test of our theoretical predictions and simplified treatment ofmore » complex silicate liquids reported in Geochimica Cosmochimica Acta in 1986. The usefulness of our Soret research in providing mixing energies of silicate liquids has been recently confirmed by Ghiorso (1987, Cont. Min. Pet.). This demonstration provides a strategy for incorporating Soret data into the calibration of phase equilibrium-based solution models such as the one developed by Ghiorso. During the past year we also have resumed our studies of thermal diffusion in borosilicate glasses which also exhibit liquid immiscibility. Our objectives in studying these systems are (1) to further test of our multicomponent thermal diffusion model and (2) to provide quantitative constraints on the mixing properties of these glass-forming systems which are important for evaluating their suitability for storage of high-level nuclear waste. 16 refs.« less
[Odor sensing system and olfactory display].
Nakamoto, Takamichi
2014-01-01
In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care.
NASA Astrophysics Data System (ADS)
Johan, Mohd Rafie; Ibrahim, Suriani
2012-01-01
In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.
Novel sol-gel organic-inorganic hybrid materials for drug delivery.
Catauro, Michelina; Verardi, Duilio; Melisi, Daniela; Belotti, Federico; Mustarelli, Piercarlo
2010-01-01
The aim of the present study was to synthetize and characterize novel sol-gel organic-inorganic hybrid materials to be used for controlled drug delivery application. Organic-inorganic hybrid class I materials based on poly(epsilon-caprolactone) (PCL 6, 12, 24 and 50 wt%) and zirconia-yttria (ZrO2-5%Y2O3) were synthesized by a sol-gel method, from a multicomponent solution containing zirconium propoxide [Zr(OC2H7)4], yttrium chloride (YCl3), PCL, water and chloroform (CHCl3). The structure of the hybrids was obtained by means of hydrogen bonds between the Zr-OH group (H-donor) in the sol-gel intermediate species and the carboxylic group (H-acceptor) in the repeating units of the polymer. The presence of hydrogen bonds between organic-inorganic components of the hybrid materials was suggested by Fourier transform infrared (FTIR) analysis, and strongly supported by solid-state NMR. A single-step, sol-gel process was then used to precipitate microspheres containing ketoprofen or indomethacin for controlled drug delivery applications. Release kinetics in a simulated body fluid (SBF) were subsequently investigated. The amount of drug released was detected by UV-VIS spectroscopy. Pure anti-inflammatory agents exhibited linear release with time, in contrast drugs entrapped in the organic-inorganic hybrids were released with a logarithmic time dependence, starting with an initial burst effect followed by a gradual decrease. The synthesis of amorphous materials containing drugs, obtained by sol-gel methods, helps to devise new strategies for controlled drug delivery system design.
Ramasamy, Deepika Lakshmi; Puhakka, Ville; Iftekhar, Sidra; Wojtuś, Anna; Repo, Eveliina; Ben Hammouda, Samia; Iakovleva, Evgenia; Sillanpää, Mika
2018-04-15
Silica-chitosan hybrid beads were synthesized via three different methods to investigate the selective recovery of REE from AMD. The influence of amino/non-amino silanes, high molecular weight/high viscous chitosan and N-/O- based ligands were studied and their effects on REE removal efficiencies were analyzed. The adsorption efficiencies of three various groups of modified beads were inspected with respect to feed pH, in a single and a multi-component system, and their affinities towards the light and heavy rare earth elements (LREE/ HREEs) were interpreted to understand the intra-series REE separation behavior. The focus of the study was mainly directed towards utilizing these fabricated beads for the recovery of valuable REEs from the real AMD obtained at three different sampling depths which was found rich in iron, sulfur and aluminum. Moreover, the selectivity of the beads towards REEs improved with silanized and ligand immobilized gels and their impacts on REE recovery in the presence of competing ions were successfully presented in this paper. Also, the synthesized beads showed rapid REE adsorption and recovery within a process time of 5 min. Group II adsorbents, synthesized by forming silica-chitosan hybrid beads followed by PAN/acac modifications, showed superiority over the other groups of adsorbents. Copyright © 2018 Elsevier B.V. All rights reserved.
In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector
Li, Yi; Beitelshees, Marie; Fang, Lei; Hill, Andrew; Ahmadi, Mahmoud Kamal; Chen, Mingfu; Davidson, Bruce A.; Knight, Paul; Smith, Randall J.; Andreadis, Stelios T.; Hakansson, Anders P.; Jones, Charles H.; Pfeifer, Blaine A.
2016-01-01
The type and potency of an immune response provoked during vaccination will determine ultimate success in disease prevention. The basis for this response will be the design and implementation of antigen presentation to the immune system. Whereas direct antigen administration will elicit some form of immunological response, a more sophisticated approach would couple the antigen of interest to a vector capable of broad delivery formats and designed for heightened response. New antigens associated with pneumococcal disease virulence were used to test the delivery and adjuvant capabilities of a hybrid biological-biomaterial vector consisting of a bacterial core electrostatically coated with a cationic polymer. The hybrid design provides (i) passive and active targeting of antigen-presenting cells, (ii) natural and multicomponent adjuvant properties, (iii) dual intracellular delivery mechanisms, and (iv) a simple formulation mechanism. In addition, the hybrid format enables device-specific, or in situ, antigen production and consolidation via localization within the bacterial component of the vector. This capability eliminates the need for dedicated antigen production and purification before vaccination efforts while leveraging the aforementioned features of the overall delivery device. We present the first disease-specific utilization of the vector toward pneumococcal disease highlighted by improved immune responses and protective capabilities when tested against traditional vaccine formulations and a range of clinically relevant Streptococcus pneumoniae strains. More broadly, the results point to similar levels of success with other diseases that would benefit from the production, delivery, and efficacy capabilities offered by the hybrid vector. PMID:27419235
Conductive inks for metalization in integrated polymer microsystems
Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX
2006-02-28
A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
The Workshop on Conductive Polymers: Final Report
DOE R&D Accomplishments Database
1985-10-01
Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)
NASA Technical Reports Server (NTRS)
Frost, Lawrence W. (Inventor)
1980-01-01
Deep curable polymers having heterocyclic ring systems such as isoindoloquinazolinedione ring systems prepared from novel cyanoimide polymers, most desirably 2'-cyanoimide polymers. Preferably the cyanoimide polymers are prepared from a diamine having at least one nitrile group in the two position to an amine group and a dianhydride having at least two cyclic anhydride groups. Copolymers may be prepared having other linkages, notably imide linkages, in addition to isoindoloquinazolinedione ring systems and/or other similar heterocyclic ring systems. The copolymers can be prepared by use of diamines containing one or more cyanoimide groupings and/or imide groups in their structure.
A review of oral vaccination with transgenic vegetables.
Tacket, C O; Mason, H S
1999-08-01
Mucosal immunization of the gastrointestinal tract is an effective way to stimulate local and systemic immune responses. Oral vaccines must be formulated in such a way that antigens are protected as they pass through the adverse environment of the stomach and are delivered to the mucosal inductive sites. Vaccine antigens cloned into edible transgenic plants are a promising new delivery system for oral vaccines. Such vaccines could be safe, inexpensive, and multicomponent.
Ternary liquid scintillator for optical fiber applications
Franks, Larry A.; Lutz, Stephen S.
1982-01-01
A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.
MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE-FLUID-PHASE POROUS MEDIA
A two dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between NAPL, water, gas and solid phases in porous media under the assumption of local chemical equilibrium. as-phase pres...
MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE FLUID PHASE POROUS MEDIA
A two-dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between nonaqueous phase liquid, water, gas and solid phases in porous media under the assumption of local chemical equilib...
A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...
OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER
Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...
Optimal Multicomponent Analysis Using the Generalized Standard Addition Method.
ERIC Educational Resources Information Center
Raymond, Margaret; And Others
1983-01-01
Describes an experiment on the simultaneous determination of chromium and magnesium by spectophotometry modified to include the Generalized Standard Addition Method computer program, a multivariate calibration method that provides optimal multicomponent analysis in the presence of interference and matrix effects. Provides instructions for…
Chang, Shou-Yi; Li, Chen-En; Huang, Yi-Chung; Hsu, Hsun-Feng; Yeh, Jien-Wei; Lin, Su-Jien
2014-01-01
We report multi-component high-entropy materials as extraordinarily robust diffusion barriers and clarify the highly suppressed interdiffusion kinetics in the multi-component materials from structural and thermodynamic perspectives. The failures of six alloy barriers with different numbers of elements, from unitary Ti to senary TiTaCrZrAlRu, against the interdiffusion of Cu and Si were characterized, and experimental results indicated that, with more elements incorporated, the failure temperature of the barriers increased from 550 to 900°C. The activation energy of Cu diffusion through the alloy barriers was determined to increase from 110 to 163 kJ/mole. Mechanistic analyses suggest that, structurally, severe lattice distortion strains and a high packing density caused by different atom sizes, and, thermodynamically, a strengthened cohesion provide a total increase of 55 kJ/mole in the activation energy of substitutional Cu diffusion, and are believed to be the dominant factors of suppressed interdiffusion kinetics through the multi-component barrier materials. PMID:24561911
Qu, Liangti; Vaia, Rich A; Dai, Liming
2011-02-22
A simple multiple contact transfer technique has been developed for controllable fabrication of multilevel, multicomponent microarchitectures of vertically aligned carbon nanotubes (VA-CNTs). Three dimensional (3-D) multicomponent micropatterns of aligned single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) have been fabricated, which can be used to develop a newly designed touch sensor with reversible electrical responses for potential applications in electronic devices, as demonstrated in this study. The demonstrated dependence of light diffraction on structural transfiguration of the resultant CNT micropattern also indicates their potential for optical devices. Further introduction of various components with specific properties (e.g., ZnO nanorods) into the CNT micropatterns enabled us to tailor such surface characteristics as wettability and light response. Owing to the highly generic nature of the multiple contact transfer strategy, the methodology developed here could provide a general approach for interposing a large variety of multicomponent elements (e.g., nanotubes, nanorods/wires, photonic crystals, etc.) onto a single chip for multifunctional device applications.
Breitborde, Nicholas J K; Moe, Aubrey M; Woolverton, Cindy; Harrison-Monroe, Patricia; Bell, Emily K
2018-06-01
Growing evidence suggests that specialized, multi-component treatment programmes produce improvements in numerous outcomes among individuals with first-episode psychosis. However, these programmes often lack interventions specifically designed to address deficits in social cognition. This raises questions about the effectiveness of such programmes in addressing deficits in social cognition that accompany psychotic disorders. We investigated the effect of participation in a multi-component treatment programme on social cognition among 71 individuals with first-episode psychosis. Participants experienced gains in emotion processing, social knowledge, social perception and theory of mind. However, after controlling for multiple comparisons, these improvements were limited to theory of mind and recognition of social cues in low emotion interactions. Although our findings should be interpreted cautiously, they raise the possibility that individuals participating in multi-component treatment programmes for first-episode psychosis without interventions specifically targeting social cognition may still experience gains in social cognition. © 2017 John Wiley & Sons Australia, Ltd.
Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan
2016-01-01
Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.
Method for separating biological cells. [suspended in aqueous polymer systems
NASA Technical Reports Server (NTRS)
Brooks, D. E. (Inventor)
1980-01-01
A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.
Eberle, Aaron P R; Castañeda-Priego, Ramón; Kim, Jung M; Wagner, Norman J
2012-01-24
We report an experimental study of the dynamical arrest transition for a model system consisting of octadecyl coated silica suspended in n-tetradecane from dilute to concentrated conditions spanning the state diagram. The dispersion's interparticle potential is tuned by temperature affecting the brush conformation leading to a thermoreversible model system. The critical temperature for dynamical arrest, T*, is determined as a function of dispersion volume fraction by small-amplitude dynamic oscillatory shear rheology. We corroborate this transition temperature by measuring a power-law decay of the autocorrelation function and a loss of ergodicity via fiber-optic quasi-elastic light scattering. The structure at T* is measured using small-angle neutron scattering. The scattering intensity is fit to extract the interparticle pair-potential using the Ornstein-Zernike equation with the Percus-Yevick closure approximation, assuming a square-well interaction potential with a short-range interaction (1% of particle diameter). (1) The strength of attraction is characterized using the Baxter temperature (2) and mapped onto the adhesive hard sphere state diagram. The experiments show a continuous dynamical arrest transition line that follows the predicted dynamical percolation line until ϕ ≈ 0.41 where it subtends the predictions toward the mode coupling theory attractive-driven glass line. An alternative analysis of the phase transition through the reduced second virial coefficient B(2)* shows a change in the functional dependence of B(2)* on particle concentration around ϕ ≈ 0.36. We propose this signifies the location of a gel-to-glass transition. The results presented herein differ from those observed for depletion flocculated dispersion of micrometer-sized particles in polymer solutions, where dynamical arrest is a consequence of multicomponent phase separation, suggesting dynamical arrest is sensitive to the physical mechanism of attraction.
A study on the dynamic interfacial tension of acidic crude oil/alkali (alkali-polymer) systems--
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Yang, P.; Qin, T.
1989-01-01
This paper describes the investigation of dynamic interfacial tension (DIFT) between the acidic Liao-He crude oil and two types of brine: a simple alkali system and a combined alkali-polymer system. It was found that interfacial tension (IFT) changed markedly with time and that the history of DIFT depended upon the concentration of alkali in the brine. The experimental results also showed that the IFT dropped dramatically as soon as the fresh oil contacted brine causing spontaneous emulsification to occur. The steady-state value of DIFT {gamma} st can be lower with the combined alkali-polymer system than with the simple alkali system.more » The results indicate that biopolymer is more effective than partially hydrolyzed polyacrylamide (PHPAM) for lowering {gamma} st and that Na{sub 2}Co{sub 1} causes a lower {gamma} st than NaOH in the combined alkali-polymer system. Optimized formulations containing Na{sub 2}CO{sub 3} added biopolymer can reduce {gamma} st by two orders of magnitude, and PHPAM can reduce {gamma} st by one order of magnitude. The interaction between alkali and polymer in the combined alkali-polymer system is discussed.« less
Structural health monitoring system/method using electroactive polymer fibers
NASA Technical Reports Server (NTRS)
Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)
2013-01-01
A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.
Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.
Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo
2018-06-01
Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.
Environmental stress cracking of polymers
NASA Technical Reports Server (NTRS)
Mahan, K. I.
1980-01-01
A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.
Seka, M A; Van DeWiele, T; Verstraete, W
2002-01-01
A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.
NASA Astrophysics Data System (ADS)
Medvedev, J. J.; Nikolaev, V. A.
2015-07-01
Multicomponent reactions of diazo compounds catalyzed by RhII complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O-ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references.
Compositions, methods, and systems comprising fluorous-soluble polymers
Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei
2015-10-13
The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2004-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2001-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
A concise review on smart polymers for controlled drug release.
Aghabegi Moghanjoughi, Arezou; Khoshnevis, Dorna; Zarrabi, Ali
2016-06-01
Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.
Polymer Energy Rechargeable System Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2003-01-01
Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.
LASER DESORPTION/IONIZATION OF SINGLE ULTRAFINE MULTICOMPONENT AEROSOLS. (R823980)
Laser desorption/ionization characteristics of single
ultrafine multicomponent aerosols have been investigated.
The results confirm earlier findings that (a) the negative
ion spectra are dominated by free electrons and (b) the ion
yield-to-mass ratio is higher for ...
ERIC Educational Resources Information Center
Doherty, Alison J.; Jones, Stephanie P.; Chauhan, Umesh; Gibson, Josephine M. E.
2018-01-01
Background: Obesity is more prevalent in people with intellectual disabilities and increases the risk of developing serious medical conditions. UK guidance recommends multicomponent weight management interventions (MCIs), tailored for different population groups. Methods: An integrative review utilizing systematic review methodology was conducted…
ERIC Educational Resources Information Center
Beckham, Sheila; Washburn, Anuenue; Ka'aha'aina, Darlene; Bradley, Stephen
2007-01-01
Background: Smoking is especially prevalent among Native Hawaiians. The 2002 Behavioral Risk Factor Surveillance System revealed that 33.8% of Hawaiians were current smokers. Native Hawaiians have the highest age-adjusted lung cancer incidence and mortality rates and the highest prevalence of asthma among all ethnicities. Purpose: This study…
This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...
ERIC Educational Resources Information Center
Jones, Mat; Dailami, Narges; Weitkamp, Emma; Kimberlee, Richard; Salmon, Debra; Orme, Judy
2012-01-01
Global food security and sustainability, animal welfare, dietary health, and socially just relations of food production have become prominent societal issues. They are of particular concern for young people as their lives progress towards becoming independent consumers and citizens with the capacity to shape food systems of the future. This paper…
Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications.
Bazban-Shotorbani, Salime; Hasani-Sadrabadi, Mohammad Mahdi; Karkhaneh, Akbar; Serpooshan, Vahid; Jacob, Karl I; Moshaverinia, Alireza; Mahmoudi, Morteza
2017-05-10
pH-responsive polymers contain ionic functional groups as pendants in their structure. The total number of charged groups on polymer chains determines the overall response of the system to changes in the external pH. This article reviews various pH-responsive polymers classified as polyacids (e.g., carboxylic acid based polymers, sulfonamides, anionic polysaccharides, and anionic polypeptides) and polybases (e.g., polyamines, pyridine and imidazole containing polymers, cationic polysaccharides, and cationic polypeptides). We correlate the pH variations in the body at the organ level (e.g., gastrointestinal tract and vaginal environment), tissue level (e.g., cancerous and inflamed tissues), and cellular level (e.g., sub-cellular organelles), with the intrinsic properties of pH-responsive polymers. This knowledge could help to select more effective ('smart') polymeric systems based on the biological target. Considering the pH differences in the body, various drug delivery systems can be designed by utilizing smart biopolymeric compounds with the required pH-sensitivity. We also review the pharmaceutical application of pH-responsive polymeric carriers including hydrogels, polymer-drug conjugates, micelles, dendrimers, and polymersomes. © 2016.
Functional polymers as therapeutic agents: concept to market place.
Dhal, Pradeep K; Polomoscanik, Steven C; Avila, Louis Z; Holmes-Farley, S Randall; Miller, Robert J
2009-11-12
Biologically active synthetic polymers have received considerable scientific interest and attention in recent years for their potential as promising novel therapeutic agents to treat human diseases. Although a significant amount of research has been carried out involving polymer-linked drugs as targeted and sustained release drug delivery systems and prodrugs, examples on bioactive polymers that exhibit intrinsic therapeutic properties are relatively less. Several appealing characteristics of synthetic polymers including high molecular weight, molecular architecture, and controlled polydispersity can all be utilized to discover a new generation of therapies. For example, high molecular weight bioactive polymers can be restricted to gastrointestinal tract, where they can selectively recognize, bind, and remove target disease causing substances from the body. The appealing features of GI tract restriction and stability in biological environment render these polymeric drugs to be devoid of systemic toxicity that are generally associated with small molecule systemic drugs. The present article highlights recent developments in the rational design and synthesis of appropriate functional polymers that have resulted in a number of promising polymer based therapies and biomaterials, including some marketed products.
Thiol-vinyl systems as shape memory polymers and novel two-stage reactive polymer systems
NASA Astrophysics Data System (ADS)
Nair, Devatha P.
2011-12-01
The focus of this research was to formulate, characterize and tailor the reaction methodologies and material properties of thiol-vinyl systems to develop novel polymer platforms for a range of engineering applications. Thiol-ene photopolymers were demonstrated to exhibit several advantageous characteristics for shape memory polymer systems for a range of biomedical applications. The thiol-ene shape memory polymer systems were tough and flexible as compared to the acrylic control systems with glass transition temperatures between 30 and 40 °C; ideal for actuation at body temperature. The thiol-ene polymers also exhibited excellent shape fixity and a rapid and distinct shape memory actuation response along with free strain recoveries of greater than 96% and constrained stress recoveries of 100%. Additionally, two-stage reactive thiol-acrylate systems were engineered as a polymer platform technology enabling two independent sets of polymer processing and material properties. There are distinct advantages to designing polymer systems that afford two distinct sets of material properties -- an intermediate polymer that would enable optimum handling and processing of the material (stage 1), while maintaining the ability to tune in different, final properties that enable the optimal functioning of the polymeric material (stage 2). To demonstrate the range of applicability of the two-stage reactive systems, three specific applications were demonstrated; shape memory polymers, lithographic impression materials, and optical materials. The thiol-acrylate reactions exhibit a wide range of application versatility due to the range of available thiol and acrylate monomers as well as reaction mechanisms such as Michael Addition reactions and free radical polymerizations. By designing a series of non-stoichiometeric thiol-acrylate systems, a polymer network is initially formed via a base catalyzed 'click' Michael addition reaction. This self-limiting reaction results in a Stage 1 polymer with excess acrylic functional groups within the network. At a later point in time, the photoinitiated, free radical polymerization of the excess acrylic functional groups results in a highly crosslinked, robust material system. By varying the monomers within the system as well as the stoichiometery of thiol to acrylate functional groups, the ability of the two-stage reactive systems to encompass a wide range of properties at the end of both the stage 1 and stage 2 polymerizations was demonstrated. The thiol-acrylate networks exhibited intermediate Stage 1 rubbery moduli and glass transition temperatures that range from 0.5 MPa and -10 ºC to 22 MPa and 22 ºC respectively. The same polymer networks can then attain glass transition temperatures that range from 5 ºC to 195 ºC and rubbery moduli of up to 200 MPa after the subsequent photocure stage. Two-stage reactive polymer composite systems were also formulated and characterized for thermomechanical and mechanical properties. Thermomechanical analysis showed that the fillers resulted in a significant increase in the modulus at both stage 1 and stage 2 polymerizations without a significant change in the glass transition temperatures (Tg). The two-stage reactive matrix composite formed with a hexafunctional acrylate matrix and 20 volume % silica particles showed a 125% increase in stage 1 modulus and 101% increase in stage 2 modulus, when compared with the modulus of the neat matrix. Finally, the two-stage reactive polymeric devices were formulated and designed as orthopedic suture anchors for arthroscopic surgeries and mechanically characterized. The Stage 1 device was designed to exhibit properties ideal for arthroscopic delivery and device placement with glass transition temperatures 25 -- 30 °C and rubbery moduli ˜ 95 MPa. The subsequent photopolymerization generated Stage 2 polymers designed to match the local bone environment with moduli ranging up to 2 GPa. Additionally, pull-out strengths of 140 N were demonstrated and are equivalent to the pull-strengths achieved by other commercially available suture anchors.
Full 3-dimensional digital workflow for multicomponent dental appliances: A proof of concept.
van der Meer, W Joerd; Vissink, Arjan; Ren, Yijin
2016-04-01
The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. The authors scanned a volunteer's dentition with an intraoral scanner (Lava Chairside Oral Scanner C.O.S., 3M). A digital impression was used to design 2 multicomponent orthodontic appliances. Biocompatible acrylic baseplates were produced with the aid of a 3D printer. The metal springs and clasps were produced by a bending robot. The fit of the 2 appliances was assessed by 2 experienced orthodontists. The authors assessed both orthodontic appliances with the volunteer's dentition and found the fit to be excellent. Clinicians can fully produce a multicomponent dental appliance consisting of both an acrylic baseplate and other parts, such as clasps, springs, or screws, using a digital workflow process without the need for a physical model of the patient's dentition. Plaster models can be superfluous for orthodontic treatment as digital models can be used in all phases of a full digital workflow in orthodontics. The arduous task of making a multicomponent dental appliance that involves bending wires can possibly be replaced by a computer, design software, a 3D printer, and a bending robot. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects.
Tian, Dayong; Lin, Zhifen; Yu, Jianqiao; Yin, Daqiang
2012-08-01
Organic chemicals usually coexist as a mixture in the environment, and the mixture toxicity of organic chemicals has received increased attention. However, research regarding the joint effects of reactive chemicals is lacking. In this study, we examined two kinds of reactive chemicals, cyanogenic toxicants and aldehydes and determined their joint effects on Photobacterium phosphoreum. Three factors were found to influence the joint effects of multicomponent mixtures containing reactive chemicals, including the number of components, the dominating components and the toxic ratios. With an increased number of components, the synergistic or antagonistic effects (interactions) will weaken to the additive effects (non-interactions) if the added component cannot yield a much stronger joint effect with an existing component. Contrarily, the joint effect of the mixture may become stronger instead of weaker if the added components can yield a much stronger joint effect than the existing joint effect of the multicomponent mixture. The components that yield the strongest interactions in their binary mixture can be considered the dominating components. These components contribute more to the interactions of multicomponent mixtures than other components. Moreover, the toxic ratios also influence the joint effects of the mixtures. This study provides an insight into what are the main factors and how they influence the joint effects of multicomponent mixtures containing reactive chemicals, and thus, the findings are beneficial to the study of mixture toxicology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Criteria for Modeling in LES of Multicomponent Fuel Flow
NASA Technical Reports Server (NTRS)
Bellan, Josette; Selle, Laurent
2009-01-01
A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.
Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.
Wu, Chuan-Yu; Best, Serena M; Bentham, A Craig; Hancock, Bruno C; Bonfield, William
2006-08-01
Pharmaceutical tablets are generally produced by compacting a mixture of several ingredients, including active drugs and excipients. It is of practical importance if the properties of such tablets can be predicted on the basis of the ones for constituent components. The purpose of this work is to develop a theoretical model which can predict the tensile strength of compacted multi-component pharmaceutical mixtures. The model was derived on the basis of the Ryshkewitch-Duckworth equation that was originally proposed for porous materials. The required input parameters for the model are the relative density or solid fraction (ratio of the volume of solid materials to the total volume of the tablets) of the multi-component tablets and parameters associated with the constituent single-component powders, which are readily accessible. The tensile strength of tablets made of various powder blends at different relative density was also measured using diametrical compression. It has been shown that the tensile strength of the multi-component powder compacts is primarily a function of the solid fraction. Excellent agreement between prediction and experimental data for tablets of binary, ternary and four-component blends of some widely used pharmaceutical excipients was obtained. It has been demonstrated that the proposed model can well predict the tensile strength of multi-component pharmaceutical tablets. Thus, the model will be a useful design tool for formulation engineers in the pharmaceutical industry.
In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications.
Porel, S; Venkatram, N; Rao, D Narayana; Radhakrishnan, T P
2007-06-01
We present an overview of the simple and environmentally benign protocol we have developed recently, for the in situ generation of metal nanoparticles inside polymer films by mild thermal annealing, leading to free-standing as well as supported thin films of nanoparticle-embedded polymer. The fabrication chemistry is discussed and spectroscopic/microscopic characterizations of silver and gold nanoparticles in poly(vinyl alcohol) film are presented. Optical limiting characteristics of the silver-polymer system are investigated in detail and preliminary results for the gold-polymer system are reported.
Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, William G.; Rios, Orlando; Akers, Ronald R.
To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those createdmore » using a resistive heated nozzle.« less
Interpenetrating Polymer Networks as Innovative Drug Delivery Systems
Lohani, Alka; Singh, Garima; Bhattacharya, Shiv Sankar; Verma, Anurag
2014-01-01
Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs. PMID:24949205
Development of anti-scale poly(aspartic acid-citric acid) dual polymer systems for water treatment.
Nayunigari, Mithil Kumar; Gupta, Sanjay Kumar; Kokkarachedu, Varaprasad; Kanny, K; Bux, F
2014-01-01
The formation of calcium sulphate and calcium carbonate scale poses major problems in heat exchangers and water cooling systems, thereby affecting the performance of these types of equipment. In order to inhibit these scale formations, new types of biodegradable water soluble single polymer and dual poly(aspartic acid-citric acid) polymers were developed and tested. The effectiveness of single polymer and four different compositions of poly aspartic acid and citric acid dual polymer systems as scale inhibitors were evaluated. Details of the synthesis, thermal stability, scale inhibition and the morphological characterization of single and dual polymers are presented in this scientific paper. It was found that the calcium sulphate scale inhibition rate was in the range 76.06-91.45%, while the calcium carbonate scale inhibition rate observed was in the range 23.37-30.0% at 65-70 °C. The finding suggests that the water soluble dual polymers are very effective in sulphate scale inhibition in comparison of calcium carbonate scale inhibition.
Effect of blending and nanoparticles on the ionic conductivity of solid polymer electrolyte systems
NASA Astrophysics Data System (ADS)
Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.
2018-05-01
In the present work, a polymer electrolyte blend containing polymers Poly ethylene oxide (PEO) and Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared. The polymer blend was complexed with potassium trifluoromethanesulfonate (KCF3SO3), and titanium oxide nanoparticles (TiO2) (10nm size) were dispersed in to the complex at different weight percentages. The conductivity due to ions in the blend is determined by Ac impedance measurements in the frequency range of 10Hz-1MHz. The nano composite polymer blend containing 5wt% of TiO2 shows a conductivity of 7.95×10-5Scm-1, which is almost 1.5 orders more than polymer electrolyte with PEO as a polymer. XRD studies show a decrease in the coherence length of XRD peaks on addition of nanoparticles, which is due to increase the amorphous phase in the systems. Temperature dependence conductivity studies of the systems shows that, activation energy decreases with increase in the percentage of nanoparticles in the blend.
Multicomponent Linguistic Awareness Intervention for At-Risk Kindergarteners
ERIC Educational Resources Information Center
Zoski, Jennifer L.; Erickson, Karen A.
2017-01-01
This study investigated the feasibility of multicomponent linguistic awareness intervention on early literacy skills in at-risk kindergarteners. Seventeen students, including native Spanish-speaking English language learners (n = 10) and native English speakers (n = 7), participated in a 6-week small-group therapy program, for a total of 12…
ERIC Educational Resources Information Center
Brown, Jennifer A.; Woods, Juliann J.
2012-01-01
Collaborative early intervention (EI) service delivery is enhanced by professional development focused on knowledge and skills in the content and process of delivering services. This article describes a multicomponent online professional development course designed to build infant toddler specialists' capacity to support children with…
This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...
USDA-ARS?s Scientific Manuscript database
A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...
Treatment of Test Anxiety by Cue-Controlled Desensitization and Study-Skills Training.
ERIC Educational Resources Information Center
Lent, Robert W.; Russell, Richard K.
1978-01-01
Compared relative effectiveness of two multicomponent strategies in the treatment of test anxiety. Test-anxious students were assigned to groups. Within-group changes between pre- and post-testing favored multicomponent treatments. Between groups, both desensitization treatment programs demonstrated significant improvement over no-treatment on…
Multicomponent Training of Teachers of Students with Severe Disabilities
ERIC Educational Resources Information Center
Brown, Phillip; Stephenson, Jennifer; Carter, Mark
2014-01-01
Over the last decade, the obligation of general and special educators to utilize evidence-based instructional practices has become more prominent. Research increasingly suggests the failure of didactic teacher training alone to ensure implementation with fidelity of these practices by teachers in their classrooms. Multicomponent training (MCT)…
Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...
Structure-Property Relationships of Architectural Coatings by Neutron Methods
NASA Astrophysics Data System (ADS)
Nakatani, Alan
2015-03-01
Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.
Ali, Samer S; Tang, Xiaozhi; Alavi, Sajid; Faubion, Jon
2011-12-14
Nanocomposites of starch, poly vinyl alcohol (PVOH), and sodium montmorillonite (Na(+)MMT) were produced by solution mixing and cast into films. Tensile strength (TS) and elongation at the break (E%) of the films ranged from 11.60 to 22.35 MPa and 28.93-211.40%, respectively, while water vapor permeability (WVP) ranged from 0.718 to 1.430 g·mm/kPa·h·m(2). In general, an increase in Na(+)MMT content (0-20%) enhanced TS and decreased E% and WVP. Use of higher molecular weight PVOH increased both TS and E% and also decreased WVP. Mechanical properties were negatively affected, but water vapor barrier properties improved with increasing starch content (0-80%). X-ray diffraction and transmission electron microscopy were used to analyze the nanostructure, and molecular conformations and interactions in the multicomponent nanocomposites were inferred from glass transition behavior. Interactions between starch and PVOH were strongest, followed by polymer/clay interactions. On the basis of this insight, a conceptual model was presented to explain the phenomena of intercalation and exfoliation in the starch/PVOH/Na(+)MMT nanocomposites.
Blanco, Celia; Hochberg, David
2012-12-06
Experimental mechanisms that yield the growth of homochiral copolymers over their heterochiral counterparts have been advocated by Lahav and co-workers. These chiral amplification mechanisms proceed through racemic β-sheet-controlled polymerization operative in both surface crystallites as well as in solution. We develop two complementary theoretical models for these template-induced desymmetrization processes leading to multicomponent homochiral copolymers. First, assuming reversible β-sheet formation, the equilibrium between the free monomer pool and the polymer strand within the template is assumed. This yields coupled nonlinear mass balance equations whose solutions are used to calculate enantiomeric excesses and average lengths of the homochiral chains formed. The second approach is a probabilistic treatment based on random polymerization. The occlusion probabilities depend on the polymerization activation energies for each monomer species and are proportional to the concentrations of the monomers in solution in the constant pool approximation. The monomer occlusion probabilities are represented geometrically in terms of unit simplexes from which conditions for maximizing or minimizing the likelihood for mirror symmetry breaking can be determined.
NASA Astrophysics Data System (ADS)
Potyrailo, Radislav A.; Hassib, Lamyaa
2005-06-01
Multicomponent polymer-based formulations of optical sensor materials are difficult and time consuming to optimize using conventional approaches. To address these challenges, our long-term goal is to determine relationships between sensor formulation and sensor response parameters using new scientific methodologies. As the first step, we have designed and implemented an automated analytical instrumentation infrastructure for combinatorial and high-throughput development of polymeric sensor materials for optical sensors. Our approach is based on the fabrication and performance screening of discrete and gradient sensor arrays. Simultaneous formation of multiple sensor coatings into discrete 4×6, 6×8, and 8×12 element arrays (3-15μL volume per element) and their screening provides not only a well-recognized acceleration in the screening rate, but also considerably reduces or even eliminates sources of variability, which are randomly affecting sensors response during a conventional one-at-a-time sensor coating evaluation. The application of gradient sensor arrays provides additional capabilities for rapid finding of the optimal formulation parameters.
NASA Astrophysics Data System (ADS)
Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil
2017-10-01
Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.
Technology optimization techniques for multicomponent optical band-pass filter manufacturing
NASA Astrophysics Data System (ADS)
Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.
2016-04-01
Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.
Wilhelmsen, Øivind; Bedeaux, Dick; Kjelstrup, Signe; Reguera, David
2014-01-14
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelmsen, Øivind, E-mail: oivind.wilhelmsen@ntnu.no; Bedeaux, Dick; Kjelstrup, Signe
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which showsmore » the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.« less
Influence of Lipid Membrane Rigidity on Properties of Supporting Polymer
Jablin, Michael S.; Dubey, Manish; Zhernenkov, Mikhail; Toomey, Ryan; Majewski, Jarosław
2011-01-01
Temperature-sensitive hydrogel polymers are utilized as responsive layers in various applications. Although the polymer's native characteristics have been studied extensively, details concerning its properties during interaction with biorelated structures are lacking. This work investigates the interaction between a thermoresponsive polymer cushion and different lipid membrane capping layers probed by neutron reflectometry. N-isopropylacrylamide copolymerized with methacroylbenzophenone first supported a lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and subsequently 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The polymer-membrane systems were investigated above and below the polymer transition temperature (37 and 25°C). Although the same cushion supported each lipid membrane, the polymer hydration profile and thickness were markedly different for DPPE and DPPC systems. Because DPPE and DPPC have different bending rigidities, these results establish that the polymer-membrane interaction is critically mediated by the mechanics of the membrane, providing better insight into cell-hydrogel interactions. PMID:21723822
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano
2016-01-11
The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low density microcellular foams
Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.
1985-10-02
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.
CMDS9: Continuum Mechanics and Discrete Systems 9, Istanbul Technical University, Macka. Abstracts.
1998-07-01
that can only be achieved via cooperative behavior of the cells. It can be viewed as the action of a singular feedback between the micro -level (the...optimal micro -geometries of multicomponent mixtures. Also, we discuss dynamics of a transition in natural unstable systems that leads to a micro ...failure process. This occurs once the impact load reaches a critical threshold level and results in a collection of oriented matrix micro -cracks
NASA Astrophysics Data System (ADS)
Monguzzi, A.; Tubino, R.; Salamone, M. M.; Meinardi, F.
2010-09-01
Triplet-triplet energy transfer in multicomponent organic systems is usually entirely ascribed to a Dexter-type mechanism involving only short-range donor/acceptor interactions. We demonstrate that the presence of molecular oxygen introduces a perturbation to the electronic structure of one of the involved moieties which can induce a large increase in the spin-forbidden transition oscillator strength so that the otherwise negligible Förster contribution dominates the overall energy transfer rate.