Sample records for multidimensional bessel operators

  1. Asymmetric skew Bessel processes and their applications to finance

    NASA Astrophysics Data System (ADS)

    Decamps, Marc; Goovaerts, Marc; Schoutens, Wim

    2006-02-01

    In this paper, we extend the Harrison and Shepp's construction of the skew Brownian motion (1981) and we obtain a diffusion similar to the two-dimensional Bessel process with speed and scale densities discontinuous at one point. Natural generalizations to multi-dimensional and fractional order Bessel processes are then discussed as well as invariance properties. We call this family of diffusions asymmetric skew Bessel processes in opposition to skew Bessel processes as defined in Barlow et al. [On Walsh's Brownian motions, Seminaire de Probabilities XXIII, Lecture Notes in Mathematics, vol. 1372, Springer, Berlin, New York, 1989, pp. 275-293]. We present factorizations involving (asymmetric skew) Bessel processes with random time. Finally, applications to the valuation of perpetuities and Asian options are proposed.

  2. Inspection system calibration methods

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2004-12-28

    An inspection system calibration method includes producing two sideband signals of a first wavefront; interfering the two sideband signals in a photorefractive material, producing an output signal therefrom having a frequency and a magnitude; and producing a phase modulated operational signal having a frequency different from the output signal frequency, a magnitude, and a phase modulation amplitude. The method includes determining a ratio of the operational signal magnitude to the output signal magnitude, determining a ratio of a 1st order Bessel function of the operational signal phase modulation amplitude to a 0th order Bessel function of the operational signal phase modulation amplitude, and comparing the magnitude ratio to the Bessel function ratio.

  3. A Broadband Bessel Beam Launcher Using Metamaterial Lens

    PubMed Central

    Qing Qi, Mei; Tang, Wen Xuan; Cui, Tie Jun

    2015-01-01

    An approach of generating broadband Bessel beams is presented. The broadband Bessel beams are produced by a gradient index (GRIN) metamaterial lens illuminated by broadband waveguide antenna. The metamaterial lens is constructed with multi-layered structure and each layer is composed of GRIN metamaterials. The metamaterials are designed as dielectric plates printed with metallic patterns in the center region and drilled by air holes near the edge, which operate in wide band. The metamaterial lens serves as a convertor which transforms the spherical beams emitted from feed into conical beams. The conical beams form quasi-Bessel beams in the near-field region. The aperture diameter of the GRIN lens is much larger than the operating wavelength to guarantee the transformation. In principle, this kind of metamaterial lens can produce Bessel beams at arbitrary distance by designing the refractive-index distribution. To verify the approach, we have designed, fabricated and tested a metamaterial lens. Full-wave simulation and experiment results have proved that the generated Bessel beams can be maintained in distance larger than 1 meter within a ranging from 12 GHz to 18 GHz. PMID:26122861

  4. A Broadband Bessel Beam Launcher Using Metamaterial Lens.

    PubMed

    Qi, Mei Qing; Tang, Wen Xuan; Cui, Tie Jun

    2015-06-30

    An approach of generating broadband Bessel beams is presented. The broadband Bessel beams are produced by a gradient index (GRIN) metamaterial lens illuminated by broadband waveguide antenna. The metamaterial lens is constructed with multi-layered structure and each layer is composed of GRIN metamaterials. The metamaterials are designed as dielectric plates printed with metallic patterns in the center region and drilled by air holes near the edge, which operate in wide band. The metamaterial lens serves as a convertor which transforms the spherical beams emitted from feed into conical beams. The conical beams form quasi-Bessel beams in the near-field region. The aperture diameter of the GRIN lens is much larger than the operating wavelength to guarantee the transformation. In principle, this kind of metamaterial lens can produce Bessel beams at arbitrary distance by designing the refractive-index distribution. To verify the approach, we have designed, fabricated and tested a metamaterial lens. Full-wave simulation and experiment results have proved that the generated Bessel beams can be maintained in distance larger than 1 meter within a ranging from 12 GHz to 18 GHz.

  5. Asymptotics of Determinants of Bessel Operators

    NASA Astrophysics Data System (ADS)

    Basor, Estelle L.; Ehrhardt, Torsten

    For aL∞(+)∩L1(+) the truncated Bessel operator Bτ(a) is the integral operator acting on L2[0,τ] with the kernel where Jν stands for the Bessel function with ν>-1. In this paper we determine the asymptotics of the determinant det(I+Bτ(a)) as τ-->∞ for sufficiently smooth functions a for which a(x)≠1 for all x[0,∞). The asymptotic formula is of the form det(I+Bτ(a)) GτE with certain constants G and E, and thus similar to the well-known Szegö-Akhiezer-Kac formula for truncated Wiener-Hopf determinants.

  6. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.

    PubMed

    Du, Jing; Wang, Jian

    2015-11-01

    Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.

  7. Spatial characterization of Bessel-like beams for strong-field physics.

    PubMed

    Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A

    2017-02-06

    We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.

  8. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  9. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F.G., E-mail: mitri@chevron.com

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to anmore » equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.« less

  10. Gaussian vs. Bessel light-sheets: performance analysis in live large sample imaging

    NASA Astrophysics Data System (ADS)

    Reidt, Sascha L.; Correia, Ricardo B. C.; Donnachie, Mark; Weijer, Cornelis J.; MacDonald, Michael P.

    2017-08-01

    Lightsheet fluorescence microscopy (LSFM) has rapidly progressed in the past decade from an emerging technology into an established methodology. This progress has largely been driven by its suitability to developmental biology, where it is able to give excellent spatial-temporal resolution over relatively large fields of view with good contrast and low phototoxicity. In many respects it is superseding confocal microscopy. However, it is no magic bullet and still struggles to image deeply in more highly scattering samples. Many solutions to this challenge have been presented, including, Airy and Bessel illumination, 2-photon operation and deconvolution techniques. In this work, we show a comparison between a simple but effective Gaussian beam illumination and Bessel illumination for imaging in chicken embryos. Whilst Bessel illumination is shown to be of benefit when a greater depth of field is required, it is not possible to see any benefits for imaging into the highly scattering tissue of the chick embryo.

  11. Comparison between broadband Bessel beam launchers based on either Bessel or Hankel aperture distribution for millimeter wave short pulse generation.

    PubMed

    Pavone, Santi C; Mazzinghi, Agnese; Freni, Angelo; Albani, Matteo

    2017-08-07

    In this paper, a comparison is presented between Bessel beam launchers at millimeter waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave (CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for the generation of electromagnetic short pulses because they maintain their performances over a larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture distribution, are designed at millimeter waves with a center operating frequency of f¯=60GHz and analyzed in the bandwidth 50 - 70 GHz by using an in-house developed numerical code to solve Maxwell's equations based on the method of moments. It is shown that a monochromatic Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth. Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently generated in front of the launcher.

  12. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2004-08-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.

  13. General description of circularly symmetric Bessel beams of arbitrary order

    NASA Astrophysics Data System (ADS)

    Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Mädler, Lutz

    2016-11-01

    A general description of circularly symmetric Bessel beams of arbitrary order is derived in this paper. This is achieved by analyzing the relationship between different descriptions of polarized Bessel beams obtained using different approaches. It is shown that a class of circularly symmetric Davis Bessel beams derived using the Hertz vector potentials possesses the same general functional dependence as the aplanatic Bessel beams generated using the angular spectrum representation (ASR). This result bridges the gap between different descriptions of Bessel beams and leads to a general description of circularly symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams are merely the two simplest cases of an infinite number of possible circularly symmetric Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the energy density and the Poynting vector are displayed for Bessel beams in both paraxial and nonparaxial cases. The results presented in this paper provide a fresh perspective on the description of Bessel beams and cast some insights into the light scattering and light-matter interactions problems in practice.

  14. On computing special functions in marine engineering

    NASA Astrophysics Data System (ADS)

    Constantinescu, E.; Bogdan, M.

    2015-11-01

    Important modeling applications in marine engineering conduct us to a special class of solutions for difficult differential equations with variable coefficients. In order to be able to solve and implement such models (in wave theory, in acoustics, in hydrodynamics, in electromagnetic waves, but also in many other engineering fields), it is necessary to compute so called special functions: Bessel functions, modified Bessel functions, spherical Bessel functions, Hankel functions. The aim of this paper is to develop numerical solutions in Matlab for the above mentioned special functions. Taking into account the main properties for Bessel and modified Bessel functions, we shortly present analytically solutions (where possible) in the form of series. Especially it is studied the behavior of these special functions using Matlab facilities: numerical solutions and plotting. Finally, it will be compared the behavior of the special functions and point out other directions for investigating properties of Bessel and spherical Bessel functions. The asymptotic forms of Bessel functions and modified Bessel functions allow determination of important properties of these functions. The modified Bessel functions tend to look more like decaying and growing exponentials.

  15. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range.

    PubMed

    Wei, Xuli; Liu, Changming; Niu, Liting; Zhang, Zhongqi; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2015-12-20

    We present the generation of arbitrary order Bessel beams at 0.3 THz through the implementation of suitably designed axicons based on 3D printing technology. The helical axicons, which possess thickness gradients in both radial and azimuthal directions, can convert the incident Gaussian beam into a high-order Bessel beam with spiral phase structure. The evolution of the generated Bessel beams are characterized experimentally with a three-dimensional field scanner. Moreover, the topological charges carried by the high-order Bessel beams are determined by the fork-like interferograms. This 3D-printing-based Bessel beam generation technique is useful not only for THz imaging systems with zero-order Bessel beams but also for future orbital-angular-momentum-based THz free-space communication with higher-order Bessel beams.

  16. Slowing of Bessel light beam group velocity

    NASA Astrophysics Data System (ADS)

    Alfano, Robert R.; Nolan, Daniel A.

    2016-02-01

    Bessel light beams experience diffraction-limited propagation. A different basic spatial property of a Bessel beam is reported and investigated. It is shown a Bessel beam is a natural waveguide causing its group velocity can be subluminal (slower than the speed of light) when the optical frequency ω approaches a critical frequency ωc. A free space dispersion relation for a Bessel beam, the dependence of its wave number on its angular frequency, is developed from which the Bessel beam's subluminal group velocity is derived. It is shown under reasonable laboratory conditions that a Bessel light beam has associated parameters that allow slowing near a critical frequency. The application of Bessel beams with 1 μm spot size to slow down 100 ps to 200 ps over 1 cm length for a natural optical buffer in free space is presented.

  17. Higher order Riesz transforms associated with Bessel operators

    NASA Astrophysics Data System (ADS)

    Betancor, Jorge J.; Fariña, Juan C.; Martinez, Teresa; Rodríguez-Mesa, Lourdes

    2008-10-01

    In this paper we investigate Riesz transforms R μ ( k) of order k≥1 related to the Bessel operator Δμ f( x)=- f”( x)-((2μ+1)/ x) f’( x) and extend the results of Muckenhoupt and Stein for the conjugate Hankel transform (a Riesz transform of order one). We obtain that for every k≥1, R μ ( k) is a principal value operator of strong type ( p, p), p∈(1,∞), and weak type (1,1) with respect to the measure dλ( x)= x 2μ+1 dx in (0,∞). We also characterize the class of weights ω on (0,∞) for which R μ ( k) maps L p (ω) into itself and L 1(ω) into L 1,∞(ω) boundedly. This class of weights is wider than the Muckenhoupt class mathcal{A}p^μ of weights for the doubling measure dλ. These weighted results extend the ones obtained by Andersen and Kerman.

  18. Mean intensity of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In the given article mean intensity of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is studied. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian beam of optical radiation. Distributions of mean intensity of a fundamental Bessel- Gaussian beam optical beam in longitudinal and transverse to a direction of propagation of optical radiation are investigated in detail. Influence of atmospheric turbulence on change of radius of the central part of a Bessel optical beam is estimated. Values of parameters at which it is possible to generate in turbulent atmosphere a nondiffracting pseudo-Bessel optical beam by means of a fundamental Bessel-Gaussian optical beam are established.

  19. Scattering of a high-order Bessel beam by a spheroidal particle

    NASA Astrophysics Data System (ADS)

    Han, Lu

    2018-05-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), scattering from a homogeneous spheroidal particle illuminated by a high-order Bessel beam is formulated analytically. The high-order Bessel beam is expanded in terms of spheroidal vector wave functions, where the spheroidal beam shape coefficients (BSCs) are computed conveniently using an intrinsic method. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident Bessel beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by nonspherical particles and particle manipulation applications using Bessel beams.

  20. Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: proposal and simulation.

    PubMed

    Zhou, Nan; Wang, Jian

    2018-05-23

    Bessel-Gaussian beams have distinct properties of suppressed diffraction divergence and self-reconstruction. In this paper, we propose and simulate metasurface-assisted orbital angular momentum (OAM) carrying Bessel-Gaussian laser. The laser can be regarded as a Fabry-Perot cavity formed by one partially transparent output plane mirror and the other metasurface-based reflector mirror. The gain medium of Nd:YVO 4 enables the lasing wavelength at 1064 nm with a 808 nm laser serving as the pump. The sub-wavelength structure of metasurface facilitates flexible spatial light manipulation. The compact metasurface-based reflector provides combined phase functions of an axicon and a spherical mirror. By appropriately selecting the size of output mirror and inserting mode-selection element in the laser cavity, different orders of OAM-carrying Bessel-Gaussian lasing modes are achievable. The lasing Bessel-Gaussian 0 , Bessel-Gaussian 01 + , Bessel-Gaussian 02 + and Bessel-Gaussian 03 + modes have high fidelities of ~0.889, ~0.889, ~0.881 and ~0.879, respectively. The metasurface fabrication tolerance and the dependence of threshold power and output lasing power on the length of gain medium, beam radius of pump and transmittance of output mirror are also discussed. The obtained results show successful implementation of metasurface-assisted OAM-carrying Bessel-Gaussian laser with favorable performance. The metasurface-assisted OAM-carrying Bessel-Gaussian laser may find wide OAM-enabled communication and non-communication applications.

  1. Low-frequency acousto-optic backscattering of Bessel light beams

    NASA Astrophysics Data System (ADS)

    Khilo, Nikolai A.; Belyi, Vladimir N.; Khilo, Petr A.; Kazak, Nikolai S.

    2018-05-01

    The use of Bessel light beams, as well as Bessel acoustic beams, substantially enhances the capabilities of acousto-optic methods for control of optical field. We present a theoretical study of the process of optical Bessel beams conversion by means of backward acousto-optic scattering on a Bessel acoustic field in a transversely isotropic crystal. It is shown that, with an appropriate choice of Bessel beams parameters, the backscattering in visible spectral range can be realized at relatively low acoustic frequencies less than one gigahertz. Under conditions of phase matching and transverse spatial synchronism, the efficiency of backscattering is sufficiently high, which is interesting, for example, for construction of acousto-optic spectral analyzers.

  2. Integrated optical phased arrays for quasi-Bessel-beam generation.

    PubMed

    Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R

    2017-09-01

    Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14  mm Bessel length and ∼30  μm power full width at half maximum.

  3. Vectorial diffraction properties of THz vortex Bessel beams.

    PubMed

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  4. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.

    PubMed

    Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng

    2013-11-20

    Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

  5. Mean intensity of the vortex Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this work the question of stability of the vortex Bessel-Gaussian optical beams formed in turbulent atmosphere is theoretically considered. The detailed analysis of features of spatial structure of distribution of mean intensity of vortex Bessel-Gaussian optical beams in turbulent atmosphere are analyzed. The quantitative criterion of possibility of formation of vortex Bessel-Gaussian optical beams in turbulent atmosphere is derived. It is shown that stability of the form of a vortex Bessel-Gaussian optical beam during propagation in turbulent atmosphere increases with increase of value of a topological charge of this optical beam.

  6. Relativistic Bessel cylinders

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2014-10-01

    A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.

  7. Engineering the on-axis intensity of Bessel beam by a feedback tuning loop

    NASA Astrophysics Data System (ADS)

    Li, Runze; Yu, Xianghua; Yang, Yanlong; Peng, Tong; Yao, Baoli; Zhang, Chunmin; Ye, Tong

    2018-02-01

    The Bessel beam belongs to a typical class of non-diffractive optical fields that are characterized by their invariant focal profiles along the propagation direction. However, ideal Bessel beams only rigorously exist in theory; Bessel beams generated in the lab are quasi-Bessel beams with finite focal extensions and varying intensity profiles along the propagation axis. The ability to engineer the on-axis intensity profile to the desired shape is essential for many applications. Here we demonstrate an iterative optimization-based approach to engineering the on-axis intensity of Bessel beams. The genetic algorithm is used to demonstrate this approach. Starting with a traditional axicon phase mask, in the design process, the computed on-axis beam profile is fed into a feedback tuning loop of an iterative optimization process, which searches for an optimal radial phase distribution that can generate a generalized Bessel beam with the desired onaxis intensity profile. The experimental implementation involves a fine-tuning process that adjusts the originally targeted profile so that the optimization process can optimize the phase mask to yield an improved on-axis profile. Our proposed method has been demonstrated in engineering several zeroth-order Bessel beams with customized on-axis profiles. High accuracy and high energy throughput merit its use in many applications.

  8. Terahertz plasmonic Bessel beamformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integratedmore » with solid-state terahertz sources.« less

  9. Generation of nondiffracting Bessel beam using digital micromirror device.

    PubMed

    Gong, Lei; Ren, Yu-Xuan; Xue, Guo-Sheng; Wang, Qian-Chang; Zhou, Jin-Hua; Zhong, Min-Cheng; Wang, Zi-Qiang; Li, Yin-Mei

    2013-07-01

    We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.

  10. Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.

  11. Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.

  12. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.

    PubMed

    Lukin, Igor P

    2016-04-20

    The orbital angular momentum of vortex Bessel-Gaussian beams propagating in turbulent atmosphere is studied theoretically. The field of an optical beam is determined through the solution of the paraxial wave equation for a randomly inhomogeneous medium with fluctuations of the refraction index of the turbulent atmosphere. Peculiarities in the behavior of the total power of the vortex Bessel-Gaussian beam at the receiver (or transmitter) are examined. The dependence of the total power of the vortex Bessel-Gaussian beam on optical beam parameters, namely, the transverse wave number of optical radiation, amplitude factor radius, and, especially, topological charge of the optical beam, is analyzed in detail. It turns out that the mean value of the orbital angular momentum of the vortex Bessel-Gaussian beam remains constant during propagation in the turbulent atmosphere. It is shown that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam propagating in turbulent atmosphere calculated with the "mean-intensity" approximation is equal to zero identically. Thus, it is possible to declare confidently that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam in turbulent atmosphere is not very large.

  13. Control of the formation of vortex Bessel beams in uniaxial crystals by varying the beam divergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranin, V D; Karpeev, S V; Khonina, S N

    The transformation of zero-order Bessel beams into a second-order vortex Bessel beam in CaCO3 and LiNbO3 crystals is experimentally studied, and a possibility of controlling the beam transformation by changing the wavefront curvature of the illumi-nating beam is shown. A quasi-periodic nature of the Bessel beam transformation in a crystal while illuminating the diffraction axi-con by a convergent beam is observed (laser beams)

  14. Propagation of Bessel-X pulses in a hybrid photonic crystal

    NASA Astrophysics Data System (ADS)

    Chung, K. B.

    2018-05-01

    We report the propagation of Bessel-X pulses in a two-dimensional hybrid photonic crystal, investigated by the finite-difference time-domain method, in which broadband super-collimation and the propagation of self-collimated ultrashort pulses were reported. We first show the propagation of Bessel-X pulses in two-dimensional free space, whose transverse branches diverge rapidly with propagation. We then show that Bessel-X pulses propagate with their transverse and longitudinal shapes almost unchanged in the hybrid photonic crystal.

  15. On the coefficients of integrated expansions of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2006-03-01

    A new formula expressing explicitly the integrals of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another new explicit formula relating the Bessel coefficients of an expansion for infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is also established. An application of these formulae for solving ordinary differential equations with varying coefficients is discussed.

  16. Coupling coefficients for tensor product representations of quantum SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less

  17. Focusing of concentric piecewise vector Bessel-Gaussian beam

    NASA Astrophysics Data System (ADS)

    Li, Jinsong; Fang, Ying; Zhou, Shenghua; Ye, Youxiang

    2010-12-01

    The focusing properties of a concentric piecewise vector Bessel-Gaussian beam are investigated in this paper. The beam consists of three portions: the center circular portion and outer annular portion are radially polarized, while the inner annular portion is generalized polarized with tunable polarized angle. Numerical simulations show that the evolution of focal pattern is altered considerably with different Bessel parameters in the Bessel term of the vector Bessel-Gaussian beam. The polarized angle also affects the focal pattern remarkably. Some interesting focal patterns may appear, such as two-peak, dark hollow focus; ring focus; spherical shell focus; cylindrical shell focus; and multi-ring-peak focus, and transverse focal switch occurs with increasing polarized angle of the inner annular portion, which may be used in optical manipulation.

  18. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain

    NASA Astrophysics Data System (ADS)

    Kou, Na; Yu, Shixing; Li, Long

    2017-01-01

    A high-order Bessel vortex beam carrying orbital angular momentum (OAM) is generated by using multilayer amplitude-phase-modulated surfaces (APMSs) at 10 GHz. The APMS transmitarray is composed of four-layer conformal square-loop (FCSL) surfaces with both amplitude and phase modulation. The APMS can transform a quasi-spherical wave emitted from the feeding source into a pseudo non-diffractive high-order Bessel vortex beam with OAM. The APMS for a second-order Bessel beam carrying OAM in the n = 2 mode is designed, fabricated, and measured. Full-wave simulation and measurement results confirm that Bessel vortex beams with OAM can be effectively generated using the proposed APMS transmitarray.

  19. Higher-order harmonics of general limited diffraction Bessel beams

    NASA Astrophysics Data System (ADS)

    Ding, De-Sheng; Huang, Jin-Huang

    2016-12-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).

  20. Optimal condition for employing an axicon-generated Bessel beam to fabricate cylindrical microlens arrays

    NASA Astrophysics Data System (ADS)

    Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji’an

    2018-05-01

    A numerical algorithm, modelling the transformation from a Gaussian beam to a Bessel beam, is presented for the purpose to study the optimal condition for employing an axicon-generated Bessel beam to fabricate cylindrical microlens arrays (CMLAs). By applying the numerical algorithm to simulate the spatial intensity distribution behind the axicon under different defects of a rotund-apex and different diameter ratios of an incident beam to the axicon, we find that the diffraction effects formed by the axicon edge can be almost eliminated when the diameter ratio is less than 1:2, but the spatial intensity distribution is disturbed dramatically even a few tens of microns deviation of the apex, especially for the front part of the axicon-generated Bessel beam. Fortunately, the lateral intensity profile in the rear part still maintains a desirable Bessel curve. Therefore, the rear part of the Bessel area and the less than 1:2 diameter ratio are the optimal choice for employing an axicon-generated Bessel beam to implement surface microstructures fabrication. Furthermore, by applying the optimal conditions to direct writing microstructures on fused silica with a femtosecond (fs) laser, a large area close-packed CMLA is fabricated. The CMLA presents high quality and uniformity and its optical performance is also demonstrated.

  1. Multidimensional discrete compactons in nonlinear Schrödinger lattices with strong nonlinearity management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.

    The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less

  2. Multidimensional discrete compactons in nonlinear Schrödinger lattices with strong nonlinearity management

    DOE PAGES

    D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.; ...

    2015-11-19

    The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less

  3. Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam.

    PubMed

    Qu, Tan; Wu, Zhen-Sen; Shang, Qing-Chao; Li, Zheng-Jun; Bai, Lu

    2013-08-01

    Electromagnetic scattering of a zero-order Bessel beam by an anisotropic spherical particle in the off-axis configuration is investigated. Based on the spherical vector wave functions, the expansion expression of the zero-order Bessel beam is derived, and its convergence is numerically discussed in detail. Utilizing the tangential continuity of the electromagnetic fields, the expressions of scattering coefficients are given. The effects of the conical angle of the wave vector components of the zero-order Bessel beam, the ratio of the radius of the sphere to the central spot radius of the zero-order Bessel beam, the shift of the beam waist center position along both the x and y axes, the permittivity and permeability tensor elements, and the loss of the sphere on the radar cross section (RCS) are numerically analyzed. It is revealed that the maximum RCS appears in the conical direction or neighboring direction when the sphere is illuminated by a zero-order Bessel beam. Furthermore, the RCS will decrease and the symmetry is broken with the shift of the beam waist center.

  4. Integrating products of Bessel functions with an additional exponential or rational factor

    NASA Astrophysics Data System (ADS)

    Van Deun, Joris; Cools, Ronald

    2008-04-01

    We provide two MATLAB programs to compute integrals of the form ex∏i=1kJν_i(ax)dxand 0∞xr+x∏i=1kJν_i(ax)dx with Jν_i(x) the Bessel function of the first kind and (real) order ν. The parameter m is a real number such that ∑ν+m>-1 (to assure integrability near zero), r is real and the numbers c and a are all strictly positive. The program can deliver accurate error estimates. Program summaryProgram title: BESSELINTR, BESSELINTC Catalogue identifier: AEAH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1601 No. of bytes in distributed program, including test data, etc.: 13 161 Distribution format: tar.gz Programming language: Matlab (version ⩾6.5), Octave (version ⩾2.1.69) Computer: All supporting Matlab or Octave Operating system: All supporting Matlab or Octave RAM: For k Bessel functions our program needs approximately ( 500+140k) double precision variables Classification: 4.11 Nature of problem: The problem consists in integrating an arbitrary product of Bessel functions with an additional rational or exponential factor over a semi-infinite interval. Difficulties arise from the irregular oscillatory behaviour and the possible slow decay of the integrand, which prevents truncation at a finite point. Solution method: The interval of integration is split into a finite and infinite part. The integral over the finite part is computed using Gauss-Legendre quadrature. The integrand on the infinite part is approximated using asymptotic expansions and this approximation is integrated exactly with the aid of the upper incomplete gamma function. In the case where a rational factor is present, this factor is first expanded in a Taylor series around infinity. Restrictions: Some (and eventually all) numerical accuracy is lost when one or more of the parameters r,c,a or v grow very large, or when r becomes small. Running time: Less than 0.02 s for a simple problem (two Bessel functions, small parameters), a few seconds for a more complex problem (more than six Bessel functions, large parameters), in Matlab 7.4 (R2007a) on a 2.4 GHz AMD Opteron Processor 250. References:J. Van Deun, R. Cools, Algorithm 858: Computing infinite range integrals of an arbitrary product of Bessel functions, ACM Trans. Math. Software 32 (4) (2006) 580-596.

  5. Sum rules for zeros and intersections of Bessel functions from quantum mechanical perturbation theory

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Garm

    2018-07-01

    Bessel functions play an important role for quantum states in spherical and cylindrical geometries. In cases of perfect confinement, the energy of Schrödinger and massless Dirac fermions is determined by the zeros and intersections of Bessel functions, respectively. In an external electric field, standard perturbation theory therefore expresses the polarizability as a sum over these zeros or intersections. Both non-relativistic and relativistic polarizabilities can be calculated analytically, however. Hence, by equating analytical expressions to perturbation expansions, several sum rules for the zeros and intersections of Bessel functions emerge.

  6. Second-harmonic generation of practical Bessel beams

    NASA Astrophysics Data System (ADS)

    Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung

    2009-11-01

    A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.

  7. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  8. Laser scanning stereomicroscopy for fast volumetric imaging with two-photon excitation and scanned Bessel beams

    NASA Astrophysics Data System (ADS)

    Yang, Yanlong; Zhou, Xing; Li, Runze; Van Horn, Mark; Peng, Tong; Lei, Ming; Wu, Di; Chen, Xun; Yao, Baoli; Ye, Tong

    2015-03-01

    Bessel beams have been used in many applications due to their unique optical properties of maintaining their intensity profiles unchanged during propagation. In imaging applications, Bessel beams have been successfully used to provide extended focuses for volumetric imaging and uniformed illumination plane in light-sheet microscopy. Coupled with two-photon excitation, Bessel beams have been successfully used in realizing fluorescence projected volumetric imaging. We demonstrated previously a stereoscopic solution-two-photon fluorescence stereomicroscopy (TPFSM)-for recovering the depth information in volumetric imaging with Bessel beams. In TPFSM, tilted Bessel beams were used to generate stereoscopic images on a laser scanning two-photon fluorescence microscope; upon post image processing we could successfully provide 3D perception of acquired volume images by wearing anaglyph 3D glasses. However, tilted Bessel beams were generated by shifting either an axicon or an objective laterally; the slow imaging speed and severe aberrations made it hard to use in real-time volume imaging. In this article, we report recent improvements of TPFSM with newly designed scanner and imaging software, which allows 3D stereoscopic imaging without moving any of the optical components on the setup. This improvement has dramatically improved focusing qualities and imaging speed so that the TPFSM can be performed potentially in real-time to provide 3D visualization in scattering media without post image processing.

  9. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    PubMed

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  10. F.W. Bessel (1825): The calculation of longitude and latitude from geodesic measurements

    NASA Astrophysics Data System (ADS)

    Karney, C. F. F.; Deakin, R. E.

    2010-08-01

    Issue No. 86 (1825 October) of the Astronomische Nachrichten was largely devoted to a single paper by F. W. Bessel on the solution of the direct geodesic problem (see the first sentences of the paper). For the most part, the paper stands on its own and needs little introduction. However, a few words are in order to place this paper in its historical context. First of all, it should be no surprise that a paper on this subject appeared in an astronomical journal. At the time, the disciplines of astronomy, navigation, and surveying were inextricably linked -- the methods and, in many cases, the practitioners (in particular, Bessel) were the same. Prior to Bessel's paper, the solution of the geodesic problem had been the subject of several studies by Clairaut, Euler, du Séjour, Legendre, Oriani, and others. The interest in the subject was twofold. It combined several new fields of mathematics: the calculus of variations, the theory of elliptic functions, and the differential geometry of curved surfaces. It also addressed very practical needs: the determination of the figure of the earth, the requirements of large scale surveys, and the construction of map projections. With the papers of Legendre and of Oriani in 1806, the framework for the mathematical solution for an ellipsoid of revolution had been established. However, Bessel was firmly in the practical camp; he carried out the East Prussian survey that connected the West European and Russian triangulation networks and later he made the first accurate estimate of the figure of the Earth, the ``Bessel ellipsoid''. He lays out his goal for this paper in its first section: to simplify the numerical solution of the geodesic problem. In Sects. \\ref{sec2}--\\ref{sec4}, Bessel gives a clear and concise summary of the previous work on the problem. In the remaining sections, he develops series for the distance and longitude integrals and constructs the tables which allow geodesics to be calculated to an accuracy of about 3 cm over distances in excess of 1000 km (and the method remains accurate for geodesics that encircle the Earth). Despite the use of logarithms, Bessel's numerical methods are surprisingly up-to-date: he writes out his series in a form that allows them to be extended to any order and he carries out a rather detailed analysis of the numerical errors. Bessel's derivation and tables were extensively used throughout the nineteenth century and many twentieth century works continued to refer to ``Bessel's method''. However, over time, the attributions to Bessel have become diluted as authors cite more recent works. This trend accelerated with the introduction of electronic calculators when Bessel's algorithms were thought to be too complex and simpler less accurate ones were substituted (these approximate algorithms are still in widespread use). However, now that floating-point hardware is fast and accurate, it is these later algorithms that often seem outdated, while Bessel's are easily adapted for implementation on modern computers.

  11. Higher-order harmonics of limited diffraction Bessel beams

    PubMed

    Ding; Lu

    2000-03-01

    We investigate theoretically the nonlinear propagation of the limited diffraction Bessel beam in nonlinear media, under the successive approximation of the KZK equation. The result shows that the nth-order harmonic of the Bessel beam, like its fundamental component, is radially limited diffracting, and that the main beamwidth of the nth-order harmonic is exactly 1/n times that of the fundamental.

  12. Bessel beams with spatial oscillating polarization

    PubMed Central

    Fu, Shiyao; Zhang, Shikun; Gao, Chunqing

    2016-01-01

    Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174

  13. Adaptive free-space optical communications through turbulence using self-healing Bessel beams

    PubMed Central

    Li, Shuhui; Wang, Jian

    2017-01-01

    We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions. PMID:28230076

  14. Hierarchical Type Stability Criteria for Delayed Neural Networks via Canonical Bessel-Legendre Inequalities.

    PubMed

    Zhang, Xian-Ming; Han, Qing-Long; Zeng, Zhigang

    2018-05-01

    This paper is concerned with global asymptotic stability of delayed neural networks. Notice that a Bessel-Legendre inequality plays a key role in deriving less conservative stability criteria for delayed neural networks. However, this inequality is in the form of Legendre polynomials and the integral interval is fixed on . As a result, the application scope of the Bessel-Legendre inequality is limited. This paper aims to develop the Bessel-Legendre inequality method so that less conservative stability criteria are expected. First, by introducing a canonical orthogonal polynomial sequel, a canonical Bessel-Legendre inequality and its affine version are established, which are not explicitly in the form of Legendre polynomials. Moreover, the integral interval is shifted to a general one . Second, by introducing a proper augmented Lyapunov-Krasovskii functional, which is tailored for the canonical Bessel-Legendre inequality, some sufficient conditions on global asymptotic stability are formulated for neural networks with constant delays and neural networks with time-varying delays, respectively. These conditions are proven to have a hierarchical feature: the higher level of hierarchy, the less conservatism of the stability criterion. Finally, three numerical examples are given to illustrate the efficiency of the proposed stability criteria.

  15. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  16. Generation of multiple Bessel beams for a biophotonics workstation.

    PubMed

    Cizmár, T; Kollárová, V; Tsampoula, X; Gunn-Moore, F; Sibbett, W; Bouchal, Z; Dholakia, K

    2008-09-01

    We present a simple method using an axicon and spatial light modulator to create multiple parallel Bessel beams and precisely control their individual positions in three dimensions. This technique is tested as an alternative to classical holographic beam shaping commonly used now in optical tweezers. Various applications of precise control of multiple Bessel beams are demonstrated within a single microscope giving rise to new methods for three-dimensional positional control of trapped particles or active sorting of micro-objects as well as "focus-free" photoporation of living cells. Overall this concept is termed a 'biophotonics workstation' where users may readily trap, sort and porate material using Bessel light modes in a microscope.

  17. A Comparison of Propagation Between Apertured Bessel and Gaussian beams

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Yu, Yanzhong

    2009-04-01

    A true Bessel beam is a family of diffraction-free beams. Thus the most interesting and attractive characteristic of such beam is non-diffracting propagation. In optics, the comparisons of maximum propagation distance had been done between Bessel and Gaussian beams by Durnin and Sprangle, respectively. However, the results obtained by them are conflict due to the difference between their criteria. Because Bessel beams have many potential applications in millimeter wave bands, therefore, it is necessary and significant that the comparison is carried out at these bands. A new contrast criterion at millimeter wavelengths is proposed in our paper. Under this criterion, the numerical results are presented and a new conclusion is drawn.

  18. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  19. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE PAGES

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin; ...

    2016-10-25

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  20. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias

    NASA Astrophysics Data System (ADS)

    He, Fei; Yu, Junjie; Tan, Yuanxin; Chu, Wei; Zhou, Changhe; Cheng, Ya; Sugioka, Koji

    2017-01-01

    Three-dimensional integrated circuits (3D ICs) are an attractive replacement for conventional 2D ICs as high-performance, low-power-consumption, and small-footprint microelectronic devices. However, one of the major remaining challenges is the manufacture of high-aspect-ratio through-silicon vias (TSVs), which is a crucial technology for the assembly of 3D Si ICs. Here, we present the fabrication of high-quality TSVs using a femtosecond (fs) 1.5-μm Bessel beam. To eliminate the severe ablation caused by the sidelobes of a conventional Bessel beam, a fs Bessel beam is tailored using a specially designed binary phase plate. We demonstrate that the tailored fs Bessel beam can be used to fabricate a 2D array of approximately ∅10-μm TSVs on a 100-μm-thick Si substrate without any sidelobe damage, suggesting potential application in the 3D assembly of 3D Si ICs.

  1. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias.

    PubMed

    He, Fei; Yu, Junjie; Tan, Yuanxin; Chu, Wei; Zhou, Changhe; Cheng, Ya; Sugioka, Koji

    2017-01-18

    Three-dimensional integrated circuits (3D ICs) are an attractive replacement for conventional 2D ICs as high-performance, low-power-consumption, and small-footprint microelectronic devices. However, one of the major remaining challenges is the manufacture of high-aspect-ratio through-silicon vias (TSVs), which is a crucial technology for the assembly of 3D Si ICs. Here, we present the fabrication of high-quality TSVs using a femtosecond (fs) 1.5-μm Bessel beam. To eliminate the severe ablation caused by the sidelobes of a conventional Bessel beam, a fs Bessel beam is tailored using a specially designed binary phase plate. We demonstrate that the tailored fs Bessel beam can be used to fabricate a 2D array of approximately ∅10-μm TSVs on a 100-μm-thick Si substrate without any sidelobe damage, suggesting potential application in the 3D assembly of 3D Si ICs.

  2. Power-Scalable Blue-Green Bessel Beams

    DTIC Science & Technology

    2016-02-23

    19b. TELEPHONE NUMBER (Include area code) 02/23/2016 Final Technical JAN 2011 - DEC 2013 Power-Scalable Blue -Green Bessel Beams Siddharth Ramachandran...fiber lasers, non-traditional emission wavelengths, high-power blue -green tunabel lasers U U U SAR 11 Siddharth Ramachandran 617-353-9811 1 Power...Scalable Blue -Green Bessel Beams Siddharth Ramachandran Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215 phone: (617) 353

  3. Bessel beam OCM for analysis of global ischemia in mouse brain

    NASA Astrophysics Data System (ADS)

    Rapolu, Mounika; Dolezyczek, Hubert; Tamborski, Szymon; Malinowska, Monika; Wilczynski, Grzegorz; Szkulmowski, Maciej; Wojtkowski, Maciej

    2017-07-01

    We present the in-vivo imaging of the global mouse brain ischemia using Bessel beam optical coherence microscopy. This method allows to monitor changes in brain structure with extra control of blood flow during the process of artery occlusion. The results show the capability and sensitivity of OCM system with Bessel beam to analyze brain plasticity after severe injury within a period of 8 days.

  4. SIG. Signal Processing, Analysis, & Display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG; a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a `repeat` sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  5. SIG. Signal Processing, Analysis, & Display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  6. Signal Processing, Analysis, & Display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lager, Darrell; Azevado, Stephen

    1986-06-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  7. SIG. Signal Processing, Analysis, & Display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  8. Bessel smoothing filter for spectral-element mesh

    NASA Astrophysics Data System (ADS)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.

  9. Optical analysis of time-averaged multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens.

    PubMed

    McLeod, Euan; Arnold, Craig B

    2008-07-10

    Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.

  10. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source

    NASA Astrophysics Data System (ADS)

    Shen, Yizhu; Yang, Jiawei; Meng, Hongfu; Dou, Wenbin; Hu, Sanming

    2018-04-01

    Metasurfaces, orbital angular momenta (OAM), and non-diffractive Bessel beams have been attracting worldwide research. Combining the benefits of these three promising techniques, this paper proposes a metasurface-based reflective-type approach to generate a first-order Bessel beam carrying OAM. To validate this approach, a millimeter-wave metasurface is analyzed, designed, fabricated, and measured. Experimental results agree well with simulation. Moreover, this reflective-type metasurface, generating a Bessel beam with OAM, is inherently integrated with a planar feeding source in the same single-layer printed circuit board. Therefore, the proposed design features low profile, low cost, easy integration with front-end active circuits, and no alignment error between the feeding source and the metasurface.

  11. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.

    PubMed

    Pavone, S C; Ettorre, M; Casaletti, M; Albani, M

    2016-05-16

    In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity.

  12. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  13. Talbot self-imaging phenomenon under Bessel beam illumination

    NASA Astrophysics Data System (ADS)

    Chakraborty, Rijuparna; Chowdhury, Subhajit Dutta; Chakraborty, Ajoy Kumar

    2018-06-01

    In this paper, we report the results of our theoretical studies on the phenomenon of self-imaging of periodic object under the illumination of zero-order Bessel beam. Our theoretical analysis indicates that the self-images are visible only after the walk-off distance of the Bessel beam used. It is also observed that the self-images bend around the optical axis of the setup. Besides, the present study justifies the importance of the conditions stipulated by Montgomery.

  14. Bessel Weighted Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut; Gamberg, Leonard; Rossi, Patrizia

    We review the concept of Bessel weighted asymmetries for semi-inclusive deep inelastic scattering and focus on the cross section in Fourier space, conjugate to the outgoing hadron’s transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized partonmore » model. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy and hard scale Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  15. Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model

    NASA Astrophysics Data System (ADS)

    Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang

    2018-02-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.

  16. 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam.

    PubMed

    Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo

    2018-06-15

    We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.

  17. Nonparaxial fractional Bessel and Bessel-Gauss auto-focusing light-sheet pincers and their higher-order spatial derivatives

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Nonparaxial fractional electromagnetic Bessel and Bessel-Gauss auto-focusing light-sheet solutions and their spatial derivatives are synthesized stemming from the angular spectrum decomposition in plane waves. The propagation characteristics of these transverse electric-polarized light-sheets are analyzed by computing the radiated component of the incident electric field. Tight bending of the beam along curved trajectories and slit openings are observed, which could offer unique features and potential applications in the development of improved methods and devices in light-sheet tweezers for particle manipulation applications and dynamics in opto-fluidics, particle sizing and imaging to name a few examples. Moreover, computations of the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solutions.

  18. Orthogonal fast spherical Bessel transform on uniform grid

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.

    2017-07-01

    We propose an algorithm for the orthogonal fast discrete spherical Bessel transform on a uniform grid. Our approach is based upon the spherical Bessel transform factorization into the two subsequent orthogonal transforms, namely the fast Fourier transform and the orthogonal transform founded on the derivatives of the discrete Legendre orthogonal polynomials. The method utility is illustrated by its implementation for the problem of a two-atomic molecule in a time-dependent external field simulating the one utilized in the attosecond streaking technique.

  19. Computer program for Bessel and Hankel functions

    NASA Technical Reports Server (NTRS)

    Kreider, Kevin L.; Saule, Arthur V.; Rice, Edward J.; Clark, Bruce J.

    1991-01-01

    A set of FORTRAN subroutines for calculating Bessel and Hankel functions is presented. The routines calculate Bessel and Hankel functions of the first and second kinds, as well as their derivatives, for wide ranges of integer order and real or complex argument in single or double precision. Depending on the order and argument, one of three evaluation methods is used: the power series definition, an Airy function expansion, or an asymptotic expansion. Routines to calculate Airy functions and their derivatives are also included.

  20. Integral transformation solution of free-space cylindrical vector beams and prediction of modified Bessel-Gaussian vector beams.

    PubMed

    Li, Chun-Fang

    2007-12-15

    A unified description of free-space cylindrical vector beams is presented that is an integral transformation solution to the vector Helmholtz equation and the transversality condition. In the paraxial condition, this solution not only includes the known J(1) Bessel-Gaussian vector beam and the axisymmetric Laguerre-Gaussian vector beam that were obtained by solving the paraxial wave equations but also predicts two kinds of vector beam, called a modified Bessel-Gaussian vector beam.

  1. A high-Strehl low-resolution optical imager (BESSEL): Detection of a 0.7 λ/ D separation binary from the ground

    NASA Astrophysics Data System (ADS)

    Peters, Mary Anne; Close, Laird M.; Rademacher, Matt; Stalcup, Tom; Swartzlander, Grover A.; Ford, Erin; Abdul-Malik, Rukiah S.

    2008-07-01

    We have constructed a high-speed image stabilization system, BESSEL, which mounts to the 8-in. refractive telescope coupled to the ray white telescope at steward observatory. The high-speed tip/tilt mirror platform is controlled by an Andor electron multiplication EMCCD enabling wavefront correction at a rate exceeding 1 kHz. BESSEL achieves on-sky Strehl ratios of 98-99% at λ = 800 nm when the telescope aperture is stopped down to half the Fried parameter (typically D = 25.4 mm, where D is the diameter of the effective telescope aperture). Utilizing high Strehls and the technique of roll subtraction enabled BESSEL to resolve the binary, ADS 10418AB (more commonly known as α Her), with separation of only 0.71 λ/ D and a delta magnitude of ˜3 mag at 800 nm. In addition, Arcturus was observed with BESSEL to explore a relatively untested region of Strehl versus D/ r0 parameter space in the optical, specifically at small (˜0.5 D/ r0). We find that in this regime space quality, very high Strehl (˜99%), optical imaging can be obtained from the ground when D/ r0 < 0.5 as one approaches the inner scale of turbulence. Because of BESSEL's demonstrated high Strehls, it is an ideal platform for inexpensive, initial, on-sky characterization of space-based coronagraphs, for which it will be used in the near future.

  2. Dexterous ultrasonic levitation of millimeter-sized objects in air.

    PubMed

    Seah, Sue Ann; Drinkwater, Bruce W; Carter, Tom; Malkin, Rob; Subramanian, Sriram

    2014-07-01

    Acoustic levitation in air has applications in contactless handling and processing. Here a first-order Bessel function-shaped acoustic field, generated using an 8-element circular array operating at 40 kHz, traps millimeter-sized objects against gravity. The device can manipulate objects in a vertical plane over a few millimeters with an accuracy of ± 0.09 mm.

  3. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers

    DOE PAGES

    Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.

    2017-02-06

    We present a very simple approach to generate a collimated ultrasonic beam that exploits the natural Bessel-like vibration pattern of the radial modes of a piezoelectric disc with lateral clamping. This eliminates the need for the conventional annular Bessel pattern of the electrodes with individual electrode excitation on the piezo-disc, thus simplifying the transducer design. Numerical and experimental studies are carried out to investigate the Bessel-like vibration patterns of these radial modes showing an excellent agreement between these two studies. Measured ultrasonic beam- pro les in water from the radial modes con rm the profile to be a Bessel beam.more » Collimated beam generation from radial modes is investigated using a coupled electromechanical finite-element model. It is found that clamping the lateral edges of piezoelectric transducers results in a high-degree of collimation with practically no side-lobes similar to a parametric array beam. Ultrasonic beam- profile measurements in water with both free and clamped piezoelectric transducer are presented. The collimated beam generation using the present technique of using the laterally clamped radial modes finds significant applications in low-frequency imaging through highly attenuating materials.« less

  4. Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links.

    PubMed

    Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E

    2016-03-01

    We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.

  5. Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links

    PubMed Central

    Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P. J.; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J.; Ashrafi, Solyman; Molisch, Andreas F.; Tur, Moshe; Willner, Alan E.

    2016-01-01

    We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively. PMID:26926068

  6. Improved fixation quality provided by a Bessel beacon in an adaptive optics system.

    PubMed

    Lambert, Andrew J; Daly, Elizabeth M; Dainty, Christopher J

    2013-07-01

    We investigate whether a structured probe beam that creates the beacon for use in a retinal imaging adaptive optics system can provide useful side effects. In particular we investigate whether a Bessel beam that is seen by the subject as a set of concentric rings has a dampening effect on fixation variations of the subject under observation. This calming effect would allow longer periods of observation, particularly for patients with abnormal fixation. An experimental adaptive optics system developed for retinal imaging is used to monitor the fluctuations in aberrations for artificial and human subjects. The probe beam is alternated between a traditional beacon and one provided by a Bessel beam created by SLM. Time-frequency analysis is used to indicate the differences in power and time variation during fixation depending on whether the Bessel beam or the traditional beacon is employed. Comparison is made with the response for an artificial eye to discount systemic variations. Significant evidence is accrued to indicate the reduced fluctuations in fixation when the Bessel beam is employed to create the beacon. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  7. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.

    We present a very simple approach to generate a collimated ultrasonic beam that exploits the natural Bessel-like vibration pattern of the radial modes of a piezoelectric disc with lateral clamping. This eliminates the need for the conventional annular Bessel pattern of the electrodes with individual electrode excitation on the piezo-disc, thus simplifying the transducer design. Numerical and experimental studies are carried out to investigate the Bessel-like vibration patterns of these radial modes showing an excellent agreement between these two studies. Measured ultrasonic beam- pro les in water from the radial modes con rm the profile to be a Bessel beam.more » Collimated beam generation from radial modes is investigated using a coupled electromechanical finite-element model. It is found that clamping the lateral edges of piezoelectric transducers results in a high-degree of collimation with practically no side-lobes similar to a parametric array beam. Ultrasonic beam- profile measurements in water with both free and clamped piezoelectric transducer are presented. The collimated beam generation using the present technique of using the laterally clamped radial modes finds significant applications in low-frequency imaging through highly attenuating materials.« less

  8. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-04-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  9. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-10-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  10. Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.; Li, R. X.; Yang, R. P.; Guo, L. X.; Ding, C. Y.

    2016-11-01

    The optical radiation force induced by Bessel (vortex) beams on a magneto-dielectric subwavelength sphere is investigated with particular emphasis on the beam polarization and order l (or topological charge). The analysis is focused on identifying the regions and some of the conditions to achieve retrograde motion of the sphere centered on the axis of wave propagation of the incident beam, or shifted off-axially. Exact non-paraxial analytical solutions are established, and computations for linear, circular, radial, azimuthal and mixed polarizations of the individual plane wave components forming the Bessel (vortex) beams by means of the angular spectrum decomposition method (ASDM) illustrate the theory with particular emphasis on the tractor (i.e. reversal) behavior of the force. This effect results in the pulling of the magneto-dielectric sphere against the forward linear momentum density flux associated with the incoming waves. Should some conditions related to the choice of the beam parameters as well as the permittivity and permeability of the sphere be met, the optical force vanishes and reverses sign. Moreover, the beam polarization is shown to affect differently the axial negative pulling force for either the zeroth- or the first-order Bessel beam. When the sphere is centered on the beam‧s axis, the axial force component is always negative for the zeroth-order Bessel beam except for the radial and azimuthal polarization configurations. Nonetheless, for the first-order Bessel beam, the axial force is negative for the radial polarization case only. Additional tractor beam effects arise when the sphere departs from the center of the beam. It is also demonstrated that the tractor beam effect arises from the force component originating from the cross-interaction between the electric and magnetic dipoles. Potential applications are in particle manipulation, optical levitation, tractor beam tweezers, and other emergent technologies using polarized Bessel beams on a small (Rayleigh) magneto-dielectric particle.

  11. Fast and accurate computation of projected two-point functions

    NASA Astrophysics Data System (ADS)

    Grasshorn Gebhardt, Henry S.; Jeong, Donghui

    2018-01-01

    We present the two-point function from the fast and accurate spherical Bessel transformation (2-FAST) algorithmOur code is available at https://github.com/hsgg/twoFAST. for a fast and accurate computation of integrals involving one or two spherical Bessel functions. These types of integrals occur when projecting the galaxy power spectrum P (k ) onto the configuration space, ξℓν(r ), or spherical harmonic space, Cℓ(χ ,χ'). First, we employ the FFTLog transformation of the power spectrum to divide the calculation into P (k )-dependent coefficients and P (k )-independent integrations of basis functions multiplied by spherical Bessel functions. We find analytical expressions for the latter integrals in terms of special functions, for which recursion provides a fast and accurate evaluation. The algorithm, therefore, circumvents direct integration of highly oscillating spherical Bessel functions.

  12. Limitations to laser machining of silicon using femtosecond micro-Bessel beams in the infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grojo, David, E-mail: grojo@lp3.univ-mrs.fr; Mouskeftaras, Alexandros; Delaporte, Philippe

    We produce and characterize high-angle femtosecond Bessel beams at 1300-nm wavelength leading to nonlinearly ionized plasma micro-channels in both glass and silicon. With microjoule pulse energy, we demonstrate controlled through-modifications in 150-μm glass substrates. In silicon, strong two-photon absorption leads to larger damages at the front surface but also a clamping of the intensity inside the bulk at a level of ≈4 × 10{sup 11 }W cm{sup −2} which is below the threshold for volume and rear surface modification. We show that the intensity clamping is associated with a strong degradation of the Bessel-like profile. The observations highlight that the inherent limitation tomore » ultrafast energy deposition inside semiconductors with Gaussian focusing [Mouskeftaras et al., Appl. Phys. Lett. 105, 191103 (2014)] applies also for high-angle Bessel beams.« less

  13. Analytical study on the self-healing property of Bessel beam

    NASA Astrophysics Data System (ADS)

    Chu, X.

    2012-10-01

    With the help of Babinet principle, an analytical expression for the self-healing of Bessel beam is derived by using the Gaussian absorption function to describe the obstacle. Based on the analytical expression, the self-healing properties of Bessel beam are studied. It shows that Bessel beam has the ability to reconstruct its beam shape disturbed by an obstacle. However, during the self-healing process, not only the intensity of the beam behind the obstacle but also the other part will be affected by the obstruction. Meanwhile, the highlight spot, which intensity is larger than that without the obstacle will appear, and the size and strength of the highlight spot is determined by the size of the obstacle. From the change of Poynting vector and Babinet principle, the physical interpretations for the self-healing ability, the effects of the obstruction on the other part and the appearance of highlight spot are given.

  14. Formation of high-order acoustic Bessel beams by spiral diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K.

    2016-11-01

    The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

  15. Raman conversion in intense femtosecond Bessel beams in air

    NASA Astrophysics Data System (ADS)

    Scheller, Maik; Chen, Xi; Ariunbold, Gombojav O.; Born, Norman; Moloney, Jerome; Kolesik, Miroslav; Polynkin, Pavel

    2014-05-01

    We demonstrate experimentally that bright and nearly collimated radiation can be efficiently generated in air pumped by an intense femtosecond Bessel beam. We show that this nonlinear conversion process is driven by the rotational Raman response of air molecules. Under optimum conditions, the conversion efficiency from the Bessel pump into the on-axis propagating beam exceeds 15% and is limited by the onset of intensity clamping and plasma refraction on the beam axis. Our experimental findings are in excellent agreement with numerical simulations based on the standard model for the ultrafast nonlinear response of air.

  16. Bessel functions in mass action modeling of memories and remembrances

    NASA Astrophysics Data System (ADS)

    Freeman, Walter J.; Capolupo, Antonio; Kozma, Robert; Olivares del Campo, Andrés; Vitiello, Giuseppe

    2015-10-01

    Data from experimental observations of a class of neurological processes (Freeman K-sets) present functional distribution reproducing Bessel function behavior. We model such processes with couples of damped/amplified oscillators which provide time dependent representation of Bessel equation. The root loci of poles and zeros conform to solutions of K-sets. Some light is shed on the problem of filling the gap between the cellular level dynamics and the brain functional activity. Breakdown of time-reversal symmetry is related with the cortex thermodynamic features. This provides a possible mechanism to deduce lifetime of recorded memory.

  17. Beam wander characteristics of flat-topped, dark hollow, cos and cosh-Gaussian, J0- and I0- Bessel Gaussian beams propagating in turbulent atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.; Baykal, Yahya; Çil, Celal Z.; Korotkova, Olga; Cai, Yangjian

    2010-02-01

    In this paper we review our work done in the evaluations of the root mean square (rms) beam wander characteristics of the flat-topped, dark hollow, cos-and cosh Gaussian, J0-Bessel Gaussian and the I0-Bessel Gaussian beams in atmospheric turbulence. Our formulation is based on the wave-treatment approach, where not only the beam sizes but the source beam profiles are taken into account as well. In this approach the first and the second statistical moments are obtained from the Rytov series under weak atmospheric turbulence conditions and the beam size are determined as a function of the propagation distance. It is found that after propagating in atmospheric turbulence, under certain conditions, the collimated flat-topped, dark hollow, cos- and cosh Gaussian, J0-Bessel Gaussian and the I0-Bessel Gaussian beams have smaller rms beam wander compared to that of the Gaussian beam. The beam wander of these beams are analyzed against the propagation distance, source spot sizes, and against specific beam parameters related to the individual beam such as the relative amplitude factors of the constituent beams, the flatness parameters, the beam orders, the displacement parameters, the width parameters, and are compared against the corresponding Gaussian beam.

  18. Conversion of isotropic fluorescence into a long-range non-diverging beam

    NASA Astrophysics Data System (ADS)

    Zhang, Douguo; Zhu, Liangfu; Chen, Junxue; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Zhan, Qiwen; Kuang, Cuifang; Liu, Xu; Lakowicz, Joseph R.

    2018-04-01

    Fluorescent samples typically emit isotropically in all directions. Large lenses and other optical components are needed to capture a significant fraction of the emission, and complex confocal microscopes are required for high resolution focal-plane imaging. It is known that Bessel beams have remarkable properties of being able to travel over long distances, over 1000 times the wavelength, without diverging, and hence are called non-diffracting beams. In previous reports the Bessel beams were formed by an incident light source, typically with plane-wave illumination on a circular aperture. It was not known if Bessel beams could form from fluorescent light sources. We demonstrate transformation of the emission from fluorescent polystyrene spheres (FPS) into non-diverging beams which propagate up to 130 mm (13 cm) along the optical axis with a constant diameter. This is accomplished using a planar metal film, with no nanoscale features in the X-Y plane, using surface plasmon-coupled emission. Using samples which contain many FPS in the field-of-view, we demonstrate that an independent Bessel beam can be generated from any location on the metal film. The extremely long non-diffracted propagation distances, and self-healing properties of Bessel beams, offer new opportunities in fluorescence sensing and imaging.

  19. High-performance axicon lenses based on high-contrast, multilayer gratings

    NASA Astrophysics Data System (ADS)

    Doshay, Sage; Sell, David; Yang, Jianji; Yang, Rui; Fan, Jonathan A.

    2018-01-01

    Axicon lenses are versatile optical elements that can convert Gaussian beams to Bessel-like beams. In this letter, we demonstrate that axicons operating with high efficiencies and at large angles can be produced using high-contrast, multilayer gratings made from silicon. Efficient beam deflection of incident monochromatic light is enabled by higher-order optical modes in the silicon structure. Compared to diffractive devices made from low-contrast materials such as silicon dioxide, our multilayer devices have a relatively low spatial profile, reducing shadowing effects and enabling high efficiencies at large deflection angles. In addition, the feature sizes of these structures are relatively large, making the fabrication of near-infrared devices accessible with conventional optical lithography. Experimental lenses with deflection angles as large as 40° display field profiles that agree well with theory. Our concept can be used to design optical elements that produce higher-order Bessel-like beams, and the combination of high-contrast materials with multilayer architectures will more generally enable new classes of diffractive photonic structures.

  20. Stable source reconstruction from a finite number of measurements in the multi-frequency inverse source problem

    NASA Astrophysics Data System (ADS)

    Karamehmedović, Mirza; Kirkeby, Adrian; Knudsen, Kim

    2018-06-01

    We consider the multi-frequency inverse source problem for the scalar Helmholtz equation in the plane. The goal is to reconstruct the source term in the equation from measurements of the solution on a surface outside the support of the source. We study the problem in a certain finite dimensional setting: from measurements made at a finite set of frequencies we uniquely determine and reconstruct sources in a subspace spanned by finitely many Fourier–Bessel functions. Further, we obtain a constructive criterion for identifying a minimal set of measurement frequencies sufficient for reconstruction, and under an additional, mild assumption, the reconstruction method is shown to be stable. Our analysis is based on a singular value decomposition of the source-to-measurement forward operators and the distribution of positive zeros of the Bessel functions of the first kind. The reconstruction method is implemented numerically and our theoretical findings are supported by numerical experiments.

  1. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  2. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org; Li, R.X., E-mail: rxli@mail.xidian.edu.cn; Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topologicalmore » charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.« less

  3. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    NASA Technical Reports Server (NTRS)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  4. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE PAGES

    Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...

    2015-03-01

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  5. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghasyan, M.; Avakian, H.; De Sanctis, E.

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  6. Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.

    PubMed

    Leão-Neto, J P; Lopes, J H; Silva, G T

    2017-11-01

    The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.

  7. High-power Bessel beams with orbital angular momentum in the terahertz range

    NASA Astrophysics Data System (ADS)

    Choporova, Yu. Yu.; Knyazev, B. A.; Kulipanov, G. N.; Pavelyev, V. S.; Scheglov, M. A.; Vinokurov, N. A.; Volodkin, B. O.; Zhabin, V. N.

    2017-08-01

    In this paper, we have performed experimental, analytical, and numerical studies of beams with topological charges of ±1 and ±2 formed by silicon binary phase axicons (BPAs) with spiral zone structures. The axicons were illuminated with the Novosibirsk free electron laser radiation (a continuous stream of 100-ps pulses at f =5.6 MHz). The cw power of the beams produced reached 30 W and can by doubled via antireflection coating of the axicons. The intensity distribution in the beam cross sections was in good agreement with the Bessel functions and was kept constant within a distance of about L /r ≈190 and 100, where the first ring radii of the beams r were 0.9 and 1.5 mm for the Bessel beams of the first and second orders, respectively. Although the characteristics of the beams (Bessel cross section, "diffraction-free" propagation, self-recovery after passing obstacles, and randomly inhomogeneous media) corresponded to the properties of ideal Bessel beams, their spatial Fourier spectrum (the image in the focal plane of the lens) was, instead of an ideal ring, intertwined segments of arcs with phases shifted by π , the number of which was equal to the double value of the topological charge. This feature can be used, for example, in a demultiplexing unit of a free vortex-wave communication system or for identification of beam topological charge. We also revisited Young's double-slit diffraction and rotation of beams obstructed by a half-plane, previously applied to Laguerre-Gaussian beam characterization, in the case of the Bessel beams. The Young diffraction pattern demonstrated in this case a complicated intensity-phase distribution. It was shown that the Bessel beams formed by BPAs have two important advantages, which can be used in applications, in comparison with other methods of generation, e.g., a combination of an axicon lens with a spiral phase plate. Although the phase jumps of the axicons are designed for a determined wavelength (141 μ m in our case), the BPAs can form the beams at incident radiation with any wavelength, albeit with a reduced diffraction efficiency, and their cross section is the same for any wavelength.

  8. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    PubMed

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto-fluidics would benefit from the results of the present investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Extension of filament propagation in water with Bessel-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaya, G.; Sayrac, M.; Boran, Y.

    We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.

  10. THz computed tomography system with zero-order Bessel beam

    NASA Astrophysics Data System (ADS)

    Niu, Liting; Wu, Qiao; Wang, Kejia; Liu, Jinsong; Yang, Zhengang

    2018-01-01

    Terahertz (THz) waves can penetrate many optically opaque dielectric materials such as plastics, ceramics and colorants. It is effective to reveal the internal structures of these materials. We have built a THz Computed Tomography (CT) system with 0.3 THz zero-order Bessel beam to improve the depth of focus of this imaging system for the non-diffraction property of Bessel beam. The THz CT system has been used to detect a paper cup with a metal rod inside. Finally, the acquired projection data have been processed by the filtered back-projection algorithm and the reconstructed image of the sample has been obtained.

  11. Multidimensional Profiling of Task Stress States for Human Factors: A Brief Review.

    PubMed

    Matthews, Gerald

    2016-09-01

    This article advocates multidimensional assessment of task stress in human factors and reviews the use of the Dundee Stress State Questionnaire (DSSQ) for evaluation of systems and operators. Contemporary stress research has progressed from an exclusive focus on environmental stressors to transactional perspectives on the stress process. Performance impacts of stress reflect the operator's dynamic attempts to understand and cope with task demands. Multidimensional stress assessments are necessary to gauge the different forms of system-operator interaction. This review discusses the theoretical and practical use of the DSSQ in evaluating multidimensional patterns of stress response. It presents psychometric evidence for the multidimensional perspective and illustrative profiles of subjective state response to task stressors and environments. Evidence is also presented on stress state correlations with related variables, including personality, stress process measures, psychophysiological response, and objective task performance. Evidence supports the validity of the DSSQ as a task stress measure. Studies of various simulated environments show that different tasks elicit different profiles of stress state response. Operator characteristics such as resilience predict individual differences in state response to stressors. Structural equation modeling may be used to understand performance impacts of stress states. Multidimensional assessment affords insight into the stress process in a variety of human factors contexts. Integrating subjective and psychophysiological assessment is a priority for future research. Stress state measurement contributes to evaluating system design, countermeasures to stress and fatigue, and performance vulnerabilities. It may also support personnel selection and diagnostic monitoring of operators. © 2016, Human Factors and Ergonomics Society.

  12. Construction of normal-regular decisions of Bessel typed special system

    NASA Astrophysics Data System (ADS)

    Tasmambetov, Zhaksylyk N.; Talipova, Meiramgul Zh.

    2017-09-01

    Studying a special system of differential equations in the separate production of the second order is solved by the degenerate hypergeometric function reducing to the Bessel functions of two variables. To construct a solution of this system near regular and irregular singularities, we use the method of Frobenius-Latysheva applying the concepts of rank and antirank. There is proved the basic theorem that establishes the existence of four linearly independent solutions of studying system type of Bessel. To prove the existence of normal-regular solutions we establish necessary conditions for the existence of such solutions. The existence and convergence of a normally regular solution are shown using the notion of rank and antirank.

  13. Laplace approximation for Bessel functions of matrix argument

    NASA Astrophysics Data System (ADS)

    Butler, Ronald W.; Wood, Andrew T. A.

    2003-06-01

    We derive Laplace approximations to three functions of matrix argument which arise in statistics and elsewhere: matrix Bessel A[nu]; matrix Bessel B[nu]; and the type II confluent hypergeometric function of matrix argument, [Psi]. We examine the theoretical and numerical properties of the approximations. On the theoretical side, it is shown that the Laplace approximations to A[nu], B[nu] and [Psi] given here, together with the Laplace approximations to the matrix argument functions 1F1 and 2F1 presented in Butler and Wood (Laplace approximations to hyper-geometric functions with matrix argument, Ann. Statist. (2002)), satisfy all the important confluence relations and symmetry relations enjoyed by the original functions.

  14. Pre-correction of distorted Bessel-Gauss beams without wavefront detection

    NASA Astrophysics Data System (ADS)

    Fu, Shiyao; Wang, Tonglu; Zhang, Zheyuan; Zhai, Yanwang; Gao, Chunqing

    2017-12-01

    By utilizing the property of the phase's rapid solution of the Gerchberg-Saxton algorithm, we experimentally demonstrate a scheme to correct distorted Bessel-Gauss beams resulting from inhomogeneous media as weak turbulent atmosphere with good performance. A probe Gaussian beam is employed and propagates coaxially with the Bessel-Gauss modes through the turbulence. No wavefront sensor but a matrix detector is used to capture the probe Gaussian beams, and then, the correction phase mask is computed through inputting such probe beam into the Gerchberg-Saxton algorithm. The experimental results indicate that both single and multiplexed BG beams can be corrected well, in terms of the improvement in mode purity and the mitigation of interchannel cross talk.

  15. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, M. K.; Velpula, P. K.; Colombier, J. P.

    2014-01-13

    We report single-shot, high aspect ratio nanovoid fabrication in bulk fused silica using zeroth order chirp-controlled ultrafast laser Bessel beams. We identify a unique laser pulse length and energy dependence of the physical characteristics of machined structures over which nanovoids of diameter in the range 200–400 nm and aspect ratios exceeding 1000 can be fabricated. A mechanism based on the axial energy deposition of nonlinear ultrashort Bessel beams and subsequent material densification or rarefaction in fused silica is proposed, intricating the non-diffractive nature with the diffusing character of laser-generated free carriers. Fluid flow through nanochannel is also demonstrated.

  16. Bessel beam transformation in c-cuts of uniaxial crystals by varying the source wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranin, V. D.

    Transformation of Bessel beam of a zero order to Bessel beam of the second order in c-cut of CaCO{sub 3} crystal is experimentally investigated. Possibility of output beam control at changing of wavelength and using of a diffraction axicon is shown. Full transformation of beams at changing of wavelength Δλ=1.5 nanometers is received at initial wavelength λ=637.5 nanometers for a crystal of CaCO{sub 3} with 15 mm long and a diffraction axicon with period of 2 microns. The theoretical value of necessary wavelength changing is Δλ=1.7 nanometers that is according with experimental results.

  17. Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval

    NASA Astrophysics Data System (ADS)

    Bondarenko, Natalia

    2017-03-01

    The matrix Sturm-Liouville equation on a finite interval with a Bessel-type singularity in the end of the interval is studied. Special fundamental systems of solutions for this equation are constructed: analytic Bessel-type solutions with the prescribed behavior at the singular point and Birkhoff-type solutions with the known asymptotics for large values of the spectral parameter. The asymptotic formulas for Stokes multipliers, connecting these two fundamental systems of solutions, are derived. We also set boundary conditions and obtain asymptotic formulas for the spectral data (the eigenvalues and the weight matrices) of the boundary value problem. Our results will be useful in the theory of direct and inverse spectral problems.

  18. Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere

    NASA Astrophysics Data System (ADS)

    Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.

    2017-12-01

    We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.

  19. Depth perception

    NASA Astrophysics Data System (ADS)

    Sirola, Christopher

    2017-03-01

    In most disciplines, finding the distance from one object to the next is, at least in theory, a simple operation. Not so in astronomy. While the size of Earth itself was determined with a fair degree of accuracy in ancient times, the scale of the solar system wasn't fully understood until just a few centuries ago, and the distances to even the closest of stars wasn't reliably determined until Friedrich Bessel measured the distance to 61 Cygni in 1838.

  20. Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum

    NASA Astrophysics Data System (ADS)

    Guarnieri, F.; Moon, W.; Wettlaufer, J. S.

    2017-09-01

    Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with a negative constant drift, described by a Fokker-Planck equation with a potential V (x ) =-[b ln(x ) +a x ] , for b >0 and a <0 . The problem belongs to a family of Fokker-Planck equations with logarithmic potentials closely related to the Bessel process that has been extensively studied for its applications in physics, biology, and finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schrödinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a constant negative drift. We conclude with a comparison to other analytical methods and with numerical solutions.

  1. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device.

    PubMed

    Gong, Lei; Qiu, Xing-Ze; Ren, Yu-Xuan; Zhu, Hui-Qing; Liu, Wei-Wei; Zhou, Jin-Hua; Zhong, Min-Cheng; Chu, Xiu-Xiang; Li, Yin-Mei

    2014-11-03

    Recently, V. V. Kotlyar et al. [Opt. Lett.39, 2395 (2014)] have theoretically proposed a novel kind of three-parameter diffraction-free beam with a crescent profile, namely, the asymmetric Bessel (aB) beam. The asymmetry degree of such nonparaxial modes was shown to depend on a nonnegative real parameter c. We present a more generalized asymmetric Bessel mode in which the parameter c is a complex constant. This parameter controls not only the asymmetry degree of the mode but also the orientation of the optical crescent, and affects the energy distribution and orbital angular momentum (OAM) of the beam. As a proof of concept, the high-quality generation of asymmetric Bessel-Gauss beams was demonstrated with the super-pixel method using a digital micromirror device (DMD). We investigated the near-field properties as well as the far field features of such beams, and the experimental observations were in good agreement with the theoretical predictions. Additionally, we provided an effective way to control the beam's asymmetry and orientation, which may find potential applications in light-sheet microscopy and optical manipulation.

  2. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  3. Acoustic manipulation: Bessel beams and active carriers

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2017-10-01

    In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.

  4. A new fourth-order Fourier-Bessel split-step method for the extended nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Patrick L.

    2008-01-10

    Fourier split-step techniques are often used to compute soliton-like numerical solutions of the nonlinear Schroedinger equation. Here, a new fourth-order implementation of the Fourier split-step algorithm is described for problems possessing azimuthal symmetry in 3 + 1-dimensions. This implementation is based, in part, on a finite difference approximation {delta}{sub perpendicular} {sup FDA} of 1/r ({partial_derivative})/({partial_derivative}r) r({partial_derivative})/({partial_derivative}r) that possesses an associated exact unitary representation of e{sup i/2{lambda}}{sup {delta}{sub perpendicular}{sup FDA}}. The matrix elements of this unitary matrix are given by special functions known as the associated Bessel functions. Hence the attribute Fourier-Bessel for the method. The Fourier-Bessel algorithm is shown tomore » be unitary and unconditionally stable. The Fourier-Bessel algorithm is employed to simulate the propagation of a periodic series of short laser pulses through a nonlinear medium. This numerical simulation calculates waveform intensity profiles in a sequence of planes that are transverse to the general propagation direction, and labeled by the cylindrical coordinate z. These profiles exhibit a series of isolated pulses that are offset from the time origin by characteristic times, and provide evidence for a physical effect that may be loosely termed normal mode condensation. Normal mode condensation is consistent with experimentally observed pulse filamentation into a packet of short bursts, which may occur as a result of short, intense irradiation of a medium.« less

  5. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  6. On the solving of one type of problems of mathematical physics

    NASA Astrophysics Data System (ADS)

    Chebakova, V. J.; Gerasimov, A. V.; Kirpichnikov, A. P.

    2016-11-01

    A relationship between generalized hypergeometric functions of a special type and modified Bessel functions has been established. Using this relationship the solution of inhomogeneous differential equations of Bessel type containing even degrees of an independent variable in the right-hand part can be expressed in a form convenient for engineering and technical applications.

  7. Physical Applications of a Simple Approximation of Bessel Functions of Integer Order

    ERIC Educational Resources Information Center

    Barsan, V.; Cojocaru, S.

    2007-01-01

    Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…

  8. A symmetric integral identity for Bessel functions with applications to integral geometry

    NASA Astrophysics Data System (ADS)

    Salman, Yehonatan

    2017-12-01

    In the article of Kunyansky (Inverse Probl 23(1):373-383, 2007) a symmetric integral identity for Bessel functions of the first and second kind was proved in order to obtain an explicit inversion formula for the spherical mean transform where our data is given on the unit sphere in Rn . The aim of this paper is to prove an analogous symmetric integral identity in case where our data for the spherical mean transform is given on an ellipse E in R2 . For this, we will use the recent results obtained by Cohl and Volkmer (J Phys A Math Theor 45:355204, 2012) for the expansions into eigenfunctions of Bessel functions of the first and second kind in elliptical coordinates.

  9. Fabrication of microchannels in fused silica using femtosecond Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashunin, D. A., E-mail: yashuninda@yandex.ru; Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod 603950; Malkov, Yu. A.

    Extended birefringent waveguiding microchannels up to 15 mm long were created inside fused silica by single-pulse irradiation with femtosecond Bessel beams. The birefringent refractive index change of 2–4 × 10{sup −4} is attributed to residual mechanical stress. The microchannels were chemically etched in KOH solution to produce 15 mm long microcapillaries with smooth walls and a high aspect ratio of 1:250. Bessel beams provide higher speed of material processing compared to conventional multipulse femtosecond laser micromachining techniques and permit simple control of the optical axis direction of the birefringent waveguides, which is important for practical applications [Corrielli et al., “Rotated waveplates inmore » integrated waveguide optics,” Nat. Commun. 5, 4249 (2014)].« less

  10. Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanopulos, Ioannis; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635; Luckhaus, David

    In this paper, we model the three-dimensional escape dynamics of single submicron-sized aerosol droplets in optical multiple Bessel beam traps. Trapping in counter-propagating Bessel beams (CPBBs) is compared with a newly proposed quadruple Bessel beam (QBB) trap, which consists of two perpendicularly arranged CPBB traps. Calculations are performed for perfectly and imperfectly aligned traps. Mie-theory and finite-difference time-domain methods are used to calculate the optical forces. The droplet escape kinetics are obtained from the solution of the Langevin equation using a Verlet algorithm. Provided the traps are perfectly aligned, the calculations indicate very long lifetimes for droplets trapped either inmore » the CPBB or in the QBB trap. However, minor misalignments that are hard to control experimentally already severely diminish the stability of the CPBB trap. By contrast, such minor misalignments hardly affect the extended droplet lifetimes in a QBB trap. The QBB trap is found to be a stable, robust optical trap, which should enable the experimental investigation of submicron droplets with radii down to 100 nm. Optical binding between two droplets and its potential role in preventing coagulation when loading a CPBB trap is briefly addressed.« less

  11. Experiments with BECs in a Painted Potential: Atom SQUID, Matter Wave Bessel Beams, and Matter Wave Circuits

    NASA Astrophysics Data System (ADS)

    Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin

    2014-05-01

    The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal trap with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter wave Bessel beams, which are of interest because perfect Bessel beams (plane waves with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter wave circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide traps, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.

  12. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    NASA Astrophysics Data System (ADS)

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-07-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses.

  13. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    PubMed Central

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-01-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses. PMID:27435390

  14. Strong-field ionization with twisted laser pulses

    NASA Astrophysics Data System (ADS)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  15. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams

    NASA Astrophysics Data System (ADS)

    Milione, Giovanni; Dudley, Angela; Nguyen, Thien An; Chakraborty, Ougni; Karimi, Ebrahim; Forbes, Andrew; Alfano, Robert R.

    2015-03-01

    We experimentally measured the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. Radially and azimuthally polarized vector Bessel beams were experimentally generated via a digital version of Durnin's method, using a spatial light modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and spatially inhomogeneous states of polarization were experimentally measured using Stokes polarimetry as they propagated through two disparate obstructions. It was found, similar to their intensities, that their spatially inhomogeneous states of polarization self-healed. The self-healing can be understood via geometric optics, i.e., the interference of the unobstructed conical rays in the shadow region of the obstruction, and may have applications in, for example, optical trapping.

  16. Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination

    NASA Astrophysics Data System (ADS)

    Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran

    2016-04-01

    The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.

  17. Bessel function expansion to reduce the calculation time and memory usage for cylindrical computer-generated holograms.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko

    2017-07-10

    This study proposes a method to reduce the calculation time and memory usage required for calculating cylindrical computer-generated holograms. The wavefront on the cylindrical observation surface is represented as a convolution integral in the 3D Fourier domain. The Fourier transformation of the kernel function involving this convolution integral is analytically performed using a Bessel function expansion. The analytical solution can drastically reduce the calculation time and the memory usage without any cost, compared with the numerical method using fast Fourier transform to Fourier transform the kernel function. In this study, we present the analytical derivation, the efficient calculation of Bessel function series, and a numerical simulation. Furthermore, we demonstrate the effectiveness of the analytical solution through comparisons of calculation time and memory usage.

  18. Some More Solutions of Burgers' Equation

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Raj

    2015-01-01

    In this work, similarity solutions of viscous one-dimensional Burgers' equation are attained by using Lie group theory. The symmetry generators are used for constructing Lie symmetries with commuting infinitesimal operators which lead the governing partial differential equation (PDE) to ordinary differential equation (ODE). Most of the constructed solutions are found in terms of Bessel functions which are new as far as authors are aware. Effect of various parameters in the evolutional profile of the solutions are shown graphically and discussed them physically.

  19. Simplified Generation of High-Angular-Momentum Light Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the polished flat output end. By adjusting the geometry of this apparatus, it is possible to generate a variety of optical beams characterized by a wide range of parameters. These beams generally have high angular momenta and can be of either Bessel or Bessel-related types.

  20. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    PubMed

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air.

  1. Particle confinement by a radially polarized laser Bessel beam

    NASA Astrophysics Data System (ADS)

    Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi

    2017-03-01

    The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.

  2. A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods

    NASA Astrophysics Data System (ADS)

    Parand, K.; Nikarya, M.

    2017-11-01

    In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.

  3. Microcomputer Simulation of a Fourier Approach to Optical Wave Propagation

    DTIC Science & Technology

    1992-06-01

    and transformed input in transform domain). 44 Figure 21. SHFTOUTPUT1 ( inverse transform of product of Bessel filter and transformed input). . . . 44...Figure 22. SHFT OUTPUT2 ( inverse transform of product of ,derivative filter and transformed input).. 45 Figure 23. •tIFT OUTPUT (sum of SHFTOUTPUT1...52 Figure 33. SHFT OUTPUT1 at time slice 1 ( inverse transform of product of Bessel filter and transformed input) .... ............. ... 53

  4. Using axicons for depth discrimination in excitation-emission laser scanning imaging systems

    NASA Astrophysics Data System (ADS)

    Iglesias, Ignacio

    2017-10-01

    Besides generating good approximations to zero-order Bessel beams, an axicon lens coupled to a spatial filter can be used to collect light while preserving information on the depth coordinate of the source location. To demonstrate the principle, we describe an experimental excitation-emission fluorescence imaging system that uses an axicon twice: to generate an excitation Bessel beam and to collect the emitted light.

  5. Mechanism of nanosecond laser drilling process of 4H-SiC for through substrate vias

    NASA Astrophysics Data System (ADS)

    Kim, Byunggi; Iida, Ryoichi; Doan, Duc Hong; Fushinobu, Kazuyoshi

    2017-06-01

    Role of optical parameters on nanosecond laser drilling of 4H-SiC was experimentally studied. Using ns pulsed Nd:YAG laser, parametric studies on effects of wavelength (1064 nm or 532 nm), beam profile (Gaussian or Bessel), and ambient condition (air or water) were conducted. The wavelengths which have large optical penetration depth were selected as wavefront has to propagate through materials to generate Bessel beam. The experimental results showed that carbonization of SiC surface accelerates thermal ablation of the materials with fluence under the lattice melting threshold. Especially, pattern of side lobes with small fluence was formed by irradiation of Bessel beam. The pattern disturbed penetration of wavefronts through materials. Implementation of water environment was not effective to suppress carbonization and had slight effect on improvement of drilling quality. For this reason, deep drilling with small entrance was not achieved using Bessel beam. Irradiation of 1064 nm Gaussian beam with large fluence led to formation of critical amount of re-solidified silicon due to the large optical penetration depth. Carbonization and silicon formation had a significant effect on unique fluence dependence of drilling depth. Absorption mechanism was studied as well to discuss effect of wavelength on processing characteristics.

  6. Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.

    PubMed

    Mitri, Farid G

    2015-10-01

    Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (θ = π) in the near field and the backscattering form function in the far field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) because of the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3-D directivity patterns illustrate the near- and far-field axisymmetric scattering. Investigations in underwater acoustics, particle levitation, scattering, and the detection of submerged elongated objects and other related applications utilizing Bessel waves would benefit from the results of the present study.

  7. On the JWKB solution of the uniformly lengthening pendulum via change of independent variable in the Bessel's equation

    NASA Astrophysics Data System (ADS)

    Deniz, Coşkun

    2017-01-01

    Common recipe for the lengthening pendulum (LP) involves some change of variables to give a relationship with the Bessel's equation. In this work, conventional semiclassical JWKB solution (named after Jeffreys, Wentzel, Kramers and Brillouin) of the LP is being obtained by first transforming the related Bessel's equation into the normal form `via the suggested change of independent variable'. JWKB approximation of the first-order Bessel functions ( ν=1) of both types along with their zeros are being obtained analytically with a very good accuracy as a result of the appropriately chosen associated initial values and they are extended to the neighbouring orders ( ν=0 and 2) by the recursion relations. The required initial values are also being studied and a quantization rule regarding the experimental LP parameters is being determined. Although common numerical methods given in the literature require adiabatic LP systems where the lengthening rate is slow, JWKB solution presented here can safely be used for higher lengthening rates and a criterion for its validity is determined by the JWKB applicability criterion given in the literature. As a result, the semiclassical JWKB method which is normally used for the quantum mechanical and optical waveguide systems is applied to the classical LP system successfully.

  8. Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degroote, M.; Henderson, T. M.; Zhao, J.

    We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero.more » Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.« less

  9. Extracting Micro-Doppler Radar Signatures from Rotating Targets Using Fourier-Bessel Transform and Time-Frequency Analysis

    DTIC Science & Technology

    2014-10-16

    Time-Frequency analysis, Short-Time Fourier Transform, Wigner Ville Distribution, Fourier Bessel Transform, Fractional Fourier Transform. I...INTRODUCTION Most widely used time-frequency transforms are short-time Fourier Transform (STFT) and Wigner Ville distribution (WVD). In STFT, time and...frequency resolutions are limited by the size of window function used in calculating STFT. For mono-component signals, WVD gives the best time and frequency

  10. Vector-beam solutions of Maxwell's wave equation.

    PubMed

    Hall, D G

    1996-01-01

    The Hermite-Gauss and Laguerre-Gauss modes are well-known beam solutions of the scalar Helmholtz equation in the paraxial limit. As such, they describe linearly polarized fields or single Cartesian components of vector fields. The vector wave equation admits, in the paraxial limit, of a family of localized Bessel-Gauss beam solutions that can describe the entire transverse electric field. Two recently reported solutions are members of this family of vector Bessel-Gauss beam modes.

  11. Visualizing polarization singularities in Bessel-Poincaré beams.

    PubMed

    Shvedov, V; Karpinski, P; Sheng, Y; Chen, X; Zhu, W; Krolikowski, W; Hnatovsky, C

    2015-05-04

    We demonstrate that an annulus of light whose polarization is linear at each point, but the plane of polarization gradually rotates by π radians can be used to generate Bessel-Poincaré beams. In any transverse plane this beam exhibits concentric rings of polarization singularities in the form of L-lines, where the polarization is purely linear. Although the L-lines are invisible in terms of light intensity variations, we present a simple way to visualize them as dark rings around a sharp peak of intensity in the beam center. To do this we use a segmented polarizer whose transmission axes are oriented differently in each segment. The radius of the first L-line is always smaller than the radius of the central disk of the zero-order Bessel beam that would be produced if the annulus were homogeneously polarized and had no phase circulation along it.

  12. Bessel beam CARS of axially structured samples

    NASA Astrophysics Data System (ADS)

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  13. Bessel beam CARS of axially structured samples.

    PubMed

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-05

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  14. Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy

    PubMed Central

    Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei

    2014-01-01

    In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996

  15. Quasi-Bessel beams from asymmetric and astigmatic illumination sources.

    PubMed

    Müller, Angelina; Wapler, Matthias C; Schwarz, Ulrich T; Reisacher, Markus; Holc, Katarzyna; Ambacher, Oliver; Wallrabe, Ulrike

    2016-07-25

    We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip.

  16. Bessel-Gauss beams as rigorous solutions of the Helmholtz equation.

    PubMed

    April, Alexandre

    2011-10-01

    The study of the nonparaxial propagation of optical beams has received considerable attention. In particular, the so-called complex-source/sink model can be used to describe strongly focused beams near the beam waist, but this method has not yet been applied to the Bessel-Gauss (BG) beam. In this paper, the complex-source/sink solution for the nonparaxial BG beam is expressed as a superposition of nonparaxial elegant Laguerre-Gaussian beams. This provides a direct way to write the explicit expression for a tightly focused BG beam that is an exact solution of the Helmholtz equation. It reduces correctly to the paraxial BG beam, the nonparaxial Gaussian beam, and the Bessel beam in the appropriate limits. The analytical expression can be used to calculate the field of a BG beam near its waist, and it may be useful in investigating the features of BG beams under tight focusing conditions.

  17. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  18. A Conceptual Model for Multidimensional Analysis of Documents

    NASA Astrophysics Data System (ADS)

    Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles

    Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.

  19. Three-dimensional spatially curved local Bessel beams generated by metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang

    2018-03-01

    We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.

  20. Monotonic sequences related to zeros of Bessel functions

    NASA Astrophysics Data System (ADS)

    Lorch, Lee; Muldoon, Martin

    2008-12-01

    In the course of their work on Salem numbers and uniform distribution modulo 1, A. Akiyama and Y. Tanigawa proved some inequalities concerning the values of the Bessel function J 0 at multiples of π, i.e., at the zeros of J 1/2. This raises the question of inequalities and monotonicity properties for the sequences of values of one cylinder function at the zeros of another such function. Here we derive such results by differential equations methods.

  1. Calculation of Rayleigh type sums for zeros of the equation arising in spectral problem

    NASA Astrophysics Data System (ADS)

    Kostin, A. B.; Sherstyukov, V. B.

    2017-12-01

    For zeros of the equation (arising in the oblique derivative problem) μ J n ‧ ( μ ) cos α + i n J n ( μ ) sin α = 0 , μ ∈ ℂ , with parameters n ∈ ℤ, α ∈ [-π/2, π/2] and the Bessel function Jn (μ) special summation relationships are proved. The obtained results are consistent with the theory of well-known Rayleigh sums calculating by zeros of the Bessel function.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbachev, D V; Ivanov, V I

    Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type, are established. They generalize quadrature formulae involving zeros of Bessel functions, which were first designed by Frappier and Olivier. Bessel quadratures correspond to the Fourier-Hankel integral transform. Some other examples, connected with the Jacobi integral transform, Fourier series in Jacobi orthogonal polynomials and the general Sturm-Liouville problem with regular weight are also given. Bibliography: 39 titles.

  3. Hankel-Bessel laser beams.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A; Soifer, Victor A

    2012-05-01

    An analytical solution of the scalar Helmholtz equation to describe the propagation of a laser light beam in the positive direction of the optical axis is derived. The complex amplitude of such a beam is found to be in direct proportion to the product of two linearly independent solutions of Kummer's differential equation. Relationships for a particular case of such beams-namely, the Hankel-Bessel (HB) beams-are deduced. The focusing of the HB beams is studied. © 2012 Optical Society of America

  4. On the MAF solution of the uniformly lengthening pendulum via change of independent variable in the Bessel's equation

    NASA Astrophysics Data System (ADS)

    Deniz, Coşkun

    Common recipe for the Lengthening Pendulum (LP) involves some change of variables to give a relationship with the Bessel's equation. In this work, semiclassical MAF (Modified Airy Function) solution of the LP is being obtained by first transforming the related Bessel's equation into the normal form via the suggested change of independent variable just as one of our recent work regarding the JWKB solution of the LP in (Deniz, 2017). MAF approximation of the first order Bessel Functions (ν = 1) of both type along with their zeros are being obtained analytically with a very good accuracy as a result of the appropriately chosen associated initial values and they are extended to the neighbouring orders (ν = 0 and 2) by the recursion relations. Although common numerical methods given in the literature require adiabatic LP systems where the lengthening rate is small, MAF solution presented here can safely be used for higher lengthening rates and a criterion for its validity is determined via the use of MAF applicability criterion given in the literature. As a result, the semiclassical MAF method which is normally used for the quantum mechanical and optical waveguide systems is applied to the classical LP system successfully just as our previous work regarding the JWKB solution of the LP. Interestingly, we have very accurate results in the entire domain except for x ≈ 0 .

  5. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets

    PubMed Central

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  6. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.

  7. On a method for generating inequalities for the zeros of certain functions

    NASA Astrophysics Data System (ADS)

    Gatteschi, Luigi; Giordano, Carla

    2007-10-01

    In this paper we describe a general procedure which yields inequalities satisfied by the zeros of a given function. The method requires the knowledge of a two-term approximation of the function with bound for the error term. The method was successfully applied many years ago [L. Gatteschi, On the zeros of certain functions with application to Bessel functions, Nederl. Akad. Wetensch. Proc. Ser. 55(3)(1952), Indag. Math. 14(1952) 224-229] and more recently too [L. Gatteschi and C. Giordano, Error bounds for McMahon's asymptotic approximations of the zeros of the Bessel functions, Integral Transform Special Functions, 10(2000) 41-56], to the zeros of the Bessel functions of the first kind. Here, we present the results of the application of the method to get inequalities satisfied by the zeros of the derivative of the function . This function plays an important role in the asymptotic study of the stationary points of the solutions of certain differential equations.

  8. A 5mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Wu, Lei; Xie, Huikai; Ilegbusi, Olusegun; Costa, Marco; Rolland, Jannick P.

    2007-02-01

    A 5mm biophotonic catheter was conceived for optical coherence tomography (OCT) with collimation optics, an axicon lens, and custom design imaging optics, yielding a 360 degree scan aimed at imaging within concave structures such as lung lobes. In OCT a large depth of focus is necessary to image a thick sample with a constant high transverse resolution. There are two approaches to achieving constant lateral resolution in OCT: Dynamic focusing or Bessel beam forming. This paper focuses on imaging with Bessel beams. A Bessel beam can be generated in the sample arm of the OCT interferometer when axicon optics is employed instead of a conventional focusing lens. We present a design for a 5mm catheter that combines an axicon lens with imaging optics and the coupling of a MEMS mirror attached to a micromotor that allow 360 degree scanning with a resolution of about 5 microns across a depth of focus of about 1.2mm.

  9. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  10. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-07-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy-Bessel-Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light-matter interaction and optical sensing performance.

  11. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    NASA Astrophysics Data System (ADS)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-01

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  12. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces.

    PubMed

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  13. Non-contact high resolution Bessel beam probe for diagnostic imaging of cornea and trabecular meshwork region in eye

    NASA Astrophysics Data System (ADS)

    Murukeshan, V. M.; Jesmond, Hong Xun J.; Shinoj, V. K.; Baskaran, M.; Tin, Aung

    2015-07-01

    Primary angle closure glaucoma is a major form of disease that causes blindness in Asia and worldwide. In glaucoma, irregularities in the ocular aqueous outflow system cause an elevation in intraocular pressure (IOP) with subsequent death of retinal ganglion cells, resulting in loss of vision. High resolution visualization of the iridocorneal angle region has great diagnostic value in understanding the disease condition which enables monitoring of surgical interventions that decrease IOP. None of the current diagnostic techniques such as goniophotography, ultrasound biomicroscopy (UBM), anterior segment optical coherence tomography (AS-OCT) and RetCam™ can image with molecular specificity and required spatial resolution that can delineate the trabecular meshwork structures. This paper in this context proposes new concepts and methodology using Bessel beams based illumination and imaging for such diagnostic ocular imaging applications. The salient features using Bessel beams instead of the conventional Gaussian beam, and the optimization challenges in configuring the probe system will be illustrated with porcine eye samples.

  14. From education to occupation: the story of Thomas Bessell Kidner.

    PubMed

    Friedland, Judith; Davids-Brumer, Naomi

    2007-02-01

    Thomas Bessell Kidner is well-known in the United States as a great contributor to occupational therapy. He is not well-known in Canada despite the fact that his first contributions to the profession were made here between 1900 and 1918. To tell the story of Thomas Bessell Kidner and his impact on occupational therapy. Interpretive biography research methods using archival materials, published papers and family papers. Kidner's work as an organizer of manual training in elementary schools in Nova Scotia and New Brunswick and as Director of Technical Education for Calgary prepared him for his work as Vocational Secretary of the Military Hospitals Commission during World War I. Kidner developed, implemented and oversaw the reeducation program for injured soldiers across Canada. It included bedside occupations, off-ward and curative workshop activities provided by ward aides, as well as industrial training and apprenticeships in the workplace. Kidner's story stimulates us to revisit our profession's early emphasis on return-to-work. Knowing about our past helps occupational therapists to build a stronger identity.

  15. Ultrahigh-sensitive multimode interference-based fiber optic liquid-level sensor realized using illuminating zero-order Bessel-Gauss beam

    NASA Astrophysics Data System (ADS)

    Saha, Ardhendu; Datta, Arijit; Kaman, Surjit

    2018-03-01

    A proposal toward the enhancement in the sensitivity of a multimode interference-based fiber optic liquid-level sensor is explored analytically using a zero-order Bessel-Gauss (BG) beam as the input source. The sensor head consists of a suitable length of no-core fiber (NCF) sandwiched between two specialty high-order mode fibers. The coupling efficiency of various order modes inside the sensor structure is assessed using guided-mode propagation analysis and the performance of the proposed sensor has been benchmarked against the conventional sensor using a Gaussian beam. Furthermore, the study has been corroborated using a finite-difference beam propagation method in Lumerical's Mode Solutions software to investigate the propagation of the zero-order BG beam inside the sensor structure. Based on the simulation outcomes, the proposed scheme yields a maximum absolute sensitivity of up to 3.551 dB / mm and a sensing resolution of 2.816 × 10 - 3 mm through the choice of an appropriate length of NCF at an operating wavelength of 1.55 μm. Owing to this superior sensing performance, the reported sensing technology expedites an avenue to devise a high-performance fiber optic-level sensor that finds profound implication in different physical, biological, and chemical sensing purposes.

  16. Wavefront shaping with an electrowetting liquid lens using surface harmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul

    2017-02-01

    Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.

  17. The Multidimensional Structure of Verbal Comprehension Test Items.

    ERIC Educational Resources Information Center

    Peled, Zimra

    1984-01-01

    The multidimensional structure of verbal comprehension test items was investigated. Empirical evidence was provided to support the theory that item tasks are multivariate-multiordered composites of faceted components: language, contextual knowledge, and cognitive operation. Linear and circular properties of cylindrical manifestation were…

  18. Understanding the operational environment: implications for advanced visualizations

    NASA Astrophysics Data System (ADS)

    Aleva, Denise; Fitzhugh, Elisabeth; Dixon, Sharon

    2009-05-01

    With the changing character of warfare, information superiority is a high priority. Given the complexity of current and future operating environments, analysts, strategists and planners need a multidimensional understanding of the battlespace. Asymmetric warfare necessitates that our strategists look beyond targets-based operations, where we simply identify and destroy enemy entities. Effects-based operations models the enemy as a system which reacts to our actions. This requires the capability to predict the adversary response to a selected action. Actions may be diplomatic, information, military or economic (DIME). Effects may be political, military, economic, social, information or infrastructure (PMESII). Timing must be explicitly considered and effects dynamically assessed. Visualizations of intelligence information are needed which will promote full understanding of all aspects of adversary strengths and weaknesses by providing the extensive data about adversary forces, organic essentials, infrastructure, leadership, population, and science and technology in an easily accessible and understandable format. This will enhance Effectsbased operations, and therefore, the capability to predict and counter adversary courses of action. This paper outlines a systems engineering approach to designing visualizations which convey the multidimensional information to decision makers. Visualization issues inherent in understanding the multidimensional operational environment will be discussed.

  19. Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping.

    PubMed

    Kim, Jongki; Jeong, Yoonseob; Lee, Sejin; Ha, Woosung; Shin, Jeon-Soo; Oh, Kyunghwan

    2012-02-15

    Highly efficient Bessel-like beam generation was achieved based on a new all-fiber method that implements Fourier transformation of a micro annular aperture along a concatenated composite optical fiber. The beam showed unique characteristics of tilted washboard optical potential in the transverse plane and sustained a nondiffracting length over 400 μm along the axial direction. Optical trapping of multiple dielectric particles and living Jurkat cells were successfully demonstrated along the axial direction of the beam in the water.

  20. Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams.

    PubMed

    Porras, Miguel A; Ramos, Francisco

    2017-09-01

    The applications of vortex solitons are severely limited by the diffraction and self-defocusing spreading of the background beam where they are nested. Nonlinear Bessel beams in self-defocusing media are nondiffracting, flattop beams where the nested vortex solitons can survive for propagation distances that are one order of magnitude larger than in the Gaussian or super-Gaussian beams. The dynamics of the vortex solitons is studied numerically and found to approach that in the ideal, uniform background, preventing vortex spiraling and decay, which eases vortex steering for applications.

  1. Examining the Reliability of Student Growth Percentiles Using Multidimensional IRT

    ERIC Educational Resources Information Center

    Monroe, Scott; Cai, Li

    2015-01-01

    Student growth percentiles (SGPs, Betebenner, 2009) are used to locate a student's current score in a conditional distribution based on the student's past scores. Currently, following Betebenner (2009), quantile regression (QR) is most often used operationally to estimate the SGPs. Alternatively, multidimensional item response theory (MIRT) may…

  2. Imaging of trabecular meshwork using Bessel-Gauss light sheet with fluorescence

    NASA Astrophysics Data System (ADS)

    Jie Jeesmond Hong, Xun; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-03-01

    Ocular imaging technology that holds promise for both fundamental investigation and clinical detection of glaucoma is still a challenging research area. A direct view of the trabecular meshwork (TM) with high resolution is not generally possible because the iridocorneal angle region is obstructed by the sclera overlap. The best approach to observe the aqueous outflow system (AOS) is therefore to view from the opposite angle. In this research work, we developed two imaging systems for the high resolution ex vivo studies of the AOS inside porcine eye, based on a Gaussian illuminated and a digitally scanned Bessel-Gauss beam light sheet fluorescence configurations. The digitally scanned Bessel-Gauss beam is able to overcome the trade-off between the length and thickness of the Gaussian light sheet to give better imaging performance. It has adequate spatial resolution to resolve critical anatomical structures such as the TM, thereby enabling objective information about the AOS. This non-contact and non-invasive imaging methodology with excellent safety profile is expected to be well received by vision researchers and clinicians in the evaluation and management of glaucoma.

  3. Negative radiation forces and the asymmetry of scattered radiation: spheres in Bessel beams

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2011-11-01

    The discovery that acoustical and optical, radiation forces computed on spheres placed on the axis of acoustical and optical Bessel beams may be opposite the direction of beam propagation makes it appropriate to reexamine the relationship between radiation forces and the asymmetry of the scattered radiation. For all of the previously identified acoustical cases in which the force was negative and the scattering pattern was also computed, it was found that the backscattering was suppressed and the forward scattering relatively enhanced (see e.g.). In the present research the acoustic radiation force on an arbitrary isotropic sphere is related to the asymmetry in the scattering and the extinction introduced by the sphere for the case of a helical Bessel beam of arbitrary order. The analysis confirms that conditions are more favorable for generating negative forces when the asymmetry is such that the backscattering is suppressed relative to the forward scattering. It is also found, however, that absorption of power by the sphere gives rise to a positive force contribution, a term which has been neglected in the corresponding optical analysis.

  4. Ultrafast Bessel beams: advanced tools for laser materials processing

    NASA Astrophysics Data System (ADS)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  5. Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrutia, J. M.; Stenzel, R. L.

    Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers aremore » shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon “eigenmodes” with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.« less

  6. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance formore » the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.« less

  7. Radiation torque on an absorptive spherical drop centered on an acoustic helicoidal Bessel beam

    NASA Astrophysics Data System (ADS)

    Zhang, Likun; Marston, Philip L.

    2009-11-01

    Circularly polarized electromagnetic waves carry axial angular momentum and analysis shows that the axial radiation torque on an illuminated sphere is proportional to the power absorbed by the sphere [1]. Helicoidal acoustic beams also carry axial angular momentum and absorption of such a beam should also produce an axial radiation torque [2]. In the present work the acoustic radiation torque on solid spheres and spherical drops centered on acoustic helicoidal Bessel beams is examined. The torque is predicted to be proportional to the ratio of the absorbed power to the acoustic frequency. Depending on the beam helicity, the torque is parallel or anti-parallel to the beam axis. The analysis uses a relation between the scattering and the partial wave coefficients for a sphere in a helicoidal Bessel beam. Calculations suggest that beams with a low topological charge are more efficient for generating torques on solid spheres.[4pt] [1] P. L. Marston and J. H. Crichton, Phys. Rev. A. 30, 2508-2516 (1984).[0pt] [2] B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 106, 3313-3316 (1999).

  8. Negative radiation forces on spheres illuminated by acoustic Bessel beams.

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.

    2007-11-01

    An analytical solution for the scattering of an acoustic Bessel beam by a sphere centered on the beam has made it possible to explore the way the acoustic radiation force on elastic and fluid spheres depends on beam and material parameters. Situations have been previously noted where, even in the absence of absorption, the radiation force of the beam on the sphere is opposite the direction of beam propagation [1]. In extensions of that work, conditions have been identified for such a force reversal on solid spheres and elastic shells. Negative radiation forces may be useful for manipulation of objects in reduced gravity and of biological cells (with single beam acoustic tweezers). The finite element method (FEM) has been used to evaluate the total acoustic field in the region near the sphere. This makes it possible to evaluate the radiation force from numerical integration of an appropriate projection of the Brillouin radiation stress tensor. FEM and analytical results agree for plane wave and Bessel beam illumination. 1. P. L. Marston, J. Acoust. Soc. Am. 120, 3518-3524 (2006).

  9. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.

    PubMed

    Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor

    2010-08-01

    Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.

  10. Multi-dimensional quantum state sharing based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Tso, Raylin; Dai, Yuewei

    2018-03-01

    A scheme of multi-dimensional quantum state sharing is proposed. The dealer performs the quantum SUM gate and the quantum Fourier transform to encode a multi-dimensional quantum state into an entanglement state. Then the dealer distributes each participant a particle of the entanglement state, to share the quantum state among n participants. In the recovery, n-1 participants measure their particles and supply their measurement results; the last participant performs the unitary operation on his particle according to these measurement results and can reconstruct the initial quantum state. The proposed scheme has two merits: It can share the multi-dimensional quantum state and it does not need the entanglement measurement.

  11. Multidimensional upwind hydrodynamics on unstructured meshes using graphics processing units - I. Two-dimensional uniform meshes

    NASA Astrophysics Data System (ADS)

    Paardekooper, S.-J.

    2017-08-01

    We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.

  12. Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime.

    PubMed

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-08

    Gradient forces on double negative (DNG) spherical dielectric particles are theoretically evaluated for v-th Bessel beams supposing geometrical optics approximations based on momentum transfer. For the first time in the literature, comparisons between these forces for double positive (DPS) and DNG particles are reported. We conclude that, contrary to the conventional case of positive refractive index, the gradient forces acting on a DNG particle may not reverse sign when the relative refractive index n goes from |n|>1 to |n|<1, thus revealing new and interesting trapping properties.

  13. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotlyar, V. V.; Kovalev, A. A., E-mail: alexeysmr@mail.ru; Porfirev, A. P.

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  14. Scintillation analysis of pseudo-Bessel-Gaussian Schell-mode beams propagating through atmospheric turbulence with wave optics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Guo; Wang, Jue; Wang, Lin; Zhou, Muchun; Chen, Yanru; Song, Minmin

    2018-03-01

    The scintillation index of pseudo-Bessel-Gaussian Schell-mode (PBGSM) beams propagating through atmospheric turbulence is analyzed with the help of wave optics simulation due to the analytic difficulties. It is found that in the strong fluctuation regime, the PBGSM beams are more resistant to the turbulence with the appropriate parameters β and δ . However, the case is contrary in the weak fluctuation regime. Our simulation results indicate that the PBGSM beams may be applied to free-space optical (FSO) communication systems only when the turbulence is strong or the propagation distance is long.

  15. Diffraction of Nondiverging Bessel Beams by Fork-Shaped and Rectilinear Grating

    NASA Astrophysics Data System (ADS)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2007-04-01

    We present an investigation about Fresnel diffraction of Bessel beams, propagating as nondiverging within a distance Ln, with or without phase singularities, by rectilinear and fork-shaped gratings. The common general transmission function of these gratings is defined and specialized for three different cases: binary amplitude gratings, amplitude holograms and their phase versions. Solving the Fresnel diffraction integral in cylindrical coordinates, we obtain analytical expressions for the diffracted wave amplitude for all types of proposed gratings, and make conclusions about the existence of phase singularities and corresponding topological charges in the created by the gratings beams of different diffraction orders.

  16. A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong

    2017-08-01

    A sampling method by using scattering amplitude is proposed for shape and location reconstruction in inverse acoustic scattering problems. Only matrix multiplication is involved in the computation, thus the novel sampling method is very easy and simple to implement. With the help of the factorization of the far field operator, we establish an inf-criterion for characterization of underlying scatterers. This result is then used to give a lower bound of the proposed indicator functional for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functional decays like the bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functional continuously depends on the scattering amplitude, this further implies that the novel sampling method is extremely stable with respect to errors in the data. Different to the classical sampling method such as the linear sampling method or the factorization method, from the numerical point of view, the novel indicator takes its maximum near the boundary of the underlying target and decays like the bessel functions as the sampling points go away from the boundary. The numerical simulations also show that the proposed sampling method can deal with multiple multiscale case, even the different components are close to each other.

  17. Information-Processing Architectures in Multidimensional Classification: A Validation Test of the Systems Factorial Technology

    ERIC Educational Resources Information Center

    Fific, Mario; Nosofsky, Robert M.; Townsend, James T.

    2008-01-01

    A growing methodology, known as the systems factorial technology (SFT), is being developed to diagnose the types of information-processing architectures (serial, parallel, or coactive) and stopping rules (exhaustive or self-terminating) that operate in tasks of multidimensional perception. Whereas most previous applications of SFT have been in…

  18. Finite Mixture Multilevel Multidimensional Ordinal IRT Models for Large Scale Cross-Cultural Research

    ERIC Educational Resources Information Center

    de Jong, Martijn G.; Steenkamp, Jan-Benedict E. M.

    2010-01-01

    We present a class of finite mixture multilevel multidimensional ordinal IRT models for large scale cross-cultural research. Our model is proposed for confirmatory research settings. Our prior for item parameters is a mixture distribution to accommodate situations where different groups of countries have different measurement operations, while…

  19. Heuristic Constraint Management Methods in Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Born, Sebastian; Frey, Andreas

    2017-01-01

    Although multidimensional adaptive testing (MAT) has been proven to be highly advantageous with regard to measurement efficiency when several highly correlated dimensions are measured, there are few operational assessments that use MAT. This may be due to issues of constraint management, which is more complex in MAT than it is in unidimensional…

  20. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    PubMed

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-07

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.

  1. Optical tractor Bessel polarized beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.; Li, R. X.; Guo, L. X.; Ding, C. Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications.

  2. Probing neural tissue with airy light-sheet microscopy: investigation of imaging performance at depth within turbid media

    NASA Astrophysics Data System (ADS)

    Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A.; Dholakia, Kishan

    2017-02-01

    Light-sheet microscopy (LSM) has received great interest for fluorescent imaging applications in biomedicine as it facilitates three-dimensional visualisation of large sample volumes with high spatiotemporal resolution whilst minimising irradiation of, and photo-damage to the specimen. Despite these advantages, LSM can only visualize superficial layers of turbid tissues, such as mammalian neural tissue. Propagation-invariant light modes have played a key role in the development of high-resolution LSM techniques as they overcome the natural divergence of a Gaussian beam, enabling uniform and thin light-sheets over large distances. Most notably, Bessel and Airy beam-based light-sheet imaging modalities have been demonstrated. In the single-photon excitation regime and in lightly scattering specimens, Airy-LSM has given competitive performance with advanced Bessel-LSM techniques. Airy and Bessel beams share the property of self-healing, the ability of the beam to regenerate its transverse beam profile after propagation around an obstacle. Bessel-LSM techniques have been shown to increase the penetration-depth of the illumination into turbid specimens but this effect has been understudied in biologically relevant tissues, particularly for Airy beams. It is expected that Airy-LSM will give a similar enhancement over Gaussian-LSM. In this paper, we report on the comparison of Airy-LSM and Gaussian-LSM imaging modalities within cleared and non-cleared mouse brain tissue. In particular, we examine image quality versus tissue depth by quantitative spatial Fourier analysis of neural structures in virally transduced fluorescent tissue sections, showing a three-fold enhancement at 50 μm depth into non-cleared tissue with Airy-LSM. Complimentary analysis is performed by resolution measurements in bead-injected tissue sections.

  3. A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Hartley, Tom T.

    1998-01-01

    Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.

  4. The application of a multi-dimensional assessment approach to talent identification in Australian football.

    PubMed

    Woods, Carl T; Raynor, Annette J; Bruce, Lyndell; McDonald, Zane; Robertson, Sam

    2016-07-01

    This study investigated whether a multi-dimensional assessment could assist with talent identification in junior Australian football (AF). Participants were recruited from an elite under 18 (U18) AF competition and classified into two groups; talent identified (State U18 Academy representatives; n = 42; 17.6 ± 0.4 y) and non-talent identified (non-State U18 Academy representatives; n = 42; 17.4 ± 0.5 y). Both groups completed a multi-dimensional assessment, which consisted of physical (standing height, dynamic vertical jump height and 20 m multistage fitness test), technical (kicking and handballing tests) and perceptual-cognitive (video decision-making task) performance outcome tests. A multivariate analysis of variance tested the main effect of status on the test criterions, whilst a receiver operating characteristic curve assessed the discrimination provided from the full assessment. The talent identified players outperformed their non-talent identified peers in each test (P < 0.05). The receiver operating characteristic curve reflected near perfect discrimination (AUC = 95.4%), correctly classifying 95% and 86% of the talent identified and non-talent identified participants, respectively. When compared to single assessment approaches, this multi-dimensional assessment reflects a more comprehensive means of talent identification in AF. This study further highlights the importance of assessing multi-dimensional performance qualities when identifying talented team sports.

  5. Optical theorem for acoustic non-diffracting beams and application to radiation force and torque

    PubMed Central

    Zhang, Likun; Marston, Philip L.

    2013-01-01

    Acoustical and optical non-diffracting beams are potentially useful for manipulating particles and larger objects. An extended optical theorem for a non-diffracting beam was given recently in the context of acoustics. The theorem relates the extinction by an object to the scattering at the forward direction of the beam’s plane wave components. Here we use this theorem to examine the extinction cross section of a sphere centered on the axis of the beam, with a non-diffracting Bessel beam as an example. The results are applied to recover the axial radiation force and torque on the sphere by the Bessel beam. PMID:24049681

  6. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  7. Bessel Plasmon-Polaritons at the Boundaries of Metamaterials with Near-Zero Dielectric Constants

    NASA Astrophysics Data System (ADS)

    Kurilkina, S. N.; Belyi, V. N.; Kazak, N. S.; Binhussain, M. A.

    2015-07-01

    The conditions for and features of the excitation of Bessel plasmon-polaritons (BPP) are examined at the boundary of a hyperbolic metamaterial with a near-zero dielectric constant made of a dielectric matrix with metal nanorods embedded in it normal to its surface. This material is compared with BPP that have traditional surface plasmons. The effect of the absorption of the metamaterial on the excitation of BPP is studied. The possibility of changes in the direction of the radial energy fl ows in BPP excited at the surface of an isotropic medium, a hyperbolic metamaterial, is demonstrated and the conditions for these changes are determined.

  8. VizieR Online Data Catalog: WASP-22, WASP-41, WASP-42, WASP-55 (Southworth+, 2016)

    NASA Astrophysics Data System (ADS)

    Southworth, J.; Tregloan-Reed, J.; Andersen, M. I.; Calchi Novati, S.; Ciceri, S.; Colque, J. P.; D'Ago, G.; Dominik, M.; Evans, D. F.; Gu, S.-H.; Herrera-Cordova, A.; Hinse, T. C.; Jorgensen, U. G.; Juncher, D.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Skottfelt, J.; Tronsgaard, R.; Unda-Sanzana, E.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Burgdorf, M.; Damerdji, Y.; Diehl, C.; Elyiv, A.; Figuera Jaimes, R.; Haugbolle, T.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Liebig, C.; Mathiasen, M.; Penny, M. T.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Starkey, D.; Surdej, J.; Vilela, C.; von Essen, C.; Wang, Y.

    2018-05-01

    17 light curves of transits of the extrasolar planetary systems WASP-22, WASP-41, WASP-42 and WASP-55 are presented. 13 of the light curves were obtained using the Danish 1.54m telescope at ESO La Silla, Chile, in the Bessell R or Bessell I passbands. The other 4 light curves were obtained using the 84cm telescope at Observatorio Cerro Armazones, Chile, using either an R filter or no filter. The errorbars for each transit have been scaled so the best-fitting model (obtained using the JKTEBOP code) has a reduced chi-squared value of 1.0. (4 data files).

  9. A theorem regarding roots of the zero-order Bessel function of the first kind

    NASA Technical Reports Server (NTRS)

    Lin, X.-A.; Agrawal, O. P.

    1993-01-01

    This paper investigates a problem on the steady-state, conduction-convection heat transfer process in cylindrical porous heat exchangers. The governing partial differential equations for the system are obtained using the energy conservation law. Solution of these equations and the concept of enthalpy lead to a new approach to prove a theorem that the sum of inverse squares of all the positive roots of the zero order Bessel function of the first kind equals to one-forth. As a corollary, it is shown that the sum of one over pth power (p greater than or equal to 2) of the roots converges to some constant.

  10. Spectrum analysis of radar life signal in the three kinds of theoretical models

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Ma, J. F.; Wang, D.

    2017-02-01

    In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.

  11. Frequency-radial duality based photoacoustic image reconstruction.

    PubMed

    Akramus Salehin, S M; Abhayapala, Thushara D

    2012-07-01

    Photoacoustic image reconstruction algorithms are usually slow due to the large sizes of data that are processed. This paper proposes a method for exact photoacoustic reconstruction for the spherical geometry in the limiting case of a continuous aperture and infinite measurement bandwidth that is faster than existing methods namely (1) backprojection method and (2) the Norton-Linzer method [S. J. Norton and M. Linzer, "Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solution for plane, cylindrical and spherical apertures," Biomedical Engineering, IEEE Trans. BME 28, 202-220 (1981)]. The initial pressure distribution is expanded using a spherical Fourier Bessel series. The proposed method estimates the Fourier Bessel coefficients and subsequently recovers the pressure distribution. A concept of frequency-radial duality is introduced that separates the information from the different radial basis functions by using frequencies corresponding to the Bessel zeros. This approach provides a means to analyze the information obtained given a measurement bandwidth. Using order analysis and numerical experiments, the proposed method is shown to be faster than both the backprojection and the Norton-Linzer methods. Further, the reconstructed images using the proposed methodology were of similar quality to the Norton-Linzer method and were better than the approximate backprojection method.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.

    Here, we numerically investigate the resonance and vibration characteristics of radial modes of laterally stiffened piezoelectric disc transducers. Lateral stiffening is modeled using a spring and vibration characteristics of the piezo-disc are investigated with increasing lateral stiffness. It is found that the resonant frequency response of the radial modes follows an asymptotic behavior approaching that of a clamped disc with increasing lateral stiffness. The radial mode vibration pattern of the discs is also found to be affected by lateral stiffness. While the vibration pattern of a free disc corresponds to a Bessel function, laterally stiffened discs show edge-effects where theymore » depart from the Bessel-like behavior. In addition, a fully clamped piezo-disc is found to have an extra side-lobe when compared to a free disc. Ultrasonic beam profiles generated from radial modes of laterally stiffened discs are numerically investigated. It is found that the free piezo-disc generates a Bessel beam that has multiple side-lobes. Increasing the lateral stiffness results in a significant reduction of side-lobes in the beam profile. This technique of generating a collimated beam with side-lobe reduction finds significant applications in imaging through concrete, drilling mud, and other highly attenuating materials.« less

  13. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzillo, Valerio; Grigutis, Robertas; Jukna, Vytautas

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of themore » absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.« less

  14. Bessel light sheet structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in confocal quality images in thick tissue. The technique was applied to live transgenic zebra fish tg(kdrl:GFP), and the sub-cellular structure of fish vasculature genetically labeled with GFP was captured in 3D. The superior speed of the microscope enables us to acquire signal from 200 layers of a thick sample in 4 minutes. The compact microscope uses exclusively off-the-shelf components and offers a low-cost imaging solution for studying small animal models or tissue samples.

  15. The Cognitive Visualization System with the Dynamic Projection of Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Gorohov, V.; Vitkovskiy, V.

    2008-08-01

    The phenomenon of cognitive machine drawing consists in the generation on the screen the special graphic representations, which create in the brain of human operator entertainment means. These means seem man by aesthetically attractive and, thus, they stimulate its descriptive imagination, closely related to the intuitive mechanisms of thinking. The essence of cognitive effect lies in the fact that man receives the moving projection as pseudo-three-dimensional object characterizing multidimensional means in the multidimensional space. After the thorough qualitative study of the visual aspects of multidimensional means with the aid of the enumerated algorithms appears the possibility, using algorithms of standard machine drawing to paint the interesting user separate objects or the groups of objects. Then it is possible to again return to the dynamic behavior of the rotation of means for the purpose of checking the intuitive ideas of user about the clusters and the connections in multidimensional data. Is possible the development of the methods of cognitive machine drawing in combination with other information technologies, first of all with the packets of digital processing of images and multidimensional statistical analysis.

  16. GENERAL: Scattering Phase Correction for Semiclassical Quantization Rules in Multi-Dimensional Quantum Systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung

    2010-02-01

    While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.

  17. Polarization-maintaining performance of large effective area, higher order modes fiber in a coiled configuration

    NASA Astrophysics Data System (ADS)

    Ahmad, Raja; Nicholson, Jeffrey W.; Abedin, Kazi S.; Westbrook, Paul S.; Headley, Clifford; Wisk, Patrick W.; Monberg, Eric M.; Yan, Man F.; DiGiovanni, David J.

    2018-02-01

    Scaling the power-level of fiber sources has many practical advantages, while also enabling fundamental studies on the light-matter interaction in amorphous guiding media. In order to scale the power-level of fiber-sources without encountering nonlinear impairments, a strategy is to increase the effective-area of the guided optical-mode. Increasing the effective-area of the fundamental mode in a fiber, however, presents the challenges of increased susceptibility to mode-distortion and effective-area-reduction under the influence of bends. Therefore, higher-order-mode (HOM) fibers, which guide light in large effective-area (Aeff) Bessel-like modes, are a good candidate for scaling the power-level of robust fiber-sources. Many applications of high-power fiber-sources also demand a deterministic control on the polarization-state of light. Furthermore, a polarization-maintaining (PM)-type HOM fiber can afford the added possibility of coherent-beam combination and polarization multiplexing of high-power fiber-lasers. Previously, we reported polarization-maintaining operation in a 1.3 m length of PM-HOM fiber that was held straight. The PM-HOM fiber guided Bessel-like modes with Aeff ranging from 1200-2800 μm2. In this work, we report, for the first time, that the polarization-extinction-ratio (PER) of the HOM exceeds 10 dB in an 8 m long fiber that is coiled down to a diameter of 40 cm. This opens a path towards compact and polarization-controlled high-power fiber-systems.

  18. Laguerre-Gaussian, Hermite-Gaussian, Bessel-Gaussian, and Finite-Energy Airy Beams Carrying Orbital Angular Momentum in Strongly Nonlocal Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Wu, Zhenkun; Gu, Yuzong

    2016-12-01

    The propagation of two-dimensional beams is analytically and numerically investigated in strongly nonlocal nonlinear media (SNNM) based on the ABCD matrix. The two-dimensional beams reported in this paper are described by the product of the superposition of generalized Laguerre-Gaussian (LG), Hermite-Gaussian (HG), Bessel-Gaussian (BG), and circular Airy (CA) beams, carrying an orbital angular momentum (OAM). Owing to OAM and the modulation of SNNM, we find that the propagation of these two-dimensional beams exhibits complete rotation and periodic inversion: the spatial intensity profile first extends and then diminishes, and during the propagation the process repeats to form a breath-like phenomenon.

  19. Subwavelength dark hollow focus of spirally polarized axisymmetric Bessel-modulated Gaussian beam

    NASA Astrophysics Data System (ADS)

    Gao, X. M.; Zhan, Q. F.; Wang, Q.; Yun, M. J.; Guo, H. M.; Zhuang, S. L.

    2011-09-01

    Dark hollow focus plays an important role in many optical systems. In this paper, dark hollow focal shaping of spirally polarized axisymmetric Bessel-modulated Gaussian beam is investigated by vector diffraction theory in detail. Results show that the dark hollow focus can be altered considerably by beam parameter and spiral parameter that indicates polarization spiral degree. One dark hollow focus and two dark hollow foci pattern may occur for certain spiral parameter, and the transverse size of dark hollow focus can be less than the diffraction limit size of bright focus. In addition, there may also appear two triangle dark hollow foci that are connected by one dark line focus.

  20. High-efficiency generation of Bessel beams with transmissive metasurfaces

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Dong, Shaohua; Luo, Weijie; Jia, Min; Liang, Zhongzhu; He, Qiong; Sun, Shulin; Zhou, Lei

    2018-05-01

    Circularly polarized Bessel beams (BBs) are important in biomolecule-sensing-related applications, but the available generators are too bulky in size and/or exhibit low efficiencies. Here, we design and fabricate ultra-thin ( ˜λ /6 ) transmissive Pancharatnam-Berry metasurfaces and perform near-field scanning measurements to show that they can generate circularly polarized BBs within a frequency window of 10.7-12.3 GHz. We experimentally demonstrate that the generated BBs exhibit a self-healing effect, illustrating their non-diffraction characteristics. Finally, we employ far-field measurements to demonstrate that the working efficiency of our devices can reach 91%, while the simulated efficiency reaches 92%. All experimental results are in perfect agreement with full-wave simulations.

  1. Wave-optics description of self-healing mechanism in Bessel beams.

    PubMed

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  2. Negative values of quasidistributions and quantum wave and number statistics

    NASA Astrophysics Data System (ADS)

    Peřina, J.; Křepelka, J.

    2018-04-01

    We consider nonclassical wave and number quantum statistics, and perform a decomposition of quasidistributions for nonlinear optical down-conversion processes using Bessel functions. We show that negative values of the quasidistribution do not directly represent probabilities; however, they directly influence measurable number statistics. Negative terms in the decomposition related to the nonclassical behavior with negative amplitudes of probability can be interpreted as positive amplitudes of probability in the negative orthogonal Bessel basis, whereas positive amplitudes of probability in the positive basis describe classical cases. However, probabilities are positive in all cases, including negative values of quasidistributions. Negative and positive contributions of decompositions to quasidistributions are estimated. The approach can be adapted to quantum coherence functions.

  3. Propagation of Bessel-Gaussian beams through a double-apertured fractional Fourier transform optical system.

    PubMed

    Tang, Bin; Jiang, Chun; Zhu, Haibin

    2012-08-01

    Based on the scalar diffraction theory and the fact that a hard-edged aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical solution for Bessel-Gaussian (BG) beams propagating through a double-apertured fractional Fourier transform (FrFT) system is derived in the cylindrical coordinate. By using the approximate analytical formulas, the propagation properties of BG beams passing through a double-apertured FrFT optical system have been studied in detail by some typical numerical examples. The results indicate that the double-apertured FrFT optical system provides a convenient way for controlling the properties of the BG beams by properly choosing the optical parameters.

  4. Expressions Module for the Satellite Orbit Analysis Program

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    The Expressions Module is a software module that has been incorporated into the Satellite Orbit Analysis Program (SOAP). The module includes an expressions- parser submodule built on top of an analytical system, enabling the user to define logical and numerical variables and constants. The variables can capture output from SOAP orbital-prediction and geometric-engine computations. The module can combine variables and constants with built-in logical operators (such as Boolean AND, OR, and NOT), relational operators (such as >, <, or =), and mathematical operators (such as addition, subtraction, multiplication, division, modulus, exponentiation, differentiation, and integration). Parentheses can be used to specify precedence of operations. The module contains a library of mathematical functions and operations, including logarithms, trigonometric functions, Bessel functions, minimum/ maximum operations, and floating- point-to-integer conversions. The module supports combinations of time, distance, and angular units and has a dimensional- analysis component that checks for correct usage of units. A parser based on the Flex language and the Bison program looks for and indicates errors in syntax. SOAP expressions can be built using other expressions as arguments, thus enabling the user to build analytical trees. A graphical user interface facilitates use.

  5. Radial modes of laterally stiffened piezoelectric disc transducers for ultrasonic collimated beam generation

    DOE PAGES

    Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.

    2017-07-15

    Here, we numerically investigate the resonance and vibration characteristics of radial modes of laterally stiffened piezoelectric disc transducers. Lateral stiffening is modeled using a spring and vibration characteristics of the piezo-disc are investigated with increasing lateral stiffness. It is found that the resonant frequency response of the radial modes follows an asymptotic behavior approaching that of a clamped disc with increasing lateral stiffness. The radial mode vibration pattern of the discs is also found to be affected by lateral stiffness. While the vibration pattern of a free disc corresponds to a Bessel function, laterally stiffened discs show edge-effects where theymore » depart from the Bessel-like behavior. In addition, a fully clamped piezo-disc is found to have an extra side-lobe when compared to a free disc. Ultrasonic beam profiles generated from radial modes of laterally stiffened discs are numerically investigated. It is found that the free piezo-disc generates a Bessel beam that has multiple side-lobes. Increasing the lateral stiffness results in a significant reduction of side-lobes in the beam profile. This technique of generating a collimated beam with side-lobe reduction finds significant applications in imaging through concrete, drilling mud, and other highly attenuating materials.« less

  6. Fabrication of nanoparticles and nanostructures using ultrafast laser ablation of silver with Bessel beams

    NASA Astrophysics Data System (ADS)

    Krishna Podagatlapalli, G.; Hamad, Syed; Ahamad Mohiddon, Md; Venugopal Rao, S.

    2015-03-01

    Ablation of silver targets immersed in double distilled water (DDW)/acetone was performed with first order, non-diffracting Bessel beams generated by focusing ultrashort Gaussian pulses (~2 and ~40 fs) through an Axicon. The fabricated Ag dispersions were characterized by UV-visible absorption spectroscopy, transmission electron microscopy and the nanostructured Ag targets were characterized by field emission scanning electron microscopy. Ag colloids prepared with ~2 ps laser pulses at various input pulse energies of ~400, ~600, ~800 and ~1000 µJ demonstrated similar localized surface plasmon resonance (LSPR) peaks appearing near 407 nm. Analogous behavior was observed for Ag colloids prepared in acetone and ablated with ~40 fs pulses, wherein the LSPR peak was observed near 412 nm prepared with input energies of ~600, ~800 and ~1000 µJ. Observed parallels in LSPR peaks, average size of NPs, plasmon bandwidths are tentatively explained using cavitation bubble dynamics and simultaneous generation/fragmentation of NPs under the influence of Bessel beam. Fabricated Ag nanostructures in both the cases demonstrated strong enhancement factors (>106) in surface enhanced Raman scattering studies of the explosive molecule CL-20 (2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) at 5 μM concentration.

  7. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.

    2017-01-01

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  8. Optical force on a large sphere illuminated by Bessel beams: comparisons between ray optics method and generalized Lorenz-Mie theory.

    PubMed

    Song, Shukun; Wang, Neng; Lu, Wanli; Lin, Zhifang

    2014-10-01

    Optical forces are calculated for a dielectric spherical particle illuminated by a zero-order Bessel beam based on both the generalized Lorenz-Mie theory (GLMT) and the ray optics method (ROM). Particles with positive and negative refractive indices are examined. The peculiar characteristics of the Bessel beam allow for analytical expressions for the beam shape coefficients required in the GLMT as well as a decomposition of optical force into the gradient and the scattering forces irrespective of the particle size, which enable respective comparisons for the gradient and scattering forces between the results obtained from the GLMT and the ROM. Our results demonstrate that the discrepancy between the results obtained from the GLMT and the ROM depends on the particle refractive index np, the particle size, and, also, the particle location in the beam field. As the particle size increases, the difference between the results from the GLMT and the ROM shows a general tendency of decreasing, as can be expected, but the change may exhibit oscillatory rather than monotonic behavior. A phase diagram is presented that displays the regime for particle size and refractive index where a specified accuracy can be achieved for optical force by the ROM.

  9. MATHEMATICAL ROUTINES FOR ENGINEERS AND SCIENTISTS

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The purpose of this package is to provide the scientific and engineering community with a library of programs useful for performing routine mathematical manipulations. This collection of programs will enable scientists to concentrate on their work without having to write their own routines for solving common problems, thus saving considerable amounts of time. This package contains sixteen subroutines. Each is separately documented with descriptions of the invoking subroutine call, its required parameters, and a sample test program. The functions available include: maxima, minima, and sort of vectors; factorials; random number generator (uniform or Gaussian distribution); complimentary error function; fast Fourier Transformation; Simpson's Rule integration; matrix determinate and inversion; Bessel function (J Bessel function for any order, and modified Bessel function for zero order); roots of a polynomial; roots of non-linear equation; and the solution of first order ordinary differential equations using Hamming's predictor-corrector method. There is also a subroutine for using a dot matrix printer to plot a given set of y values for a uniformly increasing x value. This package is written in FORTRAN 77 (Super Soft Small System FORTRAN compiler) for batch execution and has been implemented on the IBM PC computer series under MS-DOS with a central memory requirement of approximately 28K of 8 bit bytes for all subroutines. This program was developed in 1986.

  10. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less

  11. Acoustic radiation force of a Bessel beam on a porous sphere.

    PubMed

    Azarpeyvand, Mahdi

    2012-06-01

    The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.

  12. Implementation and evaluation of a hypercube-based method for spatiotemporal exploration and analysis

    NASA Astrophysics Data System (ADS)

    Marchand, Pierre; Brisebois, Alexandre; Bédard, Yvan; Edwards, Geoffrey

    This paper presents the results obtained with a new type of spatiotemporal topological dimension implemented within a hypercube, i.e., within a multidimensional database (MDDB) structure formed by the conjunction of several thematic, spatial and temporal dimensions. Our goal is to support efficient SpatioTemporal Exploration and Analysis (STEA) in the context of Automatic Position Reporting System (APRS), the worldwide amateur radio system for position report transmission. Mobile APRS stations are equipped with GPS navigation systems to provide real-time positioning reports. Previous research about the multidimensional approach has proved good potential for spatiotemporal exploration and analysis despite a lack of explicit topological operators (spatial, temporal and spatiotemporal). Our project implemented such operators through a hierarchy of operators that are applied to pairs of instances of objects. At the top of the hierarchy, users can use simple operators such as "same place", "same time" or "same time, same place". As they drill down into the hierarchy, more detailed topological operators are made available such as "adjacent immediately after", "touch during" or more detailed operators. This hierarchy is structured according to four levels of granularity based on cognitive models, generalized relationships and formal models of topological relationships. In this paper, we also describe the generic approach which allows efficient STEA within the multidimensional approach. Finally, we demonstrate that such an implementation offers query run times which permit to maintain a "train-of-thought" during exploration and analysis operations as they are compatible with Newell's cognitive band (query runtime<10 s) (Newell, A., 1990. Unified theories of cognition. Harvard University Press, Cambridge MA, 549 p.).

  13. Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.

    2014-01-01

    Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an operational data cube service to be delivered in mid-2014. An associated user-installable VO data service framework will provide the capabilities required to publish VO-compatible multi-dimensional images or data cubes.

  14. Method of multi-dimensional moment analysis for the characterization of signal peaks

    DOEpatents

    Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A

    2012-10-23

    A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.

  15. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    PubMed

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  16. Deep skin structural and microcirculation imaging with extended-focus OCT

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Grajciar, Branislav; Huber, Robert; Leitgeb, Rainer A.

    2012-02-01

    We present an extended focus OCT system for dermatologic applications that maintains high lateral resolution over a large depth range by using Bessel beam illumination. More, Bessel beams exhibit a self-reconstruction property that is particularly useful to avoid shadowing from surface structures such as hairs. High lateral resolution and high-speed measurement, thanks to a rapidly tuning swept source, allows not only for imaging of small skin structures in depth but also for comprehensive visualization of the small capillary network within the human skin in-vivo. We use this information for studying temporal vaso-responses to hypothermia. In contrast to other perfusion imaging methods such as laser Doppler imaging (LDI), OCT gives specific access to vascular responses in different vascular beds in depth.

  17. Fast calculation of the line-spread-function by transversal directions decoupling

    NASA Astrophysics Data System (ADS)

    Parravicini, Jacopo; Tartara, Luca; Hasani, Elton; Tomaselli, Alessandra

    2016-07-01

    We propose a simplified method to calculate the optical spread function of a paradigmatic system constituted by a pupil-lens with a line-shaped illumination (‘line-spread-function’). Our approach is based on decoupling the two transversal directions of the beam and treating the propagation by means of the Fourier optics formalism. This requires simpler calculations with respect to the more usual Bessel-function-based method. The model is discussed and compared with standard calculation methods by carrying out computer simulations. The proposed approach is found to be much faster than the Bessel-function-based one (CPU time ≲ 5% of the standard method), while the results of the two methods present a very good mutual agreement.

  18. WGM resonators for studying orbital angular momentum of a photon, and methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor); Strekalov, Dmitry V. (Inventor)

    2009-01-01

    An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.

  19. Radiation Losses Due to Tapering of a Double-Core Optical Waveguide

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Khet, Myat; Pencil, Eric (Technical Monitor)

    2001-01-01

    The theoretical model we designed parameterizes the power losses as a function of .the profile shape for a tapered, single mode, optical dielectric coupler. The focus of this project is to produce a working model that determines the power losses experienced by the fibers when light crosses a taper region. This phenomenon can be examined using coupled mode theory. The optical directional coupler consists of a parallel, dual-channel, waveguide with minimal spacing between the channels to permit energy exchange. Thus, power transfer is essentially a function of the taper profile. To find the fields in the fibers, the approach used was that of solving the Helmholtz equation in cylindrical coordinates involving Bessel and modified Bessel functions depending on the location.

  20. Theory and operational rules for the discrete Hankel transform.

    PubMed

    Baddour, Natalie; Chouinard, Ugo

    2015-04-01

    Previous definitions of a discrete Hankel transform (DHT) have focused on methods to approximate the continuous Hankel integral transform. In this paper, we propose and evaluate the theory of a DHT that is shown to arise from a discretization scheme based on the theory of Fourier-Bessel expansions. The proposed transform also possesses requisite orthogonality properties which lead to invertibility of the transform. The standard set of shift, modulation, multiplication, and convolution rules are derived. In addition to the theory of the actual manipulated quantities which stand in their own right, this DHT can be used to approximate the continuous forward and inverse Hankel transform in the same manner that the discrete Fourier transform is known to be able to approximate the continuous Fourier transform.

  1. Walk-off reduction, using an external optical plate and Bessel-Gaussian interaction

    NASA Astrophysics Data System (ADS)

    Masoume, Mansouri; Mohsen, Askarbioki; Saeed Ghavami, Sabouri; Alireza, Khorsandi

    2015-02-01

    To reduce the walk-off angle of the extraordinary third-harmonic ultraviolet wave at 355 nm generated by type II KTiOPO4 and type I β-BaB2O4 optical crystals, and the Gaussian output beam of a Q-switched Nd:YAG laser, a simple theoretical model was developed based on a rotatable BK7 plate of variable thickness. By rotating the plate up to 35° along the beam direction, we reduced the walk-off angle up to ˜ 13%. The same phenomenon is predicted by the model, confirming the performance of the model. It is found that, due to the walk-off effect, the intensity profile of the third-harmonic generation beam is slightly degraded. To compensate for the observed phenomena and further reduce the walk-off, we used a combination of a convex lens and an axicon to transform the beam profile of the interacting fundamental and second-harmonic generation waves to the zero-order Bessel-Gaussian form. As a result, the walk-off is decreased to ˜48.81 mrad, providing ˜30% relative reduction. By using the same BK7 plate rotated up to 35° along the third-harmonic beam direction, the walk-off angle is further reduced to 38.9 mrad. Moreover, it is observed that the beam profile of the emerged Bessel-Gaussian third-harmonic generation beam remains unchanged with no degradation.

  2. PROPOSED SIAM PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAILEY, DAVID H.; BORWEIN, JONATHAN M.

    A recent paper by the present authors, together with mathematical physicists David Broadhurst and M. Larry Glasser, explored Bessel moment integrals, namely definite integrals of the general form {integral}{sub 0}{sup {infinity}} t{sup m}f{sup n}(t) dt, where the function f(t) is one of the classical Bessel functions. In that paper, numerous previously unknown analytic evaluations were obtained, using a combination of analytic methods together with some fairly high-powered numerical computations, often performed on highly parallel computers. In several instances, while we were able to numerically discover what appears to be a solid analytic identity, based on extremely high-precision numerical computations, wemore » were unable to find a rigorous proof. Thus we present here a brief list of some of these unproven but numerically confirmed identities.« less

  3. Bessel-Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis.

    PubMed

    Gutiérrez-Vega, Julio C; Rodríguez-Masegosa, Rodolfo; Chávez-Cerda, Sabino

    2003-11-01

    A detailed study of the axicon-based Bessel-Gauss resonator with concave output coupler is presented. We employ a technique to convert the Huygens-Fresnel integral self-consistency equation into a matrix equation and then find the eigenvalues and the eigenfields of the resonator at one time. A paraxial ray analysis is performed to find the self-consistency condition to have stable periodic ray trajectories after one or two round trips. The fast-Fourier-transform-based Fox and Li algorithm is applied to describe the three-dimensional intracavity field distribution. Special attention was directed to the dependence of the output transverse profiles, the losses, and the modal-frequency changes on the curvature of the output coupler and the cavity length. The propagation of the output beam is discussed.

  4. Low-discrepancy sampling of parametric surface using adaptive space-filling curves (SFC)

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2014-05-01

    Space-Filling Curves (SFCs) are encountered in different fields of engineering and computer science, especially where it is important to linearize multidimensional data for effective and robust interpretation of the information. Examples of multidimensional data are matrices, images, tables, computational grids, and Electroencephalography (EEG) sensor data resulting from the discretization of partial differential equations (PDEs). Data operations like matrix multiplications, load/store operations and updating and partitioning of data sets can be simplified when we choose an efficient way of going through the data. In many applications SFCs present just this optimal manner of mapping multidimensional data onto a one dimensional sequence. In this report, we begin with an example of a space-filling curve and demonstrate how it can be used to find the most similarity using Fast Fourier transform (FFT) through a set of points. Next we give a general introduction to space-filling curves and discuss properties of them. Finally, we consider a discrete version of space-filling curves and present experimental results on discrete space-filling curves optimized for special tasks.

  5. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  6. A Multidimensional Ideal Point Item Response Theory Model for Binary Data.

    PubMed

    Maydeu-Olivares, Albert; Hernández, Adolfo; McDonald, Roderick P

    2006-12-01

    We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model yields closed form expressions for the cell probabilities. We estimate and test the goodness of fit of the model using only information contained in the univariate and bivariate moments of the data. Also, we pit the new model against the multidimensional normal ogive model estimated using NOHARM in four applications involving (a) attitudes toward censorship, (b) satisfaction with life, (c) attitudes of morality and equality, and (d) political efficacy. The normal PDF model is not invariant to simple operations such as reverse scoring. Thus, when there is no natural category to be modeled, as in many personality applications, it should be fit separately with and without reverse scoring for comparisons.

  7. Multi-attribute subjective evaluations of manual tracking tasks vs. objective performance of the human operator

    NASA Technical Reports Server (NTRS)

    Siapkaras, A.

    1977-01-01

    A computational method to deal with the multidimensional nature of tracking and/or monitoring tasks is developed. Operator centered variables, including the operator's perception of the task, are considered. Matrix ratings are defined based on multidimensional scaling techniques and multivariate analysis. The method consists of two distinct steps: (1) to determine the mathematical space of subjective judgements of a certain individual (or group of evaluators) for a given set of tasks and experimental conditionings; and (2) to relate this space with respect to both the task variables and the objective performance criteria used. Results for a variety of second-order trackings with smoothed noise-driven inputs indicate that: (1) many of the internally perceived task variables form a nonorthogonal set; and (2) the structure of the subjective space varies among groups of individuals according to the degree of familiarity they have with such tasks.

  8. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2016-01-01

    Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.

  9. Self-healing of quantum entanglement after an obstruction.

    PubMed

    McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J; Roux, Filippus S; Forbes, Andrew

    2014-01-01

    Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.

  10. Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.

    PubMed

    Alzahrani, Mohammed A; Gauthier, Robert C

    2015-10-05

    Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.

  11. Reexamination of group velocities of structured light pulses

    NASA Astrophysics Data System (ADS)

    Saari, Peeter

    2018-06-01

    Recently, a series of theoretical and experimental papers on free-space propagation of pulsed Laguerre-Gaussian and Bessel beams was published, which reached contradictory and controversial results about group velocities of such pulses. Depending on the measurement scheme, the group velocity can be defined differently. We analyze how different versions of group velocity are related to the measurable travel time (time of flight) of the pulse between input (source) and output (detecting) planes. The analysis is tested on a theoretical model—the Bessel-Gauss pulse whose propagation path exhibits both subluminal and superluminal regions. Our main conclusion from resolving the contradictions in the literature is that different versions of group velocity are appropriate, depending on whether or not the beam is hollow and how the pulse is recorded in the output plane—integrally or with spatial resolution.

  12. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  13. Precise analytic approximations for the Bessel function J1 (x)

    NASA Astrophysics Data System (ADS)

    Maass, Fernando; Martin, Pablo

    2018-03-01

    Precise and straightforward analytic approximations for the Bessel function J1 (x) have been found. Power series and asymptotic expansions have been used to determine the parameters of the approximation, which is as a bridge between both expansions, and it is a combination of rational and trigonometric functions multiplied with fractional powers of x. Here, several improvements with respect to the so called Multipoint Quasirational Approximation technique have been performed. Two procedures have been used to determine the parameters of the approximations. The maximum absolute errors are in both cases smaller than 0.01. The zeros of the approximation are also very precise with less than 0.04 per cent for the first one. A second approximation has been also determined using two more parameters, and in this way the accuracy has been increased to less than 0.001.

  14. An Operational Definition of Learning

    ERIC Educational Resources Information Center

    Harel, Guershon; Koichu, Boris

    2010-01-01

    An operational definition offered in this paper posits learning as a multi-dimensional and multi-phase phenomenon occurring when individuals attempt to solve what they view as a problem. To model someone's learning accordingly to the definition, it suffices to characterize a particular sequence of that person's disequilibrium-equilibrium phases in…

  15. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  16. Application of musical timbre discrimination features to active sonar classification

    NASA Astrophysics Data System (ADS)

    Young, Victor W.; Hines, Paul C.; Pecknold, Sean

    2005-04-01

    In musical acoustics significant effort has been devoted to uncovering the physical basis of timbre perception. Most investigations into timbre rely on multidimensional scaling (MDS), in which different musical sounds are arranged as points in multidimensional space. The Euclidean distance between points corresponds to the perceptual distance between sounds and the multidimensional axes are linked to measurable properties of the sounds. MDS has identified numerous temporal and spectral features believed to be important to timbre perception. There is reason to believe that some of these features may have wider application in the disparate field of underwater acoustics, since anecdotal evidence suggests active sonar returns from metallic objects sound different than natural clutter returns when auralized by human operators. This is particularly encouraging since attempts to develop robust automatic classifiers capable of target-clutter discrimination over a wide range of operational conditions have met with limited success. Spectral features relevant to target-clutter discrimination are believed to include click-pitch and envelope irregularity; relevant temporal features are believed to include duration, sub-band attack/decay time, and time separation pitch. Preliminary results from an investigation into the role of these timbre features in target-clutter discrimination will be presented. [Work supported by NSERC and GDC.

  17. Measuring change for a multidimensional test using a generalized explanatory longitudinal item response model.

    PubMed

    Cho, Sun-Joo; Athay, Michele; Preacher, Kristopher J

    2013-05-01

    Even though many educational and psychological tests are known to be multidimensional, little research has been done to address how to measure individual differences in change within an item response theory framework. In this paper, we suggest a generalized explanatory longitudinal item response model to measure individual differences in change. New longitudinal models for multidimensional tests and existing models for unidimensional tests are presented within this framework and implemented with software developed for generalized linear models. In addition to the measurement of change, the longitudinal models we present can also be used to explain individual differences in change scores for person groups (e.g., learning disabled students versus non-learning disabled students) and to model differences in item difficulties across item groups (e.g., number operation, measurement, and representation item groups in a mathematics test). An empirical example illustrates the use of the various models for measuring individual differences in change when there are person groups and multiple skill domains which lead to multidimensionality at a time point. © 2012 The British Psychological Society.

  18. Generation of a spiral wave using amplitude masks

    NASA Astrophysics Data System (ADS)

    Anguiano-Morales, Marcelino; Salas-Peimbert, Didia P.; Trujillo-Schiaffino, Gerardo

    2011-09-01

    Optical beams of Bessel-type whose transverse intensity profile remains unchanged under free-space propagation are called nondiffracting beams. Experimentally, Durnin used an annular slit on the focal plane of a convergent lens to generate a Bessel beam. However, this configuration is only one of many that can be used to generate nondiffracting beams. The method can be modified in order to generate a required phase distribution in the beam. In this work, we propose a simple and effective method to generate spiral beams whose intensity remains invariant during propagation using amplitude masks. Laser beams with spiral phase, i.e., vortex beams have attracted great interest because of their possible use in different applications for areas ranging from laser technologies, medicine, and microbiology to the production of light tweezers and optical traps. We present a study of spiral structures generated by the interference between two incomplete annular beams.

  19. Front-surface fabrication of moderate aspect ratio micro-channels in fused silica by single picosecond Gaussian-Bessel laser pulse

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Sanner, Nicolas; Sentis, Marc; Stoian, Razvan; Zhao, Wei; Cheng, Guanghua; Utéza, Olivier

    2018-02-01

    Single-shot Gaussian-Bessel laser beams of 1 ps pulse duration and of 0.9 μm core size and 60 μm depth of focus are used for drilling micro-channels on front side of fused silica in ambient condition. Channels ablated at different pulse energies are fully characterized by AFM and post-processing polishing procedures. We identify experimental energy conditions (typically 1.5 µJ) suitable to fabricate non-tapered channels with mean diameter of 1.2 µm and length of 40 μm while maintaining an utmost quality of the front opening of the channels. In addition, by further applying accurate post-polishing procedure, channels with high surface quality and moderate aspect ratio down to a few units are accessible, which would find interest in the surface micro-structuring of materials, with perspective of further scalability to meta-material specifications.

  20. An integrated single- and two-photon non-diffracting light-sheet microscope

    NASA Astrophysics Data System (ADS)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  1. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, Igor A., E-mail: igor.andriyash@gmail.com; LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex; Lehe, Remi

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas.more » The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.« less

  2. Rayleigh scattering of twisted light by hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Peshkov, A. A.; Volotka, A. V.; Surzhykov, A.; Fritzsche, S.

    2018-02-01

    The elastic Rayleigh scattering of twisted light and, in particular, the polarization (transfer) of the scattered photons have been analyzed within the framework of second-order perturbation theory and Dirac's relativistic equation. Special attention was paid hereby to the scattering on three different atomic targets: single atoms, a mesoscopic (small) target, and a macroscopic (large) target, which are all centered with regard to the beam axis. Detailed calculations of the polarization Stokes parameters were performed for C5 + ions and for twisted Bessel beams. It is shown that the polarization of scattered photons is sensitive to the size of an atomic target and to the helicity, the opening angle, and the projection of the total angular momentum of the incident Bessel beam. These computations indicate more that the Stokes parameters of the (Rayleigh) scattered twisted light may significantly differ from their behavior for an incident plane-wave radiation.

  3. Modified Skvor/Starr approach in the mechanical-thermal noise analysis of condenser microphone.

    PubMed

    Tan, Chee Wee; Miao, Jianmin

    2009-11-01

    Simple analytical expressions of mechanical resistance, such as those formulated by Skvor/Starr, are widely used to describe the mechanical-thermal noise performance of a condenser microphone. However, the Skvor/Starr approach does not consider the location effect of acoustic holes in the backplate and overestimates the total equivalent mechanical resistance and mechanical-thermal noise. In this paper, a modified form of the Skvor/Starr approach is proposed to address this hole location dependent effect. A mode shape factor, which consists of the zero order Bessel and modified Bessel functions, is included in Skvor's mechanical resistance formulation to consider the effect of the hole location in the backplate. With reference to two B&K microphones, the theoretical results of the A-weighted mechanical-thermal noise obtained by the modified Skvor/Starr approach are in good agreements with those reported experimental ones.

  4. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    PubMed

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  5. Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron

    NASA Astrophysics Data System (ADS)

    Afanasev, Andrei; Carlson, Carl E.; Schmiegelow, Christian T.; Schulz, Jonas; Schmidt-Kaler, Ferdinand; Solyanik, Maria

    2018-02-01

    We analyze the multipole excitation of atoms with twisted light, i.e, by a vortex light field that carries orbital angular momentum. A single trapped 40Ca+ ion serves as a localized and positioned probe of the exciting field. We drive the {S}1/2\\to {D}5/2 transition and observe the relative strengths of different transitions, depending on the ion's transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Laguerre-Gauss mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a level of better than 3%. Finally, we propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes in future experiments.

  6. Non-linear optical flow cytometry using a scanned, Bessel beam light-sheet.

    PubMed

    Collier, Bradley B; Awasthi, Samir; Lieu, Deborah K; Chan, James W

    2015-05-29

    Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers.

  7. Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle

    NASA Astrophysics Data System (ADS)

    Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing

    2018-06-01

    Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.

  8. Invited Article: Refined analysis of synchrotron radiation for NIST's SURF III facility

    NASA Astrophysics Data System (ADS)

    Shirley, Eric L.; Furst, Mitchell; Arp, Uwe

    2018-04-01

    We have developed a new method for the exact calculation of synchrotron radiation for the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility, SURF III. Instead of using the Schwinger formula, which is only an approximation, we develop formulae based on Graf's addition theorem for Bessel functions and accurate asymptotic expansions for Hankel functions and Bessel functions. By measuring the radiation intensity profile at two distances from the storage ring, we also confirm an apparent vertical emittance that is consistent with the vertical betatron oscillations that are intentionally introduced to extend beam lifetime by spreading the electron beam spatially. Finally, we determine how much diffraction by beamline apertures enhances the spectral irradiance at an integrating sphere entrance port at the end station. This should eliminate small but treatable components of the uncertainty budget that one should consider when using SURF III or similar synchrotrons as standard, calculable sources of ultraviolet and other radiation.

  9. The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.

    1997-01-01

    The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock.

  10. Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2014-11-01

    The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.

  11. Multiaxial Cyclic Thermoplasticity Analysis with Besseling's Subvolume Method

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1983-01-01

    A modification was formulated to Besseling's Subvolume Method to allow it to use multilinear stress-strain curves which are temperature dependent to perform cyclic thermoplasticity analyses. This method automotically reproduces certain aspects of real material behavior important in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These include the Bauschinger effect, cross-hardening, and memory. This constitutive equation was implemented in a finite element computer program called CYANIDE. Subsequently, classical time dependent plasticity (creep) was added to the program. Since its inception, this program was assessed against laboratory and component testing and engine experience. The ability of this program to simulate AGTE material response characteristics was verified by this experience and its utility in providing data for life analyses was demonstrated. In this area of life analysis, the multiaxial thermoplasticity capabilities of the method have proved a match for the actual AGTE life experience.

  12. Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams.

    PubMed

    Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou

    2015-08-17

    Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90(o)). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.

  13. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  14. Analysis of forward scattering of an acoustical zeroth-order Bessel beam from rigid complicated (aspherical) structures

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chai, Yingbin; Gong, Zhixiong; Marston, Philip L.

    2017-10-01

    The forward scattering from rigid spheroids and endcapped cylinders with finite length (even with a large aspect ratio) immersed in a non-viscous fluid under the illumination of an idealized zeroth-order acoustical Bessel beam (ABB) with arbitrary angles of incidence is calculated and analyzed in the implementation of the T-matrix method (TTM). Based on the present method, the incident coefficients of expansion for the incident ABB are derived and simplifying methods are proposed for the numerical accuracy and computational efficiency according to the geometrical symmetries. A home-made MATLAB software package is constructed accordingly, and then verified and validated for the ABB scattering from rigid aspherical obstacles. Several numerical examples are computed for the forward scattering from both rigid spheroids and finite cylinder, with particular emphasis on the aspect ratios, the half-cone angles of ABBs, the incident angles and the dimensionless frequencies. The rectangular patterns of target strength in the (β, θs) domain (where β is the half-cone angle of the ABB and θs is the scattered polar angle) and local/total forward scattering versus dimensionless frequency are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by rigid spheroids and finite cylinders. The ray diagrams in geometrical models for the scattering in the forward half-space and the optical cross-section theorem help to interpret the scattering mechanisms of ABBs. This research work may provide an alternative for the partial wave series solution under certain circumstances interacting with ABBs for complicated obstacles and benefit some related works in optics and electromagnetics.

  15. Multidimensional fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. M.; Vieira, N.

    2012-11-01

    This work is intended to investigate the multi-dimensional space-time fractional Schrödinger equation of the form (CDt0+αu)(t,x) = iħ/2m(C∇βu)(t,x), with ħ the Planck's constant divided by 2π, m is the mass and u(t,x) is a wave function of the particle. Here (CDt0+α,C∇β are operators of the Caputo fractional derivatives, where α ∈]0,1] and β ∈]1,2]. The wave function is obtained using Laplace and Fourier transforms methods and a symbolic operational form of solutions in terms of the Mittag-Leffler functions is exhibited. It is presented an expression for the wave function and for the quantum mechanical probability density. Using Banach fixed point theorem, the existence and uniqueness of solutions is studied for this kind of fractional differential equations.

  16. Analytical prediction with multidimensional computer programs and experimental verification of the performance, at a variety of operating conditions, of two traveling wave tubes with depressed collectors

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.; Kosmahl, H. G.; Ramins, P.; Stankiewicz, N.

    1979-01-01

    Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required.

  17. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  18. A Multidimensional Data Warehouse for Community Health Centers

    PubMed Central

    Kunjan, Kislaya; Toscos, Tammy; Turkcan, Ayten; Doebbeling, Brad N.

    2015-01-01

    Community health centers (CHCs) play a pivotal role in healthcare delivery to vulnerable populations, but have not yet benefited from a data warehouse that can support improvements in clinical and financial outcomes across the practice. We have developed a multidimensional clinic data warehouse (CDW) by working with 7 CHCs across the state of Indiana and integrating their operational, financial and electronic patient records to support ongoing delivery of care. We describe in detail the rationale for the project, the data architecture employed, the content of the data warehouse, along with a description of the challenges experienced and strategies used in the development of this repository that may help other researchers, managers and leaders in health informatics. The resulting multidimensional data warehouse is highly practical and is designed to provide a foundation for wide-ranging healthcare data analytics over time and across the community health research enterprise. PMID:26958297

  19. A Multidimensional Data Warehouse for Community Health Centers.

    PubMed

    Kunjan, Kislaya; Toscos, Tammy; Turkcan, Ayten; Doebbeling, Brad N

    2015-01-01

    Community health centers (CHCs) play a pivotal role in healthcare delivery to vulnerable populations, but have not yet benefited from a data warehouse that can support improvements in clinical and financial outcomes across the practice. We have developed a multidimensional clinic data warehouse (CDW) by working with 7 CHCs across the state of Indiana and integrating their operational, financial and electronic patient records to support ongoing delivery of care. We describe in detail the rationale for the project, the data architecture employed, the content of the data warehouse, along with a description of the challenges experienced and strategies used in the development of this repository that may help other researchers, managers and leaders in health informatics. The resulting multidimensional data warehouse is highly practical and is designed to provide a foundation for wide-ranging healthcare data analytics over time and across the community health research enterprise.

  20. Analysis of the time structure of synchronization in multidimensional chaotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarenko, A. V., E-mail: avm.science@mail.ru

    2015-05-15

    A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.

  1. Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iachello, F.

    2001-07-30

    An approximate solution at the critical point of the spherical to axially deformed shape phase transition in nuclei is presented. The eigenvalues of the Hamiltonian are expressed in terms of zeros of Bessel functions of irrational order.

  2. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    PubMed

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang

    2017-12-01

    Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.

  4. A Robust Alternative to the Normal Distribution.

    DTIC Science & Technology

    1982-07-07

    for any Purpose of the United States Governuent DEPARTMENT OF STATISTICS t -, STANFORD UIVERSITY I STANFORD, CALIFORNIA A Robust Alternative to the...Stanford University Technical Report No. 3. [5] Bhattacharya, S. K. (1966). A Modified Bessel Function lodel in Life Testing. Metrika 10, 133-144

  5. Optical beams with embedded vortices: building blocks for atom optics and quantum information

    NASA Astrophysics Data System (ADS)

    Chattrapiban, N.; Arakelyan, I.; Mitra, S.; Hill, W. T., III

    2006-05-01

    Laser beams with embedded vortices, Bessel or Laguerre-Gaussian modes, provide a unique opportunity for creating elements for atom optics, entangling photons and, potentially, mediating novel quantum interconnects between photons and matter. High-order Bessel modes, for example, contain intensity voids and propagate nearly diffraction-free for tens of meters. These vortices can be exploited to produce dark channels oriented longitudinally (hollow beams) or transversely to the laser propagation direction. Such channels are ideal for generating networks or circuits to guide and manipulate cold neutral atoms, an essential requirement for realizing future applications associated with atom interferometry, atom lithography and even some neutral atom-based quantum computing architectures. Recently, we divided a thermal cloud of neutral atoms moving within a blue-detuned beam into two clouds with two different momenta by crossing two hollow beams. In this presentation, we will describe these results and discuss the prospects for extending the process to coherent ensembles of matter.

  6. Channel capacity of OAM based FSO communication systems with partially coherent Bessel-Gaussian beams in anisotropic turbulence

    NASA Astrophysics Data System (ADS)

    Peng, Juan; Zhang, Li; Zhang, Kecheng; Ma, Junxian

    2018-07-01

    Based on the Rytov approximation theory, the transmission model of an orbital angular momentum (OAM)-carrying partially coherent Bessel-Gaussian (BG) beams propagating in weak anisotropic turbulence is established. The corresponding analytical expression of channel capacity is presented. Influences of anisotropic turbulence parameters and beam parameters on channel capacity of OAM-based free-space optical (FSO) communication systems are discussed in detail. The results indicate channel capacity increases with increasing of almost all of the parameters except for transmission distance. Raising the values of some parameters such as wavelength, propagation altitude and non-Kolmogorov power spectrum index, would markedly improve the channel capacity. In addition, we evaluate the channel capacity of Laguerre-Gaussian (LG) beams and partially coherent BG beams in anisotropic turbulence. It indicates that partially coherent BG beams are better light sources candidates for mitigating the influences of anisotropic turbulence on channel capacity of OAM-based FSO communication systems.

  7. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2012-01-17

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  8. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-08-24

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.

  9. Simulation of 2D Waves in Circular Membrane Using Excel Spreadsheet with Visual Basic for Teaching Activity

    NASA Astrophysics Data System (ADS)

    Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.

    2018-04-01

    We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity

  10. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating.

    PubMed

    George, Jineesh; Ebenezer, D D; Bhattacharyya, S K

    2010-10-01

    A method is presented to determine the response of a spherical acoustic transducer that consists of a fluid-filled piezoelectric sphere with an elastic coating embedded in infinite fluid to electrical and plane-wave acoustic excitations. The exact spherically symmetric, linear, differential, governing equations are used for the interior and exterior fluids, and elastic and piezoelectric materials. Under acoustic excitation and open circuit boundary condition, the equation governing the piezoelectric sphere is homogeneous and the solution is expressed in terms of Bessel functions. Under electrical excitation, the equation governing the piezoelectric sphere is inhomogeneous and the complementary solution is expressed in terms of Bessel functions and the particular integral is expressed in terms of a power series. Numerical results are presented to illustrate the effect of dimensions of the piezoelectric sphere, fluid loading, elastic coating and internal material losses on the open-circuit receiving sensitivity and transmitting voltage response of the transducer.

  11. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  12. Fourier-Bessel Particle-In-Cell (FBPIC) v0.1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, Remi; Kirchen, Manuel; Jalas, Soeren

    The Fourier-Bessel Particle-In-Cell code is a scientific simulation software for relativistic plasma physics. It is a Particle-In-Cell code whose distinctive feature is to use a spectral decomposition in cylindrical geometry. This decomposition allows to combine the advantages of spectral 3D Cartesian PIC codes (high accuracy and stability) and those of finite-difference cylindrical PIC codes with azimuthal decomposition (orders-of-magnitude speedup when compared to 3D simulations). The code is built on Python and can run both on CPU and GPU (the GPU runs being typically 1 or 2 orders of magnitude faster than the corresponding CPU runs.) The code has the exactmore » same output format as the open-source PIC codes Warp and PIConGPU (openPMD format: openpmd.org) and has a very similar input format as Warp (Python script with many similarities). There is therefore tight interoperability between Warp and FBPIC, and this interoperability will increase even more in the future.« less

  13. Characteristic impedance of a microchannel with two immiscible microfluids

    NASA Astrophysics Data System (ADS)

    Jaramillo Raquejo, Daniela

    2014-05-01

    Consider the case of a microcapillary of radius R with two microfluidic immiscible. The micro-capillary region 0 < r < R1 is occupied by the microfluidic less dense and less viscous; while the microcapillary region R1 <0 < R is occupied by the microfluidic more dense and more viscous. Determine the characteristic impedance of the microcapillary in this case when both microfluidics are driven by the same pressure gradient as the boundary condition at the wall of the microcapillary is of the non-Newtonian slip. The Navier Stokes equation is solved for both microfluidic methods using the Laplace transform. The velocity profiles are expressed in terms of Bessel functions. Similarly, the characteristic impedance of the microcapillary is expressed by a complex formula Bessel functions. Obtain the analytical results are important for designing engineering microdevices with applications in pharmaceutical, food engineering, nanotechnology and biotechnology in general in particular. For future research it is interesting to consider the case of boundary conditions with memory effects.

  14. Anisotropic resonator analysis using the Fourier-Bessel mode solver

    NASA Astrophysics Data System (ADS)

    Gauthier, Robert C.

    2018-03-01

    A numerical mode solver for optical structures that conform to cylindrical symmetry using Faraday's and Ampere's laws as starting expressions is developed when electric or magnetic anisotropy is present. The technique builds on the existing Fourier-Bessel mode solver which allows resonator states to be computed exploiting the symmetry properties of the resonator and states to reduce the matrix system. The introduction of anisotropy into the theoretical frame work facilitates the inclusion of PML borders permitting the computation of open ended structures and a better estimation of the resonator state quality factor. Matrix populating expressions are provided that can accommodate any material anisotropy with arbitrary orientation in the computation domain. Several example of electrical anisotropic computations are provided for rationally symmetric structures such as standard optical fibers, axial Bragg-ring fibers and bottle resonators. The anisotropy present in the materials introduces off diagonal matrix elements in the permittivity tensor when expressed in cylindrical coordinates. The effects of the anisotropy of computed states are presented and discussed.

  15. A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.

  16. An evaluation of the effects of high visual taskload on the separate behaviors involved in complex monitoring performance.

    DOT National Transportation Integrated Search

    1988-01-01

    Operational monitoring situations, in contrast to typical laboratory vigilance tasks, generally involve more than just stimulus detection and recognition. They frequently involve complex multidimensional discriminations, interpretations of significan...

  17. Multi-Dimensional Signal Processing Research Program

    DTIC Science & Technology

    1981-09-30

    applications to real-time image processing and analysis. A specific long-range application is the automated processing of aerial reconnaissance imagery...Non-supervised image segmentation is a potentially im- portant operation in the automated processing of aerial reconnaissance pho- tographs since it

  18. Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis

    USGS Publications Warehouse

    Hong, Y.-S.T.; Rosen, Michael R.; Bhamidimarri, R.

    2003-01-01

    This paper addresses the problem of how to capture the complex relationships that exist between process variables and to diagnose the dynamic behaviour of a municipal wastewater treatment plant (WTP). Due to the complex biological reaction mechanisms, the highly time-varying, and multivariable aspects of the real WTP, the diagnosis of the WTP are still difficult in practice. The application of intelligent techniques, which can analyse the multi-dimensional process data using a sophisticated visualisation technique, can be useful for analysing and diagnosing the activated-sludge WTP. In this paper, the Kohonen Self-Organising Feature Maps (KSOFM) neural network is applied to analyse the multi-dimensional process data, and to diagnose the inter-relationship of the process variables in a real activated-sludge WTP. By using component planes, some detailed local relationships between the process variables, e.g., responses of the process variables under different operating conditions, as well as the global information is discovered. The operating condition and the inter-relationship among the process variables in the WTP have been diagnosed and extracted by the information obtained from the clustering analysis of the maps. It is concluded that the KSOFM technique provides an effective analysing and diagnosing tool to understand the system behaviour and to extract knowledge contained in multi-dimensional data of a large-scale WTP. ?? 2003 Elsevier Science Ltd. All rights reserved.

  19. Some exact solutions of (2+1)-dimensional Yang-Mills equations with the Chern-Simons term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, C. H.; Sia, L. C.; Teh, R.

    1989-07-15

    Two /ital Ansa/$/ital uml/---/ital tze/ for the gauge field potential are given so that the(2+1)-dimensional Yang-Mills equations with the Chern-Simons termcan be solved in terms of the modified Bessel functions and the ellipticfunction respectively.

  20. The Shock and Vibration Digest. Volume 18, Number 6

    DTIC Science & Technology

    1986-06-01

    linear, quadratic, or cubic. Bessel function Reed [124] reported a method for computing solutions were obtained for a truncated pyramid amplitudes of a...86-1198 A. Ragab, Chung C. Fu Seismic Analysis of a Large LMFBR with Flu- Cairo Univ., Giza , Egypt . . *. id-Structure Imteractions Computers Struc

  1. Contributions of Reaction Time Measures to Studying and Understanding the Reading Process.

    DTIC Science & Technology

    1982-01-01

    transmission of nerve impulses to be practically instantaneous (Boring, 1929). Subsequent investigations of the personal equation by astrono - mers suggested...tively slow as Bessel had hypothesized. However, this fact did not intrigue most physiologists at the time, and they, as did the astrono - mers, lost

  2. Glacier Going to the Sun Road Rehabilitation Mitigation Shuttle Bus Evaluation.

    DOT National Transportation Integrated Search

    2008-03-31

    As a mitigation measure during reconstruction of the Going to the Sun Road, Glacier National Park operated a shuttle bus system along three routes during the 2007 season. This report presents a multi-dimensional evaluation of the transportation servi...

  3. Multidimensional Extension of the Generalized Chowla-Selberg Formula

    NASA Astrophysics Data System (ADS)

    Elizalde, E.

    After recalling the precise existence conditions of the zeta function of a pseudodifferential operator, and the concept of reflection formula, an exponentially convergent expression for the analytic continuation of a multidimensional inhomogeneous Epstein-type zeta function of the general form with A the p×p$ matrix of a quadratic form, a p vector and q a constant, is obtained. It is valid on the whole complex s-plane, is exponentially convergent and provides the residua at the poles explicitly. It reduces to the famous formula of Chowla and Selberg in the particular case p=2, , q=0. Some variations of the formula and physical applications are considered.

  4. Posterior Predictive Model Checking in Bayesian Networks

    ERIC Educational Resources Information Center

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  5. Loop-Extended Symbolic Execution on Binary Programs

    DTIC Science & Technology

    2009-03-02

    1434. Based on its speci- fication [35], one valid message format contains 2 fields: a header byte of value 4, followed by a string giving a database ...potentially become expensive. For instance the polyhedron technique [16] requires costly conversion operations on a multi-dimensional abstract representation

  6. The Contributions of Orthographic Processing Factors to the Spelling Achievement of Middle-Elementary Students

    ERIC Educational Resources Information Center

    Radaj, Jane M.

    2013-01-01

    The study examined the contributions of "orthographic processing" factors to the spelling achievement of typically developing middle-elementary students. The researcher framed orthographic processing as a multilinguistic, multidimensional construct involving process factors related to procedural orthographic operations and product…

  7. Theoretical Modeling of Ultrashot Laser Pulse Interaction With Dielectric and Semiconductor Materials

    DTIC Science & Technology

    2010-05-24

    of linearly polarized electromagnetic radiation re- sults in an anisotropic electronic transition rate characterized by field dependence via a Bessel...where Ω ( ~k, ~r ) is the renormalized Rabi frequency defined by: ~Ω ( ~k, ~r ) = µ ( ~k ) ~E (~r, t) + ∑ ~k′ p ( ~k′, ~r ) V s~k−~k′ . (12) The second

  8. Fundamental and dressed annular solitons in saturable nonlinearity with parity–time symmetric Bessel potential

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Cheng; Wei, Ya-Dong; Huang, Xiao-Yuan; Chen, Gui-Hua; Ye, Hai

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61308019), the Guangdong Provincial Natural Science Foundation, China (Grant Nos. 2015A030313650 and 2014A030310262), and the Guangdong Provincial Science and Technology Planning Program, China (Grant No. 2017A010102019).

  9. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  10. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  11. The magnetic particle in a box: Analytic and micromagnetic analysis of probe-localized spin wave modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan, E-mail: adur@physics.osu.edu; Du, Chunhui; Manuilov, Sergei A.

    2015-05-07

    The dipole field from a probe magnet can be used to localize a discrete spectrum of standing spin wave modes in a continuous ferromagnetic thin film without lithographic modification to the film. Obtaining the resonance field for a localized mode is not trivial due to the effect of the confined and inhomogeneous magnetization precession. We compare the results of micromagnetic and analytic methods to find the resonance field of localized modes in a ferromagnetic thin film, and investigate the accuracy of these methods by comparing with a numerical minimization technique that assumes Bessel function modes with pinned boundary conditions. Wemore » find that the micromagnetic technique, while computationally more intensive, reveals that the true magnetization profiles of localized modes are similar to Bessel functions with gradually decaying dynamic magnetization at the mode edges. We also find that an analytic solution, which is simple to implement and computationally much faster than other methods, accurately describes the resonance field of localized modes when exchange fields are negligible, and demonstrating the accessibility of localized mode analysis.« less

  12. Calculation of the second term of the exact Green's function of the diffusion equation for diffusion-controlled chemical reactions

    NASA Astrophysics Data System (ADS)

    Plante, Ianik

    2016-01-01

    The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.

  13. VizieR Online Data Catalog: Photometry of multiple stars at NAOR&ASV in 2015 (Cvetkovic+, 2017)

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Z.; Pavlovic, R.; Boeva, S.

    2018-05-01

    This is the ninth series of CCD observations of double and multiple stars, obtained at the Bulgarian National Astronomical Observatory at Rozhen (NAOR) over five nights. As previously, the CCD camera VersArray 1300B was used, which was attached to the 2 m telescope. For each double or multiple star, five CCD frames in the Johnson B filter and five frames in the Johnson V filter were taken, which enabled us to determine the magnitude difference for these filters. In 2015 at the Astronomical Station at Vidojevica (ASV), over a total of 23 nights, observations were carried out by using the 60 cm telescope with a Cassegrain optical system. This is the fourth observational series at ASV since the work started there in 2011. In the observations we used the Apogee Alta U42 CCD camera whose characteristics can be found in the paper by Cvetkovic et al. (2016, J/AJ/151/58). Every pair was observed five times in the Cousins/Bessel B filter and five times in the Cousins/Bessel V one. (3 data files).

  14. Sound radiation quantities arising from a resilient circular radiator.

    PubMed

    Aarts, Ronald M; Janssen, Augustus J E M

    2009-10-01

    Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction force on the radiator, and the total radiated power arising from a harmonically excited, resilient, flat, circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are either Stenzel functions (1-(sigma/a)2)n, with sigma the radial coordinate on the radiator, or linear combinations of Zernike functions Pn(2(sigma/a)2-1), with Pn the Legendre polynomial of degree n. Both sets of functions give rise, via King's integral for the pressure, to integrals for the quantities of interest involving the product of two Bessel functions. These integrals have a power series expansion and allow an expression in terms of Bessel functions of the first kind and Struve functions. Consequently, many of the results in [M. Greenspan, J. Acoust. Soc. Am. 65, 608-621 (1979)] are generalized and treated in a unified manner. A foreseen application is for loudspeakers. The relation between the radiated power in the near-field on one hand and in the far field on the other is highlighted.

  15. Radiation force on drops and bubbles in acoustic Bessel beams modeled using finite elements

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.; Zhang, Likun

    2009-11-01

    Analysis of the scattering of sound by spheres centered on ordinary and helicoidal (higher-order) Bessel beams makes it possible to evaluate the acoustic radiation force on idealized drops and bubbles centered on the beam [1]. For potential applications it would be necessary to know if a small transverse displacement of the sphere from the beam's axis causes a radiation force that pushes the sphere toward (or away from) the axis of the beam. We applied 3D-finite elements to that problem. To trust FEM calculations of the radiation force with helicoidal beams it was first necessary to verify that analytical values for the axial force are recovered in the on-axis helicoidal case since only the zero-order beam had been previously studied with FEM. Cases have been identified where the force pushes a slightly off-set drop or bubble toward the axis. For some cases the effective potential method of Gorkov may be used to predict the transverse stability of small spheres.[4pt] [1] P. L. Marston, J. Acoust. Soc. Am. 125, 3539-3545 (2009).

  16. Overset grid implementation of the complex Kohn variational method for electron-polyatomic molecule scattering

    NASA Astrophysics Data System (ADS)

    McCurdy, C. William; Lucchese, Robert L.; Greenman, Loren

    2017-04-01

    The complex Kohn variational method, which represents the continuum wave function in each channel using a combination of Gaussians and Bessel or Coulomb functions, has been successful in numerous applications to electron-polyatomic molecule scattering and molecular photoionization. The hybrid basis representation limits it to relatively low energies (< 50 eV) , requires an approximation to exchange matrix elements involving continuum functions, and hampers its coupling to modern electronic structure codes for the description of correlated target states. We describe a successful implementation of the method using completely adaptive overset grids to describe continuum functions, in which spherical subgrids are placed on every atomic center to complement a spherical master grid that describes the behavior at large distances. An accurate method for applying the free-particle Green's function on the grid eliminates the need to operate explicitly with the kinetic energy, enabling a rapidly convergent Arnoldi algorithm for solving linear equations on the grid, and no approximations to exchange operators are made. Results for electron scattering from several polyatomic molecules will be presented. Army Research Office, MURI, WN911NF-14-1-0383 and U. S. DOE DE-SC0012198 (at Texas A&M).

  17. VizieR Online Data Catalog: Bessel (1825) calculation for geodesic measurements (Karney+, 2010)

    NASA Astrophysics Data System (ADS)

    Karney, C. F. F.; Deakin, R. E.

    2010-06-01

    The solution of the geodesic problem for an oblate ellipsoid is developed in terms of series. Tables are provided to simplify the computation. Included here are the tables that accompanied Bessel's paper (with corrections). The tables were crafted by Bessel to be minimize the labor of hand calculations. To this end, he adjusted the intervals in the tables, the number of terms included in the series, and the number of significant digits given so that the final results are accurate to about 8 places. For that reason, the most useful form of the tables is as the PDF file which provides the tables in a layout close to the original. Also provided is the LaTeX source file for the PDF file. Finally, the data has been put into a format so that it can be read easily by computer programs. All the logarithms are in base 10 (common logarithms). The characteristic and the mantissa should be read separately (indicated as x.c and x.m in the file description). Thus the first entry in the table, -4.4, should be parsed as "-4" (the characteristic) and ".4" (the mantissa); the anti-log for this entry is 10(-4+0.4)=2.5e-4. The "Delta" columns give the first difference of the preceding column, i.e., the difference of the preceding column in the next row and the preceding column in the current row. In the printed tables these are expressed as "units in the last place" and the differences are of the rounded representations in the preceding columns (to minimize interpolation errors). In table1.dat these are given scaled to a match the format used for the preceding column, as indicated by the units given for these columns. The unit log(") (in the description within square brackets [arcsec]) means the logarithm of a quantity expressed in arcseconds. (3 data files).

  18. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds.

    PubMed

    Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

  19. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds

    PubMed Central

    Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds. PMID:27974884

  20. Two-D results on human operator perception

    NASA Technical Reports Server (NTRS)

    Siapkara, A. A.; Sheridan, T. B.

    1981-01-01

    The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.

  1. Testlet-Based Multidimensional Adaptive Testing.

    PubMed

    Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen

    2016-01-01

    Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range.

  2. Minimal disease detection of B-cell lymphoproliferative disorders by flow cytometry: multidimensional cluster analysis.

    PubMed

    Duque, Ricardo E

    2012-04-01

    Flow cytometric analysis of cell suspensions involves the sequential 'registration' of intrinsic and extrinsic parameters of thousands of cells in list mode files. Thus, it is almost irresistible to describe phenomena in numerical terms or by 'ratios' that have the appearance of 'accuracy' due to the presence of numbers obtained from thousands of cells. The concepts involved in the detection and characterization of B cell lymphoproliferative processes are revisited in this paper by identifying parameters that, when analyzed appropriately, are both necessary and sufficient. The neoplastic process (cluster) can be visualized easily because the parameters that distinguish it form a cluster in multidimensional space that is unique and distinguishable from neighboring clusters that are not of diagnostic interest but serve to provide a background. For B cell neoplasia it is operationally necessary to identify the multidimensional space occupied by a cluster whose kappa:lambda ratio is 100:0 or 0:100. Thus, the concept of kappa:lambda ratio is without meaning and would not detect B cell neoplasia in an unacceptably high number of cases.

  3. Concept of Operations for RCO SPO

    NASA Technical Reports Server (NTRS)

    Matessa, Michael; Strybel, Thomas; Vu, Kim; Battiste, Vernol; Schnell, Thomas

    2017-01-01

    Reduced crew operations (RCO) refers to the reduction of crew members flying long-haul or military operations with more than one pilot onboard. Single pilot operations (SPO) refers to flying a commercial transport aircraft with only one pilot on board the aircraft, assisted by advanced onboard automation andor ground operators providing piloting support services. Properly implemented, RCO/SPO could provide operating cost savings while maintaining a level of safety no less than conventional two-pilot commercial operations. A concept of operations (ConOps) for any paradigm describes the characteristics of its various components and their integration in a multi-dimensional design space. This paper presents key options for humanautomation function allocation being considered by NASA in its ongoing development of RCO/SPO ConOps.

  4. OAS - Organization of American States: Democracy for peace, security, and

    Science.gov Websites

    Information Offices in the Member States Our History Logo Authorities Services Legal Protocol Topics A Access Knowledge-based Society L Labor Legal Services M MACCIH MAPP Migration Multidimensional Security O Estate Strategy Financial Reports Annual Operating Plan Legal Services Ombudsperson Strategic Plan

  5. Dimensions of Immigrant Integration and Civic Engagement: Issues and Exemplary Programs

    ERIC Educational Resources Information Center

    Wrigley, Heide Spruck

    2012-01-01

    Immigrant integration is a multidimensional process that involves both newcomers and the receiving community. Although the United States does not have a coherent policy of immigrant integration, several city- and state-wide efforts support immigrant integration, as do individual initiatives operating across states. In this article, the author…

  6. Shapes of cometary isophotes with Maxwellian distribution of initial velocities for neutral molecules

    NASA Astrophysics Data System (ADS)

    Žáček, P.; Wolf, M.

    2017-10-01

    This paper contains necessary modification of Bessel's equations for the axial cometary syndyne. This correction provides the accurate values of molecular acceleration in a cometary tail and precise values of decay constants for radiating molecules and their lifetimes. In consequence the hypothesis of the predissociation of molecules seems to be useless.

  7. Mixed boundary-value problem for an orthotropic rectangular strip with variable coefficients of elasticity

    NASA Astrophysics Data System (ADS)

    Sargsyan, M. Z.; Poghosyan, H. M.

    2018-04-01

    A dynamical problem for a rectangular strip with variable coefficients of elasticity is solved by an asymptotic method. It is assumed that the strip is orthotropic, the elasticity coefficients are exponential functions of y, and mixed boundary conditions are posed. The solution of the inner problem is obtained using Bessel functions.

  8. Pedagogical Implications in the Thermal Analysis of Uniform Annular Fins: Alternative Analytic Solutions by Series.

    ERIC Educational Resources Information Center

    Campo, Antonio; Rodriguez, Franklin

    1998-01-01

    Presents two alternative computational procedures for solving the modified Bessel equation of zero order: the Frobenius method, and the power series method coupled with a curve fit. Students in heat transfer courses can benefit from these alternative procedures; a course on ordinary differential equations is the only mathematical background that…

  9. On nonsingular potentials of Cox-Thompson inversion scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmai, Tamas; Apagyi, Barnabas

    2010-02-15

    We establish a condition for obtaining nonsingular potentials using the Cox-Thompson inverse scattering method with one phase shift. The anomalous singularities of the potentials are avoided by maintaining unique solutions of the underlying Regge-Newton integral equation for the transformation kernel. As a by-product, new inequality sequences of zeros of Bessel functions are discovered.

  10. Implementation of Soft X-ray Tomography on NSTX

    NASA Astrophysics Data System (ADS)

    Tritz, K.; Stutman, D.; Finkenthal, M.; Granetz, R.; Menard, J.; Park, W.

    2003-10-01

    A set of poloidal ultrasoft X-ray arrays is operated by the Johns Hopkins group on NSTX. To enable MHD mode analysis independent of the magnetic reconstruction, the McCormick-Granetz tomography code developed at MIT is being adapted to the NSTX geometry. Tests of the code using synthetic data show that that present X-ray system is adequate for m=1 tomography. In addition, we have found that spline basis functions may be better suited than Bessel functions for the reconstruction of radially localized phenomena in NSTX. The tomography code was also used to determine the necessary array expansion and optimal array placement for the characterization of higher m modes (m=2,3) in the future. Initial reconstruction of experimental soft X-ray data has been performed for m=1 internal modes, which are often encountered in high beta NSTX discharges. The reconstruction of these modes will be compared to predictions from the M3D code and magnetic measurements.

  11. Electron transport in the stochastic fields of the reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Punjabi, Alkesh

    1996-08-01

    We employ the Monte Carlo method for the calculation of anomalous transport developed by Punjabi and Boozer to calculate the particle diffusion coefficient for electrons in the stochastic magnetic fields of the reversed-field pinch (RFP). in the Monte Carlo calculations represented here, the transport mechanism is the loss of magnetic surfaces due to resistive perturbations. The equilibrium magnetic fields are represented by the Bessel function model for the RFP. The diffusion coefficient D is calculated as a function of a, the amplitude of the perturbation. We see three regimes as the amplitude of the tearing modes is increased: the Rechester—Rosenbluth regime where D scales as a2 the anomalous regime where D scales more rapidly than a2 and the Mynick—Krornmes regime where D scales more slowly than a2. Inclusion of the effects of loop voltage on the particle drift orbits in the RFP does not affect the intervals in the amplitude a where these regimes operate.

  12. Giftedness and Genetics: The Emergenic-Epigenetic Model and Its Implications

    ERIC Educational Resources Information Center

    Simonton, Dean Keith

    2005-01-01

    The genetic endowment underlying giftedness may operate in a far more complex manner than often expressed in most theoretical accounts of the phenomenon. First, an endowment may be emergenic. That is, a gift may consist of multiple traits (multidimensional) that are inherited in a multiplicative (configurational), rather than an additive (simple)…

  13. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turbiner, Alexander; Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado, Postal 70-543, 04510 Mexico, D. F.

    1996-02-20

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.

  14. Exploring Unidimensional Proficiency Classification Accuracy from Multidimensional Data in a Vertical Scaling Context

    ERIC Educational Resources Information Center

    Kroopnick, Marc Howard

    2010-01-01

    When Item Response Theory (IRT) is operationally applied for large scale assessments, unidimensionality is typically assumed. This assumption requires that the test measures a single latent trait. Furthermore, when tests are vertically scaled using IRT, the assumption of unidimensionality would require that the battery of tests across grades…

  15. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  16. Multidimensional Generalized Functions in Aeroacoustics and Fluid Mechanics. Part 1; Basic Concepts and Operations

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun; Myers, Michael K.

    2011-01-01

    This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.

  17. Python Winding Itself Around Datacubes: How to Access Massive Multi-Dimensional Arrays in a Pythonic Way

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Misev, Dimitar; Baumann, Peter

    2017-04-01

    While python has developed into the lingua franca in Data Science there is often a paradigm break when accessing specialized tools. In particular for one of the core data categories in science and engineering, massive multi-dimensional arrays, out-of-memory solutions typically employ their own, different models. We discuss this situation on the example of the scalable open-source array engine, rasdaman ("raster data manager") which offers access to and processing of Petascale multi-dimensional arrays through an SQL-style array query language, rasql. Such queries are executed in the server on a storage engine utilizing adaptive array partitioning and based on a processing engine implementing a "tile streaming" paradigm to allow processing of arrays massively larger than server RAM. The rasdaman QL has acted as blueprint for forthcoming ISO Array SQL and the Open Geospatial Consortium (OGC) geo analytics language, Web Coverage Processing Service, adopted in 2008. Not surprisingly, rasdaman is OGC and INSPIRE Reference Implementation for their "Big Earth Data" standards suite. Recently, rasdaman has been augmented with a python interface which allows to transparently interact with the database (credits go to Siddharth Shukla's Master Thesis at Jacobs University). Programmers do not need to know the rasdaman query language, as the operators are silently transformed, through lazy evaluation, into queries. Arrays delivered are likewise automatically transformed into their python representation. In the talk, the rasdaman concept will be illustrated with the help of large-scale real-life examples of operational satellite image and weather data services, and sample python code.

  18. Double Fourier Harmonic Balance Method for Nonlinear Oscillators by Means of Bessel Series

    DTIC Science & Technology

    2014-10-16

    at the same angle to the horizontal, so that the two ramps form a V-shape. In the absence of rolling friction or air drag , the ball rolls a distance...Marichev, Integrals and Series Volume 2: Special Functions, translated by N.M. Queen (Gordon & Breach, New York, 1986). [9] V. Méndez, C. Sans, D

  19. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    PubMed

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.

  20. Multiple Aptitude Normative Intelligence Testing that Distinguishes U.S. Air Force MQ-1 Predator Sensor Operators from Peers in the Civilian General Population and AC-130 Gunship Sensor Operators

    DTIC Science & Technology

    2011-07-01

    intellectual ability. It is fashioned after the Wechsler Adult Intelligence Scale (Ref 11), which is the most widely used, individually administered test...Multidimensional Aptitude Battery-II Manual, Sigma Assessment Systems Inc., London, 2003. 11. Wechsler D, Wechsler Adult Intelligence Scale® – Third...AFRL-SA-WP-TR-2011-0006 MULTIPLE APTITUDE NORMATIVE INTELLIGENCE TESTING THAT DISTINGUISHES U.S. AIR FORCE MQ-1 PREDATOR SENSOR

  1. Analytical solution of the Poisson-Nernst-Planck equations for an electrochemical system close to electroneutrality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabst, M., E-mail: M.Pabst@fz-juelich.de

    2014-06-14

    Single charge densities and the potential are used to describe models of electrochemical systems. These quantities can be calculated by solving a system of time dependent nonlinear coupled partial differential equations, the Poisson-Nernst-Planck equations. Assuming small deviations from the electroneutral equilibrium, the linearized and decoupled equations are solved for a radial symmetric geometry, which represents the interface between a cell and a sensor device. The densities and the potential are expressed by Fourier-Bessels series. The system considered has a ratio between the Debye-length and its geometric dimension on the order of 10{sup −4} so the Fourier-Bessel series can be approximatedmore » by elementary functions. The time development of the system is characterized by two time constants, τ{sub c} and τ{sub g}. The constant τ{sub c} describes the approach to the stationary state of the total charge and the potential. τ{sub c} is several orders of magnitude smaller than the geometry-dependent constant τ{sub g}, which is on the order of 10 ms characterizing the transition to the stationary state of the single ion densities.« less

  2. Bessel Fourier orientation reconstruction: an analytical EAP reconstruction using multiple shell acquisitions in diffusion MRI.

    PubMed

    Hosseinbor, Ameer Pasha; Chung, Moo K; Wu, Yu-Chien; Alexander, Andrew L

    2011-01-01

    The estimation of the ensemble average propagator (EAP) directly from q-space DWI signals is an open problem in diffusion MRI. Diffusion spectrum imaging (DSI) is one common technique to compute the EAP directly from the diffusion signal, but it is burdened by the large sampling required. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed. One, in particular, is Diffusion Propagator Imaging (DPI) which is based on the Laplace's equation estimation of diffusion signal for each shell acquisition. Viewed intuitively in terms of the heat equation, the DPI solution is obtained when the heat distribution between temperatuere measurements at each shell is at steady state. We propose a generalized extension of DPI, Bessel Fourier Orientation Reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition. That is, the heat distribution between shell measurements is no longer at steady state. In addition to being analytical, the BFOR solution also includes an intrinsic exponential smootheing term. We illustrate the effectiveness of the proposed method by showing results on both synthetic and real MR datasets.

  3. Effect of turbulence on the dissipation of the space-charge wave in a bounded turbulent plasma column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less

  4. Analytical model of contamination during the drying of cylinders of jamonable muscle

    NASA Astrophysics Data System (ADS)

    Montoya Arroyave, Isabel

    2014-05-01

    For a cylinder of jamonable muscle of radius R and length much greater than R; considering that the internal resistance to the transfer of water is much greater than the external and that the internal resistance is one certain function of the distance to the axis; the distribution of the punctual moisture in the jamonable cylinder is analytically computed in terms of the Bessel's functions. During the process of drying and salted the jamonable cylinder is sensitive to contaminate with bacterium and protozoa that come from the environment. An analytical model of contamination is presents using the diffusion equation with sources and sinks, which is solve by the method of the Laplace transform, the Bromwich integral, the residue theorem and some special functions like Bessel and Heun. The critical times intervals of drying and salted are computed in order to obtain the minimum possible contamination. It is assumed that both external moisture and contaminants decrease exponentially with time. Contaminants profiles are plotted and discussed some possible techniques of contaminants detection. All computations are executed using Computer Algebra, specifically Maple. It is said that the results are important for the food industry and it is suggested some future research lines.

  5. Conformal mapping for the Helmholtz equation: acoustic wave scattering by a two dimensional inclusion with irregular shape in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui

    2012-02-01

    The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid. © 2012 Acoustical Society of America

  6. An architecture for consolidating multidimensional time-series data onto a common coordinate grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shippert, Tim; Gaustad, Krista

    Consolidating measurement data for use by data models or in inter-comparison studies frequently requires transforming the data onto a common grid. Standard methods for interpolating multidimensional data are often not appropriate for data with non-homogenous dimensionality, and are hard to implement in a consistent manner for different datastreams. These challenges are increased when dealing with the automated procedures necessary for use with continuous, operational datastreams. In this paper we introduce a method of applying a series of one-dimensional transformations to merge data onto a common grid, examine the challenges of ensuring consistent application of data consolidation methods, present a frameworkmore » for addressing those challenges, and describe the implementation of such a framework for the Atmospheric Radiation Measurement (ARM) program.« less

  7. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  8. Multi-dimensional grating interferometer based on fibre-fed measurement heads arranged in Littrow configuration

    NASA Astrophysics Data System (ADS)

    Šiaudinytė, Lauryna; Molnar, Gabor; Köning, Rainer; Flügge, Jens

    2018-05-01

    Industrial application versatility of interferometric encoders increases the urge to measure several degrees of freedom. A novel grating interferometer containing a commercially available, minimized Michelson interferometer and three fibre-fed measurement heads is presented in this paper. Moreover, the arrangement is designed for simultaneous displacement measurements in two perpendicular planes. In the proposed setup, beam splitters are located in the fibre heads, therefore the grating is separated from the light source and the photo detector, which influence measurement results by generated heat. The operating principle of the proposed system as well as error sources influencing measurement results are discussed in this paper. Further, the benefits and shortcomings of the setup are presented. A simple Littrow-configuration-based design leads to a compact-size interferometric encoder suitable for multidimensional measurements.

  9. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  10. Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume

    NASA Astrophysics Data System (ADS)

    Xiao, Mengting; Li, Cheng

    2018-01-01

    Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.

  11. The assessment of function. Part II: clinical perspective of a javelin thrower with low back and groin pain

    PubMed Central

    Reiman, Michael P; Manske, Robert C

    2012-01-01

    Assessment of an individual’s functional ability can be complex. This assessment should also be individualized and adaptable to changes in functional status. In the first article of this series, we operationally defined function, discussed the construct of function, examined the evidence as it relates to assessment methods of various aspects of function, and explored the multi-dimensional nature of the concept of function. In this case report, we aim to demonstrate the utilization of a multi-dimensional assessment method (functional performance testing) as it relates to a high-level athlete presenting with pain in the low back and groin. It is our intent to demonstrate how the clinician should continually adapt their assessment dependent on the current functional abilities of the patients. PMID:23633887

  12. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    NASA Astrophysics Data System (ADS)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  13. Testlet-Based Multidimensional Adaptive Testing

    PubMed Central

    Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen

    2016-01-01

    Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range. PMID:27917132

  14. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming.

    PubMed

    Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph

    2015-05-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed.

  15. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming

    PubMed Central

    Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph

    2014-01-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed. PMID:26052168

  16. PCA feature extraction for change detection in multidimensional unlabeled data.

    PubMed

    Kuncheva, Ludmila I; Faithfull, William J

    2014-01-01

    When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.

  17. Detection and estimation of defects in a circular plate using operational deflection shapes

    NASA Astrophysics Data System (ADS)

    Pai, Perngjin F.; Oh, Yunje; Kim, Byeong-Seok

    2002-06-01

    This paper investigates dynamic characteristics (mode shapes and natural frequencies) and defect detection of circular plates using a scanning laser vibrometer. Exact dynamic characteristics of a circular aluminum plate having a clamped inner rim and a free outer rim are obtained using two methods; one uses Bessel functions and the other uses a multiple shooting method. An in-house finite element code GESA is also used to analyze the circular plate using the DKT plate element. Numerical results show that some reports in the literature are incorrect and that high-frequency Operational Deflection Shapes (ODSs) are needed in order to locate small defects. Detection of two defects in the circular aluminum plate is experimentally studied using the distributions of RMS velocities under broadband periodic chirp excitations. RMS velocities of ODSs, symmetry breaking of ODSs, splitting of natural frequencies and ODSs, and a Boundary Effect Detection (BED) method. The BED method is non-destructive and model-independent; it processes experimental ODSs to reveal extra local boundary effects caused by defects to reveal locations of defects. Experimental results show that small defects in circular plates can be pinpointed by these approaches. Moreover, a new concept of using the balance of elastic and kinetic energies within a mode cell for detecting defects in two- dimensional structures of irregular shapes is proposed.

  18. A constrained regularization method for inverting data represented by linear algebraic or integral equations

    NASA Astrophysics Data System (ADS)

    Provencher, Stephen W.

    1982-09-01

    CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.

  19. Nonlinear Waves.

    DTIC Science & Technology

    1988-02-01

    in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations

  20. Efficacious Action and Social Approval as Interacting Dimensions of Self-Esteem: A Tentative Formulation Through Construct Validation

    ERIC Educational Resources Information Center

    Franks, David D.; Marolla, Joseph

    1976-01-01

    A theoretical and operational rationale is presented for the development of multidimensional measures of self-esteem. Self-esteem is conceptualized as a function of two processes reflected appraisals of significant others in one's social environment in the form of social approval, and the individual's feelings of efficacy and competence derived…

  1. Combination of Logical Conditions and Arithmetic Operations to Assign a Mark to a Course Based on Multidimensional Learning Outcomes

    ERIC Educational Resources Information Center

    Sérandour, Guillaume; Illanes, Alfredo; Maturana, Jorge; Cádiz, Janet

    2016-01-01

    Assessment is a notorious source of preoccupation for faculty and university governing bodies, especially when an institution initiates curricular reforms which shift the programme learning outcomes for knowledge to competencies. One obstacle to acceptance arises from a culture of quantitative assessment (often represented by a single mark), which…

  2. Validity Study in Multidimensional Latent Space and Efficient Computerized Adaptive Testing. Final Report.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    This paper is the final report of a multi-year project sponsored by the Office of Naval Research (ONR) in 1987 through 1990. The main objectives of the research summarized were to: investigate the non-parametric approach to the estimation of the operating characteristics of discrete item responses; revise and strengthen the package computer…

  3. Design Requirements for Unmanned Rotorcraft Used in Low-Risk Concepts of Operation

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Verstynen, Harry A.

    2016-01-01

    This technical report presents the results of the second of two research studies on design and performance requirements supporting airworthiness certification of midrange unmanned aircraft systems (UAS) intended for commercial use. The two studies focused attention on UAS in the middle of the multidimensional spectrum of UAS; that is, UAS with attributes and capabilities exceeding the criteria to operate under Part 107 of the Federal Aviation Regulations (FARs), but without the design or operational capabilities to comply with the airworthiness standards for commercially-operated manned aircraft. The goal of the two studies was to help address the gap in airworthiness standards for some UAS that fall between the extremes.

  4. Synthesis of generalized surface plasmon beams

    NASA Astrophysics Data System (ADS)

    Martinez-Niconoff, G.; Munoz-Lopez, J.; Martinez-Vara, P.

    2009-08-01

    Surface plasmon modes can be considered as the analogous to plane waves for homogeneous media. The extension to partially coherent surface plasmon beams is obtained by means of the incoherent superposition of the interference between surface plasmon modes whose profile is controlled associating a probability density function to the structural parameters implicit in their representation. We show computational simulations for cosine, Bessel, gaussian and dark hollow surface plasmon beams.

  5. Multi-Mode Analysis of Dual Ridged Waveguide Systems for Material Characterization

    DTIC Science & Technology

    2015-09-17

    characterization is the process of determining the dielectric, magnetic, and magnetoelectric properties of a material. For simple (i.e., linear ...field expressions in terms of elementary functions (sines, cosines, exponentials and Bessel functions) and corresponding propagation constants of the...with material parameters 0 and µ0. • The MUT is simple ( linear , isotropic, homogeneous), and the sample has a uniform thickness. • The waveguide

  6. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    PubMed

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it possible to distinguish cancerous cells from normal cells. A typical example of liver distinguished from gray matter, white matter and kidney is demonstrated. Bessel functions and properties are specifically needed to show the direct effect of the instantaneous velocity on the NMR signal originating from normal and abnormal tissues.

  7. An architecture for consolidating multidimensional time-series data onto a common coordinate grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shippert, Tim; Gaustad, Krista

    In this paper, consolidating measurement data for use by data models or in inter-comparison studies frequently requires transforming the data onto a common grid. Standard methods for interpolating multidimensional data are often not appropriate for data with non-homogenous dimensionality, and are hard to implement in a consistent manner for different datastreams. In addition, these challenges are increased when dealing with the automated procedures necessary for use with continuous, operational datastreams. In this paper we introduce a method of applying a series of one-dimensional transformations to merge data onto a common grid, examine the challenges of ensuring consistent application of datamore » consolidation methods, present a framework for addressing those challenges, and describe the implementation of such a framework for the Atmospheric Radiation Measurement (ARM) program.« less

  8. Development of a multidimensional gamma-spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Jonathan L.; Cantaloub, Michael G.; Mayer, Michael F.

    2017-02-28

    A high-sensitivity multidimensional gamma-spectrometer is being developed within the shallow underground laboratory at Pacific Northwest National Laboratory (PNNL, USA). The system consists of two Broad Energy Germanium (BEGe) detectors, inside a low-background lead and copper shield, fitted with a cosmic veto background reduction system. The detector has advanced functionality, including operation in single or combined detector mode, with reductions in the cosmic background by 49.6% and Compton suppression of 6.5%. For selected radionuclides this provides an overall MDA improvement of 52.7%. Utilizing both detectors for simultaneous measurements of thermally irradiated highly enriched uranium (HEU) increased peak identification and reduced uncertaintymore » by 27.6%. The design uses commercially off-the-shelf (COTS) components, for which the configuration is described, to provide a practical and powerful solution for low-level nuclear measurements.« less

  9. An architecture for consolidating multidimensional time-series data onto a common coordinate grid

    DOE PAGES

    Shippert, Tim; Gaustad, Krista

    2016-12-16

    In this paper, consolidating measurement data for use by data models or in inter-comparison studies frequently requires transforming the data onto a common grid. Standard methods for interpolating multidimensional data are often not appropriate for data with non-homogenous dimensionality, and are hard to implement in a consistent manner for different datastreams. In addition, these challenges are increased when dealing with the automated procedures necessary for use with continuous, operational datastreams. In this paper we introduce a method of applying a series of one-dimensional transformations to merge data onto a common grid, examine the challenges of ensuring consistent application of datamore » consolidation methods, present a framework for addressing those challenges, and describe the implementation of such a framework for the Atmospheric Radiation Measurement (ARM) program.« less

  10. Spectral factorization of wavefields and wave operators

    NASA Astrophysics Data System (ADS)

    Rickett, James Edward

    Spectral factorization is the problem of finding a minimum-phase function with a given power spectrum. Minimum phase functions have the property that they are causal with a causal (stable) inverse. In this thesis, I factor multidimensional systems into their minimum-phase components. Helical boundary conditions resolve any ambiguities over causality, allowing me to factor multi-dimensional systems with conventional one-dimensional spectral factorization algorithms. In the first part, I factor passive seismic wavefields recorded in two-dimensional spatial arrays. The result provides an estimate of the acoustic impulse response of the medium that has higher bandwidth than autocorrelation-derived estimates. Also, the function's minimum-phase nature mimics the physics of the system better than the zero-phase autocorrelation model. I demonstrate this on helioseismic data recorded by the satellite-based Michelson Doppler Imager (MDI) instrument, and shallow seismic data recorded at Long Beach, California. In the second part of this thesis, I take advantage of the stable-inverse property of minimum-phase functions to solve wave-equation partial differential equations. By factoring multi-dimensional finite-difference stencils into minimum-phase components, I can invert them efficiently, facilitating rapid implicit extrapolation without the azimuthal anisotropy that is observed with splitting approximations. The final part of this thesis describes how to calculate diagonal weighting functions that approximate the combined operation of seismic modeling and migration. These weighting functions capture the effects of irregular subsurface illumination, which can be the result of either the surface-recording geometry, or focusing and defocusing of the seismic wavefield as it propagates through the earth. Since they are diagonal, they can be easily both factored and inverted to compensate for uneven subsurface illumination in migrated images. Experimental results show that applying these weighting functions after migration leads to significantly improved estimates of seismic reflectivity.

  11. Multidimensional poverty, household environment and short-term morbidity in India.

    PubMed

    Dehury, Bidyadhar; Mohanty, Sanjay K

    2017-01-01

    Using the unit data from the second round of the Indian Human Development Survey (IHDS-II), 2011-2012, which covered 42,152 households, this paper examines the association between multidimensional poverty, household environmental deprivation and short-term morbidities (fever, cough and diarrhoea) in India. Poverty is measured in a multidimensional framework that includes the dimensions of education, health and income, while household environmental deprivation is defined as lack of access to improved sanitation, drinking water and cooking fuel. A composite index combining multidimensional poverty and household environmental deprivation has been computed, and households are classified as follows: multidimensional poor and living in a poor household environment, multidimensional non-poor and living in a poor household environment, multidimensional poor and living in a good household environment and multidimensional non-poor and living in a good household environment. Results suggest that about 23% of the population belonging to multidimensional poor households and living in a poor household environment had experienced short-term morbidities in a reference period of 30 days compared to 20% of the population belonging to multidimensional non-poor households and living in a poor household environment, 19% of the population belonging to multidimensional poor households and living in a good household environment and 15% of the population belonging to multidimensional non-poor households and living in a good household environment. Controlling for socioeconomic covariates, the odds of short-term morbidity was 1.47 [CI 1.40-1.53] among the multidimensional poor and living in a poor household environment, 1.28 [CI 1.21-1.37] among the multidimensional non-poor and living in a poor household environment and 1.21 [CI 1.64-1.28] among the multidimensional poor and living in a good household environment compared to the multidimensional non-poor and living in a good household environment. Results are robust across states and hold good for each of the three morbidities: fever, cough and diarrhoea. This establishes that along with poverty, household environmental conditions have a significant bearing on short-term morbidities in India. Public investment in sanitation, drinking water and cooking fuel can reduce the morbidity and improve the health of the population.

  12. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications.

    PubMed

    Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin

    2012-08-01

    Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.

  13. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  14. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turbiner, A.

    1996-02-01

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}

  15. LOX/Methane Main Engine Glow Plug Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Ajmani, Kumud

    2009-01-01

    Ignition data for tests with a LOX/methane igniter that utilized a glow plug as the ignition source are presented. The tests were conducted in a vacuum can with thermally conditioned (cold) hardware. Data showing the effects of glow plug geometry, type, and igniter operating conditions are discussed. Comparisons between experimental results and multidimensional, transient computer models are also made.

  16. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.; Cho, K.W.

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less

  17. Multidimensional chromatography in food analysis.

    PubMed

    Herrero, Miguel; Ibáñez, Elena; Cifuentes, Alejandro; Bernal, Jose

    2009-10-23

    In this work, the main developments and applications of multidimensional chromatographic techniques in food analysis are reviewed. Different aspects related to the existing couplings involving chromatographic techniques are examined. These couplings include multidimensional GC, multidimensional LC, multidimensional SFC as well as all their possible combinations. Main advantages and drawbacks of each coupling are critically discussed and their key applications in food analysis described.

  18. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  19. Development and Testing of a Multiple Frequency Continuous Wave Radar for Target Detection and Classification

    DTIC Science & Technology

    2007-03-01

    1 2’ VIH " 1 ’ 󈧏) (34) where is the modified Bessel function of zero order. Here is the conditional variance and is the conditional probability...10, the probability of detection is the area under the signal-plus-noise curve above the detection threshold co M vF (V 2+ A2)]10 ( vAPd= fnp~ju,( vIH

  20. Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems

    DTIC Science & Technology

    2014-10-13

    function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer

  1. Acoustic metasurface for refracted wave manipulation

    NASA Astrophysics Data System (ADS)

    Han, Li-Xiang; Yao, Yuan-Wei; Zhang, Xin; Wu, Fu-Gen; Dong, Hua-Feng; Mu, Zhong-Fei; Li, Jing-bo

    2018-02-01

    Here we present a design of a transmitted acoustic metasurface based on a single row of Helmholtz resonators with varying geometric parameters. The proposed metasurface can not only steer an acoustic beam as expected from the generalized Snell's law of refraction, but also exhibits various interesting properties and potential applications such as insulation of two quasi-intersecting transmitted sound waves, ultrasonic Bessel beam generator, frequency broadening effect of anomalous refraction and focusing.

  2. Generation of light-sheet at the end of multimode fibre (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Plöschner, Martin; Kollárová, Véra; Dostál, Zbyněk.; Nylk, Jonathan; Barton-Owen, Thomas; Ferrier, David E. K.; Chmelik, Radim; Dholakia, Kishan; Cizmár, TomáÅ.¡

    2017-02-01

    Light-sheet fluorescence microscopy is quickly becoming one of the cornerstone imaging techniques in biology as it provides rapid, three-dimensional sectioning of specimens at minimal levels of phototoxicity. It is very appealing to bring this unique combination of imaging properties into an endoscopic setting and be able to perform optical sectioning deep in tissues. Current endoscopic approaches for delivery of light-sheet illumination are based on single-mode optical fibre terminated by cylindrical gradient index lens. Such configuration generates a light-sheet plane that is axially fixed and a mechanical movement of either the sample or the endoscope is required to acquire three-dimensional information about the sample. Furthermore, the axial resolution of this technique is limited to 5um. The delivery of the light-sheet through the multimode fibre provides better axial resolution limited only by its numerical aperture, the light-sheet is scanned holographically without any mechanical movement, and multiple advanced light-sheet imaging modalities, such as Bessel and structured illumination Bessel beam, are intrinsically supported by the system due to the cylindrical symmetry of the fibre. We discuss the holographic techniques for generation of multiple light-sheet types and demonstrate the imaging on a sample of fluorescent beads fixed in agarose gel, as well as on a biological sample of Spirobranchus Lamarcki.

  3. Characterization of microwave plasma in a multicusp using 2D emission based tomography: Bessel modes and wave absorption

    NASA Astrophysics Data System (ADS)

    Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat

    2017-06-01

    A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.

  4. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging.

    PubMed

    Thériault, Gabrielle; Cottet, Martin; Castonguay, Annie; McCarthy, Nathalie; De Koninck, Yves

    2014-01-01

    Two-photon microscopy has revolutionized functional cellular imaging in tissue, but although the highly confined depth of field (DOF) of standard set-ups yields great optical sectioning, it also limits imaging speed in volume samples and ease of use. For this reason, we recently presented a simple and retrofittable modification to the two-photon laser-scanning microscope which extends the DOF through the use of an axicon (conical lens). Here we demonstrate three significant benefits of this technique using biological samples commonly employed in the field of neuroscience. First, we use a sample of neurons grown in culture and move it along the z-axis, showing that a more stable focus is achieved without compromise on transverse resolution. Second, we monitor 3D population dynamics in an acute slice of live mouse cortex, demonstrating that faster volumetric scans can be conducted. Third, we acquire a stereoscopic image of neurons and their dendrites in a fixed sample of mouse cortex, using only two scans instead of the complete stack and calculations required by standard systems. Taken together, these advantages, combined with the ease of integration into pre-existing systems, make the extended depth-of-field imaging based on Bessel beams a strong asset for the field of microscopy and life sciences in general.

  5. Exploring possibilities of band gap measurement with off-axis EELS in TEM.

    PubMed

    Korneychuk, Svetlana; Partoens, Bart; Guzzinati, Giulio; Ramaneti, Rajesh; Derluyn, Joff; Haenen, Ken; Verbeeck, Jo

    2018-06-01

    A technique to measure the band gap of dielectric materials with high refractive index by means of energy electron loss spectroscopy (EELS) is presented. The technique relies on the use of a circular (Bessel) aperture and suppresses Cherenkov losses and surface-guided light modes by enforcing a momentum transfer selection. The technique also strongly suppresses the elastic zero loss peak, making the acquisition, interpretation and signal to noise ratio of low loss spectra considerably better, especially for excitations in the first few eV of the EELS spectrum. Simulations of the low loss inelastic electron scattering probabilities demonstrate the beneficial influence of the Bessel aperture in this setup even for high accelerating voltages. The importance of selecting the optimal experimental convergence and collection angles is highlighted. The effect of the created off-axis acquisition conditions on the selection of the transitions from valence to conduction bands is discussed in detail on a simplified isotropic two band model. This opens the opportunity for deliberately selecting certain transitions by carefully tuning the microscope parameters. The suggested approach is experimentally demonstrated and provides good signal to noise ratio and interpretable band gap signals on reference samples of diamond, GaN and AlN while offering spatial resolution in the nm range. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Bessel Fourier Orientation Reconstruction (BFOR): An Analytical Diffusion Propagator Reconstruction for Hybrid Diffusion Imaging and Computation of q-Space Indices

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Alexander, Andrew L.

    2012-01-01

    The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, capturing both its radial and angular contents. The EAP can thus provide richer information about complex tissue microstructure properties than the orientation distribution function (ODF), an angular feature of the EAP. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed, such as diffusion propagator imaging (DPI) and spherical polar Fourier imaging (SPFI). In this study, a new analytical EAP reconstruction method is proposed, called Bessel Fourier orientation reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition, and is validated on both synthetic and real datasets. A significant portion of the paper is dedicated to comparing BFOR, SPFI, and DPI using hybrid, non-Cartesian sampling for multiple b-value acquisitions. Ways to mitigate the effects of Gibbs ringing on EAP reconstruction are also explored. In addition to analytical EAP reconstruction, the aforementioned modeling bases can be used to obtain rotationally invariant q-space indices of potential clinical value, an avenue which has not yet been thoroughly explored. Three such measures are computed: zero-displacement probability (Po), mean squared displacement (MSD), and generalized fractional anisotropy (GFA). PMID:22963853

  7. Using special functions to model the propagation of airborne diseases

    NASA Astrophysics Data System (ADS)

    Bolaños, Daniela

    2014-06-01

    Some special functions of the mathematical physics are using to obtain a mathematical model of the propagation of airborne diseases. In particular we study the propagation of tuberculosis in closed rooms and we model the propagation using the error function and the Bessel function. In the model, infected individual emit pathogens to the environment and this infect others individuals who absorb it. The evolution in time of the concentration of pathogens in the environment is computed in terms of error functions. The evolution in time of the number of susceptible individuals is expressed by a differential equation that contains the error function and it is solved numerically for different parametric simulations. The evolution in time of the number of infected individuals is plotted for each numerical simulation. On the other hand, the spatial distribution of the pathogen around the source of infection is represented by the Bessel function K0. The spatial and temporal distribution of the number of infected individuals is computed and plotted for some numerical simulations. All computations were made using software Computer algebra, specifically Maple. It is expected that the analytical results that we obtained allow the design of treatment rooms and ventilation systems that reduce the risk of spread of tuberculosis.

  8. Lommel modes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Kotlyar, Victor V.

    2015-03-01

    We study a non-paraxial family of nondiffracting laser beams whose complex amplitude is proportional to an n-th order Lommel function of two variables. These beams are referred to as Lommel modes. Explicit analytical relations for the angular spectrum of plane waves and orbital angular momentum of the Lommel beams have been derived. The even (n=2p) and odd (n=2p+1) Lommel modes are mutually orthogonal, as are the Lommel modes characterized by different projections of the wave vector on the optical axis. At a definite parameter, the Lommel modes change to conventional Bessel beams. Asymmetry of the Lommel modes depends on a complex parameter с, with its modulus in the polar notation defining the intensity pattern in the beam‧s cross-section and the argument defining the angle of rotation of the intensity pattern about the optical axis. If the parameter с is real or purely imaginary, the transverse intensity component of the Lommel modes is specularly symmetric about the Cartesian coordinate axes. Besides, with the modulus of the с parameter increasing from 0 to 1, the orbital angular momentum of the Lommel modes increases from a finite value proportional to the topological charge n to infinity. The orbital angular momentum of the Lommel modes undergoes continuous variations, in contrast to its discrete changes in the Bessel modes.

  9. Analytical description of lateral binding force exerted on bi-sphere induced by high-order Bessel beams

    NASA Astrophysics Data System (ADS)

    Bai, J.; Wu, Z. S.; Ge, C. X.; Li, Z. J.; Qu, T.; Shang, Q. C.

    2018-07-01

    Based on the generalized multi-particle Mie equation (GMM) and Electromagnetic Momentum (EM) theory, the lateral binding force (BF) exerted on bi-sphere induced by an arbitrary polarized high-order Bessel beam (HOBB) is investigated with particular emphasis on the half-conical angle of the wave number components and the order (or topological charge) of the beam. The illuminating HOBB with arbitrary polarization angle is described in terms of beam shape coefficients (BSCs) within the framework of generalized Lorenz-Mie theories (GLMT). Utilizing the vector addition theorem of the spherical vector wave functions (SVWFs), the interactive scattering coefficients are derived through the continuous boundary conditions on which the interaction of the bi-sphere is considered. Numerical effects of various parameters such as beam polarization angles, incident wavelengths, particle sizes, material losses and the refractive index, including the cases of weak, moderate, and strong than the surrounding medium are numerically analyzed in detail. The observed dependence of the separation of optically bound particles on the incidence of HOBB is in agreement with earlier theoretical prediction. Accurate investigation of BF induced by HOBB could provide an effective test for further research on BF between more complex particles, which plays an important role in using optical manipulation on particle self-assembly.

  10. Using the Chebychev expansion in quantum transport calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Bogdan; Rahman, Hasan; Kleinekathöfer, Ulrich, E-mail: u.kleinekathoefer@jacobs-university.de

    2015-04-21

    Irradiation by laser pulses and a fluctuating surrounding liquid environment can, for example, lead to time-dependent effects in the transport through molecular junctions. From the theoretical point of view, time-dependent theories of quantum transport are still challenging. In one of these existing transport theories, the energy-dependent coupling between molecule and leads is decomposed into Lorentzian functions. This trick has successfully been combined with quantum master approaches, hierarchical formalisms, and non-equilibrium Green’s functions. The drawback of this approach is, however, its serious limitation to certain forms of the molecule-lead coupling and to higher temperatures. Tian and Chen [J. Chem. Phys. 137,more » 204114 (2012)] recently employed a Chebychev expansion to circumvent some of these latter problems. Here, we report on a similar approach also based on the Chebychev expansion but leading to a different set of coupled differential equations using the fact that a derivative of a zeroth-order Bessel function can again be given in terms of Bessel functions. Test calculations show the excellent numerical accuracy and stability of the presented formalism. The time span for which this Chebychev expansion scheme is valid without any restrictions on the form of the spectral density or temperature can be determined a priori.« less

  11. Transmission characteristics of Bessel-Gaussian vortex beams propagating along both longitudinal and transverse directions in a subway tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Song, Yingxiong

    2018-02-01

    By exploiting the non-Kolmogorov model and Rytov approximation theory, a propagation model of Bessel-Gaussian vortex beams (BGVB) propagating in a subway tunnel is derived. Based on the propagation model, a model of orbital angular momentum (OAM) mode probability distribution is established to evaluate the propagation performance when the beam propagates along both longitudinal and transverse directions in the subway tunnel. By numerical simulations and experimental verifications, the influences of the various parameters of BGVB and turbulence on the OAM mode probability distribution are evaluated, and the results of simulations are consistent with the experimental statistics. The results verify that the middle area of turbulence is more beneficial for the vortex beam propagation than the edge; when the BGVB propagates along the longitudinal direction in the subway tunnel, the effects of turbulence on the OAM mode probability distribution can be decreased by selecting a larger anisotropy parameter, smaller coherence length, larger non-Kolmogorov power spectrum coefficient, smaller topological charge number, deeper subway tunnel, lower train speed, and longer wavelength. When the BGVB propagates along the transverse direction, the influences can be also mitigated by adopting a larger topological charge number, less non-Kolmogorov power spectrum coefficient, smaller refractive structure index, shorter wavelength, and shorter propagation distance.

  12. Multi-Dimensional, Mesoscopic Monte Carlo Simulations of Inhomogeneous Reaction-Drift-Diffusion Systems on Graphics-Processing Units

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd

    2012-01-01

    For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001

  13. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  14. Video-Assisted Thoracic Surgical Lobectomy for Lung Cancer: Description of a Learning Curve.

    PubMed

    Yao, Fei; Wang, Jian; Yao, Ju; Hang, Fangrong; Cao, Shiqi; Cao, Yongke

    2017-07-01

    Video-assisted thoracic surgical (VATS) lobectomy is gaining popularity in the treatment of lung cancer. The aim of this study is to investigate the learning curve of VATS lobectomy by using multidimensional methods and to compare the learning curve groups with respect to perioperative clinical outcomes. We retrospectively reviewed a prospective database to identify 67 consecutive patients who underwent VATS lobectomy for lung cancer by a single surgeon. The learning curve was analyzed by using moving average and the cumulative sum (CUSUM) method. With the moving average and CUSUM analyses for the operation time, patients were stratified into two groups, with chronological order defining early and late experiences. Perioperative clinical outcomes were compared between the two learning curve groups. According to the moving average method, the peak point for operation time occurred at the 26th case. The CUSUM method also showed the operation time peak point at the 26th case. When results were compared between early- and late-experience periods, the operation time, duration of chest drainage, and postoperative hospital stay were significantly longer in the early-experience group (cases 1 to 26). The intraoperative estimated blood loss was significantly less in the late-experience group (cases 27 to 67). CUSUM charts showed a decreasing duration of chest drainage after the 36th case and shortening postoperative hospital stay after the 37th case. Multidimensional statistical analyses suggested that the learning curve for VATS lobectomy for lung cancer required ∼26 cases. Favorable intraoperative and postoperative care parameters for VATS lobectomy were observed in the late-experience group.

  15. Extracting body image symptom dimensions among eating disorder patients: the Profile Analysis via Multidimensional Scaling (PAMS) approach.

    PubMed

    Olatunji, Bunmi O; Kim, Se-Kang; Wall, David

    2015-09-01

    The present study employs Profile Analysis via Multidimensional Scaling (PAMS), a procedure for extracting dimensions, in order to identify core eating disorder symptoms in a clinical sample. A large sample of patients with eating disorders (N=5193) presenting for treatment completed the Eating Disorders Inventory-2 (EDI-2; Garner, 1991), and PAMS was then employed to estimate individual profile weights that reflect the degree to which an individual's observed symptom profile approximates the pattern of the dimensions. The findings revealed three symptom dimensions: Body Thinness, Body Perfectionism, and Body Awareness. Subsequent analysis using individual level data illustrate that the PAMS profiles properly operate as prototypical profiles that encapsulate all individuals' response patterns. The implications of these dimensional findings for the assessment and diagnosis of eating disorders are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  17. Variance Estimation for NAEP Data Using a Resampling-Based Approach: An Application of Cognitive Diagnostic Models. Research Report. ETS RR-10-26

    ERIC Educational Resources Information Center

    Hsieh, Chueh-an; Xu, Xueli; von Davier, Matthias

    2010-01-01

    This paper presents an application of a jackknifing approach to variance estimation of ability inferences for groups of students, using a multidimensional discrete model for item response data. The data utilized to demonstrate the approach come from the National Assessment of Educational Progress (NAEP). In contrast to the operational approach…

  18. Nonlinear Problems in Fluid Dynamics and Inverse Scattering

    DTIC Science & Technology

    1993-05-31

    nonlinear Kadomtsev - Petviashvili (KP) equations , have solutions which will become infinite in finite time. This phenomenon is sometimes referred to as...40 (November 1992). 4 7. Wave Collapse and Instability of Solitary Waves of a Generalized Nonlinear Kaoiomtsev- Petviashvili Equation , X.P. Wang, M.J...words) The inverse scattering of a class of differential-difference equations and multidimensional operators has been constructed. Solutions of nonlinear

  19. Development and Application of Methods for Estimating Operating Characteristics of Discrete Test Item Responses without Assuming any Mathematical Form.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    In latent trait theory the latent space, or space of the hypothetical construct, is usually represented by some unidimensional or multi-dimensional continuum of real numbers. Like the latent space, the item response can either be treated as a discrete variable or as a continuous variable. Latent trait theory relates the item response to the latent…

  20. Tailoring femtosecond laser pulse filamentation using plasma photonic lattices

    NASA Astrophysics Data System (ADS)

    Suntsov, Sergiy; Abdollahpour, Daryoush; Papazoglou, Dimitrios G.; Panagiotopoulos, Paris; Couairon, Arnaud; Tzortzakis, Stelios

    2013-07-01

    We demonstrate experimentally that by using transient plasma photonic lattices, the attributes of intense femtosecond laser filaments, such as peak intensity and length, can be dynamically controlled. The extended plasma lattice structure is generated using two co-propagating non-diffracting intense Bessel beams in water. The use of such transient lattice structures to control the competition between linear and nonlinear effects involved in filamentation opens the way for extensive control of the filamentation process.

  1. Optically Tuned MM-Wave IMPATT Source.

    DTIC Science & Technology

    1987-07-01

    phase of the work has been extended and generalised. Accuracy of the theory in predicting tuning at the higher oscillator voltage swings has been greatly...Accuracy of the theory in predicting tuning at the higher oscillator voltage swings has been greatly improved by reformulating the Bessel function...voltage modulation and a peak optically injected locking current of 100 pA the predicted ftl locking range would be 540MHz, a practicaUy useful value. 4

  2. The Physics of Ultrabroadband Frequency Comb Generation and Optimized Combs for Measurements in Fundamental Physics

    DTIC Science & Technology

    2016-07-02

    beams Superresolution machining Threshold effect of ablation means that structure diameter is less than the beam diameter fs pulses at 800 nm yield 200...Approved for public release: distribution unlimited. Applications of Bessel beams Superresolution machining Threshold effect of ablation means that... Superresolution machining Threshold effect of ablation means that structure diameter is less than the beam diameter fs pulses at 800 nm yield 200 nm

  3. VizieR Online Data Catalog: BVRI light curves of GR Boo (Wang+, 2017)

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, L.; Han, X. L.; Lu, H.

    2017-11-01

    We observed the eclipsing binary GR Boo on May 12, 22 and 24 in 2015 using the SARA 90-cm telescope located at Kitt Peak National Observatory, Arizona, USA. This telescope was equipped with an ARC CCD camera with a resolution of 2048x2048pixels but used at 2x2 binning, resulting in 1024x1024pixels. We used the Bessel BVRI filters. (1 data file).

  4. An Investigation of the Pareto Distribution as a Model for High Grazing Angle Clutter

    DTIC Science & Technology

    2011-03-01

    radar detection schemes under controlled conditions. Complicated clutter models result in mathematical difficulties in the determination of optimal and...a population [7]. It has been used in the modelling of actuarial data; an example is in excess of loss quotations in insurance [8]. Its usefulness as...UNCLASSIFIED modified Bessel functions, making it difficult to employ in radar detection schemes. The Pareto Distribution is amenable to mathematical

  5. Charge distribution of the neven sulphur isotopes from elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Rychel, D.; Emrich, H. J.; Miska, H.; Gyufko, R.; Wiedner, C. A.

    1983-10-01

    Elastic electron scattering experiments on the isotopes 32,34,36S were performed covering a range in momentum transfer q = 0.5-2.6 fm -. The cross sections were analysed with the Fourier-Bessel method yielding model-independent charge distributions and their differences. The extracted rms radii follow approximately the systematics of even-even nuclei; this also holds for the gross features as expressed in dms radii and skin thicknesses.

  6. Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccio, Daniele; CNISM and Department of Physics and Mathematics, Universita dell'Insubria, Via Valleggio 11, I-22100 Como; Serrat, Carles

    2010-01-15

    The process of high-order harmonic generation in gases is numerically investigated in the presence of a few-cycle pulsed-Bessel-beam pump, featuring a periodic modulation in the peak intensity due to large carrier-envelope-phase mismatch. A two-decade enhancement in the conversion efficiency is observed and interpreted as the consequence of a mechanism known as a nonlinearly induced modulation in the phase mismatch.

  7. Numeric invariants from multidimensional persistence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skryzalin, Jacek; Carlsson, Gunnar

    2017-05-19

    In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be usedmore » to study data.« less

  8. Intelligent Data Analysis in the EMERCOM Information System

    NASA Astrophysics Data System (ADS)

    Elena, Sharafutdinova; Tatiana, Avdeenko; Bakaev, Maxim

    2017-01-01

    The paper describes an information system development project for the Russian Ministry of Emergency Situations (MES, whose international operations body is known as EMERCOM), which was attended by the representatives of both the IT industry and the academia. Besides the general description of the system, we put forward OLAP and Data Mining-based approaches towards the intelligent analysis of the data accumulated in the database. In particular, some operational OLAP reports and an example of multi-dimensional information space based on OLAP Data Warehouse are presented. Finally, we outline Data Mining application to support decision-making regarding security inspections planning and results consideration.

  9. A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Chen, Ping

    2017-01-01

    Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…

  10. Best Design for Multidimensional Computerized Adaptive Testing with the Bifactor Model

    ERIC Educational Resources Information Center

    Seo, Dong Gi; Weiss, David J.

    2015-01-01

    Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm…

  11. Multidimensional Measurement of Poverty among Women in Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Batana, Yele Maweki

    2013-01-01

    Since the seminal work of Sen, poverty has been recognized as a multidimensional phenomenon. The recent availability of relevant databases renewed the interest in this approach. This paper estimates multidimensional poverty among women in fourteen Sub-Saharan African countries using the Alkire and Foster multidimensional poverty measures, whose…

  12. The Efficacy of Multidimensional Constraint Keys in Database Query Performance

    ERIC Educational Resources Information Center

    Cardwell, Leslie K.

    2012-01-01

    This work is intended to introduce a database design method to resolve the two-dimensional complexities inherent in the relational data model and its resulting performance challenges through abstract multidimensional constructs. A multidimensional constraint is derived and utilized to implement an indexed Multidimensional Key (MK) to abstract a…

  13. Dynamic analysis, transformation, dissemination and applications of scientific multidimensional data in ArcGIS Platform

    NASA Astrophysics Data System (ADS)

    Shrestha, S. R.; Collow, T. W.; Rose, B.

    2016-12-01

    Scientific datasets are generated from various sources and platforms but they are typically produced either by earth observation systems or by modelling systems. These are widely used for monitoring, simulating, or analyzing measurements that are associated with physical, chemical, and biological phenomena over the ocean, atmosphere, or land. A significant subset of scientific datasets stores values directly as rasters or in a form that can be rasterized. This is where a value exists at every cell in a regular grid spanning the spatial extent of the dataset. Government agencies like NOAA, NASA, EPA, USGS produces large volumes of near real-time, forecast, and historical data that drives climatological and meteorological studies, and underpins operations ranging from weather prediction to sea ice loss. Modern science is computationally intensive because of the availability of an enormous amount of scientific data, the adoption of data-driven analysis, and the need to share these dataset and research results with the public. ArcGIS as a platform is sophisticated and capable of handling such complex domain. We'll discuss constructs and capabilities applicable to multidimensional gridded data that can be conceptualized as a multivariate space-time cube. Building on the concept of a two-dimensional raster, a typical multidimensional raster dataset could contain several "slices" within the same spatial extent. We will share a case from the NOAA Climate Forecast Systems Reanalysis (CFSR) multidimensional data as an example of how large collections of rasters can be efficiently organized and managed through a data model within a geodatabase called "Mosaic dataset" and dynamically transformed and analyzed using raster functions. A raster function is a lightweight, raster-valued transformation defined over a mixed set of raster and scalar input. That means, just like any tool, you can provide a raster function with input parameters. It enables dynamic processing of only the data that's being displayed on the screen or requested by an application. We will present the dynamic processing and analysis of CFSR data using the chains of raster function and share it as dynamic multidimensional image service. This workflow and capabilities can be easily applied to any scientific data formats that are supported in mosaic dataset.

  14. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  15. Multidimensional Simulation Applied to Water Resources Management

    NASA Astrophysics Data System (ADS)

    Camara, A. S.; Ferreira, F. C.; Loucks, D. P.; Seixas, M. J.

    1990-09-01

    A framework for an integrated decision aiding simulation (IDEAS) methodology using numerical, linguistic, and pictorial entities and operations is introduced. IDEAS relies upon traditional numerical formulations, logical rules to handle linguistic entities with linguistic values, and a set of pictorial operations. Pictorial entities are defined by their shape, size, color, and position. Pictorial operators include reproduction (copy of a pictorial entity), mutation (expansion, rotation, translation, change in color), fertile encounters (intersection, reunion), and sterile encounters (absorption). Interaction between numerical, linguistic, and pictorial entities is handled through logical rules or a simplified vector calculus operation. This approach is shown to be applicable to various environmental and water resources management analyses using a model to assess the impacts of an oil spill. Future developments, including IDEAS implementation on parallel processing machines, are also discussed.

  16. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.; Cho, K.W.

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less

  17. On the origins of generalized fractional calculus

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia

    2015-11-01

    In Fractional Calculus (FC), as in the (classical) Calculus, the notions of derivatives and integrals (of first, second, etc. or arbitrary, incl. non-integer order) are basic and co-related. One of the most frequent approach in FC is to define first the Riemann-Liouville (R-L) integral of fractional order, and then by means of suitable integer-order differentiation operation applied over it (or under its sign) a fractional derivative is defined - in the R-L sense (or in Caputo sense). The first mentioned (R-L type) is closer to the theoretical studies in analysis, but has some shortages - from the point of view of interpretation of the initial conditions for Cauchy problems for fractional differential equations (stated also by means of fractional order derivatives/ integrals), and also for the analysts' confusion that such a derivative of a constant is not zero in general. The Caputo (C-) derivative, arising first in geophysical studies, helps to overcome these problems and to describe models of applied problems with physically consistent initial conditions. The operators of the Generalized Fractional Calculus - GFC (integrals and derivatives) are based on commuting m-tuple (m = 1, 2, 3, …) compositions of operators of the classical FC with power weights (the so-called Erdélyi-Kober operators), but represented in compact and explicit form by means of integral, integro-differential (R-L type) or differential-integral (C-type) operators, where the kernels are special functions of most general hypergeometric kind. The foundations of this theory are given in Kiryakova 18. In this survey we present the genesis of the definitions of the GFC - the generalized fractional integrals and derivatives (of fractional multi-order) of R-L type and Caputo type, analyze their properties and applications. Their special cases are all the known operators of classical FC, their generalizations introduced by other authors, the hyper-Bessel differential operators of higher integer order m as a multi-order (1, 1,…, 1), the Gelfond-Leontiev generalized differentiation operators, many other integral and differential operators in Calculus that have been used in various topics, some of them not related to FC at all, others involved in differential and integral equations for treating fractional order models.

  18. Some operational tools for solving fractional and higher integer order differential equations: A survey on their mutual relations

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia S.

    2012-11-01

    The Laplace Transform (LT) serves as a basis of the Operational Calculus (OC), widely explored by engineers and applied scientists in solving mathematical models for their practical needs. This transform is closely related to the exponential and trigonometric functions (exp, cos, sin) and to the classical differentiation and integration operators, reducing them to simple algebraic operations. Thus, the classical LT and the OC give useful tool to handle differential equations and systems with constant coefficients. Several generalizations of the LT have been introduced to allow solving, in a similar way, of differential equations with variable coefficients and of higher integer orders, as well as of fractional (arbitrary non-integer) orders. Note that fractional order mathematical models are recently widely used to describe better various systems and phenomena of the real world. This paper surveys briefly some of our results on classes of such integral transforms, that can be obtained from the LT by means of "transmutations" which are operators of the generalized fractional calculus (GFC). On the list of these Laplace-type integral transforms, we consider the Borel-Dzrbashjan, Meijer, Krätzel, Obrechkoff, generalized Obrechkoff (multi-index Borel-Dzrbashjan) transforms, etc. All of them are G- and H-integral transforms of convolutional type, having as kernels Meijer's G- or Fox's H-functions. Besides, some special functions (also being G- and H-functions), among them - the generalized Bessel-type and Mittag-Leffler (M-L) type functions, are generating Gel'fond-Leontiev (G-L) operators of generalized differentiation and integration, which happen to be also operators of GFC. Our integral transforms have operational properties analogous to those of the LT - they do algebrize the G-L generalized integrations and differentiations, and thus can serve for solving wide classes of differential equations with variable coefficients of arbitrary, including non-integer order. Throughout the survey, we illustrate the parallels in the relationships: Laplace type integral transforms - special functions as kernels - operators of generalized integration and differentiation generated by special functions - special functions as solutions of related differential equations. The role of the so-called Special Functions of Fractional Calculus is emphasized.

  19. Color Transformations for the 2MASS Second Incremental Data Release

    NASA Astrophysics Data System (ADS)

    Carpenter, John M.

    2001-05-01

    Transformation equations are presented to convert colors and magnitudes measured in the AAO, ARNICA, CIT, DENIS, ESO, LCO (Persson standards), MSSSO, SAAO, and UKIRT photometric systems to the photometric system inherent in the 2MASS Second Incremental Data Release. The transformations have been derived by comparing 2MASS photometry with published magnitudes and colors for stars observed in these systems. Transformation equations have also been derived indirectly for the Bessell & Brett and Koornneef homogenized photometric systems.

  20. Trellis Coding of Non-coherent Multiple Symbol Full Response M-ary CPFSK with Modulation Index 1/M

    NASA Technical Reports Server (NTRS)

    Lee, H.; Divsalar, D.; Weber, C.

    1994-01-01

    This paper introduces a trellis coded modulation (TCM) scheme for non-coherent multiple full response M-ary CPFSK with modulation index 1/M. A proper branch metric for the trellis decoder is obtained by employing a simple approximation of the modified Bessel function for large signal to noise ratio (SNR). Pairwise error probability of coded sequences is evaluated by applying a linear approximation to the Rician random variable.

  1. VizieR Online Data Catalog: Transiting planet WASP-6b (Tregloan-Reed+, 2015)

    NASA Astrophysics Data System (ADS)

    Tregloan-Reed, J.; Southworth, J.; Burgdorf, M.; Calchi Novati, S.; Dominik, M.; Finet, F.; Jorgensen, U. G.; Maier, G.; Mancini, L.; Prof, S.; Ricci, D.; Snodgrass, C.; Bozza, V.; Browne, P.; Dodds, P.; Gerner, T.; Harpsoe, K.; Hinse, T. C.; Hundertmark, M.; Kains, N.; Kerins, E.; Liebig, C.; Penny, M. T.; Rahvar, S.; Sahu, K.; Scarpetta, G.; Schafer, S.; Schonebeck, F.; Skottfelt, J.; Surdej, J.

    2018-05-01

    Four light curves of transits of the extrasolar planetary system WASP-6 are presented. They were obtained using the Danish 1.54m telescope at ESO La Silla, Chile, in the Bessell R passband. The errorbars for each transit have been scaled so the best-fitting model (obtained using the JKTEBOP code and without accounting for the presence of starspots) has a reduced chi-squared value of 1.0. (1 data file).

  2. Uniform analytic approximation of Wigner rotation matrices

    NASA Astrophysics Data System (ADS)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  3. Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang

    2017-07-01

    MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.

  4. On the solution of the Helmholtz equation on regions with corners.

    PubMed

    Serkh, Kirill; Rokhlin, Vladimir

    2016-08-16

    In this paper we solve several boundary value problems for the Helmholtz equation on polygonal domains. We observe that when the problems are formulated as the boundary integral equations of potential theory, the solutions are representable by series of appropriately chosen Bessel functions. In addition to being analytically perspicuous, the resulting expressions lend themselves to the construction of accurate and efficient numerical algorithms. The results are illustrated by a number of numerical examples.

  5. On the solution of the Helmholtz equation on regions with corners

    PubMed Central

    Serkh, Kirill; Rokhlin, Vladimir

    2016-01-01

    In this paper we solve several boundary value problems for the Helmholtz equation on polygonal domains. We observe that when the problems are formulated as the boundary integral equations of potential theory, the solutions are representable by series of appropriately chosen Bessel functions. In addition to being analytically perspicuous, the resulting expressions lend themselves to the construction of accurate and efficient numerical algorithms. The results are illustrated by a number of numerical examples. PMID:27482110

  6. Mathematical models of real geometrical factors in restricted blood vessels for the analysis of CAD (coronary artery diseases) using Legendre, Boubaker and Bessel polynomials.

    PubMed

    Awojoyogbe, O B; Faromika, O P; Dada, M; Boubaker, Karem; Ojambati, O S

    2011-12-01

    Most cardiovascular emergencies are directly caused by coronary artery disease. Coronary arteries can become clogged or occluded, leading to damage to the heart muscle supplied by the artery. Modem cardiovascular medicine can certainly be improved by meticulous analysis of geometrical factors closely associated with the degenerative disease that results in narrowing of the coronary arteries. There are, however, inherent difficulties in developing this type of mathematical models to completely describe the real or ideal geometries that are very critical in plaque formation and thickening of the vessel wall. Neither the mathematical models of the blood vessels with arthrosclerosis generated by the heart and blood flow or the NMR/MRI data to construct them are available. In this study, a mathematical formulation for the geometrical factors that are very critical for the understanding of coronary artery disease is presented. Based on the Bloch NMR flow equations, we derive analytical expressions to describe in detail the NMR transverse magnetizations and signals as a function of some NMR flow and geometrical parameters which are invaluable for the analysis of blood flow in restricted blood vessels. The procedure would apply to the situations in which the geometry of the fatty deposits, (plague) on the interior walls of the coronary arteries is spherical. The boundary conditions are introduced based on Bessel, Boubaker and Legendre polynomials.

  7. Problems of the theory of the consolidation solved in the special functions

    NASA Astrophysics Data System (ADS)

    Dasibekov, Azhibek; Abzhapbarov, Azimkhan; Duisebayeva, Peruza; Polatbek, Aigul

    2016-08-01

    The soil, which deformation modulus is continuously increased with depth is called continuously heterogeneous. In this paper, this heterogeneity is presented in the form of: E =Em(α+β z ) m (α >0 ,Em>0 ,α +βz>0 ), wher Em, α, β, m are experimental parameters. On the basis of this dependence the consolidation problems of elastic and elastically creeping inhomogeneous soils are solved in relation to the restricted area of the consolidation. These solutions make it possible to calculate the values of the pore pressure, the amount of the main stresses and vertical displacements of upper surface points of the condensed inhomogeneous soil mass. In these solutions for highly compressed water-saturated clay soils is also taken into account that at the initial time the part of loading, instantly enclosed load q to the soil which is equal in value of the structural strength of the compression pstr, is immediately perceived by a matrix. In addition, Darcy's law is broken, i.e. the initial gradient of pressure is considered. The resulting calculation formulas are presented as a combination of Bessel functions of the first and second kinds. Taking into account that currently one can define any values of the Bessel functions, it is possible to calculate the pressure in the pore fluids and predict the speed of sediments of the compacting mass.

  8. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging

    PubMed Central

    Thériault, Gabrielle; Cottet, Martin; Castonguay, Annie; McCarthy, Nathalie; De Koninck, Yves

    2014-01-01

    Two-photon microscopy has revolutionized functional cellular imaging in tissue, but although the highly confined depth of field (DOF) of standard set-ups yields great optical sectioning, it also limits imaging speed in volume samples and ease of use. For this reason, we recently presented a simple and retrofittable modification to the two-photon laser-scanning microscope which extends the DOF through the use of an axicon (conical lens). Here we demonstrate three significant benefits of this technique using biological samples commonly employed in the field of neuroscience. First, we use a sample of neurons grown in culture and move it along the z-axis, showing that a more stable focus is achieved without compromise on transverse resolution. Second, we monitor 3D population dynamics in an acute slice of live mouse cortex, demonstrating that faster volumetric scans can be conducted. Third, we acquire a stereoscopic image of neurons and their dendrites in a fixed sample of mouse cortex, using only two scans instead of the complete stack and calculations required by standard systems. Taken together, these advantages, combined with the ease of integration into pre-existing systems, make the extended depth-of-field imaging based on Bessel beams a strong asset for the field of microscopy and life sciences in general. PMID:24904284

  9. Multidimensional Unfolding by Nonmetric Multidimensional Scaling of Spearman Distances in the Extended Permutation Polytope

    ERIC Educational Resources Information Center

    Van Deun, Katrijn; Heiser, Willem J.; Delbeke, Luc

    2007-01-01

    A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed: distance information about the unfolding data and about the distances both among judges and among objects is included in the complete matrix. The latter information is derived from the…

  10. A lock-free priority queue design based on multi-dimensional linked lists

    DOE PAGES

    Dechev, Damian; Zhang, Deli

    2015-04-03

    The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN)more » for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.« less

  11. A lock-free priority queue design based on multi-dimensional linked lists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechev, Damian; Zhang, Deli

    The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN)more » for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.« less

  12. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    NASA Astrophysics Data System (ADS)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  13. Global limits and interference patterns in dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Gondolo, Paolo

    2015-08-13

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less

  14. Global limits and interference patterns in dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu

    2015-08-01

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less

  15. Explicit and implicit compact high-resolution shock-capturing methods for multidimensional Euler equations 1: Formulation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1995-01-01

    Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.

  16. Multidimensional effects in nonadiabatic statistical theories of spin- forbidden kinetics. A case study of 3O + CO → CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Ahren

    2015-04-14

    The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. We found that this coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin–orbit coupling, dynamicalmore » multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal(history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the 3O + CO → CO 2 reaction are compared with the results of statistical theories employing one-dimensional (Landau–Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. Furthermore, the MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems. The error in statistical calculations that neglect multidimensional effects is shown to be as large as a factor of 2 for this system, with static multidimensional effects identified as the largest source of error.« less

  17. Multi-Dimensionality of Synthetic Vision Cockpit Displays: Prevention of Controlled-Flight-Into-Terrain

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2006-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results showed the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.

  18. The necessity of measurement.

    PubMed

    Dudden, Rosalind Farnam

    2008-01-01

    Measurement of library systems and services is a multidimensional management task. New paradigms of library service and the context in which libraries operate have made it necessary for librarians to find new measures while at the same time keeping the old. Factors that can be measured, such as needs, inputs, quality processes, outputs, quality of service, outcomes, and impacts, are described. This bibliographic essay covers the current trends while leading readers to resources where they can learn more.

  19. Individual Differences in Vigilance and Performance During Continuous/Sustained Operations

    DTIC Science & Technology

    2002-11-01

    Casagrande Dipartimento di Psicologia UniversitA degli Studi di Roma "La Sapienza" Via dei Marsi, 78 -00185 Roma, Italy Aeronautica Militare Italiana...8217based. approach, Journal of Personality and Social Psychologv. 56, 267-283. Casagrande M, Violani C, Curcio G., Bertini M. (1997) Individual differences...Multidimensional assessment of coping: A critical evaluation. Journal of Personality and Social Psychology. 58: 844-854. Evans FJ, Cook MR, Cohen HD, Ome EC

  20. Mathematical Methods for Optical Physics and Engineering

    NASA Astrophysics Data System (ADS)

    Gbur, Gregory J.

    2011-01-01

    1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.

  1. Complex Analysis and Related Topics. Proceedings of the Conference held in Amsterdam on 27 - 29 January 1993

    DTIC Science & Technology

    1993-01-29

    Bessel functions and Jacobi functions (cf. [2]). References [1] R. Askey & J. Wilson, Some basic hypergeometric orthogonal polynomials that gen- eralize...1; 1] can be treated as a part of general theory of T-systems (see [81 for that theory and [7] for some aspects of the Chebyshev polynomials theory...waves in elastic media. It has been known for some time that these multiplicities sometimes occur for topological reasons and are present generically , see

  2. Boundary Layers Induced by Three-Dimensional Vortex Loops

    DTIC Science & Technology

    1993-12-01

    obtained analytically (see Appendix B) and are given by =-2 Oz,(sin0 -)I- k IK(I IckI) - sKo (Y I k ) Cosa, (2.35) 1= -2 1 k Oq IIJ~ G=2 -’(cosO-y’)lkl...F- Ko (o Ipl) 279Ul I 280 p = if’, and similarly U a E(g) = 2(g 2 + a2)3/2 ** F = IPI K(a Ipl) 3 where K0, K, are the modified Bessel functions of

  3. Broadband Photometry of the Potentially Hazardous Asteroid 2013 RH74

    NASA Astrophysics Data System (ADS)

    Hicks, M.; Ebelhar, S.

    2013-11-01

    The Near-Earth Asteroid (NEA) 2013 RH74 was discovered by the Catalina Sky Survey on September 15 2013 (MPEC 2013-S15) and has been designated as a Potentially Hazardous Asteroid (PHA) by the Minor Planet Center. We obtained six partial nights of broadband Bessel BVRI photometry at the JPL Table Mountain 0.6-m telescope (TMO), as summarized in Table 1. This object was detected by planetary radar soon after discovery (http://echo.jpl.nasa.gov/asteroids/index.html).

  4. Luigi Gatteschi's work on asymptotics of special functions and their zeros

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter; Giordano, Carla

    2008-12-01

    A good portion of Gatteschi's research publications-about 65%-is devoted to asymptotics of special functions and their zeros. Most prominently among the special functions studied figure classical orthogonal polynomials, notably Jacobi polynomials and their special cases, Laguerre polynomials, and Hermite polynomials by implication. Other important classes of special functions dealt with are Bessel functions of the first and second kind, Airy functions, and confluent hypergeometric functions, both in Tricomi's and Whittaker's form. This work is reviewed here, and organized along methodological lines.

  5. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    PubMed

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America

  6. Physical characterization of (333358) 2001 WN1: a large, possibly water-rich, low delta-V near-Earth asteroid.

    NASA Astrophysics Data System (ADS)

    Hicks, M.; Dombroski, D.

    2012-12-01

    The near-Earth asteroid (333358) 2001 WN1 was discovered on 2001 November 17 by the LINEAR NEO survey (MPEC 2001-W30). We obtained one night of Bessel BVRI on 2012 November 25 at the JPL Table Mountain Observatory (TMO) 0.6-m telescope. The observational circumstances are summarized in Table 1, with heliocentric, geocentric, solar phase angle, lunar elongation, and expected V magnitude as computed by the JPL HORIZONS ephemeris service.

  7. Analytical solution for boundary heat fluxes from a radiating rectangular medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1991-01-01

    Reference is made to the work of Shah (1979) which demonstrated the possibility of partially integrating the radiative equations analytically to obtain an 'exact' solution. Shah's solution was given as a double integration of the modified Bessel function of order zero. Here, it is shown that the 'exact' solution for a rectangular region radiating to cold black walls can be conveniently derived, and expressed in simple form, by using an integral function, Sn, analogous to the exponential integral function appearing in plane-layer solutions.

  8. On analytic design of loudspeaker arrays with uniform radiation characteristics

    PubMed

    Aarts; Janssen

    2000-01-01

    Some notes on analytical derived loudspeaker arrays with uniform radiation characteristics are presented. The array coefficients are derived via analytical means and compared with so-called maximal flat sequences known from telecommunications and information theory. It appears that the newly derived array, i.e., the quadratic phase array, has a higher efficiency than the Bessel array and a flatter response than the Barker array. The method discussed admits generalization to the design of arrays with desired nonuniform radiating characteristics.

  9. On the Need for Multidimensional Stirling Simulations

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2005-01-01

    Given the cost and complication of simulating Stirling convertors, do we really need multidimensional modeling when one-dimensional capabilities exist? This paper provides a comprehensive description of when and why multidimensional simulation is needed.

  10. Big Data and Deep data in scanning and electron microscopies: functionality from multidimensional data sets

    DOE PAGES

    Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni; ...

    2015-05-13

    The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leadsmore » to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.« less

  11. Chapter 24: Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanevce, Ana; Metzger, Wyatt K

    2016-07-22

    Modeling can provide physical insight to device operation, help distinguish important material properties from unimportant properties, predict trends, and help interpret experimental data. Numerical modeling is also useful to simulate different electro-optical experiments, in the presence of grain boundaries (GBs) and nonplanar junctions and geometries, and to help interpret data obtained in such experiments. This chapter presents methods for effective multidimensional modeling. The first step in creating a computational model is defining and providing discretization of a 2D area or a 3D volume. Two main approaches to the discretization have been used for studying solar cells: equivalent-circuit modeling and solvingmore » semiconductor equations. The chapter gives some examples of problems that were addressed with 2D or 3D modeling and the knowledge that was gained through them. Multidimensional modeling including GBs and other material variations is necessary to explain the device physics and experimental results present in diverse thin-film technologies.« less

  12. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  13. Big Data and Deep data in scanning and electron microscopies: functionality from multidimensional data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni

    The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leadsmore » to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.« less

  14. Multidimensional Scaling in the Poincare Disk

    DTIC Science & Technology

    2011-05-01

    REPORT Multidimensional Scaling in the Poincare Dis 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Multidimensional scaling (MDS) is a class of projective...DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Multidimensional Scaling in the Poincare Dis Report Title... plane . Our construction is based on an approximate hyperbolic line search and exempli?es some of the particulars that need to be addressed when

  15. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using specially designed test hardware enabling measurement of heat transferred through a simulated Stirling cycle. The overall effort and results are discussed.

  16. Models of multidimensional discrete distribution of probabilities of random variables in information systems

    NASA Astrophysics Data System (ADS)

    Gromov, Yu Yu; Minin, Yu V.; Ivanova, O. G.; Morozova, O. N.

    2018-03-01

    Multidimensional discrete distributions of probabilities of independent random values were received. Their one-dimensional distribution is widely used in probability theory. Producing functions of those multidimensional distributions were also received.

  17. A New Time-varying Concept of Risk in a Changing Climate.

    PubMed

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  18. Winter sky brightness and cloud cover at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Yang, Yi; Fu, Jianning; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel M.; Riddle, Reed; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Tothill, Nicholas F. H.; Travouillon, Tony; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2013-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical observatories. The Gattini Dome A project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fisheye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R) and a long-pass red filter for the detection and monitoring of airglow emission. The system operated continuously throughout the 2009, and 2011 winter seasons and part-way through the 2010 season, recording long exposure images sequentially for each filter. We have in hand one complete winter-time dataset (2009) returned via a manned traverse. We present here the first measurements of sky brightness in the photometric V band, cloud cover statistics measured so far and an estimate of the extinction.

  19. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    NASA Astrophysics Data System (ADS)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  20. Multidimensional Knowledge Structures.

    ERIC Educational Resources Information Center

    Schuh, Kathy L.

    Multidimensional knowledge structures, described from a constructivist perspective and aligned with the "Mind as Rhizome" metaphor, provide support for constructivist learning strategies. This qualitative study was conducted to seek empirical support for a description of multidimensional knowledge structures, focusing on the…

  1. Multidimensional quantum entanglement with large-scale integrated optics.

    PubMed

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong; Santagati, Raffaele; Skrzypczyk, Paul; Salavrakos, Alexia; Tura, Jordi; Augusiak, Remigiusz; Mančinska, Laura; Bacco, Davide; Bonneau, Damien; Silverstone, Joshua W; Gong, Qihuang; Acín, Antonio; Rottwitt, Karsten; Oxenløwe, Leif K; O'Brien, Jeremy L; Laing, Anthony; Thompson, Mark G

    2018-04-20

    The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.

  3. Multidimensional Perfectionism and the Self

    ERIC Educational Resources Information Center

    Ward, Andrew M.; Ashby, Jeffrey S.

    2008-01-01

    This study examined multidimensional perfectionism and self-development. Two hundred seventy-one undergraduates completed a measure of multidimensional perfectionism and two Kohutian measures designed to measure aspects of self-development including social connectedness, social assurance, goal instability (idealization), and grandiosity. The…

  4. Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks.

    PubMed

    de la Vega de León, Antonio; Bajorath, Jürgen

    2016-09-01

    The concept of chemical space is of fundamental relevance for medicinal chemistry and chemical informatics. Multidimensional chemical space representations are coordinate-based. Chemical space networks (CSNs) have been introduced as a coordinate-free representation. A computational approach is presented for the transformation of multidimensional chemical space into CSNs. The design of transformation CSNs (TRANS-CSNs) is based upon a similarity function that directly reflects distance relationships in original multidimensional space. TRANS-CSNs provide an immediate visualization of coordinate-based chemical space and do not require the use of dimensionality reduction techniques. At low network density, TRANS-CSNs are readily interpretable and make it possible to evaluate structure-activity relationship information originating from multidimensional chemical space.

  5. Multidimensional poverty and catastrophic health spending in the mountainous regions of Myanmar, Nepal and India.

    PubMed

    Mohanty, Sanjay K; Agrawal, Nand Kishor; Mahapatra, Bidhubhusan; Choudhury, Dhrupad; Tuladhar, Sabarnee; Holmgren, E Valdemar

    2017-01-18

    Economic burden to households due to out-of-pocket expenditure (OOPE) is large in many Asian countries. Though studies suggest increasing household poverty due to high OOPE in developing countries, studies on association of multidimensional poverty and household health spending is limited. This paper tests the hypothesis that the multidimensionally poor are more likely to incur catastrophic health spending cutting across countries. Data from the Poverty and Vulnerability Assessment (PVA) Survey carried out by the International Center for Integrated Mountain Development (ICIMOD) has been used in the analyses. The PVA survey was a comprehensive household survey that covered the mountainous regions of India, Nepal and Myanmar. A total of 2647 households from India, 2310 households in Nepal and 4290 households in Myanmar covered under the PVA survey. Poverty is measured in a multidimensional framework by including the dimensions of education, income and energy, water and sanitation using the Alkire and Foster method. Health shock is measured using the frequency of illness, family sickness and death of any family member in a reference period of one year. Catastrophic health expenditure is defined as 40% above the household's capacity to pay. Results suggest that about three-fifths of the population in Myanmar, two-fifths of the population in Nepal and one-third of the population in India are multidimensionally poor. About 47% of the multidimensionally poor in India had incurred catastrophic health spending compared to 35% of the multidimensionally non-poor and the pattern was similar in both Nepal and Myanmar. The odds of incurring catastrophic health spending was 56% more among the multidimensionally poor than among the multidimensionally non-poor [95% CI: 1.35-1.76]. While health shocks to households are consistently significant predictors of catastrophic health spending cutting across country of residence, the educational attainment of the head of the household is not significant. The multidimensionally poor in the poorer regions are more likely to face health shocks and are less likely to afford professional health services. Increasing government spending on health and increasing households' access to health insurance can reduce catastrophic health spending and multidimensional poverty.

  6. Multidimensional Fatigue Inventory: Spanish adaptation and psychometric properties for fibromyalgia patients. The Al-Andalus study.

    PubMed

    Munguía-Izquierdo, Diego; Segura-Jiménez, Victor; Camiletti-Moirón, Daniel; Pulido-Martos, Manuel; Alvarez-Gallardo, Inmaculada C; Romero, Alejandro; Aparicio, Virginia A; Carbonell-Baeza, Ana; Delgado-Fernández, Manuel

    2012-01-01

    The aim of this study was to assess the psychometric properties and transcultural adaptation into Spanish of the Multidimensional Fatigue Inventory in fibromyalgia patients. The Spanish version of the Multidimensional Fatigue Inventory (MFI-S) was translated and cognitively pretested following cross-cultural adaptation guidelines. Test-retest reliability, convergent validity, and operational qualities were evaluated in a total of 116 fibromyalgia patients. Convergent validity was assessed comparing MFI-S with a visual analogue scale for global fatigue. The intra-class correlation coefficients varied from moderate to excellent (from 0.64 to 0.91) and the standard errors of the mean ranged from 0.5 to 1.1 points for the five MFI-S domains. The coefficient of repeatability was less than 2 standard deviations and the limits of agreement ranged from 2 to 4 points for the MFI-S domains. A weak to fair significant relationship was found between each MFI-S domain and the visual analogue scale (from 0.21 to 0.32). The mean time required to complete the MFI-S was 3.2±2.0 minutes. None of the patients needed external help to complete the MFI-S, and there were very few missing values. The MFI-S developed in this study presents a good reliability and reasonable construct validity for Spanish fibromyalgia patients unaffected by cognitive dysfunction and severe depression. This questionnaire is quick, easy to administer and interpret.

  7. Experimental Evaluation of Computer-Aided Tele-operation (CATO) and Computer-Aided Robotic Manipulation (CARMAN) Technology

    DTIC Science & Technology

    2010-08-01

    Consent Form 29 Appendix B. Demographics Questionnaire 35 Appendix C. NASA TLX Questionnaire 39 Appendix D. Symptom Questionnaire 41 List of Symbols...Index ( NASA - TLX ) Participants were given the NASA - TLX subjective workload rating at the end of each task (appendix C, Hart and Staveland, 1987).1 The... NASA - TLX is a multi-dimensional rating procedure that derives an overall workload score based on a weighted average of ratings on six subscales

  8. Portfolio 2000: managing clinical systems.

    PubMed

    Hunter, L L

    1998-01-01

    Powerful forces are changing the provision of health care. Management is transitioning into new responsibility for a leaner, more flexible, customer-focused operation to support the goals of integrated systems of the 21st century--to minimize disease and to promote health. In response to this evolution, the clinical systems management concept describes multidimensional competencies, which are transportable throughout the continuum of care (1). These new knowledge competencies and core competencies applied in a different context are characterized in this paper.

  9. Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells.

    PubMed

    Tseronis, K; Fragkopoulos, I S; Bonis, I; Theodoropoulos, C

    2016-06-01

    Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan-Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty-Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically-active anode catalyst layer, although not always substantially, due to the counter-balancing behavior of the activation and ohmic overpotentials.

  10. A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation

    NASA Astrophysics Data System (ADS)

    Taitano, W. T.; Chacón, L.; Simakov, A. N.; Molvig, K.

    2015-09-01

    In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.

  11. Shaping non-diffracting beams with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De

    2016-02-01

    The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

  12. Non-linear optical measurements using a scanned, Bessel beam

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.

    2015-03-01

    Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.

  13. Spatiotemporal attention operator using isotropic contrast and regional homogeneity

    NASA Astrophysics Data System (ADS)

    Palenichka, Roman; Lakhssassi, Ahmed; Zaremba, Marek

    2011-04-01

    A multiscale operator for spatiotemporal isotropic attention is proposed to reliably extract attention points during image sequence analysis. Its consecutive local maxima indicate attention points as the centers of image fragments of variable size with high intensity contrast, region homogeneity, regional shape saliency, and temporal change presence. The scale-adaptive estimation of temporal change (motion) and its aggregation with the regional shape saliency contribute to the accurate determination of attention points in image sequences. Multilocation descriptors of an image sequence are extracted at the attention points in the form of a set of multidimensional descriptor vectors. A fast recursive implementation is also proposed to make the operator's computational complexity independent from the spatial scale size, which is the window size in the spatial averaging filter. Experiments on the accuracy of attention-point detection have proved the operator consistency and its high potential for multiscale feature extraction from image sequences.

  14. An introduction to multidimensional measurement using Rasch models.

    PubMed

    Briggs, Derek C; Wilson, Mark

    2003-01-01

    The act of constructing a measure requires a number of important assumptions. Principle among these assumptions is that the construct is unidimensional. In practice there are many instances when the assumption of unidimensionality does not hold, and where the application of a multidimensional measurement model is both technically appropriate and substantively advantageous. In this paper we illustrate the usefulness of a multidimensional approach to measurement with the Multidimensional Random Coefficient Multinomial Logit (MRCML) model, an extension of the unidimensional Rasch model. An empirical example is taken from a collection of embedded assessments administered to 541 students enrolled in middle school science classes with a hands-on science curriculum. Student achievement on these assessments are multidimensional in nature, but can also be treated as consecutive unidimensional estimates, or as is most common, as a composite unidimensional estimate. Structural parameters are estimated for each model using ConQuest, and model fit is compared. Student achievement in science is also compared across models. The multidimensional approach has the best fit to the data, and provides more reliable estimates of student achievement than under the consecutive unidimensional approach. Finally, at an interpretational level, the multidimensional approach may well provide richer information to the classroom teacher about the nature of student achievement.

  15. The Tunneling Method for Global Optimization in Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Groenen, Patrick J. F.; Heiser, Willem J.

    1996-01-01

    A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)

  16. Multidimensional Poverty and Health Status as a Predictor of Chronic Income Poverty.

    PubMed

    Callander, Emily J; Schofield, Deborah J

    2015-12-01

    Longitudinal analysis of Wave 5 to 10 of the nationally representative Household, Income and Labour Dynamics in Australia dataset was undertaken to assess whether multidimensional poverty status can predict chronic income poverty. Of those who were multidimensionally poor (low income plus poor health or poor health and insufficient education attainment) in 2007, and those who were in income poverty only (no other forms of disadvantage) in 2007, a greater proportion of those in multidimensional poverty continued to be in income poverty for the subsequent 5 years through to 2012. People who were multidimensionally poor in 2007 had 2.17 times the odds of being in income poverty each year through to 2012 than those who were in income poverty only in 2005 (95% CI: 1.23-3.83). Multidimensional poverty measures are a useful tool for policymakers to identify target populations for policies aiming to improve equity and reduce chronic disadvantage. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Canonical forms of multidimensional steady inviscid flows

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1993-01-01

    Canonical forms and canonical variables for inviscid flow problems are derived. In these forms the components of the system governed by different types of operators (elliptic and hyperbolic) are separated. Both the incompressible and compressible cases are analyzed, and their similarities and differences are discussed. The canonical forms obtained are block upper triangular operator form in which the elliptic and non-elliptic parts reside in different blocks. The full nonlinear equations are treated without using any linearization process. This form enables a better analysis of the equations as well as better numerical treatment. These forms are the analog of the decomposition of the one dimensional Euler equations into characteristic directions and Riemann invariants.

  18. Enhancing Student Motivation and Engagement: The Effects of a Multidimensional Intervention

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2008-01-01

    The present study sought to investigate the effects of a multidimensional educational intervention on high school students' motivation and engagement. The intervention incorporated: (a) multidimensional targets of motivation and engagement, (b) empirically derived intervention methodology, (c) research-based risk and protective factors, (d)…

  19. Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance

    NASA Technical Reports Server (NTRS)

    Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron

    2006-01-01

    Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.

  20. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  1. The theory of n-scales

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih

    2018-01-01

    We provide a theory of n-scales previously called as n dimensional time scales. In previous approaches to the theory of time scales, multi-dimensional scales were taken as product space of two time scales [1, 2]. n-scales make the mathematical structure more flexible and appropriate to real world applications in physics and related fields. Here we define an n-scale as an arbitrary closed subset of ℝn. Modified forward and backward jump operators, Δ-derivatives and Δ-integrals on n-scales are defined.

  2. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…

  3. Compressed Continuous Computation v. 12/20/2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorodetsky, Alex

    2017-02-17

    A library for performing numerical computation with low-rank functions. The (C3) library enables performing continuous linear and multilinear algebra with multidimensional functions. Common tasks include taking "matrix" decompositions of vector- or matrix-valued functions, approximating multidimensional functions in low-rank format, adding or multiplying functions together, integrating multidimensional functions.

  4. The Discriminating Power of Items that Measure More than One Dimension.

    ERIC Educational Resources Information Center

    Reckase, Mark D.

    The work presented in this paper defined conceptually the concepts of multidimensional discrimination and information, derived mathematical expressions for the concepts for a particular multidimensional item response theory (IRT) model, and applied the concepts to actual test data. Multidimensional discrimination was defined as a function of the…

  5. Multidimensional Computerized Adaptive Testing for Indonesia Junior High School Biology

    ERIC Educational Resources Information Center

    Kuo, Bor-Chen; Daud, Muslem; Yang, Chih-Wei

    2015-01-01

    This paper describes a curriculum-based multidimensional computerized adaptive test that was developed for Indonesia junior high school Biology. In adherence to the Indonesian curriculum of different Biology dimensions, 300 items was constructed, and then tested to 2238 students. A multidimensional random coefficients multinomial logit model was…

  6. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    ERIC Educational Resources Information Center

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  7. Health, Wealth and Wisdom: Exploring Multidimensional Inequality in a Developing Country

    ERIC Educational Resources Information Center

    Nilsson, Therese

    2010-01-01

    Despite a broad theoretical literature on multidimensional inequality and a widespread belief that welfare is not synonymous to income--not the least in a developing context--empirical inequality examinations rarely includes several welfare attributes. We explore three techniques on how to evaluate multidimensional inequality using Zambian…

  8. Multidimensional Physical Self-Concept of Athletes with Physical Disabilities

    ERIC Educational Resources Information Center

    Shapiro, Deborah R.; Martin, Jeffrey J.

    2010-01-01

    The purposes of this investigation were first to predict reported PA (physical activity) behavior and self-esteem using a multidimensional physical self-concept model and second to describe perceptions of multidimensional physical self-concept (e.g., strength, endurance, sport competence) among athletes with physical disabilities. Athletes (N =…

  9. Method of data mining including determining multidimensional coordinates of each item using a predetermined scalar similarity value for each item pair

    DOEpatents

    Meyers, Charles E.; Davidson, George S.; Johnson, David K.; Hendrickson, Bruce A.; Wylie, Brian N.

    1999-01-01

    A method of data mining represents related items in a multidimensional space. Distance between items in the multidimensional space corresponds to the extent of relationship between the items. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the items.

  10. A review of snapshot multidimensional optical imaging: measuring photon tags in parallel

    PubMed Central

    Gao, Liang; Wang, Lihong V.

    2015-01-01

    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition—also dubbed snapshot imaging—has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications. PMID:27134340

  11. A multidimensional subdiffusion model: An arbitrage-free market

    NASA Astrophysics Data System (ADS)

    Li, Guo-Hua; Zhang, Hong; Luo, Mao-Kang

    2012-12-01

    To capture the subdiffusive characteristics of financial markets, the subordinated process, directed by the inverse α-stale subordinator Sα(t) for 0 < α < 1, has been employed as the model of asset prices. In this article, we introduce a multidimensional subdiffusion model that has a bond and K correlated stocks. The stock price process is a multidimensional subdiffusion process directed by the inverse α-stable subordinator. This model describes the period of stagnation for each stock and the behavior of the dependency between multiple stocks. Moreover, we derive the multidimensional fractional backward Kolmogorov equation for the subordinated process using the Laplace transform technique. Finally, using a martingale approach, we prove that the multidimensional subdiffusion model is arbitrage-free, and also gives an arbitrage-free pricing rule for contingent claims associated with the martingale measure.

  12. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  13. Audio frequency in vivo optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.

    2009-05-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  14. A bivariate gamma probability distribution with application to gust modeling. [for the ascent flight of the space shuttle

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.

    1982-01-01

    A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.

  15. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    PubMed

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  16. Follow-up Photometry of the Microlensing Event TCP J05074264+2447555

    NASA Astrophysics Data System (ADS)

    Konyves-Toth, R.; Pal, A.; Ordasi, A.; Vinko, J.

    2017-11-01

    We report photometric observations of TCP J05074264+2447555 (R.A. = 05:08:43, Dec=+24:47:56), a proposed microlensing event at peak magnitude of V 11.5, discovered by T.Kojima UT 2017-10-25.688, and later confirmed by ASAS-SN (ATel #10923) Our data were taken with the 60/90 cm Schmidt telescope and the 1-meter RCC Telescope through Bessell B,V,R,I filters at Konkoly Observatory, Piszkesteto, Hungary between UT 2017-11-03.9 and 2017-11-04.9.

  17. A linear model of population dynamics

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  18. Dispersion and Attenuation Due to Scattering from Heterogeneities of the Frame Bulk Modulus of a Poroelastic Medium

    DTIC Science & Technology

    2010-02-19

    attenuation is a function of the Hurst exponent which characterizes the fractal het- erogeneity. Muller and Gurevich15,16 used statistical smoothing of...modified Bessel function of the third kind, Γ denotes the gamma function, and ν is the Hurst coefficient which is assumed to be 0 < ν ≤ 1. The three...The Hurst coefficient, ν, is ν = 0.1 (long-dashed line), ν = 0.5 (short-dashed line), and ν = 0.9 (long-short dashed line). In (a) the sound speed

  19. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces.

    PubMed

    Aieta, Francesco; Genevet, Patrice; Kats, Mikhail A; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico

    2012-09-12

    The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas. The lenses and axicons consist of V-shaped nanoantennas that introduce a radial distribution of phase discontinuities, thereby generating respectively spherical wavefronts and nondiffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high-numerical aperture lenses such as flat microscope objectives.

  20. MUSIC-type imaging of small perfectly conducting cracks with an unknown frequency

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang

    2015-09-01

    MUltiple SIgnal Classification (MUSIC) is a famous non-iterative detection algorithm in inverse scattering problems. However, when the applied frequency is unknown, inaccurate locations are identified via MUSIC. This fact has been confirmed through numerical simulations. However, the reason behind this phenomenon has not been investigated theoretically. Motivated by this fact, we identify the structure of MUSIC-type imaging functionals with unknown frequency, by establishing a relationship with Bessel functions of order zero of the first kind. Through this, we can explain why inaccurate results appear.

Top