Sample records for multidimensional nmr study

  1. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…

  2. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  4. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    PubMed

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Nmrglue: an open source Python package for the analysis of multidimensional NMR data.

    PubMed

    Helmus, Jonathan J; Jaroniec, Christopher P

    2013-04-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license.

  6. Nmrglue: An Open Source Python Package for the Analysis of Multidimensional NMR Data

    PubMed Central

    Helmus, Jonathan J.; Jaroniec, Christopher P.

    2013-01-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license. PMID:23456039

  7. Multidimensional NMR approaches towards highly resolved, sensitive and high-throughput quantitative metabolomics.

    PubMed

    Marchand, Jérémy; Martineau, Estelle; Guitton, Yann; Dervilly-Pinel, Gaud; Giraudeau, Patrick

    2017-02-01

    Multi-dimensional NMR is an appealing approach for dealing with the challenging complexity of biological samples in metabolomics. This article describes how spectroscopists have recently challenged their imagination in order to make 2D NMR a powerful tool for quantitative metabolomics, based on innovative pulse sequences combined with meticulous analytical chemistry approaches. Clever time-saving strategies have also been explored to make 2D NMR a high-throughput tool for metabolomics, relying on alternative data acquisition schemes such as ultrafast NMR. Currently, much work is aimed at drastically boosting the NMR sensitivity thanks to hyperpolarisation techniques, which have been used in combination with fast acquisition methods and could greatly expand the application potential of NMR metabolomics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data

    NASA Astrophysics Data System (ADS)

    Mobli, Mehdi

    2015-07-01

    The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the random subset chosen from a given PDF. Finally, it is demonstrated that metrics used to find optimal NUS distributions are heavily dependent on the inherent sensitivity of the random subset, and such optimisation is therefore less critical when using the proposed sampling scheme.

  9. Rapid acquisition of data dense solid-state CPMG NMR spectral sets using multi-dimensional statistical analysis

    DOE PAGES

    Mason, H. E.; Uribe, E. C.; Shusterman, J. A.

    2018-01-01

    Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.

  10. Rapid acquisition of data dense solid-state CPMG NMR spectral sets using multi-dimensional statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, H. E.; Uribe, E. C.; Shusterman, J. A.

    Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.

  11. Speeding up NMR by in Situ Photo-Induced Reversible Acceleration of T1 -Relaxation (PIRAT).

    PubMed

    Stadler, Eduard; Dommaschk, Marcel; Frühwirt, Philipp; Herges, Rainer; Gescheidt, Georg

    2018-03-05

    Increasing the signal-to-noise ratio is one of the major goals in the field of NMR spectroscopy. In this proof of concept, we accelerate relaxation during an NMR pulse sequence using photo-generated paramagnetic states of an inert sensitizer. For the follow-up acquisition period, the system is converted to a diamagnetic state. The reversibility of the photo-induced switching allows extensive repetition required for multidimensional NMR. We thus eliminate the obstacle of line-broadening by the presence of paramagnetic species. In this contribution, we show how cycling of synchronized light/pulse sequences leads to an enhanced efficiency in multidimensional NMR. Our approach utilizes a molecular spin switch reversibly altering between a paramagnetic and diamagnetic state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. NMR of lignins

    Treesearch

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  13. Application of random coherence order selection in gradient-enhanced multidimensional NMR

    NASA Astrophysics Data System (ADS)

    Bostock, Mark J.; Nietlispach, Daniel

    2016-03-01

    Development of multidimensional NMR is essential to many applications, for example in high resolution structural studies of biomolecules. Multidimensional techniques enable separation of NMR signals over several dimensions, improving signal resolution, whilst also allowing identification of new connectivities. However, these advantages come at a significant cost. The Fourier transform theorem requires acquisition of a grid of regularly spaced points to satisfy the Nyquist criterion, while frequency discrimination and acquisition of a pure phase spectrum require acquisition of both quadrature components for each time point in every indirect (non-acquisition) dimension, adding a factor of 2 N -1 to the number of free- induction decays which must be acquired, where N is the number of dimensions. Compressed sensing (CS) ℓ 1-norm minimisation in combination with non-uniform sampling (NUS) has been shown to be extremely successful in overcoming the Nyquist criterion. Previously, maximum entropy reconstruction has also been used to overcome the limitation of frequency discrimination, processing data acquired with only one quadrature component at a given time interval, known as random phase detection (RPD), allowing a factor of two reduction in the number of points for each indirect dimension (Maciejewski et al. 2011 PNAS 108 16640). However, whilst this approach can be easily applied in situations where the quadrature components are acquired as amplitude modulated data, the same principle is not easily extended to phase modulated (P-/N-type) experiments where data is acquired in the form exp (iωt) or exp (-iωt), and which make up many of the multidimensional experiments used in modern NMR. Here we demonstrate a modification of the CS ℓ 1-norm approach to allow random coherence order selection (RCS) for phase modulated experiments; we generalise the nomenclature for RCS and RPD as random quadrature detection (RQD). With this method, the power of RQD can be extended to the full suite of experiments available to modern NMR spectroscopy, allowing resolution enhancements for all indirect dimensions; alone or in combination with NUS, RQD can be used to improve experimental resolution, or shorten experiment times, of considerable benefit to the challenging applications undertaken by modern NMR.

  14. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  15. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2017-04-18

    Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1 H- 1 H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1 H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1 H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of protons for structure determination using 1 H- 1 H dipolar couplings and to evaluate the changes in chemical environments as well as the relative orientation to the external magnetic field using proton CSA. Due to the boost in signal sensitivity enabled by proton detection under ultrafast MAS, by virtue of high proton natural abundance and gyromagnetic ratio, proton-detected multidimensional experiments involving low-γ nuclei can now be accomplished within a reasonable time, while the higher dimension also offers additional resolution enhancement. In addition, the application of proton-based ssNMR spectroscopy under ultrafast MAS in various challenging and crystalline systems is also presented. Finally, we briefly discuss the limitations and challenges pertaining to proton-based ssNMR spectroscopy under ultrafast MAS conditions, such as the presence of high-order dipolar couplings, friction-induced sample heating, and limited sample volume. Although there are still a number of challenges that must be circumvented by further developments in radio frequency pulse sequences, MAS probe technology and approaches to prepare NMR-friendly samples, proton-based ssNMR has already gained much popularity in various research domains, especially in proteins where uniform or site-selective deuteration can be relatively easily achieved. In addition, implementation of the recently developed fast data acquisition approaches would also enable further developments in the design and applications of proton-based ultrafast MAS multidimensional ssNMR techniques.

  16. Structure and Membrane Interactions of the Antibiotic Peptide Dermadistinctin K by Multidimensional Solution and Oriented 15N and 31P Solid-State NMR Spectroscopy

    PubMed Central

    Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard

    2009-01-01

    DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046

  17. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  18. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  19. Determination of Structural Topology of a Membrane Protein in Lipid -Bilayers using Polarization Optimized Experiments (POE) for Static and MAS Solid State NMR Spectroscopy

    PubMed Central

    Mote, Kaustubh R.; Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments (POE), for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼ 0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional O-ssNMR and MAS-ssNMR. PMID:23963722

  20. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  1. Collaborative development for setup, execution, sharing and analytics of complex NMR experiments.

    PubMed

    Irvine, Alistair G; Slynko, Vadim; Nikolaev, Yaroslav; Senthamarai, Russell R P; Pervushin, Konstantin

    2014-02-01

    Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Bacterial Expression and Purification of the Amyloidogenic Peptide PAPf39 for Multidimensional NMR Spectroscopy

    PubMed Central

    Shanmuganathan, Aranganathan; Bishop, Anthony C.; French, Kinsley C.; McCallum, Scott A.; Makhatadze, George I.

    2013-01-01

    PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression, as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus, and purification of uniformly labeled 13C- and 15N-labeled PAPf39 peptide. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH. PMID:23314347

  3. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  4. CONNJUR R: An annotation strategy for fostering reproducibility in bio-NMR: protein spectral assignment

    PubMed Central

    Fenwick, Matthew; Hoch, Jeffrey C.; Ulrich, Eldon; Gryk, Michael R.

    2015-01-01

    Reproducibility is a cornerstone of the scientific method, essential for validation of results by independent laboratories and the sine qua non of scientific progress. A key step toward reproducibility of biomolecular NMR studies was the establishment of public data repositories (PDB and BMRB). Nevertheless, bio-NMR studies routinely fall short of the requirement for reproducibility that all the data needed to reproduce the results are published. A key limitation is that considerable metadata goes unpublished, notably manual interventions that are typically applied during the assignment of multidimensional NMR spectra. A general solution to this problem has been elusive, in part because of the wide range of approaches and software packages employed in the analysis of protein NMR spectra. Here we describe an approach for capturing missing metadata during the assignment of protein NMR spectra that can be generalized to arbitrary workflows, different software packages, other biomolecules, or other stages of data analysis in bio-NMR. We also present extensions to the NMR-STAR data dictionary that enable machine archival and retrieval of the “missing” metadata. PMID:26253947

  5. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR

    PubMed Central

    Mobli, Mehdi; Hoch, Jeffrey C.

    2017-01-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR. PMID:25456315

  6. Beyond Fourier

    NASA Astrophysics Data System (ADS)

    Hoch, Jeffrey C.

    2017-10-01

    Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development.

  7. Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyong; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian 361005; Smith, Pieter E. S.

    Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. Bymore » porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.« less

  8. Deterministic multidimensional nonuniform gap sampling.

    PubMed

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy.

    PubMed

    Wagstaff, Jane L; Taylor, Samantha L; Howard, Mark J

    2013-04-05

    This review aims to illustrate that STD NMR is not simply a method for drug screening and discovery, but has qualitative and quantitative applications that can answer fundamental and applied biological and biomedical questions involving molecular interactions between ligands and proteins. We begin with a basic introduction to the technique of STD NMR and report on recent advances and biological applications of STD including studies to follow the interactions of non-steroidal anti-inflammatories, minimum binding requirements for virus infection and understating inhibition of amyloid fibre formation. We expand on this introduction by reporting recent STD NMR studies of live-cell receptor systems, new methodologies using scanning STD, magic-angle spinning STD and approaches to use STD NMR in a quantitative fashion for dissociation constants and group epitope mapping (GEM) determination. We finish by outlining new approaches that have potential to influence future applications of the technique; NMR isotope-editing, heteronuclear multidimensional STD and (19)F STD methods that are becoming more amenable due to the latest NMR equipment technologies.

  10. Beyond Fourier.

    PubMed

    Hoch, Jeffrey C

    2017-10-01

    Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. In-cell NMR of intrinsically disordered proteins in prokaryotic cells.

    PubMed

    Ito, Yutaka; Mikawa, Tsutomu; Smith, Brian O

    2012-01-01

    In-cell NMR, i.e., the acquisition of heteronuclear multidimensional NMR of biomacromolecules inside living cells, is, to our knowledge, the only method for investigating the three-dimensional structure and dynamics of proteins at atomic detail in the intracellular environment. Since the inception of the method, intrinsically disordered proteins have been regarded as particular targets for in-cell NMR, due to their expected sensitivity to the molecular crowding in the intracellular environment. While both prokaryotic and eukaryotic cells can be used as host cells for in-cell NMR, prokaryotic in-cell NMR, particularly employing commonly used protein overexpression systems in Escherichia coli cells, is the most accessible approach. In this chapter we describe general procedures for obtaining in-cell NMR spectra in E. coli cells.

  13. Knowledge-based nonuniform sampling in multidimensional NMR.

    PubMed

    Schuyler, Adam D; Maciejewski, Mark W; Arthanari, Haribabu; Hoch, Jeffrey C

    2011-07-01

    The full resolution afforded by high-field magnets is rarely realized in the indirect dimensions of multidimensional NMR experiments because of the time cost of uniformly sampling to long evolution times. Emerging methods utilizing nonuniform sampling (NUS) enable high resolution along indirect dimensions by sampling long evolution times without sampling at every multiple of the Nyquist sampling interval. While the earliest NUS approaches matched the decay of sampling density to the decay of the signal envelope, recent approaches based on coupled evolution times attempt to optimize sampling by choosing projection angles that increase the likelihood of resolving closely-spaced resonances. These approaches employ knowledge about chemical shifts to predict optimal projection angles, whereas prior applications of tailored sampling employed only knowledge of the decay rate. In this work we adapt the matched filter approach as a general strategy for knowledge-based nonuniform sampling that can exploit prior knowledge about chemical shifts and is not restricted to sampling projections. Based on several measures of performance, we find that exponentially weighted random sampling (envelope matched sampling) performs better than shift-based sampling (beat matched sampling). While shift-based sampling can yield small advantages in sensitivity, the gains are generally outweighed by diminished robustness. Our observation that more robust sampling schemes are only slightly less sensitive than schemes highly optimized using prior knowledge about chemical shifts has broad implications for any multidimensional NMR study employing NUS. The results derived from simulated data are demonstrated with a sample application to PfPMT, the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum.

  14. NMR-based automated protein structure determination.

    PubMed

    Würz, Julia M; Kazemi, Sina; Schmidt, Elena; Bagaria, Anurag; Güntert, Peter

    2017-08-15

    NMR spectra analysis for protein structure determination can now in many cases be performed by automated computational methods. This overview of the computational methods for NMR protein structure analysis presents recent automated methods for signal identification in multidimensional NMR spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable and integrated into one software package to enable the fully automated structure determination of proteins starting from NMR spectra without manual interventions or corrections at intermediate steps, with an accuracy of 1-2 Å backbone RMSD in comparison with manually solved reference structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Monitoring mechanistic details in the synthesis of pyrimidines via real-time, ultrafast multidimensional NMR spectroscopy

    PubMed Central

    Pardo, Zulay D.; Olsen, Greg; Fernández-Valle, María Encarnación; Frydman, Lucio; Martínez-Álvarez, Roberto; Herrera, Antonio

    2016-01-01

    Recent years have witnessed unprecedented advances in the development of fast multidimensional NMR acquisition techniques. This progress could open valuable new opportunities for the elucidation of chemical and biochemical processes. This study demonstrates one such capability, with the first real-time 2D dynamic analysis of a complex organic reaction relying on unlabeled substrates. Implementing such measurements required the development of new ultrafast 2D methods, capable of monitoring multiple spectral regions of interest as the reaction progressed. The alternate application of these acquisitions in an interleaved, excitation-optimized fashion, allowed us to extract new structural and dynamic insight concerning the reaction between aliphatic ketones and triflic anhydride in the presence of nitriles to yield alkylpyrimidines. Up to 2500 2D NMR data sets were thus collected over the course of this nearly 100 min long reaction, in an approach resembling that used in functional magnetic resonance imaging. With the aid of these new frequency-selective low-gradient-strength experiments, supplemented by chemical shift calculations of the spectral coordinates observed in the 2D heteronuclear correlations, previously postulated intermediates involved in the alkylpyrimidine formation process could be confirmed, and hitherto undetected ones were revealed. The potential and limitations of the resulting methods are discussed. PMID:22283498

  16. A general algorithm for peak-tracking in multi-dimensional NMR experiments.

    PubMed

    Ravel, P; Kister, G; Malliavin, T E; Delsuc, M A

    2007-04-01

    We present an algorithmic method allowing automatic tracking of NMR peaks in a series of spectra. It consists in a two phase analysis. The first phase is a local modeling of the peak displacement between two consecutive experiments using distance matrices. Then, from the coefficients of these matrices, a value graph containing the a priori set of possible paths used by these peaks is generated. On this set, the minimization under constraint of the target function by a heuristic approach provides a solution to the peak-tracking problem. This approach has been named GAPT, standing for General Algorithm for NMR Peak Tracking. It has been validated in numerous simulations resembling those encountered in NMR spectroscopy. We show the robustness and limits of the method for situations with many peak-picking errors, and presenting a high local density of peaks. It is then applied to the case of a temperature study of the NMR spectrum of the Lipid Transfer Protein (LTP).

  17. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  18. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  19. Systematic Evaluation of Non-Uniform Sampling Parameters in the Targeted Analysis of Urine Metabolites by 1H,1H 2D NMR Spectroscopy.

    PubMed

    Schlippenbach, Trixi von; Oefner, Peter J; Gronwald, Wolfram

    2018-03-09

    Non-uniform sampling (NUS) allows the accelerated acquisition of multidimensional NMR spectra. The aim of this contribution was the systematic evaluation of the impact of various quantitative NUS parameters on the accuracy and precision of 2D NMR measurements of urinary metabolites. Urine aliquots spiked with varying concentrations (15.6-500.0 µM) of tryptophan, tyrosine, glutamine, glutamic acid, lactic acid, and threonine, which can only be resolved fully by 2D NMR, were used to assess the influence of the sampling scheme, reconstruction algorithm, amount of omitted data points, and seed value on the quantitative performance of NUS in 1 H, 1 H-TOCSY and 1 H, 1 H-COSY45 NMR spectroscopy. Sinusoidal Poisson-gap sampling and a compressed sensing approach employing the iterative re-weighted least squares method for spectral reconstruction allowed a 50% reduction in measurement time while maintaining sufficient quantitative accuracy and precision for both types of homonuclear 2D NMR spectroscopy. Together with other advances in instrument design, such as state-of-the-art cryogenic probes, use of 2D NMR spectroscopy in large biomedical cohort studies seems feasible.

  20. Experimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins.

    PubMed

    Gopinath, T; Veglia, Gianluigi

    2018-01-01

    Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived 15 N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.

  1. Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingol, Kerem; Brüschweiler, Rafael

    Metabolomics continues to make rapid progress through the development of new and better methods and their applications to gain insight into the metabolism of a wide range of different biological systems from a systems biology perspective. Customization of NMR databases and search tools allows the faster and more accurate identification of known metabolites, whereas the identification of unknowns, without a need for extensive purification, requires new strategies to integrate NMR with mass spectrometry, cheminformatics, and computational methods. For some applications, the use of covalent and non-covalent attachments in the form of labeled tags or nanoparticles can significantly reduce the complexitymore » of these tasks.« less

  2. Practical aspects of NMR signal assignment in larger and challenging proteins

    PubMed Central

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  3. Challenges and perspectives in quantitative NMR.

    PubMed

    Giraudeau, Patrick

    2017-01-01

    This perspective article summarizes, from the author's point of view at the beginning of 2016, the major challenges and perspectives in the field of quantitative NMR. The key concepts in quantitative NMR are first summarized; then, the most recent evolutions in terms of resolution and sensitivity are discussed, as well as some potential future research directions in this field. A particular focus is made on methodologies capable of boosting the resolution and sensitivity of quantitative NMR, which could open application perspectives in fields where the sample complexity and the analyte concentrations are particularly challenging. These include multi-dimensional quantitative NMR and hyperpolarization techniques such as para-hydrogen-induced polarization or dynamic nuclear polarization. Because quantitative NMR cannot be dissociated from the key concepts of analytical chemistry, i.e. trueness and precision, the methodological developments are systematically described together with their level of analytical performance. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  5. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations.

    PubMed

    Gopinath, T; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Multiple Acquisition of Magic Angle Spinning Solid-State NMR Experiments Using One Receiver: Application to Microcrystalline and Membrane Protein Preparations

    PubMed Central

    Gopinath, T.; Veglia, Gianluigi

    2015-01-01

    Solid-State NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POEs allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this Perspective, we describe the first generation of POEs, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic polarization, to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes. PMID:25797011

  7. Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques.

    PubMed

    Koptyug, Igor V; Sagdeev, Dmitry R; Gerkema, Edo; Van As, Henk; Sagdeev, Renad Z

    2005-07-01

    Multidimensional images of Al2O3 pellets, cordierite monolith, glass tube, polycrystalline V2O5 and other materials have been detected by 27Al, 51V, and 23Na NMR imaging using techniques and instrumentation conventionally employed for imaging of liquids. These results demonstrate that, contrary to the widely accepted opinion, imaging of "rigid" solids does not necessarily require utilization of solid state NMR imaging approaches, pulse sequences and hardware even for quadrupolar nuclei which exhibit line widths in excess of 100 kHz, such as 51V in polycrystalline V2O5. It is further demonstrated that both 27Al NMR signal intensity and spin-lattice relaxation time decrease with increasing temperature and thus can potentially serve as temperature sensitive parameters for spatially resolved NMR thermometry.

  8. Compressed NMR: Combining compressive sampling and pure shift NMR techniques.

    PubMed

    Aguilar, Juan A; Kenwright, Alan M

    2017-12-26

    Historically, the resolution of multidimensional nuclear magnetic resonance (NMR) has been orders of magnitude lower than the intrinsic resolution that NMR spectrometers are capable of producing. The slowness of Nyquist sampling as well as the existence of signals as multiplets instead of singlets have been two of the main reasons for this underperformance. Fortunately, two compressive techniques have appeared that can overcome these limitations. Compressive sensing, also known as compressed sampling (CS), avoids the first limitation by exploiting the compressibility of typical NMR spectra, thus allowing sampling at sub-Nyquist rates, and pure shift techniques eliminate the second issue "compressing" multiplets into singlets. This paper explores the possibilities and challenges presented by this combination (compressed NMR). First, a description of the CS framework is given, followed by a description of the importance of combining it with the right pure shift experiment. Second, examples of compressed NMR spectra and how they can be combined with covariance methods will be shown. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Fast multi-dimensional NMR by minimal sampling

    NASA Astrophysics Data System (ADS)

    Kupče, Ēriks; Freeman, Ray

    2008-03-01

    A new scheme is proposed for very fast acquisition of three-dimensional NMR spectra based on minimal sampling, instead of the customary step-wise exploration of all of evolution space. The method relies on prior experiments to determine accurate values for the evolving frequencies and intensities from the two-dimensional 'first planes' recorded by setting t1 = 0 or t2 = 0. With this prior knowledge, the entire three-dimensional spectrum can be reconstructed by an additional measurement of the response at a single location (t1∗,t2∗) where t1∗ and t2∗ are fixed values of the evolution times. A key feature is the ability to resolve problems of overlap in the acquisition dimension. Applied to a small protein, agitoxin, the three-dimensional HNCO spectrum is obtained 35 times faster than systematic Cartesian sampling of the evolution domain. The extension to multi-dimensional spectroscopy is outlined.

  10. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicablemore » methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.« less

  11. Single-Scan Multidimensional NMR Analysis of Mixtures at Sub-Millimolar Concentrations by using SABRE Hyperpolarization.

    PubMed

    Daniele, Valeria; Legrand, François-Xavier; Berthault, Patrick; Dumez, Jean-Nicolas; Huber, Gaspard

    2015-11-16

    Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE-enhanced (1)H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for (1)H spectra. In addition, the use of a co-substrate, whose signals may obscure the (1) H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE-hyperpolarized 2D (1)H NMR spectra of mixtures of small molecules at sub-millimolar concentrations in a single scan. The method relies on the use of para-hydrogen together with a deuterated co-substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    DOE PAGES

    Shaw, Wendy J.

    2014-10-29

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniquesmore » have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.« less

  13. Molecular understanding of Abeta peptide interaction with isoflurane, propofol, and thiopental: NMR spectroscopic study.

    PubMed

    Mandal, Pravat K; Williams, John P; Mandal, Ratna

    2007-01-23

    Abeta peptide is the major component of senile plaques (SP), which accumulate in the brain of a patient with Alzheimer's disease (AD). A recent report indicated that isoflurane enhanced Abeta oligomerization (micro-aggregation) and subsequent cytotoxicity of the Abeta peptide. A separate study showed that a clinically relevant concentration of isoflurane induces apoptosis and increases Abeta production in a human neuroglioma cell line. In vitro studies have indicated that halothane interacts specifically with Abeta peptide to induce oligomerization and that Abeta42 oligomerizes faster than Abeta40. The specific interactions of isoflurane, propofol, and thiopental with uniformly 15N labeled Abeta40 and Abeta42 peptide were investigated using multidimensional nuclear magnetic resonance (NMR) experiments. We found that isoflurane and propofol (at higher concentration) interact with Abeta40 peptides and induce Abeta oligomerization. Thiopental does not interact with specific residues (G29, A30, and I31) of Abeta40; hence, the peptide remains in the monomeric form. On the basis of our NMR study, thiopental does not oligomerize Abeta40 even at higher concentrations.

  14. Random phase detection in multidimensional NMR.

    PubMed

    Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C

    2011-10-04

    Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.

  15. Ultrafast-based projection-reconstruction three-dimensional nuclear magnetic resonance spectroscopy.

    PubMed

    Mishkovsky, Mor; Kupce, Eriks; Frydman, Lucio

    2007-07-21

    Recent years have witnessed increased efforts toward the accelerated acquisition of multidimensional nuclear magnetic resonance (nD NMR) spectra. Among the methods proposed to speed up these NMR experiments is "projection reconstruction," a scheme based on the acquisition of a reduced number of two-dimensional (2D) NMR data sets constituting cross sections of the nD time domain being sought. Another proposition involves "ultrafast" spectroscopy, capable of completing nD NMR acquisitions within a single scan. Potential limitations of these approaches include the need for a relatively slow 2D-type serial data collection procedure in the former case, and a need for at least n high-performance, linearly independent gradients and a sufficiently high sensitivity in the latter. The present study introduces a new scheme that comes to address these limitations, by combining the basic features of the projection reconstruction and the ultrafast approaches into a single, unified nD NMR experiment. In the resulting method each member within the series of 2D cross sections required by projection reconstruction to deliver the nD NMR spectrum being sought, is acquired within a single scan with the aid of the 2D ultrafast protocol. Full nD NMR spectra can thus become available by backprojecting a small number of 2D sets, collected using a minimum number of scans. Principles, opportunities, and limitations of the resulting approach, together with demonstrations of its practical advantages, are here discussed and illustrated with a series of three-dimensional homo- and heteronuclear NMR correlation experiments.

  16. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  17. A "special perspectives" issue: Recent achievements and new directions in biomolecular solid state NMR

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.

  18. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.

    PubMed

    Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D

    2015-06-02

    An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.

  19. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-01-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  20. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  1. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferredmore » to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.« less

  2. Non-uniform sampling: post-Fourier era of NMR data collection and processing.

    PubMed

    Kazimierczuk, Krzysztof; Orekhov, Vladislav

    2015-11-01

    The invention of multidimensional techniques in the 1970s revolutionized NMR, making it the general tool of structural analysis of molecules and materials. In the most straightforward approach, the signal sampling in the indirect dimensions of a multidimensional experiment is performed in the same manner as in the direct dimension, i.e. with a grid of equally spaced points. This results in lengthy experiments with a resolution often far from optimum. To circumvent this problem, numerous sparse-sampling techniques have been developed in the last three decades, including two traditionally distinct approaches: the radial sampling and non-uniform sampling. This mini review discusses the sparse signal sampling and reconstruction techniques from the point of view of an underdetermined linear algebra problem that arises when a full, equally spaced set of sampled points is replaced with sparse sampling. Additional assumptions that are introduced to solve the problem, as well as the shape of the undersampled Fourier transform operator (visualized as so-called point spread function), are shown to be the main differences between various sparse-sampling methods. Copyright © 2015 John Wiley & Sons, Ltd.

  3. A generalized approach to automated NMR peak list editing: application to reduced dimensionality triple resonance spectra.

    PubMed

    Moseley, Hunter N B; Riaz, Nadeem; Aramini, James M; Szyperski, Thomas; Montelione, Gaetano T

    2004-10-01

    We present an algorithm and program called Pattern Picker that performs editing of raw peak lists derived from multidimensional NMR experiments with characteristic peak patterns. Pattern Picker detects groups of correlated peaks within peak lists from reduced dimensionality triple resonance (RD-TR) NMR spectra, with high fidelity and high yield. With typical quality RD-TR NMR data sets, Pattern Picker performs almost as well as human analysis, and is very robust in discriminating real peak sets from noise and other artifacts in unedited peak lists. The program uses a depth-first search algorithm with short-circuiting to efficiently explore a search tree representing every possible combination of peaks forming a group. The Pattern Picker program is particularly valuable for creating an automated peak picking/editing process. The Pattern Picker algorithm can be applied to a broad range of experiments with distinct peak patterns including RD, G-matrix Fourier transformation (GFT) NMR spectra, and experiments to measure scalar and residual dipolar coupling, thus promoting the use of experiments that are typically harder for a human to analyze. Since the complexity of peak patterns becomes a benefit rather than a drawback, Pattern Picker opens new opportunities in NMR experiment design.

  4. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  5. NMRNet: A deep learning approach to automated peak picking of protein NMR spectra.

    PubMed

    Klukowski, Piotr; Augoff, Michal; Zieba, Maciej; Drwal, Maciej; Gonczarek, Adam; Walczak, Michal J

    2018-03-14

    Automated selection of signals in protein NMR spectra, known as peak picking, has been studied for over 20 years, nevertheless existing peak picking methods are still largely deficient. Accurate and precise automated peak picking would accelerate the structure calculation, and analysis of dynamics and interactions of macromolecules. Recent advancement in handling big data, together with an outburst of machine learning techniques, offer an opportunity to tackle the peak picking problem substantially faster than manual picking and on par with human accuracy. In particular, deep learning has proven to systematically achieve human-level performance in various recognition tasks, and thus emerges as an ideal tool to address automated identification of NMR signals. We have applied a convolutional neural network for visual analysis of multidimensional NMR spectra. A comprehensive test on 31 manually-annotated spectra has demonstrated top-tier average precision (AP) of 0.9596, 0.9058 and 0.8271 for backbone, side-chain and NOESY spectra, respectively. Furthermore, a combination of extracted peak lists with automated assignment routine, FLYA, outperformed other methods, including the manual one, and led to correct resonance assignment at the levels of 90.40%, 89.90% and 90.20% for three benchmark proteins. The proposed model is a part of a Dumpling software (platform for protein NMR data analysis), and is available at https://dumpling.bio/. michaljerzywalczak@gmail.compiotr.klukowski@pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  6. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    PubMed

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  7. High Resolution 4-D Spectroscopy with Sparse Concentric Shell Sampling and FFT-CLEAN

    PubMed Central

    Coggins, Brian E.; Zhou, Pei

    2009-01-01

    SUMMARY Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise. PMID:18853260

  8. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  9. A model of the complex between human {beta}-microseminoprotein and CRISP-3 based on NMR data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasriani, Houman; Fernlund, Per; Udby, Lene

    2009-01-09

    {beta}-Microseminoprotein (MSP), a 10 kDa seminal plasma protein, forms a tight complex with cysteine-rich secretory protein 3 (CRISP-3) from granulocytes. The 3D structure of human MSP has been determined but there is as yet no 3D structure for CRISP-3. We have now studied the complex between human MSP and CRISP-3 with multidimensional NMR. {sup 15}N-HSQC spectra show substantial differences between free and complexed hMSP. Using several 3D-NMR spectra of triply labeled hMSP in complex with a recombinant N-terminal domain of CRISP-3, most of the backbone of hMSP could be assigned. The data show that only one side of hMSP, comprisingmore » {beta}-strands 1, 4, 5, and 8 are affected by the complex formation, indicating that {beta}-strands 1 and 8 form the main binding surface. Based on this we present a tentative structure for the hMSP-CRISP-3 complex using the known crystal structure of triflin as a model of CRISP-3.« less

  10. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)

    NASA Astrophysics Data System (ADS)

    Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.

  11. Simultaneous acquisition for T2 -T2 Exchange and T1 -T2 correlation NMR experiments

    NASA Astrophysics Data System (ADS)

    Montrazi, Elton T.; Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Barsi-Andreeta, Mariane; Bonagamba, Tito J.

    2018-04-01

    The NMR measurements of longitudinal and transverse relaxation times and its multidimensional correlations provide useful information about molecular dynamics. However, these experiments are very time-consuming, and many researchers proposed faster experiments to reduce this issue. This paper presents a new way to simultaneously perform T2 -T2 Exchange and T1 -T2 correlation experiments by taking the advantage of the storage time and the two steps phase cycling used for running the relaxation exchange experiment. The data corresponding to each step is either summed or subtracted to produce the T2 -T2 and T1 -T2 data, enhancing the information obtained while maintaining the experiment duration. Comparing the results from this technique with traditional NMR experiments it was possible to validate the method.

  12. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta

    Treesearch

    Daniel J. Yelle; Dongsheng Wei; John Ralph; Kenneth E. Hammel

    2011-01-01

    Lignocellulose biodegradation, an essential step in terrestrial carbon cycling, generally involves removal of the recalcitrant lignin barrier that otherwise prevents infiltration by microbial polysaccharide hydrolases. However, fungi that cause brown rot of wood, a major route for biomass recycling in coniferous forests, utilize wood polysaccharides efficiently while...

  13. Use of X-Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymer-Fullerene Bimolecular Crystal

    DTIC Science & Technology

    2012-09-05

    Richter , M. F. Toney , M. Heeney , I. McCulloch , ACS Nano 2009 , 3 , 780 . [ 19 ] H. W. Spiess , Macromolecules 43 , 5479 . [ 20 ] K...Schmidt-Rohr , H. W. Spiess , Multidimensional Solid-State NMR and Polymers , Academic Press , London 1994 . [ 21 ] C. Yang , J. G. Hu

  14. Novel nuclear magnetic resonance techniques for studying biological molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laws, David Douglas

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. Inmore » this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13C a, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.« less

  15. Quick, sensitive serial NMR experiments with Radon transform.

    PubMed

    Dass, Rupashree; Kasprzak, Paweł; Kazimierczuk, Krzysztof

    2017-09-01

    The Radon transform is a potentially powerful tool for processing the data from serial spectroscopic experiments. It makes it possible to decode the rate at which frequencies of spectral peaks shift under the effect of changing conditions, such as temperature, pH, or solvent. In this paper we show how it also improves speed and sensitivity, especially in multidimensional experiments. This is particularly important in the case of low-sensitivity techniques, such as NMR spectroscopy. As an example, we demonstrate how Radon transform processing allows serial measurements of 15 N-HSQC spectra of unlabelled peptides that would otherwise be infeasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  17. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy.

    PubMed

    Richardson, Peter M; Parrott, Andrew J; Semenova, Olga; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-06-19

    Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.

  18. Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY.

    PubMed

    Koradi, R; Billeter, M; Engeli, M; Güntert, P; Wüthrich, K

    1998-12-01

    A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automated peak picking for NMR spectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking. Copyright 1998 Academic Press.

  19. Rapid 3D NMR using the filter diagonalization method: application to oligosaccharides derivatized with 13C-labeled acetyl groups

    NASA Astrophysics Data System (ADS)

    Armstrong, Geoffrey S.; Cano, Kristin E.; Mandelshtam, Vladimir A.; Shaka, A. J.; Bendiak, Brad

    2004-09-01

    Rapid 3D NMR spectroscopy of oligosaccharides having isotopically labeled acetyl "isotags" was made possible with high resolution in the indirect dimensions using the filter diagonalization method (FDM). A pulse sequence was designed for the optimal correlation of acetyl methyl protons, methyl carbons, and carbonyl carbons. The multi-dimensional nature of the FDM, coupled with the advantages of constant-time evolution periods, resulted in marked improvements over Fourier transform (FT) and mirror-image linear prediction (MI-LP) processing methods. The three methods were directly compared using identical data sets. A highly resolved 3D spectrum was achieved with the FDM using a very short experimental time (28 min).

  20. Rapid 3D NMR using the filter diagonalization method: application to oligosaccharides derivatized with 13C-labeled acetyl groups.

    PubMed

    Armstrong, Geoffrey S; Cano, Kristin E; Mandelshtam, Vladimir A; Shaka, A J; Bendiak, Brad

    2004-09-01

    Rapid 3D NMR spectroscopy of oligosaccharides having isotopically labeled acetyl "isotags" was made possible with high resolution in the indirect dimensions using the filter diagonalization method (FDM). A pulse sequence was designed for the optimal correlation of acetyl methyl protons, methyl carbons, and carbonyl carbons. The multi-dimensional nature of the FDM, coupled with the advantages of constant-time evolution periods, resulted in marked improvements over Fourier transform (FT) and mirror-image linear prediction (MI-LP) processing methods. The three methods were directly compared using identical data sets. A highly resolved 3D spectrum was achieved with the FDM using a very short experimental time (28 min).

  1. Signal enhancement in protein NMR using the spin-noise tuning optimum

    PubMed Central

    Nausner, Martin; Goger, Michael; Bendet-Taicher, Eli; Schlagnitweit, Judith

    2010-01-01

    We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the optimal tuning condition, which may be offset by several 100 kHz from the conventional tuning settings using the noise response of the water protons as an indicator. Although the radio frequency-pulse durations are typically longer under such conditions, signal-to-noise gains of up to 22% were achieved. At salt concentrations up to 100 mM a substantial sensitivity gain was observed. PMID:20924647

  2. Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide.

    PubMed

    Oktaviani, Nur Alia; Risør, Michael W; Lee, Young-Ho; Megens, Rik P; de Jong, Djurre H; Otten, Renee; Scheek, Ruud M; Enghild, Jan J; Nielsen, Niels Chr; Ikegami, Takahisa; Mulder, Frans A A

    2015-06-01

    Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in 'proton-less' NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α1-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.

  3. Selective Data Acquisition in NMR. The Quantification of Anti-phase Scalar Couplings

    NASA Astrophysics Data System (ADS)

    Hodgkinson, P.; Holmes, K. J.; Hore, P. J.

    Almost all time-domain NMR experiments employ "linear sampling," in which the NMR response is digitized at equally spaced times, with uniform signal averaging. Here, the possibilities of nonlinear sampling are explored using anti-phase doublets in the indirectly detected dimensions of multidimensional COSY-type experiments as an example. The Cramér-Rao lower bounds are used to evaluate and optimize experiments in which the sampling points, or the extent of signal averaging at each point, or both, are varied. The optimal nonlinear sampling for the estimation of the coupling constant J, by model fitting, turns out to involve just a few key time points, for example, at the first node ( t= 1/ J) of the sin(π Jt) modulation. Such sparse sampling patterns can be used to derive more practical strategies, in which the sampling or the signal averaging is distributed around the most significant time points. The improvements in the quantification of NMR parameters can be quite substantial especially when, as is often the case for indirectly detected dimensions, the total number of samples is limited by the time available.

  4. "Ersatz" and "hybrid" NMR spectral estimates using the filter diagonalization method.

    PubMed

    Ridge, Clark D; Shaka, A J

    2009-03-12

    The filter diagonalization method (FDM) is an efficient and elegant way to make a spectral estimate purely in terms of Lorentzian peaks. As NMR spectral peaks of liquids conform quite well to this model, the FDM spectral estimate can be accurate with far fewer time domain points than conventional discrete Fourier transform (DFT) processing. However, noise is not efficiently characterized by a finite number of Lorentzian peaks, or by any other analytical form, for that matter. As a result, noise can affect the FDM spectrum in different ways than it does the DFT spectrum, and the effect depends on the dimensionality of the spectrum. Regularization to suppress (or control) the influence of noise to give an "ersatz", or EFDM, spectrum is shown to sometimes miss weak features, prompting a more conservative implementation of filter diagonalization. The spectra obtained, called "hybrid" or HFDM spectra, are acquired by using regularized FDM to obtain an "infinite time" spectral estimate and then adding to it the difference between the DFT of the data and the finite time FDM estimate, over the same time interval. HFDM has a number of advantages compared to the EFDM spectra, where all features must be Lorentzian. They also show better resolution than DFT spectra. The HFDM spectrum is a reliable and robust way to try to extract more information from noisy, truncated data records and is less sensitive to the choice of regularization parameter. In multidimensional NMR of liquids, HFDM is a conservative way to handle the problems of noise, truncation, and spectral peaks that depart significantly from the model of a multidimensional Lorentzian peak.

  5. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP).

    PubMed

    Snyder, David A; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  7. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Isolation, folding and structural investigations of the amino acid transporter OEP16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Da Qun; Zook, James; Klewer, Douglas A.

    2011-12-01

    Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on amore » Ni-NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of a-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.« less

  9. Isolation, folding and structural investigations of the amino acid transporter OEP16.

    PubMed

    Ni, Da Qun; Zook, James; Klewer, Douglas A; Nieman, Ronald A; Soll, J; Fromme, Petra

    2011-12-01

    Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni-NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of α-helices. ¹⁵N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection. Copyright © 2011. Published by Elsevier Inc.

  10. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments*

    PubMed Central

    Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert

    2016-01-01

    We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282

  11. Effective rotational correlation times of proteins from NMR relaxation interference

    NASA Astrophysics Data System (ADS)

    Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2006-01-01

    Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.

  12. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  13. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK.

    PubMed

    Würz, Julia M; Güntert, Peter

    2017-01-01

    The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

  14. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity andmore » line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.« less

  15. Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range

    PubMed Central

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David; Hoch, Jeffrey C.; Rovnyak, David

    2014-01-01

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C, 15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets. PMID:24752819

  16. Computer vision-based automated peak picking applied to protein NMR spectra.

    PubMed

    Klukowski, Piotr; Walczak, Michal J; Gonczarek, Adam; Boudet, Julien; Wider, Gerhard

    2015-09-15

    A detailed analysis of multidimensional NMR spectra of macromolecules requires the identification of individual resonances (peaks). This task can be tedious and time-consuming and often requires support by experienced users. Automated peak picking algorithms were introduced more than 25 years ago, but there are still major deficiencies/flaws that often prevent complete and error free peak picking of biological macromolecule spectra. The major challenges of automated peak picking algorithms is both the distinction of artifacts from real peaks particularly from those with irregular shapes and also picking peaks in spectral regions with overlapping resonances which are very hard to resolve by existing computer algorithms. In both of these cases a visual inspection approach could be more effective than a 'blind' algorithm. We present a novel approach using computer vision (CV) methodology which could be better adapted to the problem of peak recognition. After suitable 'training' we successfully applied the CV algorithm to spectra of medium-sized soluble proteins up to molecular weights of 26 kDa and to a 130 kDa complex of a tetrameric membrane protein in detergent micelles. Our CV approach outperforms commonly used programs. With suitable training datasets the application of the presented method can be extended to automated peak picking in multidimensional spectra of nucleic acids or carbohydrates and adapted to solid-state NMR spectra. CV-Peak Picker is available upon request from the authors. gsw@mol.biol.ethz.ch; michal.walczak@mol.biol.ethz.ch; adam.gonczarek@pwr.edu.pl Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy.

    PubMed Central

    Damberger, F. F.; Pelton, J. G.; Harrison, C. J.; Nelson, H. C.; Wemmer, D. E.

    1994-01-01

    The solution structure of the 92-residue DNA-binding domain of the heat shock transcription factor from Kluyveromyces lactis has been determined using multidimensional NMR methods. Three-dimensional (3D) triple resonance, 1H-13C-13C-1H total correlation spectroscopy, and 15N-separated total correlation spectroscopy-heteronuclear multiple quantum correlation experiments were used along with various 2D spectra to make nearly complete assignments for the backbone and side-chain 1H, 15N, and 13C resonances. Five-hundred eighty-three NOE constraints identified in 3D 13C- and 15N-separated NOE spectroscopy (NOESY)-heteronuclear multiple quantum correlation spectra and a 4-dimensional 13C/13C-edited NOESY spectrum, along with 35 phi, 9 chi 1, and 30 hydrogen bond constraints, were used to calculate 30 structures by hybrid distance geometry/stimulated annealing protocol, of which 24 were used for structural comparison. The calculations revealed that a 3-helix bundle packs against a small 4-stranded antiparallel beta-sheet. The backbone RMS deviation (RMSD) for the family of structures was 1.03 +/- 0.19 A with respect to the average structure. The topology is analogous to that of the C-terminal domain of the catabolite gene activator protein and appears to be in the helix-turn-helix family of DNA-binding proteins. The overall fold determined by the NMR data is consistent with recent crystallographic work on this domain (Harrison CJ, Bohm AA, Nelson HCM, 1994, Science 263:224) as evidenced by RMSD between backbone atoms in the NMR and X-ray structures of 1.77 +/- 0.20 A. Several differences were identified some of which may be due to protein-protein interactions in the crystal. PMID:7849597

  18. A complete vibrational study on a potential environmental toxicant agent, the 3,3',4,4'-tetrachloroazobenzene combining the FTIR, FTRaman, UV-Visible and NMR spectroscopies with DFT calculations.

    PubMed

    Castillo, María V; Pergomet, Jorgelina L; Carnavale, Gustavo A; Davies, Lilian; Zinczuk, Juan; Brandán, Silvia A

    2015-01-05

    In this study 3,3',4,4'-tetrachloroazobenzene (TCAB) was prepared and then characterized by infrared, Raman, multidimensional nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopies. The density functional theory (DFT) together with the 6-31G(*) and 6-311++G(**) basis sets were used to study the structures and vibrational properties of the two cis and trans isomers of TCAB. The harmonic vibrational wavenumbers for the optimized geometries were calculated at the same theory levels. A complete assignment of all the observed bands in the vibrational spectra of TCAB was performed combining the DFT calculations with the scaled quantum mechanical force field (SQMFF) methodology. The molecular electrostatic potentials, atomic charges, bond orders and frontier orbitals for the two isomers of TCAB were compared and analyzed. The comparison of the theoretical ultraviolet-visible spectrum with the corresponding experimental demonstrates a good concordance while the calculated (1)H and (13)C chemicals shifts are in good conformity with the corresponding experimental NMR spectra of TCAB in solution. The npp(*) transitions for both forms were studied by natural bond orbital (NBO) while the topological properties were calculated by employing Bader's Atoms in the Molecules (AIM) theory. This study shows that the cis and trans isomers exhibit different structural and vibrational properties and absorption bands. Copyright © 2014. Published by Elsevier B.V.

  19. A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations.

    PubMed

    Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan

    2017-07-21

    Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.

  20. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors

    PubMed Central

    Gonzalez-Gil, Graciela; Thomas, Ludivine; Emwas, Abdul-Hamid; Lens, Piet N. L.; Saikaly, Pascal E.

    2015-01-01

    Anaerobic granular sludge is composed of multispecies microbial aggregates embedded in a matrix of extracellular polymeric substances (EPS). Here we characterized the chemical fingerprint of the polysaccharide fraction of EPS in anaerobic granules obtained from full-scale reactors treating different types of wastewater. Nuclear magnetic resonance (NMR) signals of the polysaccharide region from the granules were very complex, likely as a result of the diverse microbial population in the granules. Using nonmetric multidimensional scaling (NMDS), the 1H NMR signals of reference polysaccharides (gellan, xanthan, alginate) and those of the anaerobic granules revealed that there were similarities between the polysaccharides extracted from granules and the reference polysaccharide alginate. Further analysis of the exopolysaccharides from anaerobic granules, and reference polysaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that exopolysaccharides from two of the anaerobic granular sludges studied exhibited spectra similar to that of alginate. The presence of sequences related to the synthesis of alginate was confirmed in the metagenomes of the granules. Collectively these results suggest that alginate-like exopolysaccharides are constituents of the EPS matrix in anaerobic granular sludge treating different industrial wastewater. This finding expands the engineered environments where alginate has been found as EPS constituent of microbial aggregates. PMID:26391984

  1. A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations

    NASA Astrophysics Data System (ADS)

    Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan

    2017-07-01

    Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.

  2. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors.

    PubMed

    Gonzalez-Gil, Graciela; Thomas, Ludivine; Emwas, Abdul-Hamid; Lens, Piet N L; Saikaly, Pascal E

    2015-09-22

    Anaerobic granular sludge is composed of multispecies microbial aggregates embedded in a matrix of extracellular polymeric substances (EPS). Here we characterized the chemical fingerprint of the polysaccharide fraction of EPS in anaerobic granules obtained from full-scale reactors treating different types of wastewater. Nuclear magnetic resonance (NMR) signals of the polysaccharide region from the granules were very complex, likely as a result of the diverse microbial population in the granules. Using nonmetric multidimensional scaling (NMDS), the (1)H NMR signals of reference polysaccharides (gellan, xanthan, alginate) and those of the anaerobic granules revealed that there were similarities between the polysaccharides extracted from granules and the reference polysaccharide alginate. Further analysis of the exopolysaccharides from anaerobic granules, and reference polysaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that exopolysaccharides from two of the anaerobic granular sludges studied exhibited spectra similar to that of alginate. The presence of sequences related to the synthesis of alginate was confirmed in the metagenomes of the granules. Collectively these results suggest that alginate-like exopolysaccharides are constituents of the EPS matrix in anaerobic granular sludge treating different industrial wastewater. This finding expands the engineered environments where alginate has been found as EPS constituent of microbial aggregates.

  3. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan; Fordham, Edmund J.

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  4. Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N NMR

    PubMed Central

    Lane, Andrew N.; Arumugam, Sengodagounder; Lorkiewicz, Pawel K.; Higashi, Richard M.; Laulhé, Sébastien; Nantz, Michael H.; Moseley, Hunter N.B.; Fan, Teresa W.-M.

    2015-01-01

    NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating 15N in the aminooxy functional group, 15N-edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses for example. Utilizing the 2 or 3 bond 15N-1H couplings, the 15N-edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl containing compounds at NMR detectable levels, 6 of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts. PMID:25616249

  5. Peak picking NMR spectral data using non-negative matrix factorization.

    PubMed

    Tikole, Suhas; Jaravine, Victor; Rogov, Vladimir; Dötsch, Volker; Güntert, Peter

    2014-02-11

    Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap.

  6. Artifacts in time-resolved NUS: A case study of NOE build-up curves from 2D NOESY.

    PubMed

    Dass, Rupashree; Kasprzak, Paweł; Koźmiński, Wiktor; Kazimierczuk, Krzysztof

    2016-04-01

    Multidimensional NMR spectroscopy requires time-consuming sampling of indirect dimensions and so is usually used to study stable samples. However, dynamically changing compounds or their mixtures commonly occur in problems of natural science. Monitoring them requires the use multidimensional NMR in a time-resolved manner - in other words, a series of quick spectra must be acquired at different points in time. Among the many solutions that have been proposed to achieve this goal, time-resolved non-uniform sampling (TR-NUS) is one of the simplest. In a TR-NUS experiment, the signal is sampled using a shuffled random schedule and then divided into overlapping subsets. These subsets are then processed using one of the NUS reconstruction methods, for example compressed sensing (CS). The resulting stack of spectra forms a temporal "pseudo-dimension" that shows the changes caused by the process occurring in the sample. CS enables the use of small subsets of data, which minimizes the averaging of the effects studied. Yet, even within these limited timeframes, the sample undergoes certain changes. In this paper we discuss the effect of varying signal amplitude in a TR-NUS experiment. Our theoretical calculations show that the variations within the subsets lead to t1-noise, which is dependent on the rate of change of the signal amplitude. We verify these predictions experimentally. As a model case we choose a novel 2D TR-NOESY experiment in which mixing time is varied in parallel with shuffled NUS in the indirect dimension. The experiment, performed on a sample of strychnine, provides a near-continuous NOE build-up curve, whose shape closely reflects the t1-noise level. 2D TR-NOESY reduces the measurement time compared to the conventional approach and makes it possible to verify the theoretical predictions about signal variations during TR-NUS. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Revisiting the NMR structure of the ultrafast downhill folding protein gpW from bacteriophage λ.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Muñoz, Victor; de Alba, Eva

    2011-01-01

    GpW is a 68-residue protein from bacteriophage λ that participates in virus head morphogenesis. Previous NMR studies revealed a novel α+β fold for this protein. Recent experiments have shown that gpW folds in microseconds by crossing a marginal free energy barrier (i.e., downhill folding). These features make gpW a highly desirable target for further experimental and computational folding studies. As a step in that direction, we have re-determined the high-resolution structure of gpW by multidimensional NMR on a construct that eliminates the purification tags and unstructured C-terminal tail present in the prior study. In contrast to the previous work, we have obtained a full manual assignment and calculated the structure using only unambiguous distance restraints. This new structure confirms the α+β topology, but reveals important differences in tertiary packing. Namely, the two α-helices are rotated along their main axis to form a leucine zipper. The β-hairpin is orthogonal to the helical interface rather than parallel, displaying most tertiary contacts through strand 1. There also are differences in secondary structure: longer and less curved helices and a hairpin that now shows the typical right-hand twist. Molecular dynamics simulations starting from both gpW structures, and calculations with CS-Rosetta, all converge to our gpW structure. This confirms that the original structure has strange tertiary packing and strained secondary structure. A comparison of NMR datasets suggests that the problems were mainly caused by incomplete chemical shift assignments, mistakes in NOE assignment and the inclusion of ambiguous distance restraints during the automated procedure used in the original study. The new gpW corrects these problems, providing the appropriate structural reference for future work. Furthermore, our results are a cautionary tale against the inclusion of ambiguous experimental information in the determination of protein structures.

  8. Perspective: next generation isotope-aided methods for protein NMR spectroscopy.

    PubMed

    Kainosho, Masatsune; Miyanoiri, Yohei; Terauchi, Tsutomu; Takeda, Mitsuhiro

    2018-06-22

    In this perspective, we describe our efforts to innovate the current isotope-aided NMR methodology to investigate biologically important large proteins and protein complexes, for which only limited structural information could be obtained by conventional NMR approaches. At the present time, it is widely believed that only backbone amide and methyl signals are amenable for investigating such difficult targets. Therefore, our primary mission is to disseminate our novel knowledge within the biological NMR community; specifically, that any type of NMR signals other than methyl and amide groups can be obtained, even for quite large proteins, by optimizing the transverse relaxation properties by isotope labeling methods. The idea of "TROSY by isotope labeling" has been cultivated through our endeavors aiming to improve the original stereo-array isotope labeling (SAIL) method (Kainosho et al., Nature 440:52-57, 2006). The SAIL TROSY methods subsequently culminated in the successful observations of individual NMR signals for the side-chain aliphatic and aromatic 13 CH groups in large proteins, as exemplified by the 82 kDa single domain protein, malate synthase G. Meanwhile, the expected role of NMR spectroscopy in the emerging integrative structural biology has been rapidly shifting, from structure determination to the acquisition of biologically relevant structural dynamics, which are poorly accessible by X-ray crystallography or cryo-electron microscopy. Therefore, the newly accessible NMR probes, in addition to the methyl and amide signals, will open up a new horizon for investigating difficult protein targets, such as membrane proteins and supramolecular complexes, by NMR spectroscopy. We briefly introduce our latest results, showing that the protons attached to 12 C-atoms give profoundly narrow 1 H-NMR signals even for large proteins, by isolating them from the other protons using the selective deuteration. The direct 1 H observation methods exhibit the highest sensitivities, as compared to heteronuclear multidimensional spectroscopy, in which the 1 H-signals are acquired via the spin-coupled 13 C- and/or 15 N-nuclei. Although the selective deuteration method was launched a half century ago, as the first milestone in the following prosperous history of isotope-aided NMR methods, our results strongly imply that the low-dimensional 1 H-direct observation NMR methods should be revitalized in the coming era, featuring ultrahigh-field spectrometers beyond 1 GHz.

  9. Quantitative, equal carbon response HSQC experiment, QEC-HSQC

    NASA Astrophysics Data System (ADS)

    Mäkelä, Valtteri; Helminen, Jussi; Kilpeläinen, Ilkka; Heikkinen, Sami

    2016-10-01

    Quantitative NMR has become increasingly useful and popular in recent years, with many new and emerging applications in metabolomics, quality control, reaction monitoring and other types of mixture analysis. While sensitive and simple to acquire, the low resolving power of 1D 1H NMR spectra can be a limiting factor when analyzing complex mixtures. This drawback can be solved by observing a different type of nuclei offering improved resolution or with multidimensional experiments, such as HSQC. In this paper, we present a novel Quantitative, Equal Carbon HSQC (QEC-HSQC) experiment providing an equal response across different type of carbons regardless of the number of attached protons, in addition to an uniform response over a wide range of 1JCH couplings. This enables rapid quantification and integration over multiple signals without the need for complete resonance assignments and simplifies the integration of overlapping signals.

  10. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle.

    PubMed

    Salorinne, Kirsi; Malola, Sami; Wong, O Andrea; Rithner, Christopher D; Chen, Xi; Ackerson, Christopher J; Häkkinen, Hannu

    2016-01-21

    Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of (1)H and (13)C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications.

  11. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle

    PubMed Central

    Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu

    2016-01-01

    Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications. PMID:26791253

  12. On the problem of resonance assignments in solid state NMR of uniformly 15N, 13C-labeled proteins

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) algorithm to search for assignments from artificial three-dimensional spectra that are constructed from the reported isotropic 15N and 13C chemical shifts of two proteins whose structures have been determined by solution NMR methods. The results demonstrate how assignment simulations can provide new insights into factors that affect the assignment process, which can then help guide the design of experimental strategies. Specifically, simulations are performed for the catalytic domain of SrtC (147 residues, primarily β-sheet secondary structure) and the N-terminal domain of MLKL (166 residues, primarily α-helical secondary structure). Assuming unambiguous residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for assignments for SrtC to be unique, and less than 0.2 ppm for MLKL. Eliminating CANCA data has no significant effect, but additionally eliminating CONCA data leads to more stringent requirements for chemical shift precision. Introducing moderate ambiguities in residue-type assignments does not have a significant effect.

  13. Peak picking NMR spectral data using non-negative matrix factorization

    PubMed Central

    2014-01-01

    Background Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. Results To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Conclusions Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap. PMID:24511909

  14. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  15. Robust and transferable quantification of NMR spectral quality using IROC analysis

    NASA Astrophysics Data System (ADS)

    Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.

    2017-12-01

    Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.

  16. A short recollection on the paper entitled "A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams" by D.S. Garrett, R. Powers, A.M. Gronenborn, and G.M. Clore [J. Magn. Reson. 95 (1991) 214-220].

    PubMed

    Garrett, Daniel S; Gronenborn, Angela M; Clore, G Marius

    2011-12-01

    The Contour Approach to Peak Picking was developed to aid in the analysis and interpretation and of multidimensional NMR spectra of large biomolecules. In essence, it comprises an interactive graphics software tool to computationally select resonance positions in heteronuclear, 3- and 4D spectra. Copyright © 2011. Published by Elsevier Inc.

  17. A new algorithm for reliable and general NMR resonance assignment.

    PubMed

    Schmidt, Elena; Güntert, Peter

    2012-08-01

    The new FLYA automated resonance assignment algorithm determines NMR chemical shift assignments on the basis of peak lists from any combination of multidimensional through-bond or through-space NMR experiments for proteins. Backbone and side-chain assignments can be determined. All experimental data are used simultaneously, thereby exploiting optimally the redundancy present in the input peak lists and circumventing potential pitfalls of assignment strategies in which results obtained in a given step remain fixed input data for subsequent steps. Instead of prescribing a specific assignment strategy, the FLYA resonance assignment algorithm requires only experimental peak lists and the primary structure of the protein, from which the peaks expected in a given spectrum can be generated by applying a set of rules, defined in a straightforward way by specifying through-bond or through-space magnetization transfer pathways. The algorithm determines the resonance assignment by finding an optimal mapping between the set of expected peaks that are assigned by definition but have unknown positions and the set of measured peaks in the input peak lists that are initially unassigned but have a known position in the spectrum. Using peak lists obtained by purely automated peak picking from the experimental spectra of three proteins, FLYA assigned correctly 96-99% of the backbone and 90-91% of all resonances that could be assigned manually. Systematic studies quantified the impact of various factors on the assignment accuracy, namely the extent of missing real peaks and the amount of additional artifact peaks in the input peak lists, as well as the accuracy of the peak positions. Comparing the resonance assignments from FLYA with those obtained from two other existing algorithms showed that using identical experimental input data these other algorithms yielded significantly (40-142%) more erroneous assignments than FLYA. The FLYA resonance assignment algorithm thus has the reliability and flexibility to replace most manual and semi-automatic assignment procedures for NMR studies of proteins.

  18. A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data

    PubMed Central

    Vehtari, Aki; Mäkinen, Ville-Petteri; Soininen, Pasi; Ingman, Petri; Mäkelä, Sanna M; Savolainen, Markku J; Hannuksela, Minna L; Kaski, Kimmo; Ala-Korpela, Mika

    2007-01-01

    Background A key challenge in metabonomics is to uncover quantitative associations between multidimensional spectroscopic data and biochemical measures used for disease risk assessment and diagnostics. Here we focus on clinically relevant estimation of lipoprotein lipids by 1H NMR spectroscopy of serum. Results A Bayesian methodology, with a biochemical motivation, is presented for a real 1H NMR metabonomics data set of 75 serum samples. Lipoprotein lipid concentrations were independently obtained for these samples via ultracentrifugation and specific biochemical assays. The Bayesian models were constructed by Markov chain Monte Carlo (MCMC) and they showed remarkably good quantitative performance, the predictive R-values being 0.985 for the very low density lipoprotein triglycerides (VLDL-TG), 0.787 for the intermediate, 0.943 for the low, and 0.933 for the high density lipoprotein cholesterol (IDL-C, LDL-C and HDL-C, respectively). The modelling produced a kernel-based reformulation of the data, the parameters of which coincided with the well-known biochemical characteristics of the 1H NMR spectra; particularly for VLDL-TG and HDL-C the Bayesian methodology was able to clearly identify the most characteristic resonances within the heavily overlapping information in the spectra. For IDL-C and LDL-C the resulting model kernels were more complex than those for VLDL-TG and HDL-C, probably reflecting the severe overlap of the IDL and LDL resonances in the 1H NMR spectra. Conclusion The systematic use of Bayesian MCMC analysis is computationally demanding. Nevertheless, the combination of high-quality quantification and the biochemical rationale of the resulting models is expected to be useful in the field of metabonomics. PMID:17493257

  19. Structure of the Complex between a Heparan Sulfate Octasaccharide and Mycobacterial Heparin-Binding Hemagglutinin.

    PubMed

    Huang, Teng-Yi; Irene, Deli; Zulueta, Medel Manuel L; Tai, Tzu-Jui; Lain, Shih-Han; Cheng, Cheng-Po; Tsai, Ping-Xi; Lin, Shu-Yi; Chen, Zhi-Geng; Ku, Chiao-Chu; Hsiao, Chwan-Deng; Chyan, Chia-Lin; Hung, Shang-Cheng

    2017-04-03

    Heparin-binding hemagglutinin (HBHA) is a 199 amino acid virulence factor at the envelope of Mycobacterium tuberculosis that contributes to latent tuberculosis. The binding of HBHA to respiratory epithelial cells, which leads to extrapulmonary dissemination of the pathogen, is mediated by cell-surface heparan sulfate (HS). We report the structural characterization of the HBHA/HS complex by NMR spectroscopy. To develop a model for the molecular recognition, the first chemically synthesized uniformly 13 C- and 15 N-labeled HS octasaccharide and a uniformly 13 C- and 15 N-labeled form of HBHA were prepared. Residues 180-195 at the C-terminal region of HBHA show large chemical shift perturbation upon association with the octasaccharide. Molecular dynamics simulations conforming to the multidimensional NMR data revealed key electrostatic and even hydrophobic interactions between the binding partners that may aid in the development of agents targeting the binding event. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low 12 mA) at frequencies between 320–365 GHz, suggesting an efficient route for the generation of even higher frequency radiation. The low starting currents were attributed to an elevated cavity Q, which is confirmed by cavity thermal load measurements. We conclude with an appendix containing a detailed description of the control system that safely automates all aspects of the gyrotron operation. PMID:17942352

  1. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.

    PubMed

    Wang, Tuo; Hong, Mei

    2016-01-01

    Until recently, the 3D architecture of plant cell walls was poorly understood due to the lack of high-resolution techniques for characterizing the molecular structure, dynamics, and intermolecular interactions of the wall polysaccharides in these insoluble biomolecular mixtures. We introduced multidimensional solid-state NMR (SSNMR) spectroscopy, coupled with (13)C labelling of whole plants, to determine the spatial arrangements of macromolecules in near-native plant cell walls. Here we review key evidence from 2D and 3D correlation NMR spectra that show relatively few cellulose-hemicellulose cross peaks but many cellulose-pectin cross peaks, indicating that cellulose microfibrils are not extensively coated by hemicellulose and all three major polysaccharides exist in a single network rather than two separate networks as previously proposed. The number of glucan chains in the primary-wall cellulose microfibrils has been under active debate recently. We show detailed analysis of quantitative (13)C SSNMR spectra of cellulose in various wild-type (WT) and mutant Arabidopsis and Brachypodium primary cell walls, which consistently indicate that primary-wall cellulose microfibrils contain at least 24 glucan chains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids. PMID:26801026

  3. Phase-sensitive spectral estimation by the hybrid filter diagonalization method.

    PubMed

    Celik, Hasan; Ridge, Clark D; Shaka, A J

    2012-01-01

    A more robust way to obtain a high-resolution multidimensional NMR spectrum from limited data sets is described. The Filter Diagonalization Method (FDM) is used to analyze phase-modulated data and cast the spectrum in terms of phase-sensitive Lorentzian "phase-twist" peaks. These spectra are then used to obtain absorption-mode phase-sensitive spectra. In contrast to earlier implementations of multidimensional FDM, the absolute phase of the data need not be known beforehand, and linear phase corrections in each frequency dimension are possible, if they are required. Regularization is employed to improve the conditioning of the linear algebra problems that must be solved to obtain the spectral estimate. While regularization smoothes away noise and small peaks, a hybrid method allows the true noise floor to be correctly represented in the final result. Line shape transformation to a Gaussian-like shape improves the clarity of the spectra, and is achieved by a conventional Lorentzian-to-Gaussian transformation in the time-domain, after inverse Fourier transformation of the FDM spectra. The results obtained highlight the danger of not using proper phase-sensitive line shapes in the spectral estimate. The advantages of the new method for the spectral estimate are the following: (i) the spectrum can be phased by conventional means after it is obtained; (ii) there is a true and accurate noise floor; and (iii) there is some indication of the quality of fit in each local region of the spectrum. The method is illustrated with 2D NMR data for the first time, but is applicable to n-dimensional data without any restriction on the number of time/frequency dimensions. Copyright © 2011. Published by Elsevier Inc.

  4. NMR studies of two spliced leader RNAs using isotope labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions betweenmore » the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.« less

  5. Structure of a Double Transmembrane Fragment of a G-Protein-Coupled Receptor in Micelles

    PubMed Central

    Neumoin, Alexey; Cohen, Leah S.; Arshava, Boris; Tantry, Subramanyam; Becker, Jeffrey M.; Zerbe, Oliver; Naider, Fred

    2009-01-01

    Abstract The structure and dynamic properties of an 80-residue fragment of Ste2p, the G-protein-coupled receptor for α-factor of Saccharomyces cerevisiae, was studied in LPPG micelles with the use of solution NMR spectroscopy. The fragment Ste2p(G31-T110) (TM1-TM2) consisted of 19 residues from the N-terminal domain, the first TM helix (TM1), the first cytoplasmic loop, the second TM helix (TM2), and seven residues from the first extracellular loop. Multidimensional NMR experiments on [15N], [15N, 13C], [15N, 13C, 2H]-labeled TM1-TM2 and on protein fragments selectively labeled at specific amino acid residues or protonated at selected methyl groups resulted in >95% assignment of backbone and side-chain nuclei. The NMR investigation revealed the secondary structure of specific residues of TM1-TM2. TALOS constraints and NOE connectivities were used to calculate a structure for TM1-TM2 that was highlighted by the presence of three α-helices encompassing residues 39–47, 49–72, and 80–103, with higher flexibility around the internal Arg58 site of TM1. RMSD values of individually superimposed helical segments 39–47, 49–72, and 80–103 were 0.25 ± 0.10 Å, 0.40 ± 0.13 Å, and 0.57 ± 0.19 Å, respectively. Several long-range interhelical connectivities supported the folding of TM1-TM2 into a tertiary structure typified by a crossed helix that splays apart toward the extracellular regions and contains considerable flexibility in the G56VRSG60 region. 15N-relaxation and hydrogen-deuterium exchange data support a stable fold for the TM parts of TM1-TM2, whereas the solvent-exposed segments are more flexible. The NMR structure is consistent with the results of biochemical experiments that identified the ligand-binding site within this region of the receptor. PMID:19383463

  6. Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c

    PubMed Central

    Mandal, Abhishek; Hoop, Cody L.; DeLucia, Maria; Kodali, Ravindra; Kagan, Valerian E.; Ahn, Jinwoo; van der Wel, Patrick C.A.

    2015-01-01

    The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly 13C,15N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core. PMID:26536264

  7. Intracellular segment between transmembrane helices S0 and S1 of BK channel α subunit contains two amphipathic helices connected by a flexible loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Pan; High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031; Li, Dong

    2013-08-02

    Highlights: •The loop between S0 and S1 of BK channel was overexpressed and purified in DPC. •NMR studies indicated BK-IS1 contained two helices connected by a flexible loop. •Mg{sup 2+} titration of BK-IS1 indicated two possible binding sites of divalent ions. -- Abstract: The BK channel, a tetrameric potassium channel with very high conductance, has a central role in numerous physiological functions. The BK channel can be activated by intracellular Ca{sup 2+} and Mg{sup 2+}, as well as by membrane depolarization. Unlike other tetrameric potassium channels, the BK channel has seven transmembrane helices (S0–S6) including an extra helix S0. Themore » intracellular segment between S0 and S1 (BK-IS1) is essential to BK channel functions and Asp99 in BK-IS1 is reported to be responsible for Mg{sup 2+} coordination. In this study, BK-IS1 (44–113) was over-expressed using a bacterial system and purified in the presence of detergent micelles for multidimensional heteronuclear nuclear magnetic resonance (NMR) structural studies. Backbone resonance assignment and secondary structure analysis showed that BK-IS1 contains two amphipathic helices connected by a 36-residue loop. Amide {sup 1}H–{sup 15}N heteronuclear NOE analysis indicated that the loop is very flexible, while the two amphipathic helices are possibly stabilized through interaction with the membrane. A solution NMR-based titration assay of BK-IS1 was performed with various concentrations of Mg{sup 2+}. Two residues (Thr45 and Leu46) with chemical shift changes were observed but no, or very minor, chemical shift difference was observed for Asp99, indicating a possible site for binding divalent ions or other modulation partners.« less

  8. A new window towards multidimensional sensing of transition metal cations through dual mode sensing ability of N-benzyl-(3-hydoxy-2-naphthalene): Emission enhancement coupled remarkable spectral shift

    NASA Astrophysics Data System (ADS)

    Paul, Bijan Kumar; Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil

    2011-06-01

    A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by 1H NMR, 13C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor.

  9. Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan.

    PubMed

    Bozzi, Manuela; Bianchi, Marzia; Sciandra, Francesca; Paci, Maurizio; Giardina, Bruno; Brancaccio, Andrea; Cicero, Daniel O

    2003-11-25

    Dystroglycan (DG) is an adhesion molecule playing a crucial role for tissue stability during both early embriogenesis and adulthood and is composed by two tightly interacting subunits: alpha-DG, membrane-associated and highly glycosylated, and the transmembrane beta-DG. Recently, by solid-phase binding assays and NMR experiments, we have shown that the C-terminal domain of alpha-DG interacts with a recombinant extracellular fragment of beta-DG (positions 654-750) independently from glycosylation and that the linear binding epitope is located between residues 550 and 565 of alpha-DG. In order to elucidate which moieties of beta-DG are specifically involved in the complex with alpha-DG, the ectodomain has been recombinantly expressed and purified in a labeled ((13)C,(15)N) form and studied by multidimensional NMR. Although it represents a natively unfolded protein domain, we obtained an almost complete backbone assignment. Chemical shift index, (1)H-(15)N heteronuclear single-quantum coherence and nuclear Overhauser effect (HSQC-NOESY) spectra and (3)J(HN,H)(alpha) coupling constant values confirm that this protein is highly disordered, but (1)H-(15)N steady-state NOE experiments indicate that the protein presents two regions of different mobility. The first one, between residues 659 and 722, is characterized by a limited degree of mobility, whereas the C-terminal portion, containing about 30 amino acids, is highly flexible. The binding of beta-DG(654-750) to the C-terminal region of the alpha subunit, alpha-DG(485-620), has been investigated, showing that the region of beta-DG(654-750) between residues 691 and 719 is involved in the interaction.

  10. Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.

    The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1H– 29Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1H– 29Si HETCOR and dipolar 2D 1H– 1H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Insteadmore » the 2D NMR spectra illustrate that there is large distribution of 1H and 29Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1H– 29Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1H and 29Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.« less

  11. Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy

    DOE PAGES

    Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.; ...

    2017-11-22

    The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1H– 29Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1H– 29Si HETCOR and dipolar 2D 1H– 1H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Insteadmore » the 2D NMR spectra illustrate that there is large distribution of 1H and 29Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1H– 29Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1H and 29Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.« less

  12. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Andrew Loyd

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ patternmore » of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T 1, T 2, and 15N/ 1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.« less

  13. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    PubMed Central

    Hong, Mei

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ~94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided command-line Python script (PLUQin), which should be useful in protein structure determination. The refined chemical shift distributions are utilized in a simple quality test (SQAT) that should be applied to new protein NMR data before deposition in a databank, and they could benefit many other chemical-shift based tools. PMID:26787537

  14. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and themore » use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids.« less

  15. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikura, Mitsuhiko; Kay, L.E.; Bax, A.

    Heteronuclear 3D and 4D NMR experiments have been used to obtain {sup 1}H, {sup 13}C, and {sup 15}N backbone chemical shift assignments in Ca{sup 2+}-loaded clamodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-bionding domain (residues 577-602) of rabbit skeletal muscle muosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca{sup 2+}-binding site 1 (E11-E14), the N-terminal portionmore » of the central helix (M72-D78), and the second helix of the Ca{sup 2+}-binding site 4 (F141-M145). Analysis of backbone NOE connectivities indicates a change from {alpha}-helical to an extended conformation for residues 75-77 upon complexation with M13. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site 3.« less

  16. Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation

    PubMed Central

    Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald

    2016-01-01

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107

  17. Ultrafast NMR diffusion measurements exploiting chirp spin echoes.

    PubMed

    Ahola, Susanna; Mankinen, Otto; Telkki, Ville-Veikko

    2017-04-01

    Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Structural elucidation of transmembrane transporter protein bilitranslocase: conformational analysis of the second transmembrane region TM2 by molecular dynamics and NMR spectroscopy.

    PubMed

    Roy Choudhury, Amrita; Perdih, Andrej; Zuperl, Spela; Sikorska, Emilia; Solmajer, Tom; Jurga, Stefan; Zhukov, Igor; Novič, Marjana

    2013-11-01

    Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing projects. They account for up to two thirds of known drugable targets, which emphasizes their critical pharmaceutical importance. Here we present a study on bilitranslocase (BTL) (TCDB 2.A.65), a membrane protein primarily involved in the transport of bilirubin from blood to liver cells. Bilitranslocase has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its 3D structure. However, at present, only a limited knowledge is available beyond the primary structure of BTL. It has been recently confirmed experimentally that one of the four computationally predicted transmembrane segments of bilitranslocase, TM3, has a helical structure with hydrophilic amino acid residues oriented towards one side, which is typical for transmembrane domains of membrane proteins. In this study we confirmed by the use of multidimensional NMR spectroscopy that the second transmembrane segment, TM2, also appears in a form of α-helix. The stability of this polypeptide chain was verified by molecular dynamics (MD) simulation in dipalmitoyl phosphatidyl choline (DPPC) and in sodium dodecyl sulfate (SDS) micelles. The two α-helices, TM2 corroborated in this study, and TM3 confirmed in our previous investigation, provide reasonable building blocks of a potential transmembrane channel for transport of bilirubin and small hydrophilic molecules, including pharmaceutically active compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A new window towards multidimensional sensing of transition metal cations through dual mode sensing ability of N-benzyl-(3-hydoxy-2-naphthalene): emission enhancement coupled remarkable spectral shift.

    PubMed

    Paul, Bijan Kumar; Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil

    2011-06-01

    A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by (1)H NMR, (13)C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein.

    PubMed Central

    Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G

    1998-01-01

    The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024

  1. NMR 1H,13C, 15N backbone and 13C side chain resonance assignment of the G12C mutant of human K-Ras bound to GDP.

    PubMed

    Sharma, Alok K; Lee, Seung-Joo; Rigby, Alan C; Townson, Sharon A

    2018-05-02

    K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1 H N, 15 N, and 13 C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RAS G12C-GDP ), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1 H- 15 N correlations have been assigned for all non-proline residues, except for the first methionine residue.

  2. The Potential Exploitation of the Mediterranean Invasive Alga Caulerpa cylindracea: Can the Invasion Be Transformed into a Gain?

    PubMed Central

    Stabili, Loredana; Fraschetti, Simonetta; Acquaviva, Maria Immacolata; Cavallo, Rosa Anna; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Gerardi, Carmela; Narracci, Marcella; Rizzo, Lucia

    2016-01-01

    Recently, there is a growing interest towards the development of strategies for invasive seaweed control and exploitation as source of secondary metabolites. Here, we investigated the potential of exploitation in biotechnology and recycling options in eradication programs of the lipidic extract of the Mediterranean invasive seaweed Caulerpa cylindracea (Chlorophyta). The chemical characterization was carried out by means of multinuclear and multidimensional NMR spectroscopy. The fatty acid profile of C. cylindracea assessed the presence of several types of molecules known for antioxidant activity such as carotenoids, chlorophylls, pheophytins, and sterols. The NMR spectroscopy showed also the characteristic signals of saturated, unsaturated, and free fatty acids as well as other metabolites including the biopolymer polyhydroxybutyrate. The lipidic extract exerted an antioxidant activity corresponding to 552.14 ± 69.13 mmol Trolox equivalent/g (ORAC) and to 70.3 ± 2.67 mmol Trolox equivalent/g (TEAC). The extract showed an antibacterial activity against several Vibrio species, suggesting its potential use in the control of diseases in mariculture. Our results show that C. cylindracea, representing a critical hazard in coastal areas, could be transformed into a gain supporting specific management actions to reduce the effects of human pressures. PMID:27854274

  3. Quali-quantitative characterization of the volatile constituents in Cordia verbenacea D.C. essential oil exploiting advanced chromatographic approaches and nuclear magnetic resonance analysis.

    PubMed

    Sciarrone, Danilo; Giuffrida, Daniele; Rotondo, Archimede; Micalizzi, Giuseppe; Zoccali, Mariosimone; Pantò, Sebastiano; Donato, Paola; Rodrigues-das-Dores, Rosana Goncalves; Mondello, Luigi

    2017-11-17

    Cordia verbenacea D.C. (Boraginaceae, Varronia curassavica Jacq. synonym) is a medicinal plant, native from Brazil, especially the leaves are used in folk medicine. The aim of this study was to extend the characterization of the volatile fraction of the essential oil obtained from this plant, by using GC-FID, GC-MS, and chiral GC. Moreover, to further clarify the composition of the volatile fraction, preparative multidimensional-GC (prep-MDGC) was used to collect unknown compounds, followed by NMR characterization. Specifically, the chemical characterization, both qualitative and quantitative, of the volatile fraction of the essential oil obtained from Cordia verbenacea cultivated in the Minas Gerais area (central area of Brazil) was investigated for the first time. The principal components from a quantitative point of view were α-pinene (25.32%; 24.48g/100g) and α-santalene (17.90%; 17.30g/100g), belonging to the terpenes family. Chiral-GC data are reported for the enantiomeric distribution of 7 different components. Last, to obtain the complete characterization of the essential oil constituents, prep-MDGC analysis was used to attain the isolation of two compounds, not present in the principal MS databases, which were unambiguously identified by NMR investigation as (E)-α-santalal and (E)-α-bergamotenal, reported for the first time in Cordia verbenacea essential oil. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Best Design for Multidimensional Computerized Adaptive Testing with the Bifactor Model

    ERIC Educational Resources Information Center

    Seo, Dong Gi; Weiss, David J.

    2015-01-01

    Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm…

  5. Subrandom methods for multidimensional nonuniform sampling.

    PubMed

    Worley, Bradley

    2016-08-01

    Methods of nonuniform sampling that utilize pseudorandom number sequences to select points from a weighted Nyquist grid are commonplace in biomolecular NMR studies, due to the beneficial incoherence introduced by pseudorandom sampling. However, these methods require the specification of a non-arbitrary seed number in order to initialize a pseudorandom number generator. Because the performance of pseudorandom sampling schedules can substantially vary based on seed number, this can complicate the task of routine data collection. Approaches such as jittered sampling and stochastic gap sampling are effective at reducing random seed dependence of nonuniform sampling schedules, but still require the specification of a seed number. This work formalizes the use of subrandom number sequences in nonuniform sampling as a means of seed-independent sampling, and compares the performance of three subrandom methods to their pseudorandom counterparts using commonly applied schedule performance metrics. Reconstruction results using experimental datasets are also provided to validate claims made using these performance metrics. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Streamlining workflow and automation to accelerate laboratory scale protein production.

    PubMed

    Konczal, Jennifer; Gray, Christopher H

    2017-05-01

    Protein production facilities are often required to produce diverse arrays of proteins for demanding methodologies including crystallography, NMR, ITC and other reagent intensive techniques. It is common for these teams to find themselves a bottleneck in the pipeline of ambitious projects. This pressure to deliver has resulted in the evolution of many novel methods to increase capacity and throughput at all stages in the pipeline for generation of recombinant proteins. This review aims to describe current and emerging options to accelerate the success of protein production in Escherichia coli. We emphasize technologies that have been evaluated and implemented in our laboratory, including innovative molecular biology and expression vectors, small-scale expression screening strategies and the automation of parallel and multidimensional chromatography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract.

    PubMed

    Stabili, L; Acquaviva, M I; Biandolino, F; Cavallo, R A; De Pascali, S A; Fanizzi, F P; Narracci, M; Cecere, E; Petrocelli, A

    2014-09-25

    Recently, with the advent of modern technologies, various marine organisms including algae are being studied as sources of natural substances effective on classical microorganisms and able to also combat the new trend of acquired resistance in microbes. In the present study the antimicrobial activity of the lipidic extract of the green seaweed Cladophora rupestris collected in a Mediterranean area, in two sampling periods (January and April), was assayed. The chemical characterization of the lipidic fractions was performed by gas-chromatography and multinuclear and multidimensional NMR spectroscopy. In the lipidic extract of C. rupestris collected in January an antibacterial activity against Enterococcus sp., Streptococcus agalactiae and Vibrio cholerae non-O1 was recorded; by contrast, bacterial inhibition was measured on several Vibrio species only in April. The fatty acid profile of C. rupestris lipidic extract, analyzed by gas chromatography, resulted mainly composed of palmitic, myristic, oleic, α linolenic, palmitoleic and linoleic acids. Moreover, since α-linolenic acid was the predominant ω3 fatty acid in April, we suggest its involvement in the antibacterial activity observed in this month, taking also into account that pure α-linolenic acid resulted effective towards some vibrios strains. C. rupestris fatty acid profile revealed also an interesting composition in polyunsaturated fatty acids in both the considered periods with the ω6/ω3 ratio lower than 1, leading to conclude that this macroalga may be employed as a natural source of ω3. Finally, the (1)H NMR spectrum in CDCl3 of algal lipid fractions showed the characteristic signals of saturated (SAFAs) and unsaturated fatty acids (UFAs) as well as other metabolites and a marked difference in free fatty acids (FFAs) content for the two examined algal lipid fractions. It is noteworthy that C. rupestris lipidic extracts show, by NMR spectroscopy, the signal pattern of polyhydroxybutyrate, a natural biocompatible and biodegradable polymer. In conclusion, on account of its antimicrobial activity, nutritional value and bioplastic content, C. rupestris lipidic extract can be considered a promising source for future biotechnological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Establishing a molecular relationship between chondritic and cometary organic solids

    PubMed Central

    Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.

    2011-01-01

    Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292

  9. Reconstruction of full high-resolution HSQC using signal split in aliased spectra.

    PubMed

    Foroozandeh, Mohammadali; Jeannerat, Damien

    2015-11-01

    Resolution enhancement is a long-sought goal in NMR spectroscopy. In conventional multidimensional NMR experiments, such as the (1) H-(13) C HSQC, the resolution in the indirect dimensions is typically 100 times lower as in 1D spectra because it is limited by the experimental time. Reducing the spectral window can significantly increase the resolution but at the cost of ambiguities in frequencies as a result of spectral aliasing. Fortunately, this information is not completely lost and can be retrieved using methods in which chemical shifts are encoded in the aliased spectra and decoded after processing to reconstruct high-resolution (1) H-(13) C HSQC spectrum with full spectral width and a resolution similar to that of 1D spectra. We applied a new reconstruction method, RHUMBA (reconstruction of high-resolution using multiplet built on aliased spectra), to spectra obtained from the differential evolution for non-ambiguous aliasing-HSQC and the new AMNA (additional modulation for non-ambiguous aliasing)-HSQC experiments. The reconstructed spectra significantly facilitate both manual and automated spectral analyses and structure elucidation based on heteronuclear 2D experiments. The resolution is enhanced by two orders of magnitudes without the usual complications due to spectral aliasing. Copyright © 2015 John Wiley & Sons, Ltd.

  10. A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Chen, Ping

    2017-01-01

    Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…

  11. MetaboID: a graphical user interface package for assignment of 1H NMR spectra of bodyfluids and tissues.

    PubMed

    MacKinnon, Neil; Somashekar, Bagganahalli S; Tripathi, Pratima; Ge, Wencheng; Rajendiran, Thekkelnaycke M; Chinnaiyan, Arul M; Ramamoorthy, Ayyalusamy

    2013-01-01

    Nuclear magnetic resonance based measurements of small molecule mixtures continues to be confronted with the challenge of spectral assignment. While multi-dimensional experiments are capable of addressing this challenge, the imposed time constraint becomes prohibitive, particularly with the large sample sets commonly encountered in metabolomic studies. Thus, one-dimensional spectral assignment is routinely performed, guided by two-dimensional experiments on a selected sample subset; however, a publicly available graphical interface for aiding in this process is currently unavailable. We have collected spectral information for 360 unique compounds from publicly available databases including chemical shift lists and authentic full resolution spectra, supplemented with spectral information for 25 compounds collected in-house at a proton NMR frequency of 900 MHz. This library serves as the basis for MetaboID, a Matlab-based user interface designed to aid in the one-dimensional spectral assignment process. The tools of MetaboID were built to guide resonance assignment in order of increasing confidence, starting from cursory compound searches based on chemical shift positions to analysis of authentic spike experiments. Together, these tools streamline the often repetitive task of spectral assignment. The overarching goal of the integrated toolbox of MetaboID is to centralize the one dimensional spectral assignment process, from providing access to large chemical shift libraries to providing a straightforward, intuitive means of spectral comparison. Such a toolbox is expected to be attractive to both experienced and new metabolomic researchers as well as general complex mixture analysts. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Solution structure of the His12 --> Cys mutant of the N-terminal zinc binding domain of HIV-1 integrase complexed to cadmium.

    PubMed Central

    Cai, M.; Huang, Y.; Caffrey, M.; Zheng, R.; Craigie, R.; Clore, G. M.; Gronenborn, A. M.

    1998-01-01

    The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex. PMID:9865962

  13. Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis

    PubMed Central

    Hammes, Gordon G.; Benkovic, Stephen J.; Hammes-Schiffer, Sharon

    2011-01-01

    This brief review discusses our current understanding of the molecular basis of enzyme catalysis. A historical development is presented, beginning with steady state kinetics and progressing through modern fast reaction methods, NMR, and single molecule fluorescence techniques. Experimental results are summarized for ribonuclease, aspartate aminotransferase, and especially dihydrofolate reductase (DHFR). Multiple intermediates, multiple conformations, and cooperative conformational changes are shown to be an essential part of virtually all enzyme mechanisms. In the case of DHFR, theoretical investigations have provided detailed information about the movement of atoms within the enzyme-substrate complex as the reaction proceeds along the collective reaction coordinate for hydride transfer. A general mechanism is presented for enzyme catalysis that includes multiple intermediates and a complex, multidimensional standard free energy surface. Protein flexibility, diverse protein conformations, and cooperative conformational changes are important features of this model. PMID:22029278

  14. Numeric invariants from multidimensional persistence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skryzalin, Jacek; Carlsson, Gunnar

    2017-05-19

    In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be usedmore » to study data.« less

  15. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis.

    PubMed

    Zhou, Tingting; Liu, Hua; Wen, Jun; Fan, Guorong; Chai, Yifeng; Wu, Yutian

    2010-09-15

    A high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS) method was applied to the characterization of ten iridoid glycosides in Gardenia jasminoides Ellis, a traditional Chinese medicine. During the process of structural elucidation, two groups of isomers including two epimers were structurally characterized and differentiated according to their distinctive fragmentation patterns which were closely related to their isomeric differentiations. Subsequently, the major compounds were purified by multi-dimensional chromatography and semi-preparative HPLC and the structure identification was confirmed with NMR techniques. The major fragmentation pathways of iridoid glycosides in Gardenia jasminoides Ellis obtained through the MS data were schemed systematically, which provided the best sensitivity and specificity for characterization of the iridoid glycosides especially the isomers so far. Based on the fragmentation patterns of iridoid glycosides concluded, seven major iridoid glycosides were characterized in rat plasma after intravenous administration of Gardenia jasminoides Ellis. Copyright 2010 John Wiley & Sons, Ltd.

  16. Role of aminotransferases in glutamate metabolism of human erythrocytes.

    PubMed

    Ellinger, James J; Lewis, Ian A; Markley, John L

    2011-04-01

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from α-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional (1)H-(13)C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  17. Synthetic Approaches to (smif)2Ti (smif = 1,3-di-(2-pyridyl)-2-azaallyl) Reveal Redox Non-Innocence and C-C Bond-Formation

    PubMed Central

    Frazier, Brenda A.; Wolczanski, Peter T.; Keresztes, Ivan; DeBeer, Serena; Lobkovsky, Emil B.; Pierpont, Aaron W.; Cundari, Thomas R.

    2012-01-01

    Attempted syntheses of (smif)2Ti (smif = 1,3-di-(2-pyridyl)-2-azaallyl) based on metatheses of TiClnLm (n = 2–4) with M(smif) (M = Li, Na), in the presence of a reducing agent (Na/Hg) when necessary, failed, but several apparent Ti(II) species were identified by X-ray crystallography and multidimensional NMR spectroscopy: (smif){Li(smif-smif)}Ti (1, X-ray), [(smif)Ti]2(μ-κ3,κ3-N,N(py)2-smif,smif) (2), (smif)Ti(κ3-N,N(py)2-smif,(smif)H) (3), and (smif)Ti(dpma) (4). NMR spectroscopy and K-edge XAS showed that each compound possesses ligands that are redox non-innnocent, such that d1 Ti(III) centers AF-couple to ligand radicals: (smif){Li(smif-smif)2−}TiIII (1), [(smif2−)TiIII]2(μ-κ3,κ3-N,N(py)2-smif,smif) (2), [(smif2−)TiIII](κ3-N,N(py)2-smif,(smif)H) (3), and (smif2−)TiIII(dpma) (4). The instability of the (smif)2Ti relative to its C-C coupled dimer, 2, is rationalized via the complementary nature of the amide and smif radical anion ligands, which are also common to 3 and 4. Calculations support this contention. PMID:22830452

  18. Effect Size Measures for Differential Item Functioning in a Multidimensional IRT Model

    ERIC Educational Resources Information Center

    Suh, Youngsuk

    2016-01-01

    This study adapted an effect size measure used for studying differential item functioning (DIF) in unidimensional tests and extended the measure to multidimensional tests. Two effect size measures were considered in a multidimensional item response theory model: signed weighted P-difference and unsigned weighted P-difference. The performance of…

  19. Multidimensional Knowledge Structures.

    ERIC Educational Resources Information Center

    Schuh, Kathy L.

    Multidimensional knowledge structures, described from a constructivist perspective and aligned with the "Mind as Rhizome" metaphor, provide support for constructivist learning strategies. This qualitative study was conducted to seek empirical support for a description of multidimensional knowledge structures, focusing on the…

  20. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    PubMed Central

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  1. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    PubMed

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.

  2. Multidimensional Perfectionism and the Self

    ERIC Educational Resources Information Center

    Ward, Andrew M.; Ashby, Jeffrey S.

    2008-01-01

    This study examined multidimensional perfectionism and self-development. Two hundred seventy-one undergraduates completed a measure of multidimensional perfectionism and two Kohutian measures designed to measure aspects of self-development including social connectedness, social assurance, goal instability (idealization), and grandiosity. The…

  3. Effectiveness of Multidimensional Cancer Survivor Rehabilitation and Cost-Effectiveness of Cancer Rehabilitation in General: A Systematic Review

    PubMed Central

    Mewes, Janne C.; IJzerman, Maarten J.; van Harten, Wim H.

    2012-01-01

    Introduction. Many cancer survivors suffer from a combination of disease- and treatment-related morbidities and complaints after primary treatment. There is a growing evidence base for the effectiveness of monodimensional rehabilitation interventions; in practice, however, patients often participate in multidimensional programs. This study systematically reviews evidence regarding effectiveness of multidimensional rehabilitation programs for cancer survivors and cost-effectiveness of cancer rehabilitation in general. Methods. The published literature was systematically reviewed. Data were extracted using standardized forms and were summarized narratively. Results. Sixteen effectiveness and six cost-effectiveness studies were included. Multidimensional rehabilitation programs were found to be effective, but not more effective than monodimensional interventions, and not on all outcome measures. Effect sizes for quality of life were in the range of −0.12 (95% confidence interval [CI], −0.45–0.20) to 0.98 (95% CI, 0.69–1.29). Incremental cost-effectiveness ratios ranged from −€16,976, indicating cost savings, to €11,057 per quality-adjusted life year. Conclusions. The evidence for multidimensional interventions and the economic impact of rehabilitation studies is scarce and dominated by breast cancer studies. Studies published so far report statistically significant benefits for multidimensional interventions over usual care, most notably for the outcomes fatigue and physical functioning. An additional benefit of multidimensional over monodimensional rehabilitation was not found, but this was also sparsely reported on. Available economic evaluations assessed very different rehabilitation interventions. Yet, despite low comparability, all showed favorable cost-effectiveness ratios. Future studies should focus their designs on the comparative effectiveness and cost-effectiveness of multidimensional programs. PMID:22982580

  4. A New Time-varying Concept of Risk in a Changing Climate.

    PubMed

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  5. A theoretical case study of type I and type II beta-turns.

    PubMed

    Czinki, Eszter; Császár, Attila G; Perczel, András

    2003-03-03

    NMR chemical shielding anisotropy tensors have been computed by employing a medium size basis set and the GIAO-DFT(B3LYP) formalism of electronic structure theory for all of the atoms of type I and type II beta-turn models. The models contain all possible combinations of the amino acid residues Gly, Ala, Val, and Ser, with all possible side-chain orientations where applicable in a dipeptide. The several hundred structures investigated contain either constrained or optimized phi, psi, and chi dihedral angles. A statistical analysis of the resulting large database was performed and multidimensional (2D and 3D) chemical-shift/chemical-shift plots were generated. The (1)H(alpha-13)C(alpha), (13)C(alpha-1)H(alpha-13)C(beta), and (13)C(alpha-1)H(alpha-13)C' 2D and 3D plots have the notable feature that the conformers clearly cluster in distinct regions. This allows straightforward identification of the backbone and side-chain conformations of the residues forming beta-turns. Chemical shift calculations on larger For-(L-Ala)(n)-NH(2) (n=4, 6, 8) models, containing a single type I or type II beta-turn, prove that the simple models employed are adequate. A limited number of chemical shift calculations performed at the highly correlated CCSD(T) level prove the adequacy of the computational method chosen. For all nuclei, statistically averaged theoretical and experimental shifts taken from the BioMagnetic Resonance Bank (BMRB) exhibit good correlation. These results confirm and extend our previous findings that chemical shift information from selected multiple-pulse NMR experiments could be employed directly to extract folding information for polypeptides and proteins.

  6. Design and characterization of a W-band system for modulated DNP experiments.

    PubMed

    Guy, Mallory L; Zhu, Lihuang; Ramanathan, Chandrasekhar

    2015-12-01

    Magnetic-field and microwave-frequency modulated DNP experiments have been shown to yield improved enhancements over conventional DNP techniques, and even to shorten polarization build-up times. The resulting increase in signal-to-noise ratios can lead to significantly shorter acquisition times in signal-limited multi-dimensional NMR experiments and pave the way to the study of even smaller sample volumes. In this paper we describe the design and performance of a broadband system for microwave frequency- and amplitude-modulated DNP that has been engineered to minimize both microwave and thermal losses during operation at liquid helium temperatures. The system incorporates a flexible source that can generate arbitrary waveforms at 94GHz with a bandwidth greater than 1GHz, as well as a probe that efficiently transmits the millimeter waves from room temperature outside the magnet to a cryogenic environment inside the magnet. Using a thin-walled brass tube as an overmoded waveguide to transmit a hybrid HE11 mode, it is possible to limit the losses to 1dB across a 2GHz bandwidth. The loss is dominated by the presence of a quartz window used to isolate the waveguide pipe. This performance is comparable to systems with corrugated waveguide or quasi-optical components. The overall excitation bandwidth of the probe is seen to be primarily determined by the final antenna or resonator used to excite the sample and its coupling to the NMR RF coil. Understanding the instrumental limitations imposed on any modulation scheme is key to understanding the observed DNP results and potentially identifying the underlying mechanisms. We demonstrate the utility of our design with a set of triangular frequency-modulated DNP experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Comparison of Anion Reorientational Dynamics in MCB 9 H 10 and M 2 B 10 H 10 (M = Li, Na) via Nuclear Magnetic Resonance and Quasielastic Neutron Scattering Studies

    DOE PAGES

    Soloninin, Alexei V.; Dimitrievska, Mirjana; Skoryunov, Roman V.; ...

    2016-12-13

    The disordered phases of the 1-carba-closo-decaborates LiCB9H10 and NaCB9H10 exhibit the best solid-state ionic conductivities to date among all known polycrystalline competitors, likely facilitated in part by the highly orientationally mobile CB9H10- anions. We have undertaken both NMR and quasielastic neutron scattering (QENS) measurements to help characterize the monovalent anion reorientational mobilities and mechanisms associated with these two compounds and to compare their anion reorientational behaviors with those for the divalent B10H102- anions in the related Li2B10H10 and Na2B10H10 compounds. NMR data show that the transition from the low-T ordered to the high-T disordered phase for both LiCB9H10 and NaCB9H10more » is accompanied by a nearly two-orders-of-magnitude increase in the reorientational jump rate of CB9H10- anions. QENS measurements of the various disordered compounds indicate anion jump correlation frequencies on the order of 1010-1011 s-1 and confirm that NaCB9H10 displays jump frequencies about 60% to 120% higher than those for LiCB9H10 and Na2B10H10 at comparable temperatures. The Q-dependent quasielastic scattering suggests similar small-angular-jump reorientational mechanisms for the different disordered anions, changing from more uniaxial in character at lower temperatures to more multidimensional at higher temperatures, although still falling short of full three-dimensional rotational diffusion below 500 K within the nanosecond neutron window.« less

  8. Solution structure of Syrian hamster prion protein rPrP(90-231).

    PubMed

    Liu, H; Farr-Jones, S; Ulyanov, N B; Llinas, M; Marqusee, S; Groth, D; Cohen, F E; Prusiner, S B; James, T L

    1999-04-27

    NMR has been used to refine the structure of Syrian hamster (SHa) prion protein rPrP(90-231), which is commensurate with the infectious protease-resistant core of the scrapie prion protein PrPSc. The structure of rPrP(90-231), refolded to resemble the normal cellular isoform PrPC spectroscopically and immunologically, has been studied using multidimensional NMR; initial results were published [James et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 10086-10091]. We now report refinement with better definition revealing important structural and dynamic features which can be related to biological observations pertinent to prion diseases. Structure refinement was based on 2778 unambiguously assigned nuclear Overhauser effect (NOE) connectivities, 297 ambiguous NOE restraints, and 63 scalar coupling constants (3JHNHa). The structure is represented by an ensemble of 25 best-scoring structures from 100 structures calculated using ARIA/X-PLOR and further refined with restrained molecular dynamics using the AMBER 4.1 force field with an explicit shell of water molecules. The rPrP(90-231) structure features a core domain (residues 125-228), with a backbone atomic root-mean-square deviation (RMSD) of 0.67 A, consisting of three alpha-helices (residues 144-154, 172-193, and 200-227) and two short antiparallel beta-strands (residues 129-131 and 161-163). The N-terminus (residues 90-119) is largely unstructured despite some sparse and weak medium-range NOEs implying the existence of bends or turns. The transition region between the core domain and flexible N-terminus, i.e., residues 113-128, consists of hydrophobic residues or glycines and does not adopt any regular secondary structure in aqueous solution. There are about 30 medium- and long-range NOEs within this hydrophobic cluster, so it clearly manifests structure. Multiple discrete conformations are evident, implying the possible existence of one or more metastable states, which may feature in conversion of PrPC to PrPSc. To obtain a more comprehensive picture of rPrP(90-231), dynamics have been studied using amide hydrogen-deuterium exchange and 15N NMR relaxation times (T1 and T2) and 15N{1H} NOE measurements. Comparison of the structure with previous reports suggests sequence-dependent features that may be reflected in a species barrier to prion disease transmission.

  9. Self Esteem, Locus of Control and Multidimensional Perfectionism as the Predictors of Subjective Well Being

    ERIC Educational Resources Information Center

    Karatas, Zeynep; Tagay, Ozlem

    2012-01-01

    The purpose of this study is to determine whether there is a relationship between self-esteem, locus of control and multidimensional perfectionism, and the extent to which the variables of self-esteem, locus of control and multidimensional perfectionism contribute to the prediction of subjective well-being. The study was carried out with 318 final…

  10. A Multidimensional Study of Vocal Function Following Radiation Therapy for Laryngeal Cancers.

    PubMed

    Angadi, Vrushali; Dressler, Emily; Stemple, Joseph

    2017-06-01

    Radiation therapy (XRT) has proven to be an effective curative modality in the treatment of laryngeal cancers. However, XRT also has deleterious effects on vocal function. To demonstrate the multidimensional nature of deficits in vocal function as a result of radiation therapy for laryngeal cancer. Cohort study. Vocal function parameters were chosen from the 5 domains of voice assessment to complete a multidimensional assessment battery. Adults irradiated (XRT group) for laryngeal cancers were compared to a control group of individuals with no history of head and neck cancers or radiation therapy. The control group was matched in age, sex, and pack years of smoking. Eighteen participants were recruited for the study. The XRT group demonstrated significantly worse clinical values as compared to the control group across select parameters in the each of the 5 domains of voice assessment. Radiation therapy for laryngeal cancers results in multidimensional deficits in vocal function. Notably, these deficits persist long term. In the present study sample, multidimensional deficits were persistent 2 to 7 years following completion of XRT. The observed multidimensional persistent vocal difficulties highlight the importance of vocal rehabilitation in the irradiated larynx cancer population.

  11. Investigations into the Structure and Dynamics of Chalcogenide Glasses using High-Resolution Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaseman, Derrick Charles

    Chalcogenide glasses constitute an important class of materials that are sulfides, selenides or tellurides of group IV and/or V elements, namely Ge, As, P and Si with minor concentrations of other elements such as Ga, Sb, In. Because of their infrared transparency that can be tuned by changing chemistry and can be actively altered by exposure to band gap irradiation, chalcogenide glasses find use in passive and active optical devices for applications in the areas of photonics, remote sensing and memory technology. Therefore, it is important to establish predictive models of structure-property relationships for these materials for optimization of their physical properties for various applications. Structural elucidation of chalcogenide glasses is experimentally challenging and in order to make predictive structural models, structural units at both short and intermediate -range length scales must be identified and quantified. Nuclear Magnetic Resonance (NMR) spectroscopy is an element-specific structural probe that is uniquely suited for this task, but resolution and sensitivity issues have severely limited the applications of such techniques in the past. The recent development of multi-dimensional solid-state NMR techniques, such as Phase Adjusted Spinning Sidebands (PASS) and Magic Angle Turning (MAT) can potentially alleviate such issues. In this study novel two-dimensional, high-resolution 77Se and 125Te MATPASS NMR spectroscopic techniques are utilized to elucidate quantitatively the compositional evolution of the short- and intermediate- range atomic structure in three binary chalcogenide glass-forming systems, namely: GexSe100-x, AsxSe100-x , and AsxTe100-x. The spectroscopic results provide unambiguous site speciation and quantification for short- and intermediate-range structural motifs present in these glasses. In turn, for all systems, robust structural models and the corresponding structure-property relationships are successfully established as a function of composition. The results indicate that the physical properties are intimately tied to the topology and chemical order present in each system. Finally, a dynamic version of the two-dimensional 31P PASS NMR spectroscopy is used to study the molecular motion in a supercooled chalcogenide liquid of composition P5Se3. The results clearly display the presence of isotropic rotational reorientation of the constituent molecules at timescales significantly decoupled from that of the structural relaxation near and above Tg. This behavior is atypical of conventional molecular glasses in organic systems in which rotational and translational dynamics remain coupled near Tg. When taken together with previous reports on the dynamics of other globular inorganic molecules, the results support the existence of a "plastic glass" phase where the molecules perform rapid rotation without significant translation.

  12. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.

    PubMed

    Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R

    2007-08-01

    We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic "worst case analysis". These couplings are among the smallest currently measured, and their determination in both isotropic and anisotropic media demands the highest measurement precision. The new approach yielded excellent quantitative agreement with values determined independently by the conventional 3D quantitative J NMR method (in cases where sample stability in oriented media permitted these measurements) but with a factor of 2-5 in time savings. The statistical measure of reliability, measuring the quality of each RDC value, offers valuable adjunct information even in cases where modest time savings may be realized.

  13. Enhancing Student Motivation and Engagement: The Effects of a Multidimensional Intervention

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2008-01-01

    The present study sought to investigate the effects of a multidimensional educational intervention on high school students' motivation and engagement. The intervention incorporated: (a) multidimensional targets of motivation and engagement, (b) empirically derived intervention methodology, (c) research-based risk and protective factors, (d)…

  14. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  15. Some applications of the multi-dimensional fractional order for the Riemann-Liouville derivative

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2017-01-01

    In this paper, the aim of this work is to study theorem for the one-dimensional space-time fractional deriative, generalize some function for the one-dimensional fractional by table represents the fractional Laplace transforms of some elementary functions to be valid for the multi-dimensional fractional Laplace transform and give the definition of the multi-dimensional fractional Laplace transform. This study includes that, dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable and develop of the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform based on the modified Riemann-Liouville derivative.

  16. The Definition of Difficulty and Discrimination for Multidimensional Item Response Theory Models.

    ERIC Educational Resources Information Center

    Reckase, Mark D.; McKinley, Robert L.

    A study was undertaken to develop guidelines for the interpretation of the parameters of three multidimensional item response theory models and to determine the relationship between the parameters and traditional concepts of item difficulty and discrimination. The three models considered were multidimensional extensions of the one-, two-, and…

  17. Bifactor Approach to Modeling Multidimensionality of Physical Self-Perception Profile

    ERIC Educational Resources Information Center

    Chung, ChihMing; Liao, Xiaolan; Song, Hairong; Lee, Taehun

    2016-01-01

    The multi-dimensionality of Physical Self-Perception Profile (PSPP) has been acknowledged by the use of correlated-factor model and second-order model. In this study, the authors critically endorse the bifactor model, as a substitute to address the multi-dimensionality of PSPP. To cross-validate the models, analyses are conducted first in…

  18. Deriving Multidimensional Poverty Indicators: Methodological Issues and an Empirical Analysis for Italy

    ERIC Educational Resources Information Center

    Coromaldi, Manuela; Zoli, Mariangela

    2012-01-01

    Theoretical and empirical studies have recently adopted a multidimensional concept of poverty. There is considerable debate about the most appropriate degree of multidimensionality to retain in the analysis. In this work we add to the received literature in two ways. First, we derive indicators of multiple deprivation by applying a particular…

  19. A Multidimensional Scaling Approach to Dimensionality Assessment for Measurement Instruments Modeled by Multidimensional Item Response Theory

    ERIC Educational Resources Information Center

    Toro, Maritsa

    2011-01-01

    The statistical assessment of dimensionality provides evidence of the underlying constructs measured by a survey or test instrument. This study focuses on educational measurement, specifically tests comprised of items described as multidimensional. That is, items that require examinee proficiency in multiple content areas and/or multiple cognitive…

  20. Perceptual Salience and Children's Multidimensional Problem Solving

    ERIC Educational Resources Information Center

    Odom, Richard D.; Corbin, David W.

    1973-01-01

    Uni- and multidimensional processing of 6- to 9-year olds was studied using recall tasks in which an array of stimuli was reconstructed to match a model array. Results indicated that both age groups were able to solve multidimensional problems, but that solution rate was retarded by the unidimensional processing of highly salient dimensions.…

  1. The Multidimensional Attitudes Scale toward Persons with Disabilities (MAS): Construction and Validation

    ERIC Educational Resources Information Center

    Findler, Liora; Vilchinsky, Noa; Werner, Shirli

    2007-01-01

    This study presents the development of a new instrument, the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Based on the multidimensional approach, it posits that attitudes are composed of three dimensions: affect, cognition, and behavior. The scale was distributed to a sample of 132 people along with a…

  2. NMR at Low and Ultra-Low Temperatures

    PubMed Central

    Tycko, Robert

    2017-01-01

    Conspectus Solid state nuclear magnetic resonance (NMR) measurements at low temperatures have been common in physical sciences for many years, and are becoming increasingly important in studies of biomolecular systems. This article reviews a diverse set of projects from my laboratory, dating back to the early 1990s, that illustrate the motivations for low-temperature solid state NMR, the types of information that are available from the measurements, and likely directions for future research. These projects include NMR studies of both physical and biological systems, performed at low (cooled with nitrogen, down to 77 K) and very low (cooled with helium, below 77 K) temperatures, and performed with and without magic-angle spinning (MAS). In NMR studies of physical systems, the main motivation is to study phenomena that occur only at low temperatures. Two examples from my laboratory are studies of molecular rotation and an orientational ordering in solid C60 at low temperatures and studies of unusual electronic states, called skyrmions, in two-dimensionally confined electron systems within semiconductor quantum wells. NMR measurements on quantum wells were facilitated by optical pumping of nuclear spin polarizations, a signal enhancement phenomenon that exists at very low temperatures. In studies of biomolecular systems, motivations for low-temperature NMR include suppression of molecular tumbling (thereby permitting solid state NMR measurements on soluble proteins), suppression of conformational exchange (thereby permitting quantitation of conformational distributions), and trapping of transient intermediate states in a non-equilibrium kinetic process (by rapid freeze-quenching). Solid state NMR measurements on AIDS-related peptide/antibody complexes, chemically denatured states of the model protein HP35, and a transient intermediate in the rapid folding pathway of HP35 illustrate these motivations. NMR sensitivity generally increases with decreasing sample temperature. It is therefore advantageous to go as cold as possible, particularly in studies of biomolecular systems in frozen solutions. However, solid state NMR studies of biomolecular systems generally require rapid MAS. A novel MAS NMR probe design that uses nitrogen gas for sample spinning and cold helium only for sample cooling allows a wide variety of solid state NMR measurements to be performed on biomolecular systems at 20-25 K, where signals are enhanced by factors of 12-15 relative to measurements at room temperature. MAS NMR at very low temperatures also facilitates dynamic nuclear polarization (DNP), allowing sizeable additional signal enhancements and large absolute NMR signal amplitudes to be achieved with relatively low microwave powers. Current research in my laboratory seeks to develop and exploit DNP-enhanced MAS NMR at very low temperatures, for example in studies of transient intermediates in protein folding and aggregation processes and studies of peptide/protein complexes that can be prepared only at low concentrations. PMID:23470028

  3. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.

    PubMed

    Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi

    2011-11-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011

  4. Some theorems and properties of multi-dimensional fractional Laplace transforms

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2016-06-01

    The aim of this work is to study theorems and properties for the one-dimensional fractional Laplace transform, generalize some properties for the one-dimensional fractional Lapalce transform to be valid for the multi-dimensional fractional Lapalce transform and is to give the definition of the multi-dimensional fractional Lapalce transform. This study includes: dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable with some of important theorems and properties and develop of some properties for the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform. Also, we obtain a fractional Laplace inversion theorem after a short survey on fractional analysis based on the modified Riemann-Liouville derivative.

  5. Self-Concepts in Reading, Writing, Listening, and Speaking: A Multidimensional and Hierarchical Structure and Its Generalizability across Native and Foreign Languages

    ERIC Educational Resources Information Center

    Arens, A. Katrin; Jansen, Malte

    2016-01-01

    Academic self-concept has been conceptualized as a multidimensional and hierarchical construct. Previous research has mostly focused on its multidimensionality, distinguishing between verbal and mathematical self-concept domains, and only a few studies have examined the factorial structure within specific self-concept domains. The present study…

  6. Motivation and Engagement in the Workplace: Examining a Multidimensional Framework and Instrument from a Measurement and Evaluation Perspective

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2009-01-01

    This investigation conducts measurement and evaluation of a multidimensional model of workplace motivation and engagement from a construct validation perspective. Two studies were conducted, one using the multi-item multidimensional Motivation and Engagement Scale-Work (N = 637 school personnel) and one using a parallel short form (N = 574 school…

  7. Effects of Multidimensional Concept Maps on Fourth Graders' Learning in Web-Based Computer Course

    ERIC Educational Resources Information Center

    Huang, Hwa-Shan; Chiou, Chei-Chang; Chiang, Heien-Kun; Lai, Sung-Hsi; Huang, Chiun-Yen; Chou, Yin-Yu

    2012-01-01

    This study explores the effect of multidimensional concept mapping instruction on students' learning performance in a web-based computer course. The subjects consisted of 103 fourth graders from an elementary school in central Taiwan. They were divided into three groups: multidimensional concept map (MCM) instruction group, Novak concept map (NCM)…

  8. Evaluating the Invariance of Cognitive Profile Patterns Derived from Profile Analysis via Multidimensional Scaling (PAMS): A Bootstrapping Approach

    ERIC Educational Resources Information Center

    Kim, Se-Kang

    2010-01-01

    The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…

  9. Multidimensional poverty and catastrophic health spending in the mountainous regions of Myanmar, Nepal and India.

    PubMed

    Mohanty, Sanjay K; Agrawal, Nand Kishor; Mahapatra, Bidhubhusan; Choudhury, Dhrupad; Tuladhar, Sabarnee; Holmgren, E Valdemar

    2017-01-18

    Economic burden to households due to out-of-pocket expenditure (OOPE) is large in many Asian countries. Though studies suggest increasing household poverty due to high OOPE in developing countries, studies on association of multidimensional poverty and household health spending is limited. This paper tests the hypothesis that the multidimensionally poor are more likely to incur catastrophic health spending cutting across countries. Data from the Poverty and Vulnerability Assessment (PVA) Survey carried out by the International Center for Integrated Mountain Development (ICIMOD) has been used in the analyses. The PVA survey was a comprehensive household survey that covered the mountainous regions of India, Nepal and Myanmar. A total of 2647 households from India, 2310 households in Nepal and 4290 households in Myanmar covered under the PVA survey. Poverty is measured in a multidimensional framework by including the dimensions of education, income and energy, water and sanitation using the Alkire and Foster method. Health shock is measured using the frequency of illness, family sickness and death of any family member in a reference period of one year. Catastrophic health expenditure is defined as 40% above the household's capacity to pay. Results suggest that about three-fifths of the population in Myanmar, two-fifths of the population in Nepal and one-third of the population in India are multidimensionally poor. About 47% of the multidimensionally poor in India had incurred catastrophic health spending compared to 35% of the multidimensionally non-poor and the pattern was similar in both Nepal and Myanmar. The odds of incurring catastrophic health spending was 56% more among the multidimensionally poor than among the multidimensionally non-poor [95% CI: 1.35-1.76]. While health shocks to households are consistently significant predictors of catastrophic health spending cutting across country of residence, the educational attainment of the head of the household is not significant. The multidimensionally poor in the poorer regions are more likely to face health shocks and are less likely to afford professional health services. Increasing government spending on health and increasing households' access to health insurance can reduce catastrophic health spending and multidimensional poverty.

  10. DEVELOPMENT AND PSYCHOMETRIC TESTING OF A MULTIDIMENSIONAL INSTRUMENT OF PERCEIVED DISCRIMINATION AMONG AFRICAN AMERICANS IN THE JACKSON HEART STUDY

    PubMed Central

    Sims, Mario; Wyatt, Sharon B.; Gutierrez, Mary Lou; Taylor, Herman A.; Williams, David R.

    2009-01-01

    Objective Assessing the discrimination-health disparities hypothesis requires psychometrically sound, multidimensional measures of discrimination. Among the available discrimination measures, few are multidimensional and none have adequate psychometric testing in a large, African American sample. We report the development and psychometric testing of the multidimensional Jackson Heart Study Discrimination (JHSDIS) Instrument. Methods A multidimensional measure assessing the occurrence, frequency, attribution, and coping responses to perceived everyday and lifetime discrimination; lifetime burden of discrimination; and effect of skin color was developed and tested in the 5302-member cohort of the Jackson Heart Study. Internal consistency was calculated by using Cronbach α. coefficient. Confirmatory factor analysis established the dimensions, and intercorrelation coefficients assessed the discriminant validity of the instrument. Setting Tri-county area of the Jackson, MS metropolitan statistical area. Results The JHSDIS was psychometrically sound (overall α=.78, .84 and .77, respectively, for the everyday and lifetime subscales). Confirmatory factor analysis yielded 11 factors, which confirmed the a priori dimensions represented. Conclusions The JHSDIS combined three scales into a single multidimensional instrument with good psychometric properties in a large sample of African Americans. This analysis lays the foundation for using this instrument in research that will examine the association between perceived discrimination and CVD among African Americans. PMID:19341164

  11. Structural Analysis of a Peptide Fragment of Transmembrane Transporter Protein Bilitranslocase

    PubMed Central

    Župerl, Špela; Sikorska, Emilia; Zhukov, Igor; Solmajer, Tom; Novič, Marjana

    2012-01-01

    Using a combination of genomic and post-genomic approaches is rapidly altering the number of identified human influx carriers. A transmembrane protein bilitranslocase (TCDB 2.A.65) has long attracted attention because of its function as an organic anion carrier. It has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its structure. However, at present, only the primary structure of bilitranslocase is known. In our work, transmembrane subunits of bilitranslocase were predicted by a previously developed chemometrics model and the stability of these polypeptide chains were studied by molecular dynamics (MD) simulation. Furthermore, sodium dodecyl sulfate (SDS) micelles were used as a model of cell membrane and herein we present a high-resolution 3D structure of an 18 amino acid residues long peptide corresponding to the third transmembrane part of bilitranslocase obtained by use of multidimensional NMR spectroscopy. It has been experimentally confirmed that one of the transmembrane segments of bilitranslocase has alpha helical structure with hydrophilic amino acid residues oriented towards one side, thus capable of forming a channel in the membrane. PMID:22745694

  12. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; ...

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{ 1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  13. Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

    PubMed Central

    Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

    2013-01-01

    In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

  14. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Treesearch

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  15. Reliability and Validity of the Chinese Version of the Multidimensional Anxiety Scale for Children among Chinese Secondary School Students

    ERIC Educational Resources Information Center

    Yao, Shuqiao; Zou, Tao; Zhu, Xiongzhao; Abela, John R. Z.; Auerbach, Randy P.; Tong, Xi

    2007-01-01

    The objective of the current study was to develop a Chinese translation of the Multidimensional Anxiety Scale for Children (MASC) [March (1997) Multidimensional anxiety scale for children: Technical manual, Multi health systems, Toronto, ON], and to evaluate its reliability and validity. The original version of the MASC was translated into Chinese…

  16. Applying Multidimensional Item Response Theory Models in Validating Test Dimensionality: An Example of K-12 Large-Scale Science Assessment

    ERIC Educational Resources Information Center

    Li, Ying; Jiao, Hong; Lissitz, Robert W.

    2012-01-01

    This study investigated the application of multidimensional item response theory (IRT) models to validate test structure and dimensionality. Multiple content areas or domains within a single subject often exist in large-scale achievement tests. Such areas or domains may cause multidimensionality or local item dependence, which both violate the…

  17. A Canonical Correlation Analysis of the Influence of Social Comparison, Gender, and Grade Level on the Multidimensional Self-Concepts of Gifted Adolescents

    ERIC Educational Resources Information Center

    Rinn, Anne N.; Jamieson, Kelly M.; Gross, Candace M.; McQueen, Kand S.

    2009-01-01

    This study examines the effects of social comparison, gender, and grade level on gifted adolescents' multidimensional self-concept. Participants include 248 gifted adolescents who had completed the sixth through tenth grade during the previous academic year. Multidimensional self-concept was measured using the Self Description Questionnaire II…

  18. Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model

    PubMed Central

    Seo, Dong Gi; Weiss, David J.

    2015-01-01

    Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm (MCAT) with a bifactor model using simulated data. Four item selection methods in MCAT were examined for three bifactor pattern designs using two multidimensional item response theory models. To compare MCAT item selection and estimation methods, a fixed test length was used. The Ds-optimality item selection improved θ estimates with respect to a general factor, and either D- or A-optimality improved estimates of the group factors in three bifactor pattern designs under two multidimensional item response theory models. The MCAT model without a guessing parameter functioned better than the MCAT model with a guessing parameter. The MAP (maximum a posteriori) estimation method provided more accurate θ estimates than the EAP (expected a posteriori) method under most conditions, and MAP showed lower observed standard errors than EAP under most conditions, except for a general factor condition using Ds-optimality item selection. PMID:29795848

  19. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  20. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  1. Identification and MS-assisted interpretation of genetically influenced NMR signals in human plasma

    PubMed Central

    2013-01-01

    Nuclear magnetic resonance spectroscopy (NMR) provides robust readouts of many metabolic parameters in one experiment. However, identification of clinically relevant markers in 1H NMR spectra is a major challenge. Association of NMR-derived quantities with genetic variants can uncover biologically relevant metabolic traits. Using NMR data of plasma samples from 1,757 individuals from the KORA study together with 655,658 genetic variants, we show that ratios between NMR intensities at two chemical shift positions can provide informative and robust biomarkers. We report seven loci of genetic association with NMR-derived traits (APOA1, CETP, CPS1, GCKR, FADS1, LIPC, PYROXD2) and characterize these traits biochemically using mass spectrometry. These ratios may now be used in clinical studies. PMID:23414815

  2. Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation

    PubMed Central

    Ghosh, Dhiman; Singh, Pradeep K.; Sahay, Shruti; Jha, Narendra Nath; Jacob, Reeba S.; Sen, Shamik; Kumar, Ashutosh; Riek, Roland; Maji, Samir K.

    2015-01-01

    Mechanistic understanding of nucleation dependent polymerization by α-synuclein (α-Syn) into toxic oligomers and amyloids is important for the drug development against Parkinson's disease. However the structural and morphological characterization during nucleation and subsequent fibrillation process of α-Syn is not clearly understood. Using a variety of complementary biophysical techniques monitoring entire pathway of nine different synucleins, we found that transition of unstructured conformation into β-sheet rich fibril formation involves helix-rich intermediates. These intermediates are common for all aggregating synucleins, contain high solvent-exposed hydrophobic surfaces, are cytotoxic to SHSY-5Y cells and accelerate α-Syn aggregation efficiently. A multidimensional NMR study characterizing the intermediate accompanied with site-specific fluorescence study suggests that the N-terminal and central portions mainly participate in the helix-rich intermediate formation while the C-terminus remained in an extended conformation. However, significant conformational transitions occur at the middle and at the C-terminus during helix to β-sheet transition as evident from Trp fluorescence study. Since partial helix-rich intermediates were also observed for other amyloidogenic proteins such as Aβ and IAPP, we hypothesize that this class of intermediates may be one of the important intermediates for amyloid formation pathway by many natively unstructured protein/peptides and represent a potential target for drug development against amyloid diseases. PMID:25784353

  3. The moderating effects of gender on the associations between multidimensional hostility and psychosomatic symptoms: a Chinese case.

    PubMed

    Weng, Chia-Ying; Lin, I-Mei; Jiang, Ding-Yu

    2010-08-01

    The purpose of this study was to examine the effects of gender on the relationship between multidimensional hostility and psychosomatic symptoms in Chinese culture. The participants in this study were 398 Chinese college students (40% female) recruited from Taiwan. Four dimensions of multidimensional hostility-hostility cognition, hostility affect, expressive hostility behavior, and suppressive hostility behavior-were measured by the Chinese Hostility Inventory. After controlling for the effects of depression and anxiety, the results of path analysis revealed that the multidimensional hostility predicted psychosomatic symptoms directly, and predicted psychosomatic symptoms indirectly through negative health behavior. Furthermore, gender moderated the relationships between multidimensional hostility and health outcomes. Expressive hostility exacerbated psychosomatic symptom in females but buffered it in males, while affective hostility exacerbated psychosomatic symptoms in males. Additionally, suppressive hostility behavior was correlated to psychosomatic symptoms indirectly through negative health behavior in females. Moreover, expressive hostility was correlated to psychosomatic symptoms indirectly through negative health behavior more in males than in females.

  4. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Kanmi

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H- 1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H- 1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace} 13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5 m more » $$\\bar{x}$$, PMLG5 mm $$\\bar{x}$$x and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG m $$\\bar{x}$$ during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the 1H resolution during t 1 evolution in the traditional, 13C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of 1H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected 1H{l_brace} 13C{r_brace} and 19F{l_brace} 13C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted 29Si direct polarization and 29Si 19F 2D experiments, 2D double-quantum (DQ) 19F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside the MSN pores, was studied by solid-state NMR (Chapter 6). By analyzing the 1H- 1H DQMAS and NOESY correlation spectra, the CTAB and CPB molecules were shown to co-exist inside the pores without forming significant monocomponent domains. A 'folded-over' conformation of CPB headgroups was proposed according to the results from 1H- 29Si 2D HETCOR.« less

  5. 31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin

    PubMed Central

    Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip

    2013-01-01

    The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (0–60, 61–120 and 121–180 µm) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 µm within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274

  6. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  7. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    PubMed

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  8. PedsQL™ Multidimensional Fatigue Scale in sickle cell disease: feasibility, reliability, and validity.

    PubMed

    Panepinto, Julie A; Torres, Sylvia; Bendo, Cristiane B; McCavit, Timothy L; Dinu, Bogdan; Sherman-Bien, Sandra; Bemrich-Stolz, Christy; Varni, James W

    2014-01-01

    Sickle cell disease (SCD) is an inherited blood disorder characterized by a chronic hemolytic anemia that can contribute to fatigue and global cognitive impairment in patients. The study objective was to report on the feasibility, reliability, and validity of the PedsQL™ Multidimensional Fatigue Scale in SCD for pediatric patient self-report ages 5-18 years and parent proxy-report for ages 2-18 years. This was a cross-sectional multi-site study whereby 240 pediatric patients with SCD and 303 parents completed the 18-item PedsQL™ Multidimensional Fatigue Scale. Participants also completed the PedsQL™ 4.0 Generic Core Scales. The PedsQL™ Multidimensional Fatigue Scale evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.90; parent proxy-report α = 0.95), and acceptable reliability for the three individual scales (patient self-report α = 0.77-0.84; parent proxy-report α = 0.90-0.97). Intercorrelations of the PedsQL™ Multidimensional Fatigue Scale with the PedsQL™ Generic Core Scales were predominantly in the large (≥0.50) range, supporting construct validity. PedsQL™ Multidimensional Fatigue Scale Scores were significantly worse with large effects sizes (≥0.80) for patients with SCD than for a comparison sample of healthy children, supporting known-groups discriminant validity. Confirmatory factor analysis demonstrated an acceptable to excellent model fit in SCD. The PedsQL™ Multidimensional Fatigue Scale demonstrated acceptable to excellent measurement properties in SCD. The results demonstrate the relative severity of fatigue symptoms in pediatric patients with SCD, indicating the potential clinical utility of multidimensional assessment of fatigue in patients with SCD in clinical research and practice. © 2013 Wiley Periodicals, Inc.

  9. PedsQL™ Multidimensional Fatigue Scale in Sickle Cell Disease: Feasibility, Reliability and Validity

    PubMed Central

    Panepinto, Julie A.; Torres, Sylvia; Bendo, Cristiane B.; McCavit, Timothy L.; Dinu, Bogdan; Sherman-Bien, Sandra; Bemrich-Stolz, Christy; Varni, James W.

    2013-01-01

    Background Sickle cell disease (SCD) is an inherited blood disorder characterized by a chronic hemolytic anemia that can contribute to fatigue and global cognitive impairment in patients. The study objective was to report on the feasibility, reliability, and validity of the PedsQL™ Multidimensional Fatigue Scale in SCD for pediatric patient self-report ages 5–18 years and parent proxy-report for ages 2–18 years. Procedure This was a cross-sectional multi-site study whereby 240 pediatric patients with SCD and 303 parents completed the 18-item PedsQL™ Multidimensional Fatigue Scale. Participants also completed the PedsQL™ 4.0 Generic Core Scales. Results The PedsQL™ Multidimensional Fatigue Scale evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.90; parent proxy-report α = 0.95), and acceptable reliability for the three individual scales (patient self-report α = 0.77–0.84; parent proxy-report α = 0.90–0.97). Intercorrelations of the PedsQL™ Multidimensional Fatigue Scale with the PedsQL™ Generic Core Scales were predominantly in the large (≥ 0.50) range, supporting construct validity. PedsQL™ Multidimensional Fatigue Scale Scores were significantly worse with large effects sizes (≥0.80) for patients with SCD than for a comparison sample of healthy children, supporting known-groups discriminant validity. Confirmatory factor analysis demonstrated an acceptable to excellent model fit in SCD. Conclusions The PedsQL™ Multidimensional Fatigue Scale demonstrated acceptable to excellent measurement properties in SCD. The results demonstrate the relative severity of fatigue symptoms in pediatric patients with SCD, indicating the potential clinical utility of multidimensional assessment of fatigue in patients with SCD in clinical research and practice. PMID:24038960

  10. Development of multi-dimensional body image scale for malaysian female adolescents

    PubMed Central

    Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs. PMID:20126371

  11. Development of multi-dimensional body image scale for malaysian female adolescents.

    PubMed

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.

  12. Numeric invariants from multidimensional persistence

    DOE PAGES

    Skryzalin, Jacek; Carlsson, Gunnar

    2017-05-19

    Topological data analysis is the study of data using techniques from algebraic topology. Often, one begins with a finite set of points representing data and a “filter” function which assigns a real number to each datum. Using both the data and the filter function, one can construct a filtered complex for further analysis. For example, applying the homology functor to the filtered complex produces an algebraic object known as a “one-dimensional persistence module”, which can often be interpreted as a finite set of intervals representing various geometric features in the data. If one runs the above process incorporating multiple filtermore » functions simultaneously, one instead obtains a multidimensional persistence module. Unfortunately, these are much more difficult to interpret. In this article, we analyze the space of multidimensional persistence modules from the perspective of algebraic geometry. First we build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence instead of one-dimensional persistence. Fruthermore, we argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Finally, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data. This paper extends the results of Adcock et al. (Homol Homotopy Appl 18(1), 381–402, 2016) by constructing numeric invariants from the computation of a multidimensional persistence module as given by Carlsson et al. (J Comput Geom 1(1), 72–100, 2010).« less

  13. Solution structure of a GAAA tetraloop receptor RNA.

    PubMed Central

    Butcher, S E; Dieckmann, T; Feigon, J

    1997-01-01

    The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions. PMID:9405377

  14. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  15. Multidimensional effects in nonadiabatic statistical theories of spin- forbidden kinetics. A case study of 3O + CO → CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Ahren

    2015-04-14

    The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. We found that this coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin–orbit coupling, dynamicalmore » multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal(history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the 3O + CO → CO 2 reaction are compared with the results of statistical theories employing one-dimensional (Landau–Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. Furthermore, the MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems. The error in statistical calculations that neglect multidimensional effects is shown to be as large as a factor of 2 for this system, with static multidimensional effects identified as the largest source of error.« less

  16. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  17. Exploring high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for metabonomic analysis of apples.

    PubMed

    Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter

    2012-01-01

    Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

  18. Hypothesis driven assessment of an NMR curriculum

    NASA Astrophysics Data System (ADS)

    Cossey, Kimberly

    The goal of this project was to develop a battery of assessments to evaluate an undergraduate NMR curriculum at Penn State University. As a chemical education project, we sought to approach the problem of curriculum assessment from a scientific perspective, while remaining grounded in the education research literature and practices. We chose the phrase hypothesis driven assessment to convey this process of relating the scientific method to the study of educational methods, modules, and curricula. We began from a hypothesis, that deeper understanding of one particular analytical technique (NMR) will increase undergraduate students' abilities to solve chemical problems. We designed an experiment to investigate this hypothesis, and data collected were analyzed and interpreted in light of the hypothesis and several related research questions. The expansion of the NMR curriculum at Penn State was funded through the NSF's Course, Curriculum, and Laboratory Improvement (CCLI) program, and assessment was required. The goal of this project, as stated in the grant proposal, was to provide NMR content in greater depth by integrating NMR modules throughout the curriculum in physical chemistry, instrumental, and organic chemistry laboratory courses. Hands-on contact with the NMR spectrometer and NMR data and repeated exposure of the analytical technique within different contexts (courses) were unique factors of this curriculum. Therefore, we maintained a focus on these aspects throughout the evaluation process. The most challenging and time-consuming aspect of any assessment is the development of testing instruments and methods to provide useful data. After key variables were defined, testing instruments were designed to measure these variables based on educational literature (Chapter 2). The primary variables measured in this assessment were: depth of understanding of NMR, basic NMR knowledge, problem solving skills (HETCOR problem), confidence for skills used in class (within the hands-on NMR modules), confidence for NMR tasks (not practiced), and confidence for general science tasks. Detailed discussion of the instruments, testing methods and experimental design used in this assessment are provided (Chapter 3). All data were analyzed quantitatively using methods adapted from the educational literature (Chapter 4). Data were analyzed and the descriptive statistics, independent t-tests between the experimental and control groups, and correlation statistics were calculated for each variable. In addition, for those variables included on the pretest, dependent t-tests between pretest and posttest scores were also calculated. The results of study 1 and study 2 were used to draw conclusions based on the hypothesis and research questions proposed in this work (Chapter 4). Data collected in this assessment were used to answer the following research questions: (1) Primary research question: Is depth of understanding of NMR linked to problem solving skills? (2) Are the NMR modules working as intended? Do they promote depth of understanding of NMR? (a) Will students who complete NMR modules have a greater depth of understanding of NMR than students who do not complete the modules? (b) Is depth of understanding increasing over the course of the experiment? (3) Is confidence an intermediary between depth of understanding and problem solving skills? Is it linked to both variables? (4) What levels of confidence are affected by the NMR modules? (a) Will confidence for the NMR class skills used in the modules themselves be greater for those who have completed the modules? (b) Will confidence for NMR tasks not practiced in the course be affected? (c) Will confidence for general science tasks be affected? (d) Are different levels of confidence (class skills, NMR tasks, general science tasks) linked to each other? Results from this NMR curriculum assessment could also have implications outside of the courses studied, and so there is potential to impact the chemical education community (section 5.2.1). In addition to providing reliable testing instruments/measures that could be used outside the university, the results of this research contribute to the study of problem solving in chemistry, learner characteristics within the context of chemical education studies, and NMR specific educational evaluations. Valuable information was gathered through the current method of evaluation for the NMR curriculum. However, improvements could be made to the existing assessment, and an alternate assessment that could supplement the information found in this study has been proposed (Chapter 5).

  19. Measuring the Perception of the Teachers' Autonomy-Supportive Behavior in Physical Education: Development and Initial Validation of a Multi-Dimensional Instrument

    ERIC Educational Resources Information Center

    Tilga, Henri; Hein, Vello; Koka, Andre

    2017-01-01

    This research aimed to develop and validate an instrument to assess the students' perceptions of the teachers' autonomy-supportive behavior by the multi-dimensional scale (Multi-Dimensional Perceived Autonomy Support Scale for Physical Education). The participants were 1,476 students aged 12- to 15-years-old. In Study 1, a pool of 37 items was…

  20. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui

    2016-09-15

    In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. NMR-Metabolic Methodology in the Study of GM Foods

    USDA-ARS?s Scientific Manuscript database

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  2. Sensitivity of nonuniform sampling NMR.

    PubMed

    Palmer, Melissa R; Suiter, Christopher L; Henry, Geneive E; Rovnyak, James; Hoch, Jeffrey C; Polenova, Tatyana; Rovnyak, David

    2015-06-04

    Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS.

  3. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography-mass spectrometry.

    PubMed

    Fan, T W; Lane, A N; Pedler, J; Crowley, D; Higashi, R M

    1997-08-15

    Root exudates in the rhizosphere are vital to the normal life cycle of plants. A key factor is phytometallophores, which function in the nutritional acquisition of iron and zinc and are likely to be important in the uptake of pollutant metals by plants. Unraveling the biochemistry of these compounds is tedious using traditional analyses, which also fall short in providing the overall chemical composition or in detecting unknown or unexpected organic ligands in the exudates. Here, we demonstrate a comprehensive analysis of the exudate composition directly by 1H and 13C multidimensional NMR and silylation GC-MS. The advantages are (a) minimal sample preparation, with no loss of unknown compounds, and reduced net analysis time; (b) structure-based analysis for universal detection and identification; and (c) simultaneous analysis of a large number of constituents in a complex mixture. Using barley root exudates, a large number of common organic and amino acids were identified. Three derivatives of mugineic acid phytosiderophores were also determined, the major one being 3-epihydroxymugineic acid, for which complete 1H and 13C NMR assignments were obtained. Quantification of all major components using these methods revealed a sevenfold increase in total exudation under moderate iron deficiency, with 3-epihydroxymugineic acid comprising approximately 22% of the exudate mixture. As iron deficiency increased, total quantities of exudate per gram of root remained unchanged, but the relative quantity of carbon allocated to phytosiderophore increased to approximately 50% of the total exudate in response to severe iron deficiency.

  4. NMR structure and conformational dynamics of AtPDFL2.1, a defensin-like peptide from Arabidopsis thaliana.

    PubMed

    Omidvar, Reza; Xia, Youlin; Porcelli, Fernando; Bohlmann, Holger; Veglia, Gianluigi

    2016-12-01

    Plant defensins constitute the innate immune response against pathogens such as fungi and bacteria. Typical plant defensins are small, basic peptides that possess a characteristic three-dimensional fold stabilized by three or four disulfide bridges. In addition to known defensin genes, the Arabidopsis genome comprises >300 defensin-like genes coding for small cysteine-rich peptides. One of such genes encodes for AtPDFL2.1, a putative antifungal peptide of 55 amino acids, with six cysteine residues in its primary sequence. To understand the functional role of AtPDFL2.1, we carried out antifungal activity assays and determined its high-resolution three-dimensional structure using multidimensional solution NMR spectroscopy. We found that AtPDFL2.1 displays a strong inhibitory effect against Fusarium graminearum (IC 50 ≈4μM). This peptide folds in the canonical cysteine-stabilized αβ (CSαβ) motif, consisting of one α-helix and one triple-stranded antiparallel β-sheet stabilized by three disulfide bridges and a hydrophobic cluster of residues within its core where the α-helix packs tightly against the β-sheets. Nuclear spin relaxation measurements show that the structure of AtPDFL2.1 is essentially rigid, with the L3 loop located between β-strands 2 and 3 being more flexible and displaying conformational exchange. Interestingly, the dynamic features of loop L3 are conserved among defensins and are probably correlated to the antifungal and receptor binding activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    PubMed

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  6. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    NASA Astrophysics Data System (ADS)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  7. Investigation of Local Structures in Cation-ordered Microwave Dielectric A Solid-state NMR and First Principle Calculation Study

    NASA Astrophysics Data System (ADS)

    Kalfarisi, Rony G.

    Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.

  8. Further Validation of the Multidimensional Fatigue Symptom Inventory-Short Form

    PubMed Central

    Stein, Kevin D.; Jacobsen, Paul B.; Blanchard, Chris M.; Thors, Christina

    2008-01-01

    A growing body of evidence is documenting the multidimensional nature of cancer-related fatigue. Although several multidimensional measures of fatigue have been developed, further validation of these scales is needed. To this end, the current study sought to evaluate the factorial and construct validity of the 30-item Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF). A heterogeneous sample of 304 cancer patients (mean age 55 years) completed the MFSI-SF, along with several other measures of psychosocial functioning including the MOS-SF-36 and Fatigue Symptom Inventory, following the fourth cycle of chemotherapy treatment. The results of a confirmatory factor analysis indicated the 5-factor model provided a good fit to the data as evidenced by commonly used goodness of fit indices (CFI 0.90 and IFI 0.90). Additional evidence for the validity of the MFSI-SF was provided via correlations with other relevant instruments (range −0.21 to 0.82). In sum, the current study provides support for the MFSI-SF as a valuable tool for the multidimensional assessment of cancer-related fatigue. PMID:14711465

  9. The Cognitive Visualization System with the Dynamic Projection of Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Gorohov, V.; Vitkovskiy, V.

    2008-08-01

    The phenomenon of cognitive machine drawing consists in the generation on the screen the special graphic representations, which create in the brain of human operator entertainment means. These means seem man by aesthetically attractive and, thus, they stimulate its descriptive imagination, closely related to the intuitive mechanisms of thinking. The essence of cognitive effect lies in the fact that man receives the moving projection as pseudo-three-dimensional object characterizing multidimensional means in the multidimensional space. After the thorough qualitative study of the visual aspects of multidimensional means with the aid of the enumerated algorithms appears the possibility, using algorithms of standard machine drawing to paint the interesting user separate objects or the groups of objects. Then it is possible to again return to the dynamic behavior of the rotation of means for the purpose of checking the intuitive ideas of user about the clusters and the connections in multidimensional data. Is possible the development of the methods of cognitive machine drawing in combination with other information technologies, first of all with the packets of digital processing of images and multidimensional statistical analysis.

  10. Fatigue and multidimensional disease severity in chronic obstructive pulmonary disease.

    PubMed

    Inal-Ince, Deniz; Savci, Sema; Saglam, Melda; Calik, Ebru; Arikan, Hulya; Bosnak-Guclu, Meral; Vardar-Yagli, Naciye; Coplu, Lutfi

    2010-06-30

    Fatigue is associated with longitudinal ratings of health in patients with chronic obstructive pulmonary disease (COPD). Although the degree of airflow obstruction is often used to grade disease severity in patients with COPD, multidimensional grading systems have recently been developed. The aim of this study was to investigate the relationship between perceived and actual fatigue level and multidimensional disease severity in patients with COPD. Twenty-two patients with COPD (aged 52-74 years) took part in the study. Multidimensional disease severity was measured using the SAFE and BODE indices. Perceived fatigue was assessed using the Fatigue Severity Scale (FSS) and the Fatigue Impact Scale (FIS). Peripheral muscle endurance was evaluated using the number of sit-ups, squats, and modified push-ups that each patient could do. Thirteen patients (59%) had severe fatigue, and their St George's Respiratory Questionnaire scores were significantly higher (p < 0.05). The SAFE index score was significantly correlated with the number of sit-ups, number of squats, FSS score and FIS score (p < 0.05). The BODE index was significantly associated with the numbers of sit-ups, squats and modified push-ups, and with the FSS and FIS scores (p < 0.05). Peripheral muscle endurance and fatigue perception in patients with COPD was related to multidimensional disease severity measured with both the SAFE and BODE indices. Improvements in perceived and actual fatigue levels may positively affect multidimensional disease severity and health status in COPD patients. Further research is needed to investigate the effects of fatigue perception and exercise training on patients with different stages of multidimensional COPD severity.

  11. Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes

    PubMed Central

    Pinter, Michael D.; Harter, Tod; McCarthy, Michael J.; Augustine, Matthew P.

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments. PMID:24594611

  12. Towards using NMR to screen for spoiled tomatoes stored in 1,000 L, aseptically sealed, metal-lined totes.

    PubMed

    Pinter, Michael D; Harter, Tod; McCarthy, Michael J; Augustine, Matthew P

    2014-03-03

    Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments.

  13. NMR contributions to structural dynamics studies of intrinsically disordered proteins☆

    PubMed Central

    Konrat, Robert

    2014-01-01

    Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This article will summarize key advances in basic physical-chemistry and NMR methodology, outline their limitations and envision future R&D directions. PMID:24656082

  14. NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables

    PubMed Central

    Bryce, David L.

    2017-01-01

    This topical review provides a brief overview of recent developments in NMR crystallography and related NMR approaches to studying the properties of molecular and ionic solids. Areas of complementarity with diffraction-based methods are underscored. These include the study of disordered systems, of dynamic systems, and other selected examples where NMR can provide unique insights. Highlights from the literature as well as recent work from my own group are discussed. PMID:28875022

  15. Interfaces in polymer nanocomposites – An NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Böhme, Ute; Scheler, Ulrich, E-mail: scheler@ipfdd.de

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. {sup 1}H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T{sub 2} is most suited. In this presentation we report on two applications of T{sub 2} measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of themore » polymer dynamics in the melt under shear flow.« less

  16. Impact of multidimensional poverty on the self-efficacy of older people: Results from an Australian longitudinal study.

    PubMed

    Callander, Emily J; Schofield, Deborah J

    2017-02-01

    Self-efficacy has numerous benefits for active and healthy aging, including giving the people the ability to make positive changes to their living standards and lifestyles. The present study aims to determine whether falling into multidimensional poverty lowers self-efficacy. Longitudinal analysis of waves 7-11 (2007-2011) of the nationally representative Household, Income and Labor Dynamics in Australia survey using linear regression models. The analysis focused on the Australian population aged 65 years and older. The Freedom Poverty Measure was used to identify those in multidimensional poverty. Those who fell into multidimensional poverty for 3 or 4 years between 2007 and 2011 had their self-efficacy scores decline by an average of 27 points (SD 21.2). Those who fell into poverty had significantly lower self-efficacy scores in 2011 - up to 57% lower (-66.6%, -45.7% P < 0.0001) after being in multidimensional poverty for 3 or 4 years between 2007 and 2011 than those who were never in poverty. Falling into multidimensional poverty lowers the self-efficacy scores of older people. In order to improve the chances of older people making long-term changes to improve their living standards, feelings of self-efficacy should first be assessed and improved. Geriatr Gerontol Int 2017; 17: 308-314. © 2015 Japan Geriatrics Society.

  17. Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    PubMed Central

    Chikayama, Eisuke; Suto, Michitaka; Nishihara, Takashi; Shinozaki, Kazuo; Hirayama, Takashi; Kikuchi, Jun

    2008-01-01

    Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of given metabolites on development-dependent changes in the 56 identified 13C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and nitrogen metabolism. PMID:19030231

  18. Evidence for a Multidimensional Self-Efficacy for Exercise Scale

    ERIC Educational Resources Information Center

    Rodgers, W. M.; Wilson, P. M.; Hall, C. R.; Fraser, S. N.; Murray, T. C.

    2008-01-01

    This series of three studies considers the multidimensionality of exercise self-efficacy by examining the psychometric characteristics of an instrument designed to assess three behavioral subdomains: task, scheduling, and coping. In Study 1, exploratory factor analysis revealed the expected factor structure in a sample of 395 students.…

  19. Confirmatory Factor Analysis of the Hewitt-Multidimensional Perfectionism Scale

    ERIC Educational Resources Information Center

    Barut, Yasar

    2015-01-01

    Various studies on the conceptual framework of perfectionism construct use Hewitt Multi-dimensional Perfectionism Scale (HMPS), as a basic approach. The measure has a prominent role with respect to the theoretical considerations of perfectionism dimensions. This study aimed to evaluate the psychometric properties of the Turkish version of the…

  20. The Multidimensionality of Child Poverty: Evidence from Afghanistan

    ERIC Educational Resources Information Center

    Trani, Jean-Francois; Biggeri, Mario; Mauro, Vincenzo

    2013-01-01

    This paper examines multidimensional poverty among children in Afghanistan using the Alkire-Foster method. Several previous studies have underlined the need to separate children from their adult nexus when studying poverty and treat them according to their own specificities. From the capability approach, child poverty is understood to be the lack…

  1. Assessing Multidimensional Energy Literacy of Secondary Students Using Contextualized Assessment

    ERIC Educational Resources Information Center

    Chen, Kuan-Li; Liu, Shiang-Yao; Chen, Po-Hsi

    2015-01-01

    Energy literacy is multidimensional, comprising broad content knowledge as well as affect and behavior. Our previous study has defined four core dimensions for the assessment framework, including energy concepts, reasoning on energy issues, low-carbon lifestyle, and civic responsibility for a sustainable society. The present study compiled a…

  2. Studying the Longitudinal Study. I. Introduction: Do Impromptu Essays Show Changes in Critical Thinking over the Span of College? Cautions and Insights from a Pilot Case Study.

    ERIC Educational Resources Information Center

    Clark, Francelia

    The problematic results of longitudinal studies on college writing indicate the need for multidimensional studies to be able to explore perceptible changes in students' writing. Accordingly a small pilot case study, to explore the promise and the limitations of doing a longitudinal multidimensional study, investigated whether impromptu essays…

  3. Protein 19F-labeling using transglutaminase for the NMR study of intermolecular interactions.

    PubMed

    Hattori, Yoshikazu; Heidenreich, David; Ono, Yuki; Sugiki, Toshihiko; Yokoyama, Kei-Ichi; Suzuki, Ei-Ichiro; Fujiwara, Toshimichi; Kojima, Chojiro

    2017-08-01

    The preparation of stable isotope-labeled proteins is important for NMR studies, however, it is often hampered in the case of eukaryotic proteins which are not readily expressed in Escherichia coli. Such proteins are often conveniently investigated following post-expression chemical isotope tagging. Enzymatic 15 N-labeling of glutamine side chains using transglutaminase (TGase) has been applied to several proteins for NMR studies. 19 F-labeling is useful for interaction studies due to its high NMR sensitivity and susceptibility. Here, 19 F-labeling of glutamine side chains using TGase and 2,2,2-trifluoroethylamine hydrochloride was established for use in an NMR study. This enzymatic 19 F-labeling readily provided NMR detection of protein-drug and protein-protein interactions with complexes of about 100 kDa since the surface residues provided a good substrate for TGase. The 19 F-labeling method was 3.5-fold more sensitive than 15 N-labeling, and could be combined with other chemical modification techniques such as lysine 13 C-methylation. 13 C-dimethylated- 19 F-labeled FKBP12 provided more accurate information concerning the FK506 binding site.

  4. Lipoprotein particle concentration measured by nuclear magnetic resonance spectroscopy is associated with gestational age at delivery: a prospective cohort study.

    PubMed

    Grace, M R; Vladutiu, C J; Nethery, R C; Siega-Riz, A M; Manuck, T A; Herring, A H; Savitz, D; Thorp, J T

    2018-06-01

    To estimate the association between lipoprotein particle concentrations in pregnancy and gestational age at delivery. Prospective cohort study. The study was conducted in the USA at the University of North Carolina. We assessed 715 women enrolled in the Pregnancy, Infection, and Nutrition study from 2001 to 2005. Fasting blood was collected at two time points (<20 and 24-29 weeks of gestation). Nuclear magnetic resonance (NMR) quantified lipoprotein particle concentrations [low-density lipoprotein (LDL), high-density lipoprotein (HDL), very-low density lipoprotein (VLDL)] and 10 subclasses of lipoproteins. Concentrations were assessed as continuous measures, with the exception of medium HDL which was classified as any or no detectable level, given its distribution. Cox proportional hazards models estimated hazard ratios (HR) for gestational age at delivery adjusting for covariates. Gestational age at delivery, preterm birth (<37 weeks of gestation), and spontaneous preterm birth. At <20 weeks of gestation, three lipoproteins were associated with later gestational ages at delivery [large LDL NMR (HR 0.78, 95% CI 0.64-0.96), total VLDL NMR (HR 0.77, 95% CI 0.61-0.98), and small VLDL NMR (HR 0.78, 95% CI 0.62-0.98], whereas large VLDL NMR (HR 1.19, 95% CI 1.01-1.41) was associated with a greater hazard of earlier delivery. At 24-28 weeks of gestation, average VLDL NMR (HR 1.25, 95% CI 1.03-1.51) and a detectable level of medium HDL NMR (HR 1.90, 95% CI 1.19-3.02) were associated with earlier gestational ages at delivery. In this sample of pregnant women, particle concentrations of VLDL NMR , LDL NMR , IDL NMR , and HDL NMR were each independently associated with gestational age at delivery for all deliveries or spontaneous deliveries <37 weeks of gestation. These findings may help formulate hypotheses for future studies of the complex relationship between maternal lipoproteins and preterm birth. Nuclear magnetic resonance spectroscopy may identify lipoprotein particles associated with preterm delivery. © 2017 Royal College of Obstetricians and Gynaecologists.

  5. NMR Studies of Low-Gamma Nuclei in Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasylishen, Roderick E.; Forgeron, Michelle A.; Siegel, Renee

    2006-07-24

    Over the past five years we have devoted considerable time to solid-state NMR investigaitons of nuclei, which are traditionally known as "difficult" because of their small magnetic moments. These include quadrupolar nuclei such as 35Cl, 53 Cr, 91Zr, 95Mo, 99Ru, 131 Xe, as well as spin-1/2 nuclei such as 109Ag. While NMR studies of such isotopes remain challenging, the use of moderate to high magnetic field strengths together with a variety of enhancement techniques is leading to many interesting applications. In this talk some of our successes in studying these isotopes will be presented. For example, we will present preliminarymore » results of 131Xe NMR studies of solid sodium perxenate, as well as 109Ag NMR studies of silver dialkylphosphites. Our experience using population enhancement techniques that utilize hyperbolic secant pulses will also be discussed.« less

  6. Youth, Social Networking, and Resistance: A Case Study on a Multidimensional Approach to Resistance

    ERIC Educational Resources Information Center

    Scozzaro, David

    2011-01-01

    This exploratory case study focused on youth and resistance that was aided by the use of technology. The combination of resistance and technology expanded a multidimensional framework and leads to new insight into transformative resistance. This study examined the framework of transformative resistance based on Solorzano and Delgado Bernal's…

  7. Certified Reference Material for Use in 1H, 31P, and 19F Quantitative NMR, Ensuring Traceability to the International System of Units.

    PubMed

    Rigger, Romana; Rück, Alexander; Hellriegel, Christine; Sauermoser, Robert; Morf, Fabienne; Breitruck, KathrinBreitruck; Obkircher, Markus

    2017-09-01

    In recent years, quantitative NMR (qNMR) spectroscopy has become one of the most important tools for content determination of organic substances and quantitative evaluation of impurities. Using Certified Reference Materials (CRMs) as internal or external standards, the extensively used qNMR method can be applied for purity determination, including unbroken traceability to the International System of Units (SI). The implementation of qNMR toward new application fields, e.g., metabolomics, environmental analysis, and physiological pathway studies, brings along more complex molecules and systems, thus making use of 1H qNMR challenging. A smart workaround is possible by the use of other NMR active nuclei, namely 31P and 19F. This article presents the development of three classes of qNMR CRMs based on different NMR active nuclei (1H, 31P, and 19F), and the corresponding approaches to establish traceability to the SI through primary CRMs from the National Institute of Standards and Technology and the National Metrology Institute of Japan. These TraceCERT® qNMR CRMs are produced under ISO/IEC 17025 and ISO Guide 34 using high-performance qNMR.

  8. High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.

    PubMed

    Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte

    2017-10-01

    The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  10. The reality of disability: Multidimensional poverty of people with disability and their families in Latin America.

    PubMed

    Pinilla-Roncancio, Mónica

    2017-12-30

    Disability and poverty are interconnected and although this relationship has been recognised, there is a lack of empirical evidence to support any possible causal relationship in this topic, particularly in the context of Latin America (LA). This study tests the hypothesis "Disability increases the risk of multidimensional poverty of people living with disabilities and their families". Using national census data from Brazil, Chile, Colombia, Costa Rica and Mexico, the Global Multidimensional Poverty Index (Global MPI) was calculated with the aim of measuring and comparing the levels of multidimensional poverty of people living in households with and without disabled members in the five countries. We found that in the five countries people with disabilities and their families had higher incidence, intensity and levels of multidimensional poverty compared with people living in other households. Their levels of deprivation were also higher for all the indicators included in the Global MPI and the contribution of this group to the national MPI was higher than their share of the population, thus people with disabilities and their families are overrepresented in those living in multidimensional poverty. People with disabilities and their families are in worse conditions than poor households without disabled members and social policies should aim to reduce their high levels of multidimensional poverty and deprivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Prose Representation: A Multidimensional Scaling Approach.

    ERIC Educational Resources Information Center

    LaPorte, Ronald E.; Voss, James F.

    1979-01-01

    Multidimensional scaling was used to study the comprehension of prose. Undergraduates rated the similarity of twenty nouns before and after reading passages containing those nouns. Results indicated that the scaling analysis provided an effective valid indicator of prose representation. (Author/JKS)

  12. Following Easy Slope Paths on a Free Energy Landscape: The Case Study of the Trp-Cage Folding Mechanism

    PubMed Central

    Marinelli, Fabrizio

    2013-01-01

    In this work a new method for the automatic exploration and calculation of multidimensional free energy landscapes is proposed. Inspired by metadynamics, it uses several collective variables that are relevant for the investigated process and a bias potential that discourages the sampling of already visited configurations. The latter potential allows escaping a local free energy minimum following the direction of slow motions. This is different from metadynamics in which there is no specific direction of the biasing force and the computational effort increases significantly with the number of collective variables. The method is tested on the Ace-Ala3-Nme peptide, and then it is applied to investigate the Trp-cage folding mechanism. For this protein, within a few hundreds of nanoseconds, a broad range of conformations is explored, including nearly native ones, initiating the simulation from a completely unfolded conformation. Finally, several folding/unfolding trajectories give a systematic description of the Trp-cage folding pathways, leading to a unified view for the folding mechanisms of this protein. The proposed mechanism is consistent with NMR chemical shift data at increasing temperature and recent experimental observations pointing to a pivotal role of secondary structure elements in directing the folding process toward the native state. PMID:24010667

  13. Multidimensional daily diary of fatigue-fibromyalgia-17 items (MDF-fibro-17). part 1: development and content validity.

    PubMed

    Morris, S; Li, Y; Smith, J A M; Dube', S; Burbridge, C; Symonds, T

    2017-05-16

    Fibromyalgia (FM), a disorder characterized by chronic widespread pain and tenderness, affects greater than five million individuals in the United States alone. Patients experience multiple symptoms in addition to pain, and among them, fatigue is one of the most bothersome and disabling. There is a growing body of literature suggesting that fatigue is a multidimensional concept. Currently, to our knowledge, no multidimensional Patient Reported Outcome (PRO) measure of FM-related fatigue meets Food and Drug Administration (FDA) requirements to support a product label claim. Therefore, the objective of this research was to evaluate qualitative and quantitative data previously gathered to inform the development of a comprehensive, multidimensional, PRO measure to assess FM-related fatigue in FM clinical trials. Existing qualitative and quantitative data from three previously conducted studies in patients with FM were reviewed to inform the initial development of a multidimensional PRO measure of FM-related fatigue: 1) a concept elicitation study involving in-depth, open-ended interviews with patients with FM in the United States (US) (N = 20), Germany (N = 10), and France (N = 10); 2) a cognitive debriefing and pilot study of a preliminary pool of 23 items (N = 20 US patients with FM); and 3) a methodology study that explored initial psychometrics of the item pool (N = 145 US patients with FM). Five domains were identified that intend to capture the broad experience of FM-related fatigue reported in the qualitative research: the Global Fatigue Experience, Cognitive Fatigue, Physical Fatigue, Motivation, and Impact on Function. Seventeen of the original pool of 23 items were selected to best capture these five dimensions. These 17 items formed the basis of a newly developed multidimensional PRO measure to assess FM-related fatigue in clinical trials: the Multidimensional Daily Diary of Fatigue-Fibromyalgia-17 (MDF-Fibro-17). Qualitative analysis, and preliminary quantitative item level data, confirmed that FM-related fatigue is multidimensional and provided strong support for the content validity of the MDF-Fibro-17. The next stage was to quantitatively evaluate the measure to confirm the factor structure, psychometric properties, sensitivity to change, and meaningful change. This has been conducted and is being reported separately.

  14. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  15. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques.

    PubMed

    Renslow, R S; Babauta, J T; Majors, P D; Mehta, H S; Ewing, R J; Ewing, T W; Mueller, K T; Beyenal, H

    2014-01-01

    Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for noninvasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live biofilms respiring on electrodes. Here, we describe a biofilm microreactor system, including a reusable and a disposable reactor, that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radio frequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system we grew Geobacter sulfurreducens biofilms on electrodes. EC-NMR was used to investigate growth medium flow velocities and depth-resolved acetate concentration inside the biofilm. As a novel contribution we used Monte Carlo error analysis to estimate the standard deviations of the acetate concentration measurements. Overall, we found that the disposable EC-NMR microreactor provided a 9.7 times better signal-to-noise ratio over the reusable reactor. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  16. In situ {sup 13}C MAS NMR study of n-hexane conversion on Pt and Pd supported on basic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, I.I.; Pasau-Claerbout, A.; Seivert, M.

    n-Hexane conversion was studied in situ on Pt and Pd supported on aluminum-stabilized magnesium oxide and Pt on Zeolite KL catalysts (Pt/Mg(Al)O, Pd/Mg(Al)O and Pt/KL) by means of {sup 13}C MAS NMR spectroscopy. n-Hexane 1-{sup 13}C was used as a labelled reactant. Forty NMR lines corresponding to 14 different products were resolved and identified. The NMR line assignments were confirmed by adsorption of model compounds. The NMR results were further quantified and compared with continuous flow microreactor tests. Four parallel reaction pathways were identified under flow conditions: isomerization, cracking, dehydrocyclization, and dehydrogenation. Aromatization occurs via two reaction routes: (1) n-hexanemore » dehydrogenation towards hexadienes and hexatrienes, followed by dehydrogenation of a cyclic intermediate. The former reaction pathway is prevented under NMR batch conditions. High pressures induced in the NMR cells at high reaction temperatures (573, 653 K) shift the reaction equilibrium towards hydrogenation. NMR experiments showed that on Pt catalysts aromatization occurs via a cyclohexane intermediate, whereas on Pd it takes place via methylcyclopentane ring enlargement. 54 refs., 15 figs., 3 tabs.« less

  17. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  18. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  19. HPLC & NMR-based forced degradation studies of ifosfamide: The potential of NMR in stability studies.

    PubMed

    Salman, D; Peron, J-M R; Goronga, T; Barton, S; Swinden, J; Nabhani-Gebara, S

    2016-03-01

    The aim of this study is to conduct a forced degradation study on ifosfamide under several stress conditions to investigate the robustness of the developed HPLC method. It also aims to provide further insight into the stability of ifosfamide and its degradation profile using both HPLC and NMR. Ifosfamide solutions (20mg/mL; n=15, 20mL) were stressed in triplicate by heating (70°C), under acidic (pH 1 & 4) and alkaline (pH 10 & 12) conditions. Samples were analysed periodically using HPLC and FT-NMR. Ifosfamide was most stable under weakly acidic conditions (pH 4). NMR results suggested that the mechanism of ifosfamide degradation involves the cleavage of the PN bond. For all stress conditions, HPLC was not able to detect ifosfamide degradation products that were detected by NMR. These results suggest that the developed HPLC method for ifosfamide did not detect the degradation products shown by NMR. It is possible that degradation products co-elute with ifosfamide, do not elute altogether or are not amenable to the detection method employed. Therefore, investigation of ifosfamide stability requires additional techniques that do not suffer from the aforementioned shortcomings. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  20. Proton Nuclear Magnetic Resonance Spectroscopy as a Technique for Gentamicin Drug Susceptibility Studies with Escherichia coli ATCC 25922

    PubMed Central

    García-Álvarez, Lara; Busto, Jesús H.; Avenoza, Alberto; Sáenz, Yolanda; Peregrina, Jesús Manuel

    2015-01-01

    Antimicrobial drug susceptibility tests involving multiple time-consuming steps are still used as reference methods. Today, there is a need for the development of new automated instruments that can provide faster results and reduce operating time, reagent costs, and labor requirements. Nuclear magnetic resonance (NMR) spectroscopy meets those requirements. The metabolism and antimicrobial susceptibility of Escherichia coli ATCC 25922 in the presence of gentamicin have been analyzed using NMR and compared with a reference method. Direct incubation of the bacteria (with and without gentamicin) into the NMR tube has also been performed, and differences in the NMR spectra were obtained. The MIC, determined by the reference method found in this study, would correspond with the termination of the bacterial metabolism observed with NMR. Experiments carried out directly into the NMR tube enabled the development of antimicrobial drug susceptibility tests to assess the effectiveness of the antibiotic. NMR is an objective and reproducible method for showing the effects of a drug on the subject bacterium and can emerge as an excellent tool for studying bacterial activity in the presence of different antibiotic concentrations. PMID:25972417

  1. Proton Nuclear Magnetic Resonance Spectroscopy as a Technique for Gentamicin Drug Susceptibility Studies with Escherichia coli ATCC 25922.

    PubMed

    García-Álvarez, Lara; Busto, Jesús H; Avenoza, Alberto; Sáenz, Yolanda; Peregrina, Jesús Manuel; Oteo, José A

    2015-08-01

    Antimicrobial drug susceptibility tests involving multiple time-consuming steps are still used as reference methods. Today, there is a need for the development of new automated instruments that can provide faster results and reduce operating time, reagent costs, and labor requirements. Nuclear magnetic resonance (NMR) spectroscopy meets those requirements. The metabolism and antimicrobial susceptibility of Escherichia coli ATCC 25922 in the presence of gentamicin have been analyzed using NMR and compared with a reference method. Direct incubation of the bacteria (with and without gentamicin) into the NMR tube has also been performed, and differences in the NMR spectra were obtained. The MIC, determined by the reference method found in this study, would correspond with the termination of the bacterial metabolism observed with NMR. Experiments carried out directly into the NMR tube enabled the development of antimicrobial drug susceptibility tests to assess the effectiveness of the antibiotic. NMR is an objective and reproducible method for showing the effects of a drug on the subject bacterium and can emerge as an excellent tool for studying bacterial activity in the presence of different antibiotic concentrations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. A Replication Study on the Multi-Dimensionality of Online Social Presence

    ERIC Educational Resources Information Center

    Mykota, David B.

    2015-01-01

    The purpose of the present study is to conduct an external replication into the multi-dimensionality of social presence as measured by the Computer-Mediated Communication Questionnaire (Tu, 2005). Online social presence is one of the more important constructs for determining the level of interaction and effectiveness of learning in an online…

  3. Uncovering Productive Morphosyntax in French-Learning Toddlers: A Multidimensional Methodology Perspective

    ERIC Educational Resources Information Center

    Barriére, Isabelle; Goyet, Louise; Kresh, Sarah; Legendre, Géraldine; Nazzi, Thierry

    2016-01-01

    The present study applies a multidimensional methodological approach to the study of the acquisition of morphosyntax. It focuses on evaluating the degree of productivity of an infrequent subject-verb agreement pattern in the early acquisition of French and considers the explanatory role played by factors such as input frequency, semantic…

  4. Cognitive Age: A New Multidimensional Approach to Measuring Age Identity.

    ERIC Educational Resources Information Center

    Barak, Benny

    1987-01-01

    Conducted exploratory field study to examine how age-concepts are experienced and to assess relationship of age identities to each other. Proposes Cognitive Age as a new multidimensional age scale that merges the standard scale, Identity Age, and Personal Age. Study results attest to Cognitive Age scale's reliability and validity. (Author/NB)

  5. Multidimensional Social Control Variables as Predictors of Drunkenness among French Adolescents

    ERIC Educational Resources Information Center

    Begue, Laurent; Roche, Sebastian

    2009-01-01

    Background: Previous studies of the determinants of drunkenness among youth investigated the contribution of a limited range of variables measuring social control. For the first time in France, this study including 1295 participants aged 14-19 years aimed at assessing the relative contribution of a broad range of multidimensional variables…

  6. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming

    ERIC Educational Resources Information Center

    Yu, Jing; Cheah, Charissa S. L.; Hart, Craig H.; Sun, Shuyan; Olsen, Joseph A.

    2015-01-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to…

  7. Testing the Twofold Multidimensionality of Academic Self-Concept: A Study with Chinese Vocational Students

    ERIC Educational Resources Information Center

    Yang, Lan; Arens, A. Katrin; Watkins, David A.

    2016-01-01

    In order to extend previous research on the twofold multidimensionality of academic self-concept (i.e. its domain-specific structure and separation into competence and affect components), the present study tests its generalisability among vocational students from mainland China. A Chinese version of self-description questionnaire I was…

  8. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

    PubMed

    Cassaignau, Anaïs M E; Launay, Hélène M M; Karyadi, Maria-Evangelia; Wang, Xiaolin; Waudby, Christopher A; Deckert, Annika; Robertson, Amy L; Christodoulou, John; Cabrita, Lisa D

    2016-08-01

    During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.

  9. Studies of organic paint binders by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spyros, A.; Anglos, D.

    2006-06-01

    Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

  10. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

  11. A comparative uncertainty study of the calibration of macrolide antibiotic reference standards using quantitative nuclear magnetic resonance and mass balance methods.

    PubMed

    Liu, Shu-Yu; Hu, Chang-Qin

    2007-10-17

    This study introduces the general method of quantitative nuclear magnetic resonance (qNMR) for the calibration of reference standards of macrolide antibiotics. Several qNMR experimental conditions were optimized including delay, which is an important parameter of quantification. Three kinds of macrolide antibiotics were used to validate the accuracy of the qNMR method by comparison with the results obtained by the high performance liquid chromatography (HPLC) method. The purities of five common reference standards of macrolide antibiotics were measured by the 1H qNMR method and the mass balance method, respectively. The analysis results of the two methods were compared. The qNMR is quick and simple to use. In a new medicine research and development process, qNMR provides a new and reliable method for purity analysis of the reference standard.

  12. The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure.

    PubMed

    Lu, J; Lin, C L; Tang, C; Ponder, J W; Kao, J L; Cistola, D P; Li, E

    1999-03-05

    The structure and dynamics of rat apo-cellular retinol binding protein II (apo-CRBP II) in solution has been determined by multidimensional NMR analysis of uniformly enriched recombinant rat 13C, 15N-apo-CRBP II and 15N-apo-CRBP II. The final ensemble of 24 NMR structures has been calculated from 3274 conformational restraints or 24.4 restraints/residue. The average root-mean-square deviation of the backbone atoms for the final 24 structures relative to their mean structure is 1.06 A. Although the average solution structure is very similar to the crystal structure, it differs at the putative entrance to the binding cavity, which is formed by the helix-turn-helix motif, the betaC-betaD turn and the betaE-betaF turn. The mean coordinates of the main-chain atoms of amino acid residues 28-38 are displaced in the solution structure relative to the crystal structure. The side-chain of F58, located on the betaC-betaD turn, is reoriented such that it interacts with L37 and no longer blocks entry into the ligand-binding pocket. Residues 28-35, which form the second helix of the helix-turn-helix motif in the crystal structure, do not exhibit a helical conformation in the solution structure. The solution structure of apo-CRBP II exhibits discrete regions of backbone disorder which are most pronounced at residues 28-32, 37-38 and 73-76 in the betaE-betaF turn as evaluated by the consensus chemical shift index, the root-mean-square deviation, amide 1H exchange rates and 15N relaxation studies. These studies indicate that fluctuations in protein conformation occur on the microseconds to ms time-scale in these regions of the protein. Some of these exchange processes can be directly observed in the three-dimensional 15N-resolved NOESY spectrum. These results suggest that in solution, apo-CRBP II undergoes conformational changes on the microseconds to ms time-scale which result in increased access to the binding cavity. Copyright 1999 Academic Press.

  13. A Multidimensional Model of School Dropout from an 8-Year Longitudinal Study in a General High School Population

    ERIC Educational Resources Information Center

    Fortin, Laurier; Marcotte, Diane; Diallo, Thierno; Potvin, Pierre; Royer, Egide

    2013-01-01

    This study tests an empirical multidimensional model of school dropout, using data collected in the first year of an 8-year longitudinal study, with first year high school students aged 12-13 years. Structural equation modeling analyses show that five personal, family, and school latent factors together contribute to school dropout identified at…

  14. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids.

    PubMed

    Charpentier, Thibault

    2011-07-01

    In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Advanced solid-state NMR spectroscopy of natural organic matter.

    PubMed

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  17. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  18. The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.

    PubMed

    Singh, Suruchi; Roy, Raja

    2016-07-01

    The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.

  19. Nuclear magnetic resonance (NMR)-based metabolomics for cancer research.

    PubMed

    Ranjan, Renuka; Sinha, Neeraj

    2018-05-07

    Nuclear magnetic resonance (NMR) has emerged as an effective tool in various spheres of biomedical research, amongst which metabolomics is an important method for the study of various types of disease. Metabolomics has proved its stronghold in cancer research by the development of different NMR methods over time for the study of metabolites, thus identifying key players in the aetiology of cancer. A plethora of one-dimensional and two-dimensional NMR experiments (in solids, semi-solids and solution phases) are utilized to obtain metabolic profiles of biofluids, cell extracts and tissue biopsy samples, which can further be subjected to statistical analysis. Any alteration in the assigned metabolite peaks gives an indication of changes in metabolic pathways. These defined changes demonstrate the utility of NMR in the early diagnosis of cancer and provide further measures to combat malignancy and its progression. This review provides a snapshot of the trending NMR techniques and the statistical analysis involved in the metabolomics of diseases, with emphasis on advances in NMR methodology developed for cancer research. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Enjoying Mathematics or Feeling Competent in Mathematics? Reciprocal Effects on Mathematics Achievement and Perceived Math Effort Expenditure

    ERIC Educational Resources Information Center

    Pinxten, Maarten; Marsh, Herbert W.; De Fraine, Bieke; Van Den Noortgate, Wim; Van Damme, Jan

    2014-01-01

    Background: The multidimensionality of the academic self-concept in terms of domain specificity has been well established in previous studies, whereas its multidimensionality in terms of motivational functions (the so-called affect-competence separation) needs further examination. Aim: This study aims at exploring differential effects of enjoyment…

  1. Friendship Group Identification, Multidimensional Self-Concept, and Experience of Developmental Tasks in Adolescence

    ERIC Educational Resources Information Center

    Tarrant, Mark; MacKenzie, Liam; Hewitt, Lisa A.

    2006-01-01

    This study applied a social identity perspective to the study of adolescent self-concept and social development. British adolescents aged 14-15 years (N=114) completed a questionnaire which asked them to: (i) rate their degree of identification with a school-based friendship group; (ii) complete a measure of multi-dimensional self-concept; and…

  2. The Female Sexual Subjectivity Inventory: Development and Validation of a Multidimensional Inventory for Late Adolescents and Emerging Adults

    ERIC Educational Resources Information Center

    Horne, Sharon; Zimmer-Gembeck, Melanie J.

    2006-01-01

    Three studies were conducted to develop and validate a theoretically derived multidimensional inventory of females' sexual self-conceptions ("sexual subjectivity"). Study 1 revealed five factors on the Female Sexual Subjectivity Inventory (FSSI): sexual body-esteem, three factors of conceptions and expectations of sexual desire and pleasure (self,…

  3. Multi-dimensional scores to predict mortality in patients with idiopathic pulmonary fibrosis undergoing lung transplantation assessment.

    PubMed

    Fisher, Jolene H; Al-Hejaili, Faris; Kandel, Sonja; Hirji, Alim; Shapera, Shane; Mura, Marco

    2017-04-01

    The heterogeneous progression of idiopathic pulmonary fibrosis (IPF) makes prognostication difficult and contributes to high mortality on the waitlist for lung transplantation (LTx). Multi-dimensional scores (Composite Physiologic index [CPI], [Gender-Age-Physiology [GAP]; RIsk Stratification scorE [RISE]) demonstrated enhanced predictive power towards outcome in IPF. The lung allocation score (LAS) is a multi-dimensional tool commonly used to stratify patients assessed for LTx. We sought to investigate whether IPF-specific multi-dimensional scores predict mortality in patients with IPF assessed for LTx. The study included 302 patients with IPF who underwent a LTx assessment (2003-2014). Multi-dimensional scores were calculated. The primary outcome was 12-month mortality after assessment. LTx was considered as competing event in all analyses. At the end of the observation period, there were 134 transplants, 63 deaths, and 105 patients were alive without LTx. Multi-dimensional scores predicted mortality with accuracy similar to LAS, and superior to that of individual variables: area under the curve (AUC) for LAS was 0.78 (sensitivity 71%, specificity 86%); CPI 0.75 (sensitivity 67%, specificity 82%); GAP 0.67 (sensitivity 59%, specificity 74%); RISE 0.78 (sensitivity 71%, specificity 84%). A separate analysis conducted only in patients actively listed for LTx (n = 247; 50 deaths) yielded similar results. In patients with IPF assessed for LTx as well as in those actually listed, multi-dimensional scores predict mortality better than individual variables, and with accuracy similar to the LAS. If validated, multi-dimensional scores may serve as inexpensive tools to guide decisions on the timing of referral and listing for LTx. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. NMR analysis of a kinetically trapped intermediate of a disulfide-deficient mutant of the starch-binding domain of glucoamylase.

    PubMed

    Sugimoto, Hayuki; Noda, Yasuo; Segawa, Shin-ichi

    2011-09-16

    A thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase refolds into a kinetically trapped metastable intermediate when subjected to a rapid lowering of temperature. We attempted to characterise this intermediate using multidimensional NMR spectroscopy. The (1)H-(15)N heteronuclear single quantum coherence spectrum after a rapid temperature decrease (the spectrum of the intermediate) showed good chemical shift dispersion but was significantly different from that of the native state, suggesting that the intermediate adopts a nonnative but well-structured conformation. Large chemical shift changes for the backbone amide protons between the native and the intermediate states were observed for residues in the β-sheet consisting of strands 2, 3, 5, 6, and 7 as well as in the C-terminal region. These residues were found to be in close proximity to aromatic residues, suggesting that the chemical shift changes are mainly due to ring current shifts caused by the aromatic residues. The two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy experiments showed that the intermediate contained substantial, native-like NOE connectivities, although there were fewer cross peaks in the spectrum of the intermediate compared with that of the native state. It was also shown that there were native-like interresidue NOEs for residues buried in the protein, whereas many of the NOE cross peaks were lost for the residues involved in a surface-exposed aromatic cluster. These results suggest that, in the intermediate, the aromatic cluster at the surface is structurally less organised, whereas the interior of the protein has relatively rigid, native-like side-chain packing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Structure and dynamics of translation initiation factor aIF-1A from the archaeon Methanococcus jannaschii determined by NMR spectroscopy

    PubMed Central

    Li, Wei; Hoffman, David W.

    2001-01-01

    Translation initiation factor 1A (aIF-1A) from the archaeon Methanococcus jannaschii was expressed in Escherichia coli, purified, and characterized in terms of its structure and dynamics using multidimensional NMR methods. The protein was found to be a member of the OB-fold family of RNA-associated proteins, containing a barrel of five beta-strands, a feature that is shared with the homologous eukaryotic translation initiation factor 1A (eIF-1A), as well as the prokaryotic translation initiation factor IF1. External to the β barrel, aIF-1A contains an α-helix at its C-terminal and a flexible loop at its N-terminal, features that are qualitatively similar to those found in eIF-1A, but not present in prokaryotic IF1. The structural model of aIF-1A, when used in combination with primary sequence information for aIF-1A in divergent species, permitted the most-conserved residues on the protein surface to be identified, including the most likely candidates for direct interaction with the 16S ribosomal RNA and other components of the translational apparatus. Several of the conserved surface residues appear to be unique to the archaea. Nitrogen-15 relaxation and amide exchange rate data were used to characterize the internal motions within aIF-1A, providing evidence that the protein surfaces that are most likely to participate in intermolecular interactions are relatively flexible. A model is proposed, suggesting some specific interactions that may occur between aIF-1A and the small subunit of the archaeal ribosome. PMID:11714910

  6. Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Aksenov, A. G.; Chechetkin, V. M.

    2018-04-01

    Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

  7. Using a multidimensional unfolding approach to assess multiple sclerosis patient preferences for disease-modifying therapy: a pilot study

    PubMed Central

    Sempere, Angel Perez; Vera-Lopez, Vanesa; Gimenez-Martinez, Juana; Ruiz-Beato, Elena; Cuervo, Jesús; Maurino, Jorge

    2017-01-01

    Purpose Multidimensional unfolding is a multivariate method to assess preferences using a small sample size, a geometric model locating individuals and alternatives as points in a joint space. The objective was to evaluate relapsing–remitting multiple sclerosis (RRMS) patient preferences toward key disease-modifying therapy (DMT) attributes using multidimensional unfolding. Patients and methods A cross-sectional pilot study in RRMS patients was conducted. Drug attributes included relapse prevention, disease progression prevention, side-effect risk and route and schedule of administration. Assessment of preferences was performed through a five-card game. Patients were asked to value attributes from 1 (most preferred) to 5 (least preferred). Results A total of 37 patients were included; the mean age was 38.6 years, and 78.4% were female. Disease progression prevention was the most important factor (51.4%), followed by relapse prevention (40.5%). The frequency of administration had the lowest preference rating for 56.8% of patients. Finally, 19.6% valued the side-effect risk attribute as having low/very low importance. Conclusion Patients’ perspective for DMT attributes may provide valuable information to facilitate shared decision-making. Efficacy attributes were the most important drug characteristics for RRMS patients. Multidimensional unfolding seems to be a feasible approach to assess preferences in multiple sclerosis patients. Further elicitation studies using multidimensional unfolding with other stated choice methods are necessary to confirm these findings. PMID:28615928

  8. Isotope labeling for studying RNA by solid-state NMR spectroscopy.

    PubMed

    Marchanka, Alexander; Kreutz, Christoph; Carlomagno, Teresa

    2018-04-12

    Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.

  9. Multidimensional relationships between paternalistic leadership and perceptions of organizational ethical climates.

    PubMed

    Wu, Yu-Chi; Tsai, Ping Ju

    2012-10-01

    This study investigated how paternalistic leadership is linked to ethical climates based on a multidimensional construct perspective. This experimental study utilized the partial least squares (PLS) techniques to analyze the data. Participants were 258 civil servants working in various public sectors in Taiwan, who were asked to rate their leaders' paternalistic leadership behaviors and their perception of the ethical climates in their organizations using the Paternalistic Leadership Scale and the Ethical Climate Questionnaire. Using the unidimensional constructs of paternalistic leadership and ethical climates, prior research showed vidence of a positive relationship; however, in the current study, multidimensional relations among these constructs may be positive or negative. The findings of this study suggested that leaders may implement specific types of paternalistic leadership to enhance the intended ethical climate in their organizations.

  10. Saturation-Transfer Difference (STD) NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein Binding

    ERIC Educational Resources Information Center

    Viegas, Aldino; Manso, Joao; Nobrega, Franklin L.; Cabrita, Eurico J.

    2011-01-01

    Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor…

  11. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    USDA-ARS?s Scientific Manuscript database

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  12. Theoretical Modeling of (99)Tc NMR Chemical Shifts.

    PubMed

    Hall, Gabriel B; Andersen, Amity; Washton, Nancy M; Chatterjee, Sayandev; Levitskaia, Tatiana G

    2016-09-06

    Technetium-99 (Tc) displays a rich chemistry due to its wide range of accessible oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and (99)Tc nuclear magnetic resonance (NMR) spectroscopy is widely used to probe chemical environments of Tc in odd oxidation states. However, interpretation of (99)Tc NMR data is hindered by the lack of reference compounds. Density functional theory (DFT) calculations can help to fill this gap, but to date few computational studies have focused on (99)Tc NMR of compounds and complexes. This work evaluates the effectiveness of both pure generalized gradient approximation and their corresponding hybrid functionals, both with and without the inclusion of scalar relativistic effects, to model the (99)Tc NMR spectra of Tc(I) carbonyl compounds. With the exception of BLYP, which performed exceptionally well overall, hybrid functionals with inclusion of scalar relativistic effects are found to be necessary to accurately calculate (99)Tc NMR spectra. The computational method developed was used to tentatively assign an experimentally observed (99)Tc NMR peak at -1204 ppm to fac-Tc(CO)3(OH)3(2-). This study examines the effectiveness of DFT computations for interpretation of the (99)Tc NMR spectra of Tc(I) coordination compounds in high salt alkaline solutions.

  13. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  14. The PedsQL multidimensional fatigue scale in pediatric obesity: feasibility, reliability and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2010-01-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were completed by 41 pediatric patients with a physician-diagnosis of obesity and 43 parents from a hospital-based Pediatric Endocrinology Clinic. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (1.6%, child report; 0.5%, parent report), achieved excellent reliability for the Total Fatigue Scale Score (alpha = 0.90 child report, 0.90 parent report), distinguished between pediatric patients with obesity and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with obesity experienced fatigue comparable with pediatric patients receiving cancer treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with obesity.

  15. Multidimensional poverty, household environment and short-term morbidity in India.

    PubMed

    Dehury, Bidyadhar; Mohanty, Sanjay K

    2017-01-01

    Using the unit data from the second round of the Indian Human Development Survey (IHDS-II), 2011-2012, which covered 42,152 households, this paper examines the association between multidimensional poverty, household environmental deprivation and short-term morbidities (fever, cough and diarrhoea) in India. Poverty is measured in a multidimensional framework that includes the dimensions of education, health and income, while household environmental deprivation is defined as lack of access to improved sanitation, drinking water and cooking fuel. A composite index combining multidimensional poverty and household environmental deprivation has been computed, and households are classified as follows: multidimensional poor and living in a poor household environment, multidimensional non-poor and living in a poor household environment, multidimensional poor and living in a good household environment and multidimensional non-poor and living in a good household environment. Results suggest that about 23% of the population belonging to multidimensional poor households and living in a poor household environment had experienced short-term morbidities in a reference period of 30 days compared to 20% of the population belonging to multidimensional non-poor households and living in a poor household environment, 19% of the population belonging to multidimensional poor households and living in a good household environment and 15% of the population belonging to multidimensional non-poor households and living in a good household environment. Controlling for socioeconomic covariates, the odds of short-term morbidity was 1.47 [CI 1.40-1.53] among the multidimensional poor and living in a poor household environment, 1.28 [CI 1.21-1.37] among the multidimensional non-poor and living in a poor household environment and 1.21 [CI 1.64-1.28] among the multidimensional poor and living in a good household environment compared to the multidimensional non-poor and living in a good household environment. Results are robust across states and hold good for each of the three morbidities: fever, cough and diarrhoea. This establishes that along with poverty, household environmental conditions have a significant bearing on short-term morbidities in India. Public investment in sanitation, drinking water and cooking fuel can reduce the morbidity and improve the health of the population.

  16. Effectiveness of the Multidimensional Curriculum Model in Developing Higher-Order Thinking Skills in Elementary and Secondary Students

    ERIC Educational Resources Information Center

    Vidergor, Hava E.

    2018-01-01

    The study aimed to assess the effectiveness of the multidimensional curriculum model (MdCM) in the development of higher-order thinking skills in a sample of 394 elementary and secondary school students in Israel. The study employed a quantitative quasi-experimental pre-post design, using a study module based on MdCM, comparing intervention group…

  17. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  18. Subtypes and comorbidity in mathematical learning disabilities: Multidimensional study of verbal and visual memory processes is key to understanding.

    PubMed

    Szűcs, D

    2016-01-01

    A large body of research suggests that mathematical learning disability (MLD) is related to working memory impairment. Here, I organize part of this literature through a meta-analysis of 36 studies with 665 MLD and 1049 control participants. I demonstrate that one subtype of MLD is associated with reading problems and weak verbal short-term and working memory. Another subtype of MLD does not have associated reading problems and is linked to weak visuospatial short-term and working memory. In order to better understand MLD we need to precisely define potentially modality-specific memory subprocesses and supporting executive functions, relevant for mathematical learning. This can be achieved by taking a multidimensional parametric approach systematically probing an extended network of cognitive functions. Rather than creating arbitrary subgroups and/or focus on a single factor, highly powered studies need to position individuals in a multidimensional parametric space. This will allow us to understand the multidimensional structure of cognitive functions and their relationship to mathematical performance. © 2016 Elsevier B.V. All rights reserved.

  19. Igloo-Plot: a tool for visualization of multidimensional datasets.

    PubMed

    Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S

    2014-01-01

    Advances in science and technology have resulted in an exponential growth of multivariate (or multi-dimensional) datasets which are being generated from various research areas especially in the domain of biological sciences. Visualization and analysis of such data (with the objective of uncovering the hidden patterns therein) is an important and challenging task. We present a tool, called Igloo-Plot, for efficient visualization of multidimensional datasets. The tool addresses some of the key limitations of contemporary multivariate visualization and analysis tools. The visualization layout, not only facilitates an easy identification of clusters of data-points having similar feature compositions, but also the 'marker features' specific to each of these clusters. The applicability of the various functionalities implemented herein is demonstrated using several well studied multi-dimensional datasets. Igloo-Plot is expected to be a valuable resource for researchers working in multivariate data mining studies. Igloo-Plot is available for download from: http://metagenomics.atc.tcs.com/IglooPlot/. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Dynamic NMR of Intramolecular Exchange Processes in EDTA Complexes of Sc[superscript 3+], Y[superscript 3+], and La[superscript 3+

    ERIC Educational Resources Information Center

    Ba, Yong; Han, Steven; Ni, Lily; Su, Tony; Garcia, Andres

    2006-01-01

    Dynamic NMR makes use of the effect of chemical exchanges on NMR spectra to study kinetics and thermodynamics. An advanced physical chemistry lab experiment was developed to study the intramolecular exchange processes of EDTA (the disodium salt of ethylenediaminetetraacetic acid) metal complexes. EDTA is an important chelating agent, used in…

  1. Sensitivity enhancement by chromatographic peak concentration with ultra-high performance liquid chromatography-nuclear magnetic resonance spectroscopy for minor impurity analysis.

    PubMed

    Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko

    2017-07-28

    High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. NMR spectroscopy of Group 13 metal ions: biologically relevant aspects.

    PubMed

    André, J P; Mäcke, H R

    2003-12-01

    In spite of the fact that Group 13 metal ions (Al(3+), Ga(3+), In(3+) and Tl(+/3+)) show no main biological role, they are NMR-active nuclides which can be used in magnetic resonance spectroscopy of biologically relevant systems. The fact that these metal ions are quadrupolar (with the exception of thallium) means that they are particularly sensitive to ligand type and coordination geometry. The line width of the NMR signals of their complexes shows a strong dependence on the symmetry of coordination, which constitutes an effective tool in the elucidation of structures. Here we report published NMR studies of this family of elements, applied to systems of biological importance. Special emphasis is given to binding studies of these cations to biological molecules, such as proteins, and to chelating agents of radiopharmaceutical interest. The possibility of in vivo NMR studies is also stressed, with extension to (27)Al-based MRI (magnetic resonance imaging) experiments.

  3. The Psychometric Properties of an Arabic version of the PedsQL Multidimensional Fatigue Scale Tested for Children with Cancer.

    PubMed

    Al-Gamal, Ekhlas; Long, Tony

    2017-09-01

    Fatigue is considered to be one of the most reported symptoms experienced by children with cancer. A major aim of this study was to develop an Arabic version of the Pediatric Quality of Life (PedsQL) Multidimensional Fatigue Scale (child report) and to test its psychometric proprieties for the assessment of fatigue in Arabic children with cancer. The PedsQL Multidimensional Fatigue Scale (Arabic version) and the PedsQL TM 4.0 Generic Core scale (existing Arabic version) were completed by 70 Jordanian children with cancer. Cronbach's alpha coefficients were found to be 0.90 for the total PedsQL Multidimensional Fatigue Scale (Arabic version), 0.94 for the general fatigue subscale, 0.67 for the sleep/rest fatigue subscale, and 0.87 for the cognitive fatigue subscale. The PedsQL Multidimensional Fatigue Scale scores correlated significantly with the PedsQL TM 4.0 Generic Core scale and demonstrated good construct validity. The results demonstrate excellent reliability and good validity of the PedsQL Multidimensional Fatigue Scale (Arabic version) for children with cancer. This is the first validated scale that assesses fatigue in Arabic children with cancer. The English scale has been used with several pediatric clinical populations, so this Arabic version may be equally useful beyond the field of cancer.

  4. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M. Daniel

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  5. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  6. Mechanistic insight into formation and changes of nanoparticles in MgF2 sols evidenced by liquid and solid state NMR.

    PubMed

    Karg, M; Scholz, G; König, R; Kemnitz, E

    2012-02-28

    The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.

  7. Fatigue in children: reliability and validity of the Dutch PedsQL™ Multidimensional Fatigue Scale.

    PubMed

    Gordijn, M Suzanne; Suzanne Gordijn, M; Cremers, Eline M P; Kaspers, Gertjan J L; Gemke, Reinoud J B J

    2011-09-01

    The aim of the study is to report on the feasibility, reliability, validity, and the norm-references of the Dutch version of the PedsQL™ Multidimensional Fatigue Scale. The study participants are four hundred and ninety-seven parents of children aged 2-18 years and 366 children aged 5-18 years from various day care facilities, elementary schools, and a high school who completed the Dutch version of the PedsQL™ Multidimensional Fatigue Scale. The number of missing items was minimal. All scales showed satisfactory internal consistency reliability, with Cronbach's coefficient alpha exceeding 0.70. Test-retest reliability was good to excellent (ICCs 0.68-0.84) and inter-observer reliability varied from moderate to excellent (ICCs 0.56-0.93) for total scores. Parent/child concordance for total scores was poor to good (ICCs 0.25-0.68). The PedsQL™ Multidimensional Fatigue Scale was able to distinguish between healthy children and children with an impaired health condition. The Dutch version of the PedsQL™ Multidimensional Fatigue Scale demonstrates an adequate feasibility, reliability, and validity in another sociocultural context. With the obtained norm-references, it can be utilized as a tool in the evaluation of fatigue in healthy and chronically ill children aged 2-18 years.

  8. DICON: interactive visual analysis of multidimensional clusters.

    PubMed

    Cao, Nan; Gotz, David; Sun, Jimeng; Qu, Huamin

    2011-12-01

    Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters. In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster, and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets. We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the benefits of the technique, especially in support of complex multidimensional cluster analysis. © 2011 IEEE

  9. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano.

    PubMed

    Exarchou, Vassiliki; Godejohann, Markus; van Beek, Teris A; Gerothanassis, Ioannis P; Vervoort, Jacques

    2003-11-15

    Structure elucidation of natural products usually relies on a combination of NMR spectroscopy with mass spectrometry whereby NMR trails MS in terms of the minimum sample amount required. In the present study, the usefulness of on-line solid-phase extraction (SPE) in LC-NMR for peak storage after the LC separation prior to NMR analysis is demonstrated. The SPE unit allows the use of normal protonated solvents for the LC separation and fully deuterated solvents for flushing the trapped compounds to the NMR probe. Thus, solvent suppression is no longer necessary. Multiple trapping of the same analyte from repeated LC injections was utilized to solve the problem of low concentration and to obtain 2D heteronuclear NMR spectra. In addition, a combination of the SPE unit with a recently developed cryoflow NMR probe and an MS was evaluated. This on-line LC-UV-SPE-NMR-MS system was used for the automated analysis of a Greek oregano extract. Combining the data provided by the UV, MS, and NMR spectra, the flavonoids taxifolin, aromadendrin, eriodictyol, naringenin, and apigenin, the phenolic acid rosmarinic acid, and the monoterpene carvacrol were identified. This automated technique is very useful for natural product analysis, and the large sensitivity improvement leads to significantly reduced NMR acquisition times.

  10. Multidimensional chromatography in food analysis.

    PubMed

    Herrero, Miguel; Ibáñez, Elena; Cifuentes, Alejandro; Bernal, Jose

    2009-10-23

    In this work, the main developments and applications of multidimensional chromatographic techniques in food analysis are reviewed. Different aspects related to the existing couplings involving chromatographic techniques are examined. These couplings include multidimensional GC, multidimensional LC, multidimensional SFC as well as all their possible combinations. Main advantages and drawbacks of each coupling are critically discussed and their key applications in food analysis described.

  11. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex.

    PubMed

    Jiang, F; Kumar, R A; Jones, R A; Patel, D J

    1996-07-11

    The catalytic properties of RNA and its well known role in gene expression and regulation are the consequence of its unique solution structures. Identification of the structural determinants of ligand recognition by RNA molecules is of fundamental importance for understanding the biological functions of RNA, as well as for the rational design of RNA Sequences with specific catalytic activities. Towards this latter end, Szostak et al. used in vitro selection techniques to isolate RNA sequences ('aptamers') containing a high-affinity binding site for ATP, the universal currency of cellular energy, and then used this motif to engineer ribozymes with polynucleotide kinase activity. Here we present the solution structure, as determined by multidimensional NMR spectroscopy and molecular dynamics calculations, of both uniformly and specifically 13C-, 15N-labelled 40-mer RNA containing the ATP-binding motif complexed with AMP. The aptamer adopts an L-shaped structure with two nearly orthogonal stems, each capped proximally by a G x G mismatch pair, binding the AMP ligand at their junction in a GNRA-like motif.

  12. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  13. Rapid NMR method for the quantification of organic compounds in thin stillage.

    PubMed

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T

    2011-10-12

    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  14. NMR analysis and chemical shift calculations of poly(lactic acid) dimer model compounds with different tacticities

    USDA-ARS?s Scientific Manuscript database

    In this work, PLA dimer model compounds with different tacticities were synthesized and studied in detail by 1H and 13C NMR in three solvents, CDCl3/CCl4 (20/80 v/v), CDCl3 and DMSO-d6. All the peaks in the 1H and 13C NMR spectra were assigned with the help of two-dimensional NMR. Although the solve...

  15. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  16. COMPREHENSIVE PROGRESS REPORT FOR FOURIER TRANSFORM NMR (NUCLEAR MAGNETIC RESONANCE) OF METALS OF ENVIRONMENTAL SIGNIFICANCE

    EPA Science Inventory

    Interactions of the metals cadmium and selenium with various biologically important substrates were studied by nuclear magnetic resonance (NMR) spectroscopy. Cadmium-113 NMR was used for a critical examination of three metalloproteins: concanavalin A, bovine superoxide dismutase ...

  17. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy

    PubMed Central

    Kheddo, Priscilla; Cliff, Matthew J.; Uddin, Shahid; van der Walle, Christopher F.; Golovanov, Alexander P.

    2016-01-01

    ABSTRACT Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins. PMID:27589351

  18. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy.

    PubMed

    Kheddo, Priscilla; Cliff, Matthew J; Uddin, Shahid; van der Walle, Christopher F; Golovanov, Alexander P

    2016-10-01

    Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1 H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins.

  19. Physical Activity Motivation in Late Adolescence: Refinement of a Recent Multidimensional Model

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2010-01-01

    Recent research (Martin et al., 2006) presented a new, multidimensional approach to physical activity motivation (using the Physical Activity Motivation Scale [PAMS]) operationalized through four factors: adaptive cognition, adaptive behavior, impeding/maladaptive cognition, and maladaptive behavior. The present study extends this early research…

  20. Turkish Validity Examination of the Multidimensional Students' Life Satisfaction Scale

    ERIC Educational Resources Information Center

    Irmak, Sezgin; Kuruuzum, Ayse

    2009-01-01

    The validation studies of the Multidimensional Students' Life Satisfaction Scale (MSLSS) have been conducted with samples from different nations but mostly from western individualistic cultures. Life satisfaction and its constructs could differ depending on cultural characteristics and life satisfaction scales should be validated in different…

  1. Gender and Attitudes toward People Using Wheelchairs: A Multidimensional Perspective

    ERIC Educational Resources Information Center

    Vilchinsky, Noa; Werner, Shirli; Findler, Liora

    2010-01-01

    This study aims to investigate the effect of observer's gender and target's gender on attitudes toward people who use wheelchairs due to a physical disability. Four hundred four Jewish Israeli students without disabilities completed the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Initially, confirmatory…

  2. Assessing Dimensionality of Noncompensatory Multidimensional Item Response Theory with Complex Structures

    ERIC Educational Resources Information Center

    Svetina, Dubravka

    2013-01-01

    The purpose of this study was to investigate the effect of complex structure on dimensionality assessment in noncompensatory multidimensional item response models using dimensionality assessment procedures based on DETECT (dimensionality evaluation to enumerate contributing traits) and NOHARM (normal ogive harmonic analysis robust method). Five…

  3. Dimensionality and DIF in a Licensure Examination.

    ERIC Educational Resources Information Center

    Sykes, Robert C.; And Others

    The sources of multidimensionality found in several different forms of a licensure examination were studied. The relationship between one source of multidimensionality, differential item functioning (DIF) (or factors producing DIF), and content characteristics was explored in an attempt to isolate aspects of training or curriculum that could…

  4. Adolescent and Parent Alliance and Treatment Outcome in Multidimensional Family Therapy

    ERIC Educational Resources Information Center

    Shelef, Karni; Diamond, Gary M.; Diamond, Guy S.; Liddle, Howard A.

    2005-01-01

    In this study, the authors examined the relation between adolescent and parent therapeutic alliances and treatment outcome among 65 substance-abusing adolescents receiving multidimensional family therapy. Observer ratings of parent alliance predicted premature termination from treatment. Observer ratings, but not self-report, of adolescent…

  5. Multidimensional Model of Trauma and Correlated Antisocial Personality Disorder

    ERIC Educational Resources Information Center

    Martens, Willem H. J.

    2005-01-01

    Many studies have revealed an important relationship between psychosocial trauma and antisocial personality disorder. A multidimensional model is presented which describes the psychopathological route from trauma to antisocial development. A case report is also included that can illustrate the etiological process from trauma to severe antisocial…

  6. Multi-Dimensional Classroom Engagement in EFL Contexts

    ERIC Educational Resources Information Center

    Dincer, Ali; Yesilyurt, Savas; Demiröz, Hakan

    2017-01-01

    This study seeks to extend our present knowledge of language learners' classroom engagement by exploring the relationship between the multidimensional classroom engagement and the group variables: course achievement, course absence and motivational orientation to learn English. A survey research design was adopted, and 122 EFL learners provided…

  7. Multidimensional Relationships in the WAIS-R Subscales and Demographic Variables.

    ERIC Educational Resources Information Center

    Chastain, Robert L.; Joe, George W.

    This study attempts to integrate and extend previous research by multivariate investigation to determine multidimensional relationships among both the Wechsler Adult Intelligence Scale-Revised (WAIS-R) subscales and the demographic variables for the 1981 WAIS-R standardization sample. Canonical correlation with orthogonal rotation of composite…

  8. Detecting Multidimensionality: Which Residual Data-Type Works Best?

    ERIC Educational Resources Information Center

    Linacre, John Michael

    1998-01-01

    Simulation studies indicate that, for responses to complete tests, construction of Rasch measures from observational data, followed by principal components factor analysis of Rasch residuals, provides an effective means of identifying multidimensionality. The most diagnostically useful residual form was found to be the standardized residual. (SLD)

  9. NMR Spectroscopy in Glass Science: A Review of the Elements

    PubMed Central

    2018-01-01

    The study of inorganic glass structure is critically important for basic glass science and especially the commercial development of glasses for a variety of technological uses. One of the best means by which to achieve this understanding is through application of solid-state nuclear magnetic resonance (NMR) spectroscopy, which has a long and interesting history. This technique is element specific, but highly complex, and thus, one of the many inquiries made by non-NMR specialists working in glass science is what type of information and which elements can be studied by this method. This review presents a summary of the different elements that are amenable to the study of glasses by NMR spectroscopy and provides examples of the type of atomic level structural information that can be achieved. It serves to inform the non-specialist working in glass science and technology about some of the benefits and challenges involved in the study of inorganic glass structure using modern, readily-available NMR methods. PMID:29565328

  10. Library Anxiety of Law Students: A Study Utilizing the Multidimensional Library Anxiety Scale

    ERIC Educational Resources Information Center

    Bowers, Stacey L.

    2010-01-01

    The purpose of this study was to determine whether law students experienced library anxiety and, if so, which components contributed to that anxiety. The Multidimensional Library Anxiety Scale (MLAS) developed by Dr. Doris Van Kampen was used to assess library anxiety levels of law students. The MLAS is a 53 question Likert scale instrument that…

  11. A Meta-Analysis of Prosocial Media on Prosocial Behavior, Aggression, and Empathic Concern: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Coyne, Sarah M.; Padilla-Walker, Laura M.; Holmgren, Hailey G.; Davis, Emilie J.; Collier, Kevin M.; Memmott-Elison, Madison K.; Hawkins, Alan J.

    2018-01-01

    Studies examining the effects of exposure to prosocial media on positive outcomes are increasing in number and strength. However, existing meta-analyses use a broad definition of prosocial media that does not recognize the multidimensionality of prosocial behavior. The aim of the current study is to conduct a meta-analysis on the effects of…

  12. A Multi-Dimensional Approach to Gradient Change in Phonological Acquisition: A Case Study of Disordered Speech Development

    ERIC Educational Resources Information Center

    Glaspey, Amy M.; MacLeod, Andrea A. N.

    2010-01-01

    The purpose of the current study is to document phonological change from a multidimensional perspective for a 3-year-old boy with phonological disorder by comparing three measures: (1) accuracy of consonant productions, (2) dynamic assessment, and (3) acoustic analysis. The methods included collecting a sample of the targets /s, [image omitted],…

  13. Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Solis-Trapala, Ivonne L.

    2010-01-01

    We demonstrate the use of a multidimensional extension of the latent Markov model to analyse data from studies with repeated binary responses in developmental psychology. In particular, we consider an experiment based on a battery of tests which was administered to pre-school children, at three time periods, in order to measure their inhibitory…

  14. A Cross-Cultural Comparison of Singaporean and Taiwanese Eighth Graders' Science Learning Self-Efficacy from a Multi-Dimensional Perspective

    ERIC Educational Resources Information Center

    Lin, Tzung-Jin; Tan, Aik Ling; Tsai, Chin-Chung

    2013-01-01

    Due to the scarcity of cross-cultural comparative studies in exploring students' self-efficacy in science learning, this study attempted to develop a multi-dimensional science learning self-efficacy (SLSE) instrument to measure 316 Singaporean and 303 Taiwanese eighth graders' SLSE and further to examine the differences between the two student…

  15. Trajectories of Multidimensional Caregiver Burden in Chinese Informal Caregivers for Dementia: Evidence from Exploratory and Confirmatory Factor Analysis of the Zarit Burden Interview.

    PubMed

    Li, Dan; Hu, Nan; Yu, Yueyi; Zhou, Aihong; Li, Fangyu; Jia, Jianping

    2017-01-01

    Despite its popularity, the latent structure of 22-item Zarit Burden Interview (ZBI) remains unclear. There has been no study exploring how caregiver multidimensional burden changed. The aim of the work was to validate the latent structure of ZBI and to investigate how multidimensional burden evolves with increasing global burden. We studied 1,132 dyads of dementia patients and their informal caregivers. The caregivers completed the ZBI and a questionnaire regarding caregiving. The total sample was randomly split into two equal subsamples. Exploratory factor analysis (EFA) was performed in the first subsample. In the second subsample, confirmatory factor analysis (CFA) was conducted to validate models generated from EFA. The mean of weighted factor score was calculated to assess the change of dimension burden against the increasing ZBI total score. The result of EFA and CFA supported that a five-factor structure, including role strain, personal strain, incompetency, dependency, and guilt, had the best goodness-of-fit. The trajectories of multidimensional burden suggested that three different dimensions (guilt, role strain and personal strain) became the main subtype of burden in sequence as the ZBI total score increased from mild to moderate. Factor dependency contributed prominently to the total burden in severe stage. The five-factor ZBI is a psychometrically robust measure for assessing multidimensional burden in Chinese caregivers. The changes of multidimensional burden have deepened our understanding of the psychological characteristics of caregiving beyond a single total score and may be useful for developing interventions to reduce caregiver burden.

  16. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    PubMed

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  17. NMR-Metabolic Methodology in the Study of GM Foods

    PubMed Central

    Sobolev, Anatoly P.; Capitani, Donatella; Giannino, Donato; Nicolodi, Chiara; Testone, Giulio; Santoro, Flavio; Frugis, Giovanna; Iannelli, Maria A.; Mattoo, Autar K.; Brosio, Elvino; Gianferri, Raffaella; D’Amico, Irene; Mannina, Luisa

    2010-01-01

    The 1H-NMR methodology used in the study of genetically modified (GM) foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the ArabidopsisKNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars) present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism. PMID:22253988

  18. A Systematic Review of Studies Using the Multidimensional Assessment of Fatigue Scale.

    PubMed

    Belza, Basia; Miyawaki, Christina E; Liu, Minhui; Aree-Ue, Suparb; Fessel, Melissa; Minott, Kenya R; Zhang, Xi

    2018-04-01

    To review how the Multidimensional Assessment of Fatigue (MAF) has been used and evaluate its psychometric properties. We conducted a database search using "multidimensional assessment of fatigue" or "MAF" as key terms from 1993 to 2015, and located 102 studies. Eighty-three were empirical studies and 19 were reviews/evaluations. Research was conducted in 17 countries; 32 diseases were represented. Nine language versions of the MAF were used. The mean of the Global Fatigue Index ranged from 10.9 to 49.4. The MAF was reported to be easy-to-use, had strong reliability and validity, and was used in populations who spoke languages other than English. The MAF is an acceptable assessment tool to measure fatigue and intervention effectiveness in various languages, diseases, and settings across the world.

  19. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  20. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    PubMed

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  1. Extending Validity Evidence for Multidimensional Measures of Coaching Competency

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Wolfe, Edward W.; Maier, Kimberly S.; Feltz, Deborah L.; Reckase, Mark D.

    2006-01-01

    This study extended validity evidence for multidimensional measures of coaching competency derived from the Coaching Competency Scale (CCS; Myers, Feltz, Maier, Wolfe, & Reckase, 2006) by examining use of the original rating scale structure and testing how measures related to satisfaction with the head coach within teams and between teams.…

  2. The Impact of Learner Characteristics on the Multi-Dimensional Construct of Social Presence

    ERIC Educational Resources Information Center

    Mykota, David

    2017-01-01

    This study explored the impact of learner characteristics on the multi-dimensional construct of social presence as measured by the computer-mediated communication questionnaire. Using Multiple Analysis of Variance findings reveal that the number of online courses taken and computer-mediated communication experience significantly affect the…

  3. Connectivity and Resilience: A Multidimensional Analysis of Infrastructure Impacts in the Southwestern Amazon

    ERIC Educational Resources Information Center

    Perz, Stephen G.; Shenkin, Alexander; Barnes, Grenville; Cabrera, Liliana; Carvalho, Lucas A.; Castillo, Jorge

    2012-01-01

    Infrastructure is a worldwide policy priority for national development via regional integration into the global economy. However, economic, ecological and social research draws contrasting conclusions about the consequences of infrastructure. We present a synthetic approach to the study of infrastructure, focusing on a multidimensional treatment…

  4. The Relationship between Anxiety and Stuttering: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Ezrati-Vinacour, Ruth; Levin, Iris

    2004-01-01

    The relationship between anxiety and stuttering is equivocal from both clinical and empirical perspectives. This study examined the relationship within the framework of the multidimensional interaction model of anxiety that includes an approach to general anxiety in specific situations [J. Pers. Soc. Psychol. 60 (1991) 919]. Ninety-four males aged…

  5. Multidimensional Collaboration: Reflections on Action Research in a Clinical Context

    ERIC Educational Resources Information Center

    Gregory, Sheila; Poland, Fiona; Spalding, Nicola J.; Sargen, Kevin; McCulloch, Jane; Vicary, Penny

    2011-01-01

    This paper reflects on the challenges and benefits of multidimensional collaboration in an action research study to evaluate and improve preoperative education for patients awaiting colorectal surgery. Three cycles of planning, acting, observing and reflecting were designed to evaluate practice and implement change in this interactive setting,…

  6. Intervention Fidelity in Family-Based Prevention Counseling for Adolescent Problem Behaviors

    ERIC Educational Resources Information Center

    Hogue, Aaron; Liddle, Howard A.; Singer, Alisa; Leckrone, Jodi

    2005-01-01

    This study examined fidelity in multidimensional family prevention (MDFP), a family-based prevention counseling model for adolescents at high risk for substance abuse and related behavior problems, in comparison to two empirically based treatments for adolescent drug abuse: multidimensional family therapy (MDFT) and cognitive-behavioral therapy…

  7. Career Success: Constructing a Multidimensional Model

    ERIC Educational Resources Information Center

    Dries, Nicky; Pepermans, Roland; Carlier, Olivier

    2008-01-01

    A multidimensional model of career success was developed aiming to be more inclusive than existing models. In a first study, 22 managers were asked to tell the story of their careers. At the end of each interview, idiosyncratic career success "construct ladders" were constructed for each interviewee through an interactive process with the…

  8. The Utility of "Race" and "Ethnicity" in the Multidimensional Identities of Asian American Students

    ERIC Educational Resources Information Center

    Johnston-Guerrero, Marc P.; Pizzolato, Jane Elizabeth

    2016-01-01

    In a qualitative study we examined the constructs "race" and "ethnicity" and their relative importance in the multidimensional identities of 52 Asian American undergraduates across 2 universities. Findings suggest these constructs are useful for Asian American students' identity claims and that multiple contextual influences…

  9. A Graphics Design Framework to Visualize Multi-Dimensional Economic Datasets

    ERIC Educational Resources Information Center

    Chandramouli, Magesh; Narayanan, Badri; Bertoline, Gary R.

    2013-01-01

    This study implements a prototype graphics visualization framework to visualize multidimensional data. This graphics design framework serves as a "visual analytical database" for visualization and simulation of economic models. One of the primary goals of any kind of visualization is to extract useful information from colossal volumes of…

  10. Unidimensional Interpretations for Multidimensional Test Items

    ERIC Educational Resources Information Center

    Kahraman, Nilufer

    2013-01-01

    This article considers potential problems that can arise in estimating a unidimensional item response theory (IRT) model when some test items are multidimensional (i.e., show a complex factorial structure). More specifically, this study examines (1) the consequences of model misfit on IRT item parameter estimates due to unintended minor item-level…

  11. Recycling Behavior: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  12. Application of the Bifactor Model to Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Seo, Dong Gi

    2011-01-01

    Most computerized adaptive tests (CAT) have been studied under the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CAT. In addition, a number of psychological variables (e.g., quality of life, depression) can be conceptualized…

  13. Projective Item Response Model for Test-Independent Measurement

    ERIC Educational Resources Information Center

    Ip, Edward Hak-Sing; Chen, Shyh-Huei

    2012-01-01

    The problem of fitting unidimensional item-response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that contains a major dimension of interest but that may also contain minor nuisance dimensions. Because fitting a unidimensional model to multidimensional data results in…

  14. Cross-Cultural Validity of the Frost Multidimensional Perfectionism Scale in Korea

    ERIC Educational Resources Information Center

    Lee, Dong-gwi; Park, Hyun-joo

    2011-01-01

    This study with 213 South Korean college students (113 men) examined the cross-cultural generalizability of (a) the factor structure of the Frost Multidimensional Perfectionism Scale (F-MPS) and (b) the existence of adaptive perfectionists, maladaptive perfectionists, and nonperfectionists. A confirmatory factor analysis did not support the…

  15. Multidimensional Assessment of Resilience in Mothers Who Are Child Sexual Abuse Survivors

    ERIC Educational Resources Information Center

    Wright, Margaret O'Dougherty; Fopma-Loy, Joan; Fischer, Stephanie

    2005-01-01

    Objective: There has been relatively little attention given to positive adaptation following childhood sexual abuse (CSA), and typically such resilience has been explored primarily in the intrapersonal domain. This study explored questions about later resilience following CSA within a multidimensional framework by assessing resilience across…

  16. Multidimensional and Hierarchical Assessment of School Motivation: Cross-Cultural Validation

    ERIC Educational Resources Information Center

    McInerney, Dennis M.; Ali, Jinnat

    2006-01-01

    This study examines the multidimensional and hierarchical structure of achievement goal orientation measured by the Inventory of School Motivation. The instrument consists of eight different scales with 43 survey items (ranging from three to seven items each). Each scale reflects one of eight specific dimensions: task, effort, competition, social…

  17. Multidimensional Scaling of High School Students' Perceptions of Academic Dishonesty

    ERIC Educational Resources Information Center

    Schmelkin, Liora Pedhazur; Gilbert, Kimberly A.; Silva, Rebecca

    2010-01-01

    Although cheating on tests and other forms of academic dishonesty are considered rampant, no standard definition of academic dishonesty exists. The current study was conducted to investigate the perceptions of academic dishonesty in high school students, utilizing an innovative methodology, multidimensional scaling (MDS). Two methods were used to…

  18. Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data.

    PubMed

    Teixeira, João M C; Skinner, Simon P; Arbesú, Miguel; Breeze, Alexander L; Pons, Miquel

    2018-05-11

    We present Farseer-NMR ( https://git.io/vAueU ), a software package to treat, evaluate and combine NMR spectroscopic data from sets of protein-derived peaklists covering a range of experimental conditions. The combined advances in NMR and molecular biology enable the study of complex biomolecular systems such as flexible proteins or large multibody complexes, which display a strong and functionally relevant response to their environmental conditions, e.g. the presence of ligands, site-directed mutations, post translational modifications, molecular crowders or the chemical composition of the solution. These advances have created a growing need to analyse those systems' responses to multiple variables. The combined analysis of NMR peaklists from large and multivariable datasets has become a new bottleneck in the NMR analysis pipeline, whereby information-rich NMR-derived parameters have to be manually generated, which can be tedious, repetitive and prone to human error, or even unfeasible for very large datasets. There is a persistent gap in the development and distribution of software focused on peaklist treatment, analysis and representation, and specifically able to handle large multivariable datasets, which are becoming more commonplace. In this regard, Farseer-NMR aims to close this longstanding gap in the automated NMR user pipeline and, altogether, reduce the time burden of analysis of large sets of peaklists from days/weeks to seconds/minutes. We have implemented some of the most common, as well as new, routines for calculation of NMR parameters and several publication-quality plotting templates to improve NMR data representation. Farseer-NMR has been written entirely in Python and its modular code base enables facile extension.

  19. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    PubMed

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons the Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  20. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins.

    PubMed

    Sanders, C R; Oxenoid, K

    2000-11-23

    Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.

  1. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 2, NMR assignments and photoyellowing of aromatic ring 1-, 3-, 4-, and 5-13C DHPs

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...

  2. The PedsQL Multidimensional Fatigue Scale in type 1 diabetes: feasibility, reliability, and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2009-08-01

    The Pediatric Quality of Life Inventory (PedsQL, Mapi Research Trust, Lyon, France; www.pedsql.org) is a modular instrument designed to measure health-related quality of life and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were administered to 83 pediatric patients with type 1 diabetes and 84 parents. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (0.3% child report and 0.3% parent report), achieved excellent reliability for the Total Fatigue Scale score (alpha= 0.92 child report, 0.94 parent report), distinguished between pediatric patients with diabetes and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with diabetes experienced fatigue that was comparable to pediatric patients with cancer on treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with type 1 diabetes.

  3. The PedsQL Multidimensional Fatigue Scale in young adults: feasibility, reliability and validity in a University student population.

    PubMed

    Varni, James W; Limbers, Christine A

    2008-02-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents ages 2-18. The PedsQL Multidimensional Fatigue Scale was designed as a generic symptom-specific instrument to measure fatigue in pediatric patients ages 2-18. Since a sizeable number of pediatric patients prefer to remain with their pediatric providers after age 18, the objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in young adults. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains), the PedsQL 4.0 Generic Core Scales Young Adult Version, and the SF-8 Health Survey were completed by 423 university students ages 18-25. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (alpha = 0.90), distinguished between healthy young adults and young adults with chronic health conditions, was significantly correlated with the relevant PedsQL 4.0 Generic Core Scales and the SF-8 standardized scores, and demonstrated a factor-derived structure largely consistent with the a priori conceptual model. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in a convenience sample of young adult university students. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the evaluation of fatigue for a broad age range.

  4. A pilot study of NMR-based sensory prediction of roasted coffee bean extracts.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Miyakawa, Takuya; Tanokura, Masaru

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy can be considered a kind of "magnetic tongue" for the characterisation and prediction of the tastes of foods, since it provides a wealth of information in a nondestructive and nontargeted manner. In the present study, the chemical substances in roasted coffee bean extracts that could distinguish and predict the different sensations of coffee taste were identified by the combination of NMR-based metabolomics and human sensory test and the application of the multivariate projection method of orthogonal projection to latent structures (OPLS). In addition, the tastes of commercial coffee beans were successfully predicted based on their NMR metabolite profiles using our OPLS model, suggesting that NMR-based metabolomics accompanied with multiple statistical models is convenient, fast and accurate for the sensory evaluation of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  6. Comparing pharmacophore models derived from crystallography and NMR ensembles

    NASA Astrophysics Data System (ADS)

    Ghanakota, Phani; Carlson, Heather A.

    2017-11-01

    NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.

  7. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  8. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    PubMed

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  9. NMR ANALYSIS OF MALE FATHEAD MINNOW URINARY METABOLITES: A POTENTIAL APPROACH FOR STUDYING IMPACTS OF CHEMICAL EXPOSURES

    EPA Science Inventory

    The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...

  10. Solution state nuclear magnetic resonance spectroscopy for biological metabolism and pathway intermediate analysis.

    PubMed

    Nealon, Gareth L; Howard, Mark J

    2016-12-15

    Using nuclear magnetic resonance (NMR) spectroscopy in the study of metabolism has been immensely popular in medical- and health-related research but has yet to be widely applied to more fundamental biological problems. This review provides some NMR background relevant to metabolism, describes why 1 H NMR spectra are complex as well as introducing relevant terminology and definitions. The applications and practical considerations of NMR metabolic profiling and 13 C NMR-based flux analyses are discussed together with the elegant 'enzyme trap' approach for identifying novel metabolic pathway intermediates. The importance of sample preparation and data analysis are also described and explained with reference to data precision and multivariate analysis to introduce researchers unfamiliar with NMR and metabolism to consider this technique for their research interests. Finally, a brief glance into the future suggests NMR-based metabolism has room to expand in the 21st century through new isotope labels, and NMR technologies and methodologies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. The pursuit of happiness measurement: a psychometric model based on psychophysiological correlates.

    PubMed

    Pietro, Cipresso; Silvia, Serino; Giuseppe, Riva

    2014-01-01

    Everyone is interested in the pursuit of happiness, but the real problem for the researchers is how to measure it. Our aim was to deeply investigate happiness measurement through biomedical signals, using psychophysiological methods to objectify the happiness experiences measurements. The classic valence-arousal model of affective states to study happiness has been extensively used in psychophysiology. However, really few studies considered a real combination of these two dimensions and no study further investigated multidimensional models. More, most studies focused mainly on self-report to measure happiness and a deeper psychophysiological investigation on the dimensions of such an experience is still missing. A multidimensional model of happiness is presented and both the dimensions and the measures extracted within each dimension are comprehensively explained. This multidimensional model aims at being a milestone for future systematic study on psychophysiology of happiness and affective states.

  12. NMR studies of cation transport across membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of themore » transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.« less

  13. Reliability and Validity of the Korean Version of the Multidimensional Fatigue Inventory (MFI-20): A Multicenter, Cross-Sectional Study.

    PubMed

    Song, Sang-Wook; Kang, Sung-Goo; Kim, Kyung-Soo; Kim, Moon-Jong; Kim, Kwang-Min; Cho, Doo-Yeoun; Kim, Young-Sang; Joo, Nam-Seok; Kim, Kyu-Nam

    2018-01-01

    A nonspecific symptom, fatigue accompanies a variety of diseases, including cancer, and can have a grave impact on patients' quality of life. As for multidimensional instruments, one of the most widely used is the Multidimensional Fatigue Inventory (MFI). This study aims to verify the reliability and validity of the MFI Korean (MFI-K) version. This study was performed at four university hospitals in the Republic of Korea. Among outpatients visiting the Department of Family Medicine, those complaining of fatigue or visiting a chronic care clinic were enrolled in this study. A total of 595 participants were included, and the mean age was 42.2 years. The Cronbach's alpha coefficient of the MFI-K was 0.88. The MFI-K had good convergent validity. Most subscales of the MFI-K were significantly correlated with the Visual Analogue Scale (VAS) and Fatigue Severity Scale (FSS). In particular, general and physical fatigue had the greatest correlation with the VAS and FSS. Although the English version of MFI had five subscales, the factor analysis led to four subscales in the Korean version. This study demonstrated the clinical usefulness of MFI-K instrument, particularly in assessing the degree of fatigue and performing a multidimensional assessment of fatigue.

  14. Affiliation with Delinquent Peers as a Mediator of the Effects of Multidimensional Treatment Foster Care for Delinquent Girls

    ERIC Educational Resources Information Center

    Van Ryzin, Mark J.; Leve, Leslie D.

    2012-01-01

    Objective: This study evaluated the ability of delinquent peer affiliation to mediate the effects of multidimensional treatment foster care (MTFC; Chamberlain, 2003) on girls' delinquent behavior. Method: This study used a sample of girls from 2 cohorts (N = 166; M = 15.31 years old at baseline, range 13-17 years; 74% European American, 2% African…

  15. Overcoming Multidimensional Marginality: The Significance of Higher Education for Traditionally Reared Single Mothers Living in the Outer Periphery

    ERIC Educational Resources Information Center

    Greenberg, Zeev; Shenaar-Golan, Vered

    2017-01-01

    The current study gives voice to a group of remarkable returning college students whose lives are defined by multidimensional marginality. These students are single mothers who grew up in traditional families in the outer periphery of Northern Israel, where they still lived at the time of this study. Drawing on the women's life stories gathered…

  16. Identification of a xanthine oxidase-inhibitory component from Sophora flavescens using NMR-based metabolomics.

    PubMed

    Suzuki, Ryuichiro; Hasuike, Yuka; Hirabayashi, Moeka; Fukuda, Tatsuo; Okada, Yoshihito; Shirataki, Yoshiaki

    2013-10-01

    We demonstrate that NMR-based metabolomics studies can be used to identify xanthine oxidase-inhibitory compounds in the diethyl ether soluble fraction prepared from a methanolic extract of Sophora flavescens. Loading plot analysis, accompanied by direct comparison of 1H NMR spectraexhibiting characteristic signals, identified compounds exhibiting inhibitory activity. NMR analysis indicated that these characteristic signals were attributed to flavanones such as sophoraflavanone G and kurarinone. Sophoraflavanone G showed inhibitory activity towards xanthine oxidase in an in vitro assay.

  17. Selective observation of charge storing ions in supercapacitor electrode materials.

    PubMed

    Forse, Alexander C; Griffin, John M; Grey, Clare P

    2018-02-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as a useful technique for probing the structure and dynamics of the electrode-electrolyte interface in supercapacitors, as ions inside the pores of the carbon electrodes can be studied separately from bulk electrolyte. However, in some cases spectral resolution can limit the information that can be obtained. In this study we address this issue by showing how cross polarisation (CP) NMR experiments can be used to selectively observe the in-pore ions in supercapacitor electrode materials. We do this by transferring magnetisation from 13 C nuclei in porous carbons to nearby nuclei in the cations ( 1 H) or anions ( 19 F) of an ionic liquid. Two-dimensional NMR experiments and CP kinetics measurements confirm that in-pore ions are located within Ångströms of sp 2 -hybridised carbon surfaces. Multinuclear NMR experiments hold promise for future NMR studies of supercapacitor systems where spectral resolution is limited. Copyright © 2017 University of Cambridge. Published by Elsevier Inc. All rights reserved.

  18. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  19. Conformational Aspects of the O-acetylation of C-tetra(phenyl)calixpyrogallol[4]arene.

    PubMed

    Casas-Hinestroza, José Luis; Maldonado, Mauricio

    2018-05-20

    Reaction between pyrogallol and benzaldehyde results in a conformational mixture of C- tetra(phenyl)pyrogallol[4]arene (crown and chair). The conformer mixture was separated using crystallization procedures and the structures were determined using FTIR, ¹H-NMR, and 13 C-NMR. O -acetylation of C- tetra(phenyl)pyrogallol[4]arene (chair) with acetic anhydride, in pyridine results in the formation of dodecaacetyl-tetra(phenyl)pyrogallol[4]arene. The structure was determined using ¹H-NMR and 13 C-NMR finding that the product maintains the conformation of the starting conformer. On the other hand, the O -acetylation reaction of C- tetra(phenyl)pirogallol[4]arene (crown) under same conditions proceeded efficiently, and its structure was determined using ¹H-NMR and 13 C-NMR. Dynamic ¹H-NMR of acetylated pyrogallolarene was studied by means of variable temperature in DMSO- d ₆ solution, and it revealed that two conformers are formed in the solution. Boat conformations for acetylated pyrogallolarene showed a slow interconversion at room temperature.

  20. Application of stochastic weighted algorithms to a multidimensional silica particle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang

    2013-09-01

    Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associatedmore » majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.« less

  1. Multidimensional human dynamics in mobile phone communications.

    PubMed

    Quadri, Christian; Zignani, Matteo; Capra, Lorenzo; Gaito, Sabrina; Rossi, Gian Paolo

    2014-01-01

    In today's technology-assisted society, social interactions may be expressed through a variety of techno-communication channels, including online social networks, email and mobile phones (calls, text messages). Consequently, a clear grasp of human behavior through the diverse communication media is considered a key factor in understanding the formation of the today's information society. So far, all previous research on user communication behavior has focused on a sole communication activity. In this paper we move forward another step on this research path by performing a multidimensional study of human sociality as an expression of the use of mobile phones. The paper focuses on user temporal communication behavior in the interplay between the two complementary communication media, text messages and phone calls, that represent the bi-dimensional scenario of analysis. Our study provides a theoretical framework for analyzing multidimensional bursts as the most general burst category, that includes one-dimensional bursts as the simplest case, and offers empirical evidence of their nature by following the combined phone call/text message communication patterns of approximately one million people over three-month period. This quantitative approach enables the design of a generative model rooted in the three most significant features of the multidimensional burst - the number of dimensions, prevalence and interleaving degree - able to reproduce the main media usage attitude. The other findings of the paper include a novel multidimensional burst detection algorithm and an insight analysis of the human media selection process.

  2. The application of a multi-dimensional assessment approach to talent identification in Australian football.

    PubMed

    Woods, Carl T; Raynor, Annette J; Bruce, Lyndell; McDonald, Zane; Robertson, Sam

    2016-07-01

    This study investigated whether a multi-dimensional assessment could assist with talent identification in junior Australian football (AF). Participants were recruited from an elite under 18 (U18) AF competition and classified into two groups; talent identified (State U18 Academy representatives; n = 42; 17.6 ± 0.4 y) and non-talent identified (non-State U18 Academy representatives; n = 42; 17.4 ± 0.5 y). Both groups completed a multi-dimensional assessment, which consisted of physical (standing height, dynamic vertical jump height and 20 m multistage fitness test), technical (kicking and handballing tests) and perceptual-cognitive (video decision-making task) performance outcome tests. A multivariate analysis of variance tested the main effect of status on the test criterions, whilst a receiver operating characteristic curve assessed the discrimination provided from the full assessment. The talent identified players outperformed their non-talent identified peers in each test (P < 0.05). The receiver operating characteristic curve reflected near perfect discrimination (AUC = 95.4%), correctly classifying 95% and 86% of the talent identified and non-talent identified participants, respectively. When compared to single assessment approaches, this multi-dimensional assessment reflects a more comprehensive means of talent identification in AF. This study further highlights the importance of assessing multi-dimensional performance qualities when identifying talented team sports.

  3. [Development and application of a multidimensional suicide prevention program for Korean elders by utilizing a community network].

    PubMed

    Jo, Kae Hwa; Kim, Yeong Kyeong

    2008-06-01

    The purpose of this study was to develop a multidimensional suicide prevention program for Korean elders by utilizing a community network and to evaluate its effect. A non-equivalent control group pretest-posttest design was used. The subjects were recruited from two different elderly institutions located in D city and K province, Korea. Nineteen subjects in the control group received no intervention and 20 subjects in the experimental group received a multidimensional suicide prevention program. There were more significant decreases in depression, suicide ideation, and increases in life satisfaction in the experimental group compared to the control group. According to the above results, the multidimensional suicide prevention program for Korean elders decreased stressful events like depression, and suicide ideation and increased life satisfaction through the community network. These findings suggest that this program can be used as an efficient intervention for elders in a critical situation.

  4. Visual modeling in an analysis of multidimensional data

    NASA Astrophysics Data System (ADS)

    Zakharova, A. A.; Vekhter, E. V.; Shklyar, A. V.; Pak, A. J.

    2018-01-01

    The article proposes an approach to solve visualization problems and the subsequent analysis of multidimensional data. Requirements to the properties of visual models, which were created to solve analysis problems, are described. As a perspective direction for the development of visual analysis tools for multidimensional and voluminous data, there was suggested an active use of factors of subjective perception and dynamic visualization. Practical results of solving the problem of multidimensional data analysis are shown using the example of a visual model of empirical data on the current state of studying processes of obtaining silicon carbide by an electric arc method. There are several results of solving this problem. At first, an idea of possibilities of determining the strategy for the development of the domain, secondly, the reliability of the published data on this subject, and changes in the areas of attention of researchers over time.

  5. Characterization of D-glucaric acid using NMR, x-ray crystal structure, and MM3 molecular modeling analyses

    USDA-ARS?s Scientific Manuscript database

    D-glucaric acid was characterized in solution by comparing NMR spectra from the isotopically unlabeled molecule with those from D-glucaric acid labeled with deuterium or carbon-13 atoms. The NMR studies provided unequivocal assignments for all carbon atoms and non-hydroxyl protons of the molecule. ...

  6. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  7. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  8. NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes

    PubMed Central

    Grisi, Marco; Vincent, Franck; Volpe, Beatrice; Guidetti, Roberto; Harris, Nicola; Beck, Armin; Boero, Giovanni

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy enables non-invasive chemical studies of intact living matter. However, the use of NMR at the volume scale typical of microorganisms is hindered by sensitivity limitations, and experiments on single intact organisms have so far been limited to entities having volumes larger than 5 nL. Here we show NMR spectroscopy experiments conducted on single intact ova of 0.1 and 0.5 nL (i.e. 10 to 50 times smaller than previously achieved), thereby reaching the relevant volume scale where life development begins for a broad variety of organisms, humans included. Performing experiments with inductive ultra-compact (1 mm2) single-chip NMR probes, consisting of a low noise transceiver and a multilayer 150 μm planar microcoil, we demonstrate that the achieved limit of detection (about 5 pmol of 1H nuclei) is sufficient to detect endogenous compounds. Our findings suggest that single-chip probes are promising candidates to enable NMR-based study and selection of microscopic entities at biologically relevant volume scales. PMID:28317887

  9. Mechanisms of amyloid formation revealed by solution NMR

    PubMed Central

    Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.

    2015-01-01

    Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197

  10. Investigating the Hydrolysis Reactions of a Chemical Warfare Agent Surrogate. A Systematic Study using 1H, 13C, 17O, 19F, 31P, and 35Cl NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Todd M.; Wilson, Brendan W.

    2015-07-24

    During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous ( 31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nucleimore » such as 1H, 13C, 17O, and 35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.« less

  11. Dynamics and conformations of PEO chains chemically bonded on silica: comparison between 1H and 2H NMR.

    PubMed

    Tajouri, T; Hommel, H

    2007-06-01

    1H NMR was used to study the motion of monomer units in a layer of poly(ethylene oxide) chains grafted on silica. First, the dependence of the relaxation times on the grafting ratios is discussed qualitatively from a phenomenological point of view. Next, the NMR line narrowing effect by high-speed rotation is observed in the same samples with different grafting ratios. The magic angle spinning technique permits determination of two correlation times for each grafting ratio: tau(c) characteristic of an environment with a fast motion and tau(l) characteristic of an environment with a slow motion. In addition, the dynamics of these grafted chains are investigated by deuterium NMR (2H NMR), which is sensitive to the anisotropy of molecular motion. The evolution has been studied for two extreme grafting ratios and each time as a function of temperature. The anisotropy is more marked at low temperatures and for a low grafting ratio. The results are consistent with the 1H NMR relaxation times measured as a function of temperature. Copyright 2007 John Wiley & Sons, Ltd.

  12. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    NASA Astrophysics Data System (ADS)

    Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong

    2017-08-01

    In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  13. An Examination of Alternative Multidimensional Scaling Techniques

    ERIC Educational Resources Information Center

    Papazoglou, Sofia; Mylonas, Kostas

    2017-01-01

    The purpose of this study is to compare alternative multidimensional scaling (MDS) methods for constraining the stimuli on the circumference of a circle and on the surface of a sphere. Specifically, the existing MDS-T method for plotting the stimuli on the circumference of a circle is applied, and its extension is proposed for constraining the…

  14. Multidimensional Aspects of Motivation in Cross-Cultural Settings and Ways of Researching This.

    ERIC Educational Resources Information Center

    McInerney, Dennis M.

    This paper reports on a series of studies that examine the multidimensional nature of achievement motivation across a number of cultural groups, the determinants of this achievement motivation, and the relationship of achievement motivation to criteria of school success, such as attendance, retention, achievement, further education, and…

  15. SAMPLING DISTRIBUTIONS OF ERROR IN MULTIDIMENSIONAL SCALING.

    ERIC Educational Resources Information Center

    STAKE, ROBERT E.; AND OTHERS

    AN EMPIRICAL STUDY WAS MADE OF THE ERROR FACTORS IN MULTIDIMENSIONAL SCALING (MDS) TO REFINE THE USE OF MDS FOR MORE EXPERT MANIPULATION OF SCALES USED IN EDUCATIONAL MEASUREMENT. THE PURPOSE OF THE RESEARCH WAS TO GENERATE TABLES OF THE SAMPLING DISTRIBUTIONS THAT ARE NECESSARY FOR DISCRIMINATING BETWEEN ERROR AND NONERROR MDS DIMENSIONS. THE…

  16. Examining Cyberbullying Tendency and Multidimensional Perceived Social Support Status of Teacher Candidates

    ERIC Educational Resources Information Center

    Levent, Faruk; Taçgin, Zeynep

    2017-01-01

    The teachers have a substantial role for students through consciously the Internet usage and struggle with cyberbullying. The purpose of this study is to investigate cyberbullying tendency and multidimensional perceived social support status of the teacher candidates. The participants of this research have become 412 teacher candidates as…

  17. Interpersonal Problems Associated with Multidimensional Personality Questionnaire Traits in Women during the Transition to Adulthood

    ERIC Educational Resources Information Center

    Hopwood, Christopher J.; Burt, S. Alexandra; Keel, Pamela K.; Neale, Michael C.; Boker, Steven M.; Klump, Kelly L.

    2013-01-01

    Personality traits are known to be associated with a host of important life outcomes, including interpersonal dysfunction. The interpersonal circumplex offers a comprehensive system for articulating the kinds of interpersonal problems associated with personality traits. In the current study, traits as measured by the Multidimensional Personality…

  18. An Examination of the Multidimensionality of Situational Interest in Elementary School Physical Education

    ERIC Educational Resources Information Center

    Sun, Haichun; Chen, Ang; Ennis, Catherine; Martin, Robert; Shen, Bo

    2008-01-01

    It has been demonstrated that situational interest in physical activity may derive from five dimensional sources, Novelty, Optimal Challenge, Attention Demand, Exploration Intent, and Instant Enjoyment. The purpose of this study was to examine the multidimensional sources in elementary school physical education. The five dimensions were measured…

  19. Lexical Sophistication as a Multidimensional Phenomenon: Relations to Second Language Lexical Proficiency, Development, and Writing Quality

    ERIC Educational Resources Information Center

    Kim, Minkyung; Crossley, Scott A.; Kyle, Kristopher

    2018-01-01

    This study conceptualizes lexical sophistication as a multidimensional phenomenon by reducing numerous lexical features of lexical sophistication into 12 aggregated components (i.e., dimensions) via a principal component analysis approach. These components were then used to predict second language (L2) writing proficiency levels, holistic lexical…

  20. The Efficacy of Multidimensional Line-Printer Graphics for Cluster Recovery.

    ERIC Educational Resources Information Center

    Brown, R. L.

    The plotting of multivariate data using computer line-printers has become a popular means of quickly representing multidimensional data. While many plotting programs are available, there is a paucity of research regarding the validity and reliability of interpretations made by viewing such graphics. This study explores the validity of four…

  1. Multidimensional Motivation and Engagement for Writing: Construct Validation with a Sample of Boys

    ERIC Educational Resources Information Center

    Collie, Rebecca J.; Martin, Andrew J.; Curwood, Jen Scott

    2016-01-01

    Given recent concerns around boys' literacy, this study examined multidimensional writing motivation and engagement among boys. We explored internal and external validity of 11 adaptive (e.g. self-efficacy for writing) and maladaptive (e.g. disengagement from writing) factors of writing motivation and engagement. The sample comprised 781 male…

  2. Measurement of Instrumental and Vocal Undergraduate Performance Juries Using a Multidimensional Assessment Rubric

    ERIC Educational Resources Information Center

    Ciorba, Charles R.; Smith, Neal Y.

    2009-01-01

    Recent policy initiatives instituted by major accrediting bodies require the implementation of specific assessment tools to provide evidence of student achievement in a number of areas, including applied music study. The purpose of this research was to investigate the effectiveness of a multidimensional assessment rubric, which was administered to…

  3. Income and beyond: Multidimensional Poverty in Six Latin American Countries

    ERIC Educational Resources Information Center

    Battiston, Diego; Cruces, Guillermo; Lopez-Calva, Luis Felipe; Lugo, Maria Ana; Santos, Maria Emma

    2013-01-01

    This paper studies multidimensional poverty for Argentina, Brazil, Chile, El Salvador, Mexico and Uruguay for the period 1992-2006. The approach overcomes the limitations of the two traditional methods of poverty analysis in Latin America (income-based and unmet basic needs) by combining income with five other dimensions: school attendance for…

  4. Comparing Voice-Therapy and Vocal-Hygiene Treatments in Dysphonia Using a Limited Multidimensional Evaluation Protocol

    ERIC Educational Resources Information Center

    Rodriguez-Parra, Maria J.; Adrian, Jose A.; Casado, Juan C.

    2011-01-01

    Purpose: This study evaluates the effectiveness of two different programs of voice-treatment on a heterogeneous group of dysphonic speakers and the stability of therapeutic progress for longterm follow-up post-treatment period, using a limited multidimensional protocol of evaluation. Method: Forty-two participants with voice disorders were…

  5. Bi-Factor Multidimensional Item Response Theory Modeling for Subscores Estimation, Reliability, and Classification

    ERIC Educational Resources Information Center

    Md Desa, Zairul Nor Deana

    2012-01-01

    In recent years, there has been increasing interest in estimating and improving subscore reliability. In this study, the multidimensional item response theory (MIRT) and the bi-factor model were combined to estimate subscores, to obtain subscores reliability, and subscores classification. Both the compensatory and partially compensatory MIRT…

  6. Effectiveness in an Institution of Higher Education: A Multi-Dimensional Model and Its Empirical Examination.

    ERIC Educational Resources Information Center

    Israeli, Rachel; Mannheim, Bilha

    1991-01-01

    A multidimensional definition was developed for the content universe of "organizational effectiveness" (OE) by using a mapping sentence. The definition's applicability was examined in an effectiveness study of an Israeli university, using data for 1,001 undergraduates. Relations among measures reflecting aspects of OE specific to…

  7. Application of Andrew's Plots to Visualization of Multidimensional Data

    ERIC Educational Resources Information Center

    Grinshpun, Vadim

    2016-01-01

    Importance: The article raises a point of visual representation of big data, recently considered to be demanded for many scientific and real-life applications, and analyzes particulars for visualization of multi-dimensional data, giving examples of the visual analytics-related problems. Objectives: The purpose of this paper is to study application…

  8. Impact of Malaysian Polytechnics' Head of Department Multi-Dimensional Leadership Orientation towards Lecturers Work Commitment

    ERIC Educational Resources Information Center

    Ibrahim, Mohammed Sani; Mujir, Siti Junaidah Mohd

    2012-01-01

    The purpose of this study is to determine if the multi-dimensional leadership orientation of the heads of departments in Malaysian polytechnics affects their leadership effectiveness and the lecturers' commitment to work as perceived by the lecturers. The departmental heads' leadership orientation was determined by five leadership dimensions…

  9. A Multidimensional Scaling Approach to Developmental Dimensions in Object Permanence and Tracking Stimuli.

    ERIC Educational Resources Information Center

    Townes-Rosenwein, Linda

    This paper discusses a longitudinal, exploratory study of developmental dimensions related to object permanence theory and explains how multidimensional scaling techniques can be used to identify developmental dimensions. Eighty infants, randomly assigned to one of four experimental groups and one of four counterbalanced orders of stimuli, were…

  10. A Multi-Method Multi-Analytic Approach to Establishing Internal Construct Validity Evidence: The Sport Multidimensional Perfectionism Scale 2

    ERIC Educational Resources Information Center

    Gotwals, John K.; Dunn, John G. H.

    2009-01-01

    This article presents a chronology of three empirical studies that outline the measurement process by which two new subscales ("Doubts about Actions" and "Organization") were developed and integrated into a revised version of Dunn, Causgrove Dunn, and Syrotuik's (2002) "Sport Multidimensional Perfectionism Scale"…

  11. Development and Validation of the Frost Multidimensional Perfectionism Scale--Brief

    ERIC Educational Resources Information Center

    Burgess, Alexandra M.; Frost, Randy O.; DiBartolo, Patricia Marten

    2016-01-01

    Twenty-five years ago, one of the first empirically validated measures of perfectionism, the Frost et al. Multidimensional Perfectionism Scale (F-MPS) was published. Since that time, psychometric studies of the original F-MPS have provided a plethora of evidence to support the potential development of a shorter yet still psychometrically robust…

  12. Multidimensional poverty and health: evidence from a nationwide survey in Japan.

    PubMed

    Oshio, Takashi; Kan, Mari

    2014-12-19

    It is well known that lower income is associated with poorer health, but poverty has several dimensions other than income. In the current study, we investigated the associations between multidimensional poverty and health variables. Using micro data obtained from a nationwide population survey in Japan (N = 24,905), we focused on four dimensions of poverty (income, education, social protection, and housing conditions) and three health variables (self-rated health (SRH), psychological distress, and current smoking). We examined how health variables were associated with multidimensional poverty measures, based on descriptive and multivariable logistic regression analyses. Unions as composite measures of multiple poverty dimensions were more useful for identifying individuals in poor SRH or psychological distress than a single dimension such as income. In comparison, intersections of poverty dimensions reduced the coverage of individuals considered to be in poverty and tend to be difficult to justify without any explicit policy objective. Meanwhile, education as a unidimensional poverty indicator could be useful for predicting current smoking. Results obtained from the current study confirmed the practical relevance of multidimensional poverty for health.

  13. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  14. Solid and solution NMR studies of the complexation of Ag + with the trans isomer of captopril: Biological activities of this high blood pressure drug along with its Ag + complex

    NASA Astrophysics Data System (ADS)

    Isab, Anvarhusein A.; Wazeer, Mohamed I. M.

    2006-09-01

    Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.

  15. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingol, Kerem

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMRmore » and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.« less

  16. Substituent effect study on experimental ¹³C NMR chemical shifts of (3-(substituted phenyl)-cis-4,5-dihydroisoxazole-4,5-diyl)bis(methylene)diacetate derivatives.

    PubMed

    Kara, Yesim S

    2015-12-05

    Eleven novel (3-(substituted phenyl)-cis-4,5-dihydroisoxazole-4,5-diyl)bis(methylene) diacetate derivatives were synthesized in the present study. These dihydroisoxazole derivatives were characterized by IR, (1)H NMR, (13)C NMR and elemental analyses. Their (13)C NMR spectra were measured in Deuterochloroform (CDCl3). The correlation analysis for the substituent-induced chemical shift (SCS) with Hammett substituent constant (σ), inductive substituent constant (σI), different of resonance substituent constants (σR, σR(o)) and Swain-Lupton substituent parameters (F, R) were performed using SSP (single substituent parameter), and DSP (dual substituent parameter) methods, as well as single and multiple regression analysis. From the result of regression analysis, the effect of substituent on the (13)C NMR chemical shifts was explained. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Studying the Structure and Dynamics of Biomolecules by Using Soluble Paramagnetic Probes

    PubMed Central

    Hocking, Henry G; Zangger, Klaus; Madl, Tobias

    2013-01-01

    Characterisation of the structure and dynamics of large biomolecules and biomolecular complexes by NMR spectroscopy is hampered by increasing overlap and severe broadening of NMR signals. As a consequence, the number of available NMR spectroscopy data is often sparse and new approaches to provide complementary NMR spectroscopy data are needed. Paramagnetic relaxation enhancements (PREs) obtained from inert and soluble paramagnetic probes (solvent PREs) provide detailed quantitative information about the solvent accessibility of NMR-active nuclei. Solvent PREs can be easily measured without modification of the biomolecule; are sensitive to molecular structure and dynamics; and are therefore becoming increasingly powerful for the study of biomolecules, such as proteins, nucleic acids, ligands and their complexes in solution. In this Minireview, we give an overview of the available solvent PRE probes and discuss their applications for structural and dynamic characterisation of biomolecules and biomolecular complexes. PMID:23836693

  18. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE PAGES

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; ...

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  19. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  20. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactorsmore » were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.« less

  1. Multidimensional Measurement of Poverty among Women in Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Batana, Yele Maweki

    2013-01-01

    Since the seminal work of Sen, poverty has been recognized as a multidimensional phenomenon. The recent availability of relevant databases renewed the interest in this approach. This paper estimates multidimensional poverty among women in fourteen Sub-Saharan African countries using the Alkire and Foster multidimensional poverty measures, whose…

  2. The Efficacy of Multidimensional Constraint Keys in Database Query Performance

    ERIC Educational Resources Information Center

    Cardwell, Leslie K.

    2012-01-01

    This work is intended to introduce a database design method to resolve the two-dimensional complexities inherent in the relational data model and its resulting performance challenges through abstract multidimensional constructs. A multidimensional constraint is derived and utilized to implement an indexed Multidimensional Key (MK) to abstract a…

  3. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    NASA Astrophysics Data System (ADS)

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  4. Genome-wide association study of a nicotine metabolism biomarker in African American smokers: impact of chromosome 19 genetic influences.

    PubMed

    Chenoweth, Meghan J; Ware, Jennifer J; Zhu, Andy Z X; Cole, Christopher B; Cox, Lisa Sanderson; Nollen, Nikki; Ahluwalia, Jasjit S; Benowitz, Neal L; Schnoll, Robert A; Hawk, Larry W; Cinciripini, Paul M; George, Tony P; Lerman, Caryn; Knight, Joanne; Tyndale, Rachel F

    2018-03-01

    The activity of CYP2A6, the major nicotine-inactivating enzyme, is measurable in smokers using the nicotine metabolite ratio (NMR; 3'hydroxycotinine/cotinine). Due to its role in nicotine clearance, the NMR is associated with smoking behaviours and response to pharmacotherapies. The NMR is highly heritable (~80%), and on average lower in African Americans (AA) versus whites. We previously identified several reduce and loss-of-function CYP2A6 variants common in individuals of African descent. Our current aim was to identify novel genetic influences on the NMR in AA smokers using genome-wide approaches. Genome-wide association study (GWAS). Multiple sites within Canada and the United States. AA smokers from two clinical trials: Pharmacogenetics of Nicotine Addiction Treatment (PNAT)-2 (NCT01314001; n = 504) and Kick-it-at-Swope (KIS)-3 (NCT00666978; n = 450). Genome-wide SNP genotyping, the NMR (phenotype) and population substructure and NMR covariates. Meta-analysis revealed three independent chromosome 19 signals (rs12459249, rs111645190 and rs185430475) associated with the NMR. The top overall hit, rs12459249 (P = 1.47e-39; beta = 0.59 per C (versus T) allele, SE = 0.045), located ~9.5 kb 3' of CYP2A6, remained genome-wide significant after controlling for the common (~10% in AA) non-functional CYP2A6*17 allele. In contrast, rs111645190 and rs185430475 were not genome-wide significant when controlling for CYP2A6*17. In total, 96 signals associated with the NMR were identified; many were not found in prior NMR GWASs in individuals of European descent. The top hits were also associated with the NMR in a third cohort of AA (KIS2; n = 480). None of the hits were in UGT or OCT2 genes. Three independent chromosome 19 signals account for ~20% of the variability in the nicotine metabolite ratio in African American smokers. The hits identified may contribute to inter-ethnic variability in nicotine metabolism, smoking behaviours and tobacco-related disease risk. © 2017 Society for the Study of Addiction.

  5. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeffry Todd

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics.more » The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding module for the recently developed NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129 gas as a sensor is discussed. This work also reports the use of an optical atomic magnetometer to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as a detection module for NMR remote detection experiments.« less

  6. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.

    The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosedmore » as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.« less

  7. Analysis of self-similar solutions of multidimensional conservation laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyfitz, Barbara Lee

    2014-02-15

    This project focused on analysis of multidimensional conservation laws, specifically on extensions to the study of self-siminar solutions, a project initiated by the PI. In addition, progress was made on an approach to studying conservation laws of very low regularity; in this research, the context was a novel problem in chromatography. Two graduate students in mathematics were supported during the grant period, and have almost completed their thesis research.

  8. Findings of the International Nosocomial Infection Control Consortium (INICC), Part I: Effectiveness of a multidimensional infection control approach on catheter-associated urinary tract infection rates in pediatric intensive care units of 6 developing countries.

    PubMed

    Rosenthal, Victor D; Ramachandran, Bala; Dueñas, Lourdes; Alvarez-Moreno, Carlos; Navoa-Ng, J A; Armas-Ruiz, Alberto; Ersoz, Gulden; Matta-Cortés, Lorena; Pawar, Mandakini; Nevzat-Yalcin, Ata; Rodríguez-Ferrer, Marena; Bran de Casares, Ana Concepción; Linares, Claudia; Villanueva, Victoria D; Campuzano, Roberto; Kaya, Ali; Rendon-Campo, Luis Fernando; Gupta, Amit; Turhan, Ozge; Barahona-Guzmán, Nayide; de Jesús-Machuca, Lilian; Tolentino, María Corazon V; Mena-Brito, Jorge; Kuyucu, Necdet; Astudillo, Yamileth; Saini, Narinder; Gunay, Nurgul; Sarmiento-Villa, Guillermo; Gumus, Eylul; Lagares-Guzmán, Alfredo; Dursun, Oguz

    2012-07-01

    A before-after prospective surveillance study to assess the impact of a multidimensional infection control approach for the reduction of catheter-associated urinary tract infection (CAUTI) rates. Pediatric intensive care units (PICUs) of hospital members of the International Nosocomial Infection Control Consortium (INICC) from 10 cities of the following 6 developing countries: Colombia, El Salvador, India, Mexico, Philippines, and Turkey. PICU inpatients. We performed a prospective active surveillance to determine rates of CAUTI among 3,877 patients hospitalized in 10 PICUs for a total of 27,345 bed-days. The study was divided into a baseline period (phase 1) and an intervention period (phase 2). In phase 1, surveillance was performed without the implementation of the multidimensional approach. In phase 2, we implemented a multidimensional infection control approach that included outcome surveillance, process surveillance, feedback on CAUTI rates, feedback on performance, education, and a bundle of preventive measures. The rates of CAUTI obtained in phase 1 were compared with the rates obtained in phase 2, after interventions were implemented. During the study period, we recorded 8,513 urinary catheter (UC) days, including 1,513 UC-days in phase 1 and 7,000 UC-days in phase 2. In phase 1, the CAUTI rate was 5.9 cases per 1,000 UC-days, and in phase 2, after implementing the multidimensional infection control approach for CAUTI prevention, the rate of CAUTI decreased to 2.6 cases per 1,000 UC-days (relative risk, 0.43 [95% confidence interval, 0.21-1.0]), indicating a rate reduction of 57%. Our findings demonstrated that implementing a multidimensional infection control approach is associated with a significant reduction in the CAUTI rate of PICUs in developing countries.

  9. Factorial invariance of pediatric patient self-reported fatigue across age and gender: a multigroup confirmatory factor analysis approach utilizing the PedsQL™ Multidimensional Fatigue Scale.

    PubMed

    Varni, James W; Beaujean, A Alexander; Limbers, Christine A

    2013-11-01

    In order to compare multidimensional fatigue research findings across age and gender subpopulations, it is important to demonstrate measurement invariance, that is, that the items from an instrument have equivalent meaning across the groups studied. This study examined the factorial invariance of the 18-item PedsQL™ Multidimensional Fatigue Scale items across age and gender and tested a bifactor model. Multigroup confirmatory factor analysis (MG-CFA) was performed specifying a three-factor model across three age groups (5-7, 8-12, and 13-18 years) and gender. MG-CFA models were proposed in order to compare the factor structure, metric, scalar, and error variance across age groups and gender. The analyses were based on 837 children and adolescents recruited from general pediatric clinics, subspecialty clinics, and hospitals in which children were being seen for well-child checks, mild acute illness, or chronic illness care. A bifactor model of the items with one general factor influencing all the items and three domain-specific factors representing the General, Sleep/Rest, and Cognitive Fatigue domains fit the data better than oblique factor models. Based on the multiple measures of model fit, configural, metric, and scalar invariance were found for almost all items across the age and gender groups, as was invariance in the factor covariances. The PedsQL™ Multidimensional Fatigue Scale demonstrated strict factorial invariance for child and adolescent self-report across gender and strong factorial invariance across age subpopulations. The findings support an equivalent three-factor structure across the age and gender groups studied. Based on these data, it can be concluded that pediatric patients across the groups interpreted the items in a similar manner regardless of their age or gender, supporting the multidimensional factor structure interpretation of the PedsQL™ Multidimensional Fatigue Scale.

  10. 27Al-NMR studies of the structural phase transition in LaPd2Al2

    NASA Astrophysics Data System (ADS)

    Aoyama, Taisuke; Kobayashi, Fumiaki; Kotegawa, Hisashi; Tou, Hideki; Doležal, Petr; Kriegner, Dominik; Javorský, Pavel; Uhlířová, Klára

    2018-05-01

    We performed 27Al-NMR measurements for the CaBe2Ge2 type single crystalline LaPd2Al2 in the temperature range from 100 K to 5 K to investigate the origin of the structural phase transition. We found that the line profile of the 27Al-NMR spectrum does not change entirely on passing through the structural phase transition at Tst. Meanwhile, the peak position of the central line slightly change (≈ 30 ppm) below 70 K, suggesting the orbital shift changes below Tst. The present 27Al-NMR studies evidence that the local electronic state at Al site is hardly affected by the structural phase transition.

  11. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw

    2014-11-01

    In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Solid-state NMR studies of form I of atorvastatin calcium.

    PubMed

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  13. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  14. 23Na and 39K NMR studies of ion transport in human erythrocytes.

    PubMed

    Ogino, T; Shulman, G I; Avison, M J; Gullans, S R; den Hollander, J A; Shulman, R G

    1985-02-01

    Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4).

  15. 23Na and 39K NMR studies of ion transport in human erythrocytes.

    PubMed Central

    Ogino, T; Shulman, G I; Avison, M J; Gullans, S R; den Hollander, J A; Shulman, R G

    1985-01-01

    Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4). PMID:2579385

  16. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    PubMed Central

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  17. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  18. Effect of ecosystem type and fire on chemistry of WEOM as measured by LDI-TOF-MS and NMR.

    PubMed

    Crecelius, Anna C; Vitz, Jürgen; Näthe, Kerstin; Meyer, Stefanie; Michalzik, Beate; Schubert, Ulrich S

    2017-01-01

    Soil organic matter (SOM) and its water-soluble components play an important role in terrestrial carbon cycling and associated ecosystem functions. Chemically, they are complex mixtures of organic compounds derived from decomposing plant material, microbial residues, as well as root exudates, and soil biota. To test the effect of the ecosystem type (forest and grassland) and fires events on the chemistry of dissolved organic matter (DOM), we applied a combination of laser-desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) and 2D ( 1 H and 13 C) nuclear magnetic resonance (NMR) spectroscopy to water-extractable organic matter (WEOM) from a range of top soil samples. The aim was to assess the suitability of LDI-TOF-MS for the rapid characterization of WEOM. Therefore, we evaluated the effects of sample (pH and dilution) conditions and use of positive or negative reflector mode to identify the conditions under which LDI-TOF-MS best distinguished between WEOM from different sources. Thirty-six samples were measured with both analytical techniques and their chemical patterns were statistically evaluated to distinguish firstly the effect of the type of ecosystem (forest versus grassland) on WEOM characteristics, and secondly the impact of fire on the chemical composition of WEOM. The nonmetric multidimensional scaling (NMDS) analysis of the most suitable experimental LDI-TOF-MS conditions showed a clear separation between the type of vegetation and fire-induced changes, mostly reflecting the presence of poly(ethylene glycol) in grassland soils. Discrimination among WEOM from different vegetation types was preserved in the fire treated samples. The calculation of the relative abundance of certain functional structures in the WEOM samples revealed a common composition of forest and grassland WEOM, with polysaccharides and proteins making up to 60%. The compositional impact of forest fire on WEOM was more pronounced compared to the one of grassland, leading to a decline in the main components, and an increase in amino-sugars, fatty acids, and sterols. The recorded 1 H NMR and heteronuclear single quantum coherence (HSQC) spectra showed a decrease of the carbohydrate signal in WEOM from fire-treated samples, which was more pronounced in forest than in grassland soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.

  20. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  1. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    USDA-ARS?s Scientific Manuscript database

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  2. Multidimensional Assessment of Spirituality/Religion in Patients with HIV: Conceptual Framework and Empirical Refinement

    PubMed Central

    Kudel, Ian; Cotton, Sian; Leonard, Anthony C.; Tsevat, Joel; Ritchey, P. Neal

    2011-01-01

    A decade ago, an expert panel developed a framework for measuring spirituality/religion in health research (Brief Multidimensional Measure of Religiousness/Spirituality), but empirical testing of this framework has been limited. The purpose of this study was to determine whether responses to items across multiple measures assessing spirituality/religion by 450 patients with HIV replicate this model. We hypothesized a six-factor model underlying a collective of 56 items, but results of confirmatory factor analyses suggested eight dimensions: Meaning/Peace, Tangible Connection to the Divine, Positive Religious Coping, Love/Appreciation, Negative Religious Coping, Positive Congregational Support, Negative Congregational Support, and Cultural Practices. This study corroborates parts of the factor structure underlying the Brief Multidimensional Measure of Religiousness/Spirituality and some recent refinements of the original framework. PMID:21136166

  3. Multidimensional assessment of spirituality/religion in patients with HIV: conceptual framework and empirical refinement.

    PubMed

    Szaflarski, Magdalena; Kudel, Ian; Cotton, Sian; Leonard, Anthony C; Tsevat, Joel; Ritchey, P Neal

    2012-12-01

    A decade ago, an expert panel developed a framework for measuring spirituality/religion in health research (Brief Multidimensional Measure of Religiousness/Spirituality), but empirical testing of this framework has been limited. The purpose of this study was to determine whether responses to items across multiple measures assessing spirituality/religion by 450 patients with HIV replicate this model. We hypothesized a six-factor model underlying a collective of 56 items, but results of confirmatory factor analyses suggested eight dimensions: Meaning/Peace, Tangible Connection to the Divine, Positive Religious Coping, Love/Appreciation, Negative Religious Coping, Positive Congregational Support, Negative Congregational Support, and Cultural Practices. This study corroborates parts of the factor structure underlying the Brief Multidimensional Measure of Religiousness/Spirituality and some recent refinements of the original framework.

  4. Interlaboratory Comparison Test as an Evaluation of Applicability of an Alternative Edible Oil Analysis by 1H NMR Spectroscopy.

    PubMed

    Zailer, Elina; Holzgrabe, Ulrike; Diehl, Bernd W K

    2017-11-01

    A proton (1H) NMR spectroscopic method was established for the quality assessment of vegetable oils. To date, several research studies have been published demonstrating the high potential of the NMR technique in lipid analysis. An interlaboratory comparison was organized with the following main objectives: (1) to evaluate an alternative analysis of edible oils by using 1H NMR spectroscopy; and (2) to determine the robustness and reproducibility of the method. Five different edible oil samples were analyzed by evaluating 15 signals (free fatty acids, peroxides, aldehydes, double bonds, and linoleic and linolenic acids) in each spectrum. A total of 21 NMR data sets were obtained from 17 international participant laboratories. The performance of each laboratory was assessed by their z-scores. The test was successfully passed by 90.5% of the participants. Results showed that NMR spectroscopy is a robust alternative method for edible oil analysis.

  5. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction

    DOE PAGES

    Boiteau, Rene M.; Hoyt, David W.; Nicora, Carrie D.; ...

    2018-01-17

    Here, we introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS 2), and NMR in a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS 2 approach is well suited for discovery ofmore » new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.« less

  6. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiteau, Rene M.; Hoyt, David W.; Nicora, Carrie D.

    Here, we introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS 2), and NMR in a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS 2 approach is well suited for discovery ofmore » new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.« less

  7. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction

    PubMed Central

    Hoyt, David W.; Nicora, Carrie D.; Kinmonth-Schultz, Hannah A.; Ward, Joy K.

    2018-01-01

    We introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS2), and NMR into a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter out the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture, and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS2 approach is well suited to the discovery of new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases. PMID:29342073

  8. Carbon-13 NMR studies of salt shock-induced carbohydrate turnover in the marine cyanobacterium Agmenellum quadruplicatum

    NASA Technical Reports Server (NTRS)

    Tel-Or, E.; Spath, S.; Packer, L.; Mehlhorn, R. J.

    1986-01-01

    Carbon turnover in response to abrupt changes in salinity, including the mobilization of glycogen for use in osmoregulation was studied with pulse-chase strategies utilizing nuclear magnetic resonance (NMR)-silent and NMR-detectable 12C and 13C isotopes, respectively. Growth of Agmenellum quadruplicatum in 30%-enriched 13C bicarbonate provided sufficient NMR-detectability of intracellular organic osmoregulants for these studies. A comparison of NMR spectra of intact cells and their ethanol extracts showed that the intact cell data were suitable for quantitative work, and, when combined with ESR measurements of cell volumes, yielded intracellular glucosylglycerol concentrations without disrupting the cells. NMR pulse-chase experiments were used to show that 13C-enriched glycogen, which had previously been accumulated by the cells under nitrogen-limited growth at low salinities, could be utilized for the synthesis of glucosylglycerol when the cells were abruptly transferred to hypersaline media, but only in the light. It was also shown that the accumulation of glucosylglycerol in the light occurred on a time scale similar to that of cell doubling. Depletion of glucosylglycerol when cells abruptly transferred to lower salinities appeared to be rapid--the intracellular pool of this osmoregulant was decreased 2-fold within 2 hours of hypotonic shock.

  9. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    NASA Astrophysics Data System (ADS)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  10. Novel NMR tools to study structure and dynamics of biomembranes.

    PubMed

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  11. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    PubMed

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  12. Detection of platinum dihydride bisphosphine complexes and studies of their reactivity through para-hydrogen-enhanced NMR methods.

    PubMed

    Godard, Cyril; López-Serrano, Joaquín; Gálvez-López, María-Dolores; Roselló-Merino, Marta; Duckett, Simon B; Khazal, Iman; Lledós, Agustí; Whitwood, Adrian C

    2008-01-01

    In-situ NMR studies on the reactions of Pt{CH2 = CHSi(Me)2}2O)(PCy3) with phosphines, HSiEt3 and--hydrogen or Pt(L)(L')(Me)(2) alone enable the detection of cis-Pt(L)(L')(H)2 [L = PCy3 and L' = PCy2H, PPh3 or PCy3] which then undergo hydride site interchange and H2 reductive elimination on the NMR timescale.

  13. Probing the interaction of U (VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGES

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; ...

    2016-05-30

    The fundamental interaction of U (VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U (VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U (VI) contacted samples revealed that U (VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U (VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31Pmore » NMR on U (VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U (VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P– 31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U (VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U (VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  14. Probing the interaction of U (VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.

    The fundamental interaction of U (VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U (VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U (VI) contacted samples revealed that U (VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U (VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31Pmore » NMR on U (VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U (VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P– 31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U (VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U (VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  15. Evaluating the Dimensionality of Pornography.

    PubMed

    Busby, Dean M; Chiu, Hsin-Yao; Olsen, Joseph A; Willoughby, Brian J

    2017-08-01

    Pornography may be a construct with a single trait or one with many traits. Research in the past was inconsistent in this regard with most researchers assuming that pornography was unidimensional (with one single trait of pornography). However, the considerable amounts of residual variation found in these studies beyond that explained by the single trait hints at what might be a multidimensional construct (with multiple traits such as sensitization and differentiation). Consequently, in this study, we intended to address the question of whether pornography consisted of a single trait or if it was multidimensional. Using MTurk, 2173 participants from the United States and the Commonwealth of Nations (in which pornography is not strictly illegal) were recruited and asked to rate how pornographic they thought a list of different depictions were. The data were analyzed utilizing the cross-validation procedure in which two subsamples were created from the main sample and one was used to establish the model building and the other to validate the model. Various models, including first-order and higher-order exploratory and confirmatory factor models, were tested. Results indicated that a bi-factor (multidimensional) model generated the best model fit, and that it was most appropriate to consider pornography multidimensional. The final model contained two dimensions ("Sensitization" and "Differentiation"). While sensitization revealed the participants' general tendency to rate all items to be more or less pornographic, differentiation revealed the participants' tendency to differentiate highly pornographic items from less pornographic items. Based on the findings of this study, we suggest that future research on the usage and effects of pornography be conducted while taking into consideration the multidimensional nature of pornography.

  16. 17alpha/H/ hopane identified in oil shale of the Green River formation /Eocene/ by carbon-13 NMR.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Christiansen, P.; Burlingame, A. L.

    1973-01-01

    During an investigation of C-13 NMR shifts and the structural correspondence of pentacyclic triterpenes a C-13 NMR study was conducted on one of the most abundant components of the hexane soluble fraction of oil shale bitumen of the Green River formation. A rigorous proof was derived exclusively from C-13 NMR data for the structure of the important triterpenoid fossil molecule. It was established that the structure of the isolated triterpane was 17alpha(H) hopane.

  17. NMR study of the gelation of a designed gelator.

    PubMed

    Brand, Torsten; Nolis, Pau; Richter, Sven; Berger, Stefan

    2008-06-01

    The gelation of a designed gelator was investigated by different NMR methods, which showed a clear thermal hysteresis. Two very simple approaches for the NMR determination of the gelation point are suggested. One involves the observation of the NMR integral, and the other records the ratio of the diffusion coefficients between the gelator and the solvent. Differential behavior of the gelator protons are interpreted as a hint that a part of the gelator molecule might still be flexible as in the dissolved state. Copyright (c) 2008 John Wiley & Sons, Ltd

  18. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    PubMed Central

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-01-01

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported. PMID:24755519

  19. Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.

    2014-01-01

    Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an operational data cube service to be delivered in mid-2014. An associated user-installable VO data service framework will provide the capabilities required to publish VO-compatible multi-dimensional images or data cubes.

  20. Multidimensional Rasch Analysis of a Psychological Test with Multiple Subtests: A Statistical Solution for the Bandwidth-Fidelity Dilemma

    ERIC Educational Resources Information Center

    Cheng, Ying-Yao; Wang, Wen-Chung; Ho, Yi-Hui

    2009-01-01

    Educational and psychological tests are often composed of multiple short subtests, each measuring a distinct latent trait. Unfortunately, short subtests suffer from low measurement precision, which makes the bandwidth-fidelity dilemma inevitable. In this study, the authors demonstrate how a multidimensional Rasch analysis can be employed to take…

  1. Co-Creating Curriculum in Higher Education: Promoting Democratic Values and a Multidimensional View on Learning

    ERIC Educational Resources Information Center

    Bergmark, Ulrika; Westman, Susanne

    2016-01-01

    This paper discusses a case study in teacher education in Sweden, focusing on creating spaces for student engagement through co-creating curriculum. It highlights democratic values and a multidimensional learning view as underpinning such endeavors. The main findings are that co-creating curriculum is an ambiguous process entailing unpredictable,…

  2. Multidimensional CAT Item Selection Methods for Domain Scores and Composite Scores: Theory and Applications

    ERIC Educational Resources Information Center

    Yao, Lihua

    2012-01-01

    Multidimensional computer adaptive testing (MCAT) can provide higher precision and reliability or reduce test length when compared with unidimensional CAT or with the paper-and-pencil test. This study compared five item selection procedures in the MCAT framework for both domain scores and overall scores through simulation by varying the structure…

  3. A Bifactor Multidimensional Item Response Theory Model for Differential Item Functioning Analysis on Testlet-Based Items

    ERIC Educational Resources Information Center

    Fukuhara, Hirotaka; Kamata, Akihito

    2011-01-01

    A differential item functioning (DIF) detection method for testlet-based data was proposed and evaluated in this study. The proposed DIF model is an extension of a bifactor multidimensional item response theory (MIRT) model for testlets. Unlike traditional item response theory (IRT) DIF models, the proposed model takes testlet effects into…

  4. The Multidimensional Measurement of Poverty in Belgium and Britain: A Categorical Approach

    ERIC Educational Resources Information Center

    Dewilde, Caroline

    2004-01-01

    In recent years, both in social science and policy circles, there has been a growing consensus on the multidimensional nature of poverty. However, the operationalisation of the concept has not followed this development, as most studies are still primarily based on income. In this article, we propose to measure the concept of poverty using both…

  5. Students' Personal Connection with Science: Investigating the Multidimensional Phenomenological Structure of Self-Relevance

    ERIC Educational Resources Information Center

    Hartwell, Matthew; Kaplan, Avi

    2018-01-01

    This paper presents findings from a two-phase mixed methods study investigating the phenomenological structure of self-relevance among ninth-grade junior high school biology students (Phase 1: N = 118; Phase 2: N = 139). We begin with a phenomenological multidimensional definition of self-relevance as comprising three dimensions: the academic…

  6. Effectiveness of Multidimensional Family Therapy with Higher Severity Substance-Abusing Adolescents: Report from Two Randomized Controlled Trials

    ERIC Educational Resources Information Center

    Henderson, Craig E.; Dakof, Gayle A.; Greenbaum, Paul E.; Liddle, Howard A.

    2010-01-01

    Objective: We used growth mixture modeling to examine heterogeneity in treatment response in a secondary analysis of 2 randomized controlled trials testing multidimensional family therapy (MDFT), an established evidence-based therapy for adolescent drug abuse and delinquency. Method: The first study compared 2 evidence-based adolescent substance…

  7. A Multidimensional Model for Child Maltreatment Prevention Readiness in Low- and Middle-Income Countries

    ERIC Educational Resources Information Center

    Mikton, Christopher; Mehra, Radhika; Butchart, Alexander; Addiss, David; Almuneef, Maha; Cardia, Nancy; Cheah, Irene; Chen, JingQi; Makoae, Mokhantso; Raleva, Marija

    2011-01-01

    The study's aim was to develop a multidimensional model for the assessment of child maltreatment prevention readiness in low- and middle-income countries. The model was developed based on a conceptual review of relevant existing models and approaches, an international expert consultation, and focus groups in six countries. The final model…

  8. The Multidimensionality of Calling: Conceptualization, Measurement and a Bicultural Perspective

    ERIC Educational Resources Information Center

    Hagmaier, Tamara; Abele, Andrea E.

    2012-01-01

    The experience of a calling may be seen as the ultimate form of subjective career success that has many positive consequences for individuals and organizations. We are here concerned with the conceptualization of a new multidimensional measure of calling, the MCM. In the first two studies we employed a qualitative approach and came up with five…

  9. Physical Self-Concept in Adolescence: Generalizability of a Multidimensional, Hierarchical Model Across Gender and Grade

    ERIC Educational Resources Information Center

    Hagger, Martin S.; Biddle, Stuart J. H.; John Wang, C. K.

    2005-01-01

    This study tests the generalizability of the factor pattern, structural parameters, and latent mean structure of a multidimensional, hierarchical model of physical self-concept in adolescents across gender and grade. A children's version of the Physical Self-Perception Profile (C-PSPP) was administered to seventh-, eighth- and ninth-grade high…

  10. Developing Multi-Dimensional Evaluation Criteria for English Learning Websites with University Students and Professors

    ERIC Educational Resources Information Center

    Liu, Gi-Zen; Liu, Zih-Hui; Hwang, Gwo-Jen

    2011-01-01

    Many English learning websites have been developed worldwide, but little research has been conducted concerning the development of comprehensive evaluation criteria. The main purpose of this study is thus to construct a multi-dimensional set of criteria to help learners and teachers evaluate the quality of English learning websites. These…

  11. The Multidimensional Inventory of Black Identity: Its Use with Euro-American, Latino, and Native American Undergraduates

    ERIC Educational Resources Information Center

    Johnson, Tanisha Maxwell; Robinson Kurpius, Sharon E.; Rayle, Andrea Dixon; Arredondo, Patricia; Tovar-Gamero, Zoila G.

    2005-01-01

    This study examined the reliability and validity of scores from the Multidimensional Inventory of Black Identity with 550 Euro-American, 112 Latino, and 41 Native American undergraduates. Data for the Centrality, Private Regard, and Public Regard scales indicate that these scores have construct validity. Scores have acceptable Cronbach alpha…

  12. Psychometric Characteristics of the Persian Version of the Multidimensional School Anger Inventory-Revised

    ERIC Educational Resources Information Center

    Aryadoust, Vahid; Akbarzadeh, Sanaz; Akbarzedeh, Sara

    2011-01-01

    The Multidimensional School Anger Inventory-Revised (MSAI-R) is a measurement tool to evaluate high school students' anger. Its psychometric features have been tested in the USA, Australia, Japan, Guatemala, and Italy. This study investigates the factor structure and psychometric quality of the Persian version of the MSAI-R using data from an…

  13. Traits and Talents of Giftedness in Minority and Low Socioeconomic Fourth Grade Students in a Georgia School District

    ERIC Educational Resources Information Center

    Smith, Andrea Ragon

    2013-01-01

    The potential traits and talents of giftedness in students are multidimensional; yet, some school districts in Georgia perpetuate barriers for students from minority and low socioeconomic backgrounds by relying solely on standardized test scores for gifted identification. The purpose of this case study was to explore the multidimensionality of…

  14. Construction and Evolution of a Multidimensional Well-Being Index for the Spanish Regions

    ERIC Educational Resources Information Center

    Jurado, Antonio; Perez-Mayo, Jesus

    2012-01-01

    The study presented here is an attempt to calculate a comparative multidimensional index of economic well-being for the Spanish Autonomous Communities. Based on the dimensions of adjusted consumption, real wealth, equity and economic security per inhabitant, we obtain one relative index using a system of uniform weightings, a second resulting from…

  15. Dimensionality and Typology of Perfectionism: The Use of the Frost Multidimensional Perfectionism Scale with Chinese Gifted Students in Hong Kong

    ERIC Educational Resources Information Center

    Chan, David W.

    2009-01-01

    This study investigated the dimensionality and typology of perfectionism based on the Frost Multidimensional Perfectionism Scale with a sample of 380 Chinese gifted students in Hong Kong. Confirmatory factor analyses supported a five-dimensional model that includes constructs of personal standards, parental expectations, parental criticism,…

  16. Lord's Wald Test for Detecting Dif in Multidimensional Irt Models: A Comparison of Two Estimation Approaches

    ERIC Educational Resources Information Center

    Lee, Soo; Suh, Youngsuk

    2018-01-01

    Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…

  17. Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide.

    PubMed

    Harris, Robin K; Ghi, Phuong Y; Hammond, Robert B; Ma, Cai Yun; Roberts, Kevin J; Yates, Jonathan R; Pickard, Chris J

    2006-03-01

    Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.

  18. Multidimensional Profiling of Task Stress States for Human Factors: A Brief Review.

    PubMed

    Matthews, Gerald

    2016-09-01

    This article advocates multidimensional assessment of task stress in human factors and reviews the use of the Dundee Stress State Questionnaire (DSSQ) for evaluation of systems and operators. Contemporary stress research has progressed from an exclusive focus on environmental stressors to transactional perspectives on the stress process. Performance impacts of stress reflect the operator's dynamic attempts to understand and cope with task demands. Multidimensional stress assessments are necessary to gauge the different forms of system-operator interaction. This review discusses the theoretical and practical use of the DSSQ in evaluating multidimensional patterns of stress response. It presents psychometric evidence for the multidimensional perspective and illustrative profiles of subjective state response to task stressors and environments. Evidence is also presented on stress state correlations with related variables, including personality, stress process measures, psychophysiological response, and objective task performance. Evidence supports the validity of the DSSQ as a task stress measure. Studies of various simulated environments show that different tasks elicit different profiles of stress state response. Operator characteristics such as resilience predict individual differences in state response to stressors. Structural equation modeling may be used to understand performance impacts of stress states. Multidimensional assessment affords insight into the stress process in a variety of human factors contexts. Integrating subjective and psychophysiological assessment is a priority for future research. Stress state measurement contributes to evaluating system design, countermeasures to stress and fatigue, and performance vulnerabilities. It may also support personnel selection and diagnostic monitoring of operators. © 2016, Human Factors and Ergonomics Society.

  19. High-pressure autoclave for multipurpose nuclear magnetic resonance measurements up to 10 MPa

    NASA Astrophysics Data System (ADS)

    Behr, W.; Haase, A.; Reichenauer, G.; Fricke, J.

    1999-05-01

    High-pressure nuclear magnetic resonance (NMR) is an established method in NMR spectroscopy: on-line coupling of high-performance liquid chromatography with NMR, for example, reveals structural information which cannot be obtained with any other method. However, applications has been focused solely on high-pressure NMR spectroscopy, even though high-pressure NMR imaging allows in situ studies of processes such as the fluid exchange in porous media. A versatile high-pressure autoclave for NMR imaging is described in this article. The autoclave allows measurements in any horizontal NMR imager using magnetic field coil systems with an inside diameter of more than 70 mm. Any sample with a diameter up to 28 mm and a length of about 200 mm can be investigated. The autoclave is constructed for operating pressures up to 10 MPa and is temperature controlled between 10 and 60 °C. The materials of the high-pressure cell which are the thermoplastic polyetheretherketon (PEEK) for the pressure tube and brass (63% Cu, 37% Zn) for the caps also permit investigations with aggressive fluids such as supercritical carbon dioxide. Inlet and outlet valves allow replacement of fluids and pressure variations in the autoclave during the NMR measurement. FLASH NMR images of the fluid exchange of methanol for liquid carbon dioxide in silica alcogels at 6.5 MPa are presented in order to demonstrate possible applications.

  20. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Lawrence R.; Hoyt, David W.; Walker, S. Michael

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolitemore » both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.« less

  1. Multidimensional Unfolding by Nonmetric Multidimensional Scaling of Spearman Distances in the Extended Permutation Polytope

    ERIC Educational Resources Information Center

    Van Deun, Katrijn; Heiser, Willem J.; Delbeke, Luc

    2007-01-01

    A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed: distance information about the unfolding data and about the distances both among judges and among objects is included in the complete matrix. The latter information is derived from the…

  2. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Nicotine Metabolite Ratio (3-hydroxycotinine/cotinine) in Plasma and Urine by Different Analytical Methods and Laboratories: Implications for Clinical Implementation

    PubMed Central

    Tanner, Julie-Anne; Novalen, Maria; Jatlow, Peter; Huestis, Marilyn A.; Murphy, Sharon E.; Kaprio, Jaakko; Kankaanpää, Aino; Galanti, Laurence; Stefan, Cristiana; George, Tony P.; Benowitz, Neal L.; Lerman, Caryn; Tyndale, Rachel F.

    2015-01-01

    Background The highly genetically variable enzyme CYP2A6 metabolizes nicotine to cotinine (COT) and COT to trans-3′-hydroxycotinine (3HC). The nicotine metabolite ratio (NMR, 3HC/COT) is commonly used as a biomarker of CYP2A6 enzymatic activity, rate of nicotine metabolism, and total nicotine clearance; NMR is associated with numerous smoking phenotypes, including smoking cessation. Our objective was to investigate the impact of different measurement methods, at different sites, on plasma and urinary NMR measures from ad libitum smokers. Methods Plasma (n=35) and urine (n=35) samples were sent to eight different laboratories, which employed similar and different methods of COT and 3HC measurements to derive the NMR. We used Bland-Altman analysis to assess agreement, and Pearson correlations to evaluate associations, between NMR measured by different methods. Results Measures of plasma NMR were in strong agreement between methods according to Bland-Altman analysis (ratios 0.82–1.16) and were highly correlated (all Pearson r>0.96, P<0.0001). Measures of urinary NMR were in relatively weaker agreement (ratios 0.62–1.71) and less strongly correlated (Pearson r values of 0.66–0.98, P<0.0001) between different methods. Plasma and urinary COT and 3HC concentrations, while weaker than NMR, also showed good agreement in plasma, which was better than in urine, as was observed for NMR. Conclusions Plasma is a very reliable biological source for the determination of NMR, robust to differences in these analytical protocols or assessment site. Impact Together this indicates a reduced need for differential interpretation of plasma NMR results based on the approach used, allowing for direct comparison of different studies. PMID:26014804

  4. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  5. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  6. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    PubMed

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-04

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.

  8. High-resolution detection of 13C multiplets from the conscious mouse brain by ex vivo NMR spectroscopy

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Jeffrey, F. Mark; Malloy, Craig R.; Pascual, Juan M.

    2011-01-01

    Glucose readily supplies the brain with the majority of carbon needed to sustain neurotransmitter production and utilization., The rate of brain glucose metabolism can be computed using 13C nuclear magnetic resonance (NMR) spectroscopy by detecting changes in 13C contents of products generated by cerebral metabolism. As previously observed, scalar coupling between adjacent 13C carbons (multiplets) can provide additional information to 13C contents for the computation of metabolic rates. Most NMR studies have been conducted in large animals (often under anesthesia) because the mass of the target organ is a limiting factor for NMR. Yet, despite the challengingly small size of the mouse brain, NMR studies are highly desirable because the mouse constitutes a common animal model for human neurological disorders. We have developed a method for the ex vivo resolution of NMR multiplets arising from the brain of an awake mouse after the infusion of [1,6-13C2]glucose. NMR spectra obtained by this method display favorable signal-to-noise ratios. With this protocol, the 13C multiplets of glutamate, glutamine, GABA and aspartate achieved steady state after 150 min. The method enables the accurate resolution of multiplets over time in the awake mouse brain. We anticipate that this method can be broadly applicable to compute brain fluxes in normal and transgenic mouse models of neurological disorders. PMID:21946227

  9. The relationship between the nicotine metabolite ratio and three self-report measures of nicotine dependence across sex and race.

    PubMed

    Schnoll, Robert A; George, Tony P; Hawk, Larry; Cinciripini, Paul; Wileyto, Paul; Tyndale, Rachel F

    2014-06-01

    Variability in the rate of nicotine metabolism, measured by the nicotine metabolite ratio (NMR), is associated with smoking behavior. However, data linking the NMR with nicotine dependence measured by the Fagerström test for nicotine dependence (FTND) are mixed. Few past studies have examined alternative measures of nicotine dependence and how this relationship may vary by sex and race. Using data from smokers undergoing eligibility evaluation for a smoking cessation clinical trial (n = 833), this study examined variability in the relationship between NMR and nicotine dependence across sex and race and using three measures of nicotine dependence: FTND, time-to-first-cigarette (TTFC), and the heaviness of smoking index (HSI). Controlling for sex and race, nicotine metabolism was associated with nicotine dependence only when using the HSI (p < 0.05). Male normal metabolizers of nicotine were more likely to have high nicotine dependence based on the FTND and HSI (p < 0.05), but NMR was not related to measures of nicotine dependence in women. For African Americans, the NMR was associated with nicotine dependence only for the TTFC (p < 0.05), but NMR was not associated with nicotine dependence among Caucasians. Post hoc analyses indicated that the NMR was associated with cigarettes per day, overall, and among men and Caucasians (p < 0.05). While there was some variation in the relationship between nicotine metabolism and nicotine dependence across measures and sex and race, the results indicate that this relationship may be more attributable to the association between NMR and cigarettes per day.

  10. A Preliminary Investigation of NSCL/P Plasma and Urine in Guizhou Province in China Using NMR-Based Metabonomics.

    PubMed

    Lei, Huang Guang; Hong, Luo; Kun, Song Ju; Hai, Yin Xin; Dong, Wang Ya; Ke, Zhao; Ping, Xu; Hao, Chen

    2013-09-01

    Objective : To assess the feasibility of metabonomics in clinical studies. This is a pilot study introducing nuclear magnetic resonance (NMR)-based metabonomics to elucidate and compare the metabolism of patients with nonsyndromic cleft lip and/or palate (NSCL/P) and children without orofacial clefts. Methods : High-resolution (1)H NMR spectroscopy was performed on plasma and urine samples obtained from NSCL/P and healthy children. The (1)H NMR spectra were further analyzed with principal component analysis. Results : Compared to the control group, the level of low-molecular-weight metabolites in plasma such as asparagine was higher in NSCL/P patients, while arginine, lysine, acetate, lactate, proline, glutamine, pyruvate, creatinine, choline, and β-glucose were lower. The carnitine, citrate, and formate excretion in urine appeared to be higher in the healthy children, while the NSCL/P group excreted higher concentrations of aspartic acid and phenylalanine in urine. Conclusion : The present study clearly demonstrated the great potential of NMR-based metabonomics in elucidating NSCL/P plasma metabolism and the possible application of this technology in clinical diagnosis and screening.

  11. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  12. Chiral discrimination of sibutramine enantiomers by capillary electrophoresis and proton nuclear magnetic resonance spectroscopy.

    PubMed

    Lee, Yong-Jae; Choi, Seungho; Lee, Jinhoo; Nguyen, NgocVan Thi; Lee, Kyungran; Kang, Jong Seong; Mar, Woongchon; Kim, Kyeong Ho

    2012-03-01

    Capillary electrophoresis (CE) and proton nuclear magnetic resonance spectroscopy ((1)H-NMR) have been used to discriminate the enantiomers of sibutramine using cyclodextrin derivatives. Possible correlation between CE and (1)H-NMR was examined. Good correlation between the (1)H-NMR shift non-equivalence data for sibutramine and the degree of enantioseparation in CE was observed. In CE study, a method of enantiomeric separation and quantitation of sibutramine was developed using enantiomeric standards. The method was based on the use of 50 mM of phosphate buffer of pH 3.0 with 10 mM of methyl-beta-cyclodextrin (M-β-CD). 0.05% of LOD, 0.2% of LOQ for S-sibutramine enantiomer was achieved, and the method was validated and applied to the quantitative determination of sibutramine enantiomers in commercial drugs. On a 600 MHz (1)H-NMR analysis, enantiomer signal separation of sibutramine was obtained by fast diastereomeric interaction with a chiral selector M-β-CD. For chiral separation and quantification, N-methyl proton peaks (at 2.18 ppm) were selected because of its being singlet and simple for understanding of diastereomeric interaction. Effects of temperature and concentration of chiral selector on enantiomer signal separation were investigated. The optimum condition was 0.5 mg/mL of sibutramine and 10 mg/mL of M-β-CD at 10°C. Distinguishment of 0.5% of S-sibutramine in R-sibutramine was found to be possible by (1)H-NMR with M-β-CD as chiral selector. Host-guest interaction between sibutramine and M-β-CD was confirmed by (1)H-NMR studies and CE studies. A Structure of the inclusion complex was proposed considering (1)H-NMR and 2D ROESY studies.

  13. Desktop NMR spectroscopy for real-time monitoring of an acetalization reaction in comparison with gas chromatography and NMR at 9.4 T.

    PubMed

    Singh, Kawarpal; Danieli, Ernesto; Blümich, Bernhard

    2017-12-01

    Monitoring of chemical reactions in real-time is in demand for process control. Different methods such as gas chromatography (GC), mass spectroscopy, infrared spectroscopy, and nuclear magnetic resonance (NMR) are used for that purpose. The current state-of-the-art compact NMR systems provide a useful method to employ with various reaction conditions for studying chemical reactions inside the fume hood at the chemical workplace. In the present study, an acetalization reaction was investigated with compact NMR spectroscopy in real-time. Acetalization is used for multistep synthesis of the variety of organic compounds to protect particular chemical groups. A compact 1 T NMR spectrometer with a permanent magnet was employed to monitor the acid catalyzed acetalization of the p-nitrobenzaldehyde with ethylene glycol. The concentrations of both reactant and product were followed by peak integrals in single-scan 1 H NMR spectra as a function of time. The reaction conditions were varied in terms of temperature, agitation speed, catalyst loading, and feed concentrations in order to determine the activation energy with the help of a pseudo-homogeneous kinetic model. For low molar ratios of aldehyde and glycol, the equilibrium conversions were lower than for the stoichiometric ratio. Increasing catalyst concentration leads to faster conversion. The data obtained with low-field NMR spectroscopy were compared with data from GC and NMR spectroscopy at 9.4 T acquired in batch mode by extracting samples at regular time intervals. The reaction kinetics followed by either method agreed well. The activation energies for forward and backward reactions were determined by real-time monitoring with compact NMR at 1 T were 48 ± 5 and 60 ± 4 kJ/mol, respectively. The activation energies obtained with gas chromatography for forward and backward reactions were 48 ± 4 and 51 ± 4 kJ/mol. The equilibrium constant decreases with increasing temperature as expected for an exothermic reaction. The impact of dense sampling with online NMR and sparse sampling with GC was observed on the kinetic outcome using the same kinetic model. Graphical abstract Acetalization reaction kinetics were monitored with real-time desktop NMR spectroscopy at 1 T. Each data point was obtained at regular intervals with a single shot in 15 s. The kinetics was compared with sparsely sampled data obtained with GC and NMR at 9.4 T.

  14. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  15. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  16. Multinuclear solid film state NMR studies of metal oxide catalysts and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, R.S.; Stec, D.F.; Ellis, P.D.

    1996-10-01

    Several of our investigations of heterogeneous process by novel NMR experiments and analyses are reviewed and the utility and limitations of NMR spectroscopy for these areas discussed. Out studies have included the following: dynamics and arrangements of proton-containing adsorbates, primarily Bronsted acid sites and water, on the surface of zirconia and alumina catalysts; hydrogen dynamics and coordinates in synthetic aluminum oxyhydroxides; phase separation and crystallinity of synthetic minerals. In combination with the complementary results obtained in our laboratory via infrared spectroscopy, thermal analysis (primarily TGA and DSC), and catalytic activity measurements, these NMR data provide unique and valuable information onmore » atomic and molecular dynamics, identities, and structures without requiring pristine, single crystal specimens.« less

  17. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  18. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE PAGES

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru; ...

    2017-07-06

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  19. NMR studies of the helical antiferromagnetic compound EuCo2P2

    NASA Astrophysics Data System (ADS)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  20. Further refinement of 17O TRAPDOR NMR methods for determining oxygen speciation in multi-component oxide glasses

    NASA Astrophysics Data System (ADS)

    LaComb, M.; Stebbins, J. F.

    2017-12-01

    Solid state nuclear magnetic resonance (NMR) spectroscopy has often been utilized to determine network speciation in oxide glasses, typically using NMR-active nuclides such as 11B, 27Al and 17O. High field strength magnets allow for visible separation between bridging (BO) and non-bridging oxygens (NBO) in 17O magic-angle spinning (MAS) NMR spectra, but many questions remain due to limited ability to directly observe NBO associated with silicon, boron or aluminum in ternary glass systems with MAS NMR techniques. Recent studies have utilized the combination of 17O{27Al} and 17O{11B} TRAnsfer of Population in DOuble-Resonance (TRAPDOR) NMR to attempt to separate out resonances for these different bridging and non-bridging oxygen species in multicomponent calcium aluminosilicate and aluminoborosilicate glasses and rare-earth aluminoborosilicates. With improved technology and better resolution of spectral components we were able to expand this study to a wider range of calcium aluminosilicate, aluminoborate and aluminoborosilicate glasses and further separate out resonances for both bridging and non-bridging oxygens coordinated with aluminum, boron and/or silicon cations in these glasses.

Top