Sample records for multidimensional prognostic systems

  1. Role of BMI, airflow obstruction, St George's Respiratory Questionnaire and age index in prognostication of Asian COPD.

    PubMed

    Chan, Hiang Ping; Mukhopadhyay, Amartya; Chong, Pauline Lee Poh; Chin, Sally; Wong, Xue Yun; Ong, Venetia; Chan, Yiong Huak; Lim, Tow Keang; Phua, Jason

    2017-01-01

    COPD is a complex condition with a heavy burden of disease. Many multidimensional tools have been studied for their prognostic utility but none has been universally adopted as each has its own limitations. We hypothesize that a multidimensional tool examining four domains, health-related quality of life, disease severity, systemic effects of disease and patient factors, would better categorize and prognosticate these patients. We first evaluated 300 patients and found four factors that predicted mortality: BMI, airflow obstruction, St George's Respiratory Questionnaire and age (BOSA). A 10-point index (BOSA index) was constructed and prospectively validated in a cohort of 772 patients with all-cause mortality as the primary outcome. Patients were categorized into their respective BOSA quartile group based on their BOSA score. Multivariate survival analyses and receiver operator characteristic (ROC) curves were used to assess the BOSA index. Patients in BOSA Group 4 were at higher risk of death compared with their counterparts in Group 1 (hazard ratio (HR): 0.29, 95% CI: 0.16-0.51, P < 0.001) and Group 2 (HR: 0.53, 95% CI: 0.34-0.82, P = 0.005). Race and gender did not affect mortality. The area under the ROC curve for BOSA index was 0.690 ± 0.025 while that for Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2011 was 0.641 ± 0.025 (P = 0.17). The BOSA index predicts mortality well and it has at least similar prognostic utility as GOLD 2011 in Asian patients. The BOSA index is a simple tool that does not require complex equipment or testing. It has the potential to be used widely. © 2016 Asian Pacific Society of Respirology.

  2. Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2011-01-01

    Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.

  3. Prognostic validation of the body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index in inoperable non-small-cell lung cancer.

    PubMed

    Denehy, Linda; Hornsby, Whitney E; Herndon, James E; Thomas, Samantha; Ready, Neal E; Granger, Catherine L; Valera, Lauren; Kenjale, Aarti A; Eves, Neil D; Jones, Lee W

    2013-12-01

    To investigate the prognostic utility of the body mass index, severity of airflow obstruction, measures of exertional dyspnea, and exercise capacity (BODE) index in patients with inoperable non-small-cell lung cancer (NSCLC). One hundred consecutive patients with inoperable NSCLC and performance status 0 to 3 completed pulmonary function testing, the modified Medical Research Council dyspnea scale, a 6-minute walk test, and body mass index-the multidimensional 10-point BODE index. Cox proportional models were used to estimate the risk of all-cause mortality according to the BODE index with or without adjustment for traditional prognostic factors. Median follow-up was 31.5 months; 61 deaths (61%) were reported during this period. There was a significant univariate association between the BODE index score and mortality (adjusted p(trend) = 0.027). Compared with patients with a BODE index of 0, the adjusted hazard ratio for risk of death was 1.37 (95% confidence interval [CI], 0.74-2.55) for a BODE index of 1, 1.22 (95% CI, 0.45-3.25) for a BODE index of 2, and 2.44 (95% CI, 1.19-4.99) for a BODE index more than 2. The BODE index provided incremental prognostic information beyond that provided traditional markers of prognosis (adjusted p(trend) = 0.051). Every one-point increase in the BODE index, the risk of death increased by 25% (hazard ratio = 1.25; 95% CI, 1.27-4.64). The BODE index is a strong independent predictor of survival in inoperable NSCLC beyond traditional risk factors. Use of this multidimensional tool may improve risk stratification and prognostication in NSCLC.

  4. Multidimensional assessment of patient condition and mutational analysis in peripheral blood, as tools to improve outcome prediction in myelodysplastic syndromes: A prospective study of the Spanish MDS group.

    PubMed

    Ramos, Fernando; Robledo, Cristina; Pereira, Arturo; Pedro, Carmen; Benito, Rocío; de Paz, Raquel; Del Rey, Mónica; Insunza, Andrés; Tormo, Mar; Díez-Campelo, María; Xicoy, Blanca; Salido, Eduardo; Sánchez-Del-Real, Javier; Arenillas, Leonor; Florensa, Lourdes; Luño, Elisa; Del Cañizo, Consuelo; Sanz, Guillermo F; María Hernández-Rivas, Jesús

    2017-09-01

    The International Prognostic Scoring System and its revised form (IPSS-R) are the most widely used indices for prognostic assessment of patients with myelodysplastic syndromes (MDS), but can only partially account for the observed variation in patient outcomes. This study aimed to evaluate the relative contribution of patient condition and mutational status in peripheral blood when added to the IPSS-R, for estimating overall survival and the risk of leukemic transformation in patients with MDS. A prospective cohort (2006-2015) of 200 consecutive patients with MDS were included in the study series and categorized according to the IPSS-R. Patients were further stratified according to patient condition (assessed using the multidimensional Lee index for older adults) and genetic mutations (peripheral blood samples screened using next-generation sequencing). The change in likelihood-ratio was tested in Cox models after adding individual covariates. The addition of the Lee index to the IPSS-R significantly improved prediction of overall survival [hazard ratio (HR) 3.02, 95% confidence interval (CI) 1.96-4.66, P < 0.001), and mutational analysis significantly improved prediction of leukemic evolution (HR 2.64, 1.56-4.46, P < 0.001). Non-leukemic death was strongly linked to patient condition (HR 2.71, 1.72-4.25, P < 0.001), but not to IPSS-R score (P = 0.35) or mutational status (P = 0.75). Adjustment for exposure to disease-modifying therapy, evaluated as a time-dependent covariate, had no effect on the proposed model's predictive ability. In conclusion, patient condition, assessed by the multidimensional Lee index and patient mutational status can improve the prediction of clinical outcomes of patients with MDS already stratified by IPSS-R. © 2017 Wiley Periodicals, Inc.

  5. The Comprehensive Geriatric Assessment and the multidimensional approach. A new look at the older patient with gastroenterological disorders.

    PubMed

    Pilotto, Alberto; Addante, Filomena; D'Onofrio, Grazia; Sancarlo, Daniele; Ferrucci, Luigi

    2009-01-01

    The Comprehensive Geriatric Assessment (CGA) is a multidimensional, usually interdisciplinary, diagnostic process intended to determine an elderly person's medical, psychosocial, and functional capacity and problems with the objective of developing an overall plan for treatment and short- and long-term follow-up. The potential usefulness of the CGA in evaluating treatment and follow-up of older patients with gastroenterological disorders is unknown. In the paper we reported the efficacy of a Multidimensional-Prognostic Index (MPI), calculated from information collected by a standardized CGA, in predicting mortality risk in older patients hospitalized with upper gastrointestinal bleeding and liver cirrhosis. Patients underwent a CGA that included six standardized scales, i.e. Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL), Short-Portable Mental Status Questionnaire (SPMSQ), Mini-Nutritional Assessment (MNA), Exton-Smith Score (ESS) and Comorbity Index Rating Scale (CIRS), as well as information on medication history and cohabitation, for a total of 63 items. The MPI was calculated from the integrated total scores and expressed as MPI 1=low risk, MPI 2=moderate risk and MPI 3=severe risk of mortality. Higher MPI values were significantly associated with higher short- and long-term mortality in older patients with both upper gastrointestinal bleeding and liver cirrhosis. A close agreement was found between the estimated mortality by MPI and the observed mortality. Moreover, MPI seems to have a greater discriminatory power than organ-specific prognostic indices such as Rockall and Blatchford scores (in upper gastrointestinal bleeding patients) and Child-Plugh score (in liver cirrhosis patients). All these findings support the concept that a multidimensional approach may be appropriate for the evaluation of older patients with gastroenterological disorders, like it has been reported for patients with other pathological conditions.

  6. Multi-dimensional scores to predict mortality in patients with idiopathic pulmonary fibrosis undergoing lung transplantation assessment.

    PubMed

    Fisher, Jolene H; Al-Hejaili, Faris; Kandel, Sonja; Hirji, Alim; Shapera, Shane; Mura, Marco

    2017-04-01

    The heterogeneous progression of idiopathic pulmonary fibrosis (IPF) makes prognostication difficult and contributes to high mortality on the waitlist for lung transplantation (LTx). Multi-dimensional scores (Composite Physiologic index [CPI], [Gender-Age-Physiology [GAP]; RIsk Stratification scorE [RISE]) demonstrated enhanced predictive power towards outcome in IPF. The lung allocation score (LAS) is a multi-dimensional tool commonly used to stratify patients assessed for LTx. We sought to investigate whether IPF-specific multi-dimensional scores predict mortality in patients with IPF assessed for LTx. The study included 302 patients with IPF who underwent a LTx assessment (2003-2014). Multi-dimensional scores were calculated. The primary outcome was 12-month mortality after assessment. LTx was considered as competing event in all analyses. At the end of the observation period, there were 134 transplants, 63 deaths, and 105 patients were alive without LTx. Multi-dimensional scores predicted mortality with accuracy similar to LAS, and superior to that of individual variables: area under the curve (AUC) for LAS was 0.78 (sensitivity 71%, specificity 86%); CPI 0.75 (sensitivity 67%, specificity 82%); GAP 0.67 (sensitivity 59%, specificity 74%); RISE 0.78 (sensitivity 71%, specificity 84%). A separate analysis conducted only in patients actively listed for LTx (n = 247; 50 deaths) yielded similar results. In patients with IPF assessed for LTx as well as in those actually listed, multi-dimensional scores predict mortality better than individual variables, and with accuracy similar to the LAS. If validated, multi-dimensional scores may serve as inexpensive tools to guide decisions on the timing of referral and listing for LTx. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Impact of targeting insulin-like growth factor signaling in head and neck cancers.

    PubMed

    Limesand, Kirsten H; Chibly, Alejandro Martinez; Fribley, Andrew

    2013-10-01

    The IGF system has been shown to have either negative or negligible impact on clinical outcomes of tumor development depending on specific tumor sites or stages. This review focuses on the clinical impact of IGF signaling in head and neck cancer, the effects of IGF targeted therapies, and the multi-dimensional role of IRS 1/2 signaling as a potential mechanism in resistance to targeted therapies. Similar to other tumor sites, both negative and positive correlations between levels of IGF-1/IGF-1-R and clinical outcomes in head and neck cancer have been reported. In addition, utilization of IGF targeted therapies has not demonstrated significant clinical benefit; therefore the prognostic impact of the IGF system on head and neck cancer remains uncertain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The G8 screening tool detects relevant geriatric impairments and predicts survival in elderly patients with a haematological malignancy.

    PubMed

    Hamaker, Marije E; Mitrovic, M; Stauder, R

    2014-06-01

    The G8 screening tool was developed to separate fit older cancer patients who were able to receive standard treatment from those that should undergo a geriatric assessment to guide tailoring of therapy. We set out to determine the discriminative power and prognostic value of the G8 in older patients with a haematological malignancy. Between September 2009 and May 2013, a multi-dimensional geriatric assessment was performed in consecutive patients aged ≥67 years diagnosed with blood cancer at the Innsbruck University Hospital. The assessment included (instrumental) activities of daily living, cognition, mood, nutritional status, mobility, polypharmacy and social support. In parallel, the G8 was also administered (cut-off ≤ 14). Using a cut-off of ≥2 impaired domains, 70 % of the 108 included patients were considered as having an impaired geriatric assessment while 61 % had an impaired G8. The G8 lacked discriminative power for impairments on full geriatric assessment: sensitivity 69, specificity 79, positive predictive value 89 and negative predictive value 50 %. However, G8 was an independent predictor of mortality within the first year after inclusion (hazard ratio 3.93; 95 % confidence interval 1.67-9.22, p < 0.001). Remarkably, patients with impaired G8 fared poorly, irrespective of treatment choices (p < 0.001). This is the first report on the clinical and prognostic relevance of G8 in elderly patients with haematological malignancies. Although the G8 lacked discriminative power for outcome of multi-dimensional geriatric assessment, this score appears to be a powerful prognosticator and could potentially represent a useful tool in treatment decisions. This novel finding certainly deserves further exploration.

  9. Prognostic relevance and performance characteristics of serum IGFBP-2 and PAPP-A in women with breast cancer: a long-term Danish cohort study.

    PubMed

    Espelund, Ulrick; Renehan, Andrew G; Cold, Søren; Oxvig, Claus; Lancashire, Lee; Su, Zhenqiang; Flyvbjerg, Allan; Frystyk, Jan

    2018-05-03

    Measurement of circulating insulin-like growth factors (IGFs), in particular IGF-binding protein (IGFBP)-2, at the time of diagnosis, is independently prognostic in many cancers, but its clinical performance against other routinely determined prognosticators has not been examined. We measured IGF-I, IGF-II, pro-IGF-II, IGF bioactivity, IGFBP-2, -3, and pregnancy-associated plasma protein A (PAPP-A), an IGFBP regulator, in baseline samples of 301 women with breast cancer treated on four protocols (Odense, Denmark: 1993-1998). We evaluated performance characteristics (expressed as area under the curve, AUC) using Cox regression models to derive hazard ratios (HR) with 95% confidence intervals (CIs) for 10-year recurrence-free survival (RFS) and overall survival (OS), and compared those against the clinically used Nottingham Prognostic Index (NPI). We measured the same biomarkers in 531 noncancer individuals to assess multidimensional relationships (MDR), and evaluated additional prognostic models using survival artificial neural network (SANN) and survival support vector machines (SSVM), as these enhance capture of MDRs. For RFS, increasing concentrations of circulating IGFBP-2 and PAPP-A were independently prognostic [HR biomarker doubling : 1.474 (95% CIs: 1.160, 1.875, P = 0.002) and 1.952 (95% CIs: 1.364, 2.792, P < 0.001), respectively]. The AUC RFS for NPI was 0.626 (Cox model), improving to 0.694 (P = 0.012) with the addition of IGFBP-2 plus PAPP-A. Derived AUC RFS using SANN and SSVM did not perform superiorly. Similar patterns were observed for OS. These findings illustrate an important principle in biomarker qualification-measured circulating biomarkers may demonstrate independent prognostication, but this does not necessarily translate into substantial improvement in clinical performance. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. A Distributed Approach to System-Level Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, Indranil

    2012-01-01

    Prognostics, which deals with predicting remaining useful life of components, subsystems, and systems, is a key technology for systems health management that leads to improved safety and reliability with reduced costs. The prognostics problem is often approached from a component-centric view. However, in most cases, it is not specifically component lifetimes that are important, but, rather, the lifetimes of the systems in which these components reside. The system-level prognostics problem can be quite difficult due to the increased scale and scope of the prognostics problem and the relative Jack of scalability and efficiency of typical prognostics approaches. In order to address these is ues, we develop a distributed solution to the system-level prognostics problem, based on the concept of structural model decomposition. The system model is decomposed into independent submodels. Independent local prognostics subproblems are then formed based on these local submodels, resul ting in a scalable, efficient, and flexible distributed approach to the system-level prognostics problem. We provide a formulation of the system-level prognostics problem and demonstrate the approach on a four-wheeled rover simulation testbed. The results show that the system-level prognostics problem can be accurately and efficiently solved in a distributed fashion.

  11. A novel prognostic six-CpG signature in glioblastomas.

    PubMed

    Yin, An-An; Lu, Nan; Etcheverry, Amandine; Aubry, Marc; Barnholtz-Sloan, Jill; Zhang, Lu-Hua; Mosser, Jean; Zhang, Wei; Zhang, Xiang; Liu, Yu-He; He, Ya-Long

    2018-03-01

    We aimed to identify a clinically useful biomarker using DNA methylation-based information to optimize individual treatment of patients with glioblastoma (GBM). A six-CpG panel was identified by incorporating genome-wide DNA methylation data and clinical information of three distinct discovery sets and was combined using a risk-score model. Different validation sets of GBMs and lower-grade gliomas and different statistical methods were implemented for prognostic evaluation. An integrative analysis of multidimensional TCGA data was performed to molecularly characterize different risk tumors. The six-CpG risk-score signature robustly predicted overall survival (OS) in all discovery and validation cohorts and in a treatment-independent manner. It also predicted progression-free survival (PFS) in available patients. The multimarker epigenetic signature was demonstrated as an independent prognosticator and had better performance than known molecular indicators such as glioma-CpG island methylator phenotype (G-CIMP) and proneural subtype. The defined risk subgroups were molecularly distinct; high-risk tumors were biologically more aggressive with concordant activation of proangiogenic signaling at multimolecular levels. Accordingly, we observed better OS benefits of bevacizumab-contained therapy to high-risk patients in independent sets, supporting its implication in guiding usage of antiangiogenic therapy. Finally, the six-CpG signature refined the risk classification based on G-CIMP and MGMT methylation status. The novel six-CpG signature is a robust and independent prognostic indicator for GBMs and is of promising value to improve personalized management. © 2018 John Wiley & Sons Ltd.

  12. Prognostic model for psychological outcomes in ambulatory surgery patients: A prospective study using a structural equation modeling framework.

    PubMed

    Mijderwijk, Hendrik-Jan; Stolker, Robert Jan; Duivenvoorden, Hugo J; Klimek, Markus; Steyerberg, Ewout W

    2018-01-01

    Surgical procedures are increasingly carried out in a day-case setting. Along with this increase, psychological outcomes have become prominent. The objective was to evaluate prospectively the prognostic effects of sociodemographic, medical, and psychological variables assessed before day-case surgery on psychological outcomes after surgery. The study was carried out between October 2010 and September 2011. We analyzed 398 mixed patients, from a randomized controlled trial, undergoing day-case surgery at a university medical center. Structural equation modeling was used to jointly study presurgical prognostic variables relating to sociodemographics (age, sex, nationality, marital status, having children, religion, educational level, employment), medical status (BMI, heart rate), and psychological status associated with anxiety (State-Trait Anxiety Inventory (STAI), Hospital Anxiety and Depression Scale (HADS-A)), fatigue (Multidimensional Fatigue Inventory (MFI)), aggression (State-Trait Anger Scale (STAS)), depressive moods (HADS-D), self-esteem, and self-efficacy. We studied psychological outcomes on day 7 after surgery, including anxiety, fatigue, depressive moods, and aggression regulation. The final prognostic model comprised the following variables: anxiety (STAI, HADS-A), fatigue (MFI), depression (HADS-D), aggression (STAS), self-efficacy, sex, and having children. The corresponding psychological variables as assessed at baseline were prominent (i.e. standardized regression coefficients ≥ 0.20), with STAI-Trait score being the strongest predictor overall. STAI-State (adjusted R2 = 0.44), STAI-Trait (0.66), HADS-A (0.45) and STAS-Trait (0.54) were best predicted. We provide a prognostic model that adequately predicts multiple postoperative outcomes in day-case surgery. Consequently, this enables timely identification of vulnerable patients who may require additional medical or psychological preventive treatment or-in a worst-case scenario-could be unselected for day-case surgery.

  13. A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems.

    PubMed

    Wu, Zhenyu; Guo, Yang; Lin, Wenfang; Yu, Shuyang; Ji, Yang

    2018-04-05

    Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs) and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM). However, two main challenges have significant influences on the traditional fault diagnostic models: one is that extracting hand-crafted features from multi-dimensional sensors with internal dependencies depends too much on expertise knowledge; the other is that imbalance pervasively exists among faulty and normal samples. As deep learning models have proved to be good methods for automatic feature extraction, the objective of this paper is to study an optimized deep learning model for imbalanced fault diagnosis for CPSs. Thus, this paper proposes a weighted Long Recurrent Convolutional LSTM model with sampling policy (wLRCL-D) to deal with these challenges. The model consists of 2-layer CNNs, 2-layer inner LSTMs and 2-Layer outer LSTMs, with under-sampling policy and weighted cost-sensitive loss function. Experiments are conducted on PHM 2015 challenge datasets, and the results show that wLRCL-D outperforms other baseline methods.

  14. A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems

    PubMed Central

    Guo, Yang; Lin, Wenfang; Yu, Shuyang; Ji, Yang

    2018-01-01

    Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs) and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM). However, two main challenges have significant influences on the traditional fault diagnostic models: one is that extracting hand-crafted features from multi-dimensional sensors with internal dependencies depends too much on expertise knowledge; the other is that imbalance pervasively exists among faulty and normal samples. As deep learning models have proved to be good methods for automatic feature extraction, the objective of this paper is to study an optimized deep learning model for imbalanced fault diagnosis for CPSs. Thus, this paper proposes a weighted Long Recurrent Convolutional LSTM model with sampling policy (wLRCL-D) to deal with these challenges. The model consists of 2-layer CNNs, 2-layer inner LSTMs and 2-Layer outer LSTMs, with under-sampling policy and weighted cost-sensitive loss function. Experiments are conducted on PHM 2015 challenge datasets, and the results show that wLRCL-D outperforms other baseline methods. PMID:29621131

  15. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  16. Systematic review of current prognostication systems for primary gastrointestinal stromal tumors.

    PubMed

    Khoo, Chun Yuet; Chai, Xun; Quek, Richard; Teo, Melissa C C; Goh, Brian K P

    2018-04-01

    The advent of tyrosine kinase inhibitors as adjuvant therapy has revolutionized the management of GIST and emphasized the need for accurate prognostication systems. Numerous prognostication systems have been proposed for GIST but at present it remains unknown which system is superior. The present systematic review aims to summarize current prognostication systems for primary treatment-naive GIST. A literature review of the Pubmed and Embase databases was performed to identify all published articles in English, from the 1st January 2002 to 28th Feb 2017, reporting on clinical prognostication systems of GIST. Twenty-three articles on GIST prognostication systems were included. These systems were classified as categorical systems, which stratify patients into risk groups, or continuous systems, which provide an individualized form of risk assessment. There were 16 categorical systems in total. There were 4 modifications of the National Institute of Health (NIH) system, 2 modifications of Armed Forces Institute of Pathology (AFIP) criteria and 3 modifications of Joensuu (modified NIH) criteria. Of the 7 continuous systems, there were 3 prognostic nomograms, 3 mathematical models and 1 prognostic heat/contour maps. Tumor size, location and mitotic count remain the main variables used in these systems. Numerous prognostication systems have been proposed for the risk stratification of GISTs. The most widely used systems today are the NIH, Joensuu modified NIH, AFIP and the Memorial Sloan Kettering Cancer Center nomogram. More validation and comparison studies are required to determine the optimal prognostication system for GIST. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  17. Distilling the Verification Process for Prognostics Algorithms

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai

    2013-01-01

    The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.

  18. A New Time-varying Concept of Risk in a Changing Climate.

    PubMed

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  19. Prognostic Analysis System and Methods of Operation

    NASA Technical Reports Server (NTRS)

    MacKey, Ryan M. E. (Inventor); Sneddon, Robert (Inventor)

    2014-01-01

    A prognostic analysis system and methods of operating the system are provided. In particular, a prognostic analysis system for the analysis of physical system health applicable to mechanical, electrical, chemical and optical systems and methods of operating the system are described herein.

  20. Prognostics for Microgrid Components

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav

    2012-01-01

    Prognostics is the science of predicting future performance and potential failures based on targeted condition monitoring. Moving away from the traditional reliability centric view, prognostics aims at detecting and quantifying the time to impending failures. This advance warning provides the opportunity to take actions that can preserve uptime, reduce cost of damage, or extend the life of the component. The talk will focus on the concepts and basics of prognostics from the viewpoint of condition-based systems health management. Differences with other techniques used in systems health management and philosophies of prognostics used in other domains will be shown. Examples relevant to micro grid systems and subsystems will be used to illustrate various types of prediction scenarios and the resources it take to set up a desired prognostic system. Specifically, the implementation results for power storage and power semiconductor components will demonstrate specific solution approaches of prognostics. The role of constituent elements of prognostics, such as model, prediction algorithms, failure threshold, run-to-failure data, requirements and specifications, and post-prognostic reasoning will be explained. A discussion on performance evaluation and performance metrics will conclude the technical discussion followed by general comments on open research problems and challenges in prognostics.

  1. Models of multidimensional discrete distribution of probabilities of random variables in information systems

    NASA Astrophysics Data System (ADS)

    Gromov, Yu Yu; Minin, Yu V.; Ivanova, O. G.; Morozova, O. N.

    2018-03-01

    Multidimensional discrete distributions of probabilities of independent random values were received. Their one-dimensional distribution is widely used in probability theory. Producing functions of those multidimensional distributions were also received.

  2. Diagnosis and Prognosis of Weapon Systems

    NASA Technical Reports Server (NTRS)

    Nolan, Mary; Catania, Rebecca; deMare, Gregory

    2005-01-01

    The Prognostics Framework is a set of software tools with an open architecture that affords a capability to integrate various prognostic software mechanisms and to provide information for operational and battlefield decision-making and logistical planning pertaining to weapon systems. The Prognostics NASA Tech Briefs, February 2005 17 Framework is also a system-level health -management software system that (1) receives data from performance- monitoring and built-in-test sensors and from other prognostic software and (2) processes the received data to derive a diagnosis and a prognosis for a weapon system. This software relates the diagnostic and prognostic information to the overall health of the system, to the ability of the system to perform specific missions, and to needed maintenance actions and maintenance resources. In the development of the Prognostics Framework, effort was focused primarily on extending previously developed model-based diagnostic-reasoning software to add prognostic reasoning capabilities, including capabilities to perform statistical analyses and to utilize information pertaining to deterioration of parts, failure modes, time sensitivity of measured values, mission criticality, historical data, and trends in measurement data. As thus extended, the software offers an overall health-monitoring capability.

  3. Multidimensional quantum entanglement with large-scale integrated optics.

    PubMed

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong; Santagati, Raffaele; Skrzypczyk, Paul; Salavrakos, Alexia; Tura, Jordi; Augusiak, Remigiusz; Mančinska, Laura; Bacco, Davide; Bonneau, Damien; Silverstone, Joshua W; Gong, Qihuang; Acín, Antonio; Rottwitt, Karsten; Oxenløwe, Leif K; O'Brien, Jeremy L; Laing, Anthony; Thompson, Mark G

    2018-04-20

    The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. A review on prognostic techniques for non-stationary and non-linear rotating systems

    NASA Astrophysics Data System (ADS)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  5. Generic Software Architecture for Prognostics (GSAP) User Guide

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher Allen; Daigle, Matthew John; Watkins, Jason; Sankararaman, Shankar; Goebel, Kai

    2016-01-01

    The Generic Software Architecture for Prognostics (GSAP) is a framework for applying prognostics. It makes applying prognostics easier by implementing many of the common elements across prognostic applications. The standard interface enables reuse of prognostic algorithms and models across systems using the GSAP framework.

  6. GENERAL: Scattering Phase Correction for Semiclassical Quantization Rules in Multi-Dimensional Quantum Systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung

    2010-02-01

    While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.

  7. Multidimensional effects in nonadiabatic statistical theories of spin- forbidden kinetics. A case study of 3O + CO → CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Ahren

    2015-04-14

    The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. We found that this coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin–orbit coupling, dynamicalmore » multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal(history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the 3O + CO → CO 2 reaction are compared with the results of statistical theories employing one-dimensional (Landau–Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. Furthermore, the MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems. The error in statistical calculations that neglect multidimensional effects is shown to be as large as a factor of 2 for this system, with static multidimensional effects identified as the largest source of error.« less

  8. A Generic Software Architecture For Prognostics

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason

    2017-01-01

    Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.

  9. Multidimensional motion measurement of a bimorph-type piezoelectric actuator using a diffraction grating target

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Bae, Eui Won; Kim, Soo Hyun; Kwak, Yoon Keun

    2001-09-01

    Precision actuators, such as pick-up actuators for HDDs or CD-ROMs, mostly show multidimensional motion. So, to evaluate them more completely, multidimensional measurement is required. Through structural variation and optimization of the design index, the performance of a measurement system can be improved to satisfy the requirement of this application, and so the resolution of each axis is higher than 0.1 μm for translation and 0.5 arcsec for rotation. Using this measurement system, the multidimensional motion and frequency transfer functions of a bimorph-type piezoelectric actuator are obtained.

  10. A new extranodal scoring system based on the prognostically relevant extranodal sites in diffuse large B-cell lymphoma, not otherwise specified treated with chemoimmunotherapy.

    PubMed

    Hwang, Hee Sang; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2016-08-01

    Extranodal involvement is a well-known prognostic factor in patients with diffuse large B-cell lymphomas (DLBCL). Nevertheless, the prognostic impact of the extranodal scoring system included in the conventional international prognostic index (IPI) has been questioned in an era where rituximab treatment has become widespread. We investigated the prognostic impacts of individual sites of extranodal involvement in 761 patients with DLBCL who received rituximab-based chemoimmunotherapy. Subsequently, we established a new extranodal scoring system based on extranodal sites, showing significant prognostic correlation, and compared this system with conventional scoring systems, such as the IPI and the National Comprehensive Cancer Network-IPI (NCCN-IPI). An internal validation procedure, using bootstrapped samples, was also performed for both univariate and multivariate models. Using multivariate analysis with a backward variable selection, we found nine extranodal sites (the liver, lung, spleen, central nervous system, bone marrow, kidney, skin, adrenal glands, and peritoneum) that remained significant for use in the final model. Our newly established extranodal scoring system, based on these sites, was better correlated with patient survival than standard scoring systems, such as the IPI and the NCCN-IPI. Internal validation by bootstrapping demonstrated an improvement in model performance of our modified extranodal scoring system. Our new extranodal scoring system, based on the prognostically relevant sites, may improve the performance of conventional prognostic models of DLBCL in the rituximab era and warrants further external validation using large study populations.

  11. Multi-Dimensional Damage Detection for Surfaces and Structures

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or sensory system, which may include a time domain reflectometer, resistivity monitoring hardware, or other resistance-based systems. To begin, a layered composite consisting of thin-film damage detection layers separated by non-damage detection layers is fabricated. The damage detection layers are attached to a detector that provides details regarding the physical health of each detection layer individually. If damage occurs to any of the detection layers, a change in the electrical properties of the detection layers damaged occurs, and a response is generated. Real-time analysis of these responses will provide details regarding the depth, location, and size estimation of the damage. Multiple damages can be detected, and the extent (depth) of the damage can be used to generate prognostic information related to the expected lifetime of the layered composite system. The detection system can be fabricated very easily using off-the-shelf equipment, and the detection algorithms can be written and updated (as needed) to provide the level of detail needed based on the system being monitored. Connecting to the thin film detection layers is very easy as well. The truly unique feature of the system is its flexibility; the system can be designed to gather as much (or as little) information as the end user feels necessary. Individual detection layers can be turned on or off as necessary, and algorithms can be used to optimize performance. The system can be used to generate both diagnostic and prognostic information related to the health of layer composite structures, which will be essential if such systems are utilized for space exploration. The technology is also applicable to other in-situ health monitoring systems for structure integrity.

  12. The Prognostic Value of the 8th Edition of the American Joint Committee on Cancer (AJCC) Staging System in HER2-Enriched Subtype Breast Cancer, a Retrospective Analysis.

    PubMed

    Zhou, Bin; Xu, Ling; Ye, Jingming; Xin, Ling; Duan, Xuening; Liu, Yinhua

    2017-08-01

    The American Joint Committee on Cancer (AJCC) released its 8th edition of tumor staging which is to be implemented in early 2018. The present study aimed to analyze the prognostic value of AJCC 8th edition Cancer Staging System in HER2-enriched breast cancer, on a retrospective cohort. This study was a retrospective single-center study of HER2-enriched breast cancer cases diagnosed from January 2008 to December 2014. Clinicopathological features and follow up data including disease-free survival (DFS) and overall survival (OS) were analyzed to explore prognostic factors for disease outcome. We restaged patients based on the 8th edition of the AJCC cancer staging system and analyzed prognostic value of the Anatomic Stage Group and the Prognostic Stage Group. The study enrolled 170 HER2-enriched subtype breast cancer patients with 5-year disease free survival (DFS) of 85.1% and 5-year overall survival (OS) of 86.8%. Prognostic stages of 117 cases (68.8%) changed compared with anatomic stages, with 116 upstaged cases and 1 downstaged case. The Anatomic Stage Groups had a significant prognostic impact on DFS (χ 2 =16.752, p<0.001) and OS (χ 2 =25.038, p<0.001). The Prognostic Staging Groups had a significant prognostic impact on DFS (χ 2 =6.577, p=0.037) and OS (χ 2 =21.762, p<0.001). In the multivariate analysis, both stage groups were independent predictors of OS. Both Anatomic and Prognostic Stage Groups in the 8th edition of the AJCC breast cancer staging system had prognostic value in HER2-enriched subtype breast cancer. The Prognostic Stage system was a breakthrough on the basis of anatomic staging system. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Multidimensional modulation for next-generation transmission systems

    NASA Astrophysics Data System (ADS)

    Millar, David S.; Koike-Akino, Toshiaki; Kojima, Keisuke; Parsons, Kieran

    2017-01-01

    Recent research in multidimensional modulation has shown great promise in long reach applications. In this work, we will investigate the origins of this gain, the different approaches to multidimensional constellation design, and different performance metrics for coded modulation. We will also discuss the reason that such coded modulation schemes seem to have limited application at shorter distances, and the potential for other coded modulation schemes in future transmission systems.

  14. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  15. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels

    NASA Astrophysics Data System (ADS)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2017-09-01

    Integrating prognostics to a real application requires a certain maturity level and for this reason there is a lack of success stories about development of a complete Prognostics and Health Management system. In fact, the maturity of prognostics is closely linked to data and domain specific entities like modeling. Basically, prognostics task aims at predicting the degradation of engineering assets. However, practically it is not possible to precisely predict the impending failure, which requires a thorough understanding to encounter different sources of uncertainty that affect prognostics. Therefore, different aspects crucial to the prognostics framework, i.e., from monitoring data to remaining useful life of equipment need to be addressed. To this aim, the paper contributes to state of the art and taxonomy of prognostics approaches and their application perspectives. In addition, factors for prognostics approach selection are identified, and new case studies from component-system level are discussed. Moreover, open challenges toward maturity of the prognostics under uncertainty are highlighted and scheme for an efficient prognostics approach is presented. Finally, the existing challenges for verification and validation of prognostics at different technology readiness levels are discussed with respect to open challenges.

  16. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lybeck; B. Pham; M. Tawfik

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure,more » and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and maintenance support. Each product is briefly described in Appendix A. Selection of the most appropriate software package for a particular application will depend on the chosen component, system, or structure. Ongoing research will determine the most appropriate choices for a successful demonstration of PHM systems in aging NPPs.« less

  17. Multi-dimensional Fokker-Planck equation analysis using the modified finite element method

    NASA Astrophysics Data System (ADS)

    Náprstek, J.; Král, R.

    2016-09-01

    The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only. So the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.

  18. An Uncertainty Quantification Framework for Prognostics and Condition-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2014-01-01

    This paper presents a computational framework for uncertainty quantification in prognostics in the context of condition-based monitoring of aerospace systems. The different sources of uncertainty and the various uncertainty quantification activities in condition-based prognostics are outlined in detail, and it is demonstrated that the Bayesian subjective approach is suitable for interpreting uncertainty in online monitoring. A state-space model-based framework for prognostics, that can rigorously account for the various sources of uncertainty, is presented. Prognostics consists of two important steps. First, the state of the system is estimated using Bayesian tracking, and then, the future states of the system are predicted until failure, thereby computing the remaining useful life of the system. The proposed framework is illustrated using the power system of a planetary rover test-bed, which is being developed and studied at NASA Ames Research Center.

  19. Modeling Quantum Dynamics in Multidimensional Systems

    NASA Astrophysics Data System (ADS)

    Liss, Kyle; Weinacht, Thomas; Pearson, Brett

    2017-04-01

    Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.

  20. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  1. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  2. Prognostic risk stratification derived from individual patient level data for men with advanced penile squamous cell carcinoma receiving first-line systemic therapy.

    PubMed

    Pond, Gregory R; Di Lorenzo, Giuseppe; Necchi, Andrea; Eigl, Bernhard J; Kolinsky, Michael P; Chacko, Raju T; Dorff, Tanya B; Harshman, Lauren C; Milowsky, Matthew I; Lee, Richard J; Galsky, Matthew D; Federico, Piera; Bolger, Graeme; DeShazo, Mollie; Mehta, Amitkumar; Goyal, Jatinder; Sonpavde, Guru

    2014-05-01

    Prognostic factors in men with penile squamous cell carcinoma (PSCC) receiving systemic therapy are unknown. A prognostic classification system in this disease may facilitate interpretation of outcomes and guide rational drug development. We performed a retrospective analysis to identify prognostic factors in men with PSCC receiving first-line systemic therapy for advanced disease. Individual patient level data were obtained from 13 institutions to study prognostic factors in the context of first-line systemic therapy for advanced PSCC. Cox proportional hazards regression analysis was conducted to examine the prognostic effect of these candidate factors on progression-free survival (PFS) and overall survival (OS): age, stage, hemoglobin, neutrophil count, lymphocyte count, albumin, site of metastasis (visceral or nonvisceral), smoking, circumcision, regimen, ECOG performance status (PS), lymphovascular invasion, precancerous lesion, and surgery following chemotherapy. The effect of different treatments was then evaluated adjusting for factors in the prognostic model. The study included 140 eligible men. Mean age across all men was 57.0 years. Among them, 8.6%, 21.4%, and 70.0% of patients had stage 2, 3, and 4 diseases, respectively; 40.7% had ECOG PS ≥ 1, 47.4% had visceral metastases, and 73.6% received cisplatin-based chemotherapy. The multivariate model of poor prognostic factors included visceral metastases (P<0.001) and ECOG PS ≥ 1 (P<0.001) for both PFS and OS. A risk stratification model constructed with 0, 1, and both poor prognostic factors was internally validated and demonstrated moderate discriminatory ability (c-statistic of 0.657 and 0.677 for OS and PFS, respectively). The median OS for the entire population was 9 months. Median OS was not reached, 8, and 7 months for those with 0, 1, and both risk factors, respectively. Cisplatin-based regimens were associated with better OS (P = 0.017) but not PFS (P = 0.37) compared with noncisplatin-based regimens after adjusting for the 2 prognostic factors. In men with advanced PSCC receiving first-line systemic therapy, visceral metastases and ECOG PS ≥ 1 were poor prognostic factors. A prognostic model including these factors exhibited moderate discriminatory ability for outcomes and warrants external validation. Patients receiving cisplatin-based regimens exhibited better outcomes compared with noncisplatin-based regimens after adjusting for prognostic factors. © 2013 Published by Elsevier Inc.

  3. The Multidimensional Aggression Scale for the Structured Doll Play Interview

    ERIC Educational Resources Information Center

    Abramson, Paul R.; And Others

    1974-01-01

    A multidimensional aggression scoring system for preschool children's responses to the structured doll play interview is described. The system, which incorporates previous investigator's findings, scales doll play responses along three dimensions of aggression: intensity, agent, and directionality. (Author)

  4. Prognostic Impact of the 6th and 7th American Joint Committee on Cancer TNM Staging Systems on Esophageal Cancer Patients Treated With Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Motoo, E-mail: excell@hkg.odn.ne.jp; Department of Radiation Oncology, Aichi Cancer Center Hospital; Shitara, Kohei

    2012-02-01

    Purpose: The new 7th edition of the American Joint Committee on Cancer TNM staging system is based on pathologic data from esophageal cancers treated by surgery alone. There is no information available on evaluation of the new staging system with regard to prognosis of patients treated with chemoradiotherapy (CRT). The objective of this study was to evaluate the prognostic impact of the new staging system on esophageal cancer patients treated with CRT. Methods and Materials: A retrospective review was performed on 301 consecutive esophageal squamous cell carcinoma patients treated with CRT. Comparisons were made of the prognostic impacts of themore » 6th and 7th staging systems and the prognostic impacts of stage and prognostic groups, which were newly defined in the 7th edition. Results: There were significant differences between Stages I and III (p < 0.01) according to both editions. However, the 7th edition poorly distinguishes the prognoses of Stages III and IV (p = 0.36 by multivariate analysis) in comparison to the 6th edition (p = 0.08 by multivariate analysis), although these differences were not significant. For all patients, T, M, and gender were independent prognostic factors by multivariate analysis (p < 0.05). For the Stage I and II prognostic groups, survival curves showed a stepwise decrease with increase in stage, except for Stage IIA. However, there were no significant differences seen between each prognostic stage. Conclusions: Our study indicates there are several problems with the 7th TNM staging system regarding prognostic factors in patients undergoing CRT.« less

  5. GPU Accelerated Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Daigle, Matthew J.; Sankararaman, Shankar; Kulkarni, Chetan S.; Ng, Eley

    2017-01-01

    Prognostic methods enable operators and maintainers to predict the future performance for critical systems. However, these methods can be computationally expensive and may need to be performed each time new information about the system becomes available. In light of these computational requirements, we have investigated the application of graphics processing units (GPUs) as a computational platform for real-time prognostics. Recent advances in GPU technology have reduced cost and increased the computational capability of these highly parallel processing units, making them more attractive for the deployment of prognostic software. We present a survey of model-based prognostic algorithms with considerations for leveraging the parallel architecture of the GPU and a case study of GPU-accelerated battery prognostics with computational performance results.

  6. Fibromyalgia Syndrome in Need of Effective Treatments

    PubMed Central

    Tsilioni, Irene; Arbetman, Lauren; Panagiotidou, Smaro; Stewart, Julia M.; Gleason, Rae M.; Russell, Irwin J.

    2015-01-01

    Fibromyalgia syndrome (FMS) is a chronic, idiopathic condition of widespread musculoskeletal pain, affecting primarily women. It is clinically characterized by chronic, nonarticular pain and a heightened response to pressure along with sleep disturbances, fatigue, bowel and bladder abnormalities, and cognitive dysfunction. The diagnostic criteria have changed repeatedly, and there is neither a definitive pathogenesis nor reliable diagnostic or prognostic biomarkers. Clinical and laboratory studies have provided evidence of altered central pain pathways. Recent evidence suggests the involvement of neuroinflammation with stress peptides triggering the release of neurosenzitizing mediators. The management of FMS requires a multidimensional approach including patient education, behavioral therapy, exercise, and pain management. Here we review recent data on the pathogenesis and propose new directions for research and treatment. PMID:26306765

  7. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Goebel, Kai

    2011-01-01

    Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  8. An inflammation-based cumulative prognostic score system in patients with diffuse large B cell lymphoma in rituximab era.

    PubMed

    Sun, Feifei; Zhu, Jia; Lu, Suying; Zhen, Zijun; Wang, Juan; Huang, Junting; Ding, Zonghui; Zeng, Musheng; Sun, Xiaofei

    2018-01-02

    Systemic inflammatory parameters are associated with poor outcomes in malignant patients. Several inflammation-based cumulative prognostic score systems were established for various solid tumors. However, there is few inflammation based cumulative prognostic score system for patients with diffuse large B cell lymphoma (DLBCL). We retrospectively reviewed 564 adult DLBCL patients who had received rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) therapy between Nov 1 2006 and Dec 30 2013 and assessed the prognostic significance of six systemic inflammatory parameters evaluated in previous studies by univariate and multivariate analysis:C-reactive protein(CRP), albumin levels, the lymphocyte-monocyte ratio (LMR), the neutrophil-lymphocyte ratio(NLR), the platelet-lymphocyte ratio(PLR)and fibrinogen levels. Multivariate analysis identified CRP, albumin levels and the LMR are three independent prognostic parameters for overall survival (OS). Based on these three factors, we constructed a novel inflammation-based cumulative prognostic score (ICPS) system. Four risk groups were formed: group ICPS = 0, ICPS = 1, ICPS = 2 and ICPS = 3. Advanced multivariate analysis indicated that the ICPS model is a prognostic score system independent of International Prognostic Index (IPI) for both progression-free survival (PFS) (p < 0.001) and OS (p < 0.001). The 3-year OS for patients with ICPS =0, ICPS =1, ICPS =2 and ICPS =3 were 95.6, 88.2, 76.0 and 62.2%, respectively (p < 0.001). The 3-year PFS for patients with ICPS = 0-1, ICPS = 2 and ICPS = 3 were 84.8, 71.6 and 54.5%, respectively (p < 0.001). The prognostic value of the ICPS model indicated that the degree of systemic inflammatory status was associated with clinical outcomes of patients with DLBCL in rituximab era. The ICPS model was shown to classify risk groups more accurately than any single inflammatory prognostic parameters. These findings may be useful for identifying candidates for further inflammation-related mechanism research or novel anti-inflammation target therapies.

  9. Temporal Causal Diagrams for Diagnosing Failures in Cyber Physical Systems

    DTIC Science & Technology

    2014-10-02

    11 P Open Close C Close none St Close Table 3. Transition Information for Distance Relay’s behavioral model. Rows 1-7 deal with the anomaly detection ... PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 238 ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 fall into the Zone settings of...OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 239 ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 event systems has

  10. A Survey of Attitudes towards the Clinical Application of Systemic Inflammation Based Prognostic Scores in Cancer.

    PubMed

    Watt, David G; Roxburgh, Campbell S; White, Mark; Chan, Juen Zhik; Horgan, Paul G; McMillan, Donald C

    2015-01-01

    The systemic inflammatory response (SIR) plays a key role in determining nutritional status and survival of patients with cancer. A number of objective scoring systems have been shown to have prognostic value; however, their application in routine clinical practice is not clear. The aim of the present survey was to examine the range of opinions internationally on the routine use of these scoring systems. An online survey was distributed to a target group consisting of individuals worldwide who have reported an interest in systemic inflammation in patients with cancer. Of those invited by the survey (n = 238), 65% routinely measured the SIR, mainly for research and prognostication purposes and clinically for allocation of adjuvant therapy or palliative chemotherapy. 40% reported that they currently used the Glasgow Prognostic Score/modified Glasgow Prognostic Score (GPS/mGPS) and 81% reported that a measure of systemic inflammation should be incorporated into clinical guidelines, such as the definition of cachexia. The majority of respondents routinely measured the SIR in patients with cancer, mainly using the GPS/mGPS for research and prognostication purposes. The majority reported that a measure of the SIR should be adopted into clinical guidelines.

  11. Prognostic scoring systems for myelodysplastic syndromes (MDS) in a population-based setting: a report from the Swedish MDS register.

    PubMed

    Moreno Berggren, Daniel; Folkvaljon, Yasin; Engvall, Marie; Sundberg, Johan; Lambe, Mats; Antunovic, Petar; Garelius, Hege; Lorenz, Fryderyk; Nilsson, Lars; Rasmussen, Bengt; Lehmann, Sören; Hellström-Lindberg, Eva; Jädersten, Martin; Ejerblad, Elisabeth

    2018-06-01

    The myelodysplastic syndromes (MDS) have highly variable outcomes and prognostic scoring systems are important tools for risk assessment and to guide therapeutic decisions. However, few population-based studies have compared the value of the different scoring systems. With data from the nationwide Swedish population-based MDS register we validated the International Prognostic Scoring System (IPSS), revised IPSS (IPSS-R) and the World Health Organization (WHO) Classification-based Prognostic Scoring System (WPSS). We also present population-based data on incidence, clinical characteristics including detailed cytogenetics and outcome from the register. The study encompassed 1329 patients reported to the register between 2009 and 2013, 14% of these had therapy-related MDS (t-MDS). Based on the MDS register, the yearly crude incidence of MDS in Sweden was 2·9 per 100 000 inhabitants. IPSS-R had a significantly better prognostic power than IPSS (P < 0·001). There was a trend for better prognostic power of IPSS-R compared to WPSS (P = 0·05) and for WPSS compared to IPSS (P = 0·07). IPSS-R was superior to both IPSS and WPSS for patients aged ≤70 years. Patients with t-MDS had a worse outcome compared to de novo MDS (d-MDS), however, the validity of the prognostic scoring systems was comparable for d-MDS and t-MDS. In conclusion, population-based studies are important to validate prognostic scores in a 'real-world' setting. In our nationwide cohort, the IPSS-R showed the best predictive power. © 2018 John Wiley & Sons Ltd.

  12. The frailty in elderly patients receiving cardiac interventional procedures (FRASER) program: rational and design of a multicenter prospective study.

    PubMed

    Campo, Gianluca; Pavasini, Rita; Maietti, Elisa; Tonet, Elisabetta; Cimaglia, Paolo; Scillitani, Giulia; Bugani, Giulia; Serenelli, Matteo; Zaraket, Fatima; Balla, Cristina; Trevisan, Filippo; Biscaglia, Simone; Sassone, Biagio; Galvani, Marcello; Ferrari, Roberto; Volpato, Stefano

    2017-10-01

    Frailty has become a high-priority issue in cardiovascular medicine because of the aging of cardiovascular patients. Simple and reproducible tools to assess frailty in elderly patients are clearly on demand. Their application may help physicians in the selection of invasive and medical treatments and in the timing and modality of the follow-up. The frailty in elderly patients receiving cardiac interventional procedures (FRASER) program is designed with the aim to validate the use of the short physical performance battery (SPPB) as prognostic tools in patients admitted to hospital for acute coronary syndrome (ACS). The FRASER program is a multicenter prospective study involving 4 Italian cardiology units. The FRASER program enrolls only patients aged ≥70 years. The core of the FRASER program includes patients admitted to hospital for ACS. The aims are (1) to describe SPPB distribution before hospital discharge and (2) to investigate the prognostic role of SPPB score. The primary outcome is a composite of 1-year all-cause mortality and hospital readmission for any cause. Ancillary analyses will be focused on different study populations (patients hospitalized for arrhythmias or acute heart failure or symptomatic severe aortic stenosis) and on different tools to assess frailty (multidimensional prognostic index, clinical frailty score, grip strength). The FRASER program will fill critical gaps in the knowledge regarding the link between frailty, cardiovascular disease, interventional procedures and outcome and will help physicians in the generation of a more personalized risk assessment and in the identification of potential targets for interventions.

  13. The US Navy’s Helicopter Integrated Diagnostics System (HIDS) Program: Power Drive Train Crack Detection Diagnostics and Prognostics Life Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and Experiences

    DTIC Science & Technology

    2000-02-01

    HIDS] Program: Power Drive Train Crack Detection Diagnostics and Prognostics ife Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and...and Prognostics , Life Usage Monitoring , and Damage Tolerance; Techniques, Methodologies, and Experiences Andrew Hess Harrison Chin William Hardman...continuing program and deployed engine monitoring systems in fixed to evaluate helicopter diagnostic, prognostic , and wing aircraft, notably on the A

  14. Validation of the Japanese disease severity classification and the GAP model in Japanese patients with idiopathic pulmonary fibrosis.

    PubMed

    Kondoh, Shun; Chiba, Hirofumi; Nishikiori, Hirotaka; Umeda, Yasuaki; Kuronuma, Koji; Otsuka, Mitsuo; Yamada, Gen; Ohnishi, Hirofumi; Mori, Mitsuru; Kondoh, Yasuhiro; Taniguchi, Hiroyuki; Homma, Sakae; Takahashi, Hiroki

    2016-09-01

    The clinical course of idiopathic pulmonary fibrosis (IPF) shows great inter-individual differences. It is important to standardize the severity classification to accurately evaluate each patient׳s prognosis. In Japan, an original severity classification (the Japanese disease severity classification, JSC) is used. In the United States, the new multidimensional index and staging system (the GAP model) has been proposed. The objective of this study was to evaluate the model performance for the prediction of mortality risk of the JSC and GAP models using a large cohort of Japanese patients with IPF. This is a retrospective cohort study including 326 patients with IPF in the Hokkaido prefecture from 2003 to 2007. We obtained the survival curves of each stage of the GAP and JSC models to perform a comparison. In the GAP model, the prognostic value for mortality risk of Japanese patients was also evaluated. In the JSC, patient prognoses were roughly divided into two groups, mild cases (Stages I and II) and severe cases (Stages III and IV). In the GAP model, there was no significant difference in survival between Stages II and III, and the mortality rates in the patients classified into the GAP Stages I and II were underestimated. It is difficult to predict accurate prognosis of IPF using the JSC and the GAP models. A re-examination of the variables from the two models is required, as well as an evaluation of the prognostic value to revise the severity classification for Japanese patients with IPF. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  15. An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

    NASA Astrophysics Data System (ADS)

    Del Pino, S.; Labourasse, E.; Morel, G.

    2018-06-01

    We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.

  16. [Prognostic factors of early 30-day mortality in elderly patients admitted to an emergency department].

    PubMed

    Morales Erazo, Alexander; Cardona Arango, Doris

    The main aim of this study was to identify the variables related to early mortality in the elderly at the time of admission to the emergency department. Using probability sampling, the study included patients 60 years old or older of both genders who were admitted for observation to the emergency department of the University Hospital of Nariño, ¿Colombia? in 2015. Using a questionnaire designed for this study, some multidimensional features that affect the health of the elderly were collected (demographic, clinical, psychological, functional, and social variables). The patients were then followed-up for 30 days in order to determine the mortality rate during this time. Univariate and multivariate logistic regressions and survival analysis were performed. Data were collected from 246 patients, with a mean age of 75.27 years and the majority female. The 30-day mortality rate was 15%. The variables most associated with death were: being female, temperature problems, initial diagnosis of neoplasia, and unable to walk independently in the emergency department. It is possible to determine the multidimensional factors present in the older patient admitted to an emergency department that could affect their 30-day mortality prognosis. and which should be intervened. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. [A MULTIDISCIPLINARY BIOPSYCHOSOCIAL INTEGRATED APPROACH IN ORGANIZATION OF REHABILITATIVE ACTIVITY IN NURSING HOMES (RSA)].

    PubMed

    Panella, Lorenzo; Piccioni, Davide; Borcescu, Lidia; Isella, Celeste; Callegari, Camilla

    2015-01-01

    Objectives, social role and organization of Italian nursing homes (RSA) are characterized by a pronounced regional differentiation that causes situations which are difficult to compare about expected outcomes. The definition of a functional outcome is particularly difficult in institutionalized patients and this is due to the failure of a conclusive moment of the rehabilitative treatment. Furthermore we often take care of patients who have already been admitted to intensive and/or extensive rehabilitation units time after time, without further functional profit margin. The inconstant presence of professional figures of rehabilitation in nursing homes' staff makes difficult the drafting of an adequate rehabilitative project, especially for the multiple needs of frail old people. Starting with these assumptions, authors hypothesize and adopt a model of sanitary organization to consent a correct allocation of available resources, according to the patient's needs. They stratified all nursing home patients, using the Multidimensional Prognostic Index (MPI) and "Scheda di osservazione intermedia assistenza" (SOSIA), and measured the residual function. They concluded that a multidimensional evaluation of patients allows to identify wellness (of the sick person and of caregivers) as the main objective; nursing home organization could be think as a "complex supportive prosthesis for old people", made by the interaction among structure, operators and activities.

  18. Comparison of the prognostic utility of the revised International Prognostic Scoring System and the French Prognostic Scoring System in azacitidine-treated patients with myelodysplastic syndromes.

    PubMed

    Zeidan, Amer M; Lee, Ju-Whei; Prebet, Thomas; Greenberg, Peter; Sun, Zhuoxin; Juckett, Mark; Smith, Mitchell R; Paietta, Elisabeth; Gabrilove, Janice; Erba, Harry P; Tallman, Martin S; Gore, Steven D

    2014-08-01

    The revised International Prognostic Scoring System (IPSS-R) was developed in a cohort of untreated myelodysplastic syndromes (MDS) patients. A French Prognostic Scoring System (FPSS) was recently reported to identify differential survival among azacitidine-treated patients with high-risk MDS. We applied the FPSS and IPSS-R to 150 patients previously randomized to azacitidine monotherapy or a combination of azacitidine with entinostat (a histone deacetylase inhibitor). Neither score predicted response but both discriminated patients with different overall survival (OS; median OS, FPSS: 9·7, 14·7, and 25·3 months, P = 0·018; IPSS-R: 12·5, 11·3, 20·8, and 36 months, P = 0·005). Statistical analysis suggested no improvement in OS prediction for the FPSS over the IPSS-R in azacitidine-treated patients. © 2014 John Wiley & Sons Ltd.

  19. Reliability and Validity of the Chinese Version of the Multidimensional Anxiety Scale for Children among Chinese Secondary School Students

    ERIC Educational Resources Information Center

    Yao, Shuqiao; Zou, Tao; Zhu, Xiongzhao; Abela, John R. Z.; Auerbach, Randy P.; Tong, Xi

    2007-01-01

    The objective of the current study was to develop a Chinese translation of the Multidimensional Anxiety Scale for Children (MASC) [March (1997) Multidimensional anxiety scale for children: Technical manual, Multi health systems, Toronto, ON], and to evaluate its reliability and validity. The original version of the MASC was translated into Chinese…

  20. A Clinical Decision Support System for Breast Cancer Patients

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.

    This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.

  1. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  2. Particle filter based hybrid prognostics for health monitoring of uncertain systems in bond graph framework

    NASA Astrophysics Data System (ADS)

    Jha, Mayank Shekhar; Dauphin-Tanguy, G.; Ould-Bouamama, B.

    2016-06-01

    The paper's main objective is to address the problem of health monitoring of system parameters in Bond Graph (BG) modeling framework, by exploiting its structural and causal properties. The system in feedback control loop is considered uncertain globally. Parametric uncertainty is modeled in interval form. The system parameter is undergoing degradation (prognostic candidate) and its degradation model is assumed to be known a priori. The detection of degradation commencement is done in a passive manner which involves interval valued robust adaptive thresholds over the nominal part of the uncertain BG-derived interval valued analytical redundancy relations (I-ARRs). The latter forms an efficient diagnostic module. The prognostics problem is cast as joint state-parameter estimation problem, a hybrid prognostic approach, wherein the fault model is constructed by considering the statistical degradation model of the system parameter (prognostic candidate). The observation equation is constructed from nominal part of the I-ARR. Using particle filter (PF) algorithms; the estimation of state of health (state of prognostic candidate) and associated hidden time-varying degradation progression parameters is achieved in probabilistic terms. A simplified variance adaptation scheme is proposed. Associated uncertainties which arise out of noisy measurements, parametric degradation process, environmental conditions etc. are effectively managed by PF. This allows the production of effective predictions of the remaining useful life of the prognostic candidate with suitable confidence bounds. The effectiveness of the novel methodology is demonstrated through simulations and experiments on a mechatronic system.

  3. A Distributed Approach to System-Level Prognostics

    DTIC Science & Technology

    2012-09-01

    the end of (useful) life ( EOL ) and/or the remaining useful life (RUL) of components, subsystems, or systems. The prognostics problem itself can be...system state estimate, computes EOL and/or RUL. In this paper, we focus on a model-based prognostics approach (Orchard & Vachtse- vanos, 2009; Daigle...been focused on individual components, and determining their EOL and RUL, e.g., (Orchard & Vachtsevanos, 2009; Saha & Goebel, 2009; Daigle & Goebel

  4. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  5. Advanced Methods for Determining Prediction Uncertainty in Model-Based Prognostics with Application to Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Sankararaman, Shankar

    2013-01-01

    Prognostics is centered on predicting the time of and time until adverse events in components, subsystems, and systems. It typically involves both a state estimation phase, in which the current health state of a system is identified, and a prediction phase, in which the state is projected forward in time. Since prognostics is mainly a prediction problem, prognostic approaches cannot avoid uncertainty, which arises due to several sources. Prognostics algorithms must both characterize this uncertainty and incorporate it into the predictions so that informed decisions can be made about the system. In this paper, we describe three methods to solve these problems, including Monte Carlo-, unscented transform-, and first-order reliability-based methods. Using a planetary rover as a case study, we demonstrate and compare the different methods in simulation for battery end-of-discharge prediction.

  6. Distributed Prognostic Health Management with Gaussian Process Regression

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Saha, Bhaskar; Saxena, Abhinav; Goebel, Kai Frank

    2010-01-01

    Distributed prognostics architecture design is an enabling step for efficient implementation of health management systems. A major challenge encountered in such design is formulation of optimal distributed prognostics algorithms. In this paper. we present a distributed GPR based prognostics algorithm whose target platform is a wireless sensor network. In addition to challenges encountered in a distributed implementation, a wireless network poses constraints on communication patterns, thereby making the problem more challenging. The prognostics application that was used to demonstrate our new algorithms is battery prognostics. In order to present trade-offs within different prognostic approaches, we present comparison with the distributed implementation of a particle filter based prognostics for the same battery data.

  7. Information-Processing Architectures in Multidimensional Classification: A Validation Test of the Systems Factorial Technology

    ERIC Educational Resources Information Center

    Fific, Mario; Nosofsky, Robert M.; Townsend, James T.

    2008-01-01

    A growing methodology, known as the systems factorial technology (SFT), is being developed to diagnose the types of information-processing architectures (serial, parallel, or coactive) and stopping rules (exhaustive or self-terminating) that operate in tasks of multidimensional perception. Whereas most previous applications of SFT have been in…

  8. Multidimensional Profiling of Task Stress States for Human Factors: A Brief Review.

    PubMed

    Matthews, Gerald

    2016-09-01

    This article advocates multidimensional assessment of task stress in human factors and reviews the use of the Dundee Stress State Questionnaire (DSSQ) for evaluation of systems and operators. Contemporary stress research has progressed from an exclusive focus on environmental stressors to transactional perspectives on the stress process. Performance impacts of stress reflect the operator's dynamic attempts to understand and cope with task demands. Multidimensional stress assessments are necessary to gauge the different forms of system-operator interaction. This review discusses the theoretical and practical use of the DSSQ in evaluating multidimensional patterns of stress response. It presents psychometric evidence for the multidimensional perspective and illustrative profiles of subjective state response to task stressors and environments. Evidence is also presented on stress state correlations with related variables, including personality, stress process measures, psychophysiological response, and objective task performance. Evidence supports the validity of the DSSQ as a task stress measure. Studies of various simulated environments show that different tasks elicit different profiles of stress state response. Operator characteristics such as resilience predict individual differences in state response to stressors. Structural equation modeling may be used to understand performance impacts of stress states. Multidimensional assessment affords insight into the stress process in a variety of human factors contexts. Integrating subjective and psychophysiological assessment is a priority for future research. Stress state measurement contributes to evaluating system design, countermeasures to stress and fatigue, and performance vulnerabilities. It may also support personnel selection and diagnostic monitoring of operators. © 2016, Human Factors and Ergonomics Society.

  9. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  10. Using prognostic models in CLL to personalize approach to clinical care: Are we there yet?

    PubMed

    Mina, Alain; Sandoval Sus, Jose; Sleiman, Elsa; Pinilla-Ibarz, Javier; Awan, Farrukh T; Kharfan-Dabaja, Mohamed A

    2018-03-01

    Four decades ago, two staging systems were developed to help stratify CLL into different prognostic categories. These systems, the Rai and the Binet staging, depended entirely on abnormal exam findings and evidence of anemia and thrombocytopenia. Better understanding of biologic, genetic, and molecular characteristics of CLL have contributed to better appreciating its clinical heterogeneity. New prognostic models, the GCLLSG prognostic index and the CLL-IPI, emerged. They incorporate biologic and genetic information related to CLL and are capable of predicting survival outcomes and cases anticipated to need therapy earlier in the disease course. Accordingly, these newer models are helping develop better informed surveillance strategies and ultimately tailor treatment intensity according to presence (or lack thereof) of certain prognostic markers. This represents a step towards personalizing care of CLL patients. We anticipate that as more prognostic factors continue to be identified, the GCLLSG prognostic index and CLL-IPI models will undergo further revisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Validation of cytogenetic risk groups according to International Prognostic Scoring Systems by peripheral blood CD34+FISH: results from a German diagnostic study in comparison with an international control group

    PubMed Central

    Braulke, Friederike; Platzbecker, Uwe; Müller-Thomas, Catharina; Götze, Katharina; Germing, Ulrich; Brümmendorf, Tim H.; Nolte, Florian; Hofmann, Wolf-Karsten; Giagounidis, Aristoteles A. N.; Lübbert, Michael; Greenberg, Peter L.; Bennett, John M.; Solé, Francesc; Mallo, Mar; Slovak, Marilyn L.; Ohyashiki, Kazuma; Le Beau, Michelle M.; Tüchler, Heinz; Pfeilstöcker, Michael; Nösslinger, Thomas; Hildebrandt, Barbara; Shirneshan, Katayoon; Aul, Carlo; Stauder, Reinhard; Sperr, Wolfgang R.; Valent, Peter; Fonatsch, Christa; Trümper, Lorenz; Haase, Detlef; Schanz, Julie

    2015-01-01

    International Prognostic Scoring Systems are used to determine the individual risk profile of myelodysplastic syndrome patients. For the assessment of International Prognostic Scoring Systems, an adequate chromosome banding analysis of the bone marrow is essential. Cytogenetic information is not available for a substantial number of patients (5%–20%) with dry marrow or an insufficient number of metaphase cells. For these patients, a valid risk classification is impossible. In the study presented here, the International Prognostic Scoring Systems were validated based on fluorescence in situ hybridization analyses using extended probe panels applied to cluster of differentiation 34 positive (CD34+) peripheral blood cells of 328 MDS patients of our prospective multicenter German diagnostic study and compared to chromosome banding results of 2902 previously published patients with myelodysplastic syndromes. For cytogenetic risk classification by fluorescence in situ hybridization analyses of CD34+ peripheral blood cells, the groups differed significantly for overall and leukemia-free survival by uni- and multivariate analyses without discrepancies between treated and untreated patients. Including cytogenetic data of fluorescence in situ hybridization analyses of peripheral CD34+ blood cells (instead of bone marrow banding analysis) into the complete International Prognostic Scoring System assessment, the prognostic risk groups separated significantly for overall and leukemia-free survival. Our data show that a reliable stratification to the risk groups of the International Prognostic Scoring Systems is possible from peripheral blood in patients with missing chromosome banding analysis by using a comprehensive probe panel (clinicaltrials.gov identifier:01355913). PMID:25344522

  12. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  13. Rotor Smoothing and Vibration Monitoring Results for the US Army VMEP

    DTIC Science & Technology

    2009-06-01

    individual component CI detection thresholds, and development of models for diagnostics, prognostics , and anomaly detection . Figure 16 VMEP Server...and prognostics are of current interest. Development of those systems requires large amounts of data (collection, monitoring , manipulation) to capture...development of automated systems and for continuous updating of algorithms to improve detection , classification, and prognostic performance. A test

  14. Multidimensional Data Modeling for Business Process Analysis

    NASA Astrophysics Data System (ADS)

    Mansmann, Svetlana; Neumuth, Thomas; Scholl, Marc H.

    The emerging area of business process intelligence attempts to enhance the analytical capabilities of business process management systems by employing data warehousing and mining technologies. This paper presents an approach to re-engineering the business process modeling in conformity with the multidimensional data model. Since the business process and the multidimensional model are driven by rather different objectives and assumptions, there is no straightforward solution to converging these models.

  15. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai

    2011-01-01

    Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.

  16. ALAT-2014 Chronic Obstructive Pulmonary Disease (COPD) Clinical Practice Guidelines: questions and answers.

    PubMed

    Montes de Oca, María; López Varela, María Victorina; Acuña, Agustín; Schiavi, Eduardo; Rey, María Alejandra; Jardim, José; Casas, Alejandro; Tokumoto, Antonio; Torres Duque, Carlos A; Ramírez-Venegas, Alejandra; García, Gabriel; Stirbulov, Roberto; Camelier, Aquiles; Bergna, Miguel; Cohen, Mark; Guzmán, Santiago; Sánchez, Efraín

    2015-08-01

    ALAT-2014 COPD Clinical Practice Guidelines used clinical questions in PICO format to compile evidence related to risk factors, COPD screening, disease prognosis, treatment and exacerbations. Evidence reveals the existence of risk factors for COPD other than tobacco, as well as gender differences in disease presentation. It shows the benefit of screening in an at-risk population, and the predictive value use of multidimensional prognostic indexes. In stable COPD, similar benefits in dyspnea, pulmonary function and quality of life are achieved with LAMA or LABA long-acting bronchodilators, whereas LAMA is more effective in preventing exacerbations. Dual bronchodilator therapy has more benefits than monotherapy. LAMA and combination LABA/IC are similarly effective, but there is an increased risk of pneumonia with LABA/IC. Data on the efficacy and safety of triple therapy are scarce. Evidence supports influenza vaccination in all patients and anti-pneumococcal vaccination in patients <65years of age and/or with severe airflow limitation. Antibiotic prophylaxis may decrease exacerbation frequency in patients at risk. The use of systemic corticosteroids and antibiotics are justified in exacerbations requiring hospitalization and in some patients managed in an outpatient setting. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  17. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  18. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  19. 6D Visualization of Multidimensional Data by Means of Cognitive Technology

    NASA Astrophysics Data System (ADS)

    Vitkovskiy, V.; Gorohov, V.; Komarinskiy, S.

    2010-12-01

    On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously. The Space Hedgehog system is the next step in the cognitive means of the multidimensional data analyze. The technique and technology cognitive 6D visualization of the multidimensional data is developed on the basis of the cognitive visualization research and technology development. The Space Hedgehog system allows direct dynamic visualization of 6D objects. It is developed with use of experience of the program Space Walker creation and its applications.

  20. Health assessment questionnaire score is the best predictor of 5-year quality of life in early rheumatoid arthritis.

    PubMed

    Cohen, Jean-David; Dougados, Maxime; Goupille, Philippe; Cantagrel, Alain; Meyer, Olivier; Sibilia, Jean; Daurès, Jean-Pierre; Combe, Bernard

    2006-10-01

    To evaluate and determine prognostic factors of 5-year quality of life in patients with early rheumatoid arthritis (RA). A cohort of 191 patients with RA and disease duration < 1 year was prospectively followed over 5 years. The outcome measure was quality of life as assessed by the Arthritis Impact Measurement Scales 2 (AIMS2). Univariate analysis, then stepwise multiple logistic regression, was used to find independent baseline prognostic variables. After accounting for death, loss of followup, and missing data, 158 patients (82.72%) were included in the analysis. The mean AIMS2 physical, symptom, psychological, social interaction, and work scores after 5 years were 1.6 (range 0-6.88), 4.0 (0-10), 3.48 (0-9.22), 4.06 (0-8.69), and 1.87 (0-8.13), respectively. The AIMS2 physical component was significantly correlated with Health Assessment Questionnaire (HAQ) score at 5 years. Logistic regression analysis revealed that the baseline values able to predict the 5-year physical, psychological, symptom, social interaction, and work status were, respectively: HAQ score and erythrocyte sedimentation rate (ESR), body mass index (BMI), HAQ; erosion score and sex, HAQ; ESR and anti-perinuclear antibody; matrix metalloproteinase-3 (MMP3) level, joint space narrowing, and tender joint scores; HAQ score and age. The multidimensional structure of the AIMS2 allowed us to assess the 5-year health-related quality of life in early RA. Using this instrument as an outcome variable, prognostic factors were selected and varied widely depending on the evaluated domain. The baseline HAQ score was the best predictive factor of 4 of the 5 domains of the AIMS2.

  1. Intelligent approach to prognostic enhancements of diagnostic systems

    NASA Astrophysics Data System (ADS)

    Vachtsevanos, George; Wang, Peng; Khiripet, Noppadon; Thakker, Ash; Galie, Thomas R.

    2001-07-01

    This paper introduces a novel methodology to prognostics based on a dynamic wavelet neural network construct and notions from the virtual sensor area. This research has been motivated and supported by the U.S. Navy's active interest in integrating advanced diagnostic and prognostic algorithms in existing Naval digital control and monitoring systems. A rudimentary diagnostic platform is assumed to be available providing timely information about incipient or impending failure conditions. We focus on the development of a prognostic algorithm capable of predicting accurately and reliably the remaining useful lifetime of a failing machine or component. The prognostic module consists of a virtual sensor and a dynamic wavelet neural network as the predictor. The virtual sensor employs process data to map real measurements into difficult to monitor fault quantities. The prognosticator uses a dynamic wavelet neural network as a nonlinear predictor. Means to manage uncertainty and performance metrics are suggested for comparison purposes. An interface to an available shipboard Integrated Condition Assessment System is described and applications to shipboard equipment are discussed. Typical results from pump failures are presented to illustrate the effectiveness of the methodology.

  2. A Testbed for Data Fusion for Engine Diagnostics and Prognostics1

    DTIC Science & Technology

    2002-03-01

    detected ; too late to be useful for prognostics development. Table 1. Table of acronyms ACRONYM MEANING AD Anomaly detector...strictly defined points. Determining where we are on the engine health curve is the first step in prognostics . Fault detection / diagnostic reasoning... Detection As described above the ability of the monitoring system to detect an anomaly is especially important for knowledge-based systems, i.e.,

  3. A Testbed for Data Fusion for Helicopter Diagnostics and Prognostics

    DTIC Science & Technology

    2003-03-01

    and algorithm design and tuning in order to develop advanced diagnostic and prognostic techniques for air craft health monitoring . Here a...and development of models for diagnostics, prognostics , and anomaly detection . Figure 5 VMEP Server Browser Interface 7 Download... detections , and prognostic prediction time horizons. The VMEP system and in particular the web component are ideal for performing data collection

  4. Embedded Diagnostic/Prognostic Reasoning and Information Continuity for Improved Avionics Maintenance

    DTIC Science & Technology

    2006-01-01

    enabling technologies such as built-in-test, advanced health monitoring algorithms, reliability and component aging models, prognostics methods, and...deployment and acceptance. This framework and vision is consistent with the onboard PHM ( Prognostic and Health Management) as well as advanced... monitored . In addition to the prognostic forecasting capabilities provided by monitoring system power, multiple confounding errors by electronic

  5. Validation of cytogenetic risk groups according to International Prognostic Scoring Systems by peripheral blood CD34+FISH: results from a German diagnostic study in comparison with an international control group.

    PubMed

    Braulke, Friederike; Platzbecker, Uwe; Müller-Thomas, Catharina; Götze, Katharina; Germing, Ulrich; Brümmendorf, Tim H; Nolte, Florian; Hofmann, Wolf-Karsten; Giagounidis, Aristoteles A N; Lübbert, Michael; Greenberg, Peter L; Bennett, John M; Solé, Francesc; Mallo, Mar; Slovak, Marilyn L; Ohyashiki, Kazuma; Le Beau, Michelle M; Tüchler, Heinz; Pfeilstöcker, Michael; Nösslinger, Thomas; Hildebrandt, Barbara; Shirneshan, Katayoon; Aul, Carlo; Stauder, Reinhard; Sperr, Wolfgang R; Valent, Peter; Fonatsch, Christa; Trümper, Lorenz; Haase, Detlef; Schanz, Julie

    2015-02-01

    International Prognostic Scoring Systems are used to determine the individual risk profile of myelodysplastic syndrome patients. For the assessment of International Prognostic Scoring Systems, an adequate chromosome banding analysis of the bone marrow is essential. Cytogenetic information is not available for a substantial number of patients (5%-20%) with dry marrow or an insufficient number of metaphase cells. For these patients, a valid risk classification is impossible. In the study presented here, the International Prognostic Scoring Systems were validated based on fluorescence in situ hybridization analyses using extended probe panels applied to cluster of differentiation 34 positive (CD34(+)) peripheral blood cells of 328 MDS patients of our prospective multicenter German diagnostic study and compared to chromosome banding results of 2902 previously published patients with myelodysplastic syndromes. For cytogenetic risk classification by fluorescence in situ hybridization analyses of CD34(+) peripheral blood cells, the groups differed significantly for overall and leukemia-free survival by uni- and multivariate analyses without discrepancies between treated and untreated patients. Including cytogenetic data of fluorescence in situ hybridization analyses of peripheral CD34(+) blood cells (instead of bone marrow banding analysis) into the complete International Prognostic Scoring System assessment, the prognostic risk groups separated significantly for overall and leukemia-free survival. Our data show that a reliable stratification to the risk groups of the International Prognostic Scoring Systems is possible from peripheral blood in patients with missing chromosome banding analysis by using a comprehensive probe panel (clinicaltrials.gov identifier:01355913). Copyright© Ferrata Storti Foundation.

  6. Which is the optimal risk stratification system for surgically treated localized primary GIST? Comparison of three contemporary prognostic criteria in 171 tumors and a proposal for a modified Armed Forces Institute of Pathology risk criteria.

    PubMed

    Goh, Brian K P; Chow, Pierce K H; Yap, Wai-Ming; Kesavan, Sittampalam M; Song, In-Chin; Paul, Pradeep G; Ooi, Boon-Swee; Chung, Yaw-Fui A; Wong, Wai-Keong

    2008-08-01

    This study aims to validate and compare the performance of the National Institute of Health (NIH) criteria, Huang modified NIH criteria, and Armed Forces Institute of Pathology (AFIP) risk criteria for gastrointestinal stromal tumors (GISTs) in a large series of localized primary GISTs surgically treated at a single institution to determine the ideal risk stratification system for GIST. The clinicopathological features of 171 consecutive patients who underwent surgical resection for GISTs were retrospectively reviewed. Statistical analyses were performed to compare the prognostic value of the three risk criteria by analyzing the discriminatory ability linear trend, homogeneity, monotonicity of gradients, and Akaike information criteria. The median actuarial recurrence-free survival (RFS) for all 171 patients was 70%. On multivariate analyses, size >10 cm, mitotic count >5/50 high-power field, tumor necrosis, and serosal involvement were independent prognostic factors of RFS. All three risk criteria demonstrated a statistically significant difference in the recurrence rate, median actuarial RFS, actuarial 5-year RFS, and tumor-specific death across the different stages. Comparison of the various risk-stratification systems demonstrated that our proposed modified AFIP criteria had the best independent predictive value of RFS when compared with the other systems. The NIH, modified NIH, and AFIP criteria are useful in the prognostication of GIST, and the AFIP risk criteria provided the best prognostication among the three systems for primary localized GIST. However, remarkable prognostic heterogeneity exists in the AFIP high-risk category, and with our proposed modification, this system provides the most accurate prognostic information.

  7. Prognostic factors and scoring system for survival in colonic perforation.

    PubMed

    Komatsu, Shuhei; Shimomatsuya, Takumi; Nakajima, Masayuki; Amaya, Hirokazu; Kobuchi, Taketsune; Shiraishi, Susumu; Konishi, Sayuri; Ono, Susumu; Maruhashi, Kazuhiro

    2005-01-01

    No ideal and generally accepted prognostic factors and scoring systems exist to determine the prognosis of peritonitis associated with colonic perforation. This study was designed to investigate prognostic factors and evaluate the various scoring systems to allow identification of high-risk patients. Between 1996 and 2003, excluding iatrogenic and trauma cases, 26 consecutive patients underwent emergency operations for colorectal perforation and were selected for this retrospective study. Several clinical factors were analyzed as possible predictive factors, and APACHE II, SOFA, MPI, and MOF scores were calculated. The overall mortality was 26.9%. Compared with the survivors, non-survivors were found more frequently in Hinchey's stage III-IV, a low preoperative marker of pH, base excess (BE), and a low postoperative marker of white blood cell count, PaO2/FiO2 ratio, and renal output (24h). According to the logistic regression model, BE was a significant independent variable. Concerning the prognostic scoring systems, an APACHE II score of 19, a SOFA score of 8, an MPI score of 30, and an MOF score of 7 or more were significantly related to poor prognosis. Preoperative BE and postoperative white blood cell count were reliable prognostic factors and early classification using prognostic scoring systems at specific points in the disease process are useful to improve our understanding of the problems involved.

  8. [Neuroendocrine neoplasm of digestive system with different grades: a clinicopathologic and prognostic study].

    PubMed

    Zhang, Ming-hui; Liu, Yan-hui; Luo, Xin-lan; Lin, Xing-tao; Zhuang, Heng-guo

    2012-07-01

    To study the clinicopathologic and prognostic features of neuroendocrine neoplasm of digestive system with different grades. The clinicopathologic features of 139 cases of neuroendocrine neoplasm occurring in digestive system were retrospectively reviewed and graded according to the 2010 World Health Organization classification of tumours of the digestive system. Immunohistochemical study for synaptophysin, chromogranin A and Ki-67 was carried out. The follow-up and survival data were analysed using Kaplan-Meier method. Prognostic factors were tested by Log-rank testing and independent risk factors were analysed using Cox regression model. Amongst the 139 cases studied, there were 88 cases (63.3%) of grade 1 tumors, 9 cases (6.5%) of grade 2 tumors and 42 cases (30.2%) of grade 3 tumors. There was diffusely positive staining for synaptophysin and chromogranin A in most of the grade 1 and grade 2 tumors. The staining in grade 3 tumors however was focal (P < 0.05). The differences in tumor size, depth of invasion, presence of tumor emboli, perineural permeation, nodal involvement, distant metastasis and survival rate amongst the three groups was statistically significant (P < 0.05). There is significant difference in the clinicopathologic and prognostic features of neuroendocrine neoplasm of digestive system with different grades. It is considered as an independent prognostic factor and represents a useful tool for prognostic evaluation of such tumors, both in clinical practice and research.

  9. A Distributed Prognostic Health Management Architecture

    NASA Technical Reports Server (NTRS)

    Bhaskar, Saha; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This paper introduces a generic distributed prognostic health management (PHM) architecture with specific application to the electrical power systems domain. Current state-of-the-art PHM systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to loss of functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become unsuitable for successful deployment, and efficient distributed architectures are required. A distributed architecture though, is not effective unless there is an algorithmic framework to take advantage of its unique abilities. The health management paradigm envisaged here incorporates a heterogeneous set of system components monitored by a varied suite of sensors and a particle filtering (PF) framework that has the power and the flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in order to explicitly represent and manage uncertainties; however, typically the complexity of the prognostic routine is higher than the computational power of one computational element ( CE). Individual CEs run diagnostic routines until the system variable being monitored crosses beyond a nominal threshold, upon which it coordinates with other networked CEs to run the prognostic routine in a distributed fashion. Implementation results from a network of distributed embedded devices monitoring a prototypical aircraft electrical power system are presented, where the CEs are Sun Microsystems Small Programmable Object Technology (SPOT) devices.

  10. A Comparison of Systemic Inflammation-Based Prognostic Scores in Patients on Regular Hemodialysis

    PubMed Central

    Kato, Akihiko; Tsuji, Takayuki; Sakao, Yukitoshi; Ohashi, Naro; Yasuda, Hideo; Fujimoto, Taiki; Takita, Takako; Furuhashi, Mitsuyoshi; Kumagai, Hiromichi

    2013-01-01

    Background/Aims Systemic inflammation-based prognostic scores have prognostic power in patients with cancer, independently of tumor stage and site. Although inflammatory status is associated with mortality in hemodialysis (HD) patients, it remains to be determined as to whether these composite scores are useful in predicting clinical outcomes. Methods We calculated the 6 prognostic scores [Glasgow prognostic score (GPS), modified GPS (mGPS), neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), prognostic index (PI) and prognostic nutritional index (PNI), which have been established as a useful scoring system in cancer patients. We enrolled 339 patients on regular HD (age: 64 ± 13 years; time on HD: 129 ± 114 months; males/females = 253/85) and followed them for 42 months. The area under the receiver-operating characteristics curve was used to determine which scoring system was more predictive of mortality. Results Elevated GPS, mGPS, NLR, PLR, PI and PNI were all associated with total mortality, independent of covariates. If GPS was raised, mGPS, NLR, PLR and PI were also predictive of all-cause mortality and/or hospitalization. GPS and PNI were associated with poor nutritional status. Using overall mortality as an endpoint, the area under the curve (AUC) was significant for a GPS of 0.701 (95% CI: 0.637-0.765; p < 0.01) and for a PNI of 0.616 (95% CI: 0.553-0.768; p = 0.01). However, AUC for hypoalbuminemia (<3.5 g/dl) was comparable to that of GPS (0.695, 95% CI: 0.632-0.759; p < 0.01). Conclusion GPS, based on serum albumin and highly sensitive C-reactive protein, has the most prognostic power for mortality prediction among the prognostic scores in HD patients. However, as the determination of serum albumin reflects mortality similarly to GPS, other composite combinations are needed to provide additional clinical utility beyond that of albumin alone in HD patients. PMID:24403910

  11. Solution of system of multidimensional differential equations in X for identification of gold nanoparticles on fibers with elimination of uncertainty

    NASA Astrophysics Data System (ADS)

    Dobrovolskaya, T. A.; Emelyanov, V. M.; Emelyanov, V. V.

    2018-05-01

    There are the results of the compilation and solution of a system of multidimensional differential correlation equations of distribution ellipses in the identification of colloidal gold nanoparticles on polyester fibers with multi-dimensional correlation components of Raman polarization spectra. A proposed method is to increase the accuracy and speed of identification of silver nanoparticles on polyester fibers, taking into account the longitudinal and transverse polarization of laser radiation over the entire spectral range, analyzing in sequence and in order simultaneously two peaks along the X-transverse and along the Y-along the fibers. During a solution of the system using a nonlinear quadratic and differential equation with respect to X, an uncertainty arises, the elimination of which is numerical addition Δ = + 0.02985

  12. Toward IVHM Prognostics

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin; Venti, Mike

    2007-01-01

    This viewgraph presentation reviews the prognostics of Integrated Vehicle Health Management. The contents include: 1) Aircraft Operations-Today's way of doing business; 2) Prognostics; 3) NASA's instrumentation data-system rack; 4) Data mining for IVHM; 5) NASA GRC's C-MAPSS generic engine model; and 6) Concluding thoughts.

  13. A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Hartley, Tom T.

    1998-01-01

    Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.

  14. Neuroendocrine tumors of colon and rectum: validation of clinical and prognostic values of the World Health Organization 2010 grading classifications and European Neuroendocrine Tumor Society staging systems.

    PubMed

    Shen, Chaoyong; Yin, Yuan; Chen, Huijiao; Tang, Sumin; Yin, Xiaonan; Zhou, Zongguang; Zhang, Bo; Chen, Zhixin

    2017-03-28

    This study evaluated and compared the clinical and prognostic values of the grading criteria used by the World Health Organization (WHO) and the European Neuroendocrine Tumors Society (ENETS). Moreover, this work assessed the current best prognostic model for colorectal neuroendocrine tumors (CRNETs). The 2010 WHO classifications and the ENETS systems can both stratify the patients into prognostic groups, although the 2010 WHO criteria is more applicable to CRNET patients. Along with tumor location, the 2010 WHO criteria are important independent prognostic parameters for CRNETs in both univariate and multivariate analyses through Cox regression (P<0.05). Data from 192 consecutive patients histopathologically diagnosed with CRNETs and had undergone surgical resection from January 2009 to May 2016 in a single center were retrospectively analyzed. Findings suggest that the WHO classifications are superior over the ENETS classification system in predicting the prognosis of CRNETs. Additionally, the WHO classifications can be widely used in clinical practice.

  15. Frequency-Comb Based Double-Quantum Two-Dimensional Spectrum Identifies Collective Hyperfine Resonances in Atomic Vapor Induced by Dipole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Lomsadze, Bachana; Cundiff, Steven T.

    2018-06-01

    Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.

  16. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  17. GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems

    DOE PAGES

    Rellan-Alvarez, Ruben; Lobet, Guillaume; Lindner, Heike; ...

    2015-08-19

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow themore » spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.« less

  18. Localized primary gastrointestinal diffuse large B cell lymphoma received a surgical approach: an analysis of prognostic factors and comparison of staging systems in 101 patients from a single institution.

    PubMed

    Zhang, Shengting; Wang, Li; Yu, Dong; Shen, Yang; Cheng, Shu; Zhang, Li; Qian, Ying; Shen, Zhixiang; Li, Qinyu; Zhao, Weili

    2015-08-15

    Diffuse large B cell lymphoma (DLBCL) represents the most common histological subtype of primary gastrointestinal lymphoma and is a heterogeneous group of disease. Prognostic characterization of individual patients is an essential prerequisite for a proper risk-based therapeutic choice. Clinical and pathological prognostic factors were identified, and predictive value of four previously described prognostic systems were assessed in 101 primary gastrointestinal DLBCL (PG-DLBCL) patients with localized disease, including Ann Arbor staging with Musshoff modification, International Prognostic Index (IPI), Lugano classification, and Paris staging system. Univariate factors correlated with inferior survival time were clinical parameters [age>60 years old, multiple extranodal/gastrointestinal involvement, elevated serum lactate dehydrogenase and β2-microglobulin, and decreased serum albumin], as well as pathological parameters (invasion depth beyond serosa, involvement of regional lymph node or adjacent tissue, Ki-67 index, and Bcl-2 expression). Major independent variables of adverse outcome indicated by multivariate analysis were multiple gastrointestinal involvement. In patients unfit for Rituximab but received surgery, radical surgery significantly prolonged the survival time, comparing with alleviative surgery. Addition of Rituximab could overcome the negative prognostic effect of alleviative surgery. Among the four prognostic systems, IPI and Lugano classification clearly separated patients into different risk groups. IPI was able to further stratify the early-stage patients of Lugano classification into groups with distinct prognosis. Radical surgery might be proposed for the patients unfit for Rituximab treatment, and a combination of clinical and pathological staging systems was more helpful to predict the disease outcome of PG-DLBCL patients.

  19. Multidimensional Perspectives on Principal Leadership Effectiveness

    ERIC Educational Resources Information Center

    Beycioglu, Kadir, Ed.; Pashiardis, Petros, Ed.

    2015-01-01

    Exceptional management skills are crucial to success in educational environments. As school leaders, principals are expected to effectively supervise the school system while facing a multitude of issues and demands. "Multidimensional Perspectives on Principal Leadership Effectiveness" combines best practices and the latest approaches in…

  20. Modeling surface-water flow and sediment mobility with the Multi-Dimensional Surface-Water Modeling System (MD_SWMS)

    USGS Publications Warehouse

    McDonald, Richard; Nelson, Jonathan; Kinzel, Paul; Conaway, Jeffrey S.

    2006-01-01

    The Multi-Dimensional Surface-Water Modeling System (MD_SWMS) is a Graphical User Interface for surface-water flow and sediment-transport models. The capabilities of MD_SWMS for developing models include: importing raw topography and other ancillary data; building the numerical grid and defining initial and boundary conditions; running simulations; visualizing results; and comparing results with measured data.

  1. Requirements Flowdown for Prognostics and Health Management

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saxena, Abhinav; Roychoudhury, Indranil; Celaya, Jose R.; Saha, Bhaskar; Saha, Sankalita

    2012-01-01

    Prognostics and Health Management (PHM) principles have considerable promise to change the game of lifecycle cost of engineering systems at high safety levels by providing a reliable estimate of future system states. This estimate is a key for planning and decision making in an operational setting. While technology solutions have made considerable advances, the tie-in into the systems engineering process is lagging behind, which delays fielding of PHM-enabled systems. The derivation of specifications from high level requirements for algorithm performance to ensure quality predictions is not well developed. From an engineering perspective some key parameters driving the requirements for prognostics performance include: (1) maximum allowable Probability of Failure (PoF) of the prognostic system to bound the risk of losing an asset, (2) tolerable limits on proactive maintenance to minimize missed opportunity of asset usage, (3) lead time to specify the amount of advanced warning needed for actionable decisions, and (4) required confidence to specify when prognosis is sufficiently good to be used. This paper takes a systems engineering view towards the requirements specification process and presents a method for the flowdown process. A case study based on an electric Unmanned Aerial Vehicle (e-UAV) scenario demonstrates how top level requirements for performance, cost, and safety flow down to the health management level and specify quantitative requirements for prognostic algorithm performance.

  2. Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring

    2006-08-01

    The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on humanmore » performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.« less

  3. Prognostic score to predict mortality during TB treatment in TB/HIV co-infected patients.

    PubMed

    Nguyen, Duc T; Jenkins, Helen E; Graviss, Edward A

    2018-01-01

    Estimating mortality risk during TB treatment in HIV co-infected patients is challenging for health professionals, especially in a low TB prevalence population, due to the lack of a standardized prognostic system. The current study aimed to develop and validate a simple mortality prognostic scoring system for TB/HIV co-infected patients. Using data from the CDC's Tuberculosis Genotyping Information Management System of TB patients in Texas reported from 01/2010 through 12/2016, age ≥15 years, HIV(+), and outcome being "completed" or "died", we developed and internally validated a mortality prognostic score using multiple logistic regression. Model discrimination was determined by the area under the receiver operating characteristic (ROC) curve (AUC). The model's good calibration was determined by a non-significant Hosmer-Lemeshow's goodness of fit test. Among the 450 patients included in the analysis, 57 (12.7%) died during TB treatment. The final prognostic score used six characteristics (age, residence in long-term care facility, meningeal TB, chest x-ray, culture positive, and culture not converted/unknown), which are routinely collected by TB programs. Prognostic scores were categorized into three groups that predicted mortality: low-risk (<20 points), medium-risk (20-25 points) and high-risk (>25 points). The model had good discrimination and calibration (AUC = 0.82; 0.80 in bootstrap validation), and a non-significant Hosmer-Lemeshow test p = 0.71. Our simple validated mortality prognostic scoring system can be a practical tool for health professionals in identifying TB/HIV co-infected patients with high mortality risk.

  4. A Multidimensional Software Engineering Course

    ERIC Educational Resources Information Center

    Barzilay, O.; Hazzan, O.; Yehudai, A.

    2009-01-01

    Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…

  5. Vehicle Integrated Prognostic Reasoner (VIPR) Metric Report

    NASA Technical Reports Server (NTRS)

    Cornhill, Dennis; Bharadwaj, Raj; Mylaraswamy, Dinkar

    2013-01-01

    This document outlines a set of metrics for evaluating the diagnostic and prognostic schemes developed for the Vehicle Integrated Prognostic Reasoner (VIPR), a system-level reasoner that encompasses the multiple levels of large, complex systems such as those for aircraft and spacecraft. VIPR health managers are organized hierarchically and operate together to derive diagnostic and prognostic inferences from symptoms and conditions reported by a set of diagnostic and prognostic monitors. For layered reasoners such as VIPR, the overall performance cannot be evaluated by metrics solely directed toward timely detection and accuracy of estimation of the faults in individual components. Among other factors, overall vehicle reasoner performance is governed by the effectiveness of the communication schemes between monitors and reasoners in the architecture, and the ability to propagate and fuse relevant information to make accurate, consistent, and timely predictions at different levels of the reasoner hierarchy. We outline an extended set of diagnostic and prognostics metrics that can be broadly categorized as evaluation measures for diagnostic coverage, prognostic coverage, accuracy of inferences, latency in making inferences, computational cost, and sensitivity to different fault and degradation conditions. We report metrics from Monte Carlo experiments using two variations of an aircraft reference model that supported both flat and hierarchical reasoning.

  6. Staging for vulvar cancer.

    PubMed

    Hacker, Neville F; Barlow, Ellen L

    2015-08-01

    Vulvar cancer has been staged by the International Federation of Gynaecology and Obstetrics (FIGO) since 1969, and the original staging system was based on clinical findings only. This system provided a very good spread of prognostic groupings. Because vulvar cancer is virtually always treated surgically, the status of the lymph nodes is the most important prognostic factor and this can only be determined with certainty by histological examination of resected lymph nodes, FIGO introduced a surgical staging system in 1988. This was modified in 1994 to include a category of microinvasive vulvar cancer (stage IA), because such patients have virtually no risk of lymph node metastases. This system did not give a reasonably even spread of prognostic groupings. In addition, patients with stage III disease were shown to be a heterogeneous group prognostically, and the number of positive nodes and the morphology of those nodes were not taken into account. A new surgical staging system for vulvar cancer was introduced by FIGO in 2009. Initial retrospective analyses have suggested that this new staging system has overcome the major deficiencies in the 1994 system. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Gaffney, Richard L., Jr.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  8. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  9. The Cognitive Visualization System with the Dynamic Projection of Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Gorohov, V.; Vitkovskiy, V.

    2008-08-01

    The phenomenon of cognitive machine drawing consists in the generation on the screen the special graphic representations, which create in the brain of human operator entertainment means. These means seem man by aesthetically attractive and, thus, they stimulate its descriptive imagination, closely related to the intuitive mechanisms of thinking. The essence of cognitive effect lies in the fact that man receives the moving projection as pseudo-three-dimensional object characterizing multidimensional means in the multidimensional space. After the thorough qualitative study of the visual aspects of multidimensional means with the aid of the enumerated algorithms appears the possibility, using algorithms of standard machine drawing to paint the interesting user separate objects or the groups of objects. Then it is possible to again return to the dynamic behavior of the rotation of means for the purpose of checking the intuitive ideas of user about the clusters and the connections in multidimensional data. Is possible the development of the methods of cognitive machine drawing in combination with other information technologies, first of all with the packets of digital processing of images and multidimensional statistical analysis.

  10. Levelized cost-benefit analysis of proposed diagnostics for the Ammunition Transfer Arm of the US Army`s Future Armored Resupply Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, V.K.; Young, J.M.

    1995-07-01

    The US Army`s Project Manager, Advanced Field Artillery System/Future Armored Resupply Vehicle (PM-AFAS/FARV) is sponsoring the development of technologies that can be applied to the resupply vehicle for the Advanced Field Artillery System. The Engineering Technology Division of the Oak Ridge National Laboratory has proposed adding diagnostics/prognostics systems to four components of the Ammunition Transfer Arm of this vehicle, and a cost-benefit analysis was performed on the diagnostics/prognostics to show the potential savings that may be gained by incorporating these systems onto the vehicle. Possible savings could be in the form of reduced downtime, less unexpected or unnecessary maintenance, fewermore » regular maintenance checks. and/or tower collateral damage or loss. The diagnostics/prognostics systems are used to (1) help determine component problems, (2) determine the condition of the components, and (3) estimate the remaining life of the monitored components. The four components on the arm that are targeted for diagnostics/prognostics are (1) the electromechanical brakes, (2) the linear actuators, (3) the wheel/roller bearings, and (4) the conveyor drive system. These would be monitored using electrical signature analysis, vibration analysis, or a combination of both. Annual failure rates for the four components were obtained along with specifications for vehicle costs, crews, number of missions, etc. Accident scenarios based on component failures were postulated, and event trees for these scenarios were constructed to estimate the annual loss of the resupply vehicle, crew, arm. or mission aborts. A levelized cost-benefit analysis was then performed to examine the costs of such failures, both with and without some level of failure reduction due to the diagnostics/prognostics systems. Any savings resulting from using diagnostics/prognostics were calculated.« less

  11. A novel gene expression-based prognostic scoring system to predict survival in gastric cancer

    DOE PAGES

    Wang, Pin; Wang, Yunshan; Hang, Bo; ...

    2016-07-11

    Analysis of gene expression patterns in gastric cancer (GC) can help to identify a comprehensive panel of gene biomarkers for predicting clinical outcomes and to discover potential new therapeutic targets. Here, a multi-step bioinformatics analytic approach was developed to establish a novel prognostic scoring system for GC. We first identified 276 genes that were robustly differentially expressed between normal and GC tissues, of which, 249 were found to be significantly associated with overall survival (OS) by univariate Cox regression analysis. The biological functions of 249 genes are related to cell cycle, RNA/ncRNA process, acetylation and extracellular matrix organization. A networkmore » was generated for view of the gene expression architecture of 249 genes in 265 GCs. Finally, we applied a canonical discriminant analysis approach to identify a 53-gene signature and a prognostic scoring system was established based on a canonical discriminant function of 53 genes. The prognostic scores strongly predicted patients with GC to have either a poor or good OS. Our study raises the prospect that the practicality of GC patient prognosis can be assessed by this prognostic scoring system.« less

  12. A novel gene expression-based prognostic scoring system to predict survival in gastric cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pin; Wang, Yunshan; Hang, Bo

    Analysis of gene expression patterns in gastric cancer (GC) can help to identify a comprehensive panel of gene biomarkers for predicting clinical outcomes and to discover potential new therapeutic targets. Here, a multi-step bioinformatics analytic approach was developed to establish a novel prognostic scoring system for GC. We first identified 276 genes that were robustly differentially expressed between normal and GC tissues, of which, 249 were found to be significantly associated with overall survival (OS) by univariate Cox regression analysis. The biological functions of 249 genes are related to cell cycle, RNA/ncRNA process, acetylation and extracellular matrix organization. A networkmore » was generated for view of the gene expression architecture of 249 genes in 265 GCs. Finally, we applied a canonical discriminant analysis approach to identify a 53-gene signature and a prognostic scoring system was established based on a canonical discriminant function of 53 genes. The prognostic scores strongly predicted patients with GC to have either a poor or good OS. Our study raises the prospect that the practicality of GC patient prognosis can be assessed by this prognostic scoring system.« less

  13. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements prognostics capabilities to predict when a component, system or subsystem will no longer meet desired functional or performance criteria, called the "end of life." The capability also provides an assessment of the "remaining useful life" of a hardware component.

  14. Prognostics of Power Electronics, Methods and Validation Experiments

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    Abstract Failure of electronic devices is a concern for future electric aircrafts that will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. As a result, investigation of precursors to failure in electronics and prediction of remaining life of electronic components is of key importance. DC-DC power converters are power electronics systems employed typically as sourcing elements for avionics equipment. Current research efforts in prognostics for these power systems focuses on the identification of failure mechanisms and the development of accelerated aging methodologies and systems to accelerate the aging process of test devices, while continuously measuring key electrical and thermal parameters. Preliminary model-based prognostics algorithms have been developed making use of empirical degradation models and physics-inspired degradation model with focus on key components like electrolytic capacitors and power MOSFETs (metal-oxide-semiconductor-field-effect-transistor). This paper presents current results on the development of validation methods for prognostics algorithms of power electrolytic capacitors. Particularly, in the use of accelerated aging systems for algorithm validation. Validation of prognostics algorithms present difficulties in practice due to the lack of run-to-failure experiments in deployed systems. By using accelerated experiments, we circumvent this problem in order to define initial validation activities.

  15. Development of an Automated Microfluidic Reaction Platform for Multidimensional Screening: Reaction Discovery Employing Bicyclo[3.2.1]octanoid Scaffolds

    PubMed Central

    Goodell, John R.; McMullen, Jonathan P.; Zaborenko, Nikolay; Maloney, Jason R.; Ho, Chuan-Xing; Jensen, Klavs F.; Porco, John A.

    2010-01-01

    An automated, silicon-based microreactor system has been developed for rapid, low-volume, multidimensional reaction screening. Use of the microfluidic platform to identify transformations of densely functionalized bicyclo[3.2.1]octanoid scaffolds will be described. PMID:20560568

  16. Molecular Classification Substitutes for the Prognostic Variables Stage, Age, and MYCN Status in Neuroblastoma Risk Assessment.

    PubMed

    Rosswog, Carolina; Schmidt, Rene; Oberthuer, André; Juraeva, Dilafruz; Brors, Benedikt; Engesser, Anne; Kahlert, Yvonne; Volland, Ruth; Bartenhagen, Christoph; Simon, Thorsten; Berthold, Frank; Hero, Barbara; Faldum, Andreas; Fischer, Matthias

    2017-12-01

    Current risk stratification systems for neuroblastoma patients consider clinical, histopathological, and genetic variables, and additional prognostic markers have been proposed in recent years. We here sought to select highly informative covariates in a multistep strategy based on consecutive Cox regression models, resulting in a risk score that integrates hazard ratios of prognostic variables. A cohort of 695 neuroblastoma patients was divided into a discovery set (n=75) for multigene predictor generation, a training set (n=411) for risk score development, and a validation set (n=209). Relevant prognostic variables were identified by stepwise multivariable L1-penalized least absolute shrinkage and selection operator (LASSO) Cox regression, followed by backward selection in multivariable Cox regression, and then integrated into a novel risk score. The variables stage, age, MYCN status, and two multigene predictors, NB-th24 and NB-th44, were selected as independent prognostic markers by LASSO Cox regression analysis. Following backward selection, only the multigene predictors were retained in the final model. Integration of these classifiers in a risk scoring system distinguished three patient subgroups that differed substantially in their outcome. The scoring system discriminated patients with diverging outcome in the validation cohort (5-year event-free survival, 84.9±3.4 vs 63.6±14.5 vs 31.0±5.4; P<.001), and its prognostic value was validated by multivariable analysis. We here propose a translational strategy for developing risk assessment systems based on hazard ratios of relevant prognostic variables. Our final neuroblastoma risk score comprised two multigene predictors only, supporting the notion that molecular properties of the tumor cells strongly impact clinical courses of neuroblastoma patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Immunization-based scores as independent prognostic predictors in soft tissue sarcoma patients

    PubMed Central

    Jiang, Shan-Shan; Jiang, Long; Weng, De-Sheng; Li, Yuan-fang; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Zhou, Zhi-Wei; Xia, Jian-Chuan

    2017-01-01

    Background: The purpose of this study was to examine and compare the prognostic value of different immunization-based scoring systems in patients with soft tissue sarcoma (STS). Methods: We conducted a retrospective study evaluating a cohort of 165 patients diagnosed with STS between July 2007 and July 2014. The relative Glasgow prognostic score (GPS) of these patients was calculated using 3 different systems: the traditional GPS system (tGPS), the modified GPS system 1 (m1GPS), and the modified GPS system 2 (m2GPS). Then, we evaluated the relationships between each GPS system and clinicopathological characteristics. The mean follow-up for survivors in the cohort was 73.7 months as of March 2015. Results: The most favorable overall survival (OS) rate was associated with the score 0 groups, and the poorest progression-free survival (PFS) rate was associated with the score 2 groups, regardless of which system was used to calculate the score. Specifically, the m1GPS provided the greatest accuracy in predicting OS and PFS. Moreover, the same effect was observed in a separate analysis restricted to patients with metastases. Remarkably, in patients with a score of 2 as measured by all 3 systems, local treatment resulted in a poorer prognosis compared to patients with a score of 2 who did not receive local treatment. Conclusion: The GPS is a valuable prognostic marker and has the capability to predict the appropriate treatment strategy for STS patients with metastases. The modified GPS systems demonstrated superior prognostic and predictive value compared with the traditional GPS system. PMID:28367240

  18. Integrating Scientific Array Processing into Standard SQL

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter

    2014-05-01

    We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.

  19. Comparative performances of staging systems for early hepatocellular carcinoma.

    PubMed

    Nathan, Hari; Mentha, Gilles; Marques, Hugo P; Capussotti, Lorenzo; Majno, Pietro; Aldrighetti, Luca; Pulitano, Carlo; Rubbia-Brandt, Laura; Russolillo, Nadia; Philosophe, Benjamin; Barroso, Eduardo; Ferrero, Alessandro; Schulick, Richard D; Choti, Michael A; Pawlik, Timothy M

    2009-08-01

    Several staging systems for patients with hepatocellular carcinoma (HCC) have been proposed, but studies of their prognostic accuracy have yielded conflicting conclusions. Stratifying patients with early HCC is of particular interest because these patients may derive the greatest benefit from intervention, yet no studies have evaluated the comparative performances of staging systems in patients with early HCC. A retrospective cohort study was performed using data on 379 patients who underwent liver resection or liver transplantation for HCC at six major hepatobiliary centres in the USA and Europe. The staging systems evaluated were: the Okuda staging system, the International Hepato-Pancreato-Biliary Association (IHPBA) staging system, the Cancer of the Liver Italian Programme (CLIP) score, the Barcelona Clinic Liver Cancer (BCLC) staging system, the Japanese Integrated Staging (JIS) score and the American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC) staging system, 6th edition. A recently proposed early HCC prognostic score was also evaluated. The discriminative abilities of the staging systems were evaluated using Cox proportional hazards models and the bootstrap-corrected concordance index (c). Overall survival of the cohort was 74% at 3 years and 52% at 5 years, with a median survival of 62 months. Most systems demonstrated poor discriminatory ability (P > 0.05 on Cox proportional hazards analysis, c approximately 0.5). However, the AJCC/UICC system clearly stratified patients (P < 0.001, c = 0.59), albeit only into two groups. The early HCC prognostic score also clearly stratified patients (P < 0.001, c = 0.60) and identified three distinct prognostic groups. The early HCC prognostic score is superior to the AJCC/UICC staging system (6th edition) for predicting the survival of patients with early HCC after liver resection or liver transplantation. Other major HCC staging systems perform poorly in patients with early HCC.

  20. Analysis of human plasma proteins: a focus on sample collection and separation using free-flow electrophoresis.

    PubMed

    Nissum, Mikkel; Foucher, Aude L

    2008-08-01

    Due to ease of accessibility, plasma has become the sample of choice for proteomics studies directed towards biomarker discovery intended for use in diagnostics, prognostics and even in theranostics. The result of these extensive efforts is a long list of potential biomarkers, very few of which have led to clinical utility. Why have so many potential biomarkers failed validation? Herein, we address certain issues encountered, which complicate biomarker discovery efforts originating from plasma. The advantages of stabilizing the sample at collection by the addition of protease inhibitors are discussed. The principles of free-flow electrophoresis (FFE) separation are provided together with examples applying to various studies. Finally, particular attention is given to plasma or serum analysis using multidimensional separation strategies into which the FFE is incorporated. The advantages of using FFE separation in these workflows are discussed.

  1. Prognostics and health management system for hydropower plant based on fog computing and docker container

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; Zhang, Mingqiang; Tian, Haiping; Huang, Bo; Fu, Wenlong

    2018-02-01

    In this paper, a novel prognostics and health management system architecture for hydropower plant equipment was proposed based on fog computing and Docker container. We employed the fog node to improve the real-time processing ability of improving the cloud architecture-based prognostics and health management system and overcome the problems of long delay time, network congestion and so on. Then Storm-based stream processing of fog node was present and could calculate the health index in the edge of network. Moreover, the distributed micros-service and Docker container architecture of hydropower plants equipment prognostics and health management was also proposed. Using the micro service architecture proposed in this paper, the hydropower unit can achieve the goal of the business intercommunication and seamless integration of different equipment and different manufacturers. Finally a real application case is given in this paper.

  2. Prognostics for Electronics Components of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.

    2009-01-01

    Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  3. Comparison of the AJCC, MSTS, and Modified Spanier Systems for Clinical and Pathologic Staging of Osteosarcoma.

    PubMed

    Cates, Justin M M

    2017-03-01

    The prognostic performance of the 2 most commonly used staging systems for skeletal sarcoma (the American Joint Committee on Cancer [AJCC] and Musculoskeletal Tumor Society [MSTS] systems) have never been compared analytically. Another staging system originally proposed by Spanier has not yet been validated. Given the recent release of the 8th edition of the AJCC Cancer Staging Manual, this study was designed to directly compare these anatomic staging systems in a series of 153 high-grade, intramedullary osteosarcomas. Kaplan-Meier curves were plotted and pairwise comparisons between each stage category were performed. Predictive accuracy of each staging system for determining 5-year disease-free survival was evaluated by comparing areas under receiver-operating characteristic curves generated from logistic regression analysis. Multiple concordance indices were calculated using bootstrapping methods (200 replications). ρk and R were estimated as measures of the variation in survival outcomes explained by the regression models. The AJCC, MSTS, and a modified version of the Spanier staging systems showed similar discriminatory abilities and no significant differences in the levels of contrast between different tumor stages across staging systems. Addition of T-category information from each staging system contributed significant prognostic information compared with a Cox proportional hazard regression model consisting only of the presence or absence of metastatic disease as a measure of disease extent. Concordance indices and predictive accuracy for 5-year disease-free survival were not significantly different among the different staging systems either. Similar findings were observed after accounting for other important prognostic variables. Additional studies are necessary to determine performance parameters of each staging system for other types of skeletal sarcoma. Prognostic performance of osteosarcoma staging systems would also be improved by incorporating nonanatomic prognostic variables into staging algorithms.

  4. Prognostic Role of Phospho-STAT3 in Patients with Cancers of the Digestive System: A Systematic Review and Meta-Analysis.

    PubMed

    Li, Mu-xing; Bi, Xin-yu; Huang, Zhen; Zhao, Jian-jun; Han, Yue; Li, Zhi-Yu; Zhang, Ye-fan; Li, Yuan; Chen, Xiao; Hu, Xu-hui; Zhao, Hong; Cai, Jian-qiang

    2015-01-01

    The definite prognostic role of p-STAT3 has not been well defined. We performed a meta-analysis evaluating the prognostic role of p-STAT3 expression in patients with digestive system cancers. We searched the available articles reporting the prognostic value of p-STAT3 in patients with cancers of the digestive system, mainly including colorectal cancer, gastric cancer, hepatocellular carcinoma, esophagus cancer and pancreatic cancer. The pooled hazard ratios (HRs) with 95 % confidence intervals (95 % CIs) of overall survival (OS) and disease-free survival (DFS) were used to assess the prognostic role of p-STAT3 expression level in cancer tissues. And the association between p-STAT3 expression and clinicopathological characteristics was evaluated. A total of 22 studies with 3585 patients were finally enrolled in the meta-analysis. The results showed that elevated p-STAT3 expression level predicted inferior OS (HR = 1.809, 95% CI: 1.442-2.270, P < 0.001) and DFS (HR = 1.481, 95% CI: 1.028-2.133, P = 0.035) in patients with malignant cancers of the digestive system. Increased expression of p-STAT3 is significantly related with tumor cell differentiation (Odds ratio (OR) = 1.895, 95% CI: 1.364-2.632, P < 0.001) and lymph node metastases (OR = 2.108, 95% CI: 1.104-4.024, P = 0.024). Sensitivity analysis suggested that the pooled HR was stable and omitting a single study did not change the significance of the pooled HR. Funnel plots and Egger's tests revealed there was no significant publication bias in the meta-analysis. Phospho-STAT3 might be a prognostic factor of patients with digestive system cancers. More well designed studies with adequate follow-up are needed to gain a thorough understanding of the prognostic role of p-STAT3.

  5. Using Cox's proportional hazards model for prognostication in carcinoma of the upper aero-digestive tract.

    PubMed

    Wolfensberger, M

    1992-01-01

    One of the major short comings of the traditional TNM system is its limited potential for prognostication. With the development of multifactorial analysis techniques, such as Cox's proportional hazards model, it has become possible to simultaneously evaluate a large number of prognostic variables. Cox's model allows both the identification of prognostically relevant variables and the quantification of their prognostic influence. These characteristics make it a helpful tool for analysis as well as for prognostication. The goal of the present study was to develop a prognostic index for patients with carcinoma of the upper aero-digestive tract which makes use of all prognostically relevant variables. To accomplish this, the survival data of 800 patients with squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx or larynx were analyzed. Sixty-one variables were screened for prognostic significance; of these only 19 variables (including age, tumor location, T, N and M stages, resection margins, capsular invasion of nodal metastases, and treatment modality) were found to significantly correlate with prognosis. With the help of Cox's equation, a prognostic index (PI) was computed for every combination of prognostic factors. To test the proposed model, the prognostic index was applied to 120 patients with carcinoma of the oral cavity or oropharynx. A comparison of predicted and observed survival showed good overall correlation, although actual survival tended to be better than predicted.

  6. EUTOS CML prognostic scoring system predicts ELN-based 'event-free survival' better than Euro/Hasford and Sokal systems in CML patients receiving front-line imatinib mesylate.

    PubMed

    Uz, Burak; Buyukasik, Yahya; Atay, Hilmi; Kelkitli, Engin; Turgut, Mehmet; Bektas, Ozlen; Eliacik, Eylem; Isik, Ayşe; Aksu, Salih; Goker, Hakan; Sayinalp, Nilgun; Ozcebe, Osman I; Haznedaroglu, Ibrahim C

    2013-09-01

    The validity of the three currently used chronic myeloid leukemia (CML) scoring systems (Sokal CML prognostic scoring system, Euro/Hasford CML scoring system, and the EUTOS CML prognostic scoring system) were compared in the CML patients receiving frontline imatinib mesylate. One hundred and fourty-three chronic phase CML patients (71 males, 72 females) taking imatinib as frontline treatment were included in the study. The median age was 44 (16-82) years. Median total and on-imatinib follow-up durations were 29 (3.8-130) months and 25 (3-125) months, respectively. The complete hematological response (CHR) rate at 3 months was 95%. The best cumulative complete cytogenetic response (CCyR) rate at 24 months was 79.6%. Euro/Hasford scoring system was well-correlated with both Sokal and EUTOS scores (r = 0.6, P < 0.001 and r = 0.455, P < 0.001). However, there was only a weak correlation between Sokal and EUTOS scores (r = 0.2, P = 0.03). The 5-year median estimated event-free survival for low and high EUTOS risk patients were 62.6 (25.7-99.5) and 15.3 (7.4-23.2) months, respectively (P < 0.001). This performance was better than Sokal (P = 0.3) and Euro/Hasford (P = 0.04) scoring systems. Overall survival and CCyR rates were also better predicted by the EUTOS score. EUTOS CML prognostic scoring system, which is the only prognostic system developed during the imatinib era, predicts European LeukemiaNet (ELN)-based event-free survival better than Euro/Hasford and Sokal systems in CML patients receiving frontline imatinib mesylate. This observation might have important clinical implications.

  7. Use patterns of health information exchange through a multidimensional lens: conceptual framework and empirical validation.

    PubMed

    Politi, Liran; Codish, Shlomi; Sagy, Iftach; Fink, Lior

    2014-12-01

    Insights about patterns of system use are often gained through the analysis of system log files, which record the actual behavior of users. In a clinical context, however, few attempts have been made to typify system use through log file analysis. The present study offers a framework for identifying, describing, and discerning among patterns of use of a clinical information retrieval system. We use the session attributes of volume, diversity, granularity, duration, and content to define a multidimensional space in which each specific session can be positioned. We also describe an analytical method for identifying the common archetypes of system use in this multidimensional space. We demonstrate the value of the proposed framework with a log file of the use of a health information exchange (HIE) system by physicians in an emergency department (ED) of a large Israeli hospital. The analysis reveals five distinct patterns of system use, which have yet to be described in the relevant literature. The results of this study have the potential to inform the design of HIE systems for efficient and effective use, thus increasing their contribution to the clinical decision-making process. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Local-Level Prognostics Health Management Systems Framework for Passive AdvSMR Components. Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.

    2014-09-12

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.

  9. [Prognostic parameters in liver cirrhosis, varicose bleeding and sclerosing therapy. Prospective comparison of a prognostic system with the Child classification obtained by discriminant analysis].

    PubMed

    Sauerbruch, T; Ansari, H; Wotzka, R; Soehendra, N; Köpcke, W

    1988-01-08

    Prospective prognosis systems for predicting half-year death-rate after bleeding from oesophageal varices and sclerotherapy were tested on 129 patients. The receiver-operating-characteristic curves of three discriminant scores were compared with the Child-Pugh classification. It was found that the latter is still the best for prognosticating the course of the disease. A simplified discriminant score which contains as its only factors bilirubin and the Quick value does, however, give nearly as good information.

  10. Interpersonal Problems Associated with Multidimensional Personality Questionnaire Traits in Women during the Transition to Adulthood

    ERIC Educational Resources Information Center

    Hopwood, Christopher J.; Burt, S. Alexandra; Keel, Pamela K.; Neale, Michael C.; Boker, Steven M.; Klump, Kelly L.

    2013-01-01

    Personality traits are known to be associated with a host of important life outcomes, including interpersonal dysfunction. The interpersonal circumplex offers a comprehensive system for articulating the kinds of interpersonal problems associated with personality traits. In the current study, traits as measured by the Multidimensional Personality…

  11. Effects of Multidimensional Treatment Foster Care on Psychotic Symptoms in Girls

    PubMed Central

    Poulton, Richie; Van Ryzin, Mark J.; Harold, Gordon T.; Chamberlain, Patricia; Fowler, David; Cannon, Mary; Arseneault, Louise; Leve, Leslie D.

    2014-01-01

    Objective Neurodevelopmental theories of psychosis highlight the potential benefits of early intervention, prevention, and/or preemption. How early intervention should take place has not been established, nor if interventions based on social learning principles can have preemptive effects. The objective was to test if a comprehensive psychosocial intervention can significantly alter psychotic symptom trajectories during adolescence – a period of heightened risk for a wide range of psychopathology. Method This study was a randomized controlled trial (RCT) of Multidimensional Treatment Foster Care (MTFC) for delinquent adolescent girls. Assessment of psychotic symptoms took place at baseline and then 6, 12, 18, and 24 months post-baseline using a standardized self-report instrument (Brief Symptom Inventory). A second source of information about psychotic symptoms was obtained at baseline or 12 months, and again at 24 months using a structured diagnostic interview (the Diagnostic Interview Schedule for Children [DISC]). Results Significant benefits for MTFC over treatment-as-usual for psychosis symptoms were observed over a 24-month period. Findings were replicated across both measures. Effects were independent of substance use and initial symptom severity, and persisted beyond the initial intervention period. Conclusion Ameliorating non-clinical psychotic symptoms trajectories beginning in early adolescence via a multifaceted psychosocial intervention is possible. Developmental research on non-clinical psychotic symptoms and their prognostic value should be complemented by more psychosocial intervention research aimed at modifying these symptom trajectories early in their natural history. PMID:25457926

  12. Towards Prognostics for Electronics Components

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Celaya, Jose R.; Wysocki, Philip F.; Goebel, Kai F.

    2013-01-01

    Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  13. Prognostic nomogram for previously untreated adult patients with acute myeloid leukemia

    PubMed Central

    Zheng, Zhuojun; Li, Xiaodong; Zhu, Yuandong; Gu, Weiying; Xie, Xiaobao; Jiang, Jingting

    2016-01-01

    This study was designed to perform an acceptable prognostic nomogram for acute myeloid leukemia. The clinical data from 311 patients from our institution and 165 patients generated with Cancer Genome Atlas Research Network were reviewed. A prognostic nomogram was designed according to the Cox's proportional hazard model to predict overall survival (OS). To compare the capacity of the nomogram with that of the current prognostic system, the concordance index (C-index) was used to validate the accuracy as well as the calibration curve. The nomogram included 6 valuable variables: age, risk stratifications based on cytogenetic abnormalities, status of FLT3-ITD mutation, status of NPM1 mutation, expression of CD34, and expression of HLA-DR. The C-indexes were 0.71 and 0.68 in the primary and validation cohort respectively, which were superior to the predictive capacity of the current prognostic systems in both cohorts. The nomogram allowed both patients with acute myeloid leukemia and physicians to make prediction of OS individually prior to treatment. PMID:27689396

  14. Recent advances in multidimensional ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliver, Thomas A. A.

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.

  15. Recent advances in multidimensional ultrafast spectroscopy

    PubMed Central

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes. PMID:29410844

  16. Application of stochastic weighted algorithms to a multidimensional silica particle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang

    2013-09-01

    Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associatedmore » majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.« less

  17. Inflammation-based prognostic score and number of lymph node metastases are independent prognostic factors in esophageal squamous cell carcinoma.

    PubMed

    Kobayashi, Takashi; Teruya, Masanori; Kishiki, Tomokazu; Kaneko, Susumu; Endo, Daisuke; Takenaka, Yoshiharu; Miki, Kenji; Kobayashi, Kaoru; Morita, Koji

    2010-08-01

    Few studies have investigated whether the Glasgow Prognostic Score (GPS), an inflammation-based prognostic score, is useful for postoperative prognosis of esophageal squamous cell carcinoma. GPS was calculated on the basis of admission data as follows: patients with elevated C-reactive protein level (>10 mg/l) and hypoalbuminemia (<35 g/l) were assigned to GPS2. Patients with one or no abnormal value were assigned to GPS1 or GPS0. A new scoring system was constructed using independent prognostic variables and was evaluated on whether it could be used to dictate the choice of clinical options. 65 patients with esophageal squamous cell carcinoma were enrolled. GPS and the number of lymph node metastases were found to be independent prognostic variables. The scoring system comprising GPS and the number of lymph node metastases was found to be effective in the prediction of a long-term outcome (p < 0.0001). Preoperative GPS may be useful for postoperative prognosis of patients with esophageal squamous cell carcinoma. GPS and the number of lymph node metastases could be used to identify a subgroup of patients with esophageal squamous cell carcinoma who are eligible for radical resection but show poor prognosis.

  18. Anomalies in Network Bridges Involved in Bile Acid Metabolism Predict Outcomes of Colorectal Cancer Patients

    PubMed Central

    Yoon, Seyeol; Lee, Jae W.; Lee, Doheon

    2014-01-01

    Biomarkers prognostic for colorectal cancer (CRC) would be highly desirable in clinical practice. Proteins that regulate bile acid (BA) homeostasis, by linking metabolic sensors and metabolic enzymes, also called bridge proteins, may be reliable prognostic biomarkers for CRC. Based on a devised metric, “bridgeness,” we identified bridge proteins involved in the regulation of BA homeostasis and identified their prognostic potentials. The expression patterns of these bridge proteins could distinguish between normal and diseased tissues, suggesting that these proteins are associated with CRC pathogenesis. Using a supervised classification system, we found that these bridge proteins were reproducibly prognostic, with high prognostic ability compared to other known markers. PMID:25259881

  19. The prognostic significance of UCA1 for predicting clinical outcome in patients with digestive system malignancies

    PubMed Central

    Zhu, Zheng-Ming

    2017-01-01

    Background Urothelial Carcinoma Associated 1 (UCA1) was an originally identified lncRNA in bladder cancer. Previous studies have reported that UCA1 played a significant role in various types of cancer. This study aimed to clarify the prognostic value of UCA1 in digestive system cancers. Results The meta-analysis of 15 studies were included, comprising 1441 patients with digestive system cancers. The pooled results of 14 studies indicated that high expression of UCA1 was significantly associated with poorer OS in patients with digestive system cancers (HR: 1.89, 95 % CI: 1.52–2.26). In addition, UCA1 could be as an independent prognostic factor for predicting OS of patients (HR: 1.85, 95 % CI: 1.45–2.25). The pooled results of 3 studies indicated a significant association between UCA1 and DFS in patients with digestive system cancers (HR = 2.50; 95 % CI = 1.30–3.69). Statistical significance was also observed in subgroup meta-analysis. Furthermore, the clinicopathological values of UCA1 were discussed in esophageal cancer, colorectal cancer and pancreatic cancer. Materials and methods A comprehensive retrieval was performed to search studies evaluating the prognostic value of UCA1 in digestive system cancers. Many databases were involved, including PubMed, Web of Science, Embase and Chinese National Knowledge Infrastructure and Wanfang database. Quantitative meta-analysis was performed with standard statistical methods and the prognostic significance of UCA1 in digestive system cancers was qualified. Conclusions Elevated level of UCA1 indicated the poor clinical outcome for patients with digestive system cancers. It may serve as a new biomarker related to prognosis in digestive system cancers. PMID:28380443

  20. The prognostic significance of UCA1 for predicting clinical outcome in patients with digestive system malignancies.

    PubMed

    Liu, Fang-Teng; Dong, Qing; Gao, Hui; Zhu, Zheng-Ming

    2017-06-20

    Urothelial Carcinoma Associated 1 (UCA1) was an originally identified lncRNA in bladder cancer. Previous studies have reported that UCA1 played a significant role in various types of cancer. This study aimed to clarify the prognostic value of UCA1 in digestive system cancers. The meta-analysis of 15 studies were included, comprising 1441 patients with digestive system cancers. The pooled results of 14 studies indicated that high expression of UCA1 was significantly associated with poorer OS in patients with digestive system cancers (HR: 1.89, 95 % CI: 1.52-2.26). In addition, UCA1 could be as an independent prognostic factor for predicting OS of patients (HR: 1.85, 95 % CI: 1.45-2.25). The pooled results of 3 studies indicated a significant association between UCA1 and DFS in patients with digestive system cancers (HR = 2.50; 95 % CI = 1.30-3.69). Statistical significance was also observed in subgroup meta-analysis. Furthermore, the clinicopathological values of UCA1 were discussed in esophageal cancer, colorectal cancer and pancreatic cancer. A comprehensive retrieval was performed to search studies evaluating the prognostic value of UCA1 in digestive system cancers. Many databases were involved, including PubMed, Web of Science, Embase and Chinese National Knowledge Infrastructure and Wanfang database. Quantitative meta-analysis was performed with standard statistical methods and the prognostic significance of UCA1 in digestive system cancers was qualified. Elevated level of UCA1 indicated the poor clinical outcome for patients with digestive system cancers. It may serve as a new biomarker related to prognosis in digestive system cancers.

  1. Distributed Prognostics and Health Management with a Wireless Network Architecture

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saha, Sankalita; Sha, Bhaskar

    2013-01-01

    A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the prognostics task is over, and after appropriate actions have been taken, all CEs return to their original default configuration. Wireless technology-based implementation would ensure more flexibility in terms of sensor placement. It would also allow more sensors to be deployed because the overhead related to weights of wired systems is not present. Distributed architectures are furthermore generally robust with regard to recovery from node failures.

  2. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.

  3. Numerical Simulations of Multidimensional Flows in Presence of either Strong Shocks or Strong Gravitational Fields

    NASA Astrophysics Data System (ADS)

    Font, J. A.; Ibanez, J. M.; Marti, J. M.

    1993-04-01

    Some numerical solutions via local characteristic approach have been obtained describing multidimensional flows. These solutions have been used as tests of a two- dimensional code which extends some high-resolution shock-captunng methods, designed recently to solve nonlinear hyperbolic systems of conservation laws. K words: HYDRODYNAMICS - BLACK HOLE - RELATIVITY - SHOCK WAVES

  4. Nonlinear Wave Propagation

    DTIC Science & Technology

    1989-05-22

    multidimensional systems of physi- cal significance. Prototypes are the Kadomtsev - Petviashvili and Davey-Stewartson equations . The nature of the boundary value...Ono equation bears many similarities to multidimensional problems, specifically the Kadomtsev - Petviashvili equation . In some sense the nonlocality...Inverse scattering and Direct Linearizing Transforms for the Kadomtsev - Petviashvili Equations , A.S. Fokas, and M.J. Ablowitz, Phys. Lett. Vol., 94A, No. 2

  5. Construction and Evolution of a Multidimensional Well-Being Index for the Spanish Regions

    ERIC Educational Resources Information Center

    Jurado, Antonio; Perez-Mayo, Jesus

    2012-01-01

    The study presented here is an attempt to calculate a comparative multidimensional index of economic well-being for the Spanish Autonomous Communities. Based on the dimensions of adjusted consumption, real wealth, equity and economic security per inhabitant, we obtain one relative index using a system of uniform weightings, a second resulting from…

  6. A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Kulkarni, Chetan S.

    2017-01-01

    This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.

  7. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  8. The prognostic blood biomarker proadrenomedullin for outcome prediction in patients with chronic obstructive pulmonary disease (COPD): a qualitative clinical review.

    PubMed

    Schuetz, Philipp; Marlowe, Robert J; Mueller, Beat

    2015-03-01

    Plasma proadrenomedullin (ProADM) is a blood biomarker that may aid in multidimensional risk assessment of patients with chronic obstructive pulmonary disease (COPD). Co-secreted 1:1 with adrenomedullin (ADM), ProADM is a less biologically active, more chemically stable surrogate for this pluripotent regulatory peptide, which due to biological and ex vivo physical characteristics is difficult to reliably directly quantify. Upregulated by hypoxia, inflammatory cytokines, bacterial products, and shear stress and expressed widely in pulmonary cells and ubiquitously throughout the body, ADM exerts or mediates vasodilatory, natriuretic, diuretic, antioxidative, anti-inflammatory, antimicrobial, and metabolic effects. Observational data from four separate studies totaling 1366 patients suggest that as a single factor, ProADM is a significant independent, and accurate, long-term all-cause mortality predictor in COPD. This body of work also suggests that combined with different groups of demographic/clinical variables, ProADM provides significant incremental long-term mortality prediction power relative to the groups of variables alone. Additionally, the literature contains indications that ProADM may be a global cardiopulmonary stress marker, potentially supplying prognostic information when cardiopulmonary exercise testing results such as 6-min walk distance are unavailable due to time or other resource constraints or to a patient's advanced disease. Prospective, randomized, controlled interventional studies are needed to demonstrate whether ProADM use in risk-based guidance of site-of-care, monitoring, and treatment decisions improves clinical, quality-of-life, or pharmacoeconomic outcomes in patients with COPD.

  9. Analysis of the time structure of synchronization in multidimensional chaotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarenko, A. V., E-mail: avm.science@mail.ru

    2015-05-15

    A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.

  10. Multidimensional Learner Model In Intelligent Learning System

    NASA Astrophysics Data System (ADS)

    Deliyska, B.; Rozeva, A.

    2009-11-01

    The learner model in an intelligent learning system (ILS) has to ensure the personalization (individualization) and the adaptability of e-learning in an online learner-centered environment. ILS is a distributed e-learning system whose modules can be independent and located in different nodes (servers) on the Web. This kind of e-learning is achieved through the resources of the Semantic Web and is designed and developed around a course, group of courses or specialty. An essential part of ILS is learner model database which contains structured data about learner profile and temporal status in the learning process of one or more courses. In the paper a learner model position in ILS is considered and a relational database is designed from learner's domain ontology. Multidimensional modeling agent for the source database is designed and resultant learner data cube is presented. Agent's modules are proposed with corresponding algorithms and procedures. Multidimensional (OLAP) analysis guidelines on the resultant learner module for designing dynamic learning strategy have been highlighted.

  11. Application of Model-based Prognostics to a Pneumatic Valves Testbed

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.; Gorospe, George

    2014-01-01

    Pneumatic-actuated valves play an important role in many applications, including cryogenic propellant loading for space operations. Model-based prognostics emphasizes the importance of a model that describes the nominal and faulty behavior of a system, and how faulty behavior progresses in time, causing the end of useful life of the system. We describe the construction of a testbed consisting of a pneumatic valve that allows the injection of faulty behavior and controllable fault progression. The valve opens discretely, and is controlled through a solenoid valve. Controllable leaks of pneumatic gas in the testbed are introduced through proportional valves, allowing the testing and validation of prognostics algorithms for pneumatic valves. A new valve prognostics approach is developed that estimates fault progression and predicts remaining life based only on valve timing measurements. Simulation experiments demonstrate and validate the approach.

  12. Machine health prognostics using the Bayesian-inference-based probabilistic indication and high-order particle filtering framework

    NASA Astrophysics Data System (ADS)

    Yu, Jianbo

    2015-12-01

    Prognostics is much efficient to achieve zero-downtime performance, maximum productivity and proactive maintenance of machines. Prognostics intends to assess and predict the time evolution of machine health degradation so that machine failures can be predicted and prevented. A novel prognostics system is developed based on the data-model-fusion scheme using the Bayesian inference-based self-organizing map (SOM) and an integration of logistic regression (LR) and high-order particle filtering (HOPF). In this prognostics system, a baseline SOM is constructed to model the data distribution space of healthy machine under an assumption that predictable fault patterns are not available. Bayesian inference-based probability (BIP) derived from the baseline SOM is developed as a quantification indication of machine health degradation. BIP is capable of offering failure probability for the monitored machine, which has intuitionist explanation related to health degradation state. Based on those historic BIPs, the constructed LR and its modeling noise constitute a high-order Markov process (HOMP) to describe machine health propagation. HOPF is used to solve the HOMP estimation to predict the evolution of the machine health in the form of a probability density function (PDF). An on-line model update scheme is developed to adapt the Markov process changes to machine health dynamics quickly. The experimental results on a bearing test-bed illustrate the potential applications of the proposed system as an effective and simple tool for machine health prognostics.

  13. Situation exploration in a persistent surveillance system with multidimensional data

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad S.

    2013-03-01

    There is an emerging need for fusing hard and soft sensor data in an efficient surveillance system to provide accurate estimation of situation awareness. These mostly abstract, multi-dimensional and multi-sensor data pose a great challenge to the user in performing analysis of multi-threaded events efficiently and cohesively. To address this concern an interactive Visual Analytics (VA) application is developed for rapid assessment and evaluation of different hypotheses based on context-sensitive ontology spawn from taxonomies describing human/human and human/vehicle/object interactions. A methodology is described here for generating relevant ontology in a Persistent Surveillance System (PSS) and demonstrates how they can be utilized in the context of PSS to track and identify group activities pertaining to potential threats. The proposed VA system allows for visual analysis of raw data as well as metadata that have spatiotemporal representation and content-based implications. Additionally in this paper, a technique for rapid search of tagged information contingent to ranking and confidence is explained for analysis of multi-dimensional data. Lastly the issue of uncertainty associated with processing and interpretation of heterogeneous data is also addressed.

  14. Validation of the prognostic grouping of the seventh edition of the tumor-nodes-metastasis classification using a large-scale prospective cohort study database of prostate cancer treated with primary androgen deprivation therapy.

    PubMed

    Kimura, Tomokazu; Onozawa, Mizuki; Miyazaki, Jun; Kawai, Koji; Nishiyama, Hiroyuki; Hinotsu, Shiro; Akaza, Hideyuki

    2013-09-01

    In the TNM seventh edition, a prognostic grouping for prostate cancer incorporating prostate-specific antigen and Gleason score was advocated. The present study was carried out to evaluate and validate prognostic grouping in prostate cancer patients. The 15 259 study patients treated with primary androgen deprivation therapy were enrolled in the Japan Study Group of Prostate Cancer. Overall survival was stratified by tumor-nodes-metastasis, Gleason score and prostate-specific antigen, and extensively analyzed. The accuracy of grouping systems was evaluated by the concordance index. The 5-year overall survival in prognostic grouping-I, IIA, IIB, III and IV was 90.0%, 88.3%, 84.8%, 80.6% and 57.1%, respectively. When considering subgroup stratification, the 5-year overall survival of subgroups prognostic grouping-IIA, IIB, III and IV was 80.9∼90.5%, 75.4∼91.8%, 75.7∼89.0% and 46.9∼86.2%, respectively. When prognostic grouping-IIB was subclassified into IIB1 (except IIB2) and IIB2 (T1-2b, prostate-specific antigen >20, Gleason score ≥8, and T2c, Gleason score ≥8), the 5-year overall survival of IIB2 was significantly lower than that of IIB1 (79.4% and 87.3%, P < 0.0001). Also, when prognostic grouping-IV was subclassified into IV1 (except IV2) and IV2 (M1, prostate-specific antigen >100 or Gleason score ≥8), the 5-year overall survival of prognostic grouping-IV1 was superior to that of IV2 (72.9% and 49.5%, P < 0.0001). Prognostic groupings were reclassified into modified prognostic groupings, divided into modified prognostic grouping-A (prognostic grouping-I, IIA, and IIB1), modified prognostic grouping-B (prognostic grouping-IIB2 and III), modified prognostic grouping-C (prognostic grouping-IV1) and modified prognostic grouping-D (prognostic grouping-IV2). The concordance index of prognostic grouping and modified prognostic grouping for overall survival was 0.670 and 0.685, respectively. Prognostic grouping could stratify the prognosis of prostate cancer patients. However, there is considerable variation among the prognostic grouping subgroups. Thus, the use of a modified prognostic grouping for patients treated with primary androgen deprivation therapy is advisable. © 2013 The Japanese Urological Association.

  15. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    NASA Astrophysics Data System (ADS)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  16. Infiltration of diametrically polarized macrophages predicts overall survival of patients with gastric cancer after surgical resection.

    PubMed

    Zhang, Heng; Wang, Xuefei; Shen, Zhenbin; Xu, Jiejie; Qin, Jing; Sun, Yihong

    2015-10-01

    Tumor-associated macrophages (TAMs), the most predominant tumor-infiltrating immune cells, are emerging prognostic factors and therapeutic targets for personalized therapy against malignant neoplasms. We aimed to evaluate the prognostic significance of diametrically polarized TAMs in gastric cancer and generate a predictive nomogram to refine a risk stratification system. We evaluated polarized functional status of infiltrated TAMs by immunohistochemical staining of CD68, CD11c, and CD206 in 180 consecutive gastric cancer patients from Zhongshan Hospital, Shanghai, China. Prognostic values were assessed in these patients. We created a predictive nomogram by integrating polarized TAMs with the TNM staging system for overall survival of gastric cancer patients. CD68(+) TAMs display polarized programs comprising CD11c(+) proinflammatory macrophages (M1) and CD206(+) immunosuppressive macrophages (M2) that configure versatile infiltration files in gastric cancer. CD11c(+) TAMs negatively correlated with lymph node metastasis (p = 0.012), whereas CD206(+) TAMs correlated with the Lauren classification (p = 0.031). No prognostic difference was observed for overall survival for CD68 density (high vs low, p = 0.1031), whereas high versus low CD11c density (p < 0.0001) and low vs high CD206 density (p = 0.0105) indicate better overall survival. Multivariate Cox regression analysis identified CD11c and CD206 as independent prognostic factors (p < 0.001 and p = 0.030, respectively), which could be integrated with the TNM staging system to generate a predictive nomogram for patient outcomes. Infiltration of polarized TAMs, a novel identified independent prognostic factor, could be combined with the TNM stage to refine a risk stratification system and better stratify patients with different prognosis. Tipping TAMs to an antitumoral phenotype might be a promising therapeutic target for postoperative treatment.

  17. Systemic Inflammation-Based Biomarkers and Survival in HIV-Positive Subject With Solid Cancer in an Italian Multicenter Study.

    PubMed

    Raffetti, Elena; Donato, Francesco; Pezzoli, Chiara; Digiambenedetto, Simona; Bandera, Alessandra; Di Pietro, Massimo; Di Filippo, Elisa; Maggiolo, Franco; Sighinolfi, Laura; Fornabaio, Chiara; Castelnuovo, Filippo; Ladisa, Nicoletta; Castelli, Francesco; Quiros Roldan, Eugenia

    2015-08-15

    Recently, some systemic inflammation-based biomarkers have been demonstrated useful for predicting risk of death in patients with solid cancer independently of tumor characteristics. This study aimed to investigate the prognostic role of systemic inflammation-based biomarkers in HIV-infected patients with solid tumors and to propose a risk score for mortality in these subjects. Clinical and pathological data on solid AIDS-defining cancer (ADC) and non-AIDS-defining cancer (NADC), diagnosed between 1998 and 2012 in an Italian cohort, were analyzed. To evaluate the prognostic role of systemic inflammation- and nutrition-based markers, univariate and multivariable Cox regression models were applied. To compute the risk score equation, the patients were randomly assigned to a derivation and a validation sample. A total of 573 patients (76.3% males) with a mean age of 46.2 years (SD = 10.3) were enrolled. 178 patients died during a median of 3.2 years of follow-up. For solid NADCs, elevated Glasgow Prognostic Score, modified Glasgow Prognostic Score, neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and Prognostic Nutritional Index were independently associated with risk of death; for solid ADCs, none of these markers was associated with risk of death. For solid NADCs, we computed a mortality risk score on the basis of age at cancer diagnosis, intravenous drug use, and Prognostic Nutritional Index. The areas under the receiver operating characteristic curve were 0.67 (95% confidence interval: 0.58 to 0.75) in the derivation sample and 0.66 (95% confidence interval: 0.54 to 0.79) in the validation sample. Inflammatory biomarkers were associated with risk of death in HIV-infected patients with solid NADCs but not with ADCs.

  18. Evaluation of an inflammation-based prognostic score in patients with metastatic renal cancer.

    PubMed

    Ramsey, Sara; Lamb, Gavin W A; Aitchison, Michael; Graham, John; McMillan, Donald C

    2007-01-15

    Recently, it was shown that an inflammation-based prognostic score, the Glasgow Prognostic Score (GPS), provides additional prognostic information in patients with advanced cancer. The objective of the current study was to examine the value of the GPS compared with established scoring systems in predicting cancer-specific survival in patients with metastatic renal cancer. One hundred nineteen patients who underwent immunotherapy for metastatic renal cancer were recruited. The Memorial Sloan-Kettering Cancer Center (MSKCC) score and the Metastatic Renal Carcinoma Comprehensive Prognostic System (MRCCPS) score were calculated as described previously. Patients who had both an elevated C-reactive protein level (>10 mg/L) and hypoalbuminemia (<35 g/L) were allocated a GPS of 2. Patients who had only 1 of those 2 biochemical abnormalities were allocated a GPS of 1. Patients who had neither abnormality were allocated a GPS of 0. On multivariate analysis of significant individual factors, only calcium (hazard ratio [HR], 3.21; 95% confidence interval [95% CI], 1.51-6.83; P = .002), white cell count (HR, 1.66; 95% CI, 1.17-2.35; P = .004), albumin (HR, 2.63; 95% CI, 1.38-5.03; P = .003), and C-reactive protein (HR, 2.85; 95% CI; 1.49-5.45; P = .002) were associated independently with cancer-specific survival. On multivariate analysis of the different scoring systems, the MSKCC (HR, 1.88; 95% CI, 1.22-2.88; P = .004), the MRCCPS (HR, 1.42; 95% CI, 0.97-2.09; P = .071), and the GPS (HR, 2.35; 95% CI, 1.51-3.67; P < .001) were associated independently with cancer-specific survival. An inflammation-based prognostic score (GPS) predicted survival independent of established scoring systems in patients with metastatic renal cancer.

  19. The World Health Organization 1973 classification system for grade is an important prognosticator in T1 non-muscle-invasive bladder cancer.

    PubMed

    van de Putte, Elisabeth E Fransen; Bosschieter, Judith; van der Kwast, Theo H; Bertz, Simone; Denzinger, Stefan; Manach, Quentin; Compérat, Eva M; Boormans, Joost L; Jewett, Michael A S; Stoehr, Robert; van Leenders, Geert J L H; Nieuwenhuijzen, Jakko A; Zlotta, Alexandre R; Hendricksen, Kees; Rouprêt, Morgan; Otto, Wolfgang; Burger, Maximilian; Hartmann, Arndt; van Rhijn, Bas W G

    2018-04-10

    To compare the prognostic value of the World Health Organization (WHO) 1973 and 2004 classification systems for grade in T1 bladder cancer (T1-BC), as both are currently recommended in international guidelines. Three uro-pathologists re-revised slides of 601 primary (first diagnosis) T1-BCs, initially managed conservatively (bacille Calmette-Guérin) in four hospitals. Grade was defined according to WHO1973 (Grade 1-3) and WHO2004 (low-grade [LG] and high-grade [HG]). This resulted in a lack of Grade 1 tumours, 188 (31%) Grade 2, and 413 (69%) Grade 3 tumours. There were 47 LG (8%) vs 554 (92%) HG tumours. We determined the prognostic value for progression-free survival (PFS) and cancer-specific survival (CSS) in Cox-regression models and corrected for age, sex, multiplicity, size and concomitant carcinoma in situ. At a median follow-up of 5.9 years, 148 patients showed progression and 94 died from BC. The WHO1973 Grade 3 was negatively associated with PFS (hazard ratio [HR] 2.1) and CSS (HR 3.4), whilst WHO2004 grade was not prognostic. On multivariable analysis, WHO1973 grade was the only prognostic factor for progression (HR 2.0). Grade 3 tumours (HR 3.0), older age (HR 1.03) and tumour size >3 cm (HR 1.8) were all independently associated with worse CSS. The WHO1973 classification system for grade has strong prognostic value in T1-BC, compared to the WHO2004 system. Our present results suggest that WHO1973 grade cannot be replaced by the WHO2004 classification in non-muscle-invasive BC guidelines. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  20. Comparison of the prognostic value of pretreatment measurements of systemic inflammatory response in patients undergoing curative resection of clear cell renal cell carcinoma.

    PubMed

    Lucca, Ilaria; de Martino, Michela; Hofbauer, Sebastian L; Zamani, Nura; Shariat, Shahrokh F; Klatte, Tobias

    2015-12-01

    Pretreatment measurements of systemic inflammatory response, including the Glasgow prognostic score (GPS), the neutrophil-to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR), the platelet-to-lymphocyte ratio (PLR) and the prognostic nutritional index (PNI) have been recognized as prognostic factors in clear cell renal cell carcinoma (CCRCC), but there is at present no study that compared these markers. We evaluated the pretreatment GPS, NLR, MLR, PLR and PNI in 430 patients, who underwent surgery for clinically localized CCRCC (pT1-3N0M0). Associations with disease-free survival were assessed with Cox models. Discrimination was measured with the C-index, and a decision curve analysis was used to evaluate the clinical net benefit. On multivariable analyses, all measures of systemic inflammatory response were significant prognostic factors. The increase in discrimination compared with the stage, size, grade and necrosis (SSIGN) score alone was 5.8 % for the GPS, 1.1-1.4 % for the NLR, 2.9-3.4 % for the MLR, 2.0-3.3 % for the PLR and 1.4-3.0 % for the PNI. On the simultaneous multivariable analysis of all candidate measures, the final multivariable model contained the SSIGN score (HR 1.40, P < 0.001), the GPS (HR 2.32, P < 0.001) and the MLR (HR 5.78, P = 0.003) as significant variables. Adding both the GPS and the MLR increased the discrimination of the SSIGN score by 6.2 % and improved the clinical net benefit. In patients with clinically localized CCRCC, the GPS and the MLR appear to be the most relevant prognostic measures of systemic inflammatory response. They may be used as an adjunct for patient counseling, tailoring management and clinical trial design.

  1. Measuring Healthcare Providers' Performances Within Managed Competition Using Multidimensional Quality and Cost Indicators.

    PubMed

    Portrait, France R M; van der Galiën, Onno; Van den Berg, Bernard

    2016-04-01

    The Dutch healthcare system is in transition towards managed competition. In theory, a system of managed competition involves incentives for quality and efficiency of provided care. This is mainly because health insurers contract on behalf of their clients with healthcare providers on, potentially, quality and costs. The paper develops a strategy to comprehensively analyse available multidimensional data on quality and costs to assess and report on the relative performance of healthcare providers within managed competition. We had access to individual information on 2409 clients of 19 Dutch diabetes care groups on a broad range of (outcome and process related) quality and cost indicators. We carried out a cost-consequences analysis and corrected for differences in case mix to reduce incentives for risk selection by healthcare providers. There is substantial heterogeneity between diabetes care groups' performances as measured using multidimensional indicators on quality and costs. Better quality diabetes care can be achieved with lower or higher costs. Routine monitoring using multidimensional data on quality and costs merged at the individual level would allow a systematic and comprehensive analysis of healthcare providers' performances within managed competition. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Development and Validation of a Lifecycle-based Prognostics Architecture with Test Bed Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, J. Wesley; Upadhyaya, Belle; Sharp, Michael

    On-line monitoring and tracking of nuclear plant system and component degradation is being investigated as a method for improving the safety, reliability, and maintainability of aging nuclear power plants. Accurate prediction of the current degradation state of system components and structures is important for accurate estimates of their remaining useful life (RUL). The correct quantification and propagation of both the measurement uncertainty and model uncertainty is necessary for quantifying the uncertainty of the RUL prediction. This research project developed and validated methods to perform RUL estimation throughout the lifecycle of plant components. Prognostic methods should seamlessly operate from beginning ofmore » component life (BOL) to end of component life (EOL). We term this "Lifecycle Prognostics." When a component is put into use, the only information available may be past failure times of similar components used in similar conditions, and the predicted failure distribution can be estimated with reliability methods such as Weibull Analysis (Type I Prognostics). As the component operates, it begins to degrade and consume its available life. This life consumption may be a function of system stresses, and the failure distribution should be updated to account for the system operational stress levels (Type II Prognostics). When degradation becomes apparent, this information can be used to again improve the RUL estimate (Type III Prognostics). This research focused on developing prognostics algorithms for the three types of prognostics, developing uncertainty quantification methods for each of the algorithms, and, most importantly, developing a framework using Bayesian methods to transition between prognostic model types and update failure distribution estimates as new information becomes available. The developed methods were then validated on a range of accelerated degradation test beds. The ultimate goal of prognostics is to provide an accurate assessment for RUL predictions, with as little uncertainty as possible. From a reliability and maintenance standpoint, there would be improved safety by avoiding all failures. Calculated risk would decrease, saving money by avoiding unnecessary maintenance. One major bottleneck for data-driven prognostics is the availability of run-to-failure degradation data. Without enough degradation data leading to failure, prognostic models can yield RUL distributions with large uncertainty or mathematically unsound predictions. To address these issues a "Lifecycle Prognostics" method was developed to create RUL distributions from Beginning of Life (BOL) to End of Life (EOL). This employs established Type I, II, and III prognostic methods, and Bayesian transitioning between each Type. Bayesian methods, as opposed to classical frequency statistics, show how an expected value, a priori, changes with new data to form a posterior distribution. For example, when you purchase a component you have a prior belief, or estimation, of how long it will operate before failing. As you operate it, you may collect information related to its condition that will allow you to update your estimated failure time. Bayesian methods are best used when limited data are available. The use of a prior also means that information is conserved when new data are available. The weightings of the prior belief and information contained in the sampled data are dependent on the variance (uncertainty) of the prior, the variance (uncertainty) of the data, and the amount of measured data (number of samples). If the variance of the prior is small compared to the uncertainty of the data, the prior will be weighed more heavily. However, as more data are collected, the data will be weighted more heavily and will eventually swamp out the prior in calculating the posterior distribution of model parameters. Fundamentally Bayesian analysis updates a prior belief with new data to get a posterior belief. The general approach to applying the Bayesian method to lifecycle prognostics consisted of identifying the prior, which is the RUL estimate and uncertainty from the previous prognostics type, and combining it with observational data related to the newer prognostics type. The resulting lifecycle prognostics algorithm uses all available information throughout the component lifecycle.« less

  3. Markers of systemic inflammation predict survival in patients with advanced renal cell cancer.

    PubMed

    Fox, P; Hudson, M; Brown, C; Lord, S; Gebski, V; De Souza, P; Lee, C K

    2013-07-09

    The host inflammatory response has a vital role in carcinogenesis and tumour progression. We examined the prognostic value of inflammatory markers (albumin, white-cell count and its components, and platelets) in pre-treated patients with advanced renal cell carcinoma (RCC). Using data from a randomised trial, multivariable proportional hazards models were generated to examine the impact of inflammatory markers and established prognostic factors (performance status, calcium, and haemoglobin) on overall survival (OS). We evaluated a new prognostic classification incorporating additional information from inflammatory markers. Of the 416 patients, 362 were included in the analysis. Elevated neutrophil counts, elevated platelet counts, and a high neutrophil-lymphocyte ratio were significant independent predictors for shorter OS in a model with established prognostic factors. The addition of inflammatory markers improves the discriminatory value of the prognostic classification as compared with established factors alone (C-statistic 0.673 vs 0.654, P=0.002 for the difference), with 25.8% (P=0.004) of patients more appropriately classified using the new classification. Markers of systemic inflammation contribute significantly to prognostic classification in addition to established factors for pre-treated patients with advanced RCC. Upon validation of these data in independent studies, stratification of patients using these markers in future clinical trials is recommended.

  4. Gene network inherent in genomic big data improves the accuracy of prognostic prediction for cancer patients.

    PubMed

    Kim, Yun Hak; Jeong, Dae Cheon; Pak, Kyoungjune; Goh, Tae Sik; Lee, Chi-Seung; Han, Myoung-Eun; Kim, Ji-Young; Liangwen, Liu; Kim, Chi Dae; Jang, Jeon Yeob; Cha, Wonjae; Oh, Sae-Ock

    2017-09-29

    Accurate prediction of prognosis is critical for therapeutic decisions regarding cancer patients. Many previously developed prognostic scoring systems have limitations in reflecting recent progress in the field of cancer biology such as microarray, next-generation sequencing, and signaling pathways. To develop a new prognostic scoring system for cancer patients, we used mRNA expression and clinical data in various independent breast cancer cohorts (n=1214) from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). A new prognostic score that reflects gene network inherent in genomic big data was calculated using Network-Regularized high-dimensional Cox-regression (Net-score). We compared its discriminatory power with those of two previously used statistical methods: stepwise variable selection via univariate Cox regression (Uni-score) and Cox regression via Elastic net (Enet-score). The Net scoring system showed better discriminatory power in prediction of disease-specific survival (DSS) than other statistical methods (p=0 in METABRIC training cohort, p=0.000331, 4.58e-06 in two METABRIC validation cohorts) when accuracy was examined by log-rank test. Notably, comparison of C-index and AUC values in receiver operating characteristic analysis at 5 years showed fewer differences between training and validation cohorts with the Net scoring system than other statistical methods, suggesting minimal overfitting. The Net-based scoring system also successfully predicted prognosis in various independent GEO cohorts with high discriminatory power. In conclusion, the Net-based scoring system showed better discriminative power than previous statistical methods in prognostic prediction for breast cancer patients. This new system will mark a new era in prognosis prediction for cancer patients.

  5. Gene network inherent in genomic big data improves the accuracy of prognostic prediction for cancer patients

    PubMed Central

    Kim, Yun Hak; Jeong, Dae Cheon; Pak, Kyoungjune; Goh, Tae Sik; Lee, Chi-Seung; Han, Myoung-Eun; Kim, Ji-Young; Liangwen, Liu; Kim, Chi Dae; Jang, Jeon Yeob; Cha, Wonjae; Oh, Sae-Ock

    2017-01-01

    Accurate prediction of prognosis is critical for therapeutic decisions regarding cancer patients. Many previously developed prognostic scoring systems have limitations in reflecting recent progress in the field of cancer biology such as microarray, next-generation sequencing, and signaling pathways. To develop a new prognostic scoring system for cancer patients, we used mRNA expression and clinical data in various independent breast cancer cohorts (n=1214) from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). A new prognostic score that reflects gene network inherent in genomic big data was calculated using Network-Regularized high-dimensional Cox-regression (Net-score). We compared its discriminatory power with those of two previously used statistical methods: stepwise variable selection via univariate Cox regression (Uni-score) and Cox regression via Elastic net (Enet-score). The Net scoring system showed better discriminatory power in prediction of disease-specific survival (DSS) than other statistical methods (p=0 in METABRIC training cohort, p=0.000331, 4.58e-06 in two METABRIC validation cohorts) when accuracy was examined by log-rank test. Notably, comparison of C-index and AUC values in receiver operating characteristic analysis at 5 years showed fewer differences between training and validation cohorts with the Net scoring system than other statistical methods, suggesting minimal overfitting. The Net-based scoring system also successfully predicted prognosis in various independent GEO cohorts with high discriminatory power. In conclusion, the Net-based scoring system showed better discriminative power than previous statistical methods in prognostic prediction for breast cancer patients. This new system will mark a new era in prognosis prediction for cancer patients. PMID:29100405

  6. A Physics-Based Modeling Framework for Prognostic Studies

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.

    2014-01-01

    Prognostics and Health Management (PHM) methodologies have emerged as one of the key enablers for achieving efficient system level maintenance as part of a busy operations schedule, and lowering overall life cycle costs. PHM is also emerging as a high-priority issue in critical applications, where the focus is on conducting fundamental research in the field of integrated systems health management. The term diagnostics relates to the ability to detect and isolate faults or failures in a system. Prognostics on the other hand is the process of predicting health condition and remaining useful life based on current state, previous conditions and future operating conditions. PHM methods combine sensing, data collection, interpretation of environmental, operational, and performance related parameters to indicate systems health under its actual application conditions. The development of prognostics methodologies for the electronics field has become more important as more electrical systems are being used to replace traditional systems in several applications in the aeronautics, maritime, and automotive fields. The development of prognostics methods for electronics presents several challenges due to the great variety of components used in a system, a continuous development of new electronics technologies, and a general lack of understanding of how electronics fail. Similarly with electric unmanned aerial vehicles, electrichybrid cars, and commercial passenger aircraft, we are witnessing a drastic increase in the usage of batteries to power vehicles. However, for battery-powered vehicles to operate at maximum efficiency and reliability, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. We develop an electrochemistry-based model of Li-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles.

  7. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia.

    PubMed

    Such, Esperanza; Germing, Ulrich; Malcovati, Luca; Cervera, José; Kuendgen, Andrea; Della Porta, Matteo G; Nomdedeu, Benet; Arenillas, Leonor; Luño, Elisa; Xicoy, Blanca; Amigo, Mari L; Valcarcel, David; Nachtkamp, Kathrin; Ambaglio, Ilaria; Hildebrandt, Barbara; Lorenzo, Ignacio; Cazzola, Mario; Sanz, Guillermo

    2013-04-11

    The natural course of chronic myelomonocytic leukemia (CMML) is highly variable but a widely accepted prognostic scoring system for patients with CMML is not available. The main aim of this study was to develop a new CMML-specific prognostic scoring system (CPSS) in a large series of 558 patients with CMML (training cohort, Spanish Group of Myelodysplastic Syndromes) and to validate it in an independent series of 274 patients (validation cohort, Heinrich Heine University Hospital, Düsseldorf, Germany, and San Matteo Hospital, Pavia, Italy). The most relevant variables for overall survival (OS) and evolution to acute myeloblastic leukemia (AML) were FAB and WHO CMML subtypes, CMML-specific cytogenetic risk classification, and red blood cell (RBC) transfusion dependency. CPSS was able to segregate patients into 4 clearly different risk groups for OS (P < .001) and risk of AML evolution (P < .001) and its predictive capability was confirmed in the validation cohort. An alternative CPSS with hemoglobin instead of RBC transfusion dependency offered almost identical prognostic capability. This study confirms the prognostic impact of FAB and WHO subtypes, recognizes the importance of RBC transfusion dependency and cytogenetics, and offers a simple and powerful CPSS for accurately assessing prognosis and planning therapy in patients with CMML.

  8. The Shifting Paradigm of Prognostic Factors of Colorectal Liver Metastases: From Tumor-Centered to Host Immune-Centered Factors

    PubMed Central

    Donadon, Matteo; Lleo, Ana; Di Tommaso, Luca; Soldani, Cristiana; Franceschini, Barbara; Roncalli, Massimo; Torzilli, Guido

    2018-01-01

    The determinants of prognosis in patients with colorectal liver metastases (CLM) have been traditionally searched among the tumoral factors, either of the primary colorectal tumor or of the CLM. While many different scoring systems have been developed based on those clinic-pathological factors with disparate results, there has been the introduction of genetic biological markers that added a theranostic perspective. More recently, other important elements, such as those factors related to the host immune system, have been proposed as determinants of prognosis of CLM patients. In the present work, we review the current prognostic factors of CLM patients as well as the burgeoning shifting paradigm of prognostication that relies on the host immune system. PMID:29892573

  9. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  10. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  11. Prognostic nutritional index as a prognostic biomarker for survival in digestive system carcinomas.

    PubMed

    Zhao, Yang; Xu, Peng; Kang, Huafeng; Lin, Shuai; Wang, Meng; Yang, Pengtao; Dai, Cong; Liu, Xinghan; Liu, Kang; Zheng, Yi; Dai, Zhijun

    2016-12-27

    The prognostic nutritional index (PNI) has been reported to correlate with the prognosis in patients with various malignancies. We performed a meta-analysis to determine the predictive potential of PNI in digestive system cancers. Twenty-three studies with a total of 7,384 patients suffering from digestive system carcinomas were involved in this meta-analysis. A lower PNI was significantly associated with the shorter overall survival (OS) [Hazard Ratio (HR) 1.83, 95% Confidence Interval (CI) 1.62-2.07], the poorer disease-free survival (DFS) (HR 1.85, 95% CI 1.19-2.89), and the higher rate of post-operative complications (HR 2.31, 95% CI 1.63-3.28). In conclusion, PNI was allowed to function as an efficient indicator for the prognosis of patients with digestive system carcinomas.

  12. Ergodic properties of the multidimensional rayleigh gas with a semipermeable barrier

    NASA Astrophysics Data System (ADS)

    Erdős, L.; Tuyen, D. Q.

    1990-06-01

    We consider a multidimensional system consisting of a particle of mass M and radius r (molecule), surrounded by an infinite ideal gas of point particles of mass m (atoms). The molecule is confined to the unit ball and interacts with its boundary ( barrier) via elastic collision, while the atoms are not affected by the boundary. We obtain convergence to equilibrium for the molecule from almost every initial distribution on its position and velocity. Furthermore, we prove that the infinite composite system of the molecule and the atoms is Bernoulli.

  13. A Retrospective Survival Analysis of Anatomic and Prognostic Stage Group Based on the American Joint Committee on Cancer 8th Edition Cancer Staging Manual in Luminal B Human Epidermal Growth Factor Receptor 2-negative Breast Cancer.

    PubMed

    Xu, Ling; Li, Jiang-Hong; Ye, Jing-Ming; Duan, Xue-Ning; Cheng, Yuan-Jia; Xin, Ling; Liu, Qian; Zhou, Bin; Liu, Yin-Hua

    2017-08-20

    Current understanding of tumor biology suggests that breast cancer is a group of diseases with different intrinsic molecular subtypes. Anatomic staging system alone is insufficient to provide future outcome information. The American Joint Committee on Cancer (AJCC) expert panel updated the 8th edition of the staging manual with prognostic stage groups by incorporating biomarkers into the anatomic stage groups. In this study, we retrospectively analyzed the data from our center in China using the anatomic and prognostic staging system based on the AJCC 8th edition staging manual. We reviewed the data from January 2008 to December 2014 for cases with Luminal B Human Epidermal Growth Factor Receptor 2 (HER2)-negative breast cancer in our center. All cases were restaged using the AJCC 8th edition anatomic and prognostic staging system. The Kaplan-Meier method and log-rank test were used to compare the survival differences between different subgroups. SPSS software version 19.0 (IBM Corp., Armonk, NY, USA) was used for the statistical analyses. This study consisted of 796 patients with Luminal B HER-negative breast cancer. The 5-year disease-free survival (DFS) of 769 Stage I-III patients was 89.7%, and the 5-year overall survival (OS) of all 796 patients was 91.7%. Both 5-year DFS and 5-year OS were significantly different in the different anatomic and prognostic stage groups. There were 372 cases (46.7%) assigned to a different group. The prognostic Stage II and III patients restaged from anatomic Stage III had significant differences in 5-year DFS (χ2 = 11.319, P= 0.001) and 5-year OS (χ2 = 5.225, P= 0.022). In addition, cases restaged as prognostic Stage I, II, or III from the anatomic Stage II group had statistically significant differences in 5-year DFS (χ2 = 6.510, P= 0.039) but no significant differences in 5-year OS (χ2 = 5.087, P= 0.079). However, the restaged prognostic Stage I and II cases from anatomic Stage I had no statistically significant differences in either 5-year DFS (χ2 = 0.440, P= 0.507) or 5-year OS (χ2 = 1.530, P= 0.216). The prognostic staging system proposed in the AJCC 8th edition refines the anatomic stage group in Luminal B HER2-negative breast cancer and will lead to a more personalized approach to breast cancer treatment.

  14. Developing and validating a novel metabolic tumor volume risk stratification system for supplementing non-small cell lung cancer staging.

    PubMed

    Pu, Yonglin; Zhang, James X; Liu, Haiyan; Appelbaum, Daniel; Meng, Jianfeng; Penney, Bill C

    2018-06-07

    We hypothesized that whole-body metabolic tumor volume (MTVwb) could be used to supplement non-small cell lung cancer (NSCLC) staging due to its independent prognostic value. The goal of this study was to develop and validate a novel MTVwb risk stratification system to supplement NSCLC staging. We performed an IRB-approved retrospective review of 935 patients with NSCLC and FDG-avid tumor divided into modeling and validation cohorts based on the type of PET/CT scanner used for imaging. In addition, sensitivity analysis was conducted by dividing the patient population into two randomized cohorts. Cox regression and Kaplan-Meier survival analyses were performed to determine the prognostic value of the MTVwb risk stratification system. The cut-off values (10.0, 53.4 and 155.0 mL) between the MTVwb quartiles of the modeling cohort were applied to both the modeling and validation cohorts to determine each patient's MTVwb risk stratum. The survival analyses showed that a lower MTVwb risk stratum was associated with better overall survival (all p < 0.01), independent of TNM stage together with other clinical prognostic factors, and the discriminatory power of the MTVwb risk stratification system, as measured by Gönen and Heller's concordance index, was not significantly different from that of TNM stage in both cohorts. Also, the prognostic value of the MTVwb risk stratum was robust in the two randomized cohorts. The discordance rate between the MTVwb risk stratum and TNM stage or substage was 45.1% in the modeling cohort and 50.3% in the validation cohort. This study developed and validated a novel MTVwb risk stratification system, which has prognostic value independent of the TNM stage and other clinical prognostic factors in NSCLC, suggesting that it could be used for further NSCLC pretreatment assessment and for refining treatment decisions in individual patients.

  15. A New Prognostic Staging System for Rectal Cancer

    PubMed Central

    Ueno, Hideki; Price, Ashley B.; Wilkinson, Kay H.; Jass, Jeremy R.; Mochizuki, Hidetaka; Talbot, Ian C.

    2004-01-01

    Objective: To clarify the appropriateness of tumor “budding,” a quantifiable histologic variable, as 1 parameter in the construction of a new prognostic grading system for rectal cancer. Summary Background Data: Patient division according to an accurate prognostic prediction could enhance the effectiveness of postoperative adjuvant therapy and follow-up. Patients and Methods: Tumor budding was defined as an isolated cancer cell or a cluster composed of fewer than 5 cells in the invasive frontal region, and was divided into 2 grades based on its number within a microscopic field of ×250. We analyzed 2 discrete cohorts comprising 638 and 476 patients undergoing potentially curative surgery. Results: In the first cohort, high-grade budding (10 or more foci in a field) was observed in 30% of patients and was significantly associated with a lower 5-year survival rate (41%) than low-grade budding (84%). Similarly, in the second cohort, the 5-year survival rate was 43% in high-grade budding patients and 83% in low-grade budding patients. In both cohorts, multivariate analyses verified budding to be an independent prognosticator, together with nodal involvement and extramural spread. These 3 variables were given weighted scores, and the score range was divided to provide 5 prognostic groups (97%; 86%; 61%; 39%; 17% 5-year survival). The model was tested on the second cohort, and similar prognostic results were obtained. Conclusions: We propose that because of its relevance to prognosis and its reproducibility, budding is an excellent parameter for use in a grading system to provide a confident prediction of clinical outcome. PMID:15492565

  16. Probes for multidimensional nanospectroscopic imaging and methods of fabrication thereof

    DOEpatents

    Weber-Bargioni, Alexander; Cabrini, Stefano; Bao, Wei; Melli, Mauro; Yablonovitch, Eli; Schuck, Peter J

    2015-03-17

    This disclosure provides systems, methods, and apparatus related to probes for multidimensional nanospectroscopic imaging. In one aspect, a method includes providing a transparent tip comprising a dielectric material. A four-sided pyramidal-shaped structure is formed at an apex of the transparent tip using a focused ion beam. Metal layers are deposited over two opposing sides of the four-sided pyramidal-shaped structure.

  17. Method of multi-dimensional moment analysis for the characterization of signal peaks

    DOEpatents

    Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A

    2012-10-23

    A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.

  18. A novel multi-dimensional absolute distance measurement system using a basic frequency modulated continuous wave radar and an external cavity laser with trilateration metrology

    NASA Astrophysics Data System (ADS)

    Xiong, Xingting; Qu, Xinghua; Zhang, Fumin

    2018-01-01

    We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.

  19. Prognostic value of long noncoding RNA HOTAIR in digestive system malignancies.

    PubMed

    Wang, Shuai; Wang, Zhou

    2015-07-01

    HOX transcript antisense intergenic RNA (HOTAIR), a well-known long noncoding RNA, has been found to play significant roles in several tumors. However, the clinical application value of HOTAIR in digestive system malignancies remains to be clarified. We aimed to explore comprehensively the potential role of HOTAIR as a prognostic indicator in digestive system malignancies. Systematic search was performed in Pubmed, Embase, Cochrane Library, and Web of Science until July 5, 2014. A quantitative meta-analysis was conducted with standard statistical methods for eligible papers on the prognostic value of HOTAIR in digestive system cancers. A total of 1059 patients from 13 studies were included in the meta-analysis. A significant association was found between HOTAIR abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 2.587 (95% confidence interval [CI]: 2.054-3.259, P < 0.001). By combining HRs from Cox multivariate analyses, we found HOTAIR was an independent prognostic factor for OS without obvious heterogeneity (HR: 2.405, 95% CI: 1.883-3.0722, P < 0.001). Subgroup analysis showed that tumor type, histology type, region, publication year, sample size, and quality score did not alter the predictive value of HOTAIR as an independent factor for survival. Meta-regression and sensitivity analysis both suggested the reliability of our findings. A slight publication bias was observed. After adjustment by nonparametric "trim-and-fill" method, the corrected HRs had no significant change. HOTAIR could be exploited as a novel prognostic biomarker for patients with digestive system malignancies. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  20. New prognostic factors and scoring system for patients with skeletal metastasis.

    PubMed

    Katagiri, Hirohisa; Okada, Rieko; Takagi, Tatsuya; Takahashi, Mitsuru; Murata, Hideki; Harada, Hideyuki; Nishimura, Tetsuo; Asakura, Hirofumi; Ogawa, Hirofumi

    2014-10-01

    The aim of this study was to update a previous scoring system for patients with skeletal metastases, that was proposed by Katagiri et al. in 2005, by introducing a new factor (laboratory data) and analyzing a new patient cohort. Between January 2005 and January 2008, we treated 808 patients with symptomatic skeletal metastases. They were prospectively registered regardless of their treatments, and the last follow-up evaluation was performed in 2012. There were 441 male and 367 female patients with a median age of 64 years. Of these patients, 749 were treated nonsurgically while the remaining 59 underwent surgery for skeletal metastasis. A multivariate analysis was conducted using the Cox proportional hazards model. We identified six significant prognostic factors for survival, namely, the primary lesion, visceral or cerebral metastases, abnormal laboratory data, poor performance status, previous chemotherapy, and multiple skeletal metastases. The first three factors had a larger impact than the remaining three. The prognostic score was calculated by adding together all the scores for individual factors. With a prognostic score of ≥7, the survival rate was 27% at 6 months, and only 6% at 1 year. In contrast, patients with a prognostic score of ≤3 had a survival rate of 91% at 1 year, and 78% at 2 years. Comparing the revised system with the previous one, there was a significantly lower number of wrongly predicted patients using the revised system. This revised scoring system was able to predict the survival rates of patients with skeletal metastases more accurately than the previous system and may be useful for selecting an optimal treatment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  1. Assessment and Utility of Frailty Measures in Critical Illness, Cardiology, and Cardiac Surgery.

    PubMed

    Rajabali, Naheed; Rolfson, Darryl; Bagshaw, Sean M

    2016-09-01

    Frailty is a clearly emerging theme in acute care medicine, with obvious prognostic and health resource implications. "Frailty" is a term used to describe a multidimensional syndrome of loss of homeostatic reserves that gives rise to a vulnerability to adverse outcomes after relatively minor stressor events. This is conceptually simple, yet there has been little consensus on the operational definition. The gold standard method to diagnose frailty remains a comprehensive geriatric assessment; however, a variety of validated physical performance measures, judgement-based tools, and multidimensional scales are being applied in critical care, cardiology, and cardiac surgery settings, including open cardiac surgery and transcatheter aortic value replacement. Frailty is common among patients admitted to the intensive care unit and correlates with an increased risk for adverse events, increased resource use, and less favourable patient-centred outcomes. Analogous findings have been described across selected acute cardiology and cardiac surgical settings, in particular those that commonly intersect with critical care services. The optimal methods for screening and diagnosing frailty across these settings remains an active area of investigation. Routine assessment for frailty conceivably has numerous purported benefits for patients, families, health care providers, and health administrators through better informed decision-making regarding treatments or goals of care, prognosis for survival, expectations for recovery, risk of complications, and expected resource use. In this review, we discuss the measurement of frailty and its utility in patients with critical illness and in cardiology and cardiac surgery settings. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. Fatigue and multidimensional disease severity in chronic obstructive pulmonary disease.

    PubMed

    Inal-Ince, Deniz; Savci, Sema; Saglam, Melda; Calik, Ebru; Arikan, Hulya; Bosnak-Guclu, Meral; Vardar-Yagli, Naciye; Coplu, Lutfi

    2010-06-30

    Fatigue is associated with longitudinal ratings of health in patients with chronic obstructive pulmonary disease (COPD). Although the degree of airflow obstruction is often used to grade disease severity in patients with COPD, multidimensional grading systems have recently been developed. The aim of this study was to investigate the relationship between perceived and actual fatigue level and multidimensional disease severity in patients with COPD. Twenty-two patients with COPD (aged 52-74 years) took part in the study. Multidimensional disease severity was measured using the SAFE and BODE indices. Perceived fatigue was assessed using the Fatigue Severity Scale (FSS) and the Fatigue Impact Scale (FIS). Peripheral muscle endurance was evaluated using the number of sit-ups, squats, and modified push-ups that each patient could do. Thirteen patients (59%) had severe fatigue, and their St George's Respiratory Questionnaire scores were significantly higher (p < 0.05). The SAFE index score was significantly correlated with the number of sit-ups, number of squats, FSS score and FIS score (p < 0.05). The BODE index was significantly associated with the numbers of sit-ups, squats and modified push-ups, and with the FSS and FIS scores (p < 0.05). Peripheral muscle endurance and fatigue perception in patients with COPD was related to multidimensional disease severity measured with both the SAFE and BODE indices. Improvements in perceived and actual fatigue levels may positively affect multidimensional disease severity and health status in COPD patients. Further research is needed to investigate the effects of fatigue perception and exercise training on patients with different stages of multidimensional COPD severity.

  3. ComVisMD - compact visualization of multidimensional data: experimenting with cricket players data

    NASA Astrophysics Data System (ADS)

    Dandin, Shridhar B.; Ducassé, Mireille

    2018-03-01

    Database information is multidimensional and often displayed in tabular format (row/column display). Presented in aggregated form, multidimensional data can be used to analyze the records or objects. Online Analytical database Processing (OLAP) proposes mechanisms to display multidimensional data in aggregated forms. A choropleth map is a thematic map in which areas are colored in proportion to the measurement of a statistical variable being displayed, such as population density. They are used mostly for compact graphical representation of geographical information. We propose a system, ComVisMD inspired by choropleth map and the OLAP cube to visualize multidimensional data in a compact way. ComVisMD displays multidimensional data like OLAP Cube, where we are mapping an attribute a (first dimension, e.g. year started playing cricket) in vertical direction, object coloring based on b (second dimension, e.g. batting average), mapping varying-size circles based on attribute c (third dimension, e.g. highest score), mapping numbers based on attribute d (fourth dimension, e.g. matches played). We illustrate our approach on cricket players data, namely on two tables Country and Player. They have a large number of rows and columns: 246 rows and 17 columns for players of one country. ComVisMD’s visualization reduces the size of the tabular display by a factor of about 4, allowing users to grasp more information at a time than the bare table display.

  4. Contribution of artificial intelligence to the knowledge of prognostic factors in laryngeal carcinoma.

    PubMed

    Zapater, E; Moreno, S; Fortea, M A; Campos, A; Armengot, M; Basterra, J

    2000-11-01

    Many studies have investigated prognostic factors in laryngeal carcinoma, with sometimes conflicting results. Apart from the importance of environmental factors, the different statistical methods employed may have influenced such discrepancies. A program based on artificial intelligence techniques is designed to determine the prognostic factors in a series of 122 laryngeal carcinomas. The results obtained are compared with those derived from two classical statistical methods (Cox regression and mortality tables). Tumor location was found to be the most important prognostic factor by all methods. The proposed intelligent system is found to be a sound method capable of detecting exceptional cases.

  5. TNM: evolution and relation to other prognostic factors.

    PubMed

    Sobin, Leslie H

    2003-01-01

    The TNM Classification describes the anatomic extent of cancer. TNM's ability to separately classify the individual tumor (T), node (N), and metastasis (M) elements and then group them into stages differs from other cancer staging classifications (e.g., Dukes), which are only concerned with summarized groups. The objectives of the TNM Classification are to aid the clinician in the planning of treatment, give some indication of prognosis, assist in the evaluation of the results of treatment, and facilitate the exchange of information. During the past 50 years, the TNM system has evolved under the influence of advances in diagnosis and treatment. Radiographic imaging (e.g., endoscopic ultrasound for the depth of invasion of esophageal and rectal tumors) has improved the accuracy of the clinical T, N, and M classifications. Advances in treatment have necessitated more detail in some T4 categories. Developments in multimodality therapy have increased the importance of the "y" symbol and the R (residual tumor) classification. New surgical techniques have resulted in the elaboration of the sentinel node (sn) symbol. The use of immunohistochemistry has resulted in the classification of isolated tumor cells and their distinction from micrometastasis. The most important challenge facing users of the TNM Classification is how it should interface with the large number of non-anatomic prognostic factors that are currently in use or under study. As non-anatomic prognostic factors become widely used, the TNM system provides an inviting foundation upon which to build a prognostic classification; however, this carries a risk that the system will be overwhelmed by a variety of prognostic data. An anatomic extent-of-disease classification is needed to aid practitioners in selecting the initial therapeutic approach, stratifying patients for therapeutic studies, evaluating non-anatomic prognostic factors at specific anatomic stages, comparing the weight of non-anatomic factors with extent of disease, and communicating the extent of disease data in a uniform manner. Methods are needed to express the overall prognosis without losing the vital anatomic content of TNM. These methods should be able to integrate multiple prognostic factors, including TNM, while permitting the TNM system to remain intact and distinct. This article discusses examples of such approaches.

  6. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    PubMed Central

    Tse, Peter W.; Wang, Dong

    2017-01-01

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions. PMID:28216586

  7. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics.

    PubMed

    Tse, Peter W; Wang, Dong

    2017-02-14

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  8. Self-Learning Adaptive Umbrella Sampling Method for the Determination of Free Energy Landscapes in Multiple Dimensions

    PubMed Central

    Wojtas-Niziurski, Wojciech; Meng, Yilin; Roux, Benoit; Bernèche, Simon

    2013-01-01

    The potential of mean force describing conformational changes of biomolecules is a central quantity that determines the function of biomolecular systems. Calculating an energy landscape of a process that depends on three or more reaction coordinates might require a lot of computational power, making some of multidimensional calculations practically impossible. Here, we present an efficient automatized umbrella sampling strategy for calculating multidimensional potential of mean force. The method progressively learns by itself, through a feedback mechanism, which regions of a multidimensional space are worth exploring and automatically generates a set of umbrella sampling windows that is adapted to the system. The self-learning adaptive umbrella sampling method is first explained with illustrative examples based on simplified reduced model systems, and then applied to two non-trivial situations: the conformational equilibrium of the pentapeptide Met-enkephalin in solution and ion permeation in the KcsA potassium channel. With this method, it is demonstrated that a significant smaller number of umbrella windows needs to be employed to characterize the free energy landscape over the most relevant regions without any loss in accuracy. PMID:23814508

  9. A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering.

    PubMed

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2015-12-01

    Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.

  10. A Framework for Model-Based Diagnostics and Prognostics of Switched-Mode Power Supplies

    DTIC Science & Technology

    2014-10-02

    system. Some highlights of the work are included but not only limited to the following aspects: first, the methodology is based on electronic ... electronic health management, with the goal of expanding the realm of electronic diagnostics and prognostics. 1. INTRODUCTION Electronic systems such...as electronic controls, onboard computers, communications, navigation and radar perform many critical functions in onboard military and commercial

  11. Development of a turbojet engine gearbox test rig for prognostics and health management

    NASA Astrophysics Data System (ADS)

    Rezaei, Aida; Dadouche, Azzedine

    2012-11-01

    Aircraft engine gearboxes represent one of the many critical systems/elements that require special attention for longer and safer operation. Reactive maintenance strategies are unsuitable as they usually imply higher repair costs when compared to condition based maintenance. This paper discusses the main prognostics and health management (PHM) approaches, describes a newly designed gearbox experimental facility and analyses preliminary data for gear prognosis. The test rig is designed to provide full capabilities of performing controlled experiments suitable for developing a reliable diagnostic and prognostic system. The rig is based on the accessory gearbox of the GE J85 turbojet engine, which has been slightly modified and reconfigured to replicate real operating conditions such as speeds and loads. Defect to failure tests (DTFT) have been run to evaluate the performance of the rig as well as to assess prognostic metrics extracted from sensors installed on the gearbox casing (vibration and acoustic). The paper also details the main components of the rig and describes the various challenges encountered. Successful DTFT results were obtained during an idle engine performance test and prognostic metrics associated with the sensor suite were evaluated and discussed.

  12. Multidimensional Treatment Foster Care for Girls in the Juvenile Justice System: 2-Year Follow-Up of a Randomized Clinical Trial

    ERIC Educational Resources Information Center

    Chamberlain, Patricia; Leve, Leslie D.; DeGarmo, David S.

    2007-01-01

    This study is a 2-year follow-up of girls with serious and chronic delinquency who were enrolled in a randomized clinical trial conducted from 1997 to 2002 comparing multidimensional treatment foster care (MTFC) and group care (N = 81). Girls were referred by juvenile court judges and had an average of over 11 criminal referrals when they entered…

  13. A cross-diffusion system derived from a Fokker-Planck equation with partial averaging

    NASA Astrophysics Data System (ADS)

    Jüngel, Ansgar; Zamponi, Nicola

    2017-02-01

    A cross-diffusion system for two components with a Laplacian structure is analyzed on the multi-dimensional torus. This system, which was recently suggested by P.-L. Lions, is formally derived from a Fokker-Planck equation for the probability density associated with a multi-dimensional Itō process, assuming that the diffusion coefficients depend on partial averages of the probability density with exponential weights. A main feature is that the diffusion matrix of the limiting cross-diffusion system is generally neither symmetric nor positive definite, but its structure allows for the use of entropy methods. The global-in-time existence of positive weak solutions is proved and, under a simplifying assumption, the large-time asymptotics is investigated.

  14. An Assessment of Integrated Health Management (IHM) Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lybeck; M. Tawfik; L. Bond

    In order to meet the ever increasing demand for energy, the United States nuclear industry is turning to life extension of existing nuclear power plants (NPPs). Economically ensuring the safe, secure, and reliable operation of aging nuclear power plants presents many challenges. The 2009 Light Water Reactor Sustainability Workshop identified online monitoring of active and structural components as essential to the better understanding and management of the challenges posed by aging nuclear power plants. Additionally, there is increasing adoption of condition-based maintenance (CBM) for active components in NPPs. These techniques provide a foundation upon which a variety of advanced onlinemore » surveillance, diagnostic, and prognostic techniques can be deployed to continuously monitor and assess the health of NPP systems and components. The next step in the development of advanced online monitoring is to move beyond CBM to estimating the remaining useful life of active components using prognostic tools. Deployment of prognostic health management (PHM) on the scale of a NPP requires the use of an integrated health management (IHM) framework - a software product (or suite of products) used to manage the necessary elements needed for a complete implementation of online monitoring and prognostics. This paper provides a thoughtful look at the desirable functions and features of IHM architectures. A full PHM system involves several modules, including data acquisition, system modeling, fault detection, fault diagnostics, system prognostics, and advisory generation (operations and maintenance planning). The standards applicable to PHM applications are indentified and summarized. A list of evaluation criteria for PHM software products, developed to ensure scalability of the toolset to an environment with the complexity of a NPP, is presented. Fourteen commercially available PHM software products are identified and classified into four groups: research tools, PHM system development tools, deployable architectures, and peripheral tools.« less

  15. Impact of the International Prognostic Scoring System cytogenetic risk groups on the outcome of patients with primary myelodysplastic syndromes undergoing allogeneic stem cell transplantation from human leukocyte antigen-identical siblings: a retrospective analysis of the European Society for Blood and Marrow Transplantation-Chronic Malignancies Working Party.

    PubMed

    Onida, Francesco; Brand, Ronald; van Biezen, Anja; Schaap, Michel; von dem Borne, Peter A; Maertens, Johan; Beelen, Dietrich W; Carreras, Enric; Alessandrino, Emilio P; Volin, Liisa; Kuball, Jürgen H E; Figuera, Angela; Sierra, Jorge; Finke, Jürgen; Kröger, Nicolaus; de Witte, Theo

    2014-10-01

    Acquired chromosomal abnormalities are important prognostic factors in patients with myelodysplastic syndromes treated with supportive care and with disease-modifying therapeutic interventions, including allogeneic hematopoietic stem cell transplantation. To assess the prognostic impact of cytogenetic characteristics after hematopoietic stem cell transplantation accurately, we investigated a homogeneous group of 523 patients with primary myelodysplastic syndromes who have received stem cells from human leukocyte antigen-identical siblings. Overall survival at five years from transplantation in good, intermediate, and poor cytogenetic risk groups according to the International Prognostic Scoring System was 48%, 45% and 30%, respectively (P<0.01). Both the disease status (complete remission vs. not in complete remission) and the morphological classification at transplant in the untreated patients were significantly associated with probability of overall survival and relapse-free survival (P<0.01). The cytogenetic risk groups have no prognostic impact in untreated patients with refractory anemia ± ringed sideroblasts (P=0.90). However, combining the good and intermediate cytogenetic risk groups and comparing them to the poor-risk group showed within the other three disease-status-at-transplant groups a hazard ratio of 1.86 (95%CI: 1.41-2.45). In conclusion, this study shows that, in a large series of patients with primary myelodysplastic syndromes, poor-risk cytogenetics as defined by the standard International Prognostic Scoring System is associated with a relatively poor survival after allogeneic stem cell transplantation from human leukocyte antigen-identical siblings except in patients who are transplanted in refractory anemia/refractory anemia with ringed sideroblasts stage before progression to higher myelodysplastic syndrome stages. Copyright© Ferrata Storti Foundation.

  16. [Prognostic estimation in critical patients. Validation of a new and very simple system of prognostic estimation of survival in an intensive care unit].

    PubMed

    Abizanda, R; Padron, A; Vidal, B; Mas, S; Belenguer, A; Madero, J; Heras, A

    2006-04-01

    To make the validation of a new system of prognostic estimation of survival in critical patients (EPEC) seen in a multidisciplinar Intensive care unit (ICU). Prospective analysis of a patient cohort seen in the ICU of a multidisciplinar Intensive Medicine Service of a reference teaching hospital with 19 beds. Four hundred eighty four patients admitted consecutively over 6 months in 2003. Data collection of a basic minimum data set that includes patient identification data (gender, age), reason for admission and their origin, prognostic estimation of survival by EPEC, MPM II 0 and SAPS II (the latter two considered as gold standard). Mortality was evaluated on hospital discharge. EPEC validation was done with analysis of its discriminating capacity (ROC curve), calibration of its prognostic capacity (Hosmer Lemeshow C test), resolution of the 2 x 2 Contingency tables around different probability values (20, 50, 70 and mean value of prognostic estimation). The standardized mortality rate (SMR) for each one of the methods was calculated. Linear regression of the EPEC regarding the MPM II 0 and SAPS II was established and concordance analyses were done (Bland-Altman test) of the prediction of mortality by the three systems. In spite of an apparently good linear correlation, similar accuracy of prediction and discrimination capacity, EPEC is not well-calibrated (no likelihood of death greater than 50%) and the concordance analyses show that more than 10% of the pairs were outside the 95% confidence interval. In spite of its ease of application and calculation and of incorporating delay of admission in ICU as a variable, EPEC does not offer any predictive advantage on MPM II 0 or SAPS II, and its predictions adapt to reality worse.

  17. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications.

    PubMed

    Paik, Jin Ho; Choe, Ji-Young; Kim, Hyojin; Lee, Jeong-Ok; Kang, Hyoung Jin; Shin, Hee Young; Lee, Dong Soon; Heo, Dae Seog; Kim, Chul-Woo; Cho, Kwang-Hyun; Kim, Tae Min; Jeon, Yoon Kyung

    2017-01-01

    Epstein-Barr virus-positive T/NK-cell lymphoproliferative diseases (EBV-T/NK-LPDs) include several overlapping EBV-related conditions with variably aggressive courses. For prognostic categorization, we retrospectively analyzed 42 EBV-T/NK-LPD cases. Male (79% [33/42]), young (≤40 years; 83% [35/42]) patients and T-cell lineage (81% [34/42]; CD8/CD4 = 1.8) were predominant. Clinicopathologically, three systemic and one cutaneous category were developed: hemophagocytic lymphohistiocytosis (HLH; 26% [11/42]), chronic active EBV infection (CAEBV; 31% [13/42]), systemic unclassifiable disease (24% [10/42]), and hydroa vacciniforme/hydroa vacciniforme-like lymphoma (HV/HVL; 19% [8/42]). Prognostically, cutaneous disease (HV/HVL) was better than systemic disease (p = 0.014; median, 285 vs. 10 months). In systemic diseases, HLH was worst (p = 0.002; 3[HLH] vs. 4[unclassifiable] vs. not reached [CAEBV]). Univariate survival analysis (n = 42) revealed cytopenia (≥one lineage; p < 0.001), onset age (>40 years; p = 0.001), T-cell lineage (p = 0.041), hemophagocytic histiocytes (p = 0.031), elevated lactate dehydrogenase (p = 0.020), and liver dysfunction (p = 0.023) predicted shorter survival. In multivariate analysis, T-cell lineage (p = 0.025 [HR =11.3]) and cytopenia (p = 0.028 [HR =5.4]) were independent prognostic factors. Therefore, EBV-T/NK-LPD could be classified into four prognostic categories.

  18. Clinical value of Xenopus kinesin-like protein 2 as a prognostic marker in patients with digestive system cancers: a systematic review and meta-analysis.

    PubMed

    Wang, Gang; Wang, Qian; Li, Zhengyan; Liu, Chaoxu; He, Xianli

    2018-01-01

    Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein that plays an important role in spindle assembly and dynamics. However, the clinical and prognostic value of TPX2 in the digestive system cancers remains unclear. The objective of this review was to evaluate the association of TPX2 expression with disease-free survival (DFS), overall survival (OS), and clinicopathological features of digestive system cancers. The software Stata 12.0 was used to analyze the outcomes, including OS, disease-free survival (DFS), and clinicopathological characteristics. A total of 10 eligible studies with 906 patients were included. Elevated TPX2 expression was significantly associated with poor DFS (pooled hazard ratio [HR] =2.48, 95% confidence interval [CI]: 1.96-3.13) and OS (pooled HR =2.66, 95% CI: 2.04-3.48) of digestive system malignancies. Subgroup analyses showed that cancer type, sample size, study quality, and laboratory detection methods did not alter the significant prognostic value of TPX2. Additionally, TPX2 expression was found to be an independent predictive factor for DFS (HR =2.31, 95% CI: 1.78-3.01). TPX2 expression might be associated with TNM stage and pathological grade in digestive system cancer. In conclusion, TPX2 is an independent prognostic factor for survival of patients with digestive system cancer. Furthermore, its overexpression is associated with TNM stage and pathological grade in digestive system cancer.

  19. Clinical value of Xenopus kinesin-like protein 2 as a prognostic marker in patients with digestive system cancers: a systematic review and meta-analysis

    PubMed Central

    Liu, Chaoxu; He, Xianli

    2018-01-01

    Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein that plays an important role in spindle assembly and dynamics. However, the clinical and prognostic value of TPX2 in the digestive system cancers remains unclear. The objective of this review was to evaluate the association of TPX2 expression with disease-free survival (DFS), overall survival (OS), and clinicopathological features of digestive system cancers. The software Stata 12.0 was used to analyze the outcomes, including OS, disease-free survival (DFS), and clinicopathological characteristics. A total of 10 eligible studies with 906 patients were included. Elevated TPX2 expression was significantly associated with poor DFS (pooled hazard ratio [HR] =2.48, 95% confidence interval [CI]: 1.96–3.13) and OS (pooled HR =2.66, 95% CI: 2.04–3.48) of digestive system malignancies. Subgroup analyses showed that cancer type, sample size, study quality, and laboratory detection methods did not alter the significant prognostic value of TPX2. Additionally, TPX2 expression was found to be an independent predictive factor for DFS (HR =2.31, 95% CI: 1.78–3.01). TPX2 expression might be associated with TNM stage and pathological grade in digestive system cancer. In conclusion, TPX2 is an independent prognostic factor for survival of patients with digestive system cancer. Furthermore, its overexpression is associated with TNM stage and pathological grade in digestive system cancer. PMID:29551902

  20. Multidimensional Evaluation of Endogenous and Health Factors Affecting Food Preferences, Taste and Smell Perception.

    PubMed

    Guido, D; Perna, S; Carrai, M; Barale, R; Grassi, M; Rondanelli, M

    2016-01-01

    This study, by taking a holistic approach, investigates the relationships between taste, smell sensitivity and food preference with prognostic (endogenous and health) factors including age, gender, genetic taste markers, body mass, cigarette smoking, and number of drugs used. Cross sectional study. Northern Italy. 203 healthy subjects (160 women/43 men; mean age: 58.2±19.8 years) were examined. Individual taste sensitivity was determined by saccharose, sodium chloride, acetic acid and caffeine solutions and by 6-n-propylthiouracil (PROP) responsiveness test. Olfactory sensitivity has been assessed by «Sniffin' Sticks». Four tag Single nucleotide polymorphisms (SNPs) in regions of interest were genotyped. Factor analysis and multivariate regression were performed for scaling food preferences and screening prognostic factors, respectively. Increasing age is associated with decreased responsiveness to NaCl (P=0.001), sweet solutions (P=0.044), and smell perception (P<0.001). Concerning the food preferences, elderly like the "vegetables" and "fruits" but dislike "spicy" more than younger. Regarding number of drugs taken, there is a significant negative effect on smell perception (P<0.001). In addition, drugs reduce both the "vegetables foods" score (P=0.002) and the "milk-product foods" score (P=0.027). With respect to Body Mass Index (BMI), only a significant effect was shown, on sweet perception (P=0.006). Variation in taste receptor genes can give rise to differential perception of sweet, acid and bitter tastes. No effect of gender and smoking was observed. Our study suggested that age, genetic markers, BMI and drugs use are the factors which affect taste and smell perception and food preferences.

  1. Predicting smoking relapse with a multidimensional versus a single-item tobacco craving measure.

    PubMed

    Berlin, Ivan; Singleton, Edward G; Heishman, Stephen J

    2013-10-01

    Research suggests that craving is a predictor of smoking relapse. Craving can be assessed by multiple item or multifactorial scales or by single items. However, no systematic comparisons of their prognostic validity or accuracy have been published. The French versions of the 12-item Tobacco Craving Questionnaire (FTCQ-12) and the single craving item on the Minnesota Nicotine Withdrawal Scale (MNWS) are brief, valid, and reliable self-report measures of tobacco craving. In this secondary study, we analyzed data from French smokers with health-related problems enrolled in the Adjustment of DOses of NIcotine in Smoking (ADONIS) cessation trial. We estimated prediction models for each measure and compared their ability to distinguish correctly participants who relapsed from those who did not at 1-8 weeks after their quit date. Adjusted for all potential confounders FTCQ-12 risk score (RS; Factor 2, Expectancy plus Factor 4, Purposefulness) and MNWS craving were valid predictors of smoking relapse at endpoints measured 1-7 weeks apart. Prognostic accuracy of FTCQ-12 RS was greatest at 1-2 weeks follow-up compared to only 1 week for MNWS craving. Sensitivity for FTCQ-12 RS and MNWS craving was 85% and 53%, respectively. FTCQ-12 RS suggests a relapse process involving urges and desires in anticipation of the positive benefits of smoking linked with intent and planning to smoke. Findings also suggest that FTCQ-12 RS may be a better predictor instrument for smoking relapse than MNWS craving. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Annual Review of Research Under the Joint Service Electronics Program.

    DTIC Science & Technology

    1979-10-01

    Contents: Quadratic Optimization Problems; Nonlinear Control; Nonlinear Fault Analysis; Qualitative Analysis of Large Scale Systems; Multidimensional System Theory ; Optical Noise; and Pattern Recognition.

  3. Primary central nervous system lymphoma in immunocompetent individuals: a single center experience.

    PubMed

    Aki, Hilal; Uzunaslan, Didem; Saygin, Caner; Batur, Sebnem; Tuzuner, Nukhet; Kafadar, Ali; Ongoren, Seniz; Oz, Buge

    2013-01-01

    Primary central nervous system lymphoma (PCNSL) is defined as the involvement of brain, leptomeninges, eyes or spinal cord by non-Hodgkin lymphoma. The role of various prognostic markers in predicting adverse outcome is debated. To investigate the clinical and immunohistochemical findings of immunocompetent PCNSL cases (39 cases) diagnosed at the study center, and evaluate the influence of potential prognostic factors on overall survival (OS) of patients. Data regarding patient characteristics, neuroimaging, pathological and immunohistochemical features and follow-up were obtained from patient records. The influence of potential prognostic parameters on OS was investigated by log-rank test and Cox regression analysis. Patients who received combined chemotherapy and radiotherapy had a significantly better OS when compared to chemotherapy alone. Other variables included in this study were not associated with a significant survival advantage. In this study, we failed to demonstrate a relationship between different clinicopathological variables and OS of patients. Prospective studies with large patient series are needed to investigate other potential prognostic factors.

  4. Diagnostic Reasoning using Prognostic Information for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Roychoudhury, Indranil; Kulkarni, Chetan

    2015-01-01

    With increasing popularity of unmanned aircraft, continuous monitoring of their systems, software, and health status is becoming more and more important to ensure safe, correct, and efficient operation and fulfillment of missions. The paper presents integration of prognosis models and prognostic information with the R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) monitoring and diagnosis framework. This integration makes available statistically reliable health information predictions of the future at a much earlier time to enable autonomous decision making. The prognostic information can be used in the R2U2 model to improve diagnostic accuracy and enable decisions to be made at the present time to deal with events in the future. This will be an advancement over the current state of the art, where temporal logic observers can only do such valuation at the end of the time interval. Usefulness and effectiveness of this integrated diagnostics and prognostics framework was demonstrated using simulation experiments with the NASA Dragon Eye electric unmanned aircraft.

  5. Adaptive Multi-scale Prognostics and Health Management for Smart Manufacturing Systems

    PubMed Central

    Choo, Benjamin Y.; Adams, Stephen C.; Weiss, Brian A.; Marvel, Jeremy A.; Beling, Peter A.

    2017-01-01

    The Adaptive Multi-scale Prognostics and Health Management (AM-PHM) is a methodology designed to enable PHM in smart manufacturing systems. In application, PHM information is not yet fully utilized in higher-level decision-making in manufacturing systems. AM-PHM leverages and integrates lower-level PHM information such as from a machine or component with hierarchical relationships across the component, machine, work cell, and assembly line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are then made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. To overcome the issue of exponential explosion of complexity associated with describing a large manufacturing system, the AM-PHM methodology takes a hierarchical Markov Decision Process (MDP) approach into describing the system and solving for an optimized policy. A description of the AM-PHM methodology is followed by a simulated industry-inspired example to demonstrate the effectiveness of AM-PHM. PMID:28736651

  6. Robustness of multidimensional Brownian ratchets as directed transport mechanisms.

    PubMed

    González-Candela, Ernesto; Romero-Rochín, Víctor; Del Río, Fernando

    2011-08-07

    Brownian ratchets have recently been considered as models to describe the ability of certain systems to locate very specific states in multidimensional configuration spaces. This directional process has particularly been proposed as an alternative explanation for the protein folding problem, in which the polypeptide is driven toward the native state by a multidimensional Brownian ratchet. Recognizing the relevance of robustness in biological systems, in this work we analyze such a property of Brownian ratchets by pushing to the limits all the properties considered essential to produce directed transport. Based on the results presented here, we can state that Brownian ratchets are able to deliver current and locate funnel structures under a wide range of conditions. As a result, they represent a simple model that solves the Levinthal's paradox with great robustness and flexibility and without requiring any ad hoc biased transition probability. The behavior of Brownian ratchets shown in this article considerably enhances the plausibility of the model for at least part of the structural mechanism behind protein folding process.

  7. A New Time-Space Accurate Scheme for Hyperbolic Problems. 1; Quasi-Explicit Case

    NASA Technical Reports Server (NTRS)

    Sidilkover, David

    1998-01-01

    This paper presents a new discretization scheme for hyperbolic systems of conservations laws. It satisfies the TVD property and relies on the new high-resolution mechanism which is compatible with the genuinely multidimensional approach proposed recently. This work can be regarded as a first step towards extending the genuinely multidimensional approach to unsteady problems. Discontinuity capturing capabilities and accuracy of the scheme are verified by a set of numerical tests.

  8. Design and Implementation of Embedded Computer Vision Systems Based on Particle Filters

    DTIC Science & Technology

    2010-01-01

    for hardware/software implementa- tion of multi-dimensional particle filter application and we explore this in the third application which is a 3D...methodology for hardware/software implementation of multi-dimensional particle filter application and we explore this in the third application which is a...and hence multiprocessor implementation of parti- cle filters is an important option to examine. A significant body of work exists on optimizing generic

  9. Validation of the prognostic value of lymph node ratio in patients with cutaneous melanoma: a population-based study of 8,177 cases.

    PubMed

    Mocellin, Simone; Pasquali, Sandro; Rossi, Carlo Riccardo; Nitti, Donato

    2011-07-01

    The proportion of positive among examined lymph nodes (lymph node ratio [LNR]) has been recently proposed as an useful and easy-to-calculate prognostic factor for patients with cutaneous melanoma. However, its independence from the standard prognostic system TNM has not been formally proven in a large series of patients. Patients with histologically proven cutaneous melanoma were identified from the Surveillance Epidemiology End Results database. Disease-specific survival was the clinical outcome of interest. The prognostic ability of conventional factors and LNR was assessed by multivariable survival analysis using the Cox regression model. Eligible patients (n = 8,177) were diagnosed with melanoma between 1998 and 2006. Among lymph node-positive cases (n = 3,872), most LNR values ranged from 1% to 10% (n = 2,187). In the whole series (≥5 lymph nodes examined) LNR significantly contributed to the Cox model independently of the TNM effect on survival (hazard ratio, 1.28; 95% confidence interval, 1.23-1.32; P < .0001). On subgroup analysis, the significant and independent prognostic value of LNR was confirmed both in patients with ≥10 lymph nodes examined (n = 4,381) and in those with TNM stage III disease (n = 3,658). In all cases, LNR increased the prognostic accuracy of the survival model. In this large series of patients, the LNR independently predicted disease-specific survival, improving the prognostic accuracy of the TNM system. Accordingly, the LNR should be taken into account for the stratification of patients' risk, both in clinical and research settings. Copyright © 2011 Mosby, Inc. All rights reserved.

  10. Inflammation scores predict survival for hepatitis B virus-related hepatocellular carcinoma patients after transarterial chemoembolization

    PubMed Central

    Zhou, Dong-Sheng; Xu, Li; Luo, Yao-Ling; He, Feng-Ying; Huang, Jun-Ting; Zhang, Yao-Jun; Chen, Min-Shan

    2015-01-01

    AIM: To compare the prognostic ability of inflammation scores for patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE). METHODS: Data of 224 consecutive patients who underwent TACE for unresectable HBV-related HCC from September 2009 to November 2011 were retrieved from a prospective database. The association of inflammation scores with clinicopathologic variables and overall survival (OS) were analyzed, and receiver operating characteristic curves were generated, and the area under the curve (AUC) was calculated to evaluate the discriminatory ability of each inflammation score and staging system, including tumor-node-metastasis, Barcelona Clinic Liver Cancer, and Cancer of the Liver Italian Program (CLIP) scores. RESULTS: The median follow-up period was 390 d, the one-, two-, and three-year OS were 38.4%, 18.3%, and 11.1%, respectively, and the median OS was 390 d. The Glasgow Prognostic Score (GPS), modifed GPS, neutrophil-lymphocyte ratio, and Prognostic Index were associated with OS. The GPS consistently had a higher AUC value at 6 mo (0.702), 12 mo (0.676), and 24 mo (0.687) in comparison with other inflammation scores. CLIP consistently had a higher AUC value at 6 mo (0.656), 12 mo (0.711), and 24 mo (0.721) in comparison with tumor-node-metastasis and Barcelona Clinic Liver Cancer staging systems. Multivariate analysis revealed that alanine aminotransferase, GPS, and CLIP were independent prognostic factors for OS. The combination of GPS and CLIP (AUC = 0.777) was superior to CLIP or GPS alone in prognostic ability for OS. CONCLUSION: The prognostic ability of GPS is superior to other inflammation scores for HCC patients undergoing TACE. Combining GPS and CLIP improved the prognostic power for OS. PMID:25987783

  11. Enumerating bone marrow blasts from nonerythroid cellularity improves outcome prediction in myelodysplastic syndromes and permits a better definition of the intermediate risk category of the Revised International Prognostic Scoring System (IPSS-R).

    PubMed

    Calvo, Xavier; Arenillas, Leonor; Luño, Elisa; Senent, Leonor; Arnan, Montserrat; Ramos, Fernando; Pedro, Carme; Tormo, Mar; Montoro, Julia; Díez-Campelo, María; Blanco, María Laura; Arrizabalaga, Beatriz; Xicoy, Blanca; Bonanad, Santiago; Jerez, Andrés; Nomdedeu, Meritxell; Ferrer, Ana; Sanz, Guillermo F; Florensa, Lourdes

    2017-07-01

    The Revised International Prognostic Scoring System (IPSS-R) has been recognized as the score with the best outcome prediction capability in MDS, but this brought new concerns about the accurate prognostication of patients classified into the intermediate risk category. The correct enumeration of blasts is essential in prognostication of MDS. Recent data evidenced that considering blasts from nonerythroid cellularity (NECs) improves outcome prediction in the context of IPSS and WHO classification. We assessed the percentage of blasts from total nucleated cells (TNCs) and NECs in 3924 MDS patients from the GESMD, 498 of whom were MDS with erythroid predominance (MDS-E). We assessed if calculating IPSS-R by enumerating blasts from NECs improves prognostication of MDS. Twenty-four percent of patients classified into the intermediate category were reclassified into higher-risk categories and showed shorter overall survival (OS) and time to AML evolution than those who remained into the intermediate one. Likewise, a better distribution of patients was observed, since lower-risk patients showed longer survivals than previously whereas higher-risk ones maintained the outcome expected in this poor prognostic group (median OS < 20 months). Furthermore, our approach was particularly useful for detecting patients at risk of dying with AML. Regarding MDS-E, 51% patients classified into the intermediate category were reclassified into higher-risk ones and showed shorter OS and time to AML. In this subgroup of MDS, IPSS-R was capable of splitting our series in five groups with significant differences in OS only when blasts were assessed from NECs. In conclusion, our easy-applicable approach improves prognostic assessment of MDS patients. © 2017 Wiley Periodicals, Inc.

  12. Effectiveness of electronic guideline-based implementation systems in ambulatory care settings - a systematic review

    PubMed Central

    2009-01-01

    Background Electronic guideline-based decision support systems have been suggested to successfully deliver the knowledge embedded in clinical practice guidelines. A number of studies have already shown positive findings for decision support systems such as drug-dosing systems and computer-generated reminder systems for preventive care services. Methods A systematic literature search (1990 to December 2008) of the English literature indexed in the Medline database, Embase, the Cochrane Central Register of Controlled Trials, and CRD (DARE, HTA and NHS EED databases) was conducted to identify evaluation studies of electronic multi-step guideline implementation systems in ambulatory care settings. Important inclusion criterions were the multidimensionality of the guideline (the guideline needed to consist of several aspects or steps) and real-time interaction with the system during consultation. Clinical decision support systems such as one-time reminders for preventive care for which positive findings were shown in earlier reviews were excluded. Two comparisons were considered: electronic multidimensional guidelines versus usual care (comparison one) and electronic multidimensional guidelines versus other guideline implementation methods (comparison two). Results Twenty-seven publications were selected for analysis in this systematic review. Most designs were cluster randomized controlled trials investigating process outcomes more than patient outcomes. With success defined as at least 50% of the outcome variables being significant, none of the studies were successful in improving patient outcomes. Only seven of seventeen studies that investigated process outcomes showed improvements in process of care variables compared with the usual care group (comparison one). No incremental effect of the electronic implementation over the distribution of paper versions of the guideline was found, neither for the patient outcomes nor for the process outcomes (comparison two). Conclusions There is little evidence at the moment for the effectiveness of an increasingly used and commercialised instrument such as electronic multidimensional guidelines. After more than a decade of development of numerous electronic systems, research on the most effective implementation strategy for this kind of guideline-based decision support systems is still lacking. This conclusion implies a considerable risk towards inappropriate investments in ineffective implementation interventions and in suboptimal care. PMID:20042070

  13. Branched-chain amino acids to tyrosine ratio (BTR) predicts intrahepatic distant recurrence and survival for early hepatocellular carcinoma.

    PubMed

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    The Child-Pugh classification system is the most widely used system for assessing hepatic functional reserve in HCC treatment. In the Child-Pugh classification system, serum albumin levels are used to accurately assess the status of protein metabolism and nutrition. To date, a lack of attention has been given to amino acid metabolism. In the present study, we investigated whether the branched-chain amino acids to tyrosine ratio (BTR) as an indicator of amino acid metabolism can serve as both a prognostic factor for early HCC and a predictive factor for recurrence. We conducted a cohort study of 50 patients with stage I/II HCC enrolled between May 2002 and December 2010. It was investigated whether BTR can serve as both a prognostic factor and a predictive factor for HCC recurrence. Overall survival rates were significantly higher in patients with high baseline BTR than in those with low BTR. Multivariate analysis showed that both BTR and serum albumin were prognostic factors, and that BTR was the best predictive factor for recurrence. BTR was a prognostic factor for early HCC and the most predictive factor for intrahepatic distant recurrence and contributing factors for survival.

  14. DICON: interactive visual analysis of multidimensional clusters.

    PubMed

    Cao, Nan; Gotz, David; Sun, Jimeng; Qu, Huamin

    2011-12-01

    Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters. In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster, and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets. We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the benefits of the technique, especially in support of complex multidimensional cluster analysis. © 2011 IEEE

  15. The prognostic performance of the complement system in septic patients in emergency department: a cohort study.

    PubMed

    Zhao, Xin; Chen, Yun-Xia; Li, Chun-Sheng

    2015-01-01

    To investigate the prognostic performance of complement components in septic patients, complement 3, membrane attack complex (MAC) and mannose-binding lectin were measured and compared among adult patients with sepsis, severe sepsis and septic shock, as well as between in-hospital nonsurvivors and survivors. The prognostic value of complement components was compared with mortality in emergency department sepsis (MEDS) score. Median complement 3, MAC and mannose-binding lectin increased directly with the sepsis, severe sepsis and septic shock groups, and were significantly higher in nonsurvivors than in survivors. MEDS and MAC independently predicted in-hospital mortality. The prognostic performance of MAC was superior to MEDS as analyzed by receiver operating characteristic curve and area under the curve.

  16. A new Leukemia Prognostic Scoring System for refractory/relapsed adult acute myelogeneous leukaemia patients: a GOELAMS study.

    PubMed

    Chevallier, P; Labopin, M; Turlure, P; Prebet, T; Pigneux, A; Hunault, M; Filanovsky, K; Cornillet-Lefebvre, P; Luquet, I; Lode, L; Richebourg, S; Blanchet, O; Gachard, N; Vey, N; Ifrah, N; Milpied, N; Harousseau, J-L; Bene, M-C; Mohty, M; Delaunay, J

    2011-06-01

    A simplified prognostic score is presented based on the multivariate analysis of 138 refractory/relapsed acute myeloid leukaemia (AML) patients (median age 55 years, range: 19-70) receiving a combination of intensive chemotherapy+Gemtuzumab as salvage regimen. Overall, 2-year event-free survival (EFS) and overall survival (OS) were 29±4% and 36±4%, respectively. Disease status (relapse <12 months, including refractory patients), FLT3-ITD-positive status and high-risk cytogenetics were the three strongest independent adverse prognostic factors for OS and EFS in this series. We then defined three subgroups with striking different outcomes at 2 years: no adverse factor (favourable, N=36): OS 58%, EFS 45%; one adverse factor (intermediate, N=54): OS 37%, EFS 31%; two or three adverse factors (poor, N=43): OS 12%, EFS 12% (P<10(-4), P=0.001). This new simplified Leukemia Prognostic Scoring System was then validated on an independent cohort of 111 refractory/relapsed AML patients. This new simplified prognostic score, using three clinical and biological parameters routinely applied, allow to discriminate around two third of the patients who should benefit from a salvage intensive regimen in the setting of refractory/relapsed AML patients. The other one third of the patients should receive investigational therapy.

  17. Big genomics and clinical data analytics strategies for precision cancer prognosis.

    PubMed

    Ow, Ghim Siong; Kuznetsov, Vladimir A

    2016-11-07

    The field of personalized and precise medicine in the era of big data analytics is growing rapidly. Previously, we proposed our model of patient classification termed Prognostic Signature Vector Matching (PSVM) and identified a 37 variable signature comprising 36 let-7b associated prognostic significant mRNAs and the age risk factor that stratified large high-grade serous ovarian cancer patient cohorts into three survival-significant risk groups. Here, we investigated the predictive performance of PSVM via optimization of the prognostic variable weights, which represent the relative importance of one prognostic variable over the others. In addition, we compared several multivariate prognostic models based on PSVM with classical machine learning techniques such as K-nearest-neighbor, support vector machine, random forest, neural networks and logistic regression. Our results revealed that negative log-rank p-values provides more robust weight values as opposed to the use of other quantities such as hazard ratios, fold change, or a combination of those factors. PSVM, together with the classical machine learning classifiers were combined in an ensemble (multi-test) voting system, which collectively provides a more precise and reproducible patient stratification. The use of the multi-test system approach, rather than the search for the ideal classification/prediction method, might help to address limitations of the individual classification algorithm in specific situation.

  18. Percutaneous Endoscopic Gastrostomy Tube Is a Negative Prognostic Factor for Recurrent/Metastatic Head and Neck Cancer.

    PubMed

    Siano, Marco; Jarisch, Nadine; Joerger, Markus; Espeli, Vittoria

    2018-06-01

    Recurrent/metastatic head and neck squamous cell cancer (r/mHNSCC) patients often need a percutaneous endoscopic gastrostomy feeding tube (PEG). Among known prognostic factors, PEG could be prognostic as well. We retrospectively analyzed r/mHNSCC patients referred for systemic treatment. Kaplan-Meier and multivariate cox regression models were applied to assess prognostic impact of PEG. One hunderd and ten patients were identified, 42 had a PEG at treatment start. Median survival from start of 1st-line systemic treatment was 8 months (95%CI=6.5-12.0 months), 4.5 months (95%CI=2.5-7.0 months) for patients with PEG and 11.5 months (95%CI=7.5-14.5 months) without PEG (adjusted HR=1.98, p=0.011). Similarly, survival from first recurrence of distant metastases was lower in patients with PEG as compared to patients without (7.5 vs. 15.5 months, adjusted HR=2.60, p<0.001). Presence of PEG feeding tube has an unfavourable prognostic impact on survival in patients with r/mHNSCC. While any causality remains speculative, potential complications should be appreciated before PEG implantation. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  20. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X-Plane simulator and X-PlaneConnect toolbox, the live aircraft module which connects fielded aircraft using onboard cellular communications devices, the hardware in the loop (HITL) module which connects laboratory based bench-top hardware testbeds and the research module which contains diagnostics and prognostics tools for analysis of live air traffic situations and vehicle health conditions. The testbed also features other modules for data recording and playback, information visualization, and air traffic generation. Software reliability, safety, and latency are some of the critical design considerations in development of the testbed.

  1. On the complex quantification of risk: systems-based perspective on terrorism.

    PubMed

    Haimes, Yacov Y

    2011-08-01

    This article highlights the complexity of the quantification of the multidimensional risk function, develops five systems-based premises on quantifying the risk of terrorism to a threatened system, and advocates the quantification of vulnerability and resilience through the states of the system. The five premises are: (i) There exists interdependence between a specific threat to a system by terrorist networks and the states of the targeted system, as represented through the system's vulnerability, resilience, and criticality-impact. (ii) A specific threat, its probability, its timing, the states of the targeted system, and the probability of consequences can be interdependent. (iii) The two questions in the risk assessment process: "What is the likelihood?" and "What are the consequences?" can be interdependent. (iv) Risk management policy options can reduce both the likelihood of a threat to a targeted system and the associated likelihood of consequences by changing the states (including both vulnerability and resilience) of the system. (v) The quantification of risk to a vulnerable system from a specific threat must be built on a systemic and repeatable modeling process, by recognizing that the states of the system constitute an essential step to construct quantitative metrics of the consequences based on intelligence gathering, expert evidence, and other qualitative information. The fact that the states of all systems are functions of time (among other variables) makes the time frame pivotal in each component of the process of risk assessment, management, and communication. Thus, risk to a system, caused by an initiating event (e.g., a threat) is a multidimensional function of the specific threat, its probability and time frame, the states of the system (representing vulnerability and resilience), and the probabilistic multidimensional consequences. © 2011 Society for Risk Analysis.

  2. Electrochemical force microscopy

    DOEpatents

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  3. NMRPipe: a multidimensional spectral processing system based on UNIX pipes.

    PubMed

    Delaglio, F; Grzesiek, S; Vuister, G W; Zhu, G; Pfeifer, J; Bax, A

    1995-11-01

    The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

  4. Investigation of multidimensional control systems in the state space and wavelet medium

    NASA Astrophysics Data System (ADS)

    Fedosenkov, D. B.; Simikova, A. A.; Fedosenkov, B. A.

    2018-05-01

    The notions are introduced of “one-dimensional-point” and “multidimensional-point” automatic control systems. To demonstrate the joint use of approaches based on the concepts of state space and wavelet transforms, a method for optimal control in a state space medium represented in the form of time-frequency representations (maps), is considered. The computer-aided control system is formed on the basis of the similarity transformation method, which makes it possible to exclude the use of reduced state variable observers. 1D-material flow signals formed by primary transducers are converted by means of wavelet transformations into multidimensional concentrated-at-a point variables in the form of time-frequency distributions of Cohen’s class. The algorithm for synthesizing a stationary controller for feeding processes is given here. The conclusion is made that the formation of an optimal control law with time-frequency distributions available contributes to the improvement of transient processes quality in feeding subsystems and the mixing unit. Confirming the efficiency of the method presented is illustrated by an example of the current registration of material flows in the multi-feeding unit. The first section in your paper.

  5. Metrics for Offline Evaluation of Prognostic Performance

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai

    2010-01-01

    Prognostic performance evaluation has gained significant attention in the past few years. Currently, prognostics concepts lack standard definitions and suffer from ambiguous and inconsistent interpretations. This lack of standards is in part due to the varied end-user requirements for different applications, time scales, available information, domain dynamics, etc. to name a few. The research community has used a variety of metrics largely based on convenience and their respective requirements. Very little attention has been focused on establishing a standardized approach to compare different efforts. This paper presents several new evaluation metrics tailored for prognostics that were recently introduced and were shown to effectively evaluate various algorithms as compared to other conventional metrics. Specifically, this paper presents a detailed discussion on how these metrics should be interpreted and used. These metrics have the capability of incorporating probabilistic uncertainty estimates from prognostic algorithms. In addition to quantitative assessment they also offer a comprehensive visual perspective that can be used in designing the prognostic system. Several methods are suggested to customize these metrics for different applications. Guidelines are provided to help choose one method over another based on distribution characteristics. Various issues faced by prognostics and its performance evaluation are discussed followed by a formal notational framework to help standardize subsequent developments.

  6. Assessing Psycho-social Barriers to Rehabilitation in Injured Workers with Chronic Musculoskeletal Pain: Development and Item Properties of the Yellow Flag Questionnaire (YFQ).

    PubMed

    Salathé, Cornelia Rolli; Trippolini, Maurizio Alen; Terribilini, Livio Claudio; Oliveri, Michael; Elfering, Achim

    2018-06-01

    Purpose To develop a multidimensional scale to asses psychosocial beliefs-the Yellow Flag Questionnaire (YFQ)-aimed at guiding interventions for workers with chronic musculoskeletal (MSK) pain. Methods Phase 1 consisted of item selection based on literature search, item development and expert consensus rounds. In phase 2, items were reduced with calculating a quality-score per item, using structure equation modeling and confirmatory factor analysis on data from 666 workers. In phase 3, Cronbach's α, and Pearson correlations coefficients were computed to compare YFQ with disability, anxiety, depression and self-efficacy and the YFQ score based on data from 253 injured workers. Regressions of YFQ total score on disability, anxiety, depression and self-efficacy were calculated. Results After phase 1, the YFQ included 116 items and 15 domains. Further reductions of items in phase 2 by applying the item quality criteria reduced the total to 48 items. Phase factor analysis with structural equation modeling confirmed 32 items in seven domains: activity, work, emotions, harm & blame, diagnosis beliefs, co-morbidity and control. Cronbach α was 0.91 for the total score, between 0.49 and 0.81 for the 7 distinct scores of each domain, respectively. Correlations between YFQ total score ranged with disability, anxiety, depression and self-efficacy was .58, .66, .73, -.51, respectively. After controlling for age and gender the YFQ total score explained between R2 27% and R2 53% variance of disability, anxiety, depression and self-efficacy. Conclusions The YFQ, a multidimensional screening scale is recommended for use to assess psychosocial beliefs of workers with chronic MSK pain. Further evaluation of the measurement properties such as the test-retest reliability, responsiveness and prognostic validity is warranted.

  7. Association of Antidementia Drugs and Mortality in Community-Dwelling Frail Older Patients With Dementia: The Role of Mortality Risk Assessment.

    PubMed

    Pilotto, Alberto; Polidori, Maria Cristina; Veronese, Nicola; Panza, Francesco; Arboretti Giancristofaro, Rosa; Pilotto, Andrea; Daragjati, Julia; Carrozzo, Eleonora; Prete, Camilla; Gallina, Pietro; Padovani, Alessandro; Maggi, Stefania

    2018-02-01

    To evaluate whether treatment with antidementia drugs is associated with reduced mortality in older patients with different mortality risk at baseline. Retrospective. Community-dwelling. A total of 6818 older people who underwent a Standardized Multidimensional Assessment Schedule for Adults and Aged Persons (SVaMA) evaluation to determine accessibility to homecare services or nursing home admission from 2005 to 2013 in the Padova Health District, Italy were included. Mortality risk at baseline was calculated by the Multidimensional Prognostic Index (MPI), based on information collected with the SVaMA. Participants were categorized to have mild (MPI-SVaMA-1), moderate (MPI-SVaMA-2), and high (MPI-SVaMA-3) mortality risk. Propensity score-adjusted hazard ratios (HR) of 2-year mortality were calculated according to antidementia drug treatment. Patients treated with antidementia drugs had a significant lower risk of death than untreated patients (HR 0.82; 95% confidence interval [CI] 0.73-0.92 and 0.56; 95% CI 0.49-0.65 for patients treated less than 2 years and more than 2 years treatment, respectively). After dividing patients according to their MPI-SVaMA grade, antidementia treatment was significantly associated with reduced mortality in the MPI-SVaMA-1 mild (HR 0.71; 95% CI 0.54-0.92) and MPI-SVaMA-2 moderate risk (HR 0.61; 95% CI 0.40-0.91, matched sample), but not in the MPI-SVaMA-3 high risk of death. This large community-dwelling patient study suggests that antidementia drugs might contribute to increased survival in older adults with dementia with lower mortality risk. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  8. GP perceptions of the adequacy of community-based care for patients with advanced heart failure in a UK region (NI): a qualitative study

    PubMed Central

    Chen, Jingwen Jessica; Gamble, Kathryn; Graham-Wisener, Lisa; McGlade, Kieran; Doherty, Jennifer; Donnelly, Patrick; Stone, Carol A

    2018-01-01

    Objective To assess the adequacy of community-based services available in Northern Ireland (NI) and to meet the multidimensional needs of patients living with New York Heart Association Stage III and IV heart failure (HF), as experienced and perceived by general practitioners (GP). Methods Semistructured interviews were conducted with GPs recruited via the University Department of General Practice and Northern Ireland Medical and Dental Agency. Interviews were transcribed, independently coded and analysed using a six-step thematic analysis approach. Results Twenty semistructured interviews were conducted. GPs reported managing patients in a ‘reactive rather than proactive’ way, responding only to acute medical needs, with hospital admission the default option due to lack of community-based expertise and services. Care provided by HF specialists was highly regarded but ‘access and coordination’ were lacking, related to inequity of access to Heart Failure Nursing Teams, lack of access to specialist advice and inadequate handover of information to GPs. Conversations regarding current and future care needs and preferences were important, but GPs described ‘neglecting conversations with the patient’, due to time constraints, prognostic uncertainty and fear of causing distress. They expressed the view that ‘specialist palliative care (SPC) is only a credible option in end stages’ related to limited understanding of the scope of SPC, a perception that timing of referral must depend on prognosis and concern that SPC services are cancer-focused. Conclusions Despite the extensive body of research which evidences the unmet multidimensional needs of patients with advanced HF, and more recent evidence for the effectiveness of integrated SPC in improving quality of life for patients with HF, health and social care services within NI have not adapted to assess and meet these needs. PMID:29632677

  9. ENVIRONMENTAL SYSTEMS MANAGEMENT AND SUSTAINABLE SYSTEMS THEORY

    EPA Science Inventory

    Environmental Systems Management is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects. This is importa...

  10. Vehicle Integrated Prognostic Reasoner (VIPR) Final Report

    NASA Technical Reports Server (NTRS)

    Bharadwaj, Raj; Mylaraswamy, Dinkar; Cornhill, Dennis; Biswas, Gautam; Koutsoukos, Xenofon; Mack, Daniel

    2013-01-01

    A systems view is necessary to detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. While most aircraft subsystems look for simple threshold exceedances and report them to a central maintenance computer, the vehicle integrated prognostic reasoner (VIPR) proactively generates evidence and takes an active role in aircraft-level health assessment. Establishing the technical feasibility and a design trade-space for this next-generation vehicle-level reasoning system (VLRS) is the focus of our work.

  11. Practical prognostic index for patients with metastatic recurrent breast cancer: retrospective analysis of 2,322 patients from the GEICAM Spanish El Alamo Register.

    PubMed

    Puente, Javier; López-Tarruella, Sara; Ruiz, Amparo; Lluch, Ana; Pastor, Miguel; Alba, Emilio; de la Haba, Juan; Ramos, Manuel; Cirera, Luis; Antón, Antonio; Llombart, Antoni; Plazaola, Arrate; Fernández-Aramburo, Antonio; Sastre, Javier; Díaz-Rubio, Eduardo; Martin, Miguel

    2010-07-01

    Women with recurrent metastatic breast cancer from a Spanish hospital registry (El Alamo, GEICAM) were analyzed in order to identify the most helpful prognostic factors to predict survival and to ultimately construct a practical prognostic index. The inclusion criteria covered women patients diagnosed with operable invasive breast cancer who had metastatic recurrence between 1990 and 1997 in GEICAM hospitals. Patients with stage IV breast cancer at initial diagnosis or with isolated loco-regional recurrence were excluded from this analysis. Data from 2,322 patients with recurrent breast cancer after primary treatment (surgery, radiation and systemic adjuvant treatment) were used to construct the prognostic index. The prognostic index score for each individual patient was calculated by totalling up the scores of each independent variable. The maximum score obtainable was 26.1. Nine-hundred and sixty-two patients who had complete data for all the variables were used in the computation of the prognostic index score. We were able to stratify them into three prognostic groups based on the prognostic index score: 322 patients in the good risk group (score < or =13.5), 308 patients in the intermediate risk group (score 13.51-15.60) and 332 patients in the poor risk group (score > or =15.61). The median survivals for these groups were 3.69, 2.27 and 1.02 years, respectively (P < 0.0001). In conclusion, risk scores are extraordinarily valuable tools, highly recommendable in the clinical practice.

  12. Prognostic value of long noncoding RNA MALAT1 in digestive system malignancies.

    PubMed

    Zhai, Hui; Li, Xiao-Mei; Maimaiti, Ailifeire; Chen, Qing-Jie; Liao, Wu; Lai, Hong-Mei; Liu, Fen; Yang, Yi-Ning

    2015-01-01

    MALAT1, a newly discovered long noncoding RNA (lncRNA), has been reported to be highly expressed in many types of cancers. This meta-analysis summarizes its potential prognostic value in digestive system malignancies. A quantitative meta-analysis was performed through a systematic search in PubMed, Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for eligible papers on the prognostic impact of MALAT1 in digestive system malignancies from inception to Apr. 25, 2015. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to summarize the effect. Five studies were included in the study, with a total of 527 patients. A significant association was observed between MALAT1 abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 7.68 (95% confidence interval [CI]: 4.32-13.66, P<0.001). Meta sensitivity analysis suggested the reliability of our findings. No publication bias was observed. MALAT1 abundance may serve as a novel predictive factor for poor prognosis in patients with digestive system malignancies.

  13. Prognostic value of long noncoding RNA MALAT1 in digestive system malignancies

    PubMed Central

    Zhai, Hui; Li, Xiao-Mei; Maimaiti, Ailifeire; Chen, Qing-Jie; Liao, Wu; Lai, Hong-Mei; Liu, Fen; Yang, Yi-Ning

    2015-01-01

    Background: MALAT1, a newly discovered long noncoding RNA (lncRNA), has been reported to be highly expressed in many types of cancers. This meta-analysis summarizes its potential prognostic value in digestive system malignancies. Methods: A quantitative meta-analysis was performed through a systematic search in PubMed, Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for eligible papers on the prognostic impact of MALAT1 in digestive system malignancies from inception to Apr. 25, 2015. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to summarize the effect. Results: Five studies were included in the study, with a total of 527 patients. A significant association was observed between MALAT1 abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 7.68 (95% confidence interval [CI]: 4.32-13.66, P<0.001). Meta sensitivity analysis suggested the reliability of our findings. No publication bias was observed. Conclusions: MALAT1 abundance may serve as a novel predictive factor for poor prognosis in patients with digestive system malignancies. PMID:26770406

  14. Time-dependent changes in mortality and transformation risk in MDS

    PubMed Central

    Tuechler, Heinz; Sanz, Guillermo; Schanz, Julie; Garcia-Manero, Guillermo; Solé, Francesc; Bennett, John M.; Bowen, David; Fenaux, Pierre; Dreyfus, Francois; Kantarjian, Hagop; Kuendgen, Andrea; Malcovati, Luca; Cazzola, Mario; Cermak, Jaroslav; Fonatsch, Christa; Le Beau, Michelle M.; Slovak, Marilyn L.; Levis, Alessandro; Luebbert, Michael; Maciejewski, Jaroslaw; Machherndl-Spandl, Sigrid; Magalhaes, Silvia M. M.; Miyazaki, Yasushi; Sekeres, Mikkael A.; Sperr, Wolfgang R.; Stauder, Reinhard; Tauro, Sudhir; Valent, Peter; Vallespi, Teresa; van de Loosdrecht, Arjan A.; Germing, Ulrich; Haase, Detlef; Greenberg, Peter L.

    2016-01-01

    In myelodysplastic syndromes (MDSs), the evolution of risk for disease progression or death has not been systematically investigated despite being crucial for correct interpretation of prognostic risk scores. In a multicenter retrospective study, we described changes in risk over time, the consequences for basal prognostic scores, and their potential clinical implications. Major MDS prognostic risk scoring systems and their constituent individual predictors were analyzed in 7212 primary untreated MDS patients from the International Working Group for Prognosis in MDS database. Changes in risk of mortality and of leukemic transformation over time from diagnosis were described. Hazards regarding mortality and acute myeloid leukemia transformation diminished over time from diagnosis in higher-risk MDS patients, whereas they remained stable in lower-risk patients. After approximately 3.5 years, hazards in the separate risk groups became similar and were essentially equivalent after 5 years. This fact led to loss of prognostic power of different scoring systems considered, which was more pronounced for survival. Inclusion of age resulted in increased initial prognostic power for survival and less attenuation in hazards. If needed for practicability in clinical management, the differing development of risks suggested a reasonable division into lower- and higher-risk MDS based on the IPSS-R at a cutoff of 3.5 points. Our data regarding time-dependent performance of prognostic scores reflect the disparate change of risks in MDS subpopulations. Lower-risk patients at diagnosis remain lower risk whereas initially high-risk patients demonstrate decreasing risk over time. This change of risk should be considered in clinical decision making. PMID:27335276

  15. [Application of standardized systems for assessment of prognosis of the traumatic process in patients with penetrating abdominal wounds and hepatic injuries].

    PubMed

    Hur'iev, S O; Novykov, F M; Shuryhin, O Iu; Ivanov, V I

    2011-04-01

    There were examined 131 injured persons, suffering penetrating abdominal wounding and hepatic injury. Correlation analysis was done, basing on studying of the results of the injured persons state estimation, using prognostic scales, aiming to prognosticate the traumatic process course.

  16. Protein Z efficiently depletes thrombin generation in disseminated intravascular coagulation with poor prognosis.

    PubMed

    Lee, Nuri; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Kim, Inho; Yoon, Sung-Soo; Park, Seonyang; Han, Kyou-Sup; Kim, Hyun Kyung

    2016-01-01

    Disseminated intravascular coagulation (DIC) is characterized by consumption of coagulation factors and anticoagulants. Thrombin generation assay (TGA) gives useful information about global hemostatic status. We developed a new TGA system that anticoagulant addition can deplete thrombin generation in plasma, which may reflect defective anticoagulant system in DIC. TGAs were measured on the calibrated automated thrombogram with and without thrombomodulin or protein Z in 152 patients who were suspected of having DIC, yielding four parameters including lag time, endogenous thrombin potential, peak thrombin and time-to-peak in each experiment. Nonsurvivors showed significantly prolonged lag time and time-to-peak in TGA-protein Z system, which was performed with added protein Z. In multivariate Cox regression analysis, lag time and time-to-peak in TGA system were significant independent prognostic factors. In TGA-protein Z system, lag time and time-to-peak were revealed as independent prognostic factors of DIC. Protein Z addition could potentiate its anticoagulant effect in DIC with poor prognosis, suggesting the presence of defective protein Z system. The prolonged lag time and time-to-peak in both TGA and TGA-protein Z systems are expected to be used as independent prognostic factors of DIC.

  17. Multidimensional signal modulation and/or demodulation for data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-03-04

    Systems and methods are described for multidimensional signal modulation and/or demodulation for data communications. A method includes modulating a carrier signal in a first domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; modulating the carrier signal in a second domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; and modulating the carrier signal in a third domain selected from the group consisting of phase, frequency, amplitude, polarization and spread.

  18. New Comprehensive Cytogenetic Scoring System for Primary Myelodysplastic Syndromes (MDS) and Oligoblastic Acute Myeloid Leukemia After MDS Derived From an International Database Merge

    PubMed Central

    Schanz, Julie; Tüchler, Heinz; Solé, Francesc; Mallo, Mar; Luño, Elisa; Cervera, José; Granada, Isabel; Hildebrandt, Barbara; Slovak, Marilyn L.; Ohyashiki, Kazuma; Steidl, Christian; Fonatsch, Christa; Pfeilstöcker, Michael; Nösslinger, Thomas; Valent, Peter; Giagounidis, Aristoteles; Aul, Carlo; Lübbert, Michael; Stauder, Reinhard; Krieger, Otto; Garcia-Manero, Guillermo; Faderl, Stefan; Pierce, Sherry; Le Beau, Michelle M.; Bennett, John M.; Greenberg, Peter; Germing, Ulrich; Haase, Detlef

    2012-01-01

    Purpose The karyotype is a strong independent prognostic factor in myelodysplastic syndromes (MDS). Since the implementation of the International Prognostic Scoring System (IPSS) in 1997, knowledge concerning the prognostic impact of abnormalities has increased substantially. The present study proposes a new and comprehensive cytogenetic scoring system based on an international data collection of 2,902 patients. Patients and Methods Patients were included from the German-Austrian MDS Study Group (n = 1,193), the International MDS Risk Analysis Workshop (n = 816), the Spanish Hematological Cytogenetics Working Group (n = 849), and the International Working Group on MDS Cytogenetics (n = 44) databases. Patients with primary MDS and oligoblastic acute myeloid leukemia (AML) after MDS treated with supportive care only were evaluated for overall survival (OS) and AML evolution. Internal validation by bootstrap analysis and external validation in an independent patient cohort were performed to confirm the results. Results In total, 19 cytogenetic categories were defined, providing clear prognostic classification in 91% of all patients. The abnormalities were classified into five prognostic subgroups (P < .001): very good (median OS, 61 months; hazard ratio [HR], 0.5; n = 81); good (49 months; HR, 1.0 [reference category]; n = 1,809); intermediate (26 months; HR, 1.6; n = 529); poor (16 months; HR, 2.6; n = 148); and very poor (6 months; HR, 4.2; n = 187). The internal and external validations confirmed the results of the score. Conclusion In conclusion, these data should contribute to the ongoing efforts to update the IPSS by refining the cytogenetic risk categories. PMID:22331955

  19. Chronic lymphocytic leukemia: A prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL-IPI.

    PubMed

    Delgado, Julio; Doubek, Michael; Baumann, Tycho; Kotaskova, Jana; Molica, Stefano; Mozas, Pablo; Rivas-Delgado, Alfredo; Morabito, Fortunato; Pospisilova, Sarka; Montserrat, Emili

    2017-04-01

    Rai and Binet staging systems are important to predict the outcome of patients with chronic lymphocytic leukemia (CLL) but do not reflect the biologic diversity of the disease nor predict response to therapy, which ultimately shape patients' outcome. We devised a biomarkers-only CLL prognostic system based on the two most important prognostic parameters in CLL (i.e., IGHV mutational status and fluorescence in situ hybridization [FISH] cytogenetics), separating three different risk groups: (1) low-risk (mutated IGHV + no adverse FISH cytogenetics [del(17p), del(11q)]); (2) intermediate-risk (either unmutated IGHV or adverse FISH cytogenetics) and (3) high-risk (unmutated IGHV + adverse FISH cytogenetics). In 524 unselected subjects with CLL, the 10-year overall survival was 82% (95% CI 76%-88%), 52% (45%-62%), and 27% (17%-42%) for the low-, intermediate-, and high-risk groups, respectively. Patients with low-risk comprised around 50% of the series and had a life expectancy comparable to the general population. The prognostic model was fully validated in two independent cohorts, including 417 patients representative of general CLL population and 337 patients with Binet stage A CLL. The model had a similar discriminatory value as the CLL-IPI. Moreover, it applied to all patients with CLL independently of age, and separated patients with different risk within Rai or Binet clinical stages. The biomarkers-only CLL prognostic system presented here simplifies the CLL-IPI and could be useful in daily practice and to stratify patients in clinical trials. © 2017 Wiley Periodicals, Inc.

  20. Comparison of four staging systems of lymph node metastasis in gastric cancer.

    PubMed

    Zhang, Ming; Zhu, Guanyu; Ma, Yan; Xue, Yingwei

    2009-11-01

    The classification of lymph node metastasis in patients with gastric cancer is still controversial. Our aim was to evaluate the relative merits of four staging systems of lymph node metastasis. In our study, the nodal status was classified according to the 5th edition of the tumor node metastasis (TNM) system, the Japanese Classification of Gastric Carcinoma (JCGC), the ratio of metastatic lymph nodes, and the size of the largest metastatic lymph node. Each staging system was scored as good (+2), fair (+1), or poor (0) with respect to the theoretical value (extent of the anatomical lymphatic tumor spread), convenience (simplicity), surgical applicability (extent of lymph node dissection), and prognostic value (ability to predict survival rate). In the multivariate analysis including the four staging systems and other potential prognostic factors, stepwise Cox regression revealed that the ratio of metastatic lymph nodes was the most independent prognostic factor. The TNM, ratio, and size systems were convenient because they had no consideration for the location of the tumor and lymph node. Although the JCGC system had advantages in theoretical value and surgical application, it was most optional due to the complexity of the system. Although all different staging systems are comparable, the metastatic lymph node ratio system is convenient, reproducible, and has the highest ability to predict survival.

  1. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics

    PubMed Central

    Qiao, Guixiu; Weiss, Brian A.

    2016-01-01

    Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172

  2. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics.

    PubMed

    Qiao, Guixiu; Weiss, Brian A

    2016-01-01

    Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.

  3. Prognostic impact of MYC protein expression in central nervous system diffuse large B-cell lymphoma: comparison with MYC rearrangement and MYC mRNA expression.

    PubMed

    Son, Seung-Myoung; Ha, Sang-Yun; Yoo, Hae-Yong; Oh, Dongryul; Kim, Seok-Jin; Kim, Won-Seog; Ko, Young-Hyeh

    2017-01-01

    The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.

  4. Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-05-17

    This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components thatmore » may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.« less

  5. Prognostic value of two tumour staging classifications in patients with sinonasal mucosal melanoma.

    PubMed

    Houette, A; Gilain, L; Mulliez, A; Mom, T; Saroul, N

    2016-11-01

    Sinonasal mucosal melanoma is a rare disease associated with a very poor prognosis. The purpose of this study was to assess the prognostic value of the 2 staging systems published in the literature for these tumours: the American Joint Committee on Cancer (AJCC) Cancer Staging Manual for mucosal melanoma of the head and neck published in 2009 (7th edition) and the AJCC Cancer Staging Manual for cancers of the nasal cavity and paranasal sinuses published in 2002 (6th edition) and the prognostic value of tumour site, either limited to the nasal cavities or with paranasal sinus invasion. A retrospective study was conducted on 18 patients treated between August 1998 and June 2014. Each lesion was staged according to the AJCC Cancer Staging Manual 2002 and 2009 and the following data were collected: age, sex, tumour site, initial symptoms, treatment modalities, follow-up, recurrences and overall survival. Patient survival, from the date of discovery of the melanoma until death, was analysed by Kaplan-Meier survival curves and between-group comparison of survival was performed with a log rank test. The mean age at diagnosis was 72 years (range: 54-94) and the cohort comprised 11 women and 7 men. The median overall survival was 80 months, the 1-year overall survival was 82.6% and the 5-year overall survival was 54.5%. The AJCC 2002 staging system presented a statistically significant prognostic value (P=0.0476), while no statistically significant prognostic value was observed for the AJCC 2009 staging system (P=0.108). Paranasal sinus invasion was significantly associated with a poor prognosis (P=0.0039). This study demonstrates the superiority of the non-specific AJCC 2002 Cancer Staging Manual. Medical and surgical management must take paranasal sinus invasion into account, as it constitutes a major prognostic factor. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Grading of meningeal solitary fibrous tumors/hemangiopericytomas: analysis of the prognostic value of the Marseille Grading System in a cohort of 132 patients.

    PubMed

    Macagno, Nicolas; Vogels, Rob; Appay, Romain; Colin, Carole; Mokhtari, Karima; Küsters, Benno; Wesseling, Pieter; Figarella-Branger, Dominique; Flucke, Uta; Bouvier, Corinne

    2018-03-30

    The finding that meningeal solitary fibrous tumors (SFTs) and meningeal hemangiopericytomas (HPCs) are both characterized by NAB2-STAT6 gene fusion has pushed their inclusion in the WHO 2016 Classification of tumors of the central nervous system (CNS) as different manifestations of the same entity. Given that the clinical behavior of the CNS SFT/HPC spectrum ranges from benign to malignant, it is presently unclear whether the grading criteria are still adequate. Here, we present the results of a study that analyzed the prognostic value of an updated version of the Marseille Grading System (MGS) in a retrospectively assembled cohort of 132 primary meningeal SFTs/HPCs with nuclear overexpression of STAT6. The median patient follow-up was 64 months (range 4-274 months); 73 cases (55%) were MGS I, 50 cases (38%) MGS II and 9 cases (7%) were MGS III. Progression-free survival (PFS) and disease-specific survival (DSS) were investigated using univariate analysis: the prognostic factors for PFS included MGS, extent of surgery, radiotherapy, chemotherapy and mitotic activity ≥5/10 high-power field (HPF). Moreover, MGS, radiotherapy, mitotic activity ≥5/10 HPF, and necrosis were the prognostic factors measured for DSS. In multivariate analysis, extent of surgery, mitotic activity ≥5/10 HPF, MGS I and MGS III were the independent prognostic factors measured for PFS while necrosis, MGS III and radiotherapy were the independent prognostic factors for DSS. In conclusion, our results show that assessing the malignancy risk of SFT/HPC should not rely on one single criterion like mitotic activity. Therefore, MGS is useful as it combines the value of different criteria. In particular, the combination of a high mitotic activity and necrosis (MGS III) indicates a particularly poor prognosis. © 2018 International Society of Neuropathology.

  7. Prognostic significance of interventricular septal thickness in patients with AL amyloidosis.

    PubMed

    Cho, Hyunsoo; Kim, Soo-Jeong; Shim, Chi Young; Hong, Geu-Ru; Ha, Jong-Won; Kim, Yu Ri; Yang, Woo Ick; Chung, Haerim; Jang, Ji Eun; Cheong, June-Won; Min, Yoo Hong; Kim, Jin Seok

    2017-09-01

    The major prognostic determinant of immunoglobulin light chain (AL) amyloidosis is cardiac involvement. However, the role of interventricular septal thickness (IVST), which reflects the extent of cardiac involvement, remains unclear. Therefore, we analyzed 77 patients with newly diagnosed AL amyloidosis and evaluated the prognostic role of IVST. Fifty patients (64.9%) had cardiac involvement and 17 patients (22.1%) showed IVST >15mm. Among all patients, the revised Mayo Clinic Stage III-IV and IVST >15mm were independently associated with inferior overall survival (OS) in a multivariable analysis. IVST >15mm was also adversely prognostic for OS in a subgroup of advanced-stage (revised Mayo Clinic stage III-IV) patients in a multivariable analysis (P<0.001). Furthermore, advanced-stage patients with IVST >15mm did not show survival benefit from treatment with bortezomib-based regimens and/or autologous stem-cell transplantation (ASCT). Our study demonstrated that IVST >15mm is adversely prognostic independent of the revised Mayo Clinic staging system in patients with AL amyloidosis. In addition, the degree of IVST might be used as a useful prognostic indicator that can guide the management of patients with AL amyloidosis especially at an advanced stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluating Algorithm Performance Metrics Tailored for Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai

    2009-01-01

    Prognostics has taken a center stage in Condition Based Maintenance (CBM) where it is desired to estimate Remaining Useful Life (RUL) of the system so that remedial measures may be taken in advance to avoid catastrophic events or unwanted downtimes. Validation of such predictions is an important but difficult proposition and a lack of appropriate evaluation methods renders prognostics meaningless. Evaluation methods currently used in the research community are not standardized and in many cases do not sufficiently assess key performance aspects expected out of a prognostics algorithm. In this paper we introduce several new evaluation metrics tailored for prognostics and show that they can effectively evaluate various algorithms as compared to other conventional metrics. Specifically four algorithms namely; Relevance Vector Machine (RVM), Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and Polynomial Regression (PR) are compared. These algorithms vary in complexity and their ability to manage uncertainty around predicted estimates. Results show that the new metrics rank these algorithms in different manner and depending on the requirements and constraints suitable metrics may be chosen. Beyond these results, these metrics offer ideas about how metrics suitable to prognostics may be designed so that the evaluation procedure can be standardized. 1

  9. Clinical implications of six inflammatory biomarkers as prognostic indicators in Ewing sarcoma

    PubMed Central

    Li, Yong-Jiang; Yang, Xi; Zhang, Wen-Biao; Yi, Cheng; Wang, Feng; Li, Ping

    2017-01-01

    Cancer-related systemic inflammation responses have been correlated with cancer development and progression. The prognostic significance of several inflammatory indicators, including neutrophil–lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR), Glasgow Prognostic Score (GPS), C-reactive protein to albumin ratio (CRP/Alb ratio), lymphocyte–monocyte ratio (LMR), and neutrophil–platelet score (NPS), were found to be correlated with prognosis in several cancers. However, the prognostic role of these inflammatory biomarkers in Ewing sarcoma has not been evaluated. This study enrolled 122 Ewing patients. Receiver operating characteristic (ROC) analysis was generated to determine optimal cutoff values; areas under the curves (AUCs) were assessed to show the discriminatory ability of the biomarkers; Kaplan–Meier analysis was conducted to plot the survival curves; and Cox multivariate survival analysis was performed to identify independent prognostic factors. The optimal cutoff values of CRP/Alb ratio, NLR, PLR, and LMR were 0.225, 2.38, 131, and 4.41, respectively. CRP/Alb ratio had a significantly larger AUC than NLR, PLR, LMR, and NPS. Higher levels of CRP/Alb ratio (hazard ratio [HR] 2.41, P=0.005), GPS (HR 2.27, P=0.006), NLR (HR 2.07, P=0.013), and PLR (HR 1.85, P=0.032) were significantly correlated with poor prognosis. As the biomarkers had internal correlations, only the CRP/Alb ratio was involved in the multivariate Cox analysis and remained an independent prognostic indicator. The study demonstrated that CRP/Alb ratio, GPS, and NLR were effective prognostic indicators for patients with Ewing sarcoma, and the CRP/Alb ratio was the most robust prognostic indicator with a discriminatory ability superior to that of the other indicators; however, PLR, LMR, and NPS may not be suitable as prognostic indicators in Ewing sarcoma. PMID:29033609

  10. Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Sacconi, L.; Jasaitis, A.; O'Connor, R. P.; Massi, D.; Sestini, S.; de Giorgi, V.; Lotti, T.; Pavone, F. S.

    2008-09-01

    We have built a custom-made multidimensional non-linear microscope equipped with a combination of several non-linear laser imaging techniques involving fluorescence lifetime, multispectral two-photon and second-harmonic generation imaging. The optical system was mounted on a vertical honeycomb breadboard in an upright configuration, using two galvo-mirrors relayed by two spherical mirrors as scanners. A double detection system working in non-descanning mode has allowed both photon counting and a proportional regime. This experimental setup offering high spatial (micrometric) and temporal (sub-nanosecond) resolution has been used to image both ex-vivo and in-vivo biological samples, including cells, tissues, and living animals. Multidimensional imaging was used to spectroscopically characterize human skin lesions, as malignant melanoma and naevi. Moreover, two-color detection of two photon excited fluorescence was applied to in-vivo imaging of living mice intact neocortex, as well as to induce neuronal microlesions by femtosecond laser burning. The presented applications demonstrate the capability of the instrument to be used in a wide range of biological and biomedical studies.

  11. Multidimensional generalized-ensemble algorithms for complex systems.

    PubMed

    Mitsutake, Ayori; Okamoto, Yuko

    2009-06-07

    We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.

  12. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H(-)(NH3) and NH4 (.).

    PubMed

    Hu, Qichi; Song, Hongwei; Johnson, Christopher J; Li, Jun; Guo, Hua; Continetti, Robert E

    2016-06-28

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH4 and the double Rydberg anion NH4 (-) represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H(-)(NH3) ion-dipole complex and the NH4 (-) DRA probes different regions on the neutral NH4 PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH4 Rydberg radical occurs to H + NH3 with a peak kinetic energy of 0.13 eV, showing the ground state of NH4 to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  13. Clinical multi-omics strategies for the effective cancer management.

    PubMed

    Yoo, Byong Chul; Kim, Kyung-Hee; Woo, Sang Myung; Myung, Jae Kyung

    2017-08-15

    Cancer is a global health issue as a multi-factorial complex disease, and early detection and novel therapeutic strategies are required for more effective cancer management. With the development of systemic analytical -omics strategies, the therapeutic approach and study of the molecular mechanisms of carcinogenesis and cancer progression have moved from hypothesis-driven targeted investigations to data-driven untargeted investigations focusing on the integrated diagnosis, treatment, and prevention of cancer in individual patients. Predictive, preventive, and personalized medicine (PPPM) is a promising new approach to reduce the burden of cancer and facilitate more accurate prognosis, diagnosis, as well as effective treatment. Here we review the fundamentals of, and new developments in, -omics technologies, together with the key role of a variety of practical -omics strategies in PPPM for cancer treatment and diagnosis. In this review, a comprehensive and critical overview of the systematic strategy for predictive, preventive, and personalized medicine (PPPM) for cancer disease was described in a view of cancer prognostic prediction, diagnostics, and prevention as well as cancer therapy and drug responses. We have discussed multi-dimensional data obtained from various resources and integration of multisciplinary -omics strategies with computational method which could contribute the more effective PPPM for cancer. This review has provided the novel insights of the current applications of each and combined -omics technologies, which showed their powerful potential for the establishment of PPPM for cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.

  15. Big Data Analytics for Prostate Radiotherapy

    PubMed Central

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  16. Prognostic Performance and Reproducibility of the 1973 and 2004/2016 World Health Organization Grading Classification Systems in Non-muscle-invasive Bladder Cancer: A European Association of Urology Non-muscle Invasive Bladder Cancer Guidelines Panel Systematic Review.

    PubMed

    Soukup, Viktor; Čapoun, Otakar; Cohen, Daniel; Hernández, Virginia; Babjuk, Marek; Burger, Max; Compérat, Eva; Gontero, Paolo; Lam, Thomas; MacLennan, Steven; Mostafid, A Hugh; Palou, Joan; van Rhijn, Bas W G; Rouprêt, Morgan; Shariat, Shahrokh F; Sylvester, Richard; Yuan, Yuhong; Zigeuner, Richard

    2017-11-01

    Tumour grade is an important prognostic indicator in non-muscle-invasive bladder cancer (NMIBC). Histopathological classifications are limited by interobserver variability (reproducibility), which may have prognostic implications. European Association of Urology NMIBC guidelines suggest concurrent use of both 1973 and 2004/2016 World Health Organization (WHO) classifications. To compare the prognostic performance and reproducibility of the 1973 and 2004/2016 WHO grading systems for NMIBC. A systematic literature search was undertaken incorporating Medline, Embase, and the Cochrane Library. Studies were critically appraised for risk of bias (QUIPS). For prognosis, the primary outcome was progression to muscle-invasive or metastatic disease. Secondary outcomes were disease recurrence, and overall and cancer-specific survival. For reproducibility, the primary outcome was interobserver variability between pathologists. Secondary outcome was intraobserver variability (repeatability) by the same pathologist. Of 3593 articles identified, 20 were included in the prognostic review; three were eligible for the reproducibility review. Increasing tumour grade in both classifications was associated with higher disease progression and recurrence rates. Progression rates in grade 1 patients were similar to those in low-grade patients; progression rates in grade 3 patients were higher than those in high-grade patients. Survival data were limited. Reproducibility of the 2004/2016 system was marginally better than that of the 1973 system. Two studies on repeatability showed conflicting results. Most studies had a moderate to high risk of bias. Current grading classifications in NMIBC are suboptimal. The 1973 system identifies more aggressive tumours. Intra- and interobserver variability was slightly less in the 2004/2016 classification. We could not confirm that the 2004/2016 classification outperforms the 1973 classification in prediction of recurrence and progression. This article summarises the utility of two different grading systems for non-muscle-invasive bladder cancer. Both systems predict progression and recurrence, although pathologists vary in their reporting; suggestions for further improvements are made. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. [Prognostic value of three different staging schemes based on pN, MLR and LODDS in patients with T3 esophageal cancer].

    PubMed

    Wang, L; Cai, L; Chen, Q; Jiang, Y H

    2017-10-23

    Objective: To evaluate the prognostic value of three different staging schemes based on positive lymph nodes (pN), metastatic lymph nodes ratio (MLR) and log odds of positive lymph nodes (LODDS) in patients with T3 esophageal cancer. Methods: From 2007 to 2014, clinicopathological characteristics of 905 patients who were pathologically diagnosed as T3 esophageal cancer and underwent radical esophagectomy in Zhejiang Cancer Hospital were retrospectively analyzed. Kaplan-Meier curves and Multivariate Cox proportional hazards models were used to evaluate the independent prognostic factors. The values of three lymph node staging schemes for predicting 5-year survival were analyzed by using receiver operating characteristic (ROC) curves. Results: The 1-, 3- and 5-year overall survival rates of patients with T3 esophageal cancer were 80.9%, 50.0% and 38.4%, respectively. Multivariate analysis showed that MLR stage, LODDS stage and differentiation were independent prognostic survival factors ( P <0.05 for all). ROC curves showed that the area under the curve of pN stage, MLR stage, LODDS stage was 0.607, 0.613 and 0.618, respectively. However, the differences were not statistically significant ( P >0.05). Conclusions: LODDS is an independent prognostic factor for patients with T3 esophageal cancer. The value of LODDS staging system may be superior to pN staging system for evaluating the prognosis of these patients.

  18. Prognostics

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Vachtsevanos, George; Orchard, Marcos E.

    2013-01-01

    Knowledge discovery, statistical learning, and more specifically an understanding of the system evolution in time when it undergoes undesirable fault conditions, are critical for an adequate implementation of successful prognostic systems. Prognosis may be understood as the generation of long-term predictions describing the evolution in time of a particular signal of interest or fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem. Predictions are made using a thorough understanding of the underlying processes and factor in the anticipated future usage.

  19. Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge

    PubMed Central

    May, Jody C.; McLean, John A.

    2017-01-01

    Hybrid analytical instrumentation constructed around mass spectrometry (MS) are becoming preferred techniques for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements which are used to infer systems-level information. In this review, we describe multidimensional MS configurations as technologies which are big data drivers and discuss some new and emerging strategies for mining information from large-scale datasets. A discussion is included on the information content which can be obtained from individual dimensions, as well as the unique information which can be derived by comparing different levels of data. Finally, we discuss some emerging data visualization strategies which seek to make highly dimensional datasets both accessible and comprehensible. PMID:27306312

  20. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.

    2000-10-01

    Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.

  1. Comprehensive Outcome Researches of Intralesional Steroid Injection on Benign Vocal Fold Lesions.

    PubMed

    Wang, Chi-Te; Lai, Mei-Shu; Hsiao, Tzu-Yu

    2015-09-01

    This study investigated multidimensional treatment outcomes, including prognostic factors and side effects of vocal fold steroid injection (VFSI). We recruited 126 consecutive patients, including patients with 49 nodules, 47 polyps, and 30 mucus retention cysts. All the patients received VFSI under local anesthesia in the office settings. Treatment outcomes were evaluated 1 and 2 months after the procedure, including endoscopic evaluation, perceptual voice quality (GRB scores), acoustic analysis, and 10-item Voice Handicap Index (VHI-10). More than 80% of the patients reported subjective improvements after VFSI. Objective measurements revealed significant improvements from baseline in most of the outcome parameters (P<0.05). Higher occupational vocal demands and fibrotic vocal nodules were significantly associated with poorer clinical responses as measured by the VHI-10 and GRB scores, respectively. For vocal polyps, dysphonia for more than 12 months were significantly associated with higher postoperative VHI-10 scores, whereas patients with laryngopharyngeal reflux (LPR) showed significantly poor postoperative voice quality as measured by GRB scores. Side effects after VFSI included hematoma (27%), triamcinolone deposits (4%), and vocal atrophy (1%), which resolved spontaneously within 1-2 months. Presentation with vocal fold ectasias/varicosities and higher vocal demands were significantly correlated with postoperative vocal hematoma. This study demonstrated significant improvements after VFSI in vocal nodules, polyps, and cysts. Occupational vocal demand and subtypes of vocal nodules are closely related to the treatment outcomes after VFSI, whereas symptom duration and LPR were significant prognostic factors for VFSI treatment outcomes in vocal polyps. Side effects after receiving VFSI were mostly self-limited without sequel, whereas the incidence rates might be varied by the injection approach and the timing for postoperative follow-up. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  3. Multidimensional treatment foster care as a preventive intervention to promote resiliency among youth in the child welfare system.

    PubMed

    Leve, Leslie D; Fisher, Philip A; Chamberlain, Patricia

    2009-12-01

    Demographic trends indicate that a growing segment of families is exposed to adversity such as poverty, drug use problems, caregiver transitions, and domestic violence. Although these risk processes and the accompanying poor outcomes for children have been well studied, little is known about why some children develop resilience in the face of such adversity, particularly when it is severe enough to invoke child welfare involvement. This paper describes a program of research involving families in the child welfare system. Using a resiliency framework, evidence from 4 randomized clinical trials that included components of the Multidimensional Treatment Foster Care program is presented. Future directions and next steps are proposed.

  4. A prognostic classifier for patients with colorectal cancer liver metastasis, based on AURKA, PTGS2 and MMP9.

    PubMed

    Goos, Jeroen A C M; Coupé, Veerle M H; van de Wiel, Mark A; Diosdado, Begoña; Delis-Van Diemen, Pien M; Hiemstra, Annemieke C; de Cuba, Erienne M V; Beliën, Jeroen A M; Menke-van der Houven van Oordt, C Willemien; Geldof, Albert A; Meijer, Gerrit A; Hoekstra, Otto S; Fijneman, Remond J A

    2016-01-12

    Prognosis of patients with colorectal cancer liver metastasis (CRCLM) is estimated based on clinicopathological models. Stratifying patients based on tumor biology may have additional value. Tissue micro-arrays (TMAs), containing resected CRCLM and corresponding primary tumors from a multi-institutional cohort of 507 patients, were immunohistochemically stained for 18 candidate biomarkers. Cross-validated hazard rate ratios (HRRs) for overall survival (OS) and the proportion of HRRs with opposite effect (P(HRR < 1) or P(HRR > 1)) were calculated. A classifier was constructed by classification and regression tree (CART) analysis and its prognostic value determined by permutation analysis. Correlations between protein expression in primary tumor-CRCLM pairs were calculated. Based on their putative prognostic value, EGFR (P(HRR < 1) = .02), AURKA (P(HRR < 1) = .02), VEGFA (P(HRR < 1) = .02), PTGS2 (P(HRR < 1) = .01), SLC2A1 (P(HRR > 1) < 01), HIF1α (P(HRR > 1) = .06), KCNQ1 (P(HRR > 1) = .09), CEA (P (HRR > 1) = .05) and MMP9 (P(HRR < 1) = .07) were included in the CART analysis (n = 201). The resulting classifier was based on AURKA, PTGS2 and MMP9 expression and was associated with OS (HRR 2.79, p < .001), also after multivariate analysis (HRR 3.57, p < .001). The prognostic value of the biomarker-based classifier was superior to the clinicopathological model (p = .001). Prognostic value was highest for colon cancer patients (HRR 5.71, p < .001) and patients not treated with systemic therapy (HRR 3.48, p < .01). Classification based on protein expression in primary tumors could be based on AURKA expression only (HRR 2.59, p = .04). A classifier was generated for patients with CRCLM with improved prognostic value compared to the standard clinicopathological prognostic parameters, which may aid selection of patients who may benefit from adjuvant systemic therapy.

  5. Sensor Systems for Prognostics and Health Management

    PubMed Central

    Cheng, Shunfeng; Azarian, Michael H.; Pecht, Michael G.

    2010-01-01

    Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented. PMID:22219686

  6. Sensor systems for prognostics and health management.

    PubMed

    Cheng, Shunfeng; Azarian, Michael H; Pecht, Michael G

    2010-01-01

    Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented.

  7. Dynamic analysis, transformation, dissemination and applications of scientific multidimensional data in ArcGIS Platform

    NASA Astrophysics Data System (ADS)

    Shrestha, S. R.; Collow, T. W.; Rose, B.

    2016-12-01

    Scientific datasets are generated from various sources and platforms but they are typically produced either by earth observation systems or by modelling systems. These are widely used for monitoring, simulating, or analyzing measurements that are associated with physical, chemical, and biological phenomena over the ocean, atmosphere, or land. A significant subset of scientific datasets stores values directly as rasters or in a form that can be rasterized. This is where a value exists at every cell in a regular grid spanning the spatial extent of the dataset. Government agencies like NOAA, NASA, EPA, USGS produces large volumes of near real-time, forecast, and historical data that drives climatological and meteorological studies, and underpins operations ranging from weather prediction to sea ice loss. Modern science is computationally intensive because of the availability of an enormous amount of scientific data, the adoption of data-driven analysis, and the need to share these dataset and research results with the public. ArcGIS as a platform is sophisticated and capable of handling such complex domain. We'll discuss constructs and capabilities applicable to multidimensional gridded data that can be conceptualized as a multivariate space-time cube. Building on the concept of a two-dimensional raster, a typical multidimensional raster dataset could contain several "slices" within the same spatial extent. We will share a case from the NOAA Climate Forecast Systems Reanalysis (CFSR) multidimensional data as an example of how large collections of rasters can be efficiently organized and managed through a data model within a geodatabase called "Mosaic dataset" and dynamically transformed and analyzed using raster functions. A raster function is a lightweight, raster-valued transformation defined over a mixed set of raster and scalar input. That means, just like any tool, you can provide a raster function with input parameters. It enables dynamic processing of only the data that's being displayed on the screen or requested by an application. We will present the dynamic processing and analysis of CFSR data using the chains of raster function and share it as dynamic multidimensional image service. This workflow and capabilities can be easily applied to any scientific data formats that are supported in mosaic dataset.

  8. Software framework for prognostic health monitoring of ocean-based power generation

    NASA Astrophysics Data System (ADS)

    Bowren, Mark

    On August 5, 2010 the U.S. Department of Energy (DOE) has designated the Center for Ocean Energy Technology (COET) at Florida Atlantic University (FAU) as a national center for ocean energy research and development of prototypes for open-ocean power generation. Maintenance on ocean-based machinery can be very costly. To avoid unnecessary maintenance it is necessary to monitor the condition of each machine in order to predict problems. This kind of prognostic health monitoring (PHM) requires a condition-based maintenance (CBM) system that supports diagnostic and prognostic analysis of large amounts of data. Research in this field led to the creation of ISO13374 and the development of a standard open-architecture for machine condition monitoring. This thesis explores an implementation of such a system for ocean-based machinery using this framework and current open-standard technologies.

  9. Predicting remaining life by fusing the physics of failure modeling with diagnostics

    NASA Astrophysics Data System (ADS)

    Kacprzynski, G. J.; Sarlashkar, A.; Roemer, M. J.; Hess, A.; Hardman, B.

    2004-03-01

    Technology that enables failure prediction of critical machine components (prognostics) has the potential to significantly reduce maintenance costs and increase availability and safety. This article summarizes a research effort funded through the U.S. Defense Advanced Research Projects Agency and Naval Air System Command aimed at enhancing prognostic accuracy through more advanced physics-of-failure modeling and intelligent utilization of relevant diagnostic information. H-60 helicopter gear is used as a case study to introduce both stochastic sub-zone crack initiation and three-dimensional fracture mechanics lifing models along with adaptive model updating techniques for tuning key failure mode variables at a local material/damage site based on fused vibration features. The overall prognostic scheme is aimed at minimizing inherent modeling and operational uncertainties via sensed system measurements that evolve as damage progresses.

  10. Multidimensional integrable systems and deformations of Lie algebra homomorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunajski, Maciej; Grant, James D. E.; Strachan, Ian A. B.

    We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti-self-dual Yang-Mills equations with a gauge group Diff(S{sup 1})

  11. Sepsis and Septic Shock Strategies.

    PubMed

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Prostate cancer: from Gleason scoring to prognostic grade grouping.

    PubMed

    Montironi, Rodolfo; Santoni, Matteo; Mazzucchelli, Roberta; Burattini, Luciano; Berardi, Rossana; Galosi, Andrea B; Cheng, Liang; Lopez-Beltran, Antonio; Briganti, Alberto; Montorsi, Francesco; Scarpelli, Marina

    2016-01-01

    The Gleason grading system was developed in the late 1960s by Dr. Donald F. Gleason. Due to changes in prostatic adenocarcinoma (PAC) detection and treatment, newer technologies to better characterize prostatic pathology, subsequently described variants of PAC and further data relating various morphologic patterns to prognosis, the application of the Gleason grading system changed substantially in surgical pathology. First in 2005 and more recently in 2014, consensus conferences were held to update PAC grading. Here, we review of the successive changes in the grading of PAC from the original system, with emphasis on the newest prognostic grade grouping.

  13. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    PubMed

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Prognostic value of baseline seric Syndecan-1 in initially unresectable metastatic colorectal cancer patients: a simple biological score.

    PubMed

    Jary, Marine; Lecomte, Thierry; Bouché, Olivier; Kim, Stefano; Dobi, Erion; Queiroz, Lise; Ghiringhelli, Francois; Etienne, Hélène; Léger, Julie; Godet, Yann; Balland, Jérémy; Lakkis, Zaher; Adotevi, Olivier; Bonnetain, Franck; Borg, Christophe; Vernerey, Dewi

    2016-11-15

    In first-line metastatic colorectal cancer (mCRC), baseline prognostic factors allowing death risk and treatment strategy stratification are lacking. Syndecan-1 (CD138) soluble form was never described as a prognostic biomarker in mCRC. We investigated its additional prognostic value for overall survival (OS). mCRC patients with unresectable disease at diagnosis were treated with bevacizumab-based chemotherapy in two independent prospective clinical trials (development set: n = 126, validation set: n = 51, study NCT00489697 and study NCT00544011, respectively). Serums were collected at baseline for CD138 measurement. OS determinants were assessed and, based on the final multivariate model, a prognostic score was proposed. Two independent OS prognostic factors were identified: Lactate Dehydrogenase (LDH) high level (p = 0.0066) and log-CD138 high level (p = 0.0190). The determination of CD138 binary information (cutoff: 75 ng/mL) allowed the assessment of a biological prognostic score with CD138 and LDH values, identifying three risk groups for death (median OS= 38.9, 30.1 and 19.8 months for the low, intermediate and high risk groups, respectively; p < 0.0001). This score had a good discrimination ability (C-index = 0.63). These results were externally confirmed in the validation set. Our study provides robust evidence in favor of the additional baseline soluble CD138 prognostic value for OS, in mCRC patients. A simple biological scoring system is proposed including LDH and CD138 binary status values. © 2016 UICC.

  15. An Operational Computational Terminal Area PBL Prediction System

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.; Weglarz, Ronald P.; Hamilton, David W.

    1997-01-01

    There are two fundamental goals of this research project. The first and primary goal is to develop a prognostic system which could satisfy the operational weather prediction requirements of the meteorological subsystem within the Aircraft Vortex Spacing System (AVOSS). The secondary goal is to perform indepth diagnostic analyses of the meteorological conditions affecting the Memphis field experiment held during August 1995. These two goals are interdependent because a thorough understanding of the atmospheric dynamical processes which produced the unique meteorology during the Memphis deployment will help us design a prognostic system for the planetary boundary layer (PBL) which could be utilized to support the meteorological subsystem within AVOSS. The secondary goal occupied much of the first year of the research project. This involved extensive data acquisition and indepth analyses of a spectrum of atmospheric observational data sets. Concerning the primary goal, the first part of the four-stage prognostic system in support of AVOSS entitled: Terminal Area PBL Prediction System (TAPPS) was also formulated and tested in a research environment during 1996. We describe this system, and the three stages which are planned to follow. This first part of a software system designed to meet the primary goal of this research project is relatively inexpensive to implement and run operationally.

  16. Real-Time Prognostics of a Rotary Valve Actuator

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  17. Independent validation of the prognostic capacity of the ISUP prostate cancer grade grouping system for radiation treated patients with long-term follow-up.

    PubMed

    Spratt, D E; Jackson, W C; Abugharib, A; Tomlins, S A; Dess, R T; Soni, P D; Lee, J Y; Zhao, S G; Cole, A I; Zumsteg, Z S; Sandler, H; Hamstra, D; Hearn, J W; Palapattu, G; Mehra, R; Morgan, T M; Feng, F Y

    2016-09-01

    There has been a recent proposal to change the grading system of prostate cancer into a five-tier grade grouping system. The prognostic impact of this has been demonstrated in regards only to biochemical recurrence-free survival (bRFS) with short follow-up (3 years). Between 1990 and 2013, 847 consecutive men were treated with definitive external beam radiation therapy at a single academic center. To validate the new grade grouping system, bRFS, distant metastases-free survival (DMFS) and prostate cancer-specific survival (PCSS) were calculated. Adjusted Kaplan-Meier and multivariable Cox regression analyses were performed to assess the independent impact of the new grade grouping system. Discriminatory analyses were performed to compare the commonly used three-tier Gleason score system (6, 7 and 8-10) to the new system. The median follow-up of our cohort was 88 months. The 5-grade groups independently validated differing risks of bRFS (group 1 as reference; adjusted hazard ratio (aHR) 1.35, 2.16, 1.79 and 3.84 for groups 2-5, respectively). Furthermore, a clear stratification was demonstrated for DMFS (aHR 2.03, 3.18, 3.62 and 13.77 for groups 2-5, respectively) and PCSS (aHR 3.00, 5.32, 6.02 and 39.02 for groups 2-5, respectively). The 5-grade group system had improved prognostic discrimination for all end points compared with the commonly used three-tiered system (that is, Gleason score 6, 7 and 8-10). In a large independent radiotherapy cohort with long-term follow-up, we have validated the bRFS benefit of the proposed five-tier grade grouping system. Furthermore, we have demonstrated that the system is highly prognostic for DMFS and PCSS. Grade group 5 had markedly worse outcomes for all end points, and future work is necessary to improve outcomes in these patients.

  18. ENVIRONMENTAL SYSTEMS MANAGEMENT, SUSTAINABILITY THEORY, AND THE CHALLENGE OF UNCERTAINTY

    EPA Science Inventory

    Environmental Systems Management is the management of environmental problems at the systems level fully accounting fo rthe multi-dimensional nature of the environment. This includes socio-economic dimensions as well s the usual physical and life science aspects. This is important...

  19. Independent Prognostic Value of Stroke Volume Index in Patients With Immunoglobulin Light Chain Amyloidosis.

    PubMed

    2018-05-01

    Heart involvement is the most important prognostic determinant in AL amyloidosis patients. Echocardiography is a cornerstone for the diagnosis and provides important prognostic information. We studied 754 patients with AL amyloidosis who underwent echocardiographic assessment at the Mayo Clinic, including a Doppler-derived measurement of stroke volume (SV) within 30 days of their diagnosis to explore the prognostic role of echocardiographic variables in the context of a well-established soluble cardiac biomarker staging system. Reproducibility of SV, myocardial contraction fraction, and left ventricular strain was assessed in a separate, yet comparable, study cohort of 150 patients from the Pavia Amyloidosis Center. The echocardiographic measures most predictive for overall survival were SV index <33 mL/min, myocardial contraction fraction <34%, and cardiac index <2.4 L/min/m 2 with respective hazard ratios (95% confidence intervals) of 2.95 (2.37-3.66), 2.36 (1.96-2.85), and 2.32 (1.91-2.80). For the subset that had left ventricular strain performed, the prognostic cut point was -14% (hazard ratios, 2.70; 95% confidence intervals, 1.84-3.96). Each parameter was independent of systolic blood pressure, Mayo staging system (NT-proBNP [N-terminal pro-B-type natriuretic peptide] and troponin), and ejection fraction on multivariable analysis. Simple predictive models for survival, including biomarker staging along with SV index or left ventricular strain, were generated. SV index prognostic performance was similar to left ventricular strain in predicting survival in AL amyloidosis, independently of biomarker staging. Because SV index is routinely calculated and widely available, it could serve as the preferred echocardiographic measure to predict outcomes in AL amyloidosis patients. © 2018 American Heart Association, Inc.

  20. Heterogeneity of (18)F-FDG PET combined with expression of EGFR may improve the prognostic stratification of advanced oropharyngeal carcinoma.

    PubMed

    Wang, Hung-Ming; Cheng, Nai-Ming; Lee, Li-Yu; Fang, Yu-Hua Dean; Chang, Joseph Tung-Chieh; Tsan, Din-Li; Ng, Shu-Hang; Liao, Chun-Ta; Yang, Lan-Yan; Yen, Tzu-Chen

    2016-02-01

    The Ang's risk profile (based on p16, smoking and cancer stage) is a well-known prognostic factor in oropharyngeal squamous cell carcinoma (OPSCC). Whether heterogeneity in (18)F-fluorodeoxyglucose (FDG) positron emission tomographic (PET) images and epidermal growth factor receptor (EGFR) expression could provide additional information on clinical outcomes in advanced-stage OPSCC was investigated. Patients with stage III-IV OPSCC who completed primary therapy were eligible. Zone-size nonuniformity (ZSNU) extracted from pretreatment FDG PET scans was used as an index of image heterogeneity. EGFR and p16 expression were examined by immunohistochemistry. Disease-specific survival (DSS) and overall survival (OS) served as outcome measures. Kaplan-Meier estimates and Cox proportional hazards regression models were used for survival analysis. A bootstrap resampling technique was applied to investigate the stability of outcomes. Finally, a recursive partitioning analysis (RPA)-based model was constructed. A total of 113 patients were included, of which 28 were p16-positive. Multivariate analysis identified the Ang's profile, EGFR and ZSNU as independent predictors of both DSS and OS. Using RPA, the three risk factors were used to devise a prognostic scoring system that successfully predicted DSS in both p16-positive and -negative cases. The c-statistic of the prognostic index for DSS was 0.81, a value which was significantly superior to both AJCC stage (0.60) and the Ang's risk profile (0.68). In patients showing an Ang's high-risk profile (N = 77), the use of our scoring system clearly identified three distinct prognostic subgroups. It was concluded that a novel index may improve the prognostic stratification of patients with advanced-stage OPSCC. © 2015 UICC.

  1. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  2. A novel framework to alleviate the sparsity problem in context-aware recommender systems

    NASA Astrophysics Data System (ADS)

    Yu, Penghua; Lin, Lanfen; Wang, Jing

    2017-04-01

    Recommender systems have become indispensable for services in the era of big data. To improve accuracy and satisfaction, context-aware recommender systems (CARSs) attempt to incorporate contextual information into recommendations. Typically, valid and influential contexts are determined in advance by domain experts or feature selection approaches. Most studies have focused on utilizing the unitary context due to the differences between various contexts. Meanwhile, multi-dimensional contexts will aggravate the sparsity problem, which means that the user preference matrix would become extremely sparse. Consequently, there are not enough or even no preferences in most multi-dimensional conditions. In this paper, we propose a novel framework to alleviate the sparsity issue for CARSs, especially when multi-dimensional contextual variables are adopted. Motivated by the intuition that the overall preferences tend to show similarities among specific groups of users and conditions, we first explore to construct one contextual profile for each contextual condition. In order to further identify those user and context subgroups automatically and simultaneously, we apply a co-clustering algorithm. Furthermore, we expand user preferences in a given contextual condition with the identified user and context clusters. Finally, we perform recommendations based on expanded preferences. Extensive experiments demonstrate the effectiveness of the proposed framework.

  3. Multi-Dimensional, Mesoscopic Monte Carlo Simulations of Inhomogeneous Reaction-Drift-Diffusion Systems on Graphics-Processing Units

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd

    2012-01-01

    For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001

  4. Sub-classification of Advanced-Stage Hepatocellular Carcinoma: A Cohort Study Including 612 Patients Treated with Sorafenib.

    PubMed

    Yoo, Jeong-Ju; Chung, Goh Eun; Lee, Jeong-Hoon; Nam, Joon Yeul; Chang, Young; Lee, Jeong Min; Lee, Dong Ho; Kim, Hwi Young; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Yoon, Jung-Hwan

    2018-04-01

    Advanced hepatocellular carcinoma (HCC) is associated with various clinical conditions including major vessel invasion, metastasis, and poor performance status. The aim of this study was to establish a prognostic scoring system and to propose a sub-classification of the Barcelona-Clinic Liver Cancer (BCLC) stage C. This retrospective study included consecutive patientswho received sorafenib for BCLC stage C HCC at a single tertiary hospital in Korea. A Cox proportional hazard model was used to develop a scoring system, and internal validationwas performed by a 5-fold cross-validation. The performance of the model in predicting risk was assessed by the area under the curve and the Hosmer-Lemeshow test. A total of 612 BCLC stage C HCC patients were sub- classified into strata depending on their performance status. Five independent prognostic factors (Child-Pugh score, α-fetoprotein, tumor type, extrahepatic metastasis, and portal vein invasion) were identified and used in the prognostic scoring system. This scoring system showed good discrimination (area under the receiver operating characteristic curve, 0.734 to 0.818) and calibration functions (both p < 0.05 by the Hosmer-Lemeshow test at 1 month and 12 months, respectively). The differences in survival among the different risk groups classified by the total score were significant (p < 0.001 by the log-rank test in both the Eastern Cooperative Oncology Group 0 and 1 strata). The heterogeneity of patientswith BCLC stage C HCC requires sub-classification of advanced HCC. A prognostic scoring system with five independent factors is useful in predicting the survival of patients with BCLC stage C HCC.

  5. Communication Optimizations for a Wireless Distributed Prognostic Framework

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Saha, Bhaskar; Goebel, Kai

    2009-01-01

    Distributed architecture for prognostics is an essential step in prognostic research in order to enable feasible real-time system health management. Communication overhead is an important design problem for such systems. In this paper we focus on communication issues faced in the distributed implementation of an important class of algorithms for prognostics - particle filters. In spite of being computation and memory intensive, particle filters lend well to distributed implementation except for one significant step - resampling. We propose new resampling scheme called parameterized resampling that attempts to reduce communication between collaborating nodes in a distributed wireless sensor network. Analysis and comparison with relevant resampling schemes is also presented. A battery health management system is used as a target application. A new resampling scheme for distributed implementation of particle filters has been discussed in this paper. Analysis and comparison of this new scheme with existing resampling schemes in the context for minimizing communication overhead have also been discussed. Our proposed new resampling scheme performs significantly better compared to other schemes by attempting to reduce both the communication message length as well as number total communication messages exchanged while not compromising prediction accuracy and precision. Future work will explore the effects of the new resampling scheme in the overall computational performance of the whole system as well as full implementation of the new schemes on the Sun SPOT devices. Exploring different network architectures for efficient communication is an importance future research direction as well.

  6. International neuroblastoma staging system stage 1 neuroblastoma: a prospective study and literature review.

    PubMed

    Kushner, B H; Cheung, N K; LaQuaglia, M P; Ambros, P F; Ambros, I M; Bonilla, M A; Ladanyi, M; Gerald, W L

    1996-07-01

    To gain insight into the management of non-metastatic neuroblastoma by examining clinical and biologic features of International Neuroblastoma Staging System (INSS) stage 1 tumors. Patients were staged by both the INSS and the Evans staging system and were evaluated for biologic prognostic factors. Patients with INSS stage 1 received no cytotoxic therapy. The literature was reviewed for clinical and biologic data about INSS stage 1. We evaluated 10 consecutive patients (median age, 17.5 months) with INSS stage 1; all remain disease-free (median follow-up duration, > 5 years). Tumors were in the abdomen (n = 6), chest (n = 3), or pelvis (n = 1). Neuroblastoma involved margins of resection in six tumors. Poor-prognostic biologic findings included tumor-cell diploidy (n = 2) and unfavorable Shimada histopathology (n = 2). Two patients were to receive chemotherapy for, respectively, a tumor deemed unresectable and a tumor classified as Evans stage III; second opinions resulted in surgical management alone in each case. Published reports confirm that some INSS stage 1 patients (1) are at risk for overtreatment, and (2) have poor-prognostic biologic findings yet do well. Surgery alone suffices for INSS stage 1 neuroblastoma, even if biologic prognostic factors are unfavorable, microscopic disease remains after surgery, and tumor size is suggestive of "advanced-stage" status in other staging systems. Attempts to resect regionally confined neuroblastomas should take precedence over immediate use of cytotoxic therapy; otherwise, some patients may receive chemotherapy or radiotherapy unnecessarily.

  7. Upper gastrointestinal bleeding in patients with hepatic cirrhosis: clinical course and mortality prediction.

    PubMed

    Afessa, B; Kubilis, P S

    2000-02-01

    We conducted this study to describe the complications and validate the accuracy of previously reported prognostic indices in predicting the mortality of cirrhotic patients hospitalized for upper GI bleeding. This prospective, observational study included 111 consecutive hospitalizations of 85 cirrhotic patients admitted for GI bleeding. Data obtained included intensive care unit (ICU) admission status, Child-Pugh score, the development of systemic inflammatory response syndrome (SIRS), organ failure, and inhospital mortality. The performances of Garden's, Gatta's, and Acute Physiology and Chronic Health Evaluation (APACHE) II prognostic systems in predicting mortality were assessed. Patients' mean age was 48.7 yr, and the median APACHE II and Child-Pugh scores were 17 and 9, respectively. Their ICU admission rate was 71%. Organ failure developed in 57%, and SIRS in 46% of the patients. Nine patients had acute respiratory distress syndrome, and three patients had hepatorenal syndrome. The inhospital mortality was 21%. The APACHE II, Garden's, and Gatta' s predicted mortality rates were 39%, 24%, and 20%, respectively, and their areas under the receiver operating characteristic curve (AUC) were 0.78, 0.70, and 0.71, respectively. The AUC for Child-Pugh score was 0.76. SIRS and organ failure develop in many patients with hepatic cirrhosis hospitalized for upper GI bleeding, and are associated with increased mortality. Although the APACHE II prognostic system overestimated the mortality of these patients, the receiver operating characteristic curves did not show significant differences between the various prognostic systems.

  8. Prognostic Factors in Patients with Primary Hemangiopericytomas of the Central Nervous System: A Series of 103 Cases at a Single Institution.

    PubMed

    Zhu, Hongda; Duran, Daniel; Hua, Lingyang; Tang, Hailiang; Chen, Hong; Zhong, Ping; Zheng, Kang; Wang, Yongfei; Che, Xiaoming; Bao, Weimin; Wang, Yin; Xie, Qing; Gong, Ye

    2016-06-01

    Hemangiopericytoma (HPC) is a rare mesenchymal tumor that tends to affect the central nervous system and is associated with distant metastasis and a high recurrence rate. The purpose of this study was to analyze the prognostic factors in patients with primary HPC who received surgical treatment. This retrospective study reviewed all adult patients with primary HPC of the central nervous system treated from 2001 to 2009 at our institution. Clinical information, adjuvant radiation, and expression levels of Ki-67 and p53 were correlated with patient outcomes. The final analysis included 103 patients. The mean follow-up period was 75.9 months ± 36.5 (range, 1-165 months). There was a significant difference in progression-free survival (PFS) (P < 0.001) and overall survival (P = 0.014) between patients who underwent gross total resection versus subtotal resection. Expression of p53 was found in 48.5% of patients and showed utility as an independent unfavorable prognostic factor for PFS (P = 0.006). Multivariate analysis revealed that only extent of tumor resection (P = 0.004) and p53 expression (P = 0.024) were independent prognostic factors for PFS. Adjuvant radiation was found to extend PFS only in the p53-negative expression group (P = 0.044). Gross total resection significantly improves the outcome of patients with primary HPCs, whereas adjuvant radiation contributes significantly to PFS only in patients with negative p53 expression and in patients with incomplete resections. Extent of resection and p53 expression may serve as prognostic markers for the outcome of patients with primary HPC. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cardiac Troponin Is a Predictor of Septic Shock Mortality in Cancer Patients in an Emergency Department: A Retrospective Cohort Study.

    PubMed

    Yang, Zhi; Qdaisat, Aiham; Hu, Zhihuang; Wagar, Elizabeth A; Reyes-Gibby, Cielito; Meng, Qing H; Yeung, Sai-Ching J

    2016-01-01

    Septic shock may be associated with myocardial damage; however, the prognostic value of cardiac enzymes in cancer patients with septic shock is unknown. In this study, we evaluated the prognostic significance of cardiac enzymes in combination with established prognostic factors in predicting the 7-day mortality rate of patients with septic shock, and we constructed a new scoring system, Septic Oncologic Patients in Emergency Department (SOPED), which includes cardiac enzymes, to predict 7-day mortality rates. We performed a retrospective cohort study of 375 adult cancer patients with septic shock who visited the emergency department of a comprehensive cancer center between 01/01/2004 and 12/31/2013. The 7-day and 28-day mortality rates were 19.7% and 37.6%, respectively. The creatine kinase myocardial band fraction and troponin-I were significantly higher in patients who died in ≤7 days and ≤28 days than in those who did not. In Cox regression models, troponin-I >0.05 ng/mL plus Predisposition, Infection, Response, and Organ Failure (PIRO2011) or Mortality in Emergency Department Sepsis (MEDS) score was a significant predictor of survival for ≤7 days. With our new SOPED scoring system, the receiver operating characteristic area under the curve was 0.836, higher than those for PIRO2011 and MEDS. Troponin-I >0.05 ng/mL was an important predictor of short-term mortality (≤7 days). The SOPED scoring system, which incorporated troponin-I, was more prognostically accurate than were other scores for 7-day mortality. Large multicenter studies are needed to verify our results and prospectively validate the prognostic performance of the SOPED score.

  10. Tumor-infiltrating Neutrophils is Prognostic and Predictive for Postoperative Adjuvant Chemotherapy Benefit in Patients With Gastric Cancer.

    PubMed

    Zhang, Heng; Liu, Hao; Shen, Zhenbin; Lin, Chao; Wang, Xuefei; Qin, Jing; Qin, Xinyu; Xu, Jiejie; Sun, Yihong

    2018-02-01

    This study was aimed to investigate the prognostic value of tumor-infiltrating neutrophils (TINs) and to generate a predictive model to refine postoperative risk stratification system for patients with gastric cancer. TIN presents in various malignant tumors, but its clinical significance in gastric cancer remains obscure. The study enrolled 3 independent sets of patients with gastric cancer from 2 institutional medical centers of China. TIN was estimated by immunohistochemical staining of CD66b, and its relationship with clinicopathological features and clinical outcomes were evaluated. Prognostic accuracies were evaluated by C-index and Akaike information criterion. TINs in gastric cancer tissues ranged from 0 to 192 cells/high magnification filed (HPF), 0 to 117 cells/HPF, and 0 to 142 cells/HPF in the training, testing, and validation sets, respectively. TINs were negatively correlated with lymph node classification (P = 0.007, P = 0.041, and P = 0.032, respectively) and tumor stage (P = 0.019, P = 0.013, and P = 0.025, respectively) in the 3 sets. Moreover, multivariate analysis identified TINs and tumor node metastasis (TNM) stage as 2 independent prognostic factors for overall survival. Incorporation of TINs into well-established TNM system generated a predictive model that shows better predictive accuracy for overall survival. More importantly, patients with higher TINs were prone to overall survival benefit from postoperative adjuvant chemotherapy. These results were validated in the independent testing and validation sets. TIN in gastric cancer was identified as an independent prognostic factor, which could be incorporated into standard TNM staging system to refine risk stratification and predict for overall survival benefit from postoperative chemotherapy in patients with gastric cancer.

  11. Tumour budding activity and cell nest size determine patient outcome in oral squamous cell carcinoma: proposal for an adjusted grading system.

    PubMed

    Boxberg, Melanie; Jesinghaus, Moritz; Dorfner, Christiane; Mogler, Carolin; Drecoll, Enken; Warth, Arne; Steiger, Katja; Bollwein, Christine; Meyer, Petra; Wolff, Klaus D; Kolk, Andreas; Weichert, Wilko

    2017-06-01

    Oral squamous cell carcinoma (OSCC) is a common malignancy with a variable clinical course. One of the established survival predictors in carcinomas in general is tumour grade; in OSCC, however, grading according to the World Health Organization (WHO) has no independent prognostic impact. Recently, a novel grading scheme associated with high impact on patient outcome has been proposed for squamous cell carcinoma of the lung. To probe whether this scheme could be applied to the upper aerodigestive tract, we retrospectively evaluated 157 chemo- and radiotherapy-naive OSCCs with complete clinical follow-up data and standardized treatment for tumour budding activity (BA), cell nest size (CNS), extent of keratinization, stromal content, nuclear size and mitotic count. Histomorphological characteristics were correlated with clinicopathological data and patient outcome. As in squamous cell carcinoma of the lung, high BA and small CNS were correlated significantly with shortened overall, disease-specific and disease-free survival. A three-tiered grading system based on a sum score of these two prognostic markers proved to be a strong age-, stage- and sex-independent prognosticator for survival with a hazard ratio for overall survival of 2.1 for intermediately differentiated (G2) tumours and 3.4 for poorly differentiated (G3) tumours compared to well-differentiated (G1) tumours (P < 0.001). We recapitulated and validated almost exactly the strong prognostic impact of a grading algorithm proposed recently for squamous cell carcinoma of the lung in OSCC. Our data may pave the way for a prognostically highly relevant future squamous cell carcinoma grading system broadly applicable in the aerodigestive tract. © 2017 John Wiley & Sons Ltd.

  12. Multidimensional poverty, household environment and short-term morbidity in India.

    PubMed

    Dehury, Bidyadhar; Mohanty, Sanjay K

    2017-01-01

    Using the unit data from the second round of the Indian Human Development Survey (IHDS-II), 2011-2012, which covered 42,152 households, this paper examines the association between multidimensional poverty, household environmental deprivation and short-term morbidities (fever, cough and diarrhoea) in India. Poverty is measured in a multidimensional framework that includes the dimensions of education, health and income, while household environmental deprivation is defined as lack of access to improved sanitation, drinking water and cooking fuel. A composite index combining multidimensional poverty and household environmental deprivation has been computed, and households are classified as follows: multidimensional poor and living in a poor household environment, multidimensional non-poor and living in a poor household environment, multidimensional poor and living in a good household environment and multidimensional non-poor and living in a good household environment. Results suggest that about 23% of the population belonging to multidimensional poor households and living in a poor household environment had experienced short-term morbidities in a reference period of 30 days compared to 20% of the population belonging to multidimensional non-poor households and living in a poor household environment, 19% of the population belonging to multidimensional poor households and living in a good household environment and 15% of the population belonging to multidimensional non-poor households and living in a good household environment. Controlling for socioeconomic covariates, the odds of short-term morbidity was 1.47 [CI 1.40-1.53] among the multidimensional poor and living in a poor household environment, 1.28 [CI 1.21-1.37] among the multidimensional non-poor and living in a poor household environment and 1.21 [CI 1.64-1.28] among the multidimensional poor and living in a good household environment compared to the multidimensional non-poor and living in a good household environment. Results are robust across states and hold good for each of the three morbidities: fever, cough and diarrhoea. This establishes that along with poverty, household environmental conditions have a significant bearing on short-term morbidities in India. Public investment in sanitation, drinking water and cooking fuel can reduce the morbidity and improve the health of the population.

  13. Clinical value of octamer-binding transcription factor 4 as a prognostic marker in patients with digestive system cancers: A systematic review and meta-analysis.

    PubMed

    Chen, Zhiqiang; Zhang, Long; Zhu, Qin; Wang, Xiaowei; Wu, Jindao; Wang, Xuehao

    2017-03-01

    The role of octamer-binding transcription factor 4 (Oct4) has been implicated in the clinical prognosis of various kinds of digestive system cancers, but the results remain controversial. The purpose of this meta-analysis is to assess the potential role of Oct4 as a prognostic marker in digestive system tumors. Relevant articles were retrieved from Pubmed, Web of Science, and Cochrane Library up to July 2016. The software Stata 12.0 was used to analyze the outcomes, including overall survival (OS), disease-free survival, recurrence-free survival, and clinicopathological characteristics. A total of 13 eligible studies with 1538 patients were included. Elevated Oct4 expression was significantly associated with poor OS (pooled hazard ratio [HR] = 2.183, 95% confidence interval [CI]: 1.824-2.612), disease-free survival (pooled HR = 1.973, 95% CI: 1.538-2.532), and recurrence-free survival (pooled HR = 2.209, 95% CI: 1.461-3.338) of digestive system malignancies. Subgroup analyses showed that cancer type, sample size, study quality, and laboratory detection method did not alter the significant prognostic value of Oct4. Additionally, Oct4 expression was found to be an independent predictive factor for OS (HR = 2.068, 95% CI: 1.633-2.619). No significant association was found between Oct4 and clinicopathological features of digestive system malignancies. This study provided evidence of Oct4 and/or its closely related homolog protein as a predictive factor for patients with digestive system cancers. More large-scale clinical studies on the prognostic value of Oct4 are warranted. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  14. Video event classification and image segmentation based on noncausal multidimensional hidden Markov models.

    PubMed

    Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A

    2009-06-01

    In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.

  15. Approximation Methods in Multidimensional Filter Design and Related Problems Encountered in Multidimensional System Design.

    DTIC Science & Technology

    1983-03-21

    zero , it is necessary that B M(0) be nonzero. In the case considered here, B M(0) is taken to be nonsingula and withot loss of generality it may be set...452. (c.51 D. Levin, " General order Padd type rational approximants defined from a double power series," J. Inst. Maths. Applics., 18, 1976, pp. 1-8...common zeros in the closed unit bidisc, U- 2 . The 2-D setting provides a nice theoretical framework for generalization of these stabilization results to

  16. Stochastic wave-function unravelling of the generalized Lindblad equation

    NASA Astrophysics Data System (ADS)

    Semin, V.; Semina, I.; Petruccione, F.

    2017-12-01

    We investigate generalized non-Markovian stochastic Schrödinger equations (SSEs), driven by a multidimensional counting process and multidimensional Brownian motion introduced by A. Barchielli and C. Pellegrini [J. Math. Phys. 51, 112104 (2010), 10.1063/1.3514539]. We show that these SSEs can be translated in a nonlinear form, which can be efficiently simulated. The simulation is illustrated by the model of a two-level system in a structured bath, and the results of the simulations are compared with the exact solution of the generalized master equation.

  17. Multidimensional Trellis Coded Phase Modulation Using a Multilevel Concatenation Approach. Part 2; Codes for AWGN and Fading Channels

    NASA Technical Reports Server (NTRS)

    Rajpal, Sandeep; Rhee, DoJun; Lin, Shu

    1997-01-01

    In this paper, we will use the construction technique proposed in to construct multidimensional trellis coded modulation (TCM) codes for both the additive white Gaussian noise (AWGN) and the fading channels. Analytical performance bounds and simulation results show that these codes perform very well and achieve significant coding gains over uncoded reference modulation systems. In addition, the proposed technique can be used to construct codes which have a performance/decoding complexity advantage over the codes listed in literature.

  18. Geriatric neuro-oncology: from mythology to biology.

    PubMed

    Weller, Michael; Platten, Michael; Roth, Patrick; Wick, Wolfgang

    2011-12-01

    Age has remained one of the most important determinants of risk for the development of certain brain tumors, of benefit from and tolerance of brain tumor treatment, and overall outcome. Regarding these three aspects, there are major differences across the spectrum of primary brain tumors depending on specific histology. Here, we review recent advances in understanding the biological basis of the prognostic marker 'age' in neuro-oncology. Contemporary population-based studies confirm the strong prognostic impact of age in many brain tumors. Elderly patients continue to be treated less aggressively than younger patients with the same tumors. However, biological factors may contribute to the negative prognostic impact of age. For instance, among gliomas, mutations of the isocitrate dehydrogenase genes, which are prognostically favorable, are much more common in younger patients. Moreover, complete responses defined by neuroimaging were much less durable in elderly as opposed to younger patients with primary central nervous system lymphoma in the German Primary Central Nervous System Lymphoma Study Group trial. A combination of age-adapted patterns of care and treatment-independent, tumor-intrinsic factors contributes to the poorer outcome of elderly patients with brain tumors. These factors need to be better distinguished and understood in order to improve outcome in elderly brain tumor patients.

  19. ENVIRONMENTAL SYSTEMS MANAGEMENT: TOWARDS A NEW SCIENCE OF SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    EPA Science Inventory

    Environmental Systems Management (ESM) is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects of environm...

  20. Multiple Damage Progression Paths in Model-Based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai Frank

    2011-01-01

    Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active

  1. Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen

    Prognostics and health management is not a new concept. It has been used in relatively mature industries, such as aviation and electronics, to help improve operation and maintenance (O&M) practices. In the wind industry, prognostics and health management is relatively new. The level for both wind industry applications and research and development (R&D) has increased in recent years because of its potential for reducing O&M cost of wind power, especially for turbines installed offshore. The majority of wind industry application efforts has been focused on diagnosis based on various sensing and feature extraction techniques. For R&D, activities are being conductedmore » in almost all areas of a typical prognostics and health management framework (i.e., sensing, data collection, feature extraction, diagnosis, prognosis, and maintenance scheduling). This presentation provides an overview of the current status of wind turbine prognostics and health management that focuses on drivetrain condition monitoring through vibration, oil debris, and oil condition analysis techniques. It also discusses turbine component health diagnosis through data mining and modeling based on supervisory control and data acquisition system data. Finally, it provides a brief survey of R&D activities for wind turbine prognostics and health management, along with future opportunities.« less

  2. Evaluation of the platelet-to-lymphocyte ratio as a prognostic indicator in a European cohort of patients with prostate cancer treated with radiotherapy.

    PubMed

    Langsenlehner, Tanja; Pichler, Martin; Thurner, Eva-Maria; Krenn-Pilko, Sabine; Stojakovic, Tatjana; Gerger, Armin; Langsenlehner, Uwe

    2015-05-01

    Recent evidence suggests that the presence of a systemic inflammatory response plays an important role in the progression of several solid tumors. The platelet-to-lymphocyte ratio (PLR) has been proposed as an easily assessable marker of systemic inflammation and has been shown to represent a prognostic marker in different cancer entities. To evaluate the prognostic value of the PLR in prostate cancer, we performed the present study. Data from 374 consecutive patients with prostate cancer, treated with 3D conformal radiotherapy from 1999 to 2007, were analyzed. Distant metastases-free survival (MFS), cancer-specific survival (CSS), overall survival (OS), biochemical disease-free survival, and time to salvage systemic therapy were assessed using the Kaplan-Meier method. Cox proportional hazards analysis was performed to calculate hazard ratio (HR) and 95% CI. Multivariate Cox regression analysis was performed to adjust for other covariates. Using receiver operating characteristics analysis, the optimal cutoff level for the PLR was 190. Kaplan-Meier analyses revealed that PLR≥190 was a prognostic factor for decreased MFS (P = 0.004), CSS (P = 0.004), and OS (P = 0.024) whereas a significant association of an elevated PLR with biochemical disease-free survival (P = 0.740) and time to salvage systemic therapy (P = 0.063) was not detected. In multivariate analysis, an increased PLR remained a significant prognostic factor for poor MFS (HR = 2.24, 95% CI: 1.06-4.76, P = 0.036), CSS (HR = 3.99, 95% CI: 1.19-13.4, P = 0.025), and OS (HR = 1.87, 95% CI: 1.02-3.42, P = 0.044). Our findings indicate that the PLR may predict prognosis in patients with prostate cancer and may contribute to future individual risk assessment in them. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Conditional Disease-Free Survival After Surgical Resection of Gastrointestinal Stromal Tumors

    PubMed Central

    Bischof, Danielle A.; Kim, Yuhree; Dodson, Rebecca; Jimenez, M. Carolina; Behman, Ramy; Cocieru, Andrei; Fisher, Sarah B.; Groeschl, Ryan T.; Squires, Malcolm H.; Maithel, Shishir K.; Blazer, Dan G.; Kooby, David A.; Gamblin, T. Clark; Bauer, Todd W.; Quereshy, Fayez A.; Karanicolas, Paul J.; Law, Calvin H. L.; Pawlik, Timothy M.

    2015-01-01

    IMPORTANCE Gastrointestinal stromal tumors (GISTs) are the most commonly diagnosed mesenchymal tumors of the gastrointestinal tract. The risk of recurrence following surgical resection of GISTs is typically reported from the date of surgery. However, disease-free survival (DFS) over time is dynamic and changes based on disease-free time already accumulated following surgery. OBJECTIVES To assess the comparative performance of established GIST recurrence risk prognostic scoring systems and to characterize conditional DFS following surgical resection of GISTs. DESIGN, SETTING, AND PARTICIPANTS A retrospective cohort study of 502 patients who underwent surgery for a primary, nonmetastatic GIST between January 1, 1998, and December 31, 2012, at 7 major academic cancer centers in the United States and Canada. MAIN OUTCOMES AND MEASURES Disease-free survival of the patients was classified according to 5 prognostic scoring systems, including the National Institutes of Health criteria, modified National Institutes of Health criteria, Memorial Sloan Kettering Cancer Center GIST nomogram, and American Joint Committee on Cancer gastric and nongastric categories. The concordance index (also known as the C statistic or the area under the receiver operating curve) of established GIST recurrence risk prognostic scoring systems. Conditional DFS estimates were calculated. RESULTS Overall 1-year, 3-year, and 5-year DFS following resection of GISTs was 95%, 83%, and 74%, respectively. All the prognostic scoring systems had fair prognostic ability. For all tumor sites, the American Joint Committee on Cancer gastric category demonstrated the best discrimination (C = 0.79). Using conditional DFS, the probability of remaining disease free for an additional 3 years given that a patient was disease free at 1 year, 3 years, and 5 years was 82%, 89%, and 92%, respectively. Patients with the highest initial recurrence risk demonstrated the greatest increase in conditional survival as time elapsed. CONCLUSIONS AND RELEVANCE Conditional DFS improves over time following resection of GISTs. This is valuable information about long-term prognosis to communicate to patients who are disease free after a period following surgery. PMID:25671681

  4. Data analytics and parallel-coordinate materials property charts

    NASA Astrophysics Data System (ADS)

    Rickman, Jeffrey M.

    2018-01-01

    It is often advantageous to display material properties relationships in the form of charts that highlight important correlations and thereby enhance our understanding of materials behavior and facilitate materials selection. Unfortunately, in many cases, these correlations are highly multidimensional in nature, and one typically employs low-dimensional cross-sections of the property space to convey some aspects of these relationships. To overcome some of these difficulties, in this work we employ methods of data analytics in conjunction with a visualization strategy, known as parallel coordinates, to represent better multidimensional materials data and to extract useful relationships among properties. We illustrate the utility of this approach by the construction and systematic analysis of multidimensional materials properties charts for metallic and ceramic systems. These charts simplify the description of high-dimensional geometry, enable dimensional reduction and the identification of significant property correlations and underline distinctions among different materials classes.

  5. Assessing the multidimensionality of coastal erosion risks: public participation and multicriteria analysis in a Mediterranean coastal system.

    PubMed

    Roca, Elisabet; Gamboa, Gonzalo; Tàbara, J David

    2008-04-01

    The complex and multidimensional nature of coastal erosion risks makes it necessary to move away from single-perspective assessment and management methods that have conventionally predominated in coastal management. This article explores the suitability of participatory multicriteria analysis (MCA) for improving the integration of diverse expertises and values and enhancing the social-ecological robustness of the processes that lead to the definition of relevant policy options to deal with those risks. We test this approach in the Mediterranean coastal locality of Lido de Sète in France. Results show that the more adaptive alternatives such as "retreating the shoreline" were preferred by our selected stakeholders to those corresponding to "protecting the shoreline" and the business as usual proposals traditionally put forward by experts and policymakers on these matters. Participative MCA contributed to represent coastal multidimensionality, elicit and integrate different views and preferences, facilitated knowledge exchange, and allowed highlighting existing uncertainties.

  6. Variational calculation of macrostate transition rates

    NASA Astrophysics Data System (ADS)

    Ulitsky, Alex; Shalloway, David

    1998-08-01

    We develop the macrostate variational method (MVM) for computing reaction rates of diffusive conformational transitions in multidimensional systems by a variational coarse-grained "macrostate" decomposition of the Smoluchowski equation. MVM uses multidimensional Gaussian packets to identify and focus computational effort on the "transition region," a localized, self-consistently determined region in conformational space positioned roughly between the macrostates. It also determines the "transition direction" which optimally specifies the projected potential of mean force for mean first-passage time calculations. MVM is complementary to variational transition state theory in that it can efficiently solve multidimensional problems but does not accommodate memory-friction effects. It has been tested on model 1- and 2-dimensional potentials and on the 12-dimensional conformational transition between the isoforms of a microcluster of six-atoms having only van der Waals interactions. Comparison with Brownian dynamics calculations shows that MVM obtains equivalent results at a fraction of the computational cost.

  7. Behavioural hypervolumes of spider communities predict community performance and disbandment

    PubMed Central

    Sih, Andrew; DiRienzo, Nicholas; Pinter-Wollman, Noa

    2016-01-01

    Trait-based ecology argues that an understanding of the traits of interactors can enhance the predictability of ecological outcomes. We examine here whether the multidimensional behavioural-trait diversity of communities influences community performance and stability in situ. We created experimental communities of web-building spiders, each with an identical species composition. Communities contained one individual of each of five different species. Prior to establishing these communities in the field, we examined three behavioural traits for each individual spider. These behavioural measures allowed us to estimate community-wide behavioural diversity, as inferred by the multidimensional behavioural volume occupied by the entire community. Communities that occupied a larger region of behavioural-trait space (i.e. where spiders differed more from each other behaviourally) gained more mass and were less likely to disband. Thus, there is a community-wide benefit to multidimensional behavioural diversity in this system that might translate to other multispecies assemblages. PMID:27974515

  8. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications

    NASA Astrophysics Data System (ADS)

    Lee, Jay; Wu, Fangji; Zhao, Wenyu; Ghaffari, Masoud; Liao, Linxia; Siegel, David

    2014-01-01

    Much research has been conducted in prognostics and health management (PHM), an emerging field in mechanical engineering that is gaining interest from both academia and industry. Most of these efforts have been in the area of machinery PHM, resulting in the development of many algorithms for this particular application. The majority of these algorithms concentrate on applications involving common rotary machinery components, such as bearings and gears. Knowledge of this prior work is a necessity for any future research efforts to be conducted; however, there has not been a comprehensive overview that details previous and on-going efforts in PHM. In addition, a systematic method for developing and deploying a PHM system has yet to be established. Such a method would enable rapid customization and integration of PHM systems for diverse applications. To address these gaps, this paper provides a comprehensive review of the PHM field, followed by an introduction of a systematic PHM design methodology, 5S methodology, for converting data to prognostics information. This methodology includes procedures for identifying critical components, as well as tools for selecting the most appropriate algorithms for specific applications. Visualization tools are presented for displaying prognostics information in an appropriate fashion for quick and accurate decision making. Industrial case studies are included in this paper to show how this methodology can help in the design of an effective PHM system.

  9. Multidimensional chromatography in food analysis.

    PubMed

    Herrero, Miguel; Ibáñez, Elena; Cifuentes, Alejandro; Bernal, Jose

    2009-10-23

    In this work, the main developments and applications of multidimensional chromatographic techniques in food analysis are reviewed. Different aspects related to the existing couplings involving chromatographic techniques are examined. These couplings include multidimensional GC, multidimensional LC, multidimensional SFC as well as all their possible combinations. Main advantages and drawbacks of each coupling are critically discussed and their key applications in food analysis described.

  10. Investigating the Effect of Damage Progression Model Choice on Prognostics Performance

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Narasimhan, Sriram; Saha, Sankalita; Saha, Bhaskar; Goebel, Kai

    2011-01-01

    The success of model-based approaches to systems health management depends largely on the quality of the underlying models. In model-based prognostics, it is especially the quality of the damage progression models, i.e., the models describing how damage evolves as the system operates, that determines the accuracy and precision of remaining useful life predictions. Several common forms of these models are generally assumed in the literature, but are often not supported by physical evidence or physics-based analysis. In this paper, using a centrifugal pump as a case study, we develop different damage progression models. In simulation, we investigate how model changes influence prognostics performance. Results demonstrate that, in some cases, simple damage progression models are sufficient. But, in general, the results show a clear need for damage progression models that are accurate over long time horizons under varied loading conditions.

  11. Prognostic value of inflammation-based markers in patients with pancreatic cancer administered gemcitabine and erlotinib.

    PubMed

    Lee, Jae Min; Lee, Hong Sik; Hyun, Jong Jin; Choi, Hyuk Soon; Kim, Eun Sun; Keum, Bora; Seo, Yeon Seok; Jeen, Yoon Tae; Chun, Hoon Jai; Um, Soon Ho; Kim, Chang Duck

    2016-07-15

    To evaluate the value of systemic inflammation-based markers as prognostic factors for advanced pancreatic cancer (PC). Data from 82 patients who underwent combination chemotherapy with gemcitabine and erlotinib for PC from 2011 to 2014 were collected retrospectively. Data that included the neutrophil-to-lymphocyte ratio (NLR), the platelet-to-lymphocyte ratio, and the C-reactive protein (CRP)-to-albumin (CRP/Alb) ratio were analyzed. Kaplan-Meier curves, and univariate and multivariate Cox proportional hazards regression analyses were used to identify the prognostic factors associated with progression-free survival (PFS) and overall survival (OS). The univariate analysis demonstrated the prognostic value of the NLR (P = 0.049) and the CRP/Alb ratio (P = 0.047) in relation to PFS, and a positive relationship between an increase in inflammation-based markers and a poor prognosis in relation to OS. The multivariate analysis determined that an increased NLR (hazard ratio = 2.76, 95%CI: 1.33-5.75, P = 0.007) is an independent prognostic factor for poor OS. There was no association between the PLR and the patients' prognoses in those who had received chemotherapy that comprised gemcitabine and erlotinib in combination. The Kaplan-Meier method and the log-rank test determined significantly worse outcomes in relation to PFS and OS in patients with an NLR > 5 or a CRP/Alb ratio > 5. Systemic inflammation-based markers, including increases in the NLR and the CRP/Alb ratio, may be useful for predicting PC prognoses.

  12. [Essential thrombocythemia: baseline characteristics and risk factors for survival and thrombosis in a series of 214 patients].

    PubMed

    Angona, Anna; Alvarez-Larrán, Alberto; Bellosillo, Beatriz; Martínez-Avilés, Luz; Garcia-Pallarols, Francesc; Longarón, Raquel; Ancochea, Àgueda; Besses, Carles

    2015-03-15

    Two prognostic models to predict overall survival and thrombosis-free survival have been proposed: International Prognostic Score for Essential Thrombocythemia (IPSET) and IPSET-Thrombosis, respectively, based on age, leukocytes count, history of previous thrombosis, the presence of cardiovascular risk factors and the JAK2 mutational status. The aim of the present study was to assess the clinical and biological characteristics at diagnosis and during evolution in essential thrombocythemia (ET) patients as well as the factors associated with survival and thrombosis and the usefulness of these new prognostic models. We have evaluated the clinical data and the mutation status of JAK2, MPL and calreticulin of 214 ET patients diagnosed in a single center between 1985 and 2012, classified according to classical risk stratification, IPSET and IPSET-Thrombosis. With a median follow-up of 6.9 years, overall survival was not associated with any variable by multivariate analysis. Thrombotic history and leukocytes>10×10(9)/l were associated with thrombosis-free survival (TFS). In our series, IPSET prognostic systems of survival and thrombosis did not provide more clinically relevant information regarding the classic risk of thrombosis stratification. Thrombotic history and leukocytosis>10×10(9)/l were significantly associated with lower TFS, while the prognostic IPSET-Thrombosis system did not provide more information than classical thrombotic risk assessment. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  13. Sarcopenia in the prognosis of cirrhosis: Going beyond the MELD score

    PubMed Central

    Kim, Hee Yeon; Jang, Jeong Won

    2015-01-01

    Estimating the prognosis of patients with cirrhosis remains challenging, because the natural history of cirrhosis varies according to the cause, presence of portal hypertension, liver synthetic function, and the reversibility of underlying disease. Conventional prognostic scoring systems, including the Child-Turcotte-Pugh score or model for end-stage liver diseases are widely used; however, revised models have been introduced to improve prognostic performance. Although sarcopenia is one of the most common complications related to survival of patients with cirrhosis, the newly proposed prognostic models lack a nutritional status evaluation of patients. This is reflected by the lack of an optimal index for sarcopenia in terms of objectivity, reproducibility, practicality, and prognostic performance, and of a consensus definition for sarcopenia in patients with cirrhosis in whom ascites and edema may interfere with body composition analysis. Quantifying skeletal muscle mass using cross-sectional abdominal imaging is a promising tool for assessing sarcopenia. As radiological imaging provides direct visualization of body composition, it is useful to evaluate sarcopenia in patients with cirrhosis whose body mass index, anthropometric measurements, or biochemical markers are inaccurate on a nutritional assessment. Sarcopenia defined by cross-sectional imaging-based muscular assessment is prevalent and predicts mortality in patients with cirrhosis. Sarcopenia alone or in combination with conventional prognostic systems shows promise for a cirrhosis prognosis. Including an objective assessment of sarcopenia with conventional scores to optimize the outcome prediction for patients with cirrhosis needs further research. PMID:26167066

  14. Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, kai

    2007-01-01

    Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.

  15. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM

    PubMed Central

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  16. Breast Cancer Prognosis for Young Patients

    PubMed Central

    OWRANG, MEHDI; COPELAND, L. ROBERT JR; RICKS-SANTI, J. LUISEL; GASKINS, MELVIN; BEYENE, DESTA; DEWITTY, L. ROBERT JR; KANAAN, M. YASMINE

    2017-01-01

    Background/Aims: Breast cancer (BCa) prognostication is a vital element for providing effective treatment for patients with BCa. Studies suggest that ethnicity plays a greater role in the incidence and poor prognosis of BCa in younger women than in their older counterparts. Therefore, the goal of this study was to assess the association between age and ethnicity on the overall final prognosis. Materials and Methods: Nottingham Prognostic Index (NPI) was used to analyze BCa prognosis using Howard University Cancer Center Tumor Registry and the National Cancer Institute’s Surveillance, Epidemiology, and End Results BCa datasets. Patients were grouped according to their predicted prognosis based on NPI scheme. Results: There was no correlation between the younger patients compared to their older counterparts for any of the prognostic clusters. The significance of ethnicity in poorer prognosis for younger age is not conclusive either. Conclusion: An extended prognostic tool/system needs to be evaluated for its usefulness in a clinical practice environment. PMID:28652435

  17. Characterization and prognostic implication of 17 chromosome abnormalities in myelodysplastic syndrome.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; Arenillas, Leonor; Valcarcel, David; Vallespí, Teresa; Costa, Dolors; Nomdedeu, Benet; Jimenez, María José; Granada, Isabel; Grau, Javier; Ardanaz, María T; de la Serna, Javier; Carbonell, Félix; Cervera, José; Sierra, Adriana; Luño, Elisa; Cervero, Carlos J; Falantes, José; Calasanz, María J; González-Porrás, José R; Bailén, Alicia; Amigo, M Luz; Sanz, Guillermo; Solé, Francesc

    2013-07-01

    The prognosis of chromosome 17 (chr17) abnormalities in patients with primary myelodysplastic syndrome (MDS) remains unclear. The revised International Prognostic Scoring System (IPSS-R) includes these abnormalities within the intermediate cytogenetic risk group. This study assessed the impact on overall survival (OS) and risk of acute myeloid leukemia transformation (AMLt) of chr17 abnormalities in 88 patients with primary MDS. We have compared this group with 1346 patients with primary MDS and abnormal karyotype without chr17 involved. The alterations of chr17 should be considered within group of poor prognosis. The different types of alterations of chromosome 17 behave different prognosis. The study confirms the intermediate prognostic impact of the i(17q), as stated in IPSS-R. The results of the study, however, provide valuable new information on the prognostic impact of alterations of chromosome 17 in complex karyotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Pathohistological classification systems in gastric cancer: Diagnostic relevance and prognostic value

    PubMed Central

    Berlth, Felix; Bollschweiler, Elfriede; Drebber, Uta; Hoelscher, Arnulf H; Moenig, Stefan

    2014-01-01

    Several pathohistological classification systems exist for the diagnosis of gastric cancer. Many studies have investigated the correlation between the pathohistological characteristics in gastric cancer and patient characteristics, disease specific criteria and overall outcome. It is still controversial as to which classification system imparts the most reliable information, and therefore, the choice of system may vary in clinical routine. In addition to the most common classification systems, such as the Laurén and the World Health Organization (WHO) classifications, other authors have tried to characterize and classify gastric cancer based on the microscopic morphology and in reference to the clinical outcome of the patients. In more than 50 years of systematic classification of the pathohistological characteristics of gastric cancer, there is no sole classification system that is consistently used worldwide in diagnostics and research. However, several national guidelines for the treatment of gastric cancer refer to the Laurén or the WHO classifications regarding therapeutic decision-making, which underlines the importance of a reliable classification system for gastric cancer. The latest results from gastric cancer studies indicate that it might be useful to integrate DNA- and RNA-based features of gastric cancer into the classification systems to establish prognostic relevance. This article reviews the diagnostic relevance and the prognostic value of different pathohistological classification systems in gastric cancer. PMID:24914328

  19. Multidimensional Treatment Foster Care as a Preventive Intervention to Promote Resiliency Among Youth in the Child Welfare System

    PubMed Central

    Leve, Leslie D.; Fisher, Philip A.; Chamberlain, Patricia

    2009-01-01

    Demographic trends indicate that a growing segment of families is exposed to adversity such as poverty, drug use problems, caregiver transitions, and domestic violence. Although these risk processes and the accompanying poor outcomes for children have been well-studied, little is known about why some children develop resilience in the face of such adversity, particularly when it is severe enough to invoke child welfare involvement. This paper describes a program of research involving families in the child welfare system. Using a resiliency framework, evidence from four randomized clinical trials that included components of the Multidimensional Treatment Foster Care program is presented. Future directions and next steps are proposed. PMID:19807861

  20. Low Expression of Mucin-4 Predicts Poor Prognosis in Patients With Clear-Cell Renal Cell Carcinoma

    PubMed Central

    Fu, Hangcheng; Liu, Yidong; Xu, Le; Chang, Yuan; Zhou, Lin; Zhang, Weijuan; Yang, Yuanfeng; Xu, Jiejie

    2016-01-01

    Abstract Mucin-4 (MUC4), a member of membrane-bound mucins, has been reported to exert a large variety of distinctive roles in tumorigenesis of different cancers. MUC4 is aberrantly expressed in clear-cell renal cell carcinoma (ccRCC) but its prognostic value is still unveiled. This study aims to assess the clinical significance of MUC4 expression in patients with ccRCC. The expression of MUC4 was assessed by immunohistochemistry in 198 patients with ccRCC who underwent nephrectomy retrospectively in 2003 and 2004. Sixty-seven patients died before the last follow-up in the cohort. Kaplan–Meier method with log-rank test was applied to compare survival curves. Univariate and multivariate Cox regression models were applied to evaluate the prognostic value of MUC4 expression in overall survival (OS). The predictive nomogram was constructed based on the independent prognostic factors. The calibration was built to evaluate the predictive accuracy of nomogram. In patients with ccRCC, MUC4 expression, which was determined to be an independent prognostic indicator for OS (hazard ratio [HR] 3.891; P < 0.001), was negatively associated with tumor size (P = 0.036), Fuhrman grade (P = 0.044), and OS (P < 0.001). The prognostic accuracy of TNM stage, UCLA Integrated Scoring System (UISS), and Mayo clinic stage, size, grade, and necrosis score (SSIGN) prognostic models was improved when MUC4 expression was added. The independent prognostic factors, pT stage, distant metastases, Fuhrman grade, sarcomatoid, and MUC4 expression were integrated to establish a predictive nomogram with high predictive accuracy. MUC4 expression is an independent prognostic factor for OS in patients with ccRCC. PMID:27124015

  1. 77 FR 11117 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... to multidimensional changes in the management or delivery of care or strategic alignment of system changes with an organization's business strategy. System redesign, if done successfully, will allow SN... site visit with senior medical center leaders, clinical managers and staff involved in system redesign...

  2. Exploring agricultural production systems and their fundamental components with system dynamics modeling

    USDA-ARS?s Scientific Manuscript database

    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex wa...

  3. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  4. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H{sup −}(NH{sub 3}) and NH{sub 4}{sup −}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qichi; Johnson, Christopher J.; Continetti, Robert E., E-mail: hguo@umn.edu, E-mail: rcontinetti@ucsd.edu

    2016-06-28

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH{sub 4} and the double Rydberg anion NH{sub 4}{sup −} represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H{sup −}(NH{sub 3}) ion-dipole complex and the NH{sub 4}{sup −} DRA probes different regions on the neutral NH{sub 4} PES. Photoelectron energy and angular distributions at photon energiesmore » of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH{sub 4} Rydberg radical occurs to H + NH{sub 3} with a peak kinetic energy of 0.13 eV, showing the ground state of NH{sub 4} to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.« less

  5. Psychometric properties of the Multidimensional Assessment of Fatigue scale in traumatic brain injury: an NIDRR Traumatic Brain Injury Model Systems study.

    PubMed

    Lequerica, Anthony; Bushnik, Tamara; Wright, Jerry; Kolakowsky-Hayner, Stephanie A; Hammond, Flora M; Dijkers, Marcel P; Cantor, Joshua

    2012-01-01

    To investigate the psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale in a traumatic brain injury (TBI) sample. Prospective survey study. Community. One hundred sixty-seven individuals with TBI admitted for inpatient rehabilitation, enrolled into the TBI Model Systems national database, and followed up at either the first or second year postinjury. Not applicable. Multidimensional Assessment of Fatigue. The initial analysis, using items 1 to 14, which are based on a 10-point rating scale, found that only 1 item ("walking") misfit the overall construct of fatigue in this TBI population. However, this 10-point rating scale was found to have disordered thresholds. When ratings were collapsed into 4 response categories, all MAF items used to calculate the Global Fatigue Index formed a unidimensional scale. Findings generally support the unidimensionality of the MAF when used in a TBI population but call into question the use of a 10-point rating scale for items 1 to 14. Further study is needed to investigate the use of a 4-category rating scale across all items and the fit of the "walking" item for a measure of fatigue among individuals with TBI.

  6. Understanding the operational environment: implications for advanced visualizations

    NASA Astrophysics Data System (ADS)

    Aleva, Denise; Fitzhugh, Elisabeth; Dixon, Sharon

    2009-05-01

    With the changing character of warfare, information superiority is a high priority. Given the complexity of current and future operating environments, analysts, strategists and planners need a multidimensional understanding of the battlespace. Asymmetric warfare necessitates that our strategists look beyond targets-based operations, where we simply identify and destroy enemy entities. Effects-based operations models the enemy as a system which reacts to our actions. This requires the capability to predict the adversary response to a selected action. Actions may be diplomatic, information, military or economic (DIME). Effects may be political, military, economic, social, information or infrastructure (PMESII). Timing must be explicitly considered and effects dynamically assessed. Visualizations of intelligence information are needed which will promote full understanding of all aspects of adversary strengths and weaknesses by providing the extensive data about adversary forces, organic essentials, infrastructure, leadership, population, and science and technology in an easily accessible and understandable format. This will enhance Effectsbased operations, and therefore, the capability to predict and counter adversary courses of action. This paper outlines a systems engineering approach to designing visualizations which convey the multidimensional information to decision makers. Visualization issues inherent in understanding the multidimensional operational environment will be discussed.

  7. [Prognostic value of JAK2, MPL and CALR mutations in Chinese patients with primary myelofibrosis].

    PubMed

    Xu, Z F; Li, B; Liu, J Q; Li, Y; Ai, X F; Zhang, P H; Qin, T J; Zhang, Y; Wang, J Y; Xu, J Q; Zhang, H L; Fang, L W; Pan, L J; Hu, N B; Qu, S Q; Xiao, Z J

    2016-07-01

    To evaluate the prognostic value of JAK2, MPL and CALR mutations in Chinese patients with primary myelofibrosis (PMF). Four hundred and two Chinese patients with PMF were retrospectively analyzed. The Kaplan-Meier method, the Log-rank test, the likelihood ratio test and the Cox proportional hazards regression model were used to evaluate the prognostic scoring system. This cohort of patients included 209 males and 193 females with a median age of 55 years (range: 15- 89). JAK2V617F mutations were detected in 189 subjects (47.0% ), MPLW515 mutations in 13 (3.2%) and CALR mutations in 81 (20.1%) [There were 30 (37.0%) type-1, 48 (59.3%) type-2 and 3 (3.7%) less common CALR mutations], respectively. 119 subjects (29.6%) had no detectable mutation in JAK2, MPL or CALR. Univariate analysis indicated that patients with CALR type-2 mutations or no detectable mutations had inferior survival compared to those with JAK2, MPL or CALR type- 1 or other less common CALR mutations (the median survival was 74vs 168 months, respectively [HR 2.990 (95% CI 1.935-4.619),P<0.001]. Therefore, patients were categorized into the high-risk with CALR type- 2 mutations or no detectable driver mutations and the low- risk without aforementioned mutations status. The DIPSS-Chinese molecular prognostic model was proposed by adopting mutation categories and DIPSS-Chinese risk group. The median survival of patients classified in low risk (132 subjects, 32.8% ), intermediate- 1 risk (143 subjects, 35.6%), intermediate- 2 risk (106 subjects, 26.4%) and high risk (21 subjects, 5.2%) were not reached, 156 (95% CI 117- 194), 60 (95% CI 28- 91) and 22 (95% CI 10- 33) months, respectively, and there was a statistically significant difference in overall survival among the four risk groups (P<0.001). There was significantly higher predictive power for survival according to the DIPSS-Chinese molecular prognostic model compared with the DIPSS-Chinese model (P=0.005, -2 log-likelihood ratios of 855.6 and 869.7, respectively). The impact of the CALR type- 2 mutations or no detectable driver mutation on survival was independent of current prognostic scoring systems. The DIPSS- Chinese molecular prognostic model based on the molecular features of Chinese patients was proposed and worked well for prognostic indication.

  8. Army Logistician. Volume 39, Issue 1, January-February 2007

    DTIC Science & Technology

    2007-02-01

    of electronic systems using statistical methods. P& C , however, requires advanced prognostic capabilities not only to detect the early onset of...patterns. Entities operating in a P& C -enabled environment will sense and understand contextual meaning , communicate their state and mission, and act to...accessing of historical and simulation patterns; on- board prognostics capabilities; physics of failure analyses; and predictive modeling. P& C also

  9. The Ratio Between Metastatic and Examined Lymph Nodes (N Ratio) Is an Independent Prognostic Factor in Gastric Cancer Regardless of the Type of Lymphadenectomy

    PubMed Central

    Marchet, Alberto; Mocellin, Simone; Ambrosi, Alessandro; Morgagni, Paolo; Garcea, Domenico; Marrelli, Daniele; Roviello, Franco; de Manzoni, Giovanni; Minicozzi, Annamaria; Natalini, Giovanni; De Santis, Francesco; Baiocchi, Luca; Coniglio, Arianna; Nitti, Donato

    2007-01-01

    Purpose: To investigate whether the ratio between metastatic and examined lymph nodes (N ratio) is a better prognostic factor as compared with traditional staging systems in patients with gastric cancer regardless of the extension of lymph node dissection. Patients & Methods: We retrospectively reviewed the data of 1853 patients who underwent radical resection for gastric carcinoma at 6 Italian centers. Patients with >15 (group 1, n = 1421) and those with ≤15 (group 2, n = 432) lymph nodes examined were separately analyzed. N ratio categories (N ratio 0, 0%; N ratio 1, 1%–9%; N ratio 2, 10%–25%; N ratio 3, >25%) were determined by the best cut-off approach. Results: After a median follow-up of 45.5 months (range, 4–182 months), the 5-year overall survival of N0, N1, and N2 patients of group 1 versus group 2 was 83.4% versus 74.2% (P = 0.0026), 54.3% versus 44.3% (P = 0.018), and 32.7% versus 14.7% (P = 0.004), respectively, suggesting that a low number of excised lymph nodes can lead to the understaging of patients. N ratio identified subsets of patients with significantly different survival rates within N1 and N2 stages in both groups. At multivariate analysis, the N ratio (but not N stage) was retained as an independent prognostic factor both in group 1 and group 2 (HR for N ratio 1, N ratio 2, and N ratio 3 = 1.67, 2.96, and 6.59, and 1.56, 2.68, and 4.28, respectively). In our series, the implementation of N ratio led to the identification of subgroups of patients prognostically more homogeneous than those classified by the TNM system. Conclusion: N ratio is a simple and reproducible prognostic tool that can stratify patients with gastric cancer also in case of limited lymph node dissection. These data may represent the rational for improving the prognostic power of current UICC TNM staging system and ultimately the selection of patients who may most benefit from adjuvant treatments. PMID:17414602

  10. A comparison of three developmental stage scoring systems.

    PubMed

    Dawson, Theo Linda

    2002-01-01

    In social psychological research the stage metaphor has fallen into disfavor due to concerns about bias, reliability, and validity. To address some of these issues, I employ a multidimensional partial credit analysis comparing moral judgment interviews scored with the Standard Issue Scoring System (SISS) (Colby and Kohlberg, 1987b), evaluative reasoning interviews scored with the Good Life Scoring System (GLSS) (Armon, 1984b), and Good Education interviews scored with the Hierarchical Complexity Scoring System (HCSS) (Commons, Danaher, Miller, and Dawson, 2000). A total of 209 participants between the ages of 5 and 86 were interviewed. The multidimensional model reveals that even though the scoring systems rely upon different criteria and the data were collected using different methods and scored by different teams of raters, the SISS, GLSS, and HCSS all appear to measure the same latent variable. The HCSS exhibits more internal consistency than the SISS and GLSS, and solves some methodological problems introduced by the content dependency of the SISS and GLSS. These results and their implications are elaborated.

  11. Autonomous diagnostics and prognostics of signal and data distribution systems

    NASA Astrophysics Data System (ADS)

    Blemel, Kenneth G.

    2001-07-01

    Wiring is the nervous system of any complex system and is attached to or services nearly every subsystem. Damage to optical wiring systems can cause serious interruptions in communication, command and control systems. Electrical wiring faults and failures due to opens, shorts, and arcing probably result in adverse effects to the systems serviced by the wiring. Abnormalities in a system usually can be detected by monitoring some wiring parameter such as vibration, data activity or power consumption. This paper introduces the mapping of wiring to critical functions during system engineering to automatically define the Failure Modes Effects and Criticality Analysis. This mapping can be used to define the sensory processes needed to perform diagnostics during system engineering. This paper also explains the use of Operational Modes and Criticality Effects Analysis in the development of Sentient Wiring Systems as a means for diagnostic, prognostics and health management of wiring in aerospace and transportation systems.

  12. Association between raf kinase inhibitor protein loss and prognosis in cancers of the digestive system: a meta-analysis.

    PubMed

    Yu, Min; Wang, Qian; Ding, Jiang-Wu; Yang, Zhen; Xie, Chuan; Lu, Nong-Hua

    2014-01-01

    Loss of Raf kinase inhibitor protein (RKIP) may contribute to metastasis in a variety of human cancers. Many studies have evaluated whether loss of RKIP expression is a prognostic factor for survival in cancers of the digestive system, however, its predictive value remains controversial. Thus, we performed a meta-analysis to obtain a more comprehensive estimate of the prognostic value of RKIP expression in digestive system cancers. Studies were identified by searching multiple electronic databases through December 12, 2013, and by reviewing reference lists of obtained articles. Studies reported hazard ratios (HRs) with 95% confidence intervals (CIs) for the association between RKIP and overall survival (OS) and disease-free survival (DFS) in cancers of the digestive system were eligible, including esophageal cancer, gastric cancer, colorectal cancer and pancreatic cancer. Nineteen studies involving approximately 3700 participants were included in the final analysis. The pooled results suggested that loss of RKIP expression was associated with unfavorable OS (HR 0.55, 95% CI 0.46-0.65) and DFS (HR 0.46, 95% CI 0.30-0.62) among patients with digestive system cancers, whereas the difference was not statistically significant in pancreatic cancer specifically (OS, HR 0.76; 95% CI 0.51-1.01; DFS, HR 0.71; 95% CI 0.28-1.13). Loss of RKIP expression might be an independent indicator of poor prognosis in patients with digestive tract cancers, which includes esophageal cancer, gastric cancer and colorectal cancer. More studies are needed to further clarify the prognostic value of RKIP in pancreatic cancer. Future studies, preferably large prospective studies utilizing formal marker assessment processes, are needed to establish the prognostic value of RKIP before these results can be clinically applied.

  13. Sample dimensionality: a predictor of order-disorder in component peak distribution in multidimensional separation.

    PubMed

    Giddings, J C

    1995-05-26

    While the use of multiple dimensions in separation systems can create very high peak capacities, the effectiveness of the enhanced peak capacity in resolving large numbers of components depends strongly on whether the distribution of component peaks is ordered or disordered. Peak overlap is common in disordered distributions, even with a very high peak capacity. It is therefore of great importance to understand the origin of peak order/disorder in multidimensional separations and to address the question of whether any control can be exerted over observed levels of order and disorder and thus separation efficacy. It is postulated here that the underlying difference between ordered and disordered distributions of component peaks in separation systems is related to sample complexity as measured by a newly defined parameter, the sample dimensionality s, and by the derivative dimensionality s'. It is concluded that the type and degree of order and disorder is determined by the relationship of s (or s') to the dimensionality n of the separation system employed. Thus for some relatively simple samples (defined as having small s values), increased order and a consequent enhancement of resolution can be realized by increasing n. The resolution enhancement is in addition to the normal gain in resolving power resulting from the increased peak capacity of multidimensional systems. However, for other samples (having even smaller s values), an increase in n provides no additional benefit in enhancing component separability.

  14. Integrating Advance Organizers and Multidimensional Information Display in Electronic Performance Support Systems

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Chao, Chia-An

    2007-01-01

    This study has reviewed major design approaches for electronic performance support systems and identified two common problems: users' inability to comprehend screen-based material and poorly designed instructional scaffolds. This paper presents a design approach, called the "Matrix-Aided Performance System" ("MAPS"), which enables these problems…

  15. Validation of EORTC Prognostic Factors for Adults With Low-Grade Glioma: A Report Using Intergroup 86-72-51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Thomas B.; Brown, Paul D., E-mail: Brown.paul@mayo.edu; Felten, Sara J.

    2011-09-01

    Purpose: A prognostic index for survival was constructed and validated from patient data from two European Organisation for Research and Treatment of Cancer (EORTC) radiation trials for low-grade glioma (LGG). We sought to independently validate this prognostic index with a separate prospectively collected data set (Intergroup 86-72-51). Methods and Materials: Two hundred three patients were treated in a North Central Cancer Treatment Group-led trial that randomized patients with supratentorial LGG to 50.4 or 64.8 Gy. Risk factors from the EORTC prognostic index were analyzed for prognostic value: histology, tumor size, neurologic deficit, age, and tumor crossing the midline. The high-riskmore » group was defined as patients with more than two risk factors. In addition, the Mini Mental Status Examination (MMSE) score, extent of surgical resection, and 1p19q status were also analyzed for prognostic value. Results: On univariate analysis, the following were statistically significant (p < 0.05) detrimental factors for both progression-free survival (PFS) and overall survival (OS): astrocytoma histology, tumor size, and less than total resection. A Mini Mental Status Examination score of more than 26 was a favorable prognostic factor. Multivariate analysis showed that tumor size and MMSE score were significant predictors of OS whereas tumor size, astrocytoma histology, and MMSE score were significant predictors of PFS. Analyzing by the EORTC risk groups, we found that the low-risk group had significantly better median OS (10.8 years vs. 3.9 years, p < 0.0001) and PFS (6.2 years vs. 1.9 years, p < 0.0001) than the high-risk group. The 1p19q status was available in 66 patients. Co-deletion of 1p19q was a favorable prognostic factor for OS vs. one or no deletion (median OS, 12.6 years vs. 7.2 years; p = 0.03). Conclusions: Although the low-risk group as defined by EORTC criteria had a superior PFS and OS to the high-risk group, this is primarily because of the influence of histology and tumor size. Co-deletion of 1p19q is a prognostic factor. Future studies are needed to develop a more refined prognostic system that combines clinical prognostic features with more robust molecular and genetic data.« less

  16. Integrated CLL Scoring System, a New and Simple Index to Predict Time to Treatment and Overall Survival in Patients With Chronic Lymphocytic Leukemia.

    PubMed

    Visentin, Andrea; Facco, Monica; Frezzato, Federica; Castelli, Monica; Trimarco, Valentina; Martini, Veronica; Gattazzo, Cristina; Severin, Filippo; Chiodin, Giorgia; Martines, Annalisa; Bonaldi, Laura; Gianesello, Ilaria; Pagnin, Elisa; Boscaro, Elisa; Piazza, Francesco; Zambello, Renato; Semenzato, Gianpietro; Trentin, Livio

    2015-10-01

    Several prognostic factors have been identified to predict the outcome of patients with chronic lymphocytic leukemia (CLL), but only a few studies analyzed more markers together. Taking advantage of a population of 608 patients, we identified the strongest prognostic markers of survival and, subsequently, in a cohort of 212 patients we integrated data of cytogenetic lesions, IGHV mutational status, and CD38 expression in a new and easy scoring system we called the integrated CLL scoring system (ICSS). ICSS defines 3 groups of risk: (1) low risk (patients with 13q(-) or normal fluorescence in-situ hybridization analysis results, mutated IGHV, and CD38) (2) high risk (all 11q(-) or 17p(-) patients and/or all unmutated IGHV and CD38(+) patients); and (3) intermediate risk (all remaining patients). Using only these 3 already available prognostic factors, we were able to properly redefine patients and better predict the clinical course of the disease. ICSS could become a useful tool for CLL patients' management. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Modified TIME-H: a simplified scoring system for chronic wound management.

    PubMed

    Lim, K; Free, B; Sinha, S

    2015-09-01

    Chronic wound assessment requires a systematic approach in order to guide management and improve prognostication. Following a pilot study using the original TIME-H scoring system in chronic wound management, modifications were suggested leading to the development of the Modified TIME-H scoring system. This study investigates the feasibility and reliability of chronic wound prognostication applying the Modified TIME-H score. Patients referred to the hospital's outpatient wound clinic over a 9-month period were categorised into one of three predicted outcome categories based on their Modified TIME-H score. This study shows a higher proportion of patients in the certain healing category achieved healed wounds, with a higher rate of reduction in wound size, when compared with the other categories. The three categories defined in this study are certain healing, uncertain healing and difficult healing. The Modified TIME-H score could be a useful tool for assessment, patient-centred management and prognostication of chronic wounds in clinical practice and requires further validation from other institutions. The authors have no conflict of interest to declare.

  18. Vehicle Integrated Prognostic Reasoner (VIPR) 2010 Annual Final Report

    NASA Technical Reports Server (NTRS)

    Hadden, George D.; Mylaraswamy, Dinkar; Schimmel, Craig; Biswas, Gautam; Koutsoukos, Xenofon; Mack, Daniel

    2011-01-01

    Honeywell's Central Maintenance Computer Function (CMCF) and Aircraft Condition Monitoring Function (ACMF) represent the state-of-the art in integrated vehicle health management (IVHM). Underlying these technologies is a fault propagation modeling system that provides nose-to-tail coverage and root cause diagnostics. The Vehicle Integrated Prognostic Reasoner (VIPR) extends this technology to interpret evidence generated by advanced diagnostic and prognostic monitors provided by component suppliers to detect, isolate, and predict adverse events that affect flight safety. This report describes year one work that included defining the architecture and communication protocols and establishing the user requirements for such a system. Based on these and a set of ConOps scenarios, we designed and implemented a demonstration of communication pathways and associated three-tiered health management architecture. A series of scripted scenarios showed how VIPR would detect adverse events before they escalate as safety incidents through a combination of advanced reasoning and additional aircraft data collected from an aircraft condition monitoring system. Demonstrating VIPR capability for cases recorded in the ASIAS database and cross linking them with historical aircraft data is planned for year two.

  19. Modified combination of platelet count and neutrophil "to" lymphocyte ratio as a prognostic factor in patients with advanced head and neck cancer.

    PubMed

    Nakayama, Masahiro; Gosho, Masahiko; Hirose, Yuki; Nishimura, Bungo; Tanaka, Shuho; Tabuchi, Keiji; Okubo, Hideki; Wada, Tetsuro; Hara, Akira

    2018-06-01

    We evaluated the prognostic potential of the combination of platelet count and neutrophil to lymphocyte ratio (COP-NLR) in patients with advanced head and neck cancer. We proposed a modified COP-NLR scoring system defined as follows: score 0 (platelet count level <300 × 10 9 /L and NLR <3); score 1 (platelet count level ≥300 × 10 9 /L and NLR <3); and score 2 (NLR ≥3). We assessed whether the modified scoring system had better performance as an indicator of prognosis than the existing COP-NLR scoring system (original and 4-group scores). A total of 248 patients were enrolled. The Akaike Information Criterion value with the modified COP-NLR score was the smallest among the 3 models. The 3-year survival rates according to the modified COP-NLR scores of 0, 1, and 2 were 80.6%, 59.9%, and 23.8%, respectively. The modified COP-NLR score is a useful prognostic marker in patients with advanced head and neck cancer. © 2018 Wiley Periodicals, Inc.

  20. [Multidimensional family therapy: which influences, which specificities?].

    PubMed

    Bonnaire, C; Bastard, N; Couteron, J-P; Har, A; Phan, O

    2014-10-01

    Among illegal psycho-active drugs, cannabis is the most consumed by French adolescents. Multidimensional family therapy (MDFT) is a family-based outpatient therapy which has been developed for adolescents with drug and behavioral problems. MDFT has shown its effectiveness in adolescents with substance abuse disorders (notably cannabis abuse) not only in the United States but also in Europe (International Cannabis Need of Treatment project). MDFT is a multidisciplinary approach and an evidence-based treatment, at the crossroads of developmental psychology, ecological theories and family therapy. Its psychotherapeutic techniques find its roots in a variety of approaches which include systemic family therapy and cognitive therapy. The aims of this paper are: to describe all the backgrounds of MDFT by highlighting its characteristics; to explain how structural and strategy therapies have influenced this approach; to explore the links between MDFT, brief strategic family therapy and multi systemic family therapy; and to underline the specificities of this family therapy method. The multidimensional family therapy was created on the bases of 1) the integration of multiple therapeutic techniques stemming from various family therapy theories; and 2) studies which have shown family therapy efficiency. Several trials have shown a better efficiency of MDFT compared to group treatment, cognitive-behavioral therapy and home-based treatment. Studies have also highlighted that MDFT led to superior treatment outcomes, especially among young people with severe drug use and psychiatric co-morbidities. In the field of systemic family therapies, MDFT was influenced by: 1) the structural family therapy (S. Minuchin), 2) the strategic family theory (J. Haley), and 3) the intergenerational family therapy (Bowen and Boszormenyi-Nagy). MDFT has specific aspects: MDFT therapists think in a multidimensional perspective (because an adolescent's drug abuse is a multidimensional disorder), they work with the system and the subsystem, focusing on the emotional expression and the parental and adolescent enactment (a principle of change and intervention). MDFT includes four modules (adolescent, parent, family interaction, and extra-familial systems) in three steps (1) build the foundation, (2) prompt action and change by working the themes, and (3) seal the changes and exit). The supervision philosophy and methodology is also based on the principle of multidimensionality. Indeed, many different supervision methods are used in a coordinated way to produce the required adherence and clinical skill (written case conceptualizations, videotape presentation and live supervision). Family vulnerability and chronicity factors are a major challenge of modern research. MDFT questions the reciprocal adjustments that have to be made by the subject and his/her familial environment. It also helps to clarify the therapeutic interventions in order to enhance better adolescent development. For this purpose, MDFT offers a specific therapeutic frame, for it is a family therapy focused on adolescents with cannabis abuse problems. Its action and questioning on parental practices and adolescents lead to better psycho-educational support. It focuses the therapeutic process on emotions and family capacity for change. Copyright © 2013 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  1. Independent Prognostic Value of Serum Markers in Diffuse Large B-Cell Lymphoma in the Era of the NCCN-IPI.

    PubMed

    Melchardt, Thomas; Troppan, Katharina; Weiss, Lukas; Hufnagl, Clemens; Neureiter, Daniel; Tränkenschuh, Wolfgang; Schlick, Konstantin; Huemer, Florian; Deutsch, Alexander; Neumeister, Peter; Greil, Richard; Pichler, Martin; Egle, Alexander

    2015-12-01

    Several serum parameters have been evaluated for adding prognostic value to clinical scoring systems in diffuse large B-cell lymphoma (DLBCL), but none of the reports used multivariate testing of more than one parameter at a time. The goal of this study was to validate widely available serum parameters for their independent prognostic impact in the era of the National Comprehensive Cancer Network-International Prognostic Index (NCCN-IPI) score to determine which were the most useful. This retrospective bicenter analysis includes 515 unselected patients with DLBCL who were treated with rituximab and anthracycline-based chemoimmunotherapy between 2004 and January 2014. Anemia, high C-reactive protein, and high bilirubin levels had an independent prognostic value for survival in multivariate analyses in addition to the NCCN-IPI, whereas neutrophil-to-lymphocyte ratio, high gamma-glutamyl transferase levels, and platelets-to-lymphocyte ratio did not. In our cohort, we describe the most promising markers to improve the NCCN-IPI. Anemia and high C-reactive protein levels retain their power in multivariate testing even in the era of the NCCN-IPI. The negative role of high bilirubin levels may be associated as a marker of liver function. Further studies are warranted to incorporate these markers into prognostic models and define their role opposite novel molecular markers. Copyright © 2015 by the National Comprehensive Cancer Network.

  2. Adaptive Multi-scale PHM for Robotic Assembly Processes

    PubMed Central

    Choo, Benjamin Y.; Beling, Peter A.; LaViers, Amy E.; Marvel, Jeremy A.; Weiss, Brian A.

    2017-01-01

    Adaptive multiscale prognostics and health management (AM-PHM) is a methodology designed to support PHM in smart manufacturing systems. As a rule, PHM information is not used in high-level decision-making in manufacturing systems. AM-PHM leverages and integrates component-level PHM information with hierarchical relationships across the component, machine, work cell, and production line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. A description of the AM-PHM methodology with a simulated canonical robotic assembly process is presented. PMID:28664161

  3. Numeric invariants from multidimensional persistence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skryzalin, Jacek; Carlsson, Gunnar

    2017-05-19

    In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be usedmore » to study data.« less

  4. Systems and Methods for Data Visualization Using Three-Dimensional Displays

    NASA Technical Reports Server (NTRS)

    Davidoff, Scott (Inventor); Djorgovski, Stanislav G. (Inventor); Estrada, Vicente (Inventor); Donalek, Ciro (Inventor)

    2017-01-01

    Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.

  5. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.

    2015-10-01

    Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.

  6. Multidimensional proteomics for cell biology.

    PubMed

    Larance, Mark; Lamond, Angus I

    2015-05-01

    The proteome is a dynamic system in which each protein has interconnected properties - dimensions - that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes.

  7. Serum lactate dehydrogenase with a systemic inflammation score is useful for predicting response and survival in patients with newly diagnosed diffuse large B-cell lymphoma.

    PubMed

    Jung, Sung-Hoon; Yang, Deok-Hwan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-01-01

    We evaluated the relationship between serum lactate dehydrogenase (LDH) level with systemic inflammation score and survival in 213 patients with diffuse large B-cell lymphoma (DLBCL) receiving R-CHOP chemotherapy. The patients were classified into 3 groups based on LDH with the Glasgow Prognostic Score (L-GPS). A score of 2 was assigned to patients with elevated C-reactive protein, hypoalbuminemia and elevated LDH, a score of 1 to those with one or two abnormalities and a score of 0 to those with no abnormality. In multivariate analysis, independent poor prognostic factors for progression-free survival were L-GPS 2 [hazard ratio (HR) 5.415, p = 0.001], Eastern Cooperative Oncology Group performance status (ECOG PS) ≥2 (HR 3.504, p = 0.001) and bulky lesion (HR 2.030, p = 0.039). Independent poor prognostic factors for overall survival were L-GPS 2 (HR 5.898, p = 0.001) and ECOG PS ≥2 (HR 3.525, p = 0.001). The overall response rate for the R-CHOP chemotherapy decreased according to the L-GPS; it was 96.7% at L-GPS 0, 87% at L-GPS 1 and 75% at L-GPS 2 (p = 0.009). L-GPS based on systemic inflammatory indicators may be a useful clinical prognostic indicator for survival, and predicts the response for R-CHOP chemotherapy in patients with newly diagnosed DLBCL. © 2014 S. Karger AG, Basel.

  8. Methods for Fault Detection, Diagnostics and Prognostics for Building Systems - A Review Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Brambley, Michael R.

    This paper provides an overview of fault detection, diagnostics, and prognostics (FDD&P) starting with descriptions of the fundamental processes and some important definitions. This is followed by a review of FDD&P research in the HVAC&R field, and the paper concludes with discussions of the current state of applications in buildings and likely contributions to operating and maintaining buildings in the future.

  9. MeSS: A novel prognostic scale specific for pediatric well-differentiated thyroid cancer: a population-based, SEER outcomes study.

    PubMed

    Shayota, Brian J; Pawar, Shonali C; Chamberlain, Ronald S

    2013-09-01

    High-risk prognostic factors for adults with well-differentiated thyroid cancer (WDTC) have been well established, but the same is not true for pediatric patients. This study sought to determine whether validated adult prognostic systems are applicable to pediatric patients and to develop a novel prognostic scale that may better reflect outcomes in pediatric subgroups. We queried 62,007 cases of WDTC from the Surveillance, Epidemiology, and End Results (SEER) database (1973-2009) to identify 895 patients <20 years of age with WDTC. Data abstracted included age, gender, race, histology type, primary tumor size, cancer stage, and mortality. Odds ratio and 95% confidence intervals were set and data were analyzed with SAS version 9.2. Among 895 pediatric WDTC patients, the overall cause-specific mortality was 0.8%. The presence of distant metastasis was associated with the worst prognosis (P = .0045) followed by larger primary tumor size (P = .0135) and male gender (P = .0162). When classified into low-, moderate-, and high-risk categories according to the distant metastasis (Me), larger primary tumor size (S), and male sex (S) (MeSS) algorithm, mortality rates were 0%, 2.7%, and 23%, respectively. Commonly used prognostic indices for WDTC in adults do not reliably predict poor outcomes among pediatric patients. Rather, a system based on MeSS is more applicable to pediatric patients. Patients who exhibit a high MeSS score have a significantly worse overall survival than those who do not express any MeSS characteristics. Copyright © 2013 Mosby, Inc. All rights reserved.

  10. Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients

    PubMed Central

    Kirilovsky, Amos; Marliot, Florence; El Sissy, Carine; Haicheur, Nacilla; Galon, Jérôme

    2016-01-01

    The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) tumor, nodes, metastasis (TNM) classification system based on tumor features is used for prognosis estimation and treatment recommendations in most cancers. However, the clinical outcome can vary significantly among patients within the same tumor stage and TNM classification does not predict response to therapy. Therefore, many efforts have been focused on the identification of new markers. Multiple tumor cell-based approaches have been proposed but very few have been translated into the clinic. The recent demonstration of the essential role of the immune system in tumor progression has allowed great advances in the understanding of this complex disease and in the design of novel therapies. The analysis of the immune infiltrate by imaging techniques in large patient cohorts highlighted the prognostic impact of the in situ immune cell infiltrate in tumors. Moreover, the characterization of the immune infiltrates (e.g. type, density, distribution within the tumor, phenotype, activation status) in patients treated with checkpoint-blockade strategies could provide information to predict the disease outcome. In colorectal cancer, we have developed a prognostic score (‘Immunoscore’) that takes into account the distribution of the density of both CD3+ lymphocytes and CD8+ cytotoxic T cells in the tumor core and the invasive margin that could outperform TNM staging. Currently, an international retrospective study is under way to validate the Immunoscore prognostic performance in patients with colon cancer. The use of Immunoscore in clinical practice could improve the patients’ prognostic assessment and therapeutic management. PMID:27121213

  11. Prognostic predictability of the new American Joint Committee on Cancer 8th staging system for distal bile duct cancer: limited usefulness compared with the 7th staging system.

    PubMed

    Kang, Jae Seung; Lee, Seungyeoun; Son, Donghee; Han, Youngmin; Lee, Kyung Bun; Kim, Jae Ri; Kwon, Wooil; Kim, Sun-Whe; Jang, Jin-Young

    2018-02-01

    The new 8th American Joint Committee on Cancer (AJCC) staging has recently been released and there are major changes in distal bile duct (DBD) cancer staging. However, clinical validation is needed before the changes can be widely implemented. This study was performed to evaluate the prognostic predictability of the 8th AJCC staging compared with that of the 7th using C statistics. A total of 293 consecutive patients who had curative-intended surgery were enrolled. There was no significant difference of the 5-year survival rate between 7th T1 and T2 (P = 0.123), but significant difference between T2 and T3 (P = 0.039). There were significant differences in pairwise comparisons between the 8th T stage (T1 vs. T2, P = 0.001; T2 vs. T3, P = 0.014). The number of regional lymph node metastases also showed prognostic predictability. The 8th T and N stage both showed comparable prognostic predictability with the 7th (95% confidential intervals for C; T, -0.043 -0.097, N, -0.001 - 0.008). The 8th AJCC staging for DBD cancer does not have better prognostic predictability than the 7th stage does. The previous pathologic results would become useless unless they were reviewed entirely. Therefore, introduction of the AJCC 8th staging has to be reconsidered, especially for new T staging. © 2017 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  12. Prognostic significance of tumor histology and computed tomographic staging for radiation treatment response of canine nasal tumors.

    PubMed

    Adams, William M; Kleiter, Miriam M; Thrall, Donald E; Klauer, Julia M; Forrest, Lisa J; La Due, Tracy A; Havighurst, Thomas C

    2009-01-01

    Prognostic significance of tumor histology and four computed tomography (CT) staging methods was tested retrospectively in dogs from three treatment centers that underwent intent-to-cure-radiotherapy for intranasal neoplasia. Disease-free and overall survival times were available for 94 dogs. A grouping of anaplastic, squamous cell, and undifferentiated carcinomas had a significantly shorter median disease-free survival (4.4 mo) than a grouping of all sarcomas (10.6 months). Disease-free survivals were not significantly different, when all carcinomas were compared with all sarcomas. The published original and modified WHO staging methods did not significantly relate to either survival endpoint. A modified human maxillary tumor staging system previously applied to canine nasal tumors was prognostically significant for both survival endpoints; a further modified version of that CT-based staging system resulted in improved significance for both survival endpoints. Dogs with unilateral intranasal involvement without bone destruction beyond the turbinates on CT, had longest median survival (23.4 months); CT evidence of cribriform plate involvement was associated with shortest median survival (6.7 months). Combining CT and histology statistically improved prognostic significance for both survival endpoints over the proposed CT staging method alone. Significance was lost when CT stages were collapsed to < four categories or histopathology groupings were collapsed to < three categories.

  13. MUSTA fluxes for systems of conservation laws

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2006-08-01

    This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers, noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit manner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional extension of Godunov's method. The methods are applicable to general meshes. The schemes of this paper share with the family of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems. Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.

  14. A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Chen, Ping

    2017-01-01

    Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…

  15. Best Design for Multidimensional Computerized Adaptive Testing with the Bifactor Model

    ERIC Educational Resources Information Center

    Seo, Dong Gi; Weiss, David J.

    2015-01-01

    Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm…

  16. Multidimensional Measurement of Poverty among Women in Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Batana, Yele Maweki

    2013-01-01

    Since the seminal work of Sen, poverty has been recognized as a multidimensional phenomenon. The recent availability of relevant databases renewed the interest in this approach. This paper estimates multidimensional poverty among women in fourteen Sub-Saharan African countries using the Alkire and Foster multidimensional poverty measures, whose…

  17. The Efficacy of Multidimensional Constraint Keys in Database Query Performance

    ERIC Educational Resources Information Center

    Cardwell, Leslie K.

    2012-01-01

    This work is intended to introduce a database design method to resolve the two-dimensional complexities inherent in the relational data model and its resulting performance challenges through abstract multidimensional constructs. A multidimensional constraint is derived and utilized to implement an indexed Multidimensional Key (MK) to abstract a…

  18. Annual Review of Research Under the Joint Services Electronics Program.

    DTIC Science & Technology

    1978-10-01

    Electronic Science at Texas Tech University. Specific topics covered include fault analysis, Stochastic control and estimation, nonlinear control, multidimensional system theory , Optical noise, and pattern recognition.

  19. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  20. A high performance parallel algorithm for 1-D FFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, R.C.; Gustavson, F.G.; Zubair, M.

    1994-12-31

    In this paper the authors propose a parallel high performance FFT algorithm based on a multi-dimensional formulation. They use this to solve a commonly encountered FFT based kernel on a distributed memory parallel machine, the IBM scalable parallel system, SP1. The kernel requires a forward FFT computation of an input sequence, multiplication of the transformed data by a coefficient array, and finally an inverse FFT computation of the resultant data. They show that the multi-dimensional formulation helps in reducing the communication costs and also improves the single node performance by effectively utilizing the memory system of the node. They implementedmore » this kernel on the IBM SP1 and observed a performance of 1.25 GFLOPS on a 64-node machine.« less

  1. Visualizing Big Data Outliers through Distributed Aggregation.

    PubMed

    Wilkinson, Leland

    2017-08-29

    Visualizing outliers in massive datasets requires statistical pre-processing in order to reduce the scale of the problem to a size amenable to rendering systems like D3, Plotly or analytic systems like R or SAS. This paper presents a new algorithm, called hdoutliers, for detecting multidimensional outliers. It is unique for a) dealing with a mixture of categorical and continuous variables, b) dealing with big-p (many columns of data), c) dealing with big-n (many rows of data), d) dealing with outliers that mask other outliers, and e) dealing consistently with unidimensional and multidimensional datasets. Unlike ad hoc methods found in many machine learning papers, hdoutliers is based on a distributional model that allows outliers to be tagged with a probability. This critical feature reduces the likelihood of false discoveries.

  2. Medical faculties educational network: multidimensional quality assessment.

    PubMed

    Komenda, Martin; Schwarz, Daniel; Feberová, Jitka; Stípek, Stanislav; Mihál, Vladimír; Dušek, Ladislav

    2012-12-01

    Today, World Wide Web technology provides many opportunities in the disclosure of electronic learning and teaching content. The MEFANET project (MEdical FAculties NETwork) has initiated international, effective and open cooperation among all Czech and Slovak medical faculties in the medical education fields. This paper introduces the original MEFANET educational web portal platform. Its main aim is to present the unique collaborative environment, which combines the sharing of electronic educational resources with the use tools for their quality evaluation. It is in fact a complex e-publishing system, which consists of ten standalone portal instances and one central gateway. The fundamental principles of the developed system and used technologies are reported here, as well as procedures of a new multidimensional quality assessment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. A Survey of Health Management User Objectives Related to Diagnostic and Prognostic Metrics

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Kurtoglu, Tolga; Poll, Scott D.

    2010-01-01

    One of the most prominent technical challenges to effective deployment of health management systems is the vast difference in user objectives with respect to engineering development. In this paper, a detailed survey on the objectives of different users of health management systems is presented. These user objectives are then mapped to the metrics typically encountered in the development and testing of two main systems health management functions: diagnosis and prognosis. Using this mapping, the gaps between user goals and the metrics associated with diagnostics and prognostics are identified and presented with a collection of lessons learned from previous studies that include both industrial and military aerospace applications.

  4. Progression following neoadjuvant systemic chemotherapy may not be a contraindication to a curative approach for colorectal carcinomatosis.

    PubMed

    Passot, Guillaume; Vaudoyer, Delphine; Cotte, Eddy; You, Benoit; Isaac, Sylvie; Noël Gilly, François; Mohamed, Faheez; Glehen, Olivier

    2012-07-01

    The objective of this retrospective study was to evaluate the influence of neoadjuvant systemic chemotherapy on patients with colorectal carcinomatosis before a curative procedure. Peritoneal carcinomatosis (PC) from colorectal cancer may be treated with a curative intent by cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). The role of perioperative systemic chemotherapy for this particular metastatic disease remains unclear. One hundred twenty patients with PC from colorectal cancer were consecutively treated by 131 procedures combining CRS with HIPEC. The response to neoadjuvant systemic chemotherapy was assessed on data from previous explorative surgery and/or radiological imaging. Ninety patients (75%) were treated with neoadjuvant systemic chemotherapy in whom 32 (36%) were considered to have responded, 19 (21%) had stable disease, and 19 (21%) developed diseases progression. Response could not be evaluated in 20 patients (22%). On univariate analysis, the use of neoadjuvant systemic chemotherapy had a significant positive prognostic influence (P = 0.042). On multivariate analysis, the completeness of CRS and the use of adjuvant systemic chemotherapy were the only significant prognostic factors (P < 0.001 and P = 0.049, respectively). Response to neoadjuvant systemic chemotherapy had no significant prognostic impact with median survival of 31.4 months in patients showing disease progression. In patients with PC from colorectal cancer without extraperitoneal metastases, failure of neoadjuvant systemic chemotherapy should not constitute an absolute contraindication to a curative procedure combining CRS and HIPEC.

  5. Nonlinear Dynamical Modes as a Basis for Short-Term Forecast of Climate Variability

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Gavrilov, A.; Seleznev, A.; Loskutov, E.

    2017-12-01

    We study abilities of data-driven stochastic models constructed by nonlinear dynamical decomposition of spatially distributed data to quantitative (short-term) forecast of climate characteristics. We compare two data processing techniques: (i) widely used empirical orthogonal function approach, and (ii) nonlinear dynamical modes (NDMs) framework [1,2]. We also make comparison of two kinds of the prognostic models: (i) traditional autoregression (linear) model and (ii) model in the form of random ("stochastic") nonlinear dynamical system [3]. We apply all combinations of the above-mentioned data mining techniques and kinds of models to short-term forecasts of climate indices based on sea surface temperature (SST) data. We use NOAA_ERSST_V4 dataset (monthly SST with space resolution 20 × 20) covering the tropical belt and starting from the year 1960. We demonstrate that NDM-based nonlinear model shows better prediction skill versus EOF-based linear and nonlinear models. Finally we discuss capability of NDM-based nonlinear model for long-term (decadal) prediction of climate variability. [1] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J., 2016: Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.

  6. Multidimensional System Analysis of Electro-Optic Sensors with Sampled Deterministic Output.

    DTIC Science & Technology

    1987-12-18

    System descriptions of scanning and staring electro - optic sensors with sampled output are developed as follows. Functions representing image...to complete the system descriptions. The results should be useful for designing electro - optic sensor systems and correcting data for instrumental...effects and other experimental conditions. Keywords include: Electro - optic system analysis, Scanning sensors, Staring sensors, Spatial sampling, and Temporal sampling.

  7. User Satisfaction as a Measure of System Performance

    ERIC Educational Resources Information Center

    Griffiths, Jillian R.; Johnson, Frances; Hartley, Richard J.

    2007-01-01

    It is evident from previous research that user satisfaction is a multidimensional, subjective variable which can be affected by many factors other than performance of the system or searcher. This article draws on information retrieval and information systems literature in an attempt to understand what user satisfaction is, how it is measured, what…

  8. Methods for evaluating information in managing the enterprise on the basis of a hybrid three-tier system

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. A.; Dobrynina, N. V.

    2017-01-01

    The article presents data on the influence of information upon the functioning of complex systems in the process of ensuring their effective management. Ways and methods for evaluating multidimensional information that reduce time and resources, improve the validity of the studied system management decisions, were proposed.

  9. Theory of Mind and Empathy as Multidimensional Constructs: Neurological Foundations

    ERIC Educational Resources Information Center

    Dvash, Jonathan; Shamay-Tsoory, Simone G.

    2014-01-01

    Empathy describes an individual's ability to understand and feel the other. In this article, we review recent theoretical approaches to the study of empathy. Recent evidence supports 2 possible empathy systems: an emotional system and a cognitive system. These processes are served by separate, albeit interacting, brain networks. When a cognitive…

  10. Behavioral modeling and digital compensation of nonlinearity in DFB lasers for multi-band directly modulated radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun

    2014-11-01

    The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.

  11. Breast Cancer Prognosis for Young Patients.

    PubMed

    Owrang, Mehdi; Copeland, Robert L; Ricks-Santi, Luisel J; Gaskins, Melvin; Beyene, Desta; Dewitty, Robert L; Kanaan, Yasmine M

    2017-01-01

    Breast cancer (BCa) prognostication is a vital element for providing effective treatment for patients with BCa. Studies suggest that ethnicity plays a greater role in the incidence and poor prognosis of BCa in younger women than in their older counterparts. Therefore, the goal of this study was to assess the association between age and ethnicity on the overall final prognosis. Nottingham Prognostic Index (NPI) was used to analyze BCa prognosis using Howard University Cancer Center Tumor Registry and the National Cancer Institute's Surveillance, Epidemiology, and End Results BCa datasets. Patients were grouped according to their predicted prognosis based on NPI scheme. There was no correlation between the younger patients compared to their older counterparts for any of the prognostic clusters. The significance of ethnicity in poorer prognosis for younger age is not conclusive either. An extended prognostic tool/system needs to be evaluated for its usefulness in a clinical practice environment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Lightmore » Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.« less

  13. A pragmatic clinicopathobiological grouping/staging system for gliomas: proposal of the Indian TNM subcommittee on brain tumors.

    PubMed

    Gupta, Tejpal; Sarin, Rajiv; Jalali, Rakesh; Sharma, Suash; Kurkure, Purna; Goel, Atul

    2009-01-01

    There is no universally accepted staging system for primary brain tumors wherein prognostication is mainly based on complex composite indices. To develop a simple, pragmatic, and widely applicable grouping/staging system for gliomas, the most common primary brain tumor. An expert neurooncology panel with representation from radiation oncology, neurosurgery, pathology, radiology, and medical oncology had several rounds of discussion on issues pertinent to brain tumor staging. The trade off was between the accuracy of prognostic categorization and a pragmatic, widely applicable approach. The Tumor-Node-Metastasis staging was considered irrelevant for gliomas that seldom metastasize to lymphatics or outside the neuraxis. Instead, a 4-point staging/grouping system is proposed, using histological grade as the main prognostic variable and at least one stage migration based on other unfavorable features such as tumor location (brainstem); age (<5 years for all grades, >50 years for high-grade, and >40 years for low-grade gliomas); poor neurological performance status (NPS 2-4); multicentricity and/or gliomatosis; and adverse biological parameters (proliferative index, angiogenesis markers, apoptotic index, cytogenetic abnormalities, and molecular markers). In absence of a grouping/staging system for primary brain tumors, prognostification is mostly based on complex composite indices. The proposed clinicopathobiological grouping/staging system for gliomas is a simple, pragmatic, and user-friendly tool with a potential to fulfill the objectives of staging classification.

  14. Stage Separation Failure: Model Based Diagnostics and Prognostics

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry; Hafiychuk, Vasyl; Kulikov, Igor; Smelyanskiy, Vadim; Patterson-Hine, Ann; Hanson, John; Hill, Ashley

    2010-01-01

    Safety of the next-generation space flight vehicles requires development of an in-flight Failure Detection and Prognostic (FD&P) system. Development of such system is challenging task that involves analysis of many hard hitting engineering problems across the board. In this paper we report progress in the development of FD&P for the re-contact fault between upper stage nozzle and the inter-stage caused by the first stage and upper stage separation failure. A high-fidelity models and analytical estimations are applied to analyze the following sequence of events: (i) structural dynamics of the nozzle extension during the impact; (ii) structural stability of the deformed nozzle in the presence of the pressure and temperature loads induced by the hot gas flow during engine start up; and (iii) the fault induced thrust changes in the steady burning regime. The diagnostic is based on the measurements of the impact torque. The prognostic is based on the analysis of the correlation between the actuator signal and fault-induced changes in the nozzle structural stability and thrust.

  15. Analysis of Stage and Clinical/Prognostic Factors for Lung Cancer from SEER Registries: AJCC Staging and Collaborative Stage Data Collection System

    PubMed Central

    Chen, Vivien W.; Ruiz, Bernardo A.; Hsieh, Mei-Chin; Wu, Xiao-Cheng; Ries, Lynn; Lewis, Denise R.

    2014-01-01

    Introduction The American Joint Committee on Cancer (AJCC) 7th edition introduced major changes in the staging of lung cancer, including Tumor (T), Node (N), Metastasis (M) (TNM) system and new stage/prognostic site-specific factors (SSFs), collected under the Collaborative Stage Version 2 (CSv2) Data Collection System. The intent was to improve the stage precision which could guide treatment options and ultimately lead to better survival. This report examines stage trends, the change in stage distributions from the AJCC 6th to the 7th edition, and findings of the prognostic SSFs for 2010 lung cancer cases. Methods Data were from the November 2012 submission of 18 Surveillance, Epidemiology, and End Results (SEER) Program population-based registries. A total of 344 797 cases of lung cancer, diagnosed in 2004–2010, were analyzed. Results The percentages of small tumors and early stage lung cancer cases increased from 2004 to 2010. The AJCC 7th edition, implemented for 2010 diagnosis year, subclassified tumor size and reclassified multiple tumor nodules, pleural effusions, and involvement of tumors in the contralateral lung, resulting in a slight decrease in stage IB and stage IIIB and a small increase in stage IIA and stage IV. Overall about 80% of cases remained the same stage group in AJCC 6th and 7th editions. About 21% of lung cancer patients had separate tumor nodules in the ipsilateral (same) lung, and 23% of the surgically resected patients had visceral pleural invasion, both adverse prognostic factors. Conclusion It is feasible for high quality population-based registries such as the SEER Program to collect more refined staging and prognostic SSFs that allows better categorization of lung cancer patients with different clinical outcomes and to assess their survival. PMID:25412390

  16. Comparison of prognostic nomograms based on different nodal staging systems in patients with resected gastric cancer.

    PubMed

    Wang, Zi-Xian; Qiu, Miao-Zhen; Jiang, Yu-Ming; Zhou, Zhi-Wei; Li, Guo-Xin; Xu, Rui-Hua

    2017-01-01

    Purpose: Previous studies addressing the optimal nodal staging system in patients with resected gastric cancer have shown inconsistent results, and the optimal system for development of prognostic nomograms remains unclear. In this study, we compared prognostic nomograms based on the metastatic lymph node (MLN) count, lymph node ratio (LNR), and log odds of metastatic lymph nodes (LODDS) to predict the 5-year overall survival in patients with resected gastric cancer. Methods: We analysed 15,320 patients with resected gastric cancer in the Surveillance, Epidemiology, and End Results (SEER) database between 1988 and 2010. Missing data were handled using multiple imputation. When assessed as a continuous covariate with restricted cubic splines, each MLN, LNR, and LODDS variable was incorporated into a nomogram with other significant prognosticators to predict the 5-year overall survival. A two-centre Chinese dataset (1,595 cases) was used as external validation data. Results: The discriminatory abilities of the MLN-, LNR-, and LODDS-based nomograms were comparable (concordance indices: 0.744, 0.741, and 0.744, respectively, in the SEER set, P > 0.152 for all pairwise comparisons; 0.715, 0.712, and 0.713, respectively, in the Chinese set, P > 0.445 for all pairwise comparisons). The discriminatory abilities of the three nomograms were all superior to the American Joint Committee on Cancer (AJCC) TNM classification (concordance indices: 0.713, P < 0.001 for all in the SEER set; and 0.693, P < 0.001 for all in the Chinese set). The discriminatory abilities of the nomograms were comparable regardless of the number of nodes examined. Moreover, decision curve analyses indicated similar net benefits of using the nomograms. Conclusion: MLN-, LNR-, and LODDS should be considered equally in the development of multivariate prognostic models and nomograms to refine the prediction of survival among patients with resected gastric cancer.

  17. Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.

    2014-01-01

    Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an operational data cube service to be delivered in mid-2014. An associated user-installable VO data service framework will provide the capabilities required to publish VO-compatible multi-dimensional images or data cubes.

  18. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    PubMed

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  19. Climate impacts on human livelihoods at 1.5° and 2° of warming

    NASA Astrophysics Data System (ADS)

    Lissner, Tabea

    2017-04-01

    The measurement of impacts of climate change on socio-economic systems remains challenging and especially multi-dimensional outcome measures remain scarce. Climate impacts can directly affect many dimensions of human livelihoods, which cannot be addressed by monetary assessments alone. Multi-dimensional measures are essential in order to understand the full range of consequences of climate change and to understand the costs that higher levels of warming may have, not only in economic terms, but also in terms of non-market impacts on human livelihood. The AHEAD framework aims at measuring "Adequate Human livelihood conditions for wEll-being And Development" in a multi-dimensional framework, allowing to focus on resources and conditions which are a requirement to attain well-being. In this contribution we build on previous implementations of AHEAD and focus on differences in climate impacts at 1.5° and 2° of warming in order to improve our understanding of the societal consequences of these different warming levels.

  20. Rethinking language in autism.

    PubMed

    Sterponi, Laura; de Kirby, Kenton; Shankey, Jennifer

    2015-07-01

    In this article, we invite a rethinking of traditional perspectives of language in autism. We advocate a theoretical reappraisal that offers a corrective to the dominant and largely tacitly held view that language, in its essence, is a referential system and a reflection of the individual's cognition. Drawing on scholarship in Conversation Analysis and linguistic anthropology, we present a multidimensional view of language, showing how it also functions as interactional accomplishment, social action, and mode of experience. From such a multidimensional perspective, we revisit data presented by other researchers that include instances of prototypical features of autistic speech, giving them a somewhat different-at times complementary, at times alternative-interpretation. In doing so, we demonstrate that there is much at stake in the view of language that we as researchers bring to our analysis of autistic speech. Ultimately, we argue that adopting a multidimensional view of language has wide ranging implications, deepening our understanding of autism's core features and developmental trajectory. © The Author(s) 2014.

  1. The scheme and research of TV series multidimensional comprehensive evaluation on cross-platform

    NASA Astrophysics Data System (ADS)

    Chai, Jianping; Bai, Xuesong; Zhou, Hongjun; Yin, Fulian

    2016-10-01

    As for shortcomings of the comprehensive evaluation system on traditional TV programs such as single data source, ignorance of new media as well as the high time cost and difficulty of making surveys, a new evaluation of TV series is proposed in this paper, which has a perspective in cross-platform multidimensional evaluation after broadcasting. This scheme considers the data directly collected from cable television and the Internet as research objects. It's based on TOPSIS principle, after preprocessing and calculation of the data, they become primary indicators that reflect different profiles of the viewing of TV series. Then after the process of reasonable empowerment and summation by the six methods(PCA, AHP, etc.), the primary indicators form the composite indices on different channels or websites. The scheme avoids the inefficiency and difficulty of survey and marking; At the same time, it not only reflects different dimensions of viewing, but also combines TV media and new media, completing the multidimensional comprehensive evaluation of TV series on cross-platform.

  2. Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braumann, Andreas; Kraft, Markus, E-mail: mk306@cam.ac.u; Wagner, Wolfgang

    2010-10-01

    This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determinesmore » the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.« less

  3. Multistability inspired by the oblique, pennate architectures of skeletal muscle

    NASA Astrophysics Data System (ADS)

    Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.

    2017-04-01

    Skeletal muscle mechanics exhibit a range of noteworthy characteristics, providing great inspiration for the development of advanced structural and material systems. These characteristics arise from the synergies demonstrated between muscle's constituents across the various length scales. From the macroscale oblique orientation of muscle fibers to the microscale lattice spacing of sarcomeres, muscle takes advantage of geometries and multidimensionality for force generation or length change along a desired axis. Inspired by these behaviors, this research investigates how the incorporation of multidimensionality afforded by oblique, pennate architectures can uncover novel mechanics in structures exhibiting multistability. Experimental investigation of these mechanics is undertaken using specimens of molded silicone rubber with patterned voids, and results reveal tailorable mono-, bi-, and multi-stability under axial displacements by modulation of transverse confinement. If the specimen is considered as an architected material, these results show its ability to generate intriguing, non-monotonic shear stresses. The outcomes would foster the development of novel, advanced mechanical metamaterials that exploit pennation and multidimensionality.

  4. Impact of the revised International Prognostic Scoring System, cytogenetics and monosomal karyotype on outcome after allogeneic stem cell transplantation for myelodysplastic syndromes and secondary acute myeloid leukemia evolving from myelodysplastic syndromes: a retrospective multicenter study of the European Society of Blood and Marrow Transplantation

    PubMed Central

    Koenecke, Christian; Göhring, Gudrun; de Wreede, Liesbeth C.; van Biezen, Anja; Scheid, Christof; Volin, Liisa; Maertens, Johan; Finke, Jürgen; Schaap, Nicolaas; Robin, Marie; Passweg, Jakob; Cornelissen, Jan; Beelen, Dietrich; Heuser, Michael; de Witte, Theo; Kröger, Nicolaus

    2015-01-01

    The aim of this study was to determine the impact of the revised 5-group International Prognostic Scoring System cytogenetic classification on outcome after allogeneic stem cell transplantation in patients with myelodysplastic syndromes or secondary acute myeloid leukemia who were reported to the European Society for Blood and Marrow Transplantation database. A total of 903 patients had sufficient cytogenetic information available at stem cell transplantation to be classified according to the 5-group classification. Poor and very poor risk according to this classification was an independent predictor of shorter relapse-free survival (hazard ratio 1.40 and 2.14), overall survival (hazard ratio 1.38 and 2.14), and significantly higher cumulative incidence of relapse (hazard ratio 1.64 and 2.76), compared to patients with very good, good or intermediate risk. When comparing the predictive performance of a series of Cox models both for relapse-free survival and for overall survival, a model with simplified 5-group cytogenetics (merging very good, good and intermediate cytogenetics) performed best. Furthermore, monosomal karyotype is an additional negative predictor for outcome within patients of the poor, but not the very poor risk group of the 5-group classification. The revised International Prognostic Scoring System cytogenetic classification allows patients with myelodysplastic syndromes to be separated into three groups with clearly different outcomes after stem cell transplantation. Poor and very poor risk cytogenetics were strong predictors of poor patient outcome. The new cytogenetic classification added value to prediction of patient outcome compared to prediction models using only traditional risk factors or the 3-group International Prognostic Scoring System cytogenetic classification. PMID:25552702

  5. Grading the neuroendocrine tumors of the lung: an evidence-based proposal.

    PubMed

    Rindi, G; Klersy, C; Inzani, F; Fellegara, G; Ampollini, L; Ardizzoni, A; Campanini, N; Carbognani, P; De Pas, T M; Galetta, D; Granone, P L; Righi, L; Rusca, M; Spaggiari, L; Tiseo, M; Viale, G; Volante, M; Papotti, M; Pelosi, G

    2014-02-01

    Lung neuroendocrine tumors are catalogued in four categories by the World Health Organization (WHO 2004) classification. Its reproducibility and prognostic efficacy was disputed. The WHO 2010 classification of digestive neuroendocrine neoplasms is based on Ki67 proliferation assessment and proved prognostically effective. This study aims at comparing these two classifications and at defining a prognostic grading system for lung neuroendocrine tumors. The study included 399 patients who underwent surgery and with at least 1 year follow-up between 1989 and 2011. Data on 21 variables were collected, and performance of grading systems and their components was compared by Cox regression and multivariable analyses. All statistical tests were two-sided. At Cox analysis, WHO 2004 stratified patients into three major groups with statistically significant survival difference (typical carcinoid vs atypical carcinoid (AC), P=0.021; AC vs large-cell/small-cell lung neuroendocrine carcinomas, P<0.001). Optimal discrimination in three groups was observed by Ki67% (Ki67% cutoffs: G1 <4, G2 4-<25, G3 ≥25; G1 vs G2, P=0.021; and G2 vs G3, P≤0.001), mitotic count (G1 ≤2, G2 >2-47, G3 >47; G1 vs G2, P≤0.001; and G2 vs G3, P≤0.001), and presence of necrosis (G1 absent, G2 <10% of sample, G3 >10% of sample; G1 vs G2, P≤0.001; and G2 vs G3, P≤0.001) at uni and multivariable analyses. The combination of these three variables resulted in a simple and effective grading system. A three-tiers grading system based on Ki67 index, mitotic count, and necrosis with cutoffs specifically generated for lung neuroendocrine tumors is prognostically effective and accurate.

  6. Hepatocellular carcinoma in uremic patients: is there evidence for an increased risk of mortality?

    PubMed

    Lee, Yun-Hsuan; Hsu, Chia-Yang; Hsia, Cheng-Yuan; Huang, Yi-Hsiang; Su, Chien-Wei; Lin, Han-Chieh; Lee, Rheun-Chuan; Chiou, Yi-You; Huo, Teh-Ia

    2013-02-01

    The clinical aspects of patients with hepatocellular carcinoma (HCC) undergoing maintenance dialysis are largely unknown. We aimed to investigate the long-term survival and prognostic determinants of dialysis patients with HCC. A total of 2502 HCC patients, including 30 dialysis patients and 90 age, sex, and treatment-matched controls were retrospectively analyzed. Dialysis patients more often had dual viral hepatitis B and C, lower serum α-fetoprotein level, worse performance status, higher model for end-stage liver disease (MELD) score than non-dialysis patients and matched controls (P all < 0.05). There was no significant difference in long-term survival between dialysis and non-dialysis patients and matched controls (P = 0.684 and 0.373, respectively). In the Cox proportional hazards model, duration of dialysis < 40 months (hazard ratio [HR]: 6.67, P = 0.019) and ascites (HR: 5.275, P = 0.019) were independent predictors of poor prognosis for dialysis patients with HCC. Survival analysis disclosed that the Child-Turcotte-Pugh (CTP) provided a better prognostic ability than the MELD system. Among the four currently used staging systems, the Japan Integrated Scoring (JIS) system was a more accurate prognostic model for dialysis patients; a JIS score ≥ 2 significantly predicted a worse survival (P = 0.024). Patients with HCC undergoing maintenance dialysis do not have a worse long-term survival. A longer duration of dialysis and absence of ascites formation are associated with a better outcome in dialysis patients. The CTP classification is a more feasible prognostic marker to indicate the severity of cirrhosis, and the JIS system may be a better staging model for outcome prediction. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  7. Next-generation sequencing in systemic mastocytosis: Derivation of a mutation-augmented clinical prognostic model for survival.

    PubMed

    Pardanani, Animesh; Lasho, Terra; Elala, Yoseph; Wassie, Emnet; Finke, Christy; Reichard, Kaaren K; Chen, Dong; Hanson, Curtis A; Ketterling, Rhett P; Tefferi, Ayalew

    2016-09-01

    In routine practice, the World Health Organization classification of systemic mastocytosis (SM) is also the de facto prognostic system; a core value is distinguishing indolent (ISM) from advanced SM (includes aggressive SM [ASM], SM with associated hematological neoplasm [SM-AHN] and mast cell leukemia [MCL]). We sequenced 27 genes in 150 SM patients to identify mutations that could be integrated into a clinical-molecular prognostic model for survival. Forty four patients (29%) had ISM, 25 (17%) ASM, 80 (53%) SM-AHN and 1 (0.7%) MCL; overall KITD816V prevalence was 75%. In 87 patients, 148 non-KIT mutations were detected; the most frequently mutated genes were TET2 (29%), ASXL1 (17%), and CBL (11%), with significantly higher mutation frequency in SM-AHN > ASM > ISM (P < 0.0001). In advanced SM, ASXL1 and RUNX1 mutations were associated with inferior survival. In multivariate analysis, age > 60 years (HR = 2.4), hemoglobin < 10 g/dL or transfusion-dependence (HR = 1.7), platelet count < 150 × 10(9) /L (HR = 3.2), serum albumin < 3.5 g/dL (HR = 2.6), and ASXL1 mutation (HR = 2.3) were associated with inferior survival. A mutation-augmented prognostic scoring system (MAPSS) based on these parameters stratified advanced SM patients into high-, intermediate-, and low-risk groups with median survival of 5, 21 and 86 months, respectively (P < 0.0001). These data should optimize risk-stratification and treatment selection for advanced SM patients. Am. J. Hematol. 91:888-893, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Deregulated HOXB7 expression predicts poor prognosis of patients with malignancies of digestive system.

    PubMed

    Liu, Fang-Teng; Chen, Han-Min; Xiong, Ying; Zhu, Zheng-Ming

    2017-07-26

    Numerous studies have investigated the relationship between deregulated HOXB7 expression with the clinical outcome in patients with digestive stem cancers, HOXB7 has showed negative impacts but with varying levels. We aimed to comprehensively evaluate the prediction and prognostic value of HOXB7 in digestive stem cancers. Electronic databases updated to December 1, 2016 were retrieved to collect relevant eligible studies to quantitatively explore the potential roles of HOXB7 as a prognostic indicator in digestive system cancers. A total of 9 studies (n = 1298 patients) was included in this synthetical meta-analysis. The pooled hazard ratios suggested that high expression of HOXB7 protein was associated with poor prognosis of OS in patients with digestive system cancers (HR = 1.97, 95% CI: 1.65-2.28, p= 0.000), and HOXB7 protein could act as an independent prognostic factor for predicting OS of patients with digestive system cancers (HR: 2.02, 95% CI: 1.69-2.36, p = 0.000). Statistical significance was also observed in subgroup meta-analysis based on the cancer type, histology type, country, sample size and publication date. Furthermore, we examined the correlations between HOXB7 protein and clinicopathological features. It showed that altered expression of HOXB7 protein was correlated with tumor invasion (p = 0.000), lymph node status (p = 0.000), distant metastasis (p = 0.001) and TNM stage (p = 0.000). However, the expression of HOXB7 protein was not associated with age (p = 0.64), gender (p = 0.40) or levels of differentiation (p = 0.19). High expression of HOXB7 protein was associated with poor prognosis of patients with digestive system cancers, as well as clinicopathologic characteristics, including the tumor invasion, lymph node status, distant metastasis and TNM stage. The expression of HOXB7 protein was not associated with age, gender or levels of differentiation. HOXB7 protein expression level in tumor tissue might serve as a novel prognostic marker for digestive system cancers.

  9. ICU scoring systems allow prediction of patient outcomes and comparison of ICU performance.

    PubMed

    Becker, R B; Zimmerman, J E

    1996-07-01

    Too much time and effort are wasted in attempts to pass final judgment on whether systems for ICU prognostication are "good or bad" and whether they "do or do not" provide a simple answer to the complex and often unpredictable question of individual mortality in the ICU. A substantial amount of data supports the usefulness of general ICU prognostic systems in comparing ICU performance with respect to a wide variety of endpoints, including ICU and hospital mortality, duration of stay, and efficiency of resource use. Work in progress is analyzing both general resource use and specific therapeutic interventions. It also is time to fully acknowledge that statistics never can predict whether a patient will die with 100% accuracy. There always will be exceptions to the rule, and physicians frequently will have information that is not included in prognostic models. In addition, the values of both physicians and patients frequently lead to differences in how a probability in interpreted; for some, a 95% probability estimate means that death is near and, for others, this estimate represents a tangible 5% chance for survival. This means that physicians must learn how to integrate such estimates into their medical decisions. In doing so, it is our hope that prognostic systems are not viewed as oversimplifying or automating clinical decisions. Rather, such systems provide objective data on which physicians may ground a spectrum of decisions regarding either escalation or withdrawal of therapy in critically ill patients. These systems do not dehumanize our decision-making process but, rather, help eliminate physician reliance on emotional, heuristic, poorly calibrated, or overly pessimistic subjective estimates. No decision regarding patient care can be considered best if the facts upon which it is based on imprecise or biased. Future research will improve the accuracy of individual patient predictions but, even with the highest degree of precision, such predictions are useful only in support of, and not as a substitute for, good clinical judgment.

  10. Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis.

    PubMed

    Rajamani, Deepa; Bhasin, Manoj K

    2016-05-03

    Pancreatic cancer is an aggressive cancer with dismal prognosis, urgently necessitating better biomarkers to improve therapeutic options and early diagnosis. Traditional approaches of biomarker detection that consider only one aspect of the biological continuum like gene expression alone are limited in their scope and lack robustness in identifying the key regulators of the disease. We have adopted a multidimensional approach involving the cross-talk between the omics spaces to identify key regulators of disease progression. Multidimensional domain-specific disease signatures were obtained using rank-based meta-analysis of individual omics profiles (mRNA, miRNA, DNA methylation) related to pancreatic ductal adenocarcinoma (PDAC). These domain-specific PDAC signatures were integrated to identify genes that were affected across multiple dimensions of omics space in PDAC (genes under multiple regulatory controls, GMCs). To further pin down the regulators of PDAC pathophysiology, a systems-level network was generated from knowledge-based interaction information applied to the above identified GMCs. Key regulators were identified from the GMC network based on network statistics and their functional importance was validated using gene set enrichment analysis and survival analysis. Rank-based meta-analysis identified 5391 genes, 109 miRNAs and 2081 methylation-sites significantly differentially expressed in PDAC (false discovery rate ≤ 0.05). Bimodal integration of meta-analysis signatures revealed 1150 and 715 genes regulated by miRNAs and methylation, respectively. Further analysis identified 189 altered genes that are commonly regulated by miRNA and methylation, hence considered GMCs. Systems-level analysis of the scale-free GMCs network identified eight potential key regulator hubs, namely E2F3, HMGA2, RASA1, IRS1, NUAK1, ACTN1, SKI and DLL1, associated with important pathways driving cancer progression. Survival analysis on individual key regulators revealed that higher expression of IRS1 and DLL1 and lower expression of HMGA2, ACTN1 and SKI were associated with better survival probabilities. It is evident from the results that our hierarchical systems-level multidimensional analysis approach has been successful in isolating the converging regulatory modules and associated key regulatory molecules that are potential biomarkers for pancreatic cancer progression.

  11. Methods for Fault Detection, Diagnostics and Prognostics for Building Systems - A Review Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Brambley, Michael R.

    This paper provides the second part of an overview of fault detection, diagnostics, and prognostics (FDD&P) starting with descriptions of the fundamental processes and some important definitions. This is followed by a review of FDD&P research in the HVAC&R field, and the paper concludes with discussions of the current state of applications in buildings and likely contributions to operating and maintaining buildings in the future.

  12. Multidimensional Unfolding by Nonmetric Multidimensional Scaling of Spearman Distances in the Extended Permutation Polytope

    ERIC Educational Resources Information Center

    Van Deun, Katrijn; Heiser, Willem J.; Delbeke, Luc

    2007-01-01

    A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed: distance information about the unfolding data and about the distances both among judges and among objects is included in the complete matrix. The latter information is derived from the…

  13. Nonsentinel lymph node status in patients with cutaneous melanoma: results from a multi-institution prognostic study.

    PubMed

    Pasquali, Sandro; Mocellin, Simone; Mozzillo, Nicola; Maurichi, Andrea; Quaglino, Pietro; Borgognoni, Lorenzo; Solari, Nicola; Piazzalunga, Dario; Mascheroni, Luigi; Giudice, Giuseppe; Patuzzo, Roberto; Caracò, Corrado; Ribero, Simone; Marone, Ugo; Santinami, Mario; Rossi, Carlo Riccardo

    2014-03-20

    We investigated whether the nonsentinel lymph node (NSLN) status in patients with melanoma improves the prognostic accuracy of common staging features; then we formulated a proposal for including the NSLN status in the current melanoma staging system. We retrospectively collected the clinicopathologic data of 1,538 patients with positive SLN status who underwent completion lymph node dissection (CLND) at nine Italian centers. Multivariable Cox regression survival analysis was used to identify independent prognostic factors. Literature meta-analysis was used to summarize the available evidence on the prognostic value of the NSLN status in patients with positive SLN. NSLN metastasis was observed in 353 patients (23%). After a median follow-up of 45 months, NSLN status was an independent prognostic factor for melanoma-specific survival (hazard ratio [HR] = 1.34; 95% CI, 1.18 to 1.52; P < .001). NSLN status efficiently stratified the prognosis of patients with two to three positive lymph nodes (n = 387; HR = 1.39; 95% CI, 1.07 to 1.81; P = .013), independently of other staging features. Searching the literature, this patient subgroup was investigated in other two studies. Pooling the results (n = 620 patients; 284 NSLN negative and 336 NSLN positive), we found that NSLN status is a highly significant prognostic factor (summary HR = 1.59; 95% CI, 1.27 to 1.98; P < .001) in patients with two to three positive lymph nodes. These findings support the independent prognostic value of the NSLN status in patients with two to three positive lymph nodes, suggesting that this information should be considered for the routine staging in patients with melanoma.

  14. FDG-PET/CT at the end of immuno-chemotherapy in follicular lymphoma: the prognostic role of the ratio between target lesion and liver SUVmax (rPET).

    PubMed

    Annunziata, Salvatore; Cuccaro, Annarosa; Tisi, Maria Chiara; Hohaus, Stefan; Rufini, Vittoria

    2018-06-01

    To retrospectively investigate the prognostic role of the ratio between target lesion and liver SUV max (rPET) in patients with follicular lymphoma (FL) submitted to FDG-PET/CT at the end of immuno-chemotherapy (PI-PET), and to compare rPET with International Harmonization Project criteria (IHP), Deauville Score (5p-DS) and FL International Prognostic Index at diagnosis (FLIPI). Eighty-nine patients with FL undergoing PI-PET were evaluated. The receiver operating characteristic (ROC) approach was applied to identify the optimal cut-point of rPET with respect to 5-years progression free survival (PFS). The prognostic significance of rPET was compared with IHP, DS and FLIPI. Positive predictive value (PPV) and negative predictive value (NPV) were calculated using the presence of adverse events as gold standard. The ROC analysis for rPET as predictor of progression showed an optimal rPET cut-point of 0.98. Patients with positive values of IHP, DS and rPET had a PFS of 50, 30 and 31%. PPV were of 56, 80 and 80%, NPV of 83, 86 and 88%, respectively. DS and rPET differed only in two patients. FLIPI was not predictive of progression and relapse. rPET is a prognostic factor in patients with FL submitted to PI-PET. Although it has a similar prognostic power as DS, it can have methodological advantages over visual analysis. PI-PET with different evaluation systems has a stronger prognostic power than FLIPI at diagnosis, so it could be useful to identify patients with FL at risk for early relapse after immuno-chemotherapy.

  15. Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes.

    PubMed

    Solé, Francesc; Luño, Elisa; Sanzo, Carmen; Espinet, Blanca; Sanz, Guillermo F; Cervera, José; Calasanz, María José; Cigudosa, Juan Cruz; Millà, Fuensanta; Ribera, Josep Maria; Bureo, Encarna; Marquez, Maria Luisa; Arranz, Eva; Florensa, Lourdes

    2005-09-01

    The main prognostic factors in myelodysplastic syndromes (MDS) are chromosomal abnormalities, the proportion of blasts in bone marrow and number and degree of cytopenias. A consensus-defined International Prognostic Scoring System (IPSS) for predicting outcome and planning therapy in MDS has been developed, but its prognostic value in a large and independent series remains unproven. Furthermore, the intermediate-risk cytogenetic subgroup defined by the IPSS includes a miscellaneous number of different single abnormalities of uncertain prognostic significance at present. The main aim of the present study was to identify chromosomal abnormalities with a previously unrecognized good or poor prognosis in order to find new cytogenetic markers with predictive value. We report the cytogenetic findings in a series of 968 patients with primary MDS from the Spanish Cytogenetics Working Group, Grupo Cooperativo Español de Citogenética Hematológica (GCECGH). In this series of 968 MDS patients, we found various cytogenetic aberrations with a new prognostic impact. Complex karyotype, -7/7q- and i(17q) had a poor prognosis; normal karyotype, loss of Y chromosome, deletion 11q, deletion 12p and deletion 20q as single alterations had a good prognosis. Intermediate prognosis aberrations were rearrangements of 3q21q26, trisomy 8, trisomy 9, translocations of 11q and del(17p). Finally, a new group of single or double cytogenetic abnormalities, most of which are considered rare cytogenetic events and are usually included in the intermediate category of the IPSS, showed a trend to poor prognosis. This study suggests that some specific chromosomal abnormalities could be segregated from the IPSS intermediate-risk cytogenetic prognostic subgroup and included in the low risk or in the poor risk groups.

  16. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor

    PubMed Central

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-01-01

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194

  17. Quantifying multi-dimensional attributes of human activities at various geographic scales based on smartphone tracking.

    PubMed

    Zhou, Xiaolu; Li, Dongying

    2018-05-09

    Advancement in location-aware technologies, and information and communication technology in the past decades has furthered our knowledge of the interaction between human activities and the built environment. An increasing number of studies have collected data regarding individual activities to better understand how the environment shapes human behavior. Despite this growing interest, some challenges exist in collecting and processing individual's activity data, e.g., capturing people's precise environmental contexts and analyzing data at multiple spatial scales. In this study, we propose and implement an innovative system that integrates smartphone-based step tracking with an app and the sequential tile scan techniques to collect and process activity data. We apply the OpenStreetMap tile system to aggregate positioning points at various scales. We also propose duration, step and probability surfaces to quantify the multi-dimensional attributes of activities. Results show that, by running the app in the background, smartphones can measure multi-dimensional attributes of human activities, including space, duration, step, and location uncertainty at various spatial scales. By coordinating Global Positioning System (GPS) sensor with accelerometer sensor, this app can save battery which otherwise would be drained by GPS sensor quickly. Based on a test dataset, we were able to detect the recreational center and sports center as the space where the user was most active, among other places visited. The methods provide techniques to address key issues in analyzing human activity data. The system can support future studies on behavioral and health consequences related to individual's environmental exposure.

  18. Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.

    PubMed

    Cui, Zaixu; Xia, Zhichao; Su, Mengmeng; Shu, Hua; Gong, Gaolang

    2016-04-01

    Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals. © 2016 Wiley Periodicals, Inc.

  19. The Cambridge Prognostic Groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: a validation study.

    PubMed

    Gnanapragasam, V J; Bratt, O; Muir, K; Lee, L S; Huang, H H; Stattin, P; Lophatananon, A

    2018-02-28

    The purpose of this study is to validate a new five-tiered prognostic classification system to better discriminate cancer-specific mortality in men diagnosed with primary non-metastatic prostate cancer. We applied a recently described five-strata model, the Cambridge Prognostic Groups (CPGs 1-5), in two international cohorts and tested prognostic performance against the current standard three-strata classification of low-, intermediate- or high-risk disease. Diagnostic clinico-pathological data for men obtained from the Prostate Cancer data Base Sweden (PCBaSe) and the Singapore Health Study were used. The main outcome measure was prostate cancer mortality (PCM) stratified by age group and treatment modality. The PCBaSe cohort included 72,337 men, of whom 7162 died of prostate cancer. The CPG model successfully classified men with different risks of PCM with competing risk regression confirming significant intergroup distinction (p < 0.0001). The CPGs were significantly better at stratified prediction of PCM compared to the current three-tiered system (concordance index (C-index) 0.81 vs. 0.77, p < 0.0001). This superiority was maintained for every age group division (p < 0.0001). Also in the ethnically different Singapore cohort of 2550 men with 142 prostate cancer deaths, the CPG model outperformed the three strata categories (C-index 0.79 vs. 0.76, p < 0.0001). The model also retained superior prognostic discrimination in the treatment sub-groups: radical prostatectomy (n = 20,586), C-index 0.77 vs. 074; radiotherapy (n = 11,872), C-index 0.73 vs. 0.69; and conservative management (n = 14,950), C-index 0.74 vs. 0.73. The CPG groups that sub-divided the old intermediate-risk (CPG2 vs. CPG3) and high-risk categories (CPG4 vs. CPG5) significantly discriminated PCM outcomes after radical therapy or conservative management (p < 0.0001). This validation study of nearly 75,000 men confirms that the CPG five-tiered prognostic model has superior discrimination compared to the three-tiered model in predicting prostate cancer death across different age and treatment groups. Crucially, it identifies distinct sub-groups of men within the old intermediate-risk and high-risk criteria who have very different prognostic outcomes. We therefore propose adoption of the CPG model as a simple-to-use but more accurate prognostic stratification tool to help guide management for men with newly diagnosed prostate cancer.

  20. Validation of a two-tier grading system in an unselected, consecutive cohort of serous ovarian cancer patients.

    PubMed

    Battista, Marco Johannes; Cotarelo, Cristina; Almstedt, Katrin; Heimes, Anne-Sophie; Makris, Georgios-Marios; Weyer, Veronika; Schmidt, Marcus

    2016-09-01

    New insights into the carcinogenesis of ovarian cancer (OC) lead to the definition of low-grade and high-grade serous OC. In this study, we validated the MD Anderson Cancer Center (MDACC) two-tier grading system and compared it with the traditional three-tier grading system as suggested by the International Federation of Gynecology and Obstetrics (FIGO). Consecutive patients with serous OC were enrolled. These two grading systems were assessed independently from each other. Kaplan-Meier estimates and Cox-regression analyses were performed to validate and compare their prognostic impact. 143 consecutive patients entered the study. According to the Kaplan-Meier estimates, the MDACC grading system (p = 0.001) predicted the progression free survival (PFS) more precisely than the FIGO system (p = 0.025). The MDACC grading system (p = 0.008) but not the FIGO system (p = 0.329) showed a statistically significant difference in terms of disease specific survival (DSS). Multivariable Cox-regression analyses revealed an independent prognostic impact of the MDACC grading system but not of the FIGO system for PFS (HR 1.570; 95 % CI 1.007-2.449; p = 0.047, and HR 0.712; 95 % CI 0.476-1.066; p = 0.099, respectively). Concerning DSS, the two-tier grading system but not the FIGO system showed a prognostic impact in a univariable Cox-regression analysis (HR 2.152; 95 % CI 1.207-3.835; p = 0.009, and HR 1.258; 95 % CI 0.801-1.975; p = 0.319, respectively). We were able to validate the MDACC grading system in serous OC. Moreover, this grading system was stronger associated with survival than the FIGO system.

  1. Promising System for Selecting Healthy In Vitro–Fertilized Embryos in Cattle

    PubMed Central

    Sugimura, Satoshi; Akai, Tomonori; Hashiyada, Yutaka; Somfai, Tamás; Inaba, Yasushi; Hirayama, Muneyuki; Yamanouchi, Tadayuki; Matsuda, Hideo; Kobayashi, Shuji; Aikawa, Yoshio; Ohtake, Masaki; Kobayashi, Eiji; Konishi, Kazuyuki; Imai, Kei

    2012-01-01

    Conventionally, in vitro–fertilized (IVF) bovine embryos are morphologically evaluated at the time of embryo transfer to select those that are likely to establish a pregnancy. This method is, however, subjective and results in unreliable selection. Here we describe a novel selection system for IVF bovine blastocysts for transfer that traces the development of individual embryos with time-lapse cinematography in our developed microwell culture dish and analyzes embryonic metabolism. The system can noninvasively identify prognostic factors that reflect not only blastocyst qualities detected with histological, cytogenetic, and molecular analysis but also viability after transfer. By assessing a combination of identified prognostic factors—(i) timing of the first cleavage; (ii) number of blastomeres at the end of the first cleavage; (iii) presence or absence of multiple fragments at the end of the first cleavage; (iv) number of blastomeres at the onset of lag-phase, which results in temporary developmental arrest during the fourth or fifth cell cycle; and (v) oxygen consumption at the blastocyst stage—pregnancy success could be accurately predicted (78.9%). The conventional method or individual prognostic factors could not accurately predict pregnancy. No newborn calves showed neonatal overgrowth or death. Our results demonstrate that these five predictors and our system could provide objective and reliable selection of healthy IVF bovine embryos. PMID:22590579

  2. Prognostic factors in patients with spinal metastasis: a systematic review and meta-analysis.

    PubMed

    Luksanapruksa, Panya; Buchowski, Jacob M; Hotchkiss, William; Tongsai, Sasima; Wilartratsami, Sirichai; Chotivichit, Areesak

    2017-05-01

    Incidence of symptomatic spinal metastasis has increased owing to improvement in treatment of the disease. One of the key factors that influences decision-making is expected patient survival. To our knowledge, no systematic reviews or meta-analysis have been conducted that review independent prognostic factors in spinal metastases. This study aimed to determine independent prognostic factors that affect outcome in patients with metastatic spine disease. This is a systematic literature review and meta-analysis of publications for prognostic factors in spinal metastatic disease. Pooled patient results from cohort and observational studies. Meta-analysis for poor prognostic factors as determined by hazard ratio (HR) and 95% confidential interval (95% CI). We systematically searched relevant publications in PubMed and Embase. The following search terms were used: ("'spinal metastases'" OR "'vertebral metastases'" OR "spinal metastasis" OR 'vertebral metastases') AND ('"prognostic factors"' OR "'survival'"). Inclusion criteria were prospective and retrospective cohort series that report HR and 95% CI of independent prognostic factors from multivariate analysis. Two reviewers independently assessed all papers. The quality of included papers was assessed by using Newcastle-Ottawa Scale for cohort studies and publication bias was assessed by using funnel plot, Begg test, and Egger test. The prognostic factors that were mentioned in at least three publications were pooled. Meta-analysis was performed using HR and 95% CI as the primary outcomes of interest. Heterogeneity was assessed using the I 2 method. A total of 3,959 abstracts (1,382 from PubMed and 2,577 from Embase) were identified through database search and 40 publications were identified through review of cited publications. The reviewers selected a total of 51 studies for qualitative synthesis and 43 studies for meta-analysis. Seventeen poor prognostic factors were identified. These included presence of a neurologic deficit before surgery, non-ambulatory status before radiotherapy (RT), non-ambulatory status before surgery, presence of bone metastases, presence of multiple bone metastases (>2 sites), presence of multiple spinal metastases (>3 sites), development of motor deficit in <7 days before initiating RT, development of motor deficit in <14 days before initiating RT, time interval from cancer diagnosis to RT <15 months, Karnofsky Performance Score (KPS) 10-40, KPS 50-70, KPS<70, Eastern Cooperative Oncology Group (ECOG) grade 3-4, male gender, presence of visceral metastases, moderate growth tumor on Tomita score (TS) classification, and rapid growth tumor on TS classification. Seventeen independent poor prognostic factors were identified in this study. These can be categorized into cancer-specific and nonspecific prognostic factors. A tumor-based prognostic scoring system that combines all specific and general factors may enhance the accuracy of survival prediction in patients with metastatic spine disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    PubMed Central

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome. PMID:24010766

  4. Prognostic value of tripartite motif containing 29 expression in patients with gastric cancer following surgical resection.

    PubMed

    Wang, Chenghu; Zhou, Yi; Chen, Beibei; Yuan, Weiwei; Huang, Jinxi

    2018-04-01

    Tripartite motif containing 29 (TRIM29) dysregulation serves an important function in the progression of numerous types of cancer, but its function in the prognosis of patients with gastric cancer remains unknown. The present study assessed the prognostic value of TRIM29 in patients with gastric cancer following surgical resection. A total of 243 fresh gastric adenocarcinoma and adjacent normal tissues were continuously retrieved from patients who underwent curative surgery for gastric cancer at the Cancer Hospital of Henan Province (Zhengzhou, China) between January 2005 and December 2011. The reverse transcription-quantitative polymerase chain reaction was performed to assess TRIM29 expression. The association between TRIM29 expression and clinicopathological features and prognosis was subsequently evaluated. The results of the present study revealed that the expression of TRIM29 was increased in the gastric cancer tissues compared with the normal adjacent tissues, and that upregulated expression of TRIM29 was associated with tumor cell differentiation, tumor stage, lymph node metastasis, and tumor-node-metastasis (TNM) stage. In the training and validation data, high TRIM29 expression was associated with poor overall survival in patients with gastric cancer. Furthermore, multivariate analysis identified that TRIM29 expression was an independent prognostic factor for overall survival, in addition to TNM stage and Lauren classification. Combining TRIM29 expression with the TNM staging system generated a novel predictive model that exhibited improved prognostic accuracy for overall survival in patients with gastric cancer. The present study revealed that TRIM29 was an independent adverse prognostic factor in patients with gastric cancer. Incorporating TRIM29 expression level into the TNM staging system may improve risk stratification and render prognosis more accurate in patients with gastric cancer.

  5. The prognostic value of the systemic inflammatory score in patients with unresectable metastatic colorectal cancer.

    PubMed

    Shibutani, Masatsune; Maeda, Kiyoshi; Nagahara, Hisashi; Fukuoka, Tatsunari; Matsutani, Shinji; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei; Ohira, Masaichi

    2018-07-01

    Inflammation has been widely recognized as a contributor to cancer progression and several inflammatory markers have been reported as associated with the clinical outcomes in patients with various types of cancer. Recently, a novel inflammatory marker, the systemic inflammatory score (SIS), which is based on a combination of the lymphocyte-to-monocyte ratio (LMR) and the serum albumin concentration has been reported as a useful prognostic marker. The aim of the present study was to assess the prognostic value of the SIS in patients with unresectable metastatic colorectal cancer (mCRC). The retrospective cohort study included 160 patients who underwent combination chemotherapy for unresectable mCRC between January 2008 and December 2016. The SIS was used to classify the patients into three groups based on their LMR and the serum albumin concentration. Patients with high-LMR and high serum albumin level were given a score of 0; patients with low-LMR or low serum albumin level were given a score of 1; patients with low-LMR and low serum albumin level were given a score of 2. There were significant differences in the overall survival among the three SIS groups and the SIS was an independent prognostic factor for the overall survival. Although the SIS was significantly associated with the overall survival rate even when using the original cut-off values, the SIS according to the new cut-off values had a more accurate prognostic value. The present study determined that the SIS was a useful biomarker for predicting the survival outcomes in patients with unresectable mCRC, although the optimum cut-off value of the SIS according to the patients' background needs to be examined in further studies.

  6. Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients.

    PubMed

    Kirilovsky, Amos; Marliot, Florence; El Sissy, Carine; Haicheur, Nacilla; Galon, Jérôme; Pagès, Franck

    2016-08-01

    The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) tumor, nodes, metastasis (TNM) classification system based on tumor features is used for prognosis estimation and treatment recommendations in most cancers. However, the clinical outcome can vary significantly among patients within the same tumor stage and TNM classification does not predict response to therapy. Therefore, many efforts have been focused on the identification of new markers. Multiple tumor cell-based approaches have been proposed but very few have been translated into the clinic. The recent demonstration of the essential role of the immune system in tumor progression has allowed great advances in the understanding of this complex disease and in the design of novel therapies. The analysis of the immune infiltrate by imaging techniques in large patient cohorts highlighted the prognostic impact of the in situ immune cell infiltrate in tumors. Moreover, the characterization of the immune infiltrates (e.g. type, density, distribution within the tumor, phenotype, activation status) in patients treated with checkpoint-blockade strategies could provide information to predict the disease outcome. In colorectal cancer, we have developed a prognostic score ('Immunoscore') that takes into account the distribution of the density of both CD3(+) lymphocytes and CD8(+) cytotoxic T cells in the tumor core and the invasive margin that could outperform TNM staging. Currently, an international retrospective study is under way to validate the Immunoscore prognostic performance in patients with colon cancer. The use of Immunoscore in clinical practice could improve the patients' prognostic assessment and therapeutic management. © The Japanese Society for Immunology. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Non-hematologic predictors of mortality improve the prognostic value of the international prognostic scoring system for MDS in older adults†

    PubMed Central

    Fega, K. Rebecca; Abel, Gregory A.; Motyckova, Gabriela; Sherman, Alexander E.; DeAngelo, Daniel J.; Steensma, David P.; Galinsky, Ilene; Wadleigh, Martha; Stone, Richard M.; Driver, Jane A.

    2016-01-01

    Objectives The International Prognostic Scoring System (IPSS) is commonly used to predict survival and assign treatment for the myelodysplastic syndromes (MDS). We explored whether self-reported and readily available non-hematologic predictors of survival add independent prognostic information to the IPSS. Materials and Methods Retrospective cohort study of consecutive MDS patients ≥age 65 who presented to Dana-Farber Cancer Institute between 2006 and 2011 and completed a baseline quality of life questionnaire. Questions corresponding to functional status and symptoms and extracted clinical-pathologic data from medical records. Kaplan–Meier and Cox proportional hazards models were used to estimate survival. Results One hundred fourteen patients consented and were available for analysis. Median age was 73 years, and the majority of patients were White, were male, and had a Charlson comorbidity score of <2. Few patients (24%) had an IPSS score consistent with lower-risk disease and the majority received chemotherapy. In addition to IPSS score and history of prior chemotherapy or radiation, significant univariate predictors of survival included low serum albumin, Charlson score, performance status, ability to take a long walk, and interference of physical symptoms in family life. The multivariate model that best predicted mortality included low serum albumin (HR = 2.3; 95% CI: 1.06–5.14), therapy-related MDS (HR = 2.1; 95% CI: 1.16–4.24), IPSS score (HR = 1.7; 95% CI: 1.14–2.49), and ease taking a long walk (HR = 0.44; 95% CI: 0.23–0.90). Conclusions In this study of older adults with MDS, we found that low serum albumin and physical function added important prognostic information to the IPSS score. Self-reported physical function was more predictive than physician-assigned performance status. PMID:26073533

  8. The prognostic value of reactive stroma on prostate needle biopsy: a population-based study.

    PubMed

    Saeter, Thorstein; Vlatkovic, Ljiljana; Waaler, Gudmund; Servoll, Einar; Nesland, Jahn M; Axcrona, Karol; Axcrona, Ulrika

    2015-05-01

    Reactive tumor stroma has been shown to play an active role in prostatic carcinogenesis. A grading system for reactive stroma in prostate cancer (PC) has recently been established and found to predict biochemical recurrence and prostate cancer-specific mortality (PCSM) in prostatectomized patients. To the best of our knowledge, there has been no study investigating the prognostic value of reactive stromal grading (RSG) with regard to PCSM when evaluated in diagnostic prostate needle biopsies. A population-based study on 318 patients, encompassing all cases of PC diagnosed by needle biopsies and without evidence of systemic metastasis at the time of diagnosis in Aust-Agder County in the period 1991-1999. Patients were identified by cross-referencing the Cancer Registry of Norway. Clinical data were obtained by review of medical charts. The endpoint was PCSM. RSG was evaluated on haematoxylin and eosin stained sections according to previously described criteria; grade 0, 0-5% reactive stroma; grade 1, 6-15%; grade 2, 16-50%; grade 3, 51-100%. RSG could be evaluated in 278 patients. The median follow- up time was 110 months (interquartile range: 51-171). The 10-year PC - specific survival rate for RSGs of 0, 1, 2, and 3 was 96%, 81%, 69%, and 63%, respectively (P < 0.005). RSG remained independently associated with PCSM in a multivariate Cox regression analysis adjusting for prostate-specific antigen level, clinical stage, Gleason score, and mode of treatment. The concordance index of the multivariate model was 0.814 CONCLUSIONS: Our study demonstrates that RSG in diagnostic prostate needle biopsies predicts PCSM independently of other evaluable prognostic factors. Hence, RSG could be used in addition to traditional prognostic factors for prognostication and treatment stratification of PC patients. © 2015 Wiley Periodicals, Inc.

  9. Markov Modeling of Component Fault Growth over a Derived Domain of Feasible Output Control Effort Modifications

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of prognostics-based control adaptation. A metric representing the relative deviation between the nominal output of a system and the net output that is actually enacted by an implemented prognostics-based control routine, will be used to define the action space of the formulated Markov process. The state space of the Markov process will be defined in terms of an abstracted metric representing the relative health remaining in each of the system s components. The proposed formulation of component fault dynamics will conveniently relate feasible system output performance modifications to predictions of future component health deterioration.

  10. Wind laws for shockless initialization. [numerical forecasting model

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Shkoller, B.

    1976-01-01

    A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.

  11. Time-space and cognition-space transformations for transportation network analysis based on multidimensional scaling and self-organizing map

    NASA Astrophysics Data System (ADS)

    Hong, Zixuan; Bian, Fuling

    2008-10-01

    Geographic space, time space and cognition space are three fundamental and interrelated spaces in geographic information systems for transportation. However, the cognition space and its relationships to the time space and geographic space are often neglected. This paper studies the relationships of these three spaces in urban transportation system from a new perspective and proposes a novel MDS-SOM transformation method which takes the advantages of the techniques of multidimensional scaling (MDS) and self-organizing map (SOM). The MDS-SOM transformation framework includes three kinds of mapping: the geographic-time transformation, the cognition-time transformation and the time-cognition transformation. The transformations in our research provide a better understanding of the interactions of these three spaces and beneficial knowledge is discovered to help the transportation analysis and decision supports.

  12. Efficient multidimensional free energy calculations for ab initio molecular dynamics using classical bias potentials

    NASA Astrophysics Data System (ADS)

    VandeVondele, Joost; Rothlisberger, Ursula

    2000-09-01

    We present a method for calculating multidimensional free energy surfaces within the limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency is enhanced using selected terms of a classical force field as a bias potential. This simple procedure yields a very substantial increase in sampling accuracy while retaining the high quality of the underlying ab initio potential surface and can thus be used for a parameter free calculation of free energy surfaces. The success of the method is demonstrated by the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case systems. A statistical analysis of the results shows that the entire free energy landscape is well converged within a 40 ps simulation at 500 K, even for a system with barriers as high as 15 kcal/mol.

  13. Development of a multidimensional gamma-spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Jonathan L.; Cantaloub, Michael G.; Mayer, Michael F.

    2017-02-28

    A high-sensitivity multidimensional gamma-spectrometer is being developed within the shallow underground laboratory at Pacific Northwest National Laboratory (PNNL, USA). The system consists of two Broad Energy Germanium (BEGe) detectors, inside a low-background lead and copper shield, fitted with a cosmic veto background reduction system. The detector has advanced functionality, including operation in single or combined detector mode, with reductions in the cosmic background by 49.6% and Compton suppression of 6.5%. For selected radionuclides this provides an overall MDA improvement of 52.7%. Utilizing both detectors for simultaneous measurements of thermally irradiated highly enriched uranium (HEU) increased peak identification and reduced uncertaintymore » by 27.6%. The design uses commercially off-the-shelf (COTS) components, for which the configuration is described, to provide a practical and powerful solution for low-level nuclear measurements.« less

  14. Job satisfaction among selected hospital CEOs.

    PubMed

    Matus, J C; Frazer, G H

    1996-09-01

    The purpose of this study was to identify the contributors to job satisfaction of hospital chief executive officers (CEOs) using a multidimensional approach of demographic characteristics. environmental traits, and person environment fit traits. By analyzing the concept of hospital executive job satisfaction in a multidimensional approach, a more comprehensive model of the most salient determinants of job satisfaction was developed. CEOs ranked their performance highest on employee and staff relations and managerial team building and lowest on information management systems. The results of this study can be used to better understand the intricacies and uniqueness of being a hospital CEO as well as the professional and personal requirements of success.

  15. Interpersonal Problems Associated with Multidimensional Personality Questionnaire Traits in Women during the Transition to Adulthood

    PubMed Central

    Hopwood, Christopher J.; Burt, S. Alexandra; Keel, Pamela K.; Neale, Michael C.; Boker, Steven M.; Klump, Kelly L.

    2012-01-01

    Personality traits are known to be associated with a host of important life outcomes, including interpersonal dysfunction. The interpersonal circumplex offers a comprehensive system for articulating the kinds of interpersonal problems associated with personality traits. In the current study, traits as measured by the Multidimensional Personality Questionnaire (MPQ) in a sample of 124 young women were correlated with interpersonal dysfunction as measured by the Inventory of Interpersonal Problems-Circumplex. Results suggest that MPQ traits vary in their associations with interpersonal distress and in their coverage of specific kinds of interpersonal difficulties among women undergoing the transition to adulthood. PMID:22064504

  16. Real-time monitoring and visualization of the multi-dimensional motion of an anisotropic nanoparticle

    NASA Astrophysics Data System (ADS)

    Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon

    2017-03-01

    As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.

  17. A Comparison of Filter-based Approaches for Model-based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Saha, Bhaskar; Goebel, Kai

    2012-01-01

    Model-based prognostics approaches use domain knowledge about a system and its failure modes through the use of physics-based models. Model-based prognosis is generally divided into two sequential problems: a joint state-parameter estimation problem, in which, using the model, the health of a system or component is determined based on the observations; and a prediction problem, in which, using the model, the stateparameter distribution is simulated forward in time to compute end of life and remaining useful life. The first problem is typically solved through the use of a state observer, or filter. The choice of filter depends on the assumptions that may be made about the system, and on the desired algorithm performance. In this paper, we review three separate filters for the solution to the first problem: the Daum filter, an exact nonlinear filter; the unscented Kalman filter, which approximates nonlinearities through the use of a deterministic sampling method known as the unscented transform; and the particle filter, which approximates the state distribution using a finite set of discrete, weighted samples, called particles. Using a centrifugal pump as a case study, we conduct a number of simulation-based experiments investigating the performance of the different algorithms as applied to prognostics.

  18. Survivin gene levels in the peripheral blood of patients with gastric cancer independently predict survival

    PubMed Central

    2009-01-01

    Background The detection of circulating tumor cells (CTC) is considered a promising tool for improving risk stratification in patients with solid tumors. We investigated on whether the expression of CTC related genes adds any prognostic power to the TNM staging system in patients with gastric carcinoma. Methods Seventy patients with TNM stage I to IV gastric carcinoma were retrospectively enrolled. Peripheral blood samples were tested by means of quantitative real time PCR (qrtPCR) for the expression of four CTC related genes: carcinoembryonic antigen (CEA), cytokeratin-19 (CK19), vascular endothelial growth factor (VEGF) and Survivin (BIRC5). Results Gene expression of Survivin, CK19, CEA and VEGF was higher than in normal controls in 98.6%, 97.1%, 42.9% and 38.6% of cases, respectively, suggesting a potential diagnostic value of both Survivin and CK19. At multivariable survival analysis, TNM staging and Survivin mRNA levels were retained as independent prognostic factors, demonstrating that Survivin expression in the peripheral blood adds prognostic information to the TNM system. In contrast with previously published data, the transcript abundance of CEA, CK19 and VEGF was not associated with patients' clinical outcome. Conclusions Gene expression levels of Survivin add significant prognostic value to the current TNM staging system. The validation of these findings in larger prospective and multicentric series might lead to the implementation of this biomarker in the routine clinical setting in order to optimize risk stratification and ultimately personalize the therapeutic management of these patients. PMID:20028510

  19. Proposal and validation of a new model to estimate survival for hepatocellular carcinoma patients.

    PubMed

    Liu, Po-Hong; Hsu, Chia-Yang; Hsia, Cheng-Yuan; Lee, Yun-Hsuan; Huang, Yi-Hsiang; Su, Chien-Wei; Lee, Fa-Yauh; Lin, Han-Chieh; Huo, Teh-Ia

    2016-08-01

    The survival of hepatocellular carcinoma (HCC) patients is heterogeneous. We aim to develop and validate a simple prognostic model to estimate survival for HCC patients (MESH score). A total of 3182 patients were randomised into derivation and validation cohort. Multivariate analysis was used to identify independent predictors of survival in the derivation cohort. The validation cohort was employed to examine the prognostic capabilities. The MESH score allocated 1 point for each of the following parameters: large tumour (beyond Milan criteria), presence of vascular invasion or metastasis, Child-Turcotte-Pugh score ≥6, performance status ≥2, serum alpha-fetoprotein level ≥20 ng/ml, and serum alkaline phosphatase ≥200 IU/L, with a maximal of 6 points. In the validation cohort, significant survival differences were found across all MESH scores from 0 to 6 (all p < 0.01). The MESH system was associated with the highest homogeneity and lowest corrected Akaike information criterion compared with Barcelona Clínic Liver Cancer, Hong Kong Liver Cancer (HKLC), Cancer of the Liver Italian Program, Taipei Integrated Scoring and model to estimate survival in ambulatory HCC Patients systems. The prognostic accuracy of the MESH scores remained constant in patients with hepatitis B- or hepatitis C-related HCC. The MESH score can also discriminate survival for patients from early to advanced stages of HCC. This newly proposed simple and accurate survival model provides enhanced prognostic accuracy for HCC. The MESH system is a useful supplement to the BCLC and HKLC classification schemes in refining treatment strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The ISI Classroom Observation System: Examining the Literacy Instruction Provided to Individual Students

    ERIC Educational Resources Information Center

    Connor, Carol McDonald; Morrison, Frederick J.; Fishman, Barry J.; Ponitz, Claire Cameron; Glasney, Stephanie; Underwood, Phyllis S.; Piasta, Shayne B.; Crowe, Elizabeth Coyne; Schatschneider, Christopher

    2009-01-01

    The Individualizing Student Instruction (ISI) classroom observation and coding system is designed to provide a detailed picture of the classroom environment at the level of the individual student. Using a multidimensional conceptualization of the classroom environment, foundational elements (teacher warmth and responsiveness to students, classroom…

  1. Biocomplexity in coupled natural–human systems: a multidimensional framework

    Treesearch

    S.T.A. Pickett; M.L. Cadenasso; J.M. Grove

    2005-01-01

    As defined by Ascher, biocomplexity results from a "multiplicity of interconnected relationships and levels. "However, no integrative framework yet exists to facilitate the application of this concept to coupled human-natural systems. Indeed, the term "biocomplexity" is still used primarily as a creative and provocative metaphor. To help advance its...

  2. Personalized Recommendation of Learning Material Using Sequential Pattern Mining and Attribute Based Collaborative Filtering

    ERIC Educational Resources Information Center

    Salehi, Mojtaba; Nakhai Kamalabadi, Isa; Ghaznavi Ghoushchi, Mohammad Bagher

    2014-01-01

    Material recommender system is a significant part of e-learning systems for personalization and recommendation of appropriate materials to learners. However, in the existing recommendation algorithms, dynamic interests and multi-preference of learners and multidimensional-attribute of materials are not fully considered simultaneously. Moreover,…

  3. Contexts in a Paper Recommendation System with Collaborative Filtering

    ERIC Educational Resources Information Center

    Winoto, Pinata; Tang, Tiffany Ya; McCalla, Gordon

    2012-01-01

    Making personalized paper recommendations to users in an educational domain is not a trivial task of simply matching users' interests with a paper topic. Therefore, we proposed a context-aware multidimensional paper recommendation system that considers additional user and paper features. Earlier experiments on experienced graduate students…

  4. The ALL-OUT Library; A Design for Computer-Powered, Multidimensional Services.

    ERIC Educational Resources Information Center

    Sleeth, Jim; LaRue, James

    1983-01-01

    Preliminary description of design of electronic library and home information delivery system highlights potentials of personal computer interface program (applying for service, assuring that users are valid, checking for measures, searching, locating titles) and incorporation of concepts used in other information systems (security checks,…

  5. Asynchronous Visualization of Spatiotemporal Information for Multiple Moving Targets

    ERIC Educational Resources Information Center

    Wang, Huadong

    2013-01-01

    In the modern information age, the quantity and complexity of spatiotemporal data is increasing both rapidly and continuously. Sensor systems with multiple feeds that gather multidimensional spatiotemporal data will result in information clusters and overload, as well as a high cognitive load for users of these systems. To meet future…

  6. Sarcopenia and frailty in chronic respiratory disease.

    PubMed

    Bone, Anna E; Hepgul, Nilay; Kon, Samantha; Maddocks, Matthew

    2017-02-01

    Sarcopenia and frailty are geriatric syndromes characterized by multisystem decline, which are related to and reflected by markers of skeletal muscle dysfunction. In older people, sarcopenia and frailty have been used for risk stratification, to predict adverse outcomes and to prompt intervention aimed at preventing decline in those at greatest risk. In this review, we examine sarcopenia and frailty in the context of chronic respiratory disease, providing an overview of the common assessments tools and studies to date in the field. We contrast assessments of sarcopenia, which consider muscle mass and function, with assessments of frailty, which often additionally consider social, cognitive and psychological domains. Frailty is emerging as an important syndrome in respiratory disease, being strongly associated with poor outcome. We also unpick the relationship between sarcopenia, frailty and skeletal muscle dysfunction in chronic respiratory disease and reveal these as interlinked but distinct clinical phenotypes. Suggested areas for future work include the application of sarcopenia and frailty models to restrictive diseases and population-based samples, prospective prognostic assessments of sarcopenia and frailty in relation to common multidimensional indices, plus the investigation of exercise, nutritional and pharmacological strategies to prevent or treat sarcopenia and frailty in chronic respiratory disease.

  7. Sarcopenia and frailty in chronic respiratory disease

    PubMed Central

    Bone, Anna E; Hepgul, Nilay; Kon, Samantha

    2017-01-01

    Sarcopenia and frailty are geriatric syndromes characterized by multisystem decline, which are related to and reflected by markers of skeletal muscle dysfunction. In older people, sarcopenia and frailty have been used for risk stratification, to predict adverse outcomes and to prompt intervention aimed at preventing decline in those at greatest risk. In this review, we examine sarcopenia and frailty in the context of chronic respiratory disease, providing an overview of the common assessments tools and studies to date in the field. We contrast assessments of sarcopenia, which consider muscle mass and function, with assessments of frailty, which often additionally consider social, cognitive and psychological domains. Frailty is emerging as an important syndrome in respiratory disease, being strongly associated with poor outcome. We also unpick the relationship between sarcopenia, frailty and skeletal muscle dysfunction in chronic respiratory disease and reveal these as interlinked but distinct clinical phenotypes. Suggested areas for future work include the application of sarcopenia and frailty models to restrictive diseases and population-based samples, prospective prognostic assessments of sarcopenia and frailty in relation to common multidimensional indices, plus the investigation of exercise, nutritional and pharmacological strategies to prevent or treat sarcopenia and frailty in chronic respiratory disease. PMID:27923981

  8. Proposal of a novel system for the staging of thymic epithelial tumors.

    PubMed

    Bedini, Amedeo Vittorio; Andreani, Stefano Michele; Tavecchio, Luca; Fabbri, Alessandra; Giardini, Roberto; Camerini, Tiziana; Bufalino, Rosaria; Morabito, Alberto; Rosai, Juan

    2005-12-01

    We designed and assessed a new TNM staging system (herein called the INT [Istituto Nazionale Tumori] system) for thymic epithelial tumors in order to overcome the perceived drawbacks of Masaoka's system, which represents the current standard. In all, 123 cases were evaluated. The histologic types according to the World Health Organization (WHO) classification were as follows: subtype A: 5 cases; AB: 40; B1: 16; B2: 29; B3: 16; and C: 17 cases. There were 45 Masaoka's stage I, 33 stage II, 26 stage III, and 19 stage IV cases. A total of 11 INT definitions were grouped into three stages: locally restricted disease (75 cases), which included Masaoka's stage I and selected stage II cases (no pleural invasion); locally advanced disease (37 cases), which included Masaoka's stage III cases plus those staged II owing to pleural invasion and those staged IV owing to intrathoracic nodal or limited pleuropericardial involvement; and systemic disease (11 cases), which included the remaining Masaoka's stage IV cases. Completeness of resection, WHO types, and both staging systems were significant prognostic factors (p < 0.0001) on univariate analysis. The 95-month progression-free survival rates according to Masaoka's system were stage I: 100%; II: 93.6%; III: 46.3%; and IV: 23.2%. The INT system corresponding figures were as follows: locally restricted disease: 98.6%; locally advanced disease: 46.9%; and systemic disease: 11.7%. The INT system was the prognostic factor with the greatest impact (p = 0.0218) on multivariate analysis (Masaoka's system: p = 0.2012; completeness of resection: p = 0.6855; histology: p = 0.9386). The INT system allows finer disease descriptions than Masaoka's system, resulting in a stage grouping with higher prognostic distinctiveness.

  9. The prognostic role of CD68 and FoxP3 expression in patients with primary central nervous system lymphoma.

    PubMed

    Cho, Hyunsoo; Kim, Se Hoon; Kim, Soo-Jeong; Chang, Jong Hee; Yang, Woo Ick; Suh, Chang-Ok; Cheong, June-Won; Kim, Yu Ri; Lee, Jung Yeon; Jang, Ji Eun; Kim, Yundeok; Min, Yoo Hong; Kim, Jin Seok

    2017-07-01

    The prognostic role of CD68 and FoxP3 in primary central nervous system lymphoma (PCNSL) has not been evaluated. Thus, we examined the prognostic significance of CD68 and FoxP3 expression in tumor samples of 76 newly diagnosed immunocompetent PCNSL patients. All patients were treated initially with high-dose methotrexate (HD-MTX)-based chemotherapy, and 16 (21.1%) patients received upfront autologous stem cell transplantation (ASCT) consolidation. High expression of CD68 (>55 cells/high-power field) or FoxP3 (>15 cells/high-power field) was observed in 10 patients, respectively. High CD68 expression was associated with inferior overall survival (OS) and progression-free survival (PFS) in multivariate analysis (P = 0.023 and P = 0.021, respectively). In addition, we performed subgroup analysis based on upfront ASCT. High CD68 expression was also associated with inferior OS and PFS in multivariate analysis (P = 0.013 and P < 0.001, respectively) among patients who did not receive upfront ASCT (n = 60), but not in patients who received upfront ASCT. The expression of FoxP3 was not significantly associated with survival. Therefore, we identified a prognostic significance of high CD68 expression in PCNSL, which suggests a need for further clinical trials and biological studies on the role of PCNSL tumor microenvironment.

  10. A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul

    2015-01-01

    A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.

  11. Development of an On-board Failure Diagnostics and Prognostics System for Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.; Osipov, Vyatcheslav V.; Timucin, Dogan A.; Uckun, Serdar

    2009-01-01

    We develop a case breach model for the on-board fault diagnostics and prognostics system for subscale solid-rocket boosters (SRBs). The model development was motivated by recent ground firing tests, in which a deviation of measured time-traces from the predicted time-series was observed. A modified model takes into account the nozzle ablation, including the effect of roughness of the nozzle surface, the geometry of the fault, and erosion and burning of the walls of the hole in the metal case. The derived low-dimensional performance model (LDPM) of the fault can reproduce the observed time-series data very well. To verify the performance of the LDPM we build a FLUENT model of the case breach fault and demonstrate a good agreement between theoretical predictions based on the analytical solution of the model equations and the results of the FLUENT simulations. We then incorporate the derived LDPM into an inferential Bayesian framework and verify performance of the Bayesian algorithm for the diagnostics and prognostics of the case breach fault. It is shown that the obtained LDPM allows one to track parameters of the SRB during the flight in real time, to diagnose case breach fault, and to predict its values in the future. The application of the method to fault diagnostics and prognostics (FD&P) of other SRB faults modes is discussed.

  12. A Conceptual Modeling Approach for OLAP Personalization

    NASA Astrophysics Data System (ADS)

    Garrigós, Irene; Pardillo, Jesús; Mazón, Jose-Norberto; Trujillo, Juan

    Data warehouses rely on multidimensional models in order to provide decision makers with appropriate structures to intuitively analyze data with OLAP technologies. However, data warehouses may be potentially large and multidimensional structures become increasingly complex to be understood at a glance. Even if a departmental data warehouse (also known as data mart) is used, these structures would be also too complex. As a consequence, acquiring the required information is more costly than expected and decision makers using OLAP tools may get frustrated. In this context, current approaches for data warehouse design are focused on deriving a unique OLAP schema for all analysts from their previously stated information requirements, which is not enough to lighten the complexity of the decision making process. To overcome this drawback, we argue for personalizing multidimensional models for OLAP technologies according to the continuously changing user characteristics, context, requirements and behaviour. In this paper, we present a novel approach to personalizing OLAP systems at the conceptual level based on the underlying multidimensional model of the data warehouse, a user model and a set of personalization rules. The great advantage of our approach is that a personalized OLAP schema is provided for each decision maker contributing to better satisfy their specific analysis needs. Finally, we show the applicability of our approach through a sample scenario based on our CASE tool for data warehouse development.

  13. Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models

    NASA Astrophysics Data System (ADS)

    Nariyuki, Y.

    2014-12-01

    Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.

  14. A distributed computing system for magnetic resonance imaging: Java-based processing and binding of XML.

    PubMed

    de Beer, R; Graveron-Demilly, D; Nastase, S; van Ormondt, D

    2004-03-01

    Recently we have developed a Java-based heterogeneous distributed computing system for the field of magnetic resonance imaging (MRI). It is a software system for embedding the various image reconstruction algorithms that we have created for handling MRI data sets with sparse sampling distributions. Since these data sets may result from multi-dimensional MRI measurements our system has to control the storage and manipulation of large amounts of data. In this paper we describe how we have employed the extensible markup language (XML) to realize this data handling in a highly structured way. To that end we have used Java packages, recently released by Sun Microsystems, to process XML documents and to compile pieces of XML code into Java classes. We have effectuated a flexible storage and manipulation approach for all kinds of data within the MRI system, such as data describing and containing multi-dimensional MRI measurements, data configuring image reconstruction methods and data representing and visualizing the various services of the system. We have found that the object-oriented approach, possible with the Java programming environment, combined with the XML technology is a convenient way of describing and handling various data streams in heterogeneous distributed computing systems.

  15. The effects of the Union for International Cancer Control/American Joint Committee on Cancer Tumour, Node, Metastasis system version 8 on staging of differentiated thyroid cancer: a comparison to version 7.

    PubMed

    Verburg, Frederik A; Mäder, Uwe; Luster, Markus; Reiners, Christoph

    2018-06-01

    To assess the changes resulting from the changes from UICC/AJCC TNM version 7 to version 8 and to subsequently determine whether TNM version 8 is an improvement compared to previous iterations of the TNM system and other staging systems for differentiated thyroid cancer (DTC) with regard to prognostic power. Database study of DTC patients treated in our centre between 1978 up to and including 1 July 2014. Results were compared to our previous comparison of prognostic systems using the same data set. 2257 DTC patients. Staging in accordance with TNM 7 and TNM 8. Thyroid cancer-specific mortality; comparison was based on p-values of univariate Cox regression analyses as well as analysis of the proportion of variance explained (PVE). There is a redistribution from stage 3 to lower stages affecting 206 (9.1%) patients. DTC-related mortality according to Kaplan-Meier for younger and older patients in TNM 7 had a slightly lower prognostic power than that in accordance with TNM 8 (P = 8.0 10 -16 and P = 1.5 10 -21 , respectively). Overall staging is lower in 627/2257 (27.8%) patients. PVE (TNM 7: 0.29; TNM 8: 0.28) and the P-value of Cox regressions (TNM 7: P = 7.1*10 -52 ; TNM 8: P = 3.9*10 -49 ) for TNM version 8 are marginally lower than that for TNM version 7, but still better than for any other DTC staging system. TNM 8 results in a marked downstaging of patients compared to TNM 7. Although some changes, like the change in age boundary, appear to be associated with an improvement in prognostic power, the overall effect of the changes does not improve the predictive power compared to TNM 7. © 2018 John Wiley & Sons Ltd.

  16. On the Need for Multidimensional Stirling Simulations

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2005-01-01

    Given the cost and complication of simulating Stirling convertors, do we really need multidimensional modeling when one-dimensional capabilities exist? This paper provides a comprehensive description of when and why multidimensional simulation is needed.

  17. Staging systems of hepatocellular carcinoma: A review of literature

    PubMed Central

    Maida, Marcello; Orlando, Emanuele; Cammà, Calogero; Cabibbo, Giuseppe

    2014-01-01

    Hepatocellular carcinoma (HCC) is a major health problem with a high incidence and mortality all over the world. Natural history of HCC is severe and extremely variable, and prognostic factors influencing outcomes are incompletely defined. Over time, many staging and scoring systems have been proposed for the classification and prognosis of patients with HCC. Currently, the non-ideal predictive performance of existing prognostic systems is secondary to their inherent limitations, as well as to a non-universal reproducibility and transportability of the results in different populations. New serological and histological markers are still under evaluation with promising results, but they require further evaluation and external validation. The aim of this review is to highlight the main tools for assessing the prognosis of HCC and the main concerns, pitfalls and warnings regarding its staging systems currently in use. PMID:24764652

  18. Multidimensional Scaling in the Poincare Disk

    DTIC Science & Technology

    2011-05-01

    REPORT Multidimensional Scaling in the Poincare Dis 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Multidimensional scaling (MDS) is a class of projective...DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Multidimensional Scaling in the Poincare Dis Report Title... plane . Our construction is based on an approximate hyperbolic line search and exempli?es some of the particulars that need to be addressed when

  19. Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations

    NASA Astrophysics Data System (ADS)

    Zlotnik, A. A.

    2017-04-01

    The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier-Stokes equations of a viscous compressible heat-conducting gas.

  20. Implementation outcomes of Multidimensional Family Therapy-Detention to Community: a reintegration program for drug-using juvenile detainees.

    PubMed

    Liddle, Howard A; Dakof, Gayle A; Henderson, Craig; Rowe, Cindy

    2011-06-01

    Responding to urgent calls for effective interventions to address young offenders' multiple and interconnected problems, a new variant of an existing empirically-validated intervention for drug-using adolescents, Multidimensional Family Therapy (MDFT)-Detention to Community (DTC) was tested in a two-site controlled trial. This article (a) outlines the rationale and protocol basics of the MDFT-DTC intervention, a program for substance-using juvenile offenders that links justice and substance abuse treatment systems to facilitate adolescents' post-detention community reintegration; (b) presents implementation outcomes, including fidelity, treatment engagement and retention rates, amount of services received, treatment satisfaction, and substance abuse-juvenile justice system collaboration outcomes; and (c) details the implementation and sustainability challenges in a cross-system (substance abuse treatment and juvenile justice) adolescent intervention. Findings support the effectiveness of the MDFT-DTC intervention, and the need to develop a full implementation model in which transfer and dissemination issues could be explored more fully, and tested experimentally.

  1. A Lymph Node Staging System for Gastric Cancer: A Hybrid Type Based on Topographic and Numeric Systems.

    PubMed

    Choi, Yoon Young; An, Ji Yeong; Katai, Hitoshi; Seto, Yasuyuki; Fukagawa, Takeo; Okumura, Yasuhiro; Kim, Dong Wook; Kim, Hyoung-Il; Cheong, Jae-Ho; Hyung, Woo Jin; Noh, Sung Hoon

    2016-01-01

    Although changing a lymph node staging system from an anatomically based system to a numerically based system in gastric cancer offers better prognostic performance, several problems can arise: it does not offer information on the anatomical extent of disease and cannot represent the extent of lymph node dissection. The purpose of this study was to discover an alternative lymph node staging system for gastric cancer. Data from 6025 patients who underwent gastrectomy for primary gastric cancer between January 2000 and December 2010 were reviewed. The lymph node groups were reclassified into lesser-curvature, greater-curvature, and extra-perigastric groups. Presence of any metastatic lymph node in one group was considered positive. Lymph node groups were further stratified into four (new N0-new N3) according to the number of positive lymph node groups. Survival outcomes with this new N staging were compared with those of the current TNM system. For validation, two centers in Japan (large center, n = 3443; medium center, n = 560) were invited. Even among the same pN stages, the more advanced new N stage showed worse prognosis, indicating that the anatomical extent of metastatic lymph nodes is important. The prognostic performance of the new staging system was as good as that of the current TNM system for overall advanced gastric cancer as well as lymph node-positive gastric cancer (Harrell C-index was 0.799, 0.726, and 0.703 in current TNM and 0.799, 0.727, and 0.703 in new TNM stage). Validation sets supported these outcomes. The new N staging system demonstrated prognostic performance equal to that of the current TNM system and could thus be used as an alternative.

  2. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  3. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial body, as well as to forecast of changes in its relief. As the volcanic and seismic processes are of cosmic nature and occurrence, it seems logical to investigate their chronological structure in terms of astronomical time reference system or in parameters of the Earth orbital movement. Gravitational interaction of the Earth with the moon, the Sun and planets of the Solar system forms the physical basis of this multidimensional system; it manifests itself in tidal deformations of the Earth's lithosphere and in periodical changes in the planet rotation and orbital speed. A search for chronological correlation between the Earth's volcanism and seismicity on one hand and the orbital parameters dynamic on the other shows a certain promise in relation to prognostic decisions. It should be kept in mind that the calculation of astronomical characteristics (Ephemerides), which is one of the main lines in theoretical astronomy, spans many years both in the past and in future. It seems appropriate therefore to apply the astronomical time reference system to investigations of chronological structure of volcanic and seismic processes from the methodical viewpoint, as well as for retrospective and prognostic analyses. To investigate temporal pattern of the volcanic and seismic processes and to find a degree of their dependence on tidal forces, we used the astronomical time reference system as related to the Earth's orbital movement. The system is based on substitution of calendar dates of eruption and earthquakes for corresponding values of known astronomical characteristics, such as the Earth to Sun and Earth to Moon distances, ecliptic latitude of the Moon, etc. In coordinates of astronomical parameters (JPL Planetary and Lunar Efemerides, 1997, as compiled by the Jet Propulsion Laboratory, California Institute of Technology, on the basis of DE 406 block developed by NASA), we analyzed massifs of information, both volcanological (Catalogue of the World volcanic eruptions by I.I. Gushchenko, 1979) and seismological (database of USGS/NEIC Significant Worldwide Earthquakes, 2150 B.C.- 1994 A.D.) information which displays dynamics of endogenic relief-forming processes over a period of 1900 to 1994. In the course of the analysis, a substitution of calendar variable by a corresponding astronomical one has been performed and the epoch superposition method was applied. In essence, the method consists in that the massifs of information on volcanic eruptions (over a period of 1900 to 1977) and seismic events (1900-1994) are differentiated with respect to value of astronomical parameters which correspond to the calendar dates of the known eruptions and earthquakes, regardless of the calendar year. The obtained spectra of volcanic eruptions and violent earthquake distribution in the fields of the Earth orbital movement parameters were used as a basis for calculation of frequency spectra and diurnal probability of volcanic and seismic activity. The objective of the proposed investigations is a probabilistic model development of the volcanic and seismic events, as well as GIS designing for monitoring and forecast of volcanic and seismic activities. In accordance with the stated objective, three probability parameters have been found in the course of preliminary studies; they form the basis for GIS-monitoring and forecast development. 1. A multidimensional analysis of volcanic eruption and earthquakes (of magnitude 7) have been performed in terms of the Earth orbital movement. Probability characteristics of volcanism and seismicity have been defined for the Earth as a whole. Time intervals have been identified with a diurnal probability twice as great as the mean value. Diurnal probability of volcanic and seismic events has been calculated up to 2020. 2. A regularity is found in duration of dormant (repose) periods has been established. A relationship has been found between the distribution of the repose period probability density and duration of the period. 3. Features of spatial distribution of volcanic eruptions and earthquakes of magnitude 7 were analyzed, and those related to the Earth rotation identified. Frequencies of their spatial distribution are calculated. Using those parameters as the base, a scheme (algorithm) of probabilistic monitoring (long-range forecast) has been developed for volcanic and seismic events. Refereces (in Russian): 1. Fedorov V.M. Gravitational factors and astronomy-based chronology of processes in geospheres. Moscow University Publishing House, 2000. 368 p. 2. Fedorov V.M. Comparison between chronology of the Earth volcanic activity and characteristics of its orbital motion // Vulkanologiya i seismologiya, № 5, 2001, p. 65-67. 3. Fedorov V.M. Specific features of latitudinal distribution of volcanic eruptions// Vulkanologiya i seismologiya, № 4, 2002, p.39-43. 4. Fedorov V.M. Specific features of latitudinal distribution of endogenic relief-forming processes and the rotation of the Earth // Geomorphologiya, № 1, 2003, p.3-9. 5. Fedorov V.M. Comparison between chronology of the Earth volcanic and seismic activity and characteristics of its orbital motion // Izvestiya RAS. Ser. Geogr. № 5, 2003, p.16-20. 6. Fedorov V.M. Chronological structure and probability of volcanic events as related to tidal deformation of lithosphere // Vulkanologiya i seismologiya, № 1, 2005, p.44-50. 7. Fedorov V.M. Multidimensional analysis and a probabilistic model of the activity of endogenic relief-forming processes // Geomorphology, № 2, 2007, p. 37 - 48. 8. Fedorov V.M. Multidimensional analysis - is a spatiotemporal structure of the geodynamic activity of Earth// Vestnik Moskovskogo Universiteta; Ser. 4. Geology, № 4, 2007, p. 24-31.

  4. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing.

    PubMed

    Arenillas, Leonor; Mallo, Mar; Ramos, Fernando; Guinta, Kathryn; Barragán, Eva; Lumbreras, Eva; Larráyoz, María-José; De Paz, Raquel; Tormo, Mar; Abáigar, María; Pedro, Carme; Cervera, José; Such, Esperanza; José Calasanz, María; Díez-Campelo, María; Sanz, Guillermo F; Hernández, Jesús María; Luño, Elisa; Saumell, Sílvia; Maciejewski, Jaroslaw; Florensa, Lourdes; Solé, Francesc

    2013-12-01

    Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. Copyright © 2013 Wiley Periodicals, Inc.

  5. Development of ITSASGIS-5D: seeking interoperability between Marine GIS layers and scientific multidimensional data using open source tools and OGC services for multidisciplinary research.

    NASA Astrophysics Data System (ADS)

    Sagarminaga, Y.; Galparsoro, I.; Reig, R.; Sánchez, J. A.

    2012-04-01

    Since 2000, an intense effort was conducted in AZTI's Marine Research Division to set up a data management system which could gather all the marine datasets that were being produced by different in-house research projects. For that, a corporative GIS was designed that included a data and metadata repository, a database, a layer catalog & search application and an internet map viewer. Several layers, mostly dealing with physical, chemical and biological in-situ sampling, and basic and thematic cartography including bathymetry, geomorphology, different species habitat maps, and human pressure and activities maps, were successfully gathered in this system. Very soon, it was realised that new marine technologies yielding continuous multidimensional data, sometimes called FES (Fluid Earth System) data, were difficult to handle in this structure. The data affected, mainly included numerical oceanographic and meteorological models, remote sensing data, coastal RADAR data, and some in-situ observational systems such as CTD's casts, moored or lagrangian buoys, etc. A management system for gridded multidimensional data was developed using standardized formats (netcdf using CF conventions) and tools such as THREDDS catalog (UNIDATA/UCAR) providing web services such as OPENDAP, NCSS, and WCS, as well as ncWMS service developed by the Reading e-science Center. At present, a system (ITSASGIS-5D) is being developed, based on OGC standards and open-source tools to allow interoperability between all the data types mentioned before. This system includes, in the server side, postgresql/postgis databases and geoserver for GIS layers, and THREDDS/Opendap and ncWMS services for FES gridded data. Moreover, an on-line client is being developed to allow joint access, user configuration, data visualisation & query and data distribution. This client is using mapfish, ExtJS - GeoEXT, and openlayers libraries. Through this presentation the elements of the first released version of this system will be described and showed, together with the new topics to be developed in new versions that include among others, the integration of geoNetwork libraries and tools for both FES and GIS metadata management, and the use of new OGC Sensor Observation Services (SOS) to integrate non gridded multidimensional data such as time series, depth profiles or trajectories provided by different observational systems. The final aim of this approach is to contribute to the multidisciplinary access and use of marine data for management and research activities, and facilitate the implementation of integrated ecosystem based approaches in the fields of fisheries advice and management, marine spatial planning, or the implementation of the European policies such as the Water Framework Directive, the Marine Strategy Framework Directive or the Habitat Framework Directive.

  6. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.; Cho, K.W.

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less

  7. Multidimensional Knowledge Structures.

    ERIC Educational Resources Information Center

    Schuh, Kathy L.

    Multidimensional knowledge structures, described from a constructivist perspective and aligned with the "Mind as Rhizome" metaphor, provide support for constructivist learning strategies. This qualitative study was conducted to seek empirical support for a description of multidimensional knowledge structures, focusing on the…

  8. Prognostic and survival analysis of 837 Chinese colorectal cancer patients.

    PubMed

    Yuan, Ying; Li, Mo-Dan; Hu, Han-Guang; Dong, Cai-Xia; Chen, Jia-Qi; Li, Xiao-Fen; Li, Jing-Jing; Shen, Hong

    2013-05-07

    To develop a prognostic model to predict survival of patients with colorectal cancer (CRC). Survival data of 837 CRC patients undergoing surgery between 1996 and 2006 were collected and analyzed by univariate analysis and Cox proportional hazard regression model to reveal the prognostic factors for CRC. All data were recorded using a standard data form and analyzed using SPSS version 18.0 (SPSS, Chicago, IL, United States). Survival curves were calculated by the Kaplan-Meier method. The log rank test was used to assess differences in survival. Univariate hazard ratios and significant and independent predictors of disease-specific survival and were identified by Cox proportional hazard analysis. The stepwise procedure was set to a threshold of 0.05. Statistical significance was defined as P < 0.05. The survival rate was 74% at 3 years and 68% at 5 years. The results of univariate analysis suggested age, preoperative obstruction, serum carcinoembryonic antigen level at diagnosis, status of resection, tumor size, histological grade, pathological type, lymphovascular invasion, invasion of adjacent organs, and tumor node metastasis (TNM) staging were positive prognostic factors (P < 0.05). Lymph node ratio (LNR) was also a strong prognostic factor in stage III CRC (P < 0.0001). We divided 341 stage III patients into three groups according to LNR values (LNR1, LNR ≤ 0.33, n = 211; LNR2, LNR 0.34-0.66, n = 76; and LNR3, LNR ≥ 0.67, n = 54). Univariate analysis showed a significant statistical difference in 3-year survival among these groups: LNR1, 73%; LNR2, 55%; and LNR3, 42% (P < 0.0001). The multivariate analysis results showed that histological grade, depth of bowel wall invasion, and number of metastatic lymph nodes were the most important prognostic factors for CRC if we did not consider the interaction of the TNM staging system (P < 0.05). When the TNM staging was taken into account, histological grade lost its statistical significance, while the specific TNM staging system showed a statistically significant difference (P < 0.0001). The overall survival of CRC patients has improved between 1996 and 2006. LNR is a powerful factor for estimating the survival of stage III CRC patients.

  9. Advanced Hepatocellular Carcinoma: Which Staging Systems Best Predict Prognosis?

    PubMed Central

    Huitzil-Melendez, Fidel-David; Capanu, Marinela; O'Reilly, Eileen M.; Duffy, Austin; Gansukh, Bolorsukh; Saltz, Leonard L.; Abou-Alfa, Ghassan K.

    2010-01-01

    Purpose The purpose of cancer staging systems is to accurately predict patient prognosis. The outcome of advanced hepatocellular carcinoma (HCC) depends on both the cancer stage and the extent of liver dysfunction. Many staging systems that include both aspects have been developed. It remains unknown, however, which of these systems is optimal for predicting patient survival. Patients and Methods Patients with advanced HCC treated over a 5-year period at Memorial Sloan-Kettering Cancer Center were identified from an electronic medical record database. Patients with sufficient data for utilization in all staging systems were included. TNM sixth edition, Okuda, Barcelona Clinic Liver Cancer (BCLC), Cancer of the Liver Italian Program (CLIP), Chinese University Prognostic Index (CUPI), Japan Integrated Staging (JIS), and Groupe d'Etude et de Traitement du Carcinome Hepatocellulaire (GETCH) systems were ranked on the basis of their accuracy at predicting survival by using concordance index (c-index). Other independent prognostic variables were also identified. Results Overall, 187 eligible patients were identified and were staged by using the seven staging systems. CLIP, CUPI, and GETCH were the three top-ranking staging systems. BCLC and TNM sixth edition lacked any meaningful prognostic discrimination. Performance status, AST, abdominal pain, and esophageal varices improved the discriminatory ability of CLIP. Conclusion In our selected patient population, CLIP, CUPI, and GETCH were the most informative staging systems in predicting survival in patients with advanced HCC. Prospective validation is required to determine if they can be accurately used to stratify patients in clinical trials and to direct the appropriate need for systemic therapy versus best supportive care. BCLC and TNM sixth edition were not helpful in predicting survival outcome, and their use is not supported by our data. PMID:20458042

  10. A review on prognostics approaches for remaining useful life of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Su, C.; Chen, H. J.

    2017-11-01

    Lithium-ion (Li-ion) battery is a core component for various industrial systems, including satellite, spacecraft and electric vehicle, etc. The mechanism of performance degradation and remaining useful life (RUL) estimation correlate closely to the operating state and reliability of the aforementioned systems. Furthermore, RUL prediction of Li-ion battery is crucial for the operation scheduling, spare parts management and maintenance decision for such kinds of systems. In recent years, performance degradation prognostics and RUL estimation approaches have become a focus of the research concerning with Li-ion battery. This paper summarizes the approaches used in Li-ion battery RUL estimation. Three categories are classified accordingly, i.e. model-based approach, data-based approach and hybrid approach. The key issues and future trends for battery RUL estimation are also discussed.

  11. Evaluation of Simulated Marine Aerosol Production Using the WaveWatchIII Prognostic Wave Model Coupled to the Community Atmosphere Model within the Community Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M. S.; Keene, William C.; Zhang, J.

    2016-11-08

    Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3 rd generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD ormore » Na +, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.« less

  12. The Measurement and Dimensionality of Mobile Learning Systems Success: Two-Stage Development and Validation

    ERIC Educational Resources Information Center

    Lin, Hsin-Hui; Wang, Yi-Shun; Li, Ci-Rong; Shih, Ying-Wei; Lin, Shin-Jeng

    2017-01-01

    The main purpose of this study is to develop and validate a multidimensional instrument for measuring mobile learning systems success (MLSS) based on the previous research. This study defines the construct of MLSS, develops a generic MLSS instrument with desirable psychometric properties, and explores the instrument's theoretical and practical…

  13. Open Source Library Management Systems: A Multidimensional Evaluation

    ERIC Educational Resources Information Center

    Balnaves, Edmund

    2008-01-01

    Open source library management systems have improved steadily in the last five years. They now present a credible option for small to medium libraries and library networks. An approach to their evaluation is proposed that takes account of three additional dimensions that only open source can offer: the developer and support community, the source…

  14. Modeling change from large-scale high-dimensional spatio-temporal array data

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer

    2014-05-01

    The massive data that come from Earth observation satellite and other sensors provide significant information for modeling global change. At the same time, the high dimensionality of the data has brought challenges in data acquisition, management, effective querying and processing. In addition, the output of earth system modeling tends to be data intensive and needs methodologies for storing, validation, analyzing and visualization, e.g. as maps. An important proportion of earth system observations and simulated data can be represented as multi-dimensional array data, which has received increasingly attention in big data management and spatial-temporal analysis. Study cases will be developed in natural science such as climate change, hydrological modeling, sediment dynamics, from which the addressing of big data problems is necessary. Multi-dimensional array-based database management and analytics system such as Rasdaman, SciDB, and R will be applied to these cases. From these studies will hope to learn the strengths and weaknesses of these systems, how they might work together or how semantics of array operations differ, through addressing the problems associated with big data. Research questions include: • How can we reduce dimensions spatially and temporally, or thematically? • How can we extend existing GIS functions to work on multidimensional arrays? • How can we combine data sets of different dimensionality or different resolutions? • Can map algebra be extended to an intelligible array algebra? • What are effective semantics for array programming of dynamic data driven applications? • In which sense are space and time special, as dimensions, compared to other properties? • How can we make the analysis of multi-spectral, multi-temporal and multi-sensor earth observation data easy?

  15. Design of a compressed air modulator to be used in comprehensive multidimensional gas chromatography and its application in the determination of pesticide residues in grapes.

    PubMed

    Pizzutti, Ionara R; Vreuls, René J J; de Kok, André; Roehrs, Rafael; Martel, Samile; Friggi, Caroline A; Zanella, Renato

    2009-04-10

    In this study, a new modulator that is simple, robust and presents low operation costs, was developed. This modulator uses compressed air to cool two small portions in the first centimeters of the second chromatographic column of a comprehensive multidimensional gas chromatography (GCxGC) system. The results show a variation in the peak area less than 3 and 5% to alkanes and pesticides, respectively. The standard deviations for the retention times in the first and second dimension are around 0.05 min and 0.05s for all the compounds. The system was optimized with n-alkanes. The GCxGC system proposed was applied in the determination of pyrethroid pesticides (bifenthrin, cypermethrin, deltamethrin, fenvalerate, esfenvalerate, cis- and trans-permethrin) in grape samples. Samples were extracted by the mini-Luke modified method and pesticides were quantified by comprehensive multidimensional gas chromatography with micro electron-capture detection (microECD). The values of method limit of quantification (LOQ) were 0.01-0.02 mg kg(-1) for all studied pyrethroid and the values of recovery were between 94.3 and 115.2%, with good precision (RSD<18.4%), demonstrating that the performance of the total method consisting of a modified Luke extraction method and determination by GCxGC-microECD are satisfactory. This study also showed that the system using a modulator with a double jet of compressed air has the potential for application in the analysis of a wider range of pesticide residues in other commodities since it provides low values of LOQ with acceptable accuracy and precision.

  16. Experimental verification of multidimensional quantum steering

    NASA Astrophysics Data System (ADS)

    Li, Che-Ming; Lo, Hsin-Pin; Chen, Liang-Yu; Yabushita, Atsushi

    2018-03-01

    Quantum steering enables one party to communicate with another remote party even if the sender is untrusted. Such characteristics of quantum systems not only provide direct applications to quantum information science, but are also conceptually important for distinguishing between quantum and classical resources. While concrete illustrations of steering have been shown in several experiments, quantum steering has not been certified for higher dimensional systems. Here, we introduce a simple method to experimentally certify two different kinds of quantum steering: Einstein-Podolsky-Rosen (EPR) steering and single-system (SS) steering (i.e., temporal steering), for dimensionality (d) up to d = 16. The former reveals the steerability among bipartite systems, whereas the latter manifests itself in single quantum objects. We use multidimensional steering witnesses to verify EPR steering of polarization-entangled pairs and SS steering of single photons. The ratios between the measured witnesses and the maximum values achieved by classical mimicries are observed to increase with d for both EPR and SS steering. The designed scenario offers a new method to study further the genuine multipartite steering of large dimensionality and potential uses in quantum information processing.

  17. Integrated Array/Metadata Analytics

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  18. Anonymous voting for multi-dimensional CV quantum system

    NASA Astrophysics Data System (ADS)

    Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee

    2016-06-01

    We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).

  19. New generic indexing technology

    NASA Technical Reports Server (NTRS)

    Freeston, Michael

    1996-01-01

    There has been no fundamental change in the dynamic indexing methods supporting database systems since the invention of the B-tree twenty-five years ago. And yet the whole classical approach to dynamic database indexing has long since become inappropriate and increasingly inadequate. We are moving rapidly from the conventional one-dimensional world of fixed-structure text and numbers to a multi-dimensional world of variable structures, objects and images, in space and time. But, even before leaving the confines of conventional database indexing, the situation is highly unsatisfactory. In fact, our research has led us to question the basic assumptions of conventional database indexing. We have spent the past ten years studying the properties of multi-dimensional indexing methods, and in this paper we draw the strands of a number of developments together - some quite old, some very new, to show how we now have the basis for a new generic indexing technology for the next generation of database systems.

  20. Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2016-01-01

    The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.

  1. [Study on "multi-dimensional structure and process dynamics quality control system" of Danshen infusion solution based on component structure theory].

    PubMed

    Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Wang, Gui-You; Zhao, Zi-Yu; Jia, Xiao-Bin

    2013-11-01

    As traditional Chinese medicine (TCM) preparation products feature complex compounds and multiple preparation processes, the implementation of quality control in line with the characteristics of TCM preparation products provides a firm guarantee for the clinical efficacy and safety of TCM preparation products. Danshen infusion solution is a preparation commonly used in clinic, but its quality control is restricted to indexes of finished products, which can not guarantee its inherent quality. Our study group has proposed "multi-dimensional structure and process dynamics quality control system" on the basis of "component structure theory", for the purpose of controlling the quality of Danshen infusion solution at multiple levels and in multiple links from the efficacy-related material basis, the safety-related material basis, the characteristics of dosage form to the preparation process. This article, we bring forth new ideas and models to the quality control of TCM preparation products.

  2. Prognostic significance of combined albumin-bilirubin and tumor-node-metastasis staging system in patients who underwent hepatic resection for hepatocellular carcinoma.

    PubMed

    Harimoto, Norifumi; Yoshizumi, Tomoharu; Sakata, Kazuhito; Nagatsu, Akihisa; Motomura, Takashi; Itoh, Shinji; Harada, Noboru; Ikegami, Toru; Uchiyama, Hideaki; Soejima, Yuji; Maehara, Yoshihiko

    2017-11-01

    In recent years, the establishment of new staging systems for hepatocellular carcinoma (HCC) has been reported worldwide. The system combining albumin-bilirubin (ALBI) with tumor-node-metastasis stage, developed by the Liver Cancer Study Group of Japan, was called the ALBI-T score. Patient data were retrospectively collected for 357 consecutive patients who had undergone hepatic resection for HCC with curative intent between January 2004 and December 2015. The overall survival and recurrence-free survival were compared by the Kaplan-Meier method, using different staging systems: the Japan integrated staging (JIS), modified JIS, and ALBI-T. Multivariate analysis identified five poor prognostic factors (higher age, poor differentiation, the presence of microvascular invasion, the presence of intrahepatic metastasis, and blood transfusion) that influenced overall survival, and four poor prognostic factors (the presence of intrahepatic metastasis, serum α-fetoprotein level, blood transfusion, and each staging system (JIS, modified JIS, and ALBI-T score)) that influenced recurrence-free survival. Patients for each these three staging system had a significantly worse prognosis regarding recurrence-free survival, but not with overall survival. The modified JIS score showed the lowest Akaike information criteria statistic value, indicating it had the best ability to predict overall survival compared with the other staging systems. This retrospective analysis showed that, in post-hepatectomy patients with HCC, the ALBI-T score is predictive of worse recurrence-free survival, even when adjustments are made for other known predictors. However, modified JIS is better than ALBI-T in predicting overall survival. © 2017 The Japan Society of Hepatology.

  3. A Review of Multidimensional, Multifluid Intermediate-scale Experiments: Flow Behavior, Saturation Imaging, and Tracer Detection and Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Mart; Dane, J. H.; Wietsma, Thomas W.

    2007-08-01

    A review is presented of original multidimensional, intermediate-scale experiments involving non-aqueous phase liquid (NAPL) flow behavior, imaging, and detection/quantification with solute tracers. In a companion paper (Oostrom, M., J.H. Dane, and T.W. Wietsma. 2006. A review of multidimensional, multifluid intermediate-scale experiments: Nonaqueous phase dissolution and enhanced remediation. Vadose Zone Journal 5:570-598) experiments related to aqueous dissolution and enhanced remediation were discussed. The experiments investigating flow behavior include infiltration and redistribution experiments with both light and dense NAPLs in homogeneous and heterogeneous porous medium systems. The techniques used for NAPL saturation mapping for intermediate-scale experiments include photon-attenuation methods such as gammamore » and X-ray techniques, and photographic methods such as the light reflection, light transmission, and multispectral image analysis techniques. Solute tracer methods used for detection and quantification of NAPL in the subsurface are primarily limited to variations of techniques comparing the behavior of conservative and partitioning tracers. Besides a discussion of the experimental efforts, recommendations for future research at this laboratory scale are provided.« less

  4. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  5. Informatics in radiology (infoRAD): navigating the fifth dimension: innovative interface for multidimensional multimodality image navigation.

    PubMed

    Rosset, Antoine; Spadola, Luca; Pysher, Lance; Ratib, Osman

    2006-01-01

    The display and interpretation of images obtained by combining three-dimensional data acquired with two different modalities (eg, positron emission tomography and computed tomography) in the same subject require complex software tools that allow the user to adjust the image parameters. With the current fast imaging systems, it is possible to acquire dynamic images of the beating heart, which add a fourth dimension of visual information-the temporal dimension. Moreover, images acquired at different points during the transit of a contrast agent or during different functional phases add a fifth dimension-functional data. To facilitate real-time image navigation in the resultant large multidimensional image data sets, the authors developed a Digital Imaging and Communications in Medicine-compliant software program. The open-source software, called OsiriX, allows the user to navigate through multidimensional image series while adjusting the blending of images from different modalities, image contrast and intensity, and the rate of cine display of dynamic images. The software is available for free download at http://homepage.mac.com/rossetantoine/osirix. (c) RSNA, 2006.

  6. Influence of fusion dynamics on fission observables: A multidimensional analysis

    NASA Astrophysics Data System (ADS)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  7. Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries

    PubMed Central

    Musienko, Pavel; van den Brand, Rubia; Märzendorfer, Olivia; Roy, Roland R.; Gerasimenko, Yury; Edgerton, V. Reggie; Courtine, Grégoire

    2012-01-01

    Descending monoaminergic inputs markedly influence spinal locomotor circuits, but the functional relationships between specific receptors and the control of walking behavior remain poorly understood. To identify these interactions, we manipulated serotonergic, dopaminergic, and noradrenergic neural pathways pharmacologically during locomotion enabled by electrical spinal cord stimulation in adult spinal rats in vivo. Using advanced neurobiomechanical recordings and multidimensional statistical procedures, we reveal that each monoaminergic receptor modulates a broad but distinct spectrum of kinematic, kinetic and EMG characteristics, which we expressed into receptor–specific functional maps. We then exploited this catalogue of monoaminergic tuning functions to devise optimal pharmacological combinations to encourage locomotion in paralyzed rats. We found that, in most cases, receptor-specific modulatory influences summed near algebraically when stimulating multiple pathways concurrently. Capitalizing on these predictive interactions, we elaborated a multidimensional monoaminergic intervention that restored coordinated hindlimb locomotion with normal levels of weight bearing and partial equilibrium maintenance in spinal rats. These findings provide new perspectives on the functions of and interactions between spinal monoaminergic receptor systems in producing stepping, and define a framework to tailor pharmacotherapies for improving neurological functions after CNS disorders. PMID:21697376

  8. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  9. Evaluating biomarkers for prognostic enrichment of clinical trials.

    PubMed

    Kerr, Kathleen F; Roth, Jeremy; Zhu, Kehao; Thiessen-Philbrook, Heather; Meisner, Allison; Wilson, Francis Perry; Coca, Steven; Parikh, Chirag R

    2017-12-01

    A potential use of biomarkers is to assist in prognostic enrichment of clinical trials, where only patients at relatively higher risk for an outcome of interest are eligible for the trial. We investigated methods for evaluating biomarkers for prognostic enrichment. We identified five key considerations when considering a biomarker and a screening threshold for prognostic enrichment: (1) clinical trial sample size, (2) calendar time to enroll the trial, (3) total patient screening costs and the total per-patient trial costs, (4) generalizability of trial results, and (5) ethical evaluation of trial eligibility criteria. Items (1)-(3) are amenable to quantitative analysis. We developed the Biomarker Prognostic Enrichment Tool for evaluating biomarkers for prognostic enrichment at varying levels of screening stringency. We demonstrate that both modestly prognostic and strongly prognostic biomarkers can improve trial metrics using Biomarker Prognostic Enrichment Tool. Biomarker Prognostic Enrichment Tool is available as a webtool at http://prognosticenrichment.com and as a package for the R statistical computing platform. In some clinical settings, even biomarkers with modest prognostic performance can be useful for prognostic enrichment. In addition to the quantitative analysis provided by Biomarker Prognostic Enrichment Tool, investigators must consider the generalizability of trial results and evaluate the ethics of trial eligibility criteria.

  10. Multidimensional Perfectionism and the Self

    ERIC Educational Resources Information Center

    Ward, Andrew M.; Ashby, Jeffrey S.

    2008-01-01

    This study examined multidimensional perfectionism and self-development. Two hundred seventy-one undergraduates completed a measure of multidimensional perfectionism and two Kohutian measures designed to measure aspects of self-development including social connectedness, social assurance, goal instability (idealization), and grandiosity. The…

  11. Dynamic Cross-Entropy.

    PubMed

    Aur, Dorian; Vila-Rodriguez, Fidel

    2017-01-01

    Complexity measures for time series have been used in many applications to quantify the regularity of one dimensional time series, however many dynamical systems are spatially distributed multidimensional systems. We introduced Dynamic Cross-Entropy (DCE) a novel multidimensional complexity measure that quantifies the degree of regularity of EEG signals in selected frequency bands. Time series generated by discrete logistic equations with varying control parameter r are used to test DCE measures. Sliding window DCE analyses are able to reveal specific period doubling bifurcations that lead to chaos. A similar behavior can be observed in seizures triggered by electroconvulsive therapy (ECT). Sample entropy data show the level of signal complexity in different phases of the ictal ECT. The transition to irregular activity is preceded by the occurrence of cyclic regular behavior. A significant increase of DCE values in successive order from high frequencies in gamma to low frequencies in delta band reveals several phase transitions into less ordered states, possible chaos in the human brain. To our knowledge there are no reliable techniques able to reveal the transition to chaos in case of multidimensional times series. In addition, DCE based on sample entropy appears to be robust to EEG artifacts compared to DCE based on Shannon entropy. The applied technique may offer new approaches to better understand nonlinear brain activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. An Environmentally Sensitive Fluorescent Dye as a Multidimensional Probe of Amyloid Formation

    PubMed Central

    2016-01-01

    We have explored amyloid formation using poly(amino acid) model systems in which differences in peptide secondary structure and hydrophobicity can be introduced in a controlled manner. We show that an environmentally sensitive fluorescent dye, dapoxyl, is able to identify β-sheet structure and hydrophobic surfaces, structural features likely to be related to toxicity, as a result of changes in its excitation and emission profiles and its relative quantum yield. These results show that dapoxyl is a multidimensional probe of the time dependence of amyloid aggregation, which provides information about the presence and nature of metastable aggregation intermediates that is inaccessible to the conventional probes that rely on changes in quantum yield alone. PMID:26865546

  13. Finite element concepts in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.

  14. Evaluation of Student Performance through a Multidimensional Finite Mixture IRT Model.

    PubMed

    Bacci, Silvia; Bartolucci, Francesco; Grilli, Leonardo; Rampichini, Carla

    2017-01-01

    In the Italian academic system, a student can enroll for an exam immediately after the end of the teaching period or can postpone it; in this second case the exam result is missing. We propose an approach for the evaluation of a student performance throughout the course of study, accounting also for nonattempted exams. The approach is based on an item response theory model that includes two discrete latent variables representing student performance and priority in selecting the exams to take. We explicitly account for nonignorable missing observations as the indicators of attempted exams also contribute to measure the performance (within-item multidimensionality). The model also allows for individual covariates in its structural part.

  15. Overexpression of MutSα Complex Proteins Predicts Poor Prognosis in Oral Squamous Cell Carcinoma.

    PubMed

    Wagner, Vivian Petersen; Webber, Liana Preto; Salvadori, Gabriela; Meurer, Luise; Fonseca, Felipe Paiva; Castilho, Rogério Moraes; Squarize, Cristiane Helena; Vargas, Pablo Agustin; Martins, Manoela Domingues

    2016-05-01

    The DNA mismatch repair (MMR) system is responsible for the detection and correction of errors created during DNA replication, thereby avoiding the incorporation of mutations in dividing cells. The prognostic value of alterations in MMR system has not previously been analyzed in oral squamous cell carcinoma (OSCC).The study comprised 115 cases of OSCC diagnosed between 1996 and 2010. The specimens collected were constructed into tissue microarray blocks. Immunohistochemical staining for MutSα complex proteins hMSH2 and hMSH6 was performed. The slides were subsequently scanned into high-resolution images, and nuclear staining of hMSH2 and hMSH6 was analyzed using the Nuclear V9 algorithm. Univariable and multivariable Cox proportional hazard regression models were performed to evaluate the prognostic value of hMSH2 and hMSH6 in OSCC.All cases in the present cohort were positive for hMSH2 and hMSH6 and a direct correlation was found between the expression of the proteins (P < 0.05). The mean number of positive cells for hMSH2 and hMSH6 was 64.44 ± 15.21 and 31.46 ± 22.38, respectively. These values were used as cutoff points to determine high protein expression. Cases with high expression of both proteins simultaneously were classified as having high MutSα complex expression. In the multivariable analysis, high expression of the MutSα complex was an independent prognostic factor for poor overall survival (hazard ratio: 2.75, P = 0.02).This study provides a first insight of the prognostic value of alterations in MMR system in OSCC. We found that MutSα complex may constitute a molecular marker for the poor prognosis of OSCC.

  16. Characterization of perineural invasion as a component of colorectal cancer staging.

    PubMed

    Ueno, Hideki; Shirouzu, Kazuo; Eishi, Yoshinobu; Yamada, Kazutaka; Kusumi, Takaya; Kushima, Ryoji; Ikegami, Masahiro; Murata, Akihiko; Okuno, Kiyotaka; Sato, Toshihiko; Ajioka, Yoichi; Ochiai, Atsushi; Shimazaki, Hideyuki; Nakamura, Takahiro; Kawachi, Hiroshi; Kojima, Motohiro; Akagi, Yoshito; Sugihara, Kenichi

    2013-10-01

    Perineural invasion (PN) in colorectal cancer (CRC) is a site-specific prognostic marker, as mentioned by the AJCC Cancer Staging Manual, but it remains to be clearly defined. We aimed to identify an optimal characterization of PN as a component of cancer staging. On the basis of the anatomic features of the nervous system of the large bowel, site-specific pathologic criteria were assigned to PN according to the location of PN. Multi-institutional pathologic review based on these criteria was performed for 962 patients with stage I to III CRC at 2 institutions (1999 to 2004, cohort 1) and 1883 patients from 8 other institutions (2000 to 2004, cohort 2). In cohort 1, intramural and extramural PN were observed in 152 and 101 patients, respectively, which had a different impact on disease-free survival (hazard ratio, 2.6 [1.9 to 3.5] vs. 4.7 [3.4 to 6.5], respectively). A 3-tiered grading system (Pn0; Pn1a, intramural PN; Pn1b, extramural PN) distinguished 5-year disease-free survival as 88%, 70%, and 48%, respectively; and multivariate analysis identified PN grade as a significant prognostic marker independent of T or N stage. These results were similar in cohort 2. Interinstitutional difference of the prognostic impact of PN grade was acceptably small among all institutions. Interobserver study among 6 gastrointestinal pathologists showed superior judgment reproducibility for PN compared with vascular invasion. The results of our study indicate that PN is an important prognostic marker in CRC. The value of cancer staging could be enhanced by PN assessment using site-specific criteria and a simple grading system based on PN location within the bowel.

  17. Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks.

    PubMed

    de la Vega de León, Antonio; Bajorath, Jürgen

    2016-09-01

    The concept of chemical space is of fundamental relevance for medicinal chemistry and chemical informatics. Multidimensional chemical space representations are coordinate-based. Chemical space networks (CSNs) have been introduced as a coordinate-free representation. A computational approach is presented for the transformation of multidimensional chemical space into CSNs. The design of transformation CSNs (TRANS-CSNs) is based upon a similarity function that directly reflects distance relationships in original multidimensional space. TRANS-CSNs provide an immediate visualization of coordinate-based chemical space and do not require the use of dimensionality reduction techniques. At low network density, TRANS-CSNs are readily interpretable and make it possible to evaluate structure-activity relationship information originating from multidimensional chemical space.

  18. Clinical Prediction Models for Patients With Nontraumatic Knee Pain in Primary Care: A Systematic Review and Internal Validation Study.

    PubMed

    Panken, Guus; Verhagen, Arianne P; Terwee, Caroline B; Heymans, Martijn W

    2017-08-01

    Study Design Systematic review and validation study. Background Many prognostic models of knee pain outcomes have been developed for use in primary care. Variability among published studies with regard to patient population, outcome measures, and relevant prognostic factors hampers the generalizability and implementation of these models. Objectives To summarize existing prognostic models in patients with knee pain in a primary care setting and to develop and internally validate new summary prognostic models. Methods After a sensitive search strategy, 2 reviewers independently selected prognostic models for patients with nontraumatic knee pain and assessed the methodological quality of the included studies. All predictors of the included studies were evaluated, summarized, and classified. The predictors assessed in multiple studies of sufficient quality are presented in this review. Using data from the Musculoskeletal System Study (BAS) cohort of patients with a new episode of knee pain, recruited consecutively by Dutch general medical practitioners (n = 372), we used predictors with a strong level of evidence to develop new prognostic models for each outcome measure and internally validated these models. Results Sixteen studies were eligible for inclusion. We considered 11 studies to be of sufficient quality. None of these studies validated their models. Five predictors with strong evidence were related to function and 6 to recovery, and were used to compose 2 prognostic models for patients with knee pain at 1 year. Running these new models in another data set showed explained variances (R 2 ) of 0.36 (function) and 0.33 (recovery). The area under the curve of the recovery model was 0.79. After internal validation, the adjusted R 2 values of the models were 0.30 (function) and 0.20 (recovery), and the area under the curve was 0.73. Conclusion We developed 2 valid prognostic models for function and recovery for patients with nontraumatic knee pain, based on predictors with strong evidence. A longer duration of complaints predicted poorer function but did not adequately predict chance of recovery. Level of Evidence Prognosis, levels 1a and 1b. J Orthop Sports Phys Ther 2017;47(8):518-529. Epub 16 Jun 2017. doi:10.2519/jospt.2017.7142.

  19. Prognostic models for predicting posttraumatic seizures during acute hospitalization, and at 1 and 2 years following traumatic brain injury.

    PubMed

    Ritter, Anne C; Wagner, Amy K; Szaflarski, Jerzy P; Brooks, Maria M; Zafonte, Ross D; Pugh, Mary Jo V; Fabio, Anthony; Hammond, Flora M; Dreer, Laura E; Bushnik, Tamara; Walker, William C; Brown, Allen W; Johnson-Greene, Doug; Shea, Timothy; Krellman, Jason W; Rosenthal, Joseph A

    2016-09-01

    Posttraumatic seizures (PTS) are well-recognized acute and chronic complications of traumatic brain injury (TBI). Risk factors have been identified, but considerable variability in who develops PTS remains. Existing PTS prognostic models are not widely adopted for clinical use and do not reflect current trends in injury, diagnosis, or care. We aimed to develop and internally validate preliminary prognostic regression models to predict PTS during acute care hospitalization, and at year 1 and year 2 postinjury. Prognostic models predicting PTS during acute care hospitalization and year 1 and year 2 post-injury were developed using a recent (2011-2014) cohort from the TBI Model Systems National Database. Potential PTS predictors were selected based on previous literature and biologic plausibility. Bivariable logistic regression identified variables with a p-value < 0.20 that were used to fit initial prognostic models. Multivariable logistic regression modeling with backward-stepwise elimination was used to determine reduced prognostic models and to internally validate using 1,000 bootstrap samples. Fit statistics were calculated, correcting for overfitting (optimism). The prognostic models identified sex, craniotomy, contusion load, and pre-injury limitation in learning/remembering/concentrating as significant PTS predictors during acute hospitalization. Significant predictors of PTS at year 1 were subdural hematoma (SDH), contusion load, craniotomy, craniectomy, seizure during acute hospitalization, duration of posttraumatic amnesia, preinjury mental health treatment/psychiatric hospitalization, and preinjury incarceration. Year 2 significant predictors were similar to those of year 1: SDH, intraparenchymal fragment, craniotomy, craniectomy, seizure during acute hospitalization, and preinjury incarceration. Corrected concordance (C) statistics were 0.599, 0.747, and 0.716 for acute hospitalization, year 1, and year 2 models, respectively. The prognostic model for PTS during acute hospitalization did not discriminate well. Year 1 and year 2 models showed fair to good predictive validity for PTS. Cranial surgery, although medically necessary, requires ongoing research regarding potential benefits of increased monitoring for signs of epileptogenesis, PTS prophylaxis, and/or rehabilitation/social support. Future studies should externally validate models and determine clinical utility. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  20. Prognostic value of pretreatment albumin/globulin ratio in digestive system cancers: A meta-analysis.

    PubMed

    Guo, Hui-Wen; Yuan, Tang-Zhan; Chen, Jia-Xi; Zheng, Yang

    2018-01-01

    The albumin/globulin ratio (AGR) has been widely reported to be a potential predictor of prognosis in digestive system cancers (DSCs), but convincing conclusions have not been made. Therefore, herein, we performed a meta-analysis of relevant studies regarding this topic to evaluate the prognostic value of AGR in patients with DSCs. Three databases, including PubMed, EMBase, and Web of science, were searched comprehensively for eligible studies through September 8, 2017. The outcomes of interest included overall survival (OS), disease-free survival (DFS), and cancer-specific survival (CSS). In our meta-analysis, pooled analysis of 13 studies with 9269 patients showed that a low AGR was significantly correlated with poor OS (HR = 1.94; 95% CI: 1.57-2.38; P <0.001). Five studies with 6538 participants involved DFS, and our pooled analysis of these studies also demonstrated that there was a significant association of a low AGR with worse DFS (HR = 1.49; 95% CI: 1.10 to 2.00; P < 0.001). In addition, only 2 studies referred to CSS, and we also detected a significant relationship between a low AGR and worse CSS from the results of our meta-analysis. In summary, a low pretreatment AGR was related to unfavorable survival in human digestive system cancers. A low pretreatment AGR may be a useful predictive prognostic biomarker in human digestive system cancers.

  1. Prognostic significance of pretreatment plasma fibrinogen level in patients with digestive system tumors: a meta-analysis.

    PubMed

    Ji, Rui; Ren, Qian; Bai, Suyang; Wang, Yuping; Zhou, Yongning

    2018-06-01

    High pretreatment levels of plasma fibrinogen have been widely reported to be a potential predictor of prognosis in digestive system tumors; however, the conclusions are not consistent. Therefore, we performed a meta-analysis to comprehensively assess the prognostic roles of high pretreatment plasma fibrinogen levels in digestive system tumors. We searched for eligible studies in the PubMed, Embase, and Web of Science electronic databases for publications from the database inception to 1 September 2017. The endpoints of interest included overall survival, disease-free survival, and recurrence-free survival. We investigated the relationship between fibrinogenemia and overall survival in colorectal cancer (10 studies), gastric cancer (6), pancreatic cancer (6), hepatocellular carcinoma (7), and esophageal squamous cell carcinoma (10); the pooled results indicated that fibrinogenemia was significantly related to a worse overall survival (hazard ratio (HR) 1.73; 95% confidence interval (CI) 1.52, 1.97; P <0.001; HR 1.71; 95% CI 1.28, 2.28; P <0.001; HR 1.57; 95% CI 1.13, 2.17; P = 0.007; HR 1.89; 95% CI 1.57, 2.27; P <0.001, and HR 1.67; 95% CI 1.35, 2.07; P <0.001). Taken together, an increased pretreatment plasma fibrinogen level was related to worse survival in digestive system tumors, indicating that it could be a useful prognostic marker in these types of tumors.

  2. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  3. Prognostic Value of MACC1 in Digestive System Neoplasms: A Systematic Review and Meta-Analysis

    PubMed Central

    Wu, Zhenzhen; Zhou, Rui; Su, Yuqi; Sun, Li; Liao, Yulin; Liao, Wangjun

    2015-01-01

    Metastasis associated in colon cancer 1 (MACC1), a newly identified oncogene, has been associated with poor survival of cancer patients by multiple studies. However, the prognostic value of MACC1 in digestive system neoplasms needs systematic evidence to verify. Therefore, we aimed to provide further evidence on this topic by systematic review and meta-analysis. Literature search was conducted in multiple databases and eligible studies analyzing survival data and MACC1 expression were included for meta-analysis. Hazard ratio (HR) for clinical outcome was chosen as an effect measure of interest. According to our inclusion criteria, 18 studies with a total of 2,948 patients were identified. Pooled HRs indicated that high MACC1 expression significantly correlates with poorer OS in patients with digestive system neoplasms (HR = 1.94; 95% CI: 1.49–2.53) as well as poorer relapse-free survival (HR = 1.94, 95% CI: 1.33–2.82). The results of subgroup studies categorized by methodology, anatomic structure, and cancer subtype for pooled OS were all consistent with the overall pooled HR for OS as well. No publication bias was detected according to test of funnel plot asymmetry and Egger's test. In conclusion, high MACC1 expression may serve as a prognostic biomarker to guide individualized management in clinical practice for digestive system neoplasms. PMID:26090393

  4. Prognostic Value of MACC1 in Digestive System Neoplasms: A Systematic Review and Meta-Analysis.

    PubMed

    Wu, Zhenzhen; Zhou, Rui; Su, Yuqi; Sun, Li; Liao, Yulin; Liao, Wangjun

    2015-01-01

    Metastasis associated in colon cancer 1 (MACC1), a newly identified oncogene, has been associated with poor survival of cancer patients by multiple studies. However, the prognostic value of MACC1 in digestive system neoplasms needs systematic evidence to verify. Therefore, we aimed to provide further evidence on this topic by systematic review and meta-analysis. Literature search was conducted in multiple databases and eligible studies analyzing survival data and MACC1 expression were included for meta-analysis. Hazard ratio (HR) for clinical outcome was chosen as an effect measure of interest. According to our inclusion criteria, 18 studies with a total of 2,948 patients were identified. Pooled HRs indicated that high MACC1 expression significantly correlates with poorer OS in patients with digestive system neoplasms (HR = 1.94; 95% CI: 1.49-2.53) as well as poorer relapse-free survival (HR = 1.94, 95% CI: 1.33-2.82). The results of subgroup studies categorized by methodology, anatomic structure, and cancer subtype for pooled OS were all consistent with the overall pooled HR for OS as well. No publication bias was detected according to test of funnel plot asymmetry and Egger's test. In conclusion, high MACC1 expression may serve as a prognostic biomarker to guide individualized management in clinical practice for digestive system neoplasms.

  5. Imaging evaluation of traumatic thoracolumbar spine injuries: Radiological review

    PubMed Central

    Gamanagatti, Shivanand; Rathinam, Deepak; Rangarajan, Krithika; Kumar, Atin; Farooque, Kamran; Sharma, Vijay

    2015-01-01

    Spine fractures account for a large portion of musculoskeletal injuries worldwide. A classification of spine fractures is necessary in order to develop a common language for treatment indications and outcomes. Several classification systems have been developed based on injury anatomy or mechanisms of action, but they have demonstrated poor reliability, have yielded little prognostic information, and have not been widely used. For this reason, the Arbeitsgemeinschaftfür Osteosynthesefragen (AO) committee has classified thorocolumbar spine injuries based on the pathomorphological criteria into3 types (A: Compression; B: Distraction; C: Axial torque and rotational deformity). Each of these types is further divided into 3 groups and 3 subgroups reflecting progressive scale of morphological damage and the degree of instability. Because of its highly detailed sub classifications, the AO system has shown limited interobserver variability. It is similar to its predecessors in that it does not incorporate the patient’s neurologic status.The need for a reliable, reproducible, clinically relevant, prognostic classification system with an optimal balance of ease of use and detail of injury description contributed to the development of a new classification system, the thoracolumbar injury classification and severity score (TLICS). The TLICS defines injury based on three clinical characteristics: injury morphology, integrity of the posterior ligamentous complex, and neurologic status of the patient. The severity score offers prognostic information and is helpful in decision making about surgical vs nonsurgical management. PMID:26435776

  6. The Fuhrman grading system has no prognostic value in patients with nonsarcomatoid chromophobe renal cell carcinoma.

    PubMed

    Steffens, Sandra; Janssen, Martin; Roos, Frederik C; Becker, Frank; Steinestel, Julie; Abbas, Mahmoud; Steinestel, Konrad; Wegener, Gerd; Siemer, Stefan; Thüroff, Joachim W; Hofmann, Rainer; Stöckle, Michael; Schrader, Mark; Hartmann, Arndt; Hasenfus, Andrea; Kuczyk, Markus A; Junker, Kerstin; Schrader, Andres J

    2014-12-01

    The prognostic value of the Fuhrman nuclear grading system has been questioned for chromophobe renal cell carcinoma (chRCC) because this subtype frequently displays nuclear and nucleolar pleomorphism. The present study reevaluates this grading system in a series of patients with nonsarcomatoid chRCC. We identified 176 patients (3.6%) with nonsarcomatoid chRCC in a total of 4897 patients who underwent surgery for renal cell carcinoma at 5 centers in Germany between 1990 and 2010. The mean follow-up was 51.1 months. The 3 groups (G1 versus G2 versus G3/4) were comparable in terms of age, sex, tumor diameter, and lymph node metastasis. They only differed significantly in tumor stage (P = .01) and the incidence of synchronous visceral metastasis (P = .04). The 5-year cancer-specific survival rates were 84.4% for G1 (n = 32), 84.3% for G2 (n = 108), and 74.1% for G3/4 tumors (n = 33) (P = .58). Accordingly, multivariate analysis including age, sex, tumor stage, and metastatic disease did not identify Fuhrman grading as an independent predictor of cancer-specific survival in patients with chRCC (P = .4). We were able to demonstrate in a large multicenter cohort that the Fuhrman grading system does not qualify as a prognostic tool in patients with chRCC. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. P21, COX-2, and E-cadherin are potential prognostic factors for esophageal squamous cell carcinoma.

    PubMed

    Lin, Yao; Shen, Lu-Yan; Fu, Hao; Dong, Bin; Yang, He-Li; Yan, Wan-Pu; Kang, Xiao-Zheng; Dai, Liang; Zhou, Hai-Tao; Yang, Yong-Bo; Liang, Zhen; Chen, Ke-Neng

    2017-02-01

    Much research effort has been devoted to identifying prognostic factors for esophageal squamous cell carcinoma (ESCC) by immunohistochemistry; however, no conclusive findings have been reached thus far. We hypothesized that certain molecules identified in previous studies might serve as useful prognostic markers for ESCC. Therefore, the aim of the current study was to validate the most relevant markers showing potential for ESCC prognosis in our prospective esophageal cancer database. A literature search was performed using the PubMed database for papers published between 1980 and 2015 using the following key words: 'esophageal cancer,' 'prognosis,' and 'immunohistochemistry.' Literature selection criteria were established to identify the most widely studied markers, and we further validated the selected markers in a cohort from our single-surgeon team, including 153 esophageal cancer patients treated from 2000 to 2010. A total of 1799 articles were identified, 82 of which met the selection criteria. Twelve markers were found to be the most widely studied, and the validation results indicated that only P21, COX-2, and E-cadherin were independent prognostic factors for ESCC patients in this series. The systemic review and cohort validation suggest that P21, COX-2, and E-cadherin are potential prognostic factors for ESCC, paving the way for more targeted prospective validation in the future. © 2016 International Society for Diseases of the Esophagus.

  8. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    PubMed

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P < 0.01). A clinically useful classification tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  9. Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes. Grupo Cooperativo Español de Citogenética Hematológica.

    PubMed

    Solé, F; Espinet, B; Sanz, G F; Cervera, J; Calasanz, M J; Luño, E; Prieto, F; Granada, I; Hernández, J M; Cigudosa, J C; Diez, J L; Bureo, E; Marqués, M L; Arranz, E; Ríos, R; Martínez Climent, J A; Vallespí, T; Florensa, L; Woessner, S

    2000-02-01

    Recently, a consensus International Prognostic Scoring System (IPSS) for predicting outcome and planning therapy in the myelodysplastic syndromes (MDS) has been developed. However, the intermediate-risk cytogenetic subgroup defined by the IPSS includes a miscellaneous number of different single abnormalities for which real prognosis at present is uncertain. The main aims of this study were to evaluate in an independent series the prognostic value of the IPSS and to identify chromosomal abnormalities with a previously unrecognized good or poor prognosis in 640 patients. In univariate analyses, cases with single 1q abnormalities experienced poor survival, whereas those with trisomy 8 had a higher risk of acute leukaemic transformation than the remaining patients (P = 0.004 and P = 0.009 respectively). Patients with single del(12p) had a similar survival to patients with a normal karyotype and showed some trend for a better survival than other cases belonging to the IPSS intermediate-risk cytogenetic subgroup (P = 0.045). Multivariate analyses demonstrated that IPSS cytogenetic prognostic subgroup, proportion of bone marrow blasts and haemoglobin level were the main prognostic factors for survival, and the first two characteristics and platelet count were the best predictors of acute leukaemic transformation risk. A large international co-operative study should be carried out to clarify these findings.

  10. Coding Strategies and Implementations of Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

  11. Multidimensional poverty and catastrophic health spending in the mountainous regions of Myanmar, Nepal and India.

    PubMed

    Mohanty, Sanjay K; Agrawal, Nand Kishor; Mahapatra, Bidhubhusan; Choudhury, Dhrupad; Tuladhar, Sabarnee; Holmgren, E Valdemar

    2017-01-18

    Economic burden to households due to out-of-pocket expenditure (OOPE) is large in many Asian countries. Though studies suggest increasing household poverty due to high OOPE in developing countries, studies on association of multidimensional poverty and household health spending is limited. This paper tests the hypothesis that the multidimensionally poor are more likely to incur catastrophic health spending cutting across countries. Data from the Poverty and Vulnerability Assessment (PVA) Survey carried out by the International Center for Integrated Mountain Development (ICIMOD) has been used in the analyses. The PVA survey was a comprehensive household survey that covered the mountainous regions of India, Nepal and Myanmar. A total of 2647 households from India, 2310 households in Nepal and 4290 households in Myanmar covered under the PVA survey. Poverty is measured in a multidimensional framework by including the dimensions of education, income and energy, water and sanitation using the Alkire and Foster method. Health shock is measured using the frequency of illness, family sickness and death of any family member in a reference period of one year. Catastrophic health expenditure is defined as 40% above the household's capacity to pay. Results suggest that about three-fifths of the population in Myanmar, two-fifths of the population in Nepal and one-third of the population in India are multidimensionally poor. About 47% of the multidimensionally poor in India had incurred catastrophic health spending compared to 35% of the multidimensionally non-poor and the pattern was similar in both Nepal and Myanmar. The odds of incurring catastrophic health spending was 56% more among the multidimensionally poor than among the multidimensionally non-poor [95% CI: 1.35-1.76]. While health shocks to households are consistently significant predictors of catastrophic health spending cutting across country of residence, the educational attainment of the head of the household is not significant. The multidimensionally poor in the poorer regions are more likely to face health shocks and are less likely to afford professional health services. Increasing government spending on health and increasing households' access to health insurance can reduce catastrophic health spending and multidimensional poverty.

  12. The tumor-stromal ratio as a strong prognosticator for advanced gastric cancer patients: proposal of a new TSNM staging system.

    PubMed

    Peng, Chunwei; Liu, Jiuyang; Yang, Guifang; Li, Yan

    2018-05-01

    Insufficient attention is paid to the underlying tumor microenvironment (TME) evolution, that resulting in tumor heterogeneity and driving differences in cancer aggressiveness and treatment outcomes. The morphological evaluation of the proportion of the stroma at the most invasive part of primary tumor (tumor-stromal ratio, TSR) in cancer is gaining momentum as evidence strengthens for the clinical relevance. Tissue samples from the most invasive part of the primary gastric cancer (GC) of 494 patients were analyzed for their TSR, and a new TSNM (tumor-stromal node metastasis) staging system based on patho-biological behaviors was established and assessed. TSR is a new and strong independent prognostic factor for GC patients. The likelihood of tumor invasion is increased significantly for patients in the stromal-high subgroup compared to those in the stromal-low subgroup (P = 0.011). The discrimination ability of TSR was not less than the TNM staging system and was better in patients with stages I and II GC. We integrated the TSR parameter into the TNM staging system and proposed a new TSNM staging system creatively. There were three new subgroups (IC, IIC, IIID). There were four major groups and 10 subgroups in the TSNM system. The difference in overall survival (OS) was statistically significant among all TSNM system (P < 0.005 for all). Deep analyses revealed well predictive performance of the TSNM (P < 0.001). This study confirms the TSR as a TME prognostic factor for GC. TSR is a candidate TME parameter that could easily be implemented in routine pathology diagnostics, and the TSNM staging system has been established to optimize risk stratification for GC. The value of the TSNM staging system should be validated in further prospective study.

  13. Validation of the CPS+EG and Neo-Bioscore staging systems after preoperative systemic therapy for breast cancer in a single center in China.

    PubMed

    Xu, Ling; Duan, Xuening; Zhou, Bin; Liu, Yinhua; Ye, Jingming; Liu, Zhaorui; Ma, Chao; Zhang, Hong; Zhang, Shuang; Zhang, Lanbo; Zhao, Jianxin; Cheng, Yuanjia

    2018-04-17

    Prognostic assessment after preoperative systemic therapy (PST) plays a vital role in determining treatment in breast cancer patients. Many researchers have sought to develop a system to quantitate residual tumor and its correlation with prognosis after PST. This retrospective study validated the CPS + EG staging system and Neo-Bioscore in a single center in China. Data from patients with non-metastatic primary breast cancer who were treated with PST and surgery from Jan. 2008 to Dec. 2014 at the Breast Disease Center of Peking University First Hospital, China, were reviewed. DFS, DSS and OS were calculated using the K-M curve and AUC. Multivariate analysis was used for a Cox proportional hazards model. All calculations were performed with SAS 9.4. A total of 403 patients were enrolled in this study. The median follow-up period was 45 (range 11-107) months. The five-year DFS, DSS and OS rates were 86.4%, 91.2% and 90.5%, respectively. The CS, PS, CPS + EG staging system and Neo-Bioscore stratified patients according to DFS, DSS, and OS after PST, with all P values < 0.0001. The CPS + EG staging system and Neo-Bioscore stratified prognosis after PST better than CS. HER2-positive patients without trastuzumab treatment had obviously worse DFS and OS than other subgroups with different HER2 statuses that scored a 3 in the Neo-Bioscore system. The CPS + EG staging system and Neo-Bioscore can improve prognostic prediction in non-pCR breast cancer patients after PST and, provided unfavorable prognostic factors such as insufficient treatment are incorporated, will have broader clinical applicability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Implementation and evaluation of a hypercube-based method for spatiotemporal exploration and analysis

    NASA Astrophysics Data System (ADS)

    Marchand, Pierre; Brisebois, Alexandre; Bédard, Yvan; Edwards, Geoffrey

    This paper presents the results obtained with a new type of spatiotemporal topological dimension implemented within a hypercube, i.e., within a multidimensional database (MDDB) structure formed by the conjunction of several thematic, spatial and temporal dimensions. Our goal is to support efficient SpatioTemporal Exploration and Analysis (STEA) in the context of Automatic Position Reporting System (APRS), the worldwide amateur radio system for position report transmission. Mobile APRS stations are equipped with GPS navigation systems to provide real-time positioning reports. Previous research about the multidimensional approach has proved good potential for spatiotemporal exploration and analysis despite a lack of explicit topological operators (spatial, temporal and spatiotemporal). Our project implemented such operators through a hierarchy of operators that are applied to pairs of instances of objects. At the top of the hierarchy, users can use simple operators such as "same place", "same time" or "same time, same place". As they drill down into the hierarchy, more detailed topological operators are made available such as "adjacent immediately after", "touch during" or more detailed operators. This hierarchy is structured according to four levels of granularity based on cognitive models, generalized relationships and formal models of topological relationships. In this paper, we also describe the generic approach which allows efficient STEA within the multidimensional approach. Finally, we demonstrate that such an implementation offers query run times which permit to maintain a "train-of-thought" during exploration and analysis operations as they are compatible with Newell's cognitive band (query runtime<10 s) (Newell, A., 1990. Unified theories of cognition. Harvard University Press, Cambridge MA, 549 p.).

  15. NASA IVHM Technology Experiment for X-vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Sandra, Hayden; Bajwa, Anupa

    2001-01-01

    The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.

  16. Prediction of clinical behaviour and treatment for cancers.

    PubMed

    Futschik, Matthias E; Sullivan, Mike; Reeve, Anthony; Kasabov, Nikola

    2003-01-01

    Prediction of clinical behaviour and treatment for cancers is based on the integration of clinical and pathological parameters. Recent reports have demonstrated that gene expression profiling provides a powerful new approach for determining disease outcome. If clinical and microarray data each contain independent information then it should be possible to combine these datasets to gain more accurate prognostic information. Here, we have used existing clinical information and microarray data to generate a combined prognostic model for outcome prediction for diffuse large B-cell lymphoma (DLBCL). A prediction accuracy of 87.5% was achieved. This constitutes a significant improvement compared to the previously most accurate prognostic model with an accuracy of 77.6%. The model introduced here may be generally applicable to the combination of various types of molecular and clinical data for improving medical decision support systems and individualising patient care.

  17. Prognostic value of the new Grade Groups in Prostate Cancer: a multi-institutional European validation study.

    PubMed

    Mathieu, R; Moschini, M; Beyer, B; Gust, K M; Seisen, T; Briganti, A; Karakiewicz, P; Seitz, C; Salomon, L; de la Taille, A; Rouprêt, M; Graefen, M; Shariat, S F

    2017-06-01

    We aimed to assess the prognostic relevance of the new Grade Groups in Prostate Cancer (PCa) within a large cohort of European men treated with radical prostatectomy (RP). Data from 27 122 patients treated with RP at seven European centers were analyzed. We investigated the prognostic performance of the new Grade Groups (based on Gleason score 3+3, 3+4, 4+3, 8 and 9-10) on biopsy and RP specimen, adjusted for established clinical and pathological characteristics. Multivariable Cox proportional hazards regression models assessed the association of new Grade Groups with biochemical recurrence (BCR). Prognostic accuracies of the models were assessed using Harrell's C-index. Median follow-up was 29 months (interquartile range, 13-54). The 4-year estimated BCR-free survival (bRFS) for biopsy Grade Groups 1-5 were 91.3, 81.6, 69.8, 60.3 and 44.4%, respectively. The 4-year estimated bRFS for RP Grade Groups 1-5 were 96.1%, 86.7%, 67.0%, 63.1% and 41.0%, respectively. Compared with Grade Group 1, all other Grade Groups based both on biopsy and RP specimen were independently associated with a lower bRFS (all P<0.01). Adjusted pairwise comparisons revealed statistically differences between all Grade Groups, except for group 3 and 4 on RP specimen (P=0.10). The discriminations of the multivariable base prognostic models based on the current three-tier and the new five-tier systems were not clinically different (0.3 and 0.9% increase in discrimination for clinical and pathological model). We validated the independent prognostic value of the new Grade Groups on biopsy and RP specimen from European PCa men. However, it does not improve the accuracies of prognostic models by a clinically significant margin. Nevertheless, this new classification may help physicians and patients estimate disease aggressiveness with a user-friendly, clinically relevant and reproducible method.

  18. Prognostic value of interleukin-6 and interleukin-6 receptor in organ-confined clear-cell renal cell carcinoma: a 5-year conditional cancer-specific survival analysis.

    PubMed

    Fu, Qiang; Chang, Yuan; An, Huimin; Fu, Hangcheng; Zhu, Yu; Xu, Le; Zhang, Weijuan; Xu, Jiejie

    2015-12-01

    Interleukin-6 (IL-6) is the major cytokine that induces transcriptional acute and chronic inflammation responses, and was recently incorporated as a recurrence prognostication signature for localised clear-cell renal cell carcinoma (ccRCC). As the prognostic efficacy of initial risk factors may ebb during long-term practice, we aim to report conditional cancer-specific survival (CCSS) of RCC patients and evaluate the impact of IL-6 as well as its receptor (IL-6R) to offer more relevant prognostic information accounting for elapsing time. We enrolled 180 histologically proven localised ccRCC patients who underwent nephrectomy between 2001 and 2004 with available pathologic information. Five-year CCSS was determined and stratified by future prognostic factors. Constant Cox regression analysis and Harrell's concordance index were used to indicate the predictive accuracy of established models. The 5-year CCSS of organ-confined ccRCC patients with both IL-6- and IL-6R-positive expression was 52% at year 2 after surgery, which was close to locally advanced patients (48%, P=0.564) and was significantly poorer than organ-confined patients with IL-6- or IL-6R-negative expression (89%, P<0.001). Multivariate analyses proved IL-6 and IL-6R as independent predictors after adjusting for demographic factors. Concordance index of pT-IL-6-IL-6R risk stratification was markedly higher compared with the stage, size, grade and necrosis prognostic model (0.724 vs 0.669, P=0.002) or UCLA Integrated Staging System (0.724 vs 0.642, P=0.007) in organ-confined ccRCC population during the first 5 years. Combined IL-6 and IL-6R coexpression emerges as an independent early-stage immunologic prognostic factor for organ-confined ccRCC patients.

  19. Outcome and prognostic factors in metastatic urothelial carcinoma patients receiving second-line chemotherapy: an analysis of real-world clinical practice data in Japan.

    PubMed

    Matsumoto, Ryuji; Abe, Takashige; Ishizaki, Junji; Kikuchi, Hiroshi; Harabayashi, Toru; Minami, Keita; Sazawa, Ataru; Mochizuki, Tango; Akino, Tomoshige; Murakumo, Masashi; Osawa, Takahiro; Maruyama, Satoru; Murai, Sachiyo; Shinohara, Nobuo

    2018-06-25

    The objective of the present study was to investigate the survival outcome and prognostic factors of metastatic urothelial carcinoma patients treated with second-line systemic chemotherapy in real-world clinical practice. Overall, 114 patients with metastatic urothelial carcinoma undergoing second-line systemic chemotherapy were included in this retrospective analysis. The dominant second-line chemotherapy was a paclitaxel-based combination regimen (60%, 68/114). We assessed the progression-free survival and overall survival times using the Kaplan-Meier method. The Cox proportional hazards model was applied to identify the factors affecting overall survival. The median progression-free survival and overall survival times were 4 and 9 months, respectively. In the multivariate analysis, an Eastern Cooperative Oncology Group performance status score greater than 0 at presentation, C-reactive protein level ≧1 mg/dl and poor response to prior chemotherapy were adverse prognostic indicators. Patients with 0, 1, 2 and 3 of those risk factors had a median overall survival of 17, 12, 7 and 3 months, respectively. The Eastern Cooperative Oncology Group performance status at presentation, C-reactive protein level and response to prior chemotherapy were prognostic factors for metastatic urothelial carcinoma patients undergoing second-line chemotherapy. In the future, this information might help guide the choice of salvage treatment, such as second-line chemotherapy or immune checkpoint inhibitors, after the failure of first-line chemotherapy.

  20. Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: Key Findings from a Roadmapping Workshop

    PubMed Central

    Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand

    2017-01-01

    The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163

Top