Science.gov

Sample records for multidisciplinary study design

  1. The multi-disciplinary design study. A life cycle cost algorithm

    NASA Technical Reports Server (NTRS)

    Harding, R. R.; Duran, J. M.; Kauffman, R. R.

    1987-01-01

    Life-cycle cost (LCC) is investigated as a comprehensive design criterion for two major interrelated spacecraft subsystems, Controls and Structures. A Multi-Disciplinary Design Tool (MDDT) is developed to evaluate the sensitivity of LCC to subsystem design parameters. Major costs addressed are: non-recurring; launch; ground support; maintenance; expendables; and software. Examples and results from the MDDT are described, including a structural optimization study between different truss designs; a solar array feathering trade for a minimal drag configuration during umbra; and the cost of active control of a flexible structure is compared against the cost of passive damping using visco-elastic material.

  2. Multidisciplinary Approach to Aerospike Nozzle Design

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.

    1997-01-01

    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional finite-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against separate aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single-discipline design strategy.

  3. Multidisciplinary design optimization of optomechanical devices

    NASA Astrophysics Data System (ADS)

    Williams, Antonio St. Clair Lloyd

    2000-11-01

    The current process for designing optomechanical devices typically involves independent design optimization within each discipline. For instance, an optics engineer would optimize the optics of the device for image quality using ray-tracing software. The structural engineer would optimize the design to minimize deformation using the finite element method. Independently optimizing the optics and structures of optomechanical systems negates the possibility of exploiting the interdisciplinary interactions. This can lead to increased product development time and cost. Multidisciplinary Design Optimization (MDO) techniques have been in development over the last decade and have been applied primarily to aerospace problems. The goal of MDO is to take advantage of the interactions between disciplines as well as to improve the product development time. The application of MDO formulations to the design of Optomechanical systems has not been achieved thus far. The aim of this study is to evaluate and develop MDO formulations for optomechanical devices that may be used to reduce the product development time and cost. In addition, the feasibility of obtaining a more global optimum design using these multidisciplinary optimization techniques is investigated. Several MDO formulations were evaluated during this study and compared to the current design optimization process. The formulations evaluated were the Multidisciplinary Design Feasible (MDF), the Sequenced Individual Discipline Feasible (SDO-IDF), and the Sequenced Multidisciplinary Design Feasible (SDO-MDF). The current optimization process is called Independent Design Optimization (IDO). For the examples examined, the results showed that the IDO formulation optimizes each discipline but does not guarantee a multidisciplinary optimum for coupled problems. The SDO-MDF formulation was found to be the least efficient of the formulations examined, while the SDO-IDF showed the most promise in terms of efficiency.

  4. Multidisciplinary Design and Analysis for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.; Freeman, H. JoAnne

    1999-01-01

    Multidisciplinary design and analysis (MDA) has become the normal mode of operation within most aerospace companies, but the impact of these changes have largely not been reflected at many universities. On an effort to determine if the emergence of multidisciplinary design concepts should influence engineering curricula, NASA has asked several universities (Virginia Tech, Georgia Tech, Clemson, BYU, and Cal Poly) to investigate the practicality of introducing MDA concepts within their undergraduate curricula. A multidisciplinary team of faculty, students, and industry partners evaluated the aeronautical engineering curriculum at Cal Poly. A variety of ways were found to introduce MDA themes into the curriculum without adding courses or units to the existing program. Both analytic and educational tools for multidisciplinary design of aircraft have been developed and implemented.

  5. Multidisciplinary Concurrent Design Optimization via the Internet

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Kelkar, Atul G.; Koganti, Gopichand

    2001-01-01

    A methodology is presented which uses commercial design and analysis software and the Internet to perform concurrent multidisciplinary optimization. The methodology provides a means to develop multidisciplinary designs without requiring that all software be accessible from the same local network. The procedures are amenable to design and development teams whose members, expertise and respective software are not geographically located together. This methodology facilitates multidisciplinary teams working concurrently on a design problem of common interest. Partition of design software to different machines allows each constituent software to be used on the machine that provides the most economy and efficiency. The methodology is demonstrated on the concurrent design of a spacecraft structure and attitude control system. Results are compared to those derived from performing the design with an autonomous FORTRAN program.

  6. Initial Multidisciplinary Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Ozoroski, L. P.; Geiselhart, K. A.; Padula, S. L.; Li, W.; Olson, E. D.; Campbell, R. L.; Shields, E. W.; Berton, J. J.; Gray, J. S.; Jones, S. M.; Naiman, C. G.; Seidel, J. A.; Moore, K. T.; Naylor, B. A.; Townsend, S.

    2010-01-01

    Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.

  7. Designing multidisciplinary longitudinal studies of human development: analyzing past research to inform methodology.

    PubMed

    Shulruf, Boaz; Morton, Susan; Goodyear-Smith, Felicity; O'Loughlin, Claire; Dixon, Robyn

    2007-09-01

    This review identifies key issues associated with the design of future longitudinal studies of human development. Sixteen international studies were compared for initial response and retention rate, sample size, type of data collected, and sampling frames. The studies had little information about the influences of fathers, extended family members, childcare, and educational institutions; the effects of peers; children's use of time; the needs of disabled children; urban versus rural environments; or the influence of genetic factors. A contemporary longitudinal study should include measures of physical and mental health, cognitive capacity, educational attainment, social adjustment, conduct and behavior, resiliency, and risk-taking behaviors. It needs to address genetic and intergenerational factors, cultural identity, and the influences of neighborhood, community, and wider social and political environments and to encompass outcomes at all life stages to systematically determine the role each factor plays in individuals' lives, including interactions within and across variables.

  8. Experiences of Multidisciplinary Development Team Members During User-Centered Design of Telecare Products and Services: A Qualitative Study

    PubMed Central

    2014-01-01

    Background User-centered design (UCD) methodologies can help take the needs and requirements of potential end-users into account during the development of innovative telecare products and services. Understanding how members of multidisciplinary development teams experience the UCD process might help to gain insight into factors that members with different backgrounds consider critical during the development of telecare products and services. Objective The primary objective of this study was to explore how members of multidisciplinary development teams experienced the UCD process of telecare products and services. The secondary objective was to identify differences and similarities in the barriers and facilitators they experienced. Methods Twenty-five members of multidisciplinary development teams of four Research and Development (R&D) projects participated in this study. The R&D projects aimed to develop telecare products and services that can support self-management in elderly people or patients with chronic conditions. Seven participants were representatives of end-users (elderly persons or patients with chronic conditions), three were professional end-users (geriatrician and nurses), five were engineers, four were managers (of R&D companies or engineering teams), and six were researchers. All participants were interviewed by a researcher who was not part of their own development team. The following topics were discussed during the interviews: (1) aim of the project, (2) role of the participant, (3) experiences during the development process, (4) points of improvement, and (5) what the project meant to the participant. Results Experiences of participants related to the following themes: (1) creating a development team, (2) expectations regarding responsibilities and roles, (3) translating user requirements into technical requirements, (4) technical challenges, (5) evaluation of developed products and services, and (6) valorization. Multidisciplinary team members

  9. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  10. Using a life-cycle-cost criterion for multi-disciplinary design studies for the Manned Space Station

    NASA Technical Reports Server (NTRS)

    Taylor, L. W.; Dunning, R. S.

    1985-01-01

    A life-cycle-cost measure for the Manned Space Station is suggested which considers the mass, initial cost, aerodynamic drag, electrical power, moment, required ground support, and expected life of subsystems or components. It is proposed that this life-cycle-cost measure be considered as a criterion for design trade-off studies involving controls and structures. Calculating the related sensitivities in the optimization process is discussed and then applied to specific examples. In the first example, the reaction control system is analyzed with regard to the design of its supporting structure and selection of rocket type. Values of support beam length, structural material selection, and rocket propellant selection are determined which minimize life-cycle-cost. In the second example, the alignment of solar arrays are analyzed for efficiency with regard to generating power, their drag, and their aerodynamic moment. Alignment angles are determined which again minimize life cycle cost. It seems clear from these and other examples that the proposed criterion has value for multi-disciplinary design studies for the Manned Space Station.

  11. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  12. Multi-Disciplinary Design Optimization Using WAVE

    NASA Technical Reports Server (NTRS)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to

  13. Complex social intervention for multidisciplinary teams to improve patient referrals in obstetrical care: protocol for a stepped wedge study design

    PubMed Central

    Romijn, Anita; de Bruijne, Martine C; Teunissen, Pim W; de Groot, Christianne J M; Wagner, Cordula

    2016-01-01

    Introduction In obstetrics, patients often experience referral situations between different care professionals. In these multidisciplinary teams, a focus on communication and interprofessional collaboration is needed to ensure care of high quality. Crew resource management team training is increasingly being applied in healthcare settings to improve team performance and coordination. Efforts to improve communication also include tools for standardisation such as SBAR (situation, background, assessment, recommendation). Despite the growing adoption of these interventions, evidence on their effectiveness is limited, especially on patient outcomes. This article describes a study protocol to examine the effectiveness of a crew resource management team training intervention aimed at implementing the SBAR tool for structured communication during patient referrals in obstetrical care. Methods and analysis The intervention is rolled out sequentially in five hospitals and surrounding primary care midwifery practices in the Netherlands, using a stepped wedge design. The intervention involves three phases over a period of 24 months: (1) preparation, (2) training and (3) follow-up with repeated measurements. The primary outcomes are perinatal and maternal outcomes calculated using the Adverse Outcome Index. The secondary outcomes are the reaction of participating professionals to the training programme, attitudes towards safety and teamwork (Safety Attitudes Questionnaire), cohesion (Interprofessional Collaboration Measurement Scale), use of the tool for structured communication (self-reported questionnaire) and patient experiences. These secondary outcomes from professional and patient level allow triangulation and an increased understanding of the effect of the intervention on patient outcomes. Ethics and dissemination The study was approved by the Medical Ethical Committee of the VU University Medical Centre in the Netherlands and the protocol is in accordance with Dutch

  14. Multidisciplinary Design Of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1996-01-01

    Unified computer code developed to implement multidisciplinary approach to design and analysis of composite-material structures that must withstand high temperatures. Code modular: includes executive module communicating with and coordinating other modules performing calculations pertaining to traditionally separate disciplines like those of acoustics, structural vibrations, structural loads, and thermal effects. Essential feature, finite-element numerical simulation of relevant physical phenomena according to applicable disciplines. Same finite-element mesh used in thermal, vibrational, and structural analyses; minimizing data-preparation time and eliminating errors incurred in transforming temperatures from one finite-element mesh to another.

  15. Multi-Disciplinary Interaction in Learning Led Design

    ERIC Educational Resources Information Center

    Trebell, Donna

    2010-01-01

    The purpose of the study reported here was to investigate the iterative design development of an Academy for 11-18 year olds focusing on the following research question: "What are the features of the multi-disciplinary interactions and associated modelling techniques, which lead to the development of an Academy proposal which meets its Education…

  16. NASA Multidisciplinary Design and Analysis Fellowship Program

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Mavris, D. N.; Hale, M. A.; DeLaurentis, D.

    1999-01-01

    This report summarizes the results of a multi-year training grant for the development and implementation of a Multidisciplinary Design and Analysis (MDA) Fellowship Program at Georgia Tech. The Program funded the creation of graduate MS and PhD degree programs in aerospace systems design, analysis and integration. It also provided prestigious Fellowships with associated Industry Internships for outstanding engineering students. The graduate program has become the foundation for a vigorous and productive research effort and has produced: 20 MS degrees, 7 Ph.D. degrees, and has contributed to 9 ongoing Ph.D. students. The results of the research are documented in 32 publications (23 of which are included on a companion CDROM) and 4 annual student design reports (included on a companion CDROM). The legacy of this critical funding is the Center for Aerospace Systems Analysis at Georgia Tech which is continuing the graduate program, the research, and the industry internships established by this grant.

  17. NASA Multidisciplinary Design and Analysis Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report is a Year 1 interim report of the progress on the NASA multidisciplinary Design and Analysis Fellowship Program covering the period, January 1, 1995 through September 30, 1995. It summarizes progress in establishing the MDA Fellowship Program at Georgia Tech during the initial year. Progress in the advertisement of the program, recruiting results for the 1995-96 academic year, placement of the Fellows in industry during Summer 1995, program development at the M.S. and Ph.D. levels, and collaboration and dissemination of results are summarized in this report. Further details of the first year's progress will be included in the report from the Year 1 Workshop to be held at NASA Langley on December 7-8, 1995.

  18. Design Environment for Multifidelity and Multidisciplinary Components

    NASA Technical Reports Server (NTRS)

    Platt, Michael

    2014-01-01

    One of the greatest challenges when developing propulsion systems is predicting the interacting effects between the fluid loads, thermal loads, and structural deflection. The interactions between technical disciplines often are not fully analyzed, and the analysis in one discipline often uses a simplified representation of other disciplines as an input or boundary condition. For example, the fluid forces in an engine generate static and dynamic rotor deflection, but the forces themselves are dependent on the rotor position and its orbit. It is important to consider the interaction between the physical phenomena where the outcome of each analysis is heavily dependent on the inputs (e.g., changes in flow due to deflection, changes in deflection due to fluid forces). A rigid design process also lacks the flexibility to employ multiple levels of fidelity in the analysis of each of the components. This project developed and validated an innovative design environment that has the flexibility to simultaneously analyze multiple disciplines and multiple components with multiple levels of model fidelity. Using NASA's open-source multidisciplinary design analysis and optimization (OpenMDAO) framework, this multifaceted system will provide substantially superior capabilities to current design tools.

  19. An uncertain multidisciplinary design optimization method using interval convex models

    NASA Astrophysics Data System (ADS)

    Li, Fangyi; Luo, Zhen; Sun, Guangyong; Zhang, Nong

    2013-06-01

    This article proposes an uncertain multi-objective multidisciplinary design optimization methodology, which employs the interval model to represent the uncertainties of uncertain-but-bounded parameters. The interval number programming method is applied to transform each uncertain objective function into two deterministic objective functions, and a satisfaction degree of intervals is used to convert both the uncertain inequality and equality constraints to deterministic inequality constraints. In doing so, an unconstrained deterministic optimization problem will be constructed in association with the penalty function method. The design will be finally formulated as a nested three-loop optimization, a class of highly challenging problems in the area of engineering design optimization. An advanced hierarchical optimization scheme is developed to solve the proposed optimization problem based on the multidisciplinary feasible strategy, which is a well-studied method able to reduce the dimensions of multidisciplinary design optimization problems by using the design variables as independent optimization variables. In the hierarchical optimization system, the non-dominated sorting genetic algorithm II, sequential quadratic programming method and Gauss-Seidel iterative approach are applied to the outer, middle and inner loops of the optimization problem, respectively. Typical numerical examples are used to demonstrate the effectiveness of the proposed methodology.

  20. MDO can help resolve the designer's dilemma. [multidisciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Tulinius, Jan R.

    1991-01-01

    Multidisciplinary design optimization (MDO) is presented as a rapidly growing body of methods, algorithms, and techniques that will provide a quantum jump in the effectiveness and efficiency of the quantitative side of design, and will turn that side into an environment in which the qualitative side can thrive. MDO borrows from CAD/CAM for graphic visualization of geometrical and numerical data, data base technology, and in computer software and hardware. Expected benefits from this methodology are a rational, mathematically consistent approach to hypersonic aircraft designs, designs pushed closer to the optimum, and a design process either shortened or leaving time available for different concepts to be explored.

  1. Response Surface Model Building and Multidisciplinary Optimization Using D-Optimal Designs

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Lepsch, Roger A.; McMillin, Mark L.

    1998-01-01

    This paper discusses response surface methods for approximation model building and multidisciplinary design optimization. The response surface methods discussed are central composite designs, Bayesian methods and D-optimal designs. An over-determined D-optimal design is applied to a configuration design and optimization study of a wing-body, launch vehicle. Results suggest that over determined D-optimal designs may provide an efficient approach for approximation model building and for multidisciplinary design optimization.

  2. NASA Aeronautics Multidisciplinary Analysis and Design Fellowship Program

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Guerdal, Z.; Haftka, R. T.; Kapania, R. K.; Mason, W. H.; Mook, D. T.

    1998-01-01

    For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies. To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The function of the advisory board is to channel information from its member companies to faculty members concerning problems that need research attention in the general area of multidisciplinary design optimization (MDO). The faculty and their graduate students make proposals to the board on how to address these problems. At the annual board meeting in Blacksburg, the board discusses the proposals and suggests which students get funded under the NASA fellowship program. All students participating in the program are required to spend 3-6 months in industry working on their research projects. We are completing the third year of the fellowship program and have had three advisory board meetings in Blacksburg.

  3. RoboCup: Multi-disciplinary Senior Design Project.

    ERIC Educational Resources Information Center

    Elder, Kevin Lee

    A cross-college team of educators has developed a collaborative, multi-disciplinary senior design course at Ohio University. This course offers an attractive opportunity for students from a variety of disciplines to work together in a learning community to accomplish a challenging task. It provides a novel multi-disciplinary learning environment…

  4. Evaluation of Methods for Multidisciplinary Design Optimization (MDO). Phase 1

    NASA Technical Reports Server (NTRS)

    Kodiyalam, Srinivas

    1998-01-01

    The NASA Langley Multidisciplinary Design Optimization (MDO) method evaluation study seeks to arrive at a set of guidelines for using promising MDO methods by accumulating and analyzing computational data for such methods. The data are collected by conducting a series of reproducible experiments. This report documents all computational experiments conducted in Phase I of the study. This report is a companion to the paper titled Initial Results of an MDO Method Evaluation Study by N. M. Alexandrov and S. Kodiyalam (AIAA-98-4884).

  5. Chicano Studies: A Multidisciplinary Approach.

    ERIC Educational Resources Information Center

    Garcia, Eugene E., Ed.; And Others

    One in a series on bilingual education, this book contains 15 chapters organized under the following subject headings: Chicano studies; Chicano history, social structure, and politics; literature and folklore; and education. Carlos Munoz, Jr., traces the history of Chicano studies and its impact on access to higher education. Albert Camarillo…

  6. An information driven strategy to support multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rangan, Ravi M.; Fulton, Robert E.

    1990-01-01

    The design of complex engineering systems such as aircraft, automobiles, and computers is primarily a cooperative multidisciplinary design process involving interactions between several design agents. The common thread underlying this multidisciplinary design activity is the information exchange between the various groups and disciplines. The integrating component in such environments is the common data and the dependencies that exist between such data. This may be contrasted to classical multidisciplinary analyses problems where there is coupling between distinct design parameters. For example, they may be expressed as mathematically coupled relationships between aerodynamic and structural interactions in aircraft structures, between thermal and structural interactions in nuclear plants, and between control considerations and structural interactions in flexible robots. These relationships provide analytical based frameworks leading to optimization problem formulations. However, in multidisciplinary design problems, information based interactions become more critical. Many times, the relationships between different design parameters are not amenable to analytical characterization. Under such circumstances, information based interactions will provide the best integration paradigm, i.e., there is a need to model the data entities and their dependencies between design parameters originating from different design agents. The modeling of such data interactions and dependencies forms the basis for integrating the various design agents.

  7. Progress in multidisciplinary design optimization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    1993-01-01

    Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.

  8. Multidisciplinary Design Optimization on Conceptual Design of Aero-engine

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-bo; Wang, Zhan-xue; Zhou, Li; Liu, Zeng-wen

    2016-06-01

    In order to obtain better integrated performance of aero-engine during the conceptual design stage, multiple disciplines such as aerodynamics, structure, weight, and aircraft mission are required. Unfortunately, the couplings between these disciplines make it difficult to model or solve by conventional method. MDO (Multidisciplinary Design Optimization) methodology which can well deal with couplings of disciplines is considered to solve this coupled problem. Approximation method, optimization method, coordination method, and modeling method for MDO framework are deeply analyzed. For obtaining the more efficient MDO framework, an improved CSSO (Concurrent Subspace Optimization) strategy which is based on DOE (Design Of Experiment) and RSM (Response Surface Model) methods is proposed in this paper; and an improved DE (Differential Evolution) algorithm is recommended to solve the system-level and discipline-level optimization problems in MDO framework. The improved CSSO strategy and DE algorithm are evaluated by utilizing the numerical test problem. The result shows that the efficiency of improved methods proposed by this paper is significantly increased. The coupled problem of VCE (Variable Cycle Engine) conceptual design is solved by utilizing improved CSSO strategy, and the design parameter given by improved CSSO strategy is better than the original one. The integrated performance of VCE is significantly improved.

  9. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach.

    PubMed

    Gadegbeku, Crystal A; Gipson, Debbie S; Holzman, Lawrence B; Ojo, Akinlolu O; Song, Peter X K; Barisoni, Laura; Sampson, Matthew G; Kopp, Jeffrey B; Lemley, Kevin V; Nelson, Peter J; Lienczewski, Chrysta C; Adler, Sharon G; Appel, Gerald B; Cattran, Daniel C; Choi, Michael J; Contreras, Gabriel; Dell, Katherine M; Fervenza, Fernando C; Gibson, Keisha L; Greenbaum, Larry A; Hernandez, Joel D; Hewitt, Stephen M; Hingorani, Sangeeta R; Hladunewich, Michelle; Hogan, Marie C; Hogan, Susan L; Kaskel, Frederick J; Lieske, John C; Meyers, Kevin E C; Nachman, Patrick H; Nast, Cynthia C; Neu, Alicia M; Reich, Heather N; Sedor, John R; Sethna, Christine B; Trachtman, Howard; Tuttle, Katherine R; Zhdanova, Olga; Zilleruelo, Gastòn E; Kretzler, Matthias

    2013-04-01

    The Nephrotic Syndrome Study Network (NEPTUNE) is a North American multicenter collaborative consortium established to develop a translational research infrastructure for nephrotic syndrome. This includes a longitudinal observational cohort study, a pilot and ancillary study program, a training program, and a patient contact registry. NEPTUNE will enroll 450 adults and children with minimal change disease, focal segmental glomerulosclerosis, and membranous nephropathy for detailed clinical, histopathological, and molecular phenotyping at the time of clinically indicated renal biopsy. Initial visits will include an extensive clinical history, physical examination, collection of urine, blood and renal tissue samples, and assessments of quality of life and patient-reported outcomes. Follow-up history, physical measures, urine and blood samples, and questionnaires will be obtained every 4 months in the first year and biannually, thereafter. Molecular profiles and gene expression data will be linked to phenotypic, genetic, and digitalized histological data for comprehensive analyses using systems biology approaches. Analytical strategies were designed to transform descriptive information to mechanistic disease classification for nephrotic syndrome and to identify clinical, histological, and genomic disease predictors. Thus, understanding the complexity of the disease pathogenesis will guide further investigation for targeted therapeutic strategies.

  10. Multidisciplinary aircraft conceptual design optimization considering fidelity uncertainties

    NASA Astrophysics Data System (ADS)

    Neufeld, Daniel

    Aircraft conceptual design traditionally utilizes simplified analysis methods and empirical equations to establish the basic layout of new aircraft. Applying optimization methods to aircraft conceptual design may yield solutions that are found to violate constraints when more sophisticated analysis methods are introduced. The designer's confidence that proposed conceptual designs will meet their performance targets is limited when conventional optimization approaches are utilized. Therefore, there is a need for an optimization approach that takes into account the uncertainties that arise when traditional analysis methods are used in aircraft conceptual design optimization. This research introduces a new aircraft conceptual design optimization approach that utilizes the concept of Reliability Based Design Optimization (RBDO). RyeMDO, a framework for multi-objective, multidisciplinary RBDO was developed for this purpose. The performance and effectiveness of the RBDO-MDO approaches implemented in RyeMDO were evaluated to identify the most promising approaches for aircraft conceptual design optimization. Additionally, an approach for quantifying the errors introduced by approximate analysis methods was developed. The approach leverages available historical data to quantify the uncertainties introduced by approximate analysis methods in two engineering case studies: the conceptual design optimization of an aircraft wing box structure and the conceptual design optimization of a commercial aircraft. The case studies were solved with several of the most promising RBDO-MDO integrated approaches. The proposed approach yields more conservative solutions and estimates the risk associated with each solution, enabling designers to reduce the likelihood that conceptual aircraft designs will fail to meet objectives later in the design process.

  11. TECNOB: study design of a randomized controlled trial of a multidisciplinary telecare intervention for obese patients with type-2 diabetes

    PubMed Central

    2010-01-01

    Background Obesity is one of the most important medical and public health problems of our time: it increases the risk of many health complications such as hypertension, coronary heart disease and type 2 diabetes, needs long-lasting treatment for effective results and involves high public and private costs. Therefore, it is imperative that enduring and low-cost clinical programs for obesity and related co-morbidities are developed and evaluated. Methods/Design TECNOB (TEChnology for OBesity) is a comprehensive two-phase stepped down program enhanced by telemedicine for the long-term treatment of obese people with type 2 diabetes seeking intervention for weight loss. Its core features are the hospital-based intensive treatment (1-month), that consists of diet therapy, physical training and psychological counseling, and the continuity of care at home using new information and communication technologies (ICT) such as internet and mobile phones. The effectiveness of the TECNOB program compared with usual care (hospital-based treatment only) will be evaluated in a randomized controlled trial (RCT) with a 12-month follow-up. The primary outcome is weight in kilograms. Secondary outcome measures are energy expenditure measured using an electronic armband, glycated hemoglobin, binge eating, self-efficacy in eating and weight control, body satisfaction, healthy habit formation, disordered eating-related behaviors and cognitions, psychopathological symptoms and weight-related quality of life. Furthermore, the study will explore what behavioral and psychological variables are predictive of treatment success among those we have considered. Discussion The TECNOB study aims to inform the evidence-based knowledge of how telemedicine may enhance the effectiveness of clinical interventions for weight loss and related type-2 diabetes, and which type of obese patients may benefit the most from such interventions. Broadly, the study aims also to have a effect on the theoretical model

  12. NASA Aeronautics Multidisciplinary Analysis and Design Fellowship Program

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Kapania, R. K.; Mason, W. H.; Schetz, J. A.

    1999-01-01

    This program began as a grant from NASA Headquarters, NGT-10025, which was in effect from 10/l/93 until 10/31/96. The remaining funding for this effort was transferred from NASA Headquarters to NASA Langley and a new grant NGT-1-52155 was issued covering the period II/l/96 to 5/15/99. This report serves as the final report of NGT-1-52155. For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies. The grant is currently being administered by the NMO Branch of NASA Langley. To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The present membership includes major aerospace companies: Aurora Flight Sciences, Boeing: Philadelphia, Boeing: Long Beach, Boeing: Seattle, Boeing: St. Louis, Cessna, Ford, General Electric, Hughes, Lockheed-Martin: Palo Alto, Northrop-Grumman, Sikorsky, smaller, aerospace software companies: Aerosoft, Phoenix Integration and Proteus Engineering, along with representatives from government agencies, including: NASA Ames

  13. Integrating principles and multidisciplinary projects in design education

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1992-01-01

    The critical need to improve engineering design education in the U.S. is presented and a number of actions to achieve that end are discussed. The importance of teaching undergraduates the latest methods and principles through the means of team design in multidisciplinary projects leading to a testable product is emphasized. Desirable training for design instructors is described and techniques for selecting and managing projects that teach effectively are discussed.

  14. The Design of a Radiotelescope: A Multidisciplinary Game.

    ERIC Educational Resources Information Center

    Celnikier, L. M.

    1979-01-01

    Described is a multidisciplinary group project for undergraduate students in astronomy and physics. The students design and build a simple radiotelescope subject to a number of realistic constraints such as fixed cost, use of a standard communications receiver, and buying of supplementary building materials off the shelf. (BT)

  15. Hypersonic drone vehicle design: A multidisciplinary experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  16. Integrated multidisciplinary design optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The NASA/Army research plan for developing the logic elements for helicopter rotor design optimization by integrating appropriate disciplines and accounting for important interactions among the disciplines is discussed. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and an initial effort at defining the interdisciplinary coupling is summarized. Results are presented on the achievements made in the rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

  17. Integrated multidisciplinary design optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The NASA/Army research plan for developing the logic elements for helicopter rotor design optimization by integrating appropriate disciplines and accounting for important interactions among the disciplines is discussed. The optimization formulation is described in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and an initial effort at defining the interdisciplinary coupling is summarized. Results are presented on the achievements made in the rotor dynamic optimization for vibration reduction, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

  18. Hypersonic drone design: A multidisciplinary experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Efforts were focused on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necessary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: to fulfill a need for experimental data in the hypersonic regime, and to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. Three areas of great concern to NASP design were examined: propulsion, thermal management, and flight systems. Problem solving in these areas was directed towards design of the drone with the idea that the same design techniques could be applied to the NASP. A seventy degree swept double delta wing configuration, developed in the 70's at NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air-launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based upon the flight requirements give the drone a gross launch weight of 134,000 lb. and an overall length of 85 feet.

  19. Multidisciplinary design optimization for sonic boom mitigation

    NASA Astrophysics Data System (ADS)

    Ozcer, Isik A.

    product design. The simulation tools are used to optimize three geometries for sonic boom mitigation. The first is a simple axisymmetric shape to be used as a generic nose component, the second is a delta wing with lift, and the third is a real aircraft with nose and wing optimization. The objectives are to minimize the pressure impulse or the peak pressure in the sonic boom signal, while keeping the drag penalty under feasible limits. The design parameters for the meridian profile of the nose shape are the lengths and the half-cone angles of the linear segments that make up the profile. The design parameters for the lifting wing are the dihedral angle, angle of attack, non-linear span-wise twist and camber distribution. The test-bed aircraft is the modified F-5E aircraft built by Northrop Grumman, designated the Shaped Sonic Boom Demonstrator. This aircraft is fitted with an optimized axisymmetric nose, and the wings are optimized to demonstrate optimization for sonic boom mitigation for a real aircraft. The final results predict 42% reduction in bow shock strength, 17% reduction in peak Deltap, 22% reduction in pressure impulse, 10% reduction in foot print size, 24% reduction in inviscid drag, and no loss in lift for the optimized aircraft. Optimization is carried out using response surface methodology, and the design matrices are determined using standard DoE techniques for quadratic response modeling.

  20. Multidisciplinary design optimization of mechatronic vehicles with active suspensions

    NASA Astrophysics Data System (ADS)

    He, Yuping; McPhee, John

    2005-05-01

    A multidisciplinary optimization method is applied to the design of mechatronic vehicles with active suspensions. The method is implemented in a GA-A'GEM-MATLAB simulation environment in such a way that the linear mechanical vehicle model is designed in a multibody dynamics software package, i.e. A'GEM, the controllers and estimators are constructed using linear quadratic Gaussian (LQG) method, and Kalman filter algorithm in Matlab, then the combined mechanical and control model is optimized simultaneously using a genetic algorithm (GA). The design variables include passive parameters and control parameters. In the numerical optimizations, both random and deterministic road inputs and both perfect measurement of full state variables and estimated limited state variables are considered. Optimization results show that the active suspension systems based on the multidisciplinary optimization method have better overall performance than those derived using conventional design methods with the LQG algorithm.

  1. A Web-Based Monitoring System for Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Salas, Andrea O.; Weston, Robert P.

    1998-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary computational environments, is defined as a hardware and software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, integrated with an existing framework, can improve these areas of weakness. This paper describes a Web-based system that optimizes and controls the execution sequence of design processes; and monitors the project status and results. The three-stage evolution of the system with increasingly complex problems demonstrates the feasibility of this approach.

  2. Multidisciplinary design optimization of low-noise transport aircraft

    NASA Astrophysics Data System (ADS)

    Leifsson, Leifur Thor

    The objective of this research is to examine how to design low-noise transport aircraft using Multidisciplinary Design Optimization (MDO). The subject is approached by designing for low-noise both implicitly and explicitly. The explicit design approach involves optimizing an aircraft while explicitly constraining the noise level. An MDO framework capable of optimizing both a cantilever wing and a Strut-Braced-Wing (SBW) aircraft was developed. The objective is to design aircraft for low-airframe-noise at the approach conditions and quantify the change in weight and performance with respect to a traditionally designed aircraft. The results show that reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large performance and weight penalty. Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction. Another study showed that the trailing-edge flap can be eliminated, as well as all the noise associated with that device, without incurring a significant weight and performance penalty. Lastly, an airframe noise analysis showed that a SBW aircraft with short fuselage-mounted landing gear could have a similar or potentially a lower airframe noise level than a comparable cantilever wing aircraft. The implicit design approach involves selecting a configuration that supports a low-noise operation, and optimizing for performance. In this study a Blended-Wing-Body (BWB) transport aircraft, with a conventional and a distributed propulsion system, was optimized for minimum take-off gross weight. The effects of distributed propulsion were studied using an MDO framework previously developed at Virginia Tech. The results show that more than two thirds of the theoretical savings of distributed propulsion are required for the BWB designs with a distributed propulsion system to have comparable gross weight as those with a conventional propulsion system. Therefore

  3. Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin

    This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.

  4. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Fulton, R. E.; Mistree, F.

    1996-01-01

    The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem.

  5. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  6. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and

  7. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and

  8. Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Wilkinson, C. A.

    1997-01-01

    A class of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented. These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions. They are constructed in such a way that the optimal value of all variables and the objective is unity. The test problems involve three disciplines and allow the user to specify the number of design variables, state variables, coupling functions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches were executed on two sample synthetic test problems. These approaches included single-level optimization approaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution results are presented, and the robustness and efficiency of these approaches an evaluated for these sample problems.

  9. Affordable Design: A Methodolgy to Implement Process-Based Manufacturing Cost into the Traditional Performance-Focused Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.

    2000-01-01

    The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.

  10. Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.

  11. A grid generation system for multi-disciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Samareh-Abolhassani, Jamshid

    1995-01-01

    A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.

  12. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, Daniel P.; Craig, James I.; Fulton, Robert E.; Mistree, Farrokh

    1999-01-01

    New approaches to MDO have been developed and demonstrated during this project on a particularly challenging aeronautics problem- HSCT Aeroelastic Wing Design. To tackle this problem required the integration of resources and collaboration from three Georgia Tech laboratories: ASDL, SDL, and PPRL, along with close coordination and participation from industry. Its success can also be contributed to the close interaction and involvement of fellows from the NASA Multidisciplinary Analysis and Optimization (MAO) program, which was going on in parallel, and provided additional resources to work the very complex, multidisciplinary problem, along with the methods being developed. The development of the Integrated Design Engineering Simulator (IDES) and its initial demonstration is a necessary first step in transitioning the methods and tools developed to larger industrial sized problems of interest. It also provides a framework for the implementation and demonstration of the methodology. Attachment: Appendix A - List of publications. Appendix B - Year 1 report. Appendix C - Year 2 report. Appendix D - Year 3 report. Appendix E - accompanying CDROM.

  13. An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design

    NASA Technical Reports Server (NTRS)

    Lin, Risheng; Afjeh, Abdollah A.

    2003-01-01

    Crucial to an efficient aircraft simulation-based design is a robust data modeling methodology for both recording the information and providing data transfer readily and reliably. To meet this goal, data modeling issues involved in the aircraft multidisciplinary design are first analyzed in this study. Next, an XML-based. extensible data object model for multidisciplinary aircraft design is constructed and implemented. The implementation of the model through aircraft databinding allows the design applications to access and manipulate any disciplinary data with a lightweight and easy-to-use API. In addition, language independent representation of aircraft disciplinary data in the model fosters interoperability amongst heterogeneous systems thereby facilitating data sharing and exchange between various design tools and systems.

  14. Lessons Learned During Solutions of Multidisciplinary Design Optimization Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Suna N.; Coroneos, Rula M.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. During solution of the multidisciplinary problems several issues were encountered. This paper lists four issues and discusses the strategies adapted for their resolution: (1) The optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. (2) Optimum solutions obtained were infeasible for aircraft and air-breathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. (3) Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. (4) The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through six problems: (1) design of an engine component, (2) synthesis of a subsonic aircraft, (3) operation optimization of a supersonic engine, (4) design of a wave-rotor-topping device, (5) profile optimization of a cantilever beam, and (6) design of a cvlindrical shell. The combined effort of designers and researchers can bring the optimization method from academia to industry.

  15. Evaluation of Methods for Multidisciplinary Design Optimization (MDO). Part 2

    NASA Technical Reports Server (NTRS)

    Kodiyalam, Srinivas; Yuan, Charles; Sobieski, Jaroslaw (Technical Monitor)

    2000-01-01

    A new MDO method, BLISS, and two different variants of the method, BLISS/RS and BLISS/S, have been implemented using iSIGHT's scripting language and evaluated in this report on multidisciplinary problems. All of these methods are based on decomposing a modular system optimization system into several subtasks optimization, that may be executed concurrently, and the system optimization that coordinates the subtasks optimization. The BLISS method and its variants are well suited for exploiting the concurrent processing capabilities in a multiprocessor machine. Several steps, including the local sensitivity analysis, local optimization, response surfaces construction and updates are all ideally suited for concurrent processing. Needless to mention, such algorithms that can effectively exploit the concurrent processing capabilities of the compute servers will be a key requirement for solving large-scale industrial design problems, such as the automotive vehicle problem detailed in Section 3.4.

  16. PAYCOS: A new multidisciplinary analysis program for hypersonic vehicle design

    NASA Technical Reports Server (NTRS)

    Stubbe, J. R.

    1990-01-01

    The Payload Conceptual Sizing Code (PAYCOS), a new multidisciplinary computer program for use in the conceptual development phase of hypersonic lifting vehicles (HV's), is described. The program allows engineers to rapidly determine the feasibility of an HV concept and then improve upon the concept by means of optimization theory. The code contains analysis modules for aerodynamics, thermodynamics, mass properties, flight stability, controls, loads, structures, and packaging. Motivation for the code lies with the increased complexity of HV's over their body-of-revolution ballistic predecessors. With these new shapes, the need to rapidly screen out poor concepts and actively develop new and better concepts is an even more crucial part of the early design process. Preliminary results are given which demonstrate the optimization capabilities of the code.

  17. Multidisciplinary aerospace design optimization: Survey of recent developments

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1995-01-01

    The increasing complexity of engineering systems has sparked increasing interest in multidisciplinary optimization (MDO). This paper presents a survey of recent publications in the field of aerospace where interest in MDO has been particularly intense. The two main challenges of MDO are computational expense and organizational complexity. Accordingly the survey is focussed on various ways different researchers use to deal with these challenges. The survey is organized by a breakdown of MDO into its conceptual components. Accordingly, the survey includes sections on Mathematical Modeling, Design-oriented Analysis, Approximation Concepts, Optimization Procedures, System Sensitivity, and Human Interface. With the authors' main expertise being in the structures area, the bulk of the references focus on the interaction of the structures discipline with other disciplines. In particular, two sections at the end focus on two such interactions that have recently been pursued with a particular vigor: Simultaneous Optimization of Structures and Aerodynamics, and Simultaneous Optimization of Structures Combined With Active Control.

  18. Multidisciplinary Expert-aided Analysis and Design (MEAD)

    NASA Technical Reports Server (NTRS)

    Hummel, Thomas C.; Taylor, James

    1989-01-01

    The MEAD Computer Program (MCP) is being developed under the Multidisciplinary Expert-Aided Analysis and Design (MEAD) Project as a CAD environment in which integrated flight, propulsion, and structural control systems can be designed and analyzed. The MCP has several embedded computer-aided control engineering (CACE) packages, a user interface (UI), a supervisor, a data-base manager (DBM), and an expert system (ES). The supervisor monitors and coordinates the operation of the CACE packages, the DBM; the ES, and the UI. The DBM tracks the control design process. Models created or installed by the MCP are tracked by date and version, and results are associated with the specific model version with which they were generated. The ES is used to relieve the control engineer from tedious and cumbersome tasks in the iterative design process. The UI provides the capability for a novice as well as an expert to utilize the MCP easily and effectively. The MCP version 2(MCP-2.0) is fully developed for flight control system design and analysis. Propulsion system modeling, analysis, and simulation is also supported; the same is true for structural models represented in state-space form. The ultimate goal is to cover the integration of flight, propulsion, and structural control engineering, including all discipline-specific functionality and interfaces. The current MCP-2.0 components and functionality are discussed.

  19. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  20. Automatic differentiation of advanced CFD codes for multidisciplinary design

    SciTech Connect

    Bischof, C.; Corliss, G.; Griewank, A.; Green, L.; Haigler, K.; Newman, P.

    1992-12-31

    Automated multidisciplinary design of aircraft and other flight vehicles requires the optimization of complex performance objectives with respect to a number of design parameters and constraints. The effect of these independent design variables on the system performance criteria can be quantified in terms of sensitivity derivatives which must be calculated and propagated by the individual discipline simulation codes. Typical advanced CFD analysis codes do not provide such derivatives as part of a flow solution; these derivatives are very expensive to obtain by divided (finite) differences from perturbed solutions. It is shown here that sensitivity derivatives can be obtained accurately and efficiently using the ADIFOR source translator for automatic differentiation. In particular, it is demonstrated that the 3-D, thin-layer Navier-Stokes, multigrid flow solver called TLNS3D is amenable to automatic differentiation in the forward mode even with its implicit iterative solution algorithm and complex turbulence modeling. It is significant that using computational differentiation, consistent discrete nongeometric sensitivity derivatives have been obtained from an aerodynamic 3-D CFD code in a relatively short time, e.g. O(man-week) not O(man-year).

  1. Automatic differentiation of advanced CFD codes for multidisciplinary design

    SciTech Connect

    Bischof, C.; Corliss, G.; Griewank, A. ); Green, L.; Haigler, K.; Newman, P. . Langley Research Center)

    1992-01-01

    Automated multidisciplinary design of aircraft and other flight vehicles requires the optimization of complex performance objectives with respect to a number of design parameters and constraints. The effect of these independent design variables on the system performance criteria can be quantified in terms of sensitivity derivatives which must be calculated and propagated by the individual discipline simulation codes. Typical advanced CFD analysis codes do not provide such derivatives as part of a flow solution; these derivatives are very expensive to obtain by divided (finite) differences from perturbed solutions. It is shown here that sensitivity derivatives can be obtained accurately and efficiently using the ADIFOR source translator for automatic differentiation. In particular, it is demonstrated that the 3-D, thin-layer Navier-Stokes, multigrid flow solver called TLNS3D is amenable to automatic differentiation in the forward mode even with its implicit iterative solution algorithm and complex turbulence modeling. It is significant that using computational differentiation, consistent discrete nongeometric sensitivity derivatives have been obtained from an aerodynamic 3-D CFD code in a relatively short time, e.g. O(man-week) not O(man-year).

  2. Discovering a one-dimensional active subspace to quantify multidisciplinary uncertainty in satellite system design

    NASA Astrophysics Data System (ADS)

    Hu, Xingzhi; Parks, Geoffrey T.; Chen, Xiaoqian; Seshadri, Pranay

    2016-03-01

    Uncertainty quantification has recently been receiving much attention from aerospace engineering community. With ever-increasing requirements for robustness and reliability, it is crucial to quantify multidisciplinary uncertainty in satellite system design which dominates overall design direction and cost. However, coupled multi-disciplines and cross propagation hamper the efficiency and accuracy of high-dimensional uncertainty analysis. In this study, an uncertainty quantification methodology based on active subspaces is established for satellite conceptual design. The active subspace effectively reduces the dimension and measures the contributions of input uncertainties. A comprehensive characterization of associated uncertain factors is made and all subsystem models are built for uncertainty propagation. By integrating a system decoupling strategy, the multidisciplinary uncertainty effect is efficiently represented by a one-dimensional active subspace for each design. The identified active subspace is checked by bootstrap resampling for confidence intervals and verified by Monte Carlo propagation for the accuracy. To show the performance of active subspaces, 18 uncertainty parameters of an Earth observation small satellite are exemplified and then another 5 design uncertainties are incorporated. The uncertainties that contribute the most to satellite mass and total cost are ranked, and the quantification of high-dimensional uncertainty is achieved by a relatively small number of support samples. The methodology with considerably less cost exhibits high accuracy and strong adaptability, which provides a potential template to tackle multidisciplinary uncertainty in practical satellite systems.

  3. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    NASA Astrophysics Data System (ADS)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  4. Collaborative Design Processes: An Active and Reflective Learning Course in Multidisciplinary Collaboration.

    ERIC Educational Resources Information Center

    O'Brien, William J.; Soibelman, Lucio; Elvin, George

    2003-01-01

    In a capstone course, graduate students from two universities participated in collaborative design in the architectural, engineering, and construction industries in multidisciplinary teams via the Internet. Students also developed process designs to integrate technology into multidisciplinary teamwork, combining active and reflective learning.…

  5. Multidisciplinary Design Optimization of A Highly Flexible Aeroservoelastic Wing

    NASA Astrophysics Data System (ADS)

    Haghighat, Sohrab

    A multidisciplinary design optimization framework is developed that integrates control system design with aerostructural design for a highly-deformable wing. The objective of this framework is to surpass the existing aircraft endurance limits through the use of an active load alleviation system designed concurrently with the rest of the aircraft. The novelty of this work is two fold. First, a unified dynamics framework is developed to represent the full six-degree-of-freedom rigid-body along with the structural dynamics. It allows for an integrated control design to account for both manoeuvrability (flying quality) and aeroelasticity criteria simultaneously. Secondly, by synthesizing the aircraft control system along with the structural sizing and aerodynamic shape design, the final design has the potential to exploit synergies among the three disciplines and yield higher performing aircraft. A co-rotational structural framework featuring Euler--Bernoulli beam elements is developed to capture the wing's nonlinear deformations under the effect of aerodynamic and inertial loadings. In this work, a three-dimensional aerodynamic panel code, capable of calculating both steady and unsteady loadings is used. Two different control methods, a model predictive controller (MPC) and a 2-DOF mixed-norm robust controller, are considered in this work to control a highly flexible aircraft. Both control techniques offer unique advantages that make them promising for controlling a highly flexible aircraft. The control system works towards executing time-dependent manoeuvres along with performing gust/manoeuvre load alleviation. The developed framework is investigated for demonstration in two design cases: one in which the control system simply worked towards achieving or maintaining a target altitude, and another where the control system is also performing load alleviation. The use of the active load alleviation system results in a significant improvement in the aircraft performance

  6. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Astrophysics Data System (ADS)

    Olds, John R.; Walberg, Gerald D.

    1993-02-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  7. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  8. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  9. Taking ergonomics to the bedside--a multi-disciplinary approach to designing safer healthcare.

    PubMed

    Norris, Beverley; West, Jonathan; Anderson, Oliver; Davey, Grace; Brodie, Andrea

    2014-05-01

    A multi-disciplinary approach to designing safer healthcare was utilised to investigate risks in the bed-space in elective surgical wards. The Designing Out Medical Error (DOME) project brought together clinicians, designers, psychologists, human factors and business expertise to develop solutions for the highest risk healthcare processes. System mapping and risk assessment techniques identified nearly 200 potential failure modes in hand hygiene, isolation of infection, vital signs monitoring, medication delivery and handover of information. Solutions addressed issues such as the design of equipment, reminders, monitoring, feedback and standardisation. Some of the solutions, such as the CareCentre™, which brings many of the processes and equipment together into one easy to access workstation at the foot of the bed, have been taken forward to clinical trials and manufacture. The project showed the value of the multi-disciplinary and formal human factors approaches to healthcare design for patient safety. In particular, it demonstrates the application of human factors to a complete design cycle and provides a case study for the activities required to reach a safe, marketable product. PMID:24135560

  10. Multidisciplinary study on anthropogenic landslides in Nepal

    NASA Astrophysics Data System (ADS)

    Puglia, Christopher; Derron, Marc-Henri; Nicolet, Pierrick; Sudmeier-Rieux, Karen; Jaboyedoff, Michel; Devkota, Sanjay

    2013-04-01

    Nepal is a country in which shallow landslide is a frequent phenomenon. Monsoon is the main triggering factor but anthropogenic influence is often significant too. Indeed, many infrastructures, such as roads or water pipes, are not built in a rigorous way because of a lack of funds and knowledge. In the present study we examine the technical, social and economic issues of landslide management for two sites in Nepal. The first site is located in Sanusiruwari VDC (Sindhupalchock district, central Nepal) and the second one in Namadi VDC (Ramecchap district, central Nepal). Both sites are affected by landslides induced by the construction of hydropower plants. These landslides may threaten the viability of the hydropower plants. At both sites the problems are quite similar, but the first site project is a private one and the second one is a public one implemented by the United Nations Development Programme (UNDP). For both sites, bioengineering methods using Vetiver (Vetyveria zizanioides) plantations is the main stabilization measure. To follow the progression of both landslides, fieldwork observations were conducted before and after the 2012 rainy season, including photogrammetric and distancemeter acquisitions. Main issues were discussed with communities and stakeholders of the hydropower projects through interviews and participatory risk mapping. Main issues include: lack of communication between the project managers and communities leading to conflict and the lack of maintenance of the bio-engineering sites, leading to less effective Vetiver growth and slope stabilization. Comparing the landslide management (technical, social and economic) of the two projects allows to point out some specific issues within an integrated risk perspective.

  11. The LUSI LAB project: a platform for multidisciplinary experimental studies

    NASA Astrophysics Data System (ADS)

    Mazzini, Adriano; Svensen, Henrik; Hensen, Christian; Scholz, Florian; Romeo, Giovanni; Hadi, Soffian; Husein, Alwi; Planke, Sverre; Akhmanov, Grigorii; Krueger, Martin

    2014-05-01

    Lusi is a spectacular mud eruption that started in northeast Java the 29 of May 2006 following a 6.3 M earthquake. Nearly eight years later Lusi is still active. The Lusi Lab is an ERC-funded project to perform multidisciplinary studies using Lusi as a natural laboratory. This represents an unprecedented opportunity to study an ongoing active high-temperature mud eruption and to evaluate the role of seismicity, local faulting and the neighbouring Arjuno-Welirang volcanic complex on the long-lasting mud eruption. A multipurpose hexacopter has been designed and constructed to access and monitor the otherwise inaccessible Lusi crater and its mud-filled outskirts. The "Lusi drone" showed to be a powerful monitoring and sampling tool duringteh fieldwork in Dec. 2013. Videos and photogrammetry were acquired with various cameras. Designed tools allow the drone to measure and log temperature and to complete remote-controlled sampling of mud, water and gas from the erupting crater. A collection of evenly spaced mud samples has been taken along a transect that extends for 1100 m outside the crater. The incubation of these will be used for geomicrobiological studies and will help to shed light on the type of the ongoing hydrocarbon generation and degradation. A network of temperature loggers deployed around the crater aims to investigate a correlation between seismic activity and temperature variation of the erupted mud. Geochemical analyses indicate that the geochemistry of the crater water represents a geochemical anomaly when comparing with both basinal brines and volcano-hosted hot springs. A combination of high temperatures in the source region and fluid-rock interactions with silicates and carbonate-rich lithologies can explain the geochemistry. This is consistent with the result of gas analyses and with a deep-seated (>4 km) source region, possibly related to the presence of hot igneous intrusions from the volcanic arc.

  12. Multidisciplinary Design, Analysis, and Optimization Tool Development using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2008-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space A dministration Dryden Flight Research Center to automate analysis and design process by leveraging existing tools such as NASTRAN, ZAERO a nd CFD codes to enable true multidisciplinary optimization in the pr eliminary design stage of subsonic, transonic, supersonic, and hypers onic aircraft. This is a promising technology, but faces many challe nges in large-scale, real-world application. This paper describes cur rent approaches, recent results, and challenges for MDAO as demonstr ated by our experience with the Ikhana fire pod design.

  13. Optimality criteria: A basis for multidisciplinary design optimization

    NASA Astrophysics Data System (ADS)

    Venkayya, V. B.

    1989-01-01

    This paper presents a generalization of what is frequently referred to in the literature as the optimality criteria approach in structural optimization. This generalization includes a unified presentation of the optimality conditions, the Lagrangian multipliers, and the resizing and scaling algorithms in terms of the sensitivity derivatives of the constraint and objective functions. The by-product of this generalization is the derivation of a set of simple nondimensional parameters which provides significant insight into the behavior of the structure as well as the optimization algorithm. A number of important issues, such as, active and passive variables, constraints and three types of linking are discussed in the context of the present derivation of the optimality criteria approach. The formulation as presented in this paper brings multidisciplinary optimization within the purview of this extremely efficient optimality criteria approach.

  14. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    NASA Technical Reports Server (NTRS)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  15. Application of multidisciplinary design optimization formulation theory to a wind design problems

    SciTech Connect

    Frank, P.; Benton, J.R.; Borland, C.; Kao, T.J.; Barthelemy, J.

    1994-12-31

    Multidisciplinary Design Optimization, MDO, is optimal design with simultaneous consideration of several disciplines. MDO in conjunction with coupled high-fidelity analysis codes is in a formative stage of development. This talk describes application of MDO formulation theory to the problem of aeroelastic wing design. That is, wing design with simultaneous consideration of the disciplines of structures and aerodynamics. In addition to MDO formulation theory, particular attention is paid to practical problems. These problems include validation of the individual discipline analysis codes, the need for distributed computing and the need for inexpensive models to serve as optimization surrogates for compute intensive aerodynamics codes. An MDO solution method and associated test results will be presented.

  16. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  17. OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.

    2012-01-01

    The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.

  18. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Kroo, I. M.

    1995-01-01

    Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.

  19. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  20. Development and Evaluation of an Undergraduate Multidisciplinary Project Activity in Engineering and Design

    ERIC Educational Resources Information Center

    Smith, David R.; Cole, Joanne

    2012-01-01

    The School of Engineering and Design Multidisciplinary Project (MDP) at Brunel University is a one week long project based activity involving first year undergraduate students from across the School subject areas of Electronic and Computer Engineering, Mechanical Engineering, Civil Engineering and Design. This paper describes the main aims of the…

  1. Baseball Stadium Design: Teaching Engineering Economics and Technical Communication in a Multi-Disciplinary Setting.

    ERIC Educational Resources Information Center

    Dahm, Kevin; Newell, James

    2001-01-01

    Reports on a course at Rowan University, based on the economic design of a baseball stadium, that offers an introduction to multidisciplinary engineering design linked with formal training in technical communication. Addresses four pedagogical goals: (1) developing public speaking skills in a realistic, business setting; (2) giving students…

  2. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    NASA Technical Reports Server (NTRS)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  3. The art of spacecraft design: A multidisciplinary challenge

    NASA Technical Reports Server (NTRS)

    Abdi, F.; Ide, H.; Levine, M.; Austel, L.

    1989-01-01

    Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.

  4. [Psychic changes in systemic lupus erythematosus: a multidisciplinary prospective study].

    PubMed

    Miguel Filho, E C; Pereira, R M; Busatto Filho, G; Shavitt, R G; Hirsch, R; de Sá, L C; de Arruda, P C

    1990-01-01

    Despite the high prevalence of psychic symptoms in lupus patients, there are few systematic studies in this area. Through a multidisciplinary approach, the authors developed a prospective study to characterize and correlate psychopathological aspects with clinical and laboratory data concerning neural manifestations of the disease. Out of 23 patients studied, 12 showed psychic alterations, which were interpreted as primary manifestations of the disease. All of them presented organic mental syndromes (DSM-III-R) in which cognitive symptoms were the most prominent, followed by affective, catatonic and hallucinatory features. The neurologic findings (seizure, migraine and muscular atrophy), as well as the ophthalmologic alterations (hemorrhage and soft exudates) were frequent and concomitant with the psychic features. The laboratory findings were: LE cells 50%; anti-Sm: 16%; anti-U1 RNP: 50%; anti-Ro/SS-A: 50%; anti-nDNA: 58%; decreased CH50 or fractions (C3, C4): 67%; anti-P: 18%; antigangliosides IgG: 67%; antigangliosides IgM: 78%. The cerebrospinal fluid analysis showed: increased cellularity: 18%; elevated protein: 36%; antigangliosides IgG: 67%; antigangliosides IgM: 33%; immunocomplexes: 36%. In spite of the absence of an adequate control group and of the small number of patients, the multidisciplinary approach leads to a better characterization of the nervous system involvement in this disease. PMID:1965671

  5. Knowledge Discovery in Multidisciplinary Design Space for Regional-Jet Wings Using Data Mining

    NASA Astrophysics Data System (ADS)

    Chiba, Kazuhisa; Jeong, Shinkyu; Obayashi, Shigeru

    Data mining is an important facet of solving multi-objective optimization problems. In the present study, two data mining techniques were applied to a large-scale, real-world multidisciplinary design optimization (MDO) problem to provide knowledge regarding the design space. The use of MDO in the aerodynamics, structure, and aeroelasticity of a regional-jet wing was carried out using high-fidelity evaluation models with an adaptive range multi-objective genetic algorithm. As a result, nine non-dominated solutions were generated and used for tradeoff analysis of three objectives. All solutions evaluated during the evolution were analyzed for the influence of design variables using a self-organizing map (SOM) and a functional analysis of variance (ANOVA) to extract key features of the design space. As SOM and ANOVA compensate for respective disadvantages, the design knowledge could be obtained more clearly by combinating them. Although the MDO results showed inverted gull-wings as non-dominated solutions, one of the key features found by data mining was a non-gull wing geometry. When this knowledge was applied to one optimum solution, the resulting design was found to have better performance compared with the original geometry designed in the conventional manner.

  6. Knowledge Discovery for Transonic Regional-Jet Wing through Multidisciplinary Design Exploration

    NASA Astrophysics Data System (ADS)

    Chiba, Kazuhisa; Obayashi, Shigeru; Morino, Hiroyuki

    Data mining is an important facet of solving multi-objective optimization problem. Because it is one of the effective manner to discover the design knowledge in the multi-objective optimization problem which obtains large data. In the present study, data mining has been performed for a large-scale and real-world multidisciplinary design optimization (MDO) to provide knowledge regarding the design space. The MDO among aerodynamics, structures, and aeroelasticity of the regional-jet wing was carried out using high-fidelity evaluation models on the adaptive range multi-objective genetic algorithm. As a result, nine non-dominated solutions were generated and used for tradeoff analysis among three objectives. All solutions evaluated during the evolution were analyzed for the tradeoffs and influence of design variables using a self-organizing map to extract key features of the design space. Although the MDO results showed the inverted gull-wings as non-dominated solutions, one of the key features found by data mining was the non-gull wing geometry. When this knowledge was applied to one optimum solution, the resulting design was found to have better performance compared with the original geometry designed in the conventional manner.

  7. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  8. Interaction prediction optimization in multidisciplinary design optimization problems.

    PubMed

    Meng, Debiao; Zhang, Xiaoling; Huang, Hong-Zhong; Wang, Zhonglai; Xu, Huanwei

    2014-01-01

    The distributed strategy of Collaborative Optimization (CO) is suitable for large-scale engineering systems. However, it is hard for CO to converge when there is a high level coupled dimension. Furthermore, the discipline objectives cannot be considered in each discipline optimization problem. In this paper, one large-scale systems control strategy, the interaction prediction method (IPM), is introduced to enhance CO. IPM is utilized for controlling subsystems and coordinating the produce process in large-scale systems originally. We combine the strategy of IPM with CO and propose the Interaction Prediction Optimization (IPO) method to solve MDO problems. As a hierarchical strategy, there are a system level and a subsystem level in IPO. The interaction design variables (including shared design variables and linking design variables) are operated at the system level and assigned to the subsystem level as design parameters. Each discipline objective is considered and optimized at the subsystem level simultaneously. The values of design variables are transported between system level and subsystem level. The compatibility constraints are replaced with the enhanced compatibility constraints to reduce the dimension of design variables in compatibility constraints. Two examples are presented to show the potential application of IPO for MDO.

  9. Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.

    1999-01-01

    This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (MDO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) NMO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.

  10. The potential application of the blackboard model of problem solving to multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.

  11. Toward a More Flexible Web-Based Framework for Multidisciplinary Design

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Salas, A. O.

    1999-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary design, is defined as a hardware-software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, monitoring, controlling, and displaying the design process. The objective of this research is to explore how Web technology can improve these areas of weakness and lead toward a more flexible framework. This article describes a Web-based system that optimizes and controls the execution sequence of design processes in addition to monitoring the project status and displaying the design results.

  12. Process Cost Modeling for Multi-Disciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Freeman, William (Technical Monitor)

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This report outlines the development of a process-based cost model in which the physical elements of the vehicle are costed according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this report is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool. In successive sections, the report addresses the issues of cost modeling as follows. First, an introduction is presented to provide the background for the research work. Next, a quick review of cost estimation techniques is made with the intention to

  13. Multidisciplinary study of Hewett Field, Zechstein Kalk Formation

    SciTech Connect

    West, K.L. )

    1994-04-01

    New technology and a multidisciplinary team approach were effectively used by Phillips Petroleum for optimum reservoir development in the Hewett field, North Sea. Near-horizontal drilling technology and depositional environment and fracture studies were used by engineering and geology. Geophysics contributed structure and porosity trend maps and used new technology developed by Phillips called Incremental Pay Thickness modeling. IPT modeling enhances the integration of well-log data and seismic wiggle traces so porosity and pay thickness can be estimated directly from seismic data. Seismic amplitude values were mapped and processed into estimated porosity thickness using the IPT mathematical relationship. This interpretation aided in locating three successful development wells in areas of predicted high porosity, which increased production by 67 MMCF/D and optimized recovery.

  14. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    NASA Astrophysics Data System (ADS)

    Iqbal, Liaquat Ullah

    achieving better designs with reduced risk in lesser time and cost. The approach is shown to eliminate the traditional boundary between the conceptual and the preliminary design stages, combining the two into one consolidated preliminary design phase. Several examples for the validation and utilization of the Multidisciplinary Design and Optimization (MDO) Tool are presented using missions for the Medium and High Altitude Long Range/Endurance Unmanned Aerial Vehicles (UAVs).

  15. IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J., Jr.

    1984-01-01

    During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.

  16. Multidisciplinary design optimization of vehicle instrument panel based on multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Wu, Guangqiang

    2013-03-01

    Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.

  17. Hospital without dyspnea: rationale and design of a multidisciplinary intervention.

    PubMed

    Vicent, Lourdes; Olarte, Juan Manuel Nuñez; Puente-Maestu, Luis; Artajona, Esther; Fernández-Avilés, Francisco; Martínez-Sellés, Manuel

    2016-07-01

    Dyspnea is a common and disabling symptom of respiratory and heart diseases, which is growing in incidence. During hospital admission, breathlessness is under-diagnosed and under-treated, although there are treatments available for controlling the symptom. We have developed a tailored implementation strategy directed to medical staff to promote the application of these pharmacological and non-pharmacological tools in dealing with dyspnea. The primary aim is to decrease the rate of patients that do not receive an adequate relief of dyspnea. This is a four-stage quasi-experimental study. The intervention consists in two teaching talks that will be taught in Cardiology and Respiratory Medicine Departments. The contents will be prepared by Palliative Care specialists, based on available tools for management of dyspnea and patients' needs. A cross-sectional study of dyspnea in hospitalized patients will be performed before and after the intervention to ascertain an improvement in dyspnea intensity due to changes in medical practices. The last phase consists in the creation of consensus protocols for dyspnea management based in our experience. The results of this study are expected to be of great value and may change clinical practice in the near future and promote a changing for the better of dyspnea care. PMID:27605944

  18. Hospital without dyspnea: rationale and design of a multidisciplinary intervention

    PubMed Central

    Vicent, Lourdes; Olarte, Juan Manuel Nuñez; Puente-Maestu, Luis; Artajona, Esther; Fernández-Avilés, Francisco; Martínez-Sellés, Manuel

    2016-01-01

    Dyspnea is a common and disabling symptom of respiratory and heart diseases, which is growing in incidence. During hospital admission, breathlessness is under-diagnosed and under-treated, although there are treatments available for controlling the symptom. We have developed a tailored implementation strategy directed to medical staff to promote the application of these pharmacological and non-pharmacological tools in dealing with dyspnea. The primary aim is to decrease the rate of patients that do not receive an adequate relief of dyspnea. This is a four-stage quasi-experimental study. The intervention consists in two teaching talks that will be taught in Cardiology and Respiratory Medicine Departments. The contents will be prepared by Palliative Care specialists, based on available tools for management of dyspnea and patients' needs. A cross-sectional study of dyspnea in hospitalized patients will be performed before and after the intervention to ascertain an improvement in dyspnea intensity due to changes in medical practices. The last phase consists in the creation of consensus protocols for dyspnea management based in our experience. The results of this study are expected to be of great value and may change clinical practice in the near future and promote a changing for the better of dyspnea care.

  19. Hospital without dyspnea: rationale and design of a multidisciplinary intervention

    PubMed Central

    Vicent, Lourdes; Olarte, Juan Manuel Nuñez; Puente-Maestu, Luis; Artajona, Esther; Fernández-Avilés, Francisco; Martínez-Sellés, Manuel

    2016-01-01

    Dyspnea is a common and disabling symptom of respiratory and heart diseases, which is growing in incidence. During hospital admission, breathlessness is under-diagnosed and under-treated, although there are treatments available for controlling the symptom. We have developed a tailored implementation strategy directed to medical staff to promote the application of these pharmacological and non-pharmacological tools in dealing with dyspnea. The primary aim is to decrease the rate of patients that do not receive an adequate relief of dyspnea. This is a four-stage quasi-experimental study. The intervention consists in two teaching talks that will be taught in Cardiology and Respiratory Medicine Departments. The contents will be prepared by Palliative Care specialists, based on available tools for management of dyspnea and patients' needs. A cross-sectional study of dyspnea in hospitalized patients will be performed before and after the intervention to ascertain an improvement in dyspnea intensity due to changes in medical practices. The last phase consists in the creation of consensus protocols for dyspnea management based in our experience. The results of this study are expected to be of great value and may change clinical practice in the near future and promote a changing for the better of dyspnea care. PMID:27605944

  20. Multidisciplinary Design Optimization (MDO) Methods: Their Synergy with Computer Technology in Design Process

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1998-01-01

    The paper identifies speed, agility, human interface, generation of sensitivity information, task decomposition, and data transmission (including storage) as important attributes for a computer environment to have in order to support engineering design effectively. It is argued that when examined in terms of these attributes the presently available environment can be shown to be inadequate a radical improvement is needed, and it may be achieved by combining new methods that have recently emerged from multidisciplinary design optimization (MDO) with massively parallel processing computer technology. The caveat is that, for successful use of that technology in engineering computing, new paradigms for computing will have to be developed - specifically, innovative algorithms that are intrinsically parallel so that their performance scales up linearly with the number of processors. It may be speculated that the idea of simulating a complex behavior by interaction of a large number of very simple models may be an inspiration for the above algorithms, the cellular automata are an example. Because of the long lead time needed to develop and mature new paradigms, development should be now, even though the widespread availability of massively parallel processing is still a few years away.

  1. Multidisciplinary Design Optimisation (MDO) Methods: Their Synergy with Computer Technology in the Design Process

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1999-01-01

    The paper identifies speed, agility, human interface, generation of sensitivity information, task decomposition, and data transmission (including storage) as important attributes for a computer environment to have in order to support engineering design effectively. It is argued that when examined in terms of these attributes the presently available environment can be shown to be inadequate. A radical improvement is needed, and it may be achieved by combining new methods that have recently emerged from multidisciplinary design optimisation (MDO) with massively parallel processing computer technology. The caveat is that, for successful use of that technology in engineering computing, new paradigms for computing will have to be developed - specifically, innovative algorithms that are intrinsically parallel so that their performance scales up linearly with the number of processors. It may be speculated that the idea of simulating a complex behaviour by interaction of a large number of very simple models may be an inspiration for the above algorithms; the cellular automata are an example. Because of the long lead time needed to develop and mature new paradigms, development should begin now, even though the widespread availability of massively parallel processing is still a few years away.

  2. Distributed Parallel Processing and Dynamic Load Balancing Techniques for Multidisciplinary High Speed Aircraft Design

    NASA Technical Reports Server (NTRS)

    Krasteva, Denitza T.

    1998-01-01

    Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.

  3. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The task of modern aircraft design has always been complicated due to the number of intertwined technical factors from the various engineering disciplines. Furthermore, this complexity has been rapidly increasing by the development of such technologies as aeroelasticity tailored materials and structures, active control systems, integrated propulsion/airframe controls, thrust vectoring, and so on. Successful designs that achieve maximum advantage from these new technologies require a thorough understanding of the physical phenomena and the interactions among these phenomena. A study commissioned by the Aeronautical Sciences and Evaluation Board of the National Research Council has gone so far as to identify technology integration as a new discipline from which many future aeronautical advancements will arise. Regardless of whether one considers integration as a new discipline or not, it is clear to all engineers involved in aircraft design and analysis that better methods are required. In the past, designers conducted parametric studies in which a relatively small number of principal characteristics were varied to determine the effect on design requirements which were themselves often diverse and contradictory. Once a design was chosen, it then passed through the various engineers' disciplines whose principal task was to make the chosen design workable. Working in a limited design space, the discipline expert sometimes improved the concept, but more often than not, the result was in the form of a penalty to make the original concept workable. If an insurmountable problem was encountered, the process began over. Most design systems that attempt to account for disciplinary interactions have large empirical elements and reliance on past experience is a poor guide in obtaining maximum utilizations of new technologies. Further compounding the difficulty of design is that as the aeronautical sciences have matured, the discipline specialist's area of research has generally

  4. Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.

    1998-01-01

    This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. Three Principal Investigators; Drs. Renaud, Brockman and Batill directed this effort. During the four and a half year grant period, six Aerospace and Mechanical Engineering Ph.D. students and one Masters student received full or partial support, while four Computer Science and Engineering Ph.D. students and one Masters student were supported. During each of the summers up to four undergraduate students were involved in related research activities. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (N4DO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to

  5. The Other Side of Multidisciplinary Design Optimization: Accommodating a Multiobjective, Uncertain and Non-Deterministic World

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper; Mistree, Farrokh

    1998-01-01

    The evolution of multidisciplinary design optimization (MDO) over the past several years has been one of rapid expansion and development. In this paper, the evolution of MDO as a field is investigated as well as the evolution of its individual linguistic components: multidisciplinary, design, and optimization. The theory and application of each component have indeed evolved on their own, but the true net gain for MDO is how these piecewise evolutions coalesce to form the basis for MDO, present and future. Originating in structural applications, MDO technology has also branched out into diverse fields and application arenas. The evolution and diversification of MDO as a discipline is explored but details are left to the references cited.

  6. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    PubMed

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.

  7. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    PubMed

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines. PMID:11460630

  8. a Multidisciplinary Analytical Framework for Studying Active Mobility Patterns

    NASA Astrophysics Data System (ADS)

    Orellana, D.; Hermida, C.; Osorio, P.

    2016-06-01

    Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a) Methodological, b) Behavioural, and c) Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.

  9. The potential application of the blackboard model of problem solving to multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.

    1989-01-01

    Problems associated with the sequential approach to multidisciplinary design are discussed. A blackboard model is suggested as a potential tool for implementing the multilevel decomposition approach to overcome these problems. The blackboard model serves as a global database for the solution with each discipline acting as a knowledge source for updating the solution. With this approach, it is possible for engineers to improve the coordination, communication, and cooperation in the conceptual design process, allowing them to achieve a more optimal design from an interdisciplinary standpoint.

  10. Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Hemsch, Michael J.; Hilburger, Mark W.; Kenny, Sean P; Luckring, James M.; Maghami, Peiman; Padula, Sharon L.; Stroud, W. Jefferson

    2002-01-01

    This report consists of a survey of the state of the art in uncertainty-based design together with recommendations for a Base research activity in this area for the NASA Langley Research Center. This report identifies the needs and opportunities for computational and experimental methods that provide accurate, efficient solutions to nondeterministic multidisciplinary aerospace vehicle design problems. Barriers to the adoption of uncertainty-based design methods are identified. and the benefits of the use of such methods are explained. Particular research needs are listed.

  11. Bearberry identification by a multidisciplinary study on commercial raw materials.

    PubMed

    Gallo, Francesca Romana; Multari, Giuseppina; Pagliuca, Giordana; Panusa, Alessia; Palazzino, Giovanna; Giambenedetti, Massimo; Petitto, Valentina; Nicoletti, Marcello

    2013-04-01

    Herbal species different from the official bearberry, Arctostaphylos uva-ursi, are sold through conventional markets and also through non-controlled Internet websites, putting consumer safety at risk owing to the lack of quality control. Recently, Arctostaphylos pungens has become one of the most used species as a raw material for herbal medicines and dietary supplements in the place of official bearberry, a plant used for the treatment of various urinary disorders. A fingerprint identification based on an integrated application of different analytical techniques (HPTLC, NMR, HPLC-DAD and LC-ESI-MS) is here described to distinguish A. uva-ursi from A. pungens. The HPTLC and HPLC-DAD fingerprints resulted the simplest methods to differentiate the two species, whereas LC-ESI-MS was more useful to quantify arbutin, the main component of bearberry, and to evaluate its different content in the two species. This multidisciplinary study showed for the first time a specific phytochemical fingerprint of the new species A. pungens. PMID:22712621

  12. Postdoctoral study in a multidisciplinary research center: an alternative to more traditional nurse fellowships.

    PubMed

    Blank, D M

    1993-01-01

    This article examines postdoctoral study in a multidisciplinary research setting. The author describes the offerings of one particular multidisciplinary center, the Monell Chemical Senses Center, and highlights the advantages and disadvantages of a fellowship in such a setting. The relevance of this option for nursing is discussed.

  13. Using automatic differentiation with the quasi-procedural method for multidisciplinary design optimaization

    SciTech Connect

    Altus, S.; Kroo, I.; Bischof, C.; Hovland, P.

    1996-02-01

    As computers have become increasingly powerful, the field of design optimization has moved toward higher fidelity models (involving many more variables) in the early stages of design. One way in which this movement has manifested itself is in the increasing popularity of multidisciplinary design optimization (MDO). Because the models used in MDO are large and very complicated, a modular design is desirable. Because there are many- design parameters to optimize, derivatives must be computed accurately and efficiently. This paper describes how the quasi-procedural program architecture developed by Takai and Kroo [9] and the technique of automatic differentiation [6] can be combined to effectively address these needs. The two techniques are explained, the manner in which they were integrated into a single framework is described, and the result of using this framework for an optimization problem in airplane design is presented.

  14. An efficient and flexible web services-based multidisciplinary design optimisation framework for complex engineering systems

    NASA Astrophysics Data System (ADS)

    Li, Liansheng; Liu, Jihong

    2012-08-01

    Multidisciplinary design optimisation (MDO) involves multiple disciplines, multiple coupled relationships and multiple processes, which is implemented by different specialists dispersed geographically on heterogeneous platforms with different analysis and optimisation tools. The product design data integration and data sharing among the participants hampers the development and applications of MDO in enterprises seriously. Therefore, a multi-hierarchical integrated product design data model (MH-iPDM) supporting the MDO in the web environment and a web services-based multidisciplinary design optimisation (Web-MDO) framework are proposed in this article. Based on the enabling technologies including web services, ontology, workflow, agent, XML and evidence theory, the proposed framework enables the designers geographically dispersed to work collaboratively in the MDO environment. The ontology-based workflow enables the logical reasoning of MDO to be processed dynamically. The evidence theory-based uncertainty reasoning and analysis supports the quantification, aggregation and analysis of the conflicting epistemic uncertainty from multiple sources, which improves the quality of product. Finally, a proof-of-concept prototype system is developed using J2EE and an example of supersonic business jet is demonstrated to verify the autonomous execution of MDO strategies and the effectiveness of the proposed approach.

  15. The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft

    NASA Astrophysics Data System (ADS)

    Ko, Yan-Yee Andy

    The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a distributed propulsion blended-wing-body (BWB) aircraft. The BWB is a hybrid shape resembling a flying wing, placing the payload in the inboard sections of the wing. The distributed propulsion concept involves replacing a small number of large engines with many smaller engines. The distributed propulsion concept considered here ducts part of the engine exhaust to exit out along the trailing edge of the wing. The distributed propulsion concept affects almost every aspect of the BWB design. Methods to model these effects and integrate them into an MDO framework were developed. The most important effect modeled is the impact on the propulsive efficiency. There has been conjecture that there will be an increase in propulsive efficiency when there is blowing out of the trailing edge of a wing. A mathematical formulation was derived to explain this. The formulation showed that the jet 'fills in' the wake behind the body, improving the overall aerodynamic/propulsion system, resulting in an increased propulsive efficiency. The distributed propulsion concept also replaces the conventional elevons with a vectored thrust system for longitudinal control. An extension of Spence's Jet Flap theory was developed to estimate the effects of this vectored thrust system on the aircraft longitudinal control. It was found to provide a reasonable estimate of the control capability of the aircraft. An MDO framework was developed, integrating all the distributed propulsion effects modeled. Using a gradient based optimization algorithm, the distributed propulsion BWB aircraft was optimized and compared with a similarly optimized conventional BWB design. Both designs are for an 800 passenger, 0.85 cruise Mach number and 7000 nmi mission. The MDO results found that the distributed propulsion BWB aircraft has a 4% takeoff gross weight and a 2% fuel weight. Both designs have similar planform shapes

  16. On Developing a Taxonomy for Multidisciplinary Design Optimization: A Decision-Based Perspective

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper; Mistree, Farrokh

    1995-01-01

    In this paper, we approach MDO from a Decision-Based Design (DBD) perspective and explore classification schemes for designing complex systems and processes. Specifically, we focus on decisions, which are only a small portion of the Decision Support Problem (DSP) Technique, our implementation of DBD. We map coupled nonhierarchical and hierarchical representations from the DSP Technique into the Balling-Sobieski (B-S) framework (Balling and Sobieszczanski-Sobieski, 1994), and integrate domain-independent linguistic terms to complete our taxonomy. Application of DSPs to the design of complex, multidisciplinary systems include passenger aircraft, ships, damage tolerant structural and mechanical systems, and thermal energy systems. In this paper we show that Balling-Sobieski framework is consistent with that of the Decision Support Problem Technique through the use of linguistic entities to describe the same type of formulations. We show that the underlying linguistics of the solution approaches are the same and can be coalesced into a homogeneous framework with which to base the research, application, and technology MDO upon. We introduce, in the Balling-Sobieski framework, examples of multidisciplinary design, namely, aircraft, damage tolerant structural and mechanical systems, and thermal energy systems.

  17. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    surrogate model, which captures the relationships between input variables and responses into regression equations. Depending on the dimensionality of the problem and the fidelity of the code for which a surrogate model is being created, the initial DOE can itself be computationally prohibitive to run. Cokriging, a modeling approach from the field of geostatistics, provides a desirable compromise between computational expense and fidelity. To do this, cokriging leverages a large body of data generated by a low fidelity analysis, combines it with a smaller set of data from a higher fidelity analysis, and creates a kriging surrogate model with prediction fidelity approaching that of the higher fidelity analysis. When integrated into a multidisciplinary environment, a disciplinary analysis module employing cokriging can raise the analysis fidelity without drastically impacting the expense of design iterations. This is demonstrated through the creation of an aerodynamics analysis module in NASA s OpenMDAO framework. Aerodynamic analyses including Missile DATCOM, APAS, and USM3D are leveraged to create high fidelity aerodynamics decks for parametric vehicle geometries, which are created in NASA s Vehicle Sketch Pad (VSP). Several trade studies are performed to examine the achieved level of model fidelity, and the overall impact to vehicle design is quantified.

  18. Roadmap to the multidisciplinary design analysis and optimisation of wind energy systems

    NASA Astrophysics Data System (ADS)

    Sanchez Perez-Moreno, S.; Zaaijer, M. B.; Bottasso, C. L.; Dykes, K.; Merz, K. O.; Réthoré, P.-E.; Zahle, F.

    2016-09-01

    A research agenda is described to further encourage the application of Multidisciplinary Design Analysis and Optimisation (MDAO) methodologies to wind energy systems. As a group of researchers closely collaborating within the International Energy Agency (IEA) Wind Task 37 for Wind Energy Systems Engineering: Integrated Research, Design and Development, we have identified challenges that will be encountered by users building an MDAO framework. This roadmap comprises 17 research questions and activities recognised to belong to three research directions: model fidelity, system scope and workflow architecture. It is foreseen that sensible answers to all these questions will enable to more easily apply MDAO in the wind energy domain. Beyond the agenda, this work also promotes the use of systems engineering to design, analyse and optimise wind turbines and wind farms, to complement existing compartmentalised research and design paradigms.

  19. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    1999-01-01

    Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  20. A General-Purpose Optimization Engine for Multi-Disciplinary Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A general purpose optimization tool for multidisciplinary applications, which in the literature is known as COMETBOARDS, is being developed at NASA Lewis Research Center. The modular organization of COMETBOARDS includes several analyzers and state-of-the-art optimization algorithms along with their cascading strategy. The code structure allows quick integration of new analyzers and optimizers. The COMETBOARDS code reads input information from a number of data files, formulates a design as a set of multidisciplinary nonlinear programming problems, and then solves the resulting problems. COMETBOARDS can be used to solve a large problem which can be defined through multiple disciplines, each of which can be further broken down into several subproblems. Alternatively, a small portion of a large problem can be optimized in an effort to improve an existing system. Some of the other unique features of COMETBOARDS include design variable formulation, constraint formulation, subproblem coupling strategy, global scaling technique, analysis approximation, use of either sequential or parallel computational modes, and so forth. The special features and unique strengths of COMETBOARDS assist convergence and reduce the amount of CPU time used to solve the difficult optimization problems of aerospace industries. COMETBOARDS has been successfully used to solve a number of problems, including structural design of space station components, design of nozzle components of an air-breathing engine, configuration design of subsonic and supersonic aircraft, mixed flow turbofan engines, wave rotor topped engines, and so forth. This paper introduces the COMETBOARDS design tool and its versatility, which is illustrated by citing examples from structures, aircraft design, and air-breathing propulsion engine design.

  1. Comparison of Two Multidisciplinary Optimization Strategies for Launch-Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Powell, R. W.; Lepsch, R. A.; Stanley, D. O.; Kroo, I. M.

    1995-01-01

    The investigation focuses on development of a rapid multidisciplinary analysis and optimization capability for launch-vehicle design. Two multidisciplinary optimization strategies in which the analyses are integrated in different manners are implemented and evaluated for solution of a single-stage-to-orbit launch-vehicle design problem. Weights and sizing, propulsion, and trajectory issues are directly addressed in each optimization process. Additionally, the need to maintain a consistent vehicle model across the disciplines is discussed. Both solution strategies were shown to obtain similar solutions from two different starting points. These solutions suggests that a dual-fuel, single-stage-to-orbit vehicle with a dry weight of approximately 1.927 x 10(exp 5)lb, gross liftoff weight of 2.165 x 10(exp 6)lb, and length of 181 ft is attainable. A comparison of the two approaches demonstrates that treatment or disciplinary coupling has a direct effect on optimization convergence and the required computational effort. In comparison with the first solution strategy, which is of the general form typically used within the launch vehicle design community at present, the second optimization approach is shown to he 3-4 times more computationally efficient.

  2. Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Gu, L.; Tho, C. H.; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    Multidisciplinary design optimization (MDO) of a full vehicle under the constraints of crashworthiness, NVH (Noise, Vibration and Harshness), durability, and other performance attributes is one of the imperative goals for automotive industry. However, it is often infeasible due to the lack of computational resources, robust simulation capabilities, and efficient optimization methodologies. This paper intends to move closer towards that goal by using parallel computers for the intensive computation and combining different approximations for dissimilar analyses in the MDO process. The MDO process presented in this paper is an extension of the previous work reported by Sobieski et al. In addition to the roof crush, two full vehicle crash modes are added: full frontal impact and 50% frontal offset crash. Instead of using an adaptive polynomial response surface method, this paper employs a DOE/RSM method for exploring the design space and constructing highly nonlinear crash functions. Two NMO strategies are used and results are compared. This paper demonstrates that with high performance computing, a conventionally intractable real world full vehicle multidisciplinary optimization problem considering all performance attributes with large number of design variables become feasible.

  3. Multidisciplinary integrated Parent and Child Centres in Amsterdam: a qualitative study

    PubMed Central

    Busch, Vincent; Van Stel, Henk François; De Leeuw, Johannes Rob Josephus; Melhuish, Edward; Schrijvers, Augustinus Jacobus Petrus

    2013-01-01

    Background In several countries centres for the integrated delivery of services to the parent and child have been established. In the Netherlands family health care service centres, called Parent and Child Centres (PCCs) involve multidisciplinary teams. Here doctors, nurses, midwives, maternity help professionals and educationists are integrated into multidisciplinary teams in neighbourhood-based centres. To date there has been little research on the implementation of service delivery in these centres. Study design A SWOT analysis was performed by use of triangulation data; this took place by integrating all relevant published documents on the origin and organization of the PCCs and the results from interviews with PCC experts and with PCC professionals (n=91). Structured interviews were performed with PCC-professionals [health care professionals (n=67) and PCC managers n=12)] and PCC-experts (n=12) in Amsterdam and qualitatively analysed thematically. The interview themes were based on a pre-set list of codes, derived from a prior documentation study and a focus group with PCC experts. Results Perceived advantages of PCCs were more continuity of care, shorter communication lines, low-threshold contact between professionals and promising future perspectives. Perceived challenges included the absence of uniform multidisciplinary guidelines, delays in communication with hospitals and midwives, inappropriate accommodation for effective professional integration, differing expectations regarding the PCC-manager role among PCC-partners and the danger of professionals’ needs dominating clients’ needs. Conclusions Professionals perceive PCCs as a promising development in the integration of services. Remaining challenges involved improvements at the managerial and organizational level. Quantitative research into the improvements in quality of care and child health is recommended. PMID:23882163

  4. A Web-Based System for Monitoring and Controlling Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Salas, Andrea O.; Rogers, James L.

    1997-01-01

    In today's competitive environment, both industry and government agencies are under enormous pressure to reduce the time and cost of multidisciplinary design projects. A number of frameworks have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. An examination of current frameworks reveals weaknesses in various areas such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, in conjunction with an existing framework, can improve these areas of weakness. This paper describes a system that executes a sequence of programs, monitors and controls the design process through a Web-based interface, and visualizes intermediate and final results through the use of Java(Tm) applets. A small sample problem, which includes nine processes with two analysis programs that are coupled to an optimizer, is used to demonstrate the feasibility of this approach.

  5. Multidisciplinary studies on ancient sandstone quarries of Western Sardinia (Italy).

    NASA Astrophysics Data System (ADS)

    Grillo, Silvana Maria; Del Vais, Carla; Naitza, Stefano

    2013-04-01

    The ancient coastal quarries of Mediterranean are increasingly considered geosites of multidisciplinary relevance. They are sites of historical-archaeological interest that show ancient techniques of stone extraction; they are significant for cultural heritage conservation and restoration, as sources of the stones used in ancient buildings and monuments; they are sites of geological relevance, as often retain important stratigraphic sections; they are also useful markers of secular changes in the sea level. A multisciplinary study is in progress on the ancient quarries of the Sinis region (western Sardinia island), integrating archaeological, geological, minero-petrographical data. In Sardinia, coastal quarries have been established from Punic and Roman times. Many of them exploited Quaternary sediments along the southern and western coasts of the island. They consist of middle-late Pleistocene marine conglomerates and carbonate sandstones, and of coastal (aeolian) carbonate sandstones. Sandstone blocks of different sizes have been widely used in ancient cities for buildings, defensive works, harbours, etc. Three main areas of stone extraction (San Giovanni di Sinis, Punta Maimoni, Is Arutas) have been so far recognized in the Sinis. GIS-supported mapping and documentation of the sites includes their geology and stratigraphy, the extension and layout of the quarries, and an evaluation of volumes of extracted rocks. Documented archaeological evidences include ancient extraction fronts, spoil heaps, working areas, working traces in the old fronts, transport routes of blocks, and traces of loading facilities. The study is aimed at reconstructing the relationships of the quarries with the urban areas of Sinis, as the ancient Punic-Roman city of Tharros. Consequently, a minero-petrographical characterization (optical microscopy, XRD) is performed on sandstones sampled in each quarry, and in historical buildings in Tharros and other centres of the region (Cabras

  6. The Component Packaging Problem: A Vehicle for the Development of Multidisciplinary Design and Analysis Methodologies

    NASA Technical Reports Server (NTRS)

    Fadel, Georges; Bridgewood, Michael; Figliola, Richard; Greenstein, Joel; Kostreva, Michael; Nowaczyk, Ronald; Stevenson, Steve

    1999-01-01

    This report summarizes academic research which has resulted in an increased appreciation for multidisciplinary efforts among our students, colleagues and administrators. It has also generated a number of research ideas that emerged from the interaction between disciplines. Overall, 17 undergraduate students and 16 graduate students benefited directly from the NASA grant: an additional 11 graduate students were impacted and participated without financial support from NASA. The work resulted in 16 theses (with 7 to be completed in the near future), 67 papers or reports mostly published in 8 journals and/or presented at various conferences (a total of 83 papers, presentations and reports published based on NASA inspired or supported work). In addition, the faculty and students presented related work at many meetings, and continuing work has been proposed to NSF, the Army, Industry and other state and federal institutions to continue efforts in the direction of multidisciplinary and recently multi-objective design and analysis. The specific problem addressed is component packing which was solved as a multi-objective problem using iterative genetic algorithms and decomposition. Further testing and refinement of the methodology developed is presently under investigation. Teaming issues research and classes resulted in the publication of a web site, (http://design.eng.clemson.edu/psych4991) which provides pointers and techniques to interested parties. Specific advantages of using iterative genetic algorithms, hurdles faced and resolved, and institutional difficulties associated with multi-discipline teaming are described in some detail.

  7. A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Zhang, Lin; Tao, Fei; (Luke) Zhang, Xiaolong; Luo, Yongliang; Zhang, Yabin

    2012-08-01

    Multidisciplinary design of complex products leads to an increasing demand for high performance simulation (HPS) platforms. One great challenge is how to achieve high efficient utilisation of large-scale simulation resources in distributed and heterogeneous environments. This article reports a virtualisation-based methodology to realise a HPS platform. This research is driven by the issues concerning large-scale simulation resources deployment and complex simulation environment construction, efficient and transparent utilisation of fine-grained simulation resources and high reliable simulation with fault tolerance. A framework of virtualisation-based simulation platform (VSIM) is first proposed. Then the article investigates and discusses key approaches in VSIM, including simulation resources modelling, a method to automatically deploying simulation resources for dynamic construction of system environment, and a live migration mechanism in case of faults in run-time simulation. Furthermore, the proposed methodology is applied to a multidisciplinary design system for aircraft virtual prototyping and some experiments are conducted. The experimental results show that the proposed methodology can (1) significantly improve the utilisation of fine-grained simulation resources, (2) result in a great reduction in deployment time and an increased flexibility for simulation environment construction and (3)achieve fault tolerant simulation.

  8. A Multidisciplinary Osteoporosis Service-Based Action Research Study

    ERIC Educational Resources Information Center

    Whitehead, Dean; Keast, John; Montgomery, Val; Hayman, Sue

    2004-01-01

    Objective: To investigate an existing Trust-based osteoporosis service's preventative activity, determine any issues and problems and use this data to reorganise the service, as part of a National Health Service Executive/Regional Office-commissioned and funded study. Setting: A UK Hospital Trust's Osteoporosis Service. Design & Method: A…

  9. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  10. A case study on development of an integrated, multidisciplinary dental curriculum.

    PubMed

    Nadershahi, Nader A; Bender, Daniel J; Beck, Lynn; Alexander, Steven

    2013-06-01

    Calls for fundamental reform of dental education were made twice in the twentieth century. More recently, spurred by the work of the American Dental Education Association's Commission on Change and Innovation in Dental Education (ADEA CCI), North American dental educators have again begun advocating for major curriculum reform in order to develop in students the higher order thinking skills required for the contemporary practice of dentistry. This case study describes the process of curricular reform at one school designed to move from a traditional siloed curriculum to one that uses case-based, integrated multidisciplinary courses to improve teaching and learning. The process was broad-based and comprehensive and included a schoolwide values clarification exercise and agreement on desired characteristics of an ideal graduate. Stakeholders agreed that the reform curriculum should incorporate inter- and multidisciplinary courses, case-based and active learning strategies, and concepts from adult learning theory. The new curriculum model is comprised of five unique but related curriculum "strands," each managed by a small group of interdisciplinary faculty content experts. Challenges in the development and implementation of the reform curriculum are discussed, and an assessment plan is presented.

  11. Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Lung, Shun-fat; Pak, Chan-gi

    2008-01-01

    Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization [MDAO] tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

  12. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Korte, John J.; Mauery, Timothy M.; Mistree, Farrokh

    1998-01-01

    In this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems m formulated and solved using both sets of approximation models. The second-order response surface models and kriging models-using a constant underlying global model and a Gaussian correlation function-yield comparable results.

  13. Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Lung, Shun-fat; Pak, Chan-gi

    2008-01-01

    Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

  14. Comparison of Response Surface and Kriging Models in the Multidisciplinary Design of an Aerospike Nozzle

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.

    1998-01-01

    The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.

  15. A Systematic Review of the Literature on Multidisciplinary Rounds to Design Information Technology

    PubMed Central

    Gurses, Ayse P.; Xiao, Yan

    2006-01-01

    Multidisciplinary rounds (MDR) have become important mechanisms for communication and coordination of care. To guide design of tools supporting MDR, we reviewed the literature published from 1990 to 2005 about MDR on information tools used, information needs, impact of information tools, and evaluation measures. Fifty-one papers met inclusion criteria and were included. In addition to patient-centric information tools (e.g., medical chart) and decision-support tools (e.g., clinical pathway), process-oriented tools (e.g., rounding list) were reported to help with information organization and communication. Information tools were shown to improve situation awareness of multidisciplinary care providers, efficiency of MDR, and length of stay. Communication through MDR may be improved by process-oriented information tools that help information organization, communication, and work management, which could be achieved through automatic extraction from clinical information systems, displays and printouts in condensed forms, at-a-glance representations of the care unit, and storing work-process information temporarily. PMID:16501176

  16. Domain decomposition in multidisciplinary design: Role of artificial neural networks and intelligent agents

    NASA Astrophysics Data System (ADS)

    Arslan, Mehmet Ali

    This thesis examines decomposition based procedures in the optimal design of large-scale multidisciplinary systems. The use of formal optimization methods in such systems is complicated by the presence of a large number of design variables and constraints. Decomposition reduces a large-scale system into a sequence of smaller, more tractable subsystems, each with a smaller set of design variables and constraints. The decomposed subsystems, however, are not totally decoupled, and design changes in one subsystem may have a profound influence on changes in other subsystems. The present work examines the effectiveness of counterpropagation (CP) neural networks as a tool to account for this coupling. This capability derives from a pattern completion capability of such networks. The proposed approach is implemented for a class of structural design problems where the decomposed subsystems exhibit hierarchy, i.e., there is a distinct chain of command in the nature of couplings between the subsystems. The role of artificial neural networks is also explored in the context of concurrent subspace optimization (CSSO) where this decomposition based approach is applicable to problems where no distinct hierarchy of influences can be identified. Essential components of decomposition based design methods are strategies to identify a topology for problem decomposition, and to develop coordination strategies which account for couplings among the decomposed problems. The present thesis examines the effectiveness of artificial neural networks as a tool to both account for the coupling, and to develop methods to coordinate the solution in the different subproblems. The solution process for decomposition based design is further enhanced by a novel approach of using Intelligent Agents (IA's). This agent-based paradigm provides the necessary support structure for representing salient characteristics of the design, and for coordinating the solutions in different subproblems. The CSSO method

  17. Designing eHealth that Matters via a Multidisciplinary Requirements Development Approach

    PubMed Central

    Wentzel, Jobke; Van Gemert-Pijnen, Julia EWC

    2013-01-01

    Background Requirements development is a crucial part of eHealth design. It entails all the activities devoted to requirements identification, the communication of requirements to other developers, and their evaluation. Currently, a requirements development approach geared towards the specifics of the eHealth domain is lacking. This is likely to result in a mismatch between the developed technology and end user characteristics, physical surroundings, and the organizational context of use. It also makes it hard to judge the quality of eHealth design, since it makes it difficult to gear evaluations of eHealth to the main goals it is supposed to serve. Objective In order to facilitate the creation of eHealth that matters, we present a practical, multidisciplinary requirements development approach which is embedded in a holistic design approach for eHealth (the Center for eHealth Research roadmap) that incorporates both human-centered design and business modeling. Methods Our requirements development approach consists of five phases. In the first, preparatory, phase the project team is composed and the overall goal(s) of the eHealth intervention are decided upon. Second, primary end users and other stakeholders are identified by means of audience segmentation techniques and our stakeholder identification method. Third, the designated context of use is mapped and end users are profiled by means of requirements elicitation methods (eg, interviews, focus groups, or observations). Fourth, stakeholder values and eHealth intervention requirements are distilled from data transcripts, which leads to phase five, in which requirements are communicated to other developers using a requirements notation template we developed specifically for the context of eHealth technologies. Results The end result of our requirements development approach for eHealth interventions is a design document which includes functional and non-functional requirements, a list of stakeholder values, and end

  18. Product Design Engineering--A Global Education Trend in Multidisciplinary Training for Creative Product Design

    ERIC Educational Resources Information Center

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-01-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering…

  19. Computer-automated multi-disciplinary analysis and design optimization of internally cooled turbine blades

    NASA Astrophysics Data System (ADS)

    Martin, Thomas Joseph

    This dissertation presents the theoretical methodology, organizational strategy, conceptual demonstration and validation of a fully automated computer program for the multi-disciplinary analysis, inverse design and optimization of convectively cooled axial gas turbine blades and vanes. Parametric computer models of the three-dimensional cooled turbine blades and vanes were developed, including the automatic generation of discretized computational grids. Several new analysis programs were written and incorporated with existing computational tools to provide computer models of the engine cycle, aero-thermodynamics, heat conduction and thermofluid physics of the internally cooled turbine blades and vanes. A generalized information transfer protocol was developed to provide the automatic mapping of geometric and boundary condition data between the parametric design tool and the numerical analysis programs. A constrained hybrid optimization algorithm controlled the overall operation of the system and guided the multi-disciplinary internal turbine cooling design process towards the objectives and constraints of engine cycle performance, aerodynamic efficiency, cooling effectiveness and turbine blade and vane durability. Several boundary element computer programs were written to solve the steady-state non-linear heat conduction equation inside the internally cooled and thermal barrier-coated turbine blades and vanes. The boundary element method (BEM) did not require grid generation inside the internally cooled turbine blades and vanes, so the parametric model was very robust. Implicit differentiations of the BEM thermal and thereto-elastic analyses were done to compute design sensitivity derivatives faster and more accurately than via explicit finite differencing. A factor of three savings of computer processing time was realized for two-dimensional thermal optimization problems, and a factor of twenty was obtained for three-dimensional thermal optimization problems

  20. Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.

  1. Computerized Design Synthesis (CDS), A database-driven multidisciplinary design tool

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Bolukbasi, A. O.

    1989-01-01

    The Computerized Design Synthesis (CDS) system under development at McDonnell Douglas Helicopter Company (MDHC) is targeted to make revolutionary improvements in both response time and resource efficiency in the conceptual and preliminary design of rotorcraft systems. It makes the accumulated design database and supporting technology analysis results readily available to designers and analysts of technology, systems, and production, and makes powerful design synthesis software available in a user friendly format.

  2. Design of a Model for a Professional Development Programme for a Multidisciplinary Science Subject in the Netherlands

    ERIC Educational Resources Information Center

    Visser, Talitha C.; Coenders, Fer G. M.; Terlouw, Cees; Pieters, Jules M.

    2012-01-01

    Schools are increasingly integrating multidisciplinary education into their programmes. The Minister of Education, Culture and Science has introduced a new, integrated science subject in secondary education in the Netherlands, called Nature, Life and Technology (NLT). This research note describes the design of a generic model for a professional…

  3. Product design engineering - a global education trend in multidisciplinary training for creative product design

    NASA Astrophysics Data System (ADS)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-03-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering training. Product design engineering (PDE) is a new interdisciplinary programme combining the strengths of the industrial design and engineering. This paper examines the emergence of PDE in an environment of critique of conventional engineering education and exemplifies the current spread of programmes endorsing a hybrid programme of design and engineering skills. The paper exemplifies PDE with the analysis of the programme offered at Swinburne University of Technology (Australia), showing how the teaching of 'designerly' thinking to engineers produces a new graduate particularly suited to the current and future environment of produce design practice. The paper concludes with reflections on the significance of this innovative curriculum model for the field of product design and for engineering design in general.

  4. A Systematic Approach for Quantitative Analysis of Multidisciplinary Design Optimization Framework

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Park, Jungkeun; Lee, Jeong-Oog; Lee, Jae-Woo

    An efficient Multidisciplinary Design and Optimization (MDO) framework for an aerospace engineering system should use and integrate distributed resources such as various analysis codes, optimization codes, Computer Aided Design (CAD) tools, Data Base Management Systems (DBMS), etc. in a heterogeneous environment, and need to provide user-friendly graphical user interfaces. In this paper, we propose a systematic approach for determining a reference MDO framework and for evaluating MDO frameworks. The proposed approach incorporates two well-known methods, Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD), in order to provide a quantitative analysis of the qualitative criteria of MDO frameworks. Identification and hierarchy of the framework requirements and the corresponding solutions for the reference MDO frameworks, the general one and the aircraft oriented one were carefully investigated. The reference frameworks were also quantitatively identified using AHP and QFD. An assessment of three in-house frameworks was then performed. The results produced clear and useful guidelines for improvement of the in-house MDO frameworks and showed the feasibility of the proposed approach for evaluating an MDO framework without a human interference.

  5. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    NASA Technical Reports Server (NTRS)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS

  6. Engineering Overview of a Multidisciplinary HSCT Design Framework Using Medium-Fidelity Analysis Codes

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.

    1999-01-01

    An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW

  7. Multidisciplinary Case Study on Higher Education: An Innovative Experience in the Business Management Degree

    ERIC Educational Resources Information Center

    Martínez-Cañas, Ricardo; del Pozo-Rubio, Raúl; Mondéjar-Jiménez, José; Ruiz-Palomino, Pablo

    2012-01-01

    Higher education is constantly changing and looking for innovative educational solutions in order to increase the level of the student's knowledge and skills. As an important part of this set of educational policies, a new process is emerging for the ideation, planning and implementation of multidisciplinary case studies for students with the aim…

  8. A Day at the Beach: A Multidisciplinary Business Law Case Study

    ERIC Educational Resources Information Center

    Rymsza, Leonard; Saunders, Kurt; Baum, Paul; Tontz, Richard

    2010-01-01

    This case study, written for use in a multidisciplinary course, exposes students to concepts in business law, economics, and statistics. The case is based upon a hypothetical scenario involving a young woman who, having spent a relaxing day at the beach, heads for home. On the drive home, a flip-flop she is wearing becomes lodged under the gas…

  9. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  10. Improving post-stroke dysphagia outcomes through a standardized and multidisciplinary protocol: an exploratory cohort study.

    PubMed

    Gandolfi, Marialuisa; Smania, Nicola; Bisoffi, Giulia; Squaquara, Teresa; Zuccher, Paola; Mazzucco, Sara

    2014-12-01

    Stroke is a major cause of dysphagia. Few studies to date have reported on standardized multidisciplinary protocolized approaches to the management of post-stroke dysphagia. The aim of this retrospective cohort study was to evaluate the impact of a standardized multidisciplinary protocol on clinical outcomes in patients with post-stroke dysphagia. We performed retrospective chart reviews of patients with post-stroke dysphagia admitted to the neurological ward of Verona University Hospital from 2004 to 2008. Outcomes after usual treatment for dysphagia (T- group) were compared versus outcomes after treatment under a standardized diagnostic and rehabilitative multidisciplinary protocol (T+ group). Outcome measures were death, pneumonia on X-ray, need for respiratory support, and proportion of patients on tube feeding at discharge. Of the 378 patients admitted with stroke, 84 had dysphagia and were enrolled in the study. A significantly lower risk of in-hospital death (odds ratio [OR] 0.20 [0.53-0.78]), pneumonia (OR 0.33 [0.10-1.03]), need for respiratory support (OR 0.48 [0.14-1.66]), and tube feeding at discharge (OR 0.30 [0.09-0.91]) was recorded for the T+ group (N = 39) as compared to the T- group (N = 45). The adjusted OR showed no difference between the two groups for in-hospital death and tube feeding at discharge. Use of a standardized multidisciplinary protocolized approach to the management of post-stroke dysphagia may significantly reduce rates of aspiration pneumonia, in-hospital mortality, and tube feeding in dysphagic stroke survivors. Consistent with the study's exploratory purposes, our findings suggest that the multidisciplinary protocol applied in this study offers an effective model of management of post-stroke dysphagia.

  11. Implementing Universal Design Strategies in Municipalities - A Multidisciplinary Approach to Universal Design and Public Health.

    PubMed

    Jensen, Roger

    2016-01-01

    Based on a national program, the regional authorities stimulated each of the 18 municipalities in Telemark 2012-15 to plan and build promenades with universal design. The cooperation between different disciplines was an important factor for good results. The project continues from 2016. PMID:27534320

  12. Implementing Universal Design Strategies in Municipalities - A Multidisciplinary Approach to Universal Design and Public Health.

    PubMed

    Jensen, Roger

    2016-01-01

    Based on a national program, the regional authorities stimulated each of the 18 municipalities in Telemark 2012-15 to plan and build promenades with universal design. The cooperation between different disciplines was an important factor for good results. The project continues from 2016.

  13. A case study of asthma care in school age children using nurse-coordinated multidisciplinary collaborative practices

    PubMed Central

    Procter, Susan; Brooks, Fiona; Wilson, Patricia; Crouchman, Carolyn; Kendall, Sally

    2015-01-01

    Aim To describe the role of school nursing in leading and coordinating a multidisciplinary networked system of support for children with asthma, and to analyze the strengths and challenges of undertaking and supporting multiagency interprofessional practice. Background The growth of networked and interprofessional collaborations arises from the recognition that a number of the most pressing public health problems cannot be addressed by single-discipline or -agency interventions. This paper identifies the potential of school nursing to provide the vision and multiagency leadership required to coordinate multidisciplinary collaboration. Method A mixed-method single-case study design using Yin’s approach, including focus groups, interviews, and analysis of policy documents and public health reports. Results A model that explains the integrated population approach to managing school-age asthma is described; the role of the lead school nurse coordinator was seen as critical to the development and sustainability of the model. Conclusion School nurses can provide strategic multidisciplinary leadership to address pressing public health issues. Health service managers and commissioners need to understand how to support clinicians working across multiagency boundaries and to identify how to develop leadership skills for collaborative interprofessional practice so that the capacity for nursing and other health care professionals to address public health issues does not rely on individual motivation. In England, this will be of particular importance to the commissioning of public health services by local authorities from 2015. PMID:25914542

  14. Multidisciplinary studies of uranium deposits in the Red Desert, Wyoming

    SciTech Connect

    Not Available

    1983-01-01

    Related exploration disciplines of earth science were applied during the late 1970x by Bendix Field Engineering Corporation (Bendix) to the investigation of known uranium deposits in portions of the Red Desert area of Sweetwater County, Wyoming. Principal efforts of the Red Desert project were directed toward the major objective of mineral halo identification; subsidiary tasks included the recognition of genetic criteria and the appraisal of cost-effective exploration methods for use in the search for blind uranium deposits. Detailed studies were focused on the known ENQ deposit, a relatively deep concentration of low-grade uranium in a Tertiary sedimentary environment that presents a series of challenging problems to the mineral explorationist. Bendix and its subcontractors conducted in-house investigations under the major categories of geologic, geochemical, geophysical, and emanometric studies. Geologic field investigations included subsurface data acquisition by drilling, sampling, and logging/ surface studies were implemented by aerial, surface, and subsurface methods. The efficiency rating versus expense of the investigative methods used in the Red Desert project area were compared to determine a relative cost-effectiveness of these methods. The following six papers in this volumne have been abstracted for the energy data base: geologic studies; geochemical studies; geophysical studies; emanometric studies; and structure and metallogeny.

  15. Barriers and facilitators to implement shared decision making in multidisciplinary sciatica care: a qualitative study

    PubMed Central

    2013-01-01

    Background The Dutch multidisciplinary sciatica guideline recommends that the team of professionals involved in sciatica care and the patient together decide on surgical or prolonged conservative treatment (shared decision making [SDM]). Despite this recommendation, SDM is not yet integrated in sciatica care. Existing literature concerning barriers and facilitators to SDM implementation mainly focuses on one discipline only, whereas multidisciplinary care may involve other barriers and facilitators, or make these more complex for both professionals and patients. Therefore, this qualitative study aims to identify barriers and facilitators perceived by patients and professionals for SDM implementation in multidisciplinary sciatica care. Methods We conducted 40 semi-structured interviews with professionals involved in sciatica care (general practitioners, physical therapists, neurologists, neurosurgeons, and orthopedic surgeons) and three focus groups among patients (six to eight per group). The interviews and focus groups were audiotaped and transcribed in full. Reported barriers and facilitators were classified according to the framework of Grol and Wensing. The software package Atlas.ti 7.0 was used for analysis. Results Professionals reported 53 barriers and 5 facilitators, and patients 35 barriers and 18 facilitators for SDM in sciatica care. Professionals perceived most barriers at the level of the organizational context, and facilitators at the level of the individual professional. Patients reported most barriers and facilitators at the level of the individual professional. Several barriers and facilitators correspond with barriers and facilitators found in the literature (e.g., lack of time, motivation) but also new barriers and facilitators were identified. Many of these new barriers mentioned by both professionals and patients were related to the multidisciplinary setting, such as lack of visibility, lack of trust in expertise of other disciplines, and lack

  16. Ultrahigh-pressure melting of lead - A multidisciplinary study

    NASA Technical Reports Server (NTRS)

    Godwal, B. K.; Meade, Charles; Jeanloz, Raymond; Garcia, Alberto; Liu, Amy Y.

    1990-01-01

    Measurements of the melting temperatures of lead, carried out to pressures of 1 megabar and temperatures near 4000 kelvin by means of a laser-heated diamond cell are in excellent agreement with the results of previous shock-wave experiments. The data are analyzed by means of first principles quantum mechanical calculations, and the agreement documents the reliability of current experimental and theoretical techniques for studies of melting at ultrahigh pressures. These studies have potentially wide-ranging applications from planetary science to condensed matter physics.

  17. The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington's disease: an exploratory study

    PubMed Central

    Cruickshank, Travis M; Thompson, Jennifer A; Domínguez D, Juan F; Reyes, Alvaro P; Bynevelt, Mike; Georgiou-Karistianis, Nellie; Barker, Roger A; Ziman, Mel R

    2015-01-01

    Background There is a wealth of evidence detailing gray matter degeneration and loss of cognitive function over time in individuals with Huntington's disease (HD). Efforts to attenuate disease-related brain and cognitive changes have been unsuccessful to date. Multidisciplinary rehabilitation, comprising motor and cognitive intervention, has been shown to positively impact on functional capacity, depression, quality of life and some aspects of cognition in individuals with HD. This exploratory study aimed to evaluate, for the first time, whether multidisciplinary rehabilitation can slow further deterioration of disease-related brain changes and related cognitive deficits in individuals with manifest HD. Methods Fifteen participants who manifest HD undertook a multidisciplinary rehabilitation intervention spanning 9 months. The intervention consisted of once-weekly supervised clinical exercise, thrice-weekly self-directed home based exercise and fortnightly occupational therapy. Participants were assessed using MR imaging and validated cognitive measures at baseline and after 9 months. Results Participants displayed significantly increased gray matter volume in the right caudate and bilaterally in the dorsolateral prefrontal cortex after 9 months of multidisciplinary rehabilitation. Volumetric increases in gray matter were accompanied by significant improvements in verbal learning and memory (Hopkins Verbal Learning-Test). A significant association was found between gray matter volume increases in the dorsolateral prefrontal cortex and performance on verbal learning and memory. Conclusions This study provides preliminary evidence that multidisciplinary rehabilitation positively impacts on gray matter changes and cognitive functions relating to verbal learning and memory in individuals with manifest HD. Larger controlled trials are required to confirm these preliminary findings. PMID:25642394

  18. Collaboration in a Multidisciplinary, Distributed Research Organization: A Case Study

    ERIC Educational Resources Information Center

    Duysburgh, Pieter; Naessens, Kris; Konings, Wim; Jacobs, An

    2012-01-01

    Collaboration has become a main characteristic of academic research today. New forms of research organizations, colaboratories, have come to the fore, with distributed research centres as their most complex example. In this study, we aim to provide some insight into the collaboration strategies of researchers in their daily researching activities…

  19. Ecological and sociological considerations of wind energy: A multidisciplinary study

    NASA Astrophysics Data System (ADS)

    Bicknell, Lucas John

    Wind energy is quickly becoming a critical technology for providing Americans with renewable energy, and rapid construction of wind facilities may have impacts on both wildlife and human communities. Understanding both the social and ecological issues related to wind energy development could provide a framework for effectively meeting human energy needs while conserving species biodiversity. In this research I looked at two aspects of wind energy development: public attitudes toward wind energy development and wind facility impacts on local bat populations. These papers present aspects of wind energy development that have been the subject of increasing study. This preliminary research is intended to demonstrate the responsibility we have to making well-informed decisions as we continue to expand wind energy development. Additionally, I hope to generate interest in interdisciplinary study as a means to broaden the scope of research by making use of the diverse tools available within different disciplines.

  20. Multidisciplinary Procedures for Designing Housing Adaptations for People with Mobility Disabilities.

    PubMed

    Sukkay, Sasicha

    2016-01-01

    Based on a 2013 statistic published by Thai with Disability foundation, five percent of Thailand's population are disabled people. Six hundred thousand of them have mobility disability, and the number is increasing every year. To support them, the Thai government has implemented a number of disability laws and policies. One of the policies is to better disabled people's quality of life by adapting their houses to facilitate their activities. However, the policy has not been fully realized yet-there is still no specific guideline for housing adaptation for people with disabilities. This study is an attempt to address the lack of standardized criteria for such adaptation by developing a number of effective ones. Our development had 3 objectives: first, to identify the body functioning of a group of people with mobility disability according to the international classification functioning concept (ICF); second, to perform post-occupancy evaluation of this group and their houses; and third, with the collected data, to have a group of multidisciplinary experts cooperatively develop criteria for housing adaptation. The major findings were that room dimensions and furniture materials really had an impact on accessibility and toilet as well as bed room were the most difficult areas to access. PMID:27534326

  1. A Multidisciplinary Study of the DPRK Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Carluccio, R.; Giuntini, A.; Materni, V.; Chiappini, S.; Bignami, C.; D'Ajello Caracciolo, F.; Pignatelli, A.; Stramondo, S.; Console, R.; Chiappini, M.

    2014-03-01

    The Democratic People Republic of Korea announced two underground nuclear tests carried out in their territory respectively on October 9th, 2006 and May 25th, 2009. The scarce information on the precise location and the size of those explosions has stimulated various kinds of studies, mostly based on seismological observations, by several national agencies concerned with the Nuclear Test Ban Treaty verification. We analysed the available seismological data collected through a global high-quality network for the two tests. After picking up the arrival times at the various stations, a standard location program has been applied to the observed data. If we use all the available data for each single event, due to the different magnitude and different number of available stations, the locations appear quite different. On the contrary, if we use only the common stations, they happen to be only few km apart from each other and within their respective error ellipses. A more accurate relative location has been carried out by the application of algorithms such as double difference joint hypocenter determination (DDJHD) and waveform alignment. The epicentral distance between the two events obtained by these methods is 2 km, with the 2006 event shifted to the ESE with respect to that of 2009. We then used a dataset of VHR TerraSAR-X satellite images to detect possible surface effects of the underground tests. This is the first ever case where these highly performing SAR data have been used to such aim. We applied InSAR processing technique to fully exploit the capabilities of SAR data to measure very short displacements over large areas. Two interferograms have been computed, one co-event and one post-event, to remove possible residual topographic signals. A clear displacement pattern has been highlighted over a mountainous area within the investigated region, measuring a maximum displacement of about 45 mm overall the relief. Hypothesizing that the 2009 nuclear test had been

  2. Computational study of engine external aerodynamics as a part of multidisciplinary optimization procedure

    NASA Astrophysics Data System (ADS)

    Savelyev, Andrey; Anisimov, Kirill; Kazhan, Egor; Kursakov, Innocentiy; Lysenkov, Alexandr

    2016-10-01

    The paper is devoted to the development of methodology to optimize external aerodynamics of the engine. Optimization procedure is based on numerical solution of the Reynolds-averaged Navier-Stokes equations. As a method of optimization the surrogate based method is used. As a test problem optimal shape design of turbofan nacelle is considered. The results of the first stage, which investigates classic airplane configuration with engine located under the wing, are presented. Described optimization procedure is considered in the context of multidisciplinary optimization of the 3rd generation, developed in the project AGILE.

  3. Patients’ experiences of a multidisciplinary team-led community case management programme: a qualitative study

    PubMed Central

    Gowing, Alice; Dickinson, Claire; Gorman, Tom; Robinson, Louise; Duncan, Rachel

    2016-01-01

    Objectives To explore the views and experiences of patients on the care they have received while enrolled on the Northumberland High Risk Patient Programme (NHRPP). This programme involved case finding of frail patients using a multidisciplinary team (MDT)-led community case management programme, and support of patients through care planning and regular reviews using primary, community, secondary and social care professionals. Design A qualitative study using semistructured interviews, which were digitally recorded, transcribed and subject to thematic analysis. Setting Community patients receiving primary care in the county of Northumberland, England. Participants 23 participants took part, of which 16 were patients enrolled on the NHRPP, and 7 carers. GP practices were selected purposively by size, deprivation and location, and patients identified and invited by General Practitioners to participate. Results 4 main themes emerged from the data: awareness and understanding of the NHRPP, confidence in the primary healthcare team, limitations of home care and the active role of being a patient. Despite having a low level of awareness of the details of the NHRPP, participants did think that its broad aim made sense. Participants discussed their high level of satisfaction with their care and access to team members. However, some limitations of alternatives to hospital care were identified, including the need to consider psychological as well as medical needs, the importance of overnight care and the needs of those without informal carers. Finally, participants discussed the active nature of being a patient under the NHRPP if they were to contribute fully to planning and managing their own care. Conclusions This study has identified that a programme of MDT-led case management was generally very well received by patients and their families. However, a number of factors were identified that could improve the implementation of the programme and further research needs to be

  4. Multidisciplinary team decision-making in cancer and the absent patient: a qualitative study

    PubMed Central

    Hamilton, D W; Heaven, B; Thomson, R G; Wilson, J A; Exley, C

    2016-01-01

    Objective To critically examine the process of multidisciplinary team (MDT) decision-making with a particular focus on patient involvement. Design Ethnographic study using direct non-participant observation of 35 MDT meetings and 37 MDT clinics, informal interviews and formal, semistructured interviews with 20 patients and 9 MDT staff members. Setting Three head and neck cancer centres in the north of England. Participants Patients with a diagnosis of new or recurrent head and neck cancer and staff members who attend the head and neck cancer MDT. Results Individual members of the MDT often have a clear view of which treatment they consider to be ‘best’ in any clinical situation. When disagreement occurs, the MDT has to manage how it presents this difference of opinion to the patient. First, this is because the MDT members recognise that the clinician selected to present the treatment choice to the patient may ‘frame’ their description of the treatment options to fit their own view of best. Second, many MDT members feel that any disagreement and difference of opinion in the MDT meeting should be concealed from the patient. This leads to much of the work of decision-making occurring in the MDT meeting, thus excluding the patient. MDT members seek to counteract this by introducing increasing amounts of information about the patient into the MDT meeting, thus creating an ‘evidential patient’. Often, only highly selected or very limited information of this type can be available or known and it can easily be selectively reported in order to steer the discussion in a particular direction. Conclusions The process of MDT decision-making presents significant barriers to effective patient involvement. If patients are to be effectively involved in cancer decision-making, the process of MDT decision-making needs substantial review. PMID:27443554

  5. Asthma in seven year old children: a report from the Dunedin Multidisciplinary Child Development Study.

    PubMed

    Sears, M R; Jones, D T; Silva, P A; Simpson, A; Williams, S M

    1982-08-11

    The prevalence of asthma between birth and seven years was determined by questionnaire in 875 children as part of the Dunedin Multidisciplinary Child Development Study. From the combinations of asthma and/or wheezing reported in association with bronchitis, hayfever, eczema and allergies, a diagnosis of certain or probable asthma was made in 12.6 percent of these children. A further 22.6 percent admitted to wheezing, but a diagnosis of asthma could not be made with any certainty. Bronchitis was reported frequently, usually associated with wheezing. Children with more obvious asthma showed a male preponderance and significant differences in body build and school attendance compared with asymptomatic children.

  6. Effect of a Multidisciplinary Outpatient Model of Care on Health Outcomes in Older Patients with Multimorbidity: A Retrospective Case Control Study

    PubMed Central

    Shakib, Sepehr; Dundon, Benjamin K.; Maddison, John; Thomas, Josephine; Stanners, Melinda; Caughey, Gillian E.; Clark, Robyn A.

    2016-01-01

    Objective To evaluate a holistic multidisciplinary outpatient model of care on hospital readmission, length of stay and mortality in older patients with multimorbidity following discharge from hospital. Design and Participants A pilot case-control study between March 2006 and June 2009 of patients referred on discharge to a multidisciplinary, integrated outpatient model of care that includes outpatient follow-up, timely GP communication and dial-in service compared with usual care following discharge, within a metropolitan, tertiary referral, public teaching hospital. Controls were matched in a 4:1 ratio with cases for age, gender, index admission diagnosis and length of stay. Main outcome measures Non-elective readmission rates, total readmission length of stay and overall survival. Results A total of 252 cases and 1008 control patients were included in the study. Despite the patients referred to the multidisciplinary model of care had slightly more comorbid conditions, significantly higher total length of hospital stay in the previous 12 months and increased prevalence of diabetes and heart failure by comparison to those who received usual care, they had significantly improved survival (adjusted hazard ratio 0.70 95% CI 0.51–0.96, p = 0.029) and no excess in the number of hospitalisations observed. Conclusion Following discharge from hospital, holistic multidisciplinary outpatient management is associated with improved survival in older patients with multimorbidity. The findings of this study warrant further examination in randomised and cost-effectiveness trials. PMID:27537395

  7. Multidisciplinary rehabilitation for people with Parkinson's disease: a randomised controlled study

    PubMed Central

    Wade, D; Gage, H; Owen, C; Trend, P; Grossmith, C; Kaye, J

    2003-01-01

    Objective: To determine whether a programme of multidisciplinary rehabilitation and group support achieves sustained benefit for people with Parkinson's disease or their carers. Methods: The study was a randomised controlled crossover trial comparing patients and carers who had received rehabilitation four months before assessment with those who had not. Patients were recruited from a neurology clinic, attended a day hospital from home weekly for six weeks using private car or hospital transport, and received group educational activities and individual rehabilitation from a multidisciplinary team. Patients were assessed at entry and at six months using a 25 item self assessment Parkinson's disease disability questionnaire, Euroqol-5d, SF-36, PDQ-39, hospital anxiety and depression scale, and timed stand-walk-sit test. Carers were assessed using the carer strain index and Euroqol-5d. Results: 144 people with Parkinson's disease without severe cognitive losses and able to travel to hospital were registered (seven were duplicate registrations); 94 had assessments at baseline and six months. Repeated measures analysis of variance comparing patients at the 24 week crossover point showed that those receiving rehabilitation had a trend towards better stand-walk-sit score (p = 0.093) and worse general and mental health (p = 0.002, p = 0.019). Carers of treated patients had a trend towards more strain (p = 0.086). Analysis comparing patients before and six months after treatment showed worsening in disability, quality of life, and carer strain. Conclusions: Patients with Parkinson's disease decline significantly over six months, but a short spell of multidisciplinary rehabilitation may improve mobility. Follow up treatments may be needed to maintain any benefit. PMID:12531939

  8. Multidisciplinary Study of the Precambrian Biosphere and Surficial Oxygenation, Kaapvaal Craton, South Africa: The Agouron Cores

    NASA Astrophysics Data System (ADS)

    Kirschvink, J. L.; Beukes, N. J.; Evans, D. A.; Grotzinger, J. P.; Knoll, A. H.; Sumner, D. Y.

    2004-12-01

    The Campbellrand-Kuruman carbonate-iron formation stratigraphic succession, which drapes the Kaapvaal craton of South Africa, provides a unique opportunity to study the latest Archean/Earliest Proterozoic time interval in a multidisciplinary fashion, for four principal reasons: 1) The >1 km-thick succession of carbonates, cherts, shales, and associated iron formations is a storehouse of various geochemical and paleoclimatic proxy records, 2) the carbonate platform has never been significantly buried and contains abundant limestone, thus offering strong potential for preservation of organic biomarkers, 3) the occurrence of early chert and abundant early sea-floor carbonate crusts provide good potential for the preservation of microfossils and magnetofossils, and 4) much of the stratigraphic succession has not been significantly deformed and we have estabilshed a chronostratigraphic framework in which shallow water facies can be traced down the ancient paleoslope into facies deposited at water depths > 250 meters within a sequence stratigraphic context, supplemented with correlation of three impact spherule layers. The geologic framework provided by this sequence of rock offers an unparalleled opportunity to study the structure and composition of the Archean ocean and to merge this information with co-existing paleontological and geochemical records. With support from the Agouron Institute, two separate cores, each ~ 1.5 km in length, were drilled through the margin of the carbonate platform, spaced so as to intercept the transitional facies at two paleodepths. The holes were deviated slightly from vertical so that a ball-mark system could be used to obtain absolute orientation. To enhance the utility for paleomagnetic investigations, core barrels and bits were demagnetized routinely with a portable mu-metal shielded coil assembly to reduce remagnetization problems, and all core slicing was done with non-magnetic blades. To minimize contamination problems for

  9. Multidisciplinary Care.

    PubMed

    Daly, Megan E; Riess, Jonathan W

    2016-01-01

    Optimal multidisciplinary care of the lung cancer patient at all stages should encompass integration of the key relevant medical specialties, including not only medical, surgical, and radiation oncology, but also pulmonology, interventional and diagnostic radiology, pathology, palliative care, and supportive services such as physical therapy, case management, smoking cessation, and nutrition. Multidisciplinary management starts at staging and tissue diagnosis with pathologic and molecular phenotyping, extends through selection of a treatment modality or modalities, management of treatment and cancer-related symptoms, and to survivorship and end-of-life care. Well-integrated multidisciplinary care may reduce treatment delays, improve cancer-specific outcomes, and enhance quality of life. We address key topics and areas of ongoing investigation in multidisciplinary decision making at each stage of the lung cancer treatment course for early-stage, locally advanced, and metastatic lung cancer patients. PMID:27535399

  10. Computation of radar cross section with the coupling of aerodynamic performance in a multidisciplinary design optimization of aircraft

    NASA Astrophysics Data System (ADS)

    Hong, Seng Muy

    The computation or prediction of plane wave scattering widths is one of the major design considerations of future aircraft and weapon systems. The control of scattering and penetration of electromagnetic waves is the primary objective of emerging low observable technology. The task in computing the electromagnetic backscattered field of an airframe structure is by no means a new endeavor. Whereas predicting a minimal backscattered field return under the manipulation of airframe geometry in the context of multidisciplinary design is considered the most prudent approach to obtain the optimal solution. The objective of this paper is to develop a mathematical method to couple the backscattered field with the defined aerodynamic performance constraints in the design process of future airframes. This paper will address the basic concept of integrating the radio frequency (RF) backscattered field or electromagnetic (EM) discipline with the Multidisciplinary Design Optimization (MDO) methodology. The development of the MDO system is complex and the result appears to be intractable and time consuming despite the availability of high-speed super computers. Due to the fact that many disciplines and analyses were implemented with various optimization methods and techniques, such as the Finite Element Method (FEM), Method of Moment (MoM), the Finite Difference Time Domain (FDTD) method, the integration of multiple individual disciplines with various software coding formats would be the most difficult task. In spite of this expected challenge, this paper will address: (a) The effects and benefits of employing the EM discipline in MDO systems in preliminary configuration design of aircraft structure. (b) The criteria to minimize backscattered field return while maximizing aerodynamic performance and the methods of optimization, trade-off, and implementation. (c) The integration issue of electromagnetic discipline into the grand scheme of MDO. Furthermore, this paper explores the

  11. Observations on computational methodologies for use in large-scale, gradient-based, multidisciplinary design incorporating advanced CFD codes

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Hou, G. J.-W.; Jones, H. E.; Taylor, A. C., III; Korivi, V. M.

    1992-01-01

    How a combination of various computational methodologies could reduce the enormous computational costs envisioned in using advanced CFD codes in gradient based optimized multidisciplinary design (MdD) procedures is briefly outlined. Implications of these MdD requirements upon advanced CFD codes are somewhat different than those imposed by a single discipline design. A means for satisfying these MdD requirements for gradient information is presented which appear to permit: (1) some leeway in the CFD solution algorithms which can be used; (2) an extension to 3-D problems; and (3) straightforward use of other computational methodologies. Many of these observations have previously been discussed as possibilities for doing parts of the problem more efficiently; the contribution here is observing how they fit together in a mutually beneficial way.

  12. Unstructured Finite Volume Computational Thermo-Fluid Dynamic Method for Multi-Disciplinary Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    1998-01-01

    This paper describes a finite volume computational thermo-fluid dynamics method to solve for Navier-Stokes equations in conjunction with energy equation and thermodynamic equation of state in an unstructured coordinate system. The system of equations have been solved by a simultaneous Newton-Raphson method and compared with several benchmark solutions. Excellent agreements have been obtained in each case and the method has been found to be significantly faster than conventional Computational Fluid Dynamic(CFD) methods and therefore has the potential for implementation in Multi-Disciplinary analysis and design optimization in fluid and thermal systems. The paper also describes an algorithm of design optimization based on Newton-Raphson method which has been recently tested in a turbomachinery application.

  13. A Simple Tool for the Design and Analysis of Multiple-reflector Antennas in a Multi-disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel, S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error.

  14. A Simple Tool for the Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea

    2000-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.

  15. Multi-level of Fidelity Multi-Disciplinary Design Optimization of Small, Solid-Propellant Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Roshanian, Jafar; Jodei, Jahangir; Mirshams, Mehran; Ebrahimi, Reza; Mirzaee, Masood

    A new automated multi-level of fidelity Multi-Disciplinary Design Optimization (MDO) methodology has been developed at the MDO Laboratory of K.N. Toosi University of Technology. This paper explains a new design approach by formulation of developed disciplinary modules. A conceptual design for a small, solid-propellant launch vehicle was considered at two levels of fidelity structure. Low and medium level of fidelity disciplinary codes were developed and linked. Appropriate design and analysis codes were defined according to their effect on the conceptual design process. Simultaneous optimization of the launch vehicle was performed at the discipline level and system level. Propulsion, aerodynamics, structure and trajectory disciplinary codes were used. To reach the minimum launch weight, the Low LoF code first searches the whole design space to achieve the mission requirements. Then the medium LoF code receives the output of the low LoF and gives a value near the optimum launch weight with more details and higher fidelity.

  16. Assessing Students' Understanding of Human Behavior: A Multidisciplinary Outcomes Based Approach for the Design and Assessment of an Academic Program Goal.

    ERIC Educational Resources Information Center

    Keith, Bruce; Meese, Michael J.; Efflandt, Scott; Malinowski, Jon C.; LeBoeuf, Joseph; Gallagher, Martha; Hurley, John; Green, Charles

    2002-01-01

    Presents a strategy for the curricular design and assessment of one multidisciplinary program goal: understanding human behavior. Discusses how to assess a desired outcome based on four specific areas: (1) organizational context; (2) articulation of a learning model; (3) program design and implementation; and (4) outcomes assessment. (Author/KDR)

  17. A Case Study of a Co-Instructed Multidisciplinary Senior Capstone Project in Sustainability

    ERIC Educational Resources Information Center

    Rhee, Jinny; Oyamot, Clifton; Parent, David; Speer, Leslie; Basu, Anuradha; Gerston, Larry

    2014-01-01

    As societal challenges involving sustainable development increase, the need to effectively integrate this inherently multidisciplinary topic into existing curricula becomes more pressing. Multidisciplinary, team-taught, project-based instruction has shown effectiveness in teaching teamwork, communication, and life-long learning skills, and…

  18. Multidisciplinary optimization for the design and control of uncertain dynamical systems

    NASA Astrophysics Data System (ADS)

    Sridharan, Srikanth

    This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control architecture to do so). System and controller designers often go through several iterations in order to converge to an acceptable plant and controller design. The focus of this dissertation is on the design and control an air-breathing hypersonic vehicle using such an integrated system-control design framework. The goal is to reduce the number of system-control design iterations (by explicitly incorporate control considerations in the system design process), as well as to influence the guidance/trajectory specifications for the system. Due to the high computational costs associated with obtaining a dynamic model for each plant configuration considered, approximations to the system dynamics are used in the control design process. By formulating the control design problem using bilinear and polynomial matrix inequalities, several common control and system design constraints can be simultaneously incorporated into a vehicle design optimization. Several design problems are examined to illustrate the effectiveness of this approach (and to compare the computational burden of this methodology against more traditional approaches).

  19. Methodology for Sensitivity Analysis, Approximate Analysis, and Design Optimization in CFD for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1996-01-01

    An incremental iterative formulation together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. This formulation is also known as the 'delta' or 'correction' form. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome when these equations are cast in the incremental form. The methodology is successfully implemented and tested using an upwind cell-centered finite-volume formulation applied in two dimensions to the thin-layer Navier-Stokes equations for external flow over an airfoil. In three dimensions this methodology is demonstrated with a marching-solution algorithm for the Euler equations to calculate supersonic flow over the High-Speed Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with the incremental iterative method from a marching Euler code are used in a design-improvement study of the HSCT configuration that involves thickness. camber, and planform design variables.

  20. Multidisciplinary Design Optimization for Aeropropulsion Engines and Solid Modeling/Animation via the Integrated Forced Methods

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.

  1. Multi-fidelity and multi-disciplinary design optimization of supersonic business jets

    NASA Astrophysics Data System (ADS)

    Choi, Seongim

    Supersonic jets have been drawing great attention after the end of service for the Concorde was announced on April of 2003. It is believed, however, that civilian supersonic aircraft may make a viable return in the business jet market. This thesis focuses on the design optimization of feasible supersonic business jet configurations. Preliminary design techniques for mitigation of ground sonic boom are investigated while ensuring that all relevant disciplinary constraints are satisfied (including aerodynamic performance, propulsion, stability & control and structures.) In order to achieve reasonable confidence in the resulting designs, high-fidelity simulations are required, making the entire design process both expensive and complex. In order to minimize the computational cost, surrogate/approximate models are constructed using a hierarchy of different fidelity analysis tools including PASS, A502/Panair and Euler/NS codes. Direct search methods such as Genetic Algorithms (GAs) and a nonlinear SIMPLEX are employed to designs in searches of large and noisy design spaces. A local gradient-based search method can be combined with these global search methods for small modifications of candidate optimum designs. The Mesh Adaptive Direct Search (MADS) method can also be used to explore the design space using a solution-adaptive grid refinement approach. These hybrid approaches, both in search methodology and surrogate model construction, are shown to result in designs with reductions in sonic boom and improved aerodynamic performance.

  2. Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

    NASA Astrophysics Data System (ADS)

    Dethloff, Klaus; Rex, Markus; Shupe, Matthew

    2016-04-01

    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is an international initiative under the International Arctic Science Committee (IASC) umbrella that aims to improve numerical model representations of sea ice, weather, and climate processes through coupled system observations and modeling activities that link the central Arctic atmosphere, sea ice, ocean, and the ecosystem. Observations of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The primary objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Such enhancements will contribute to improved modeling of global climate and weather, and Arctic sea-ice predictive capabilities. The MOSAiC observations are an important opportunity to gather the high quality and comprehensive observations needed to improve numerical modeling of critical, scale-dependent processes impacting Arctic predictability given diminished sea ice coverage and increased model complexity. Model improvements are needed to understand the effects of a changing Arctic on mid-latitude weather and climate. MOSAiC is specifically designed to provide the multi-parameter, coordinated observations needed to improve sub-grid scale model parameterizations especially with respect to thinner ice conditions. To facilitate, evaluate, and develop the needed model improvements, MOSAiC will employ a hierarchy of modeling approaches ranging from process model studies, to regional climate model intercomparisons, to operational forecasts and assimilation of real-time observations. Model evaluations prior to the field program will

  3. Multidisciplinary Approaches to Educational Research: Case Studies from Europe and the Developing World. Routledge Research in Education

    ERIC Educational Resources Information Center

    Rizvi, Sadaf, Ed.

    2011-01-01

    This book provides an original perspective on a range of controversial issues in educational and social research through case studies of multi-disciplinary and mixed-method research involving children, teachers, schools and communities in Europe and the developing world. These case studies from researchers "across continents" and "across…

  4. Program design by a multidisciplinary team. [for structural finite element analysis on STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Voigt, S.

    1975-01-01

    The use of software engineering aids in the design of a structural finite-element analysis computer program for the STAR-100 computer is described. Nested functional diagrams to aid in communication among design team members were used, and a standardized specification format to describe modules designed by various members was adopted. This is a report of current work in which use of the functional diagrams provided continuity and helped resolve some of the problems arising in this long-running part-time project.

  5. A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan

    NASA Astrophysics Data System (ADS)

    Nemnem, Ahmed Mohamed Farid

    The blade geometry design process is integral to the development and advancement of compressors and turbines in gas generators or aeroengines. A new airfoil section design capability has been added to an open source parametric 3D blade design tool. Curvature of the meanline is controlled using B-splines to create the airfoils. The curvature is analytically integrated to derive the angles and the meanline is obtained by integrating the angles. A smooth thickness distribution is then added to the airfoil to guarantee a smooth shape while maintaining a prescribed thickness distribution. A leading edge B-spline definition has also been implemented to achieve customized airfoil leading edges which guarantees smoothness with parametric eccentricity and droop. An automated turbomachinery design and optimization system has been created. An existing splittered transonic fan is used as a test and reference case. This design was more general than a conventional design to have access to the other design methodology. The whole mechanical and aerodynamic design loops are automated for the optimization process. The flow path and the geometrical properties of the rotor are initially created using the axi-symmetric design and analysis code (T-AXI). The main and splitter blades are parametrically designed with the created geometry builder (3DBGB) using the new added features (curvature technique). The solid model creation of the rotor sector with a periodic boundaries combining the main blade and splitter is done using MATLAB code directly connected to SolidWorks including the hub, fillets and tip clearance. A mechanical optimization is performed with DAKOTA (developed by DOE) to reduce the mass of the blades while keeping maximum stress as a constraint with a safety factor. A Genetic algorithm followed by Numerical Gradient optimization strategies are used in the mechanical optimization. The splittered transonic fan blades mass is reduced by 2.6% while constraining the maximum

  6. Multidisciplinary Approach to Linear Aerospike Nozzle Optimization

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.

    1997-01-01

    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional fink-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against sequential aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single- discipline design strategy.

  7. Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu

    2011-01-01

    This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.

  8. Manufacturing and Cost Considerations in Multidisciplinary Aircraft Design (Research on Mathematical Modeling of Manufacturability Factors)

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1996-01-01

    The identification of airframe Manufacturability Factors/Cost Drivers (MFCD) and the method by which the relationships between MFCD and designer-controlled parameters could be properly modeled are described.

  9. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  10. Sensitivity analysis and multidisciplinary optimization for aircraft design - Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  11. Multidisciplinary Approach to Rehabilitation. Report from the Study Group. Institute on Rehabilitation Issues (13th, Little Rock, Arkansas, October 1986).

    ERIC Educational Resources Information Center

    Hope, Robert; And Others

    This manual is the response of a National Institute on Rehabilitation Issues (IRI) Prime Study Group to charges given to the group by the National IRI Planning Committee to develop a meaningful training and resource document on the multidisciplinary approach to vocational rehabilitation. The guide is organized in seven chapters that cover the…

  12. Implementing Entrepreneurial Assignments in a Multidisciplinary, Sophomore-Level Design Course

    ERIC Educational Resources Information Center

    Dahm, Kevin; Riddell, William; Merrill, Thomas; Harvey, Roberta; Weiss, Leigh

    2013-01-01

    Many engineering programs stress the importance of technological innovation by offering entrepreneurship electives and programs. Integration of entrepreneurship into the required engineering curriculum has predominantly focused on senior capstone design courses. This paper describes a strategy for integrating entrepreneurship into a…

  13. History and future of the Multidisciplinary Association for Psychedelic Studies (MAPS).

    PubMed

    Emerson, Amy; Ponté, Linnae; Jerome, Lisa; Doblin, Rick

    2014-01-01

    This article describes the teenage vision of the founder of the Multidisciplinary Association for Psychedelic Studies (MAPS) that humanity's future would be aided by the therapeutic and spiritual potential of psychedelic substances. The article traces the trajectory of MAPS from inception in 1986 to its present, noting future goals with respect to research, outreach, and harm reduction. MAPS was created as a non-profit psychedelic pharmaceutical company in response to the 1985 scheduling of 3,4-methylenedioxymethamphetamine (MDMA). Overcoming many hurdles, MAPS developed the first double-blind, placebo-controlled trial of MDMA-assisted psychotherapy for posttraumatic stress disorder (PTSD) and plans for FDA prescription approval in 2021. MAPS' program of research expanded to include a trial of lysergic acid diethylamide (LSD)-assisted psychotherapy for anxiety when facing life-threatening illness, observational studies of ibogaine in the treatment of addiction, and studies of MDMA for social anxiety in people with autism spectrum disorders. MAPS meets the challenges of drug development through a clinical research team led by a former Novartis drug development professional experienced in the conduct, monitoring, and analysis of clinical trials. MAPS' harm-reduction efforts are intended to avoid backlash and build a post-prohibition world by assisting non-medical users to transform difficult psychedelic experiences into opportunities for growth.

  14. History and future of the Multidisciplinary Association for Psychedelic Studies (MAPS).

    PubMed

    Emerson, Amy; Ponté, Linnae; Jerome, Lisa; Doblin, Rick

    2014-01-01

    This article describes the teenage vision of the founder of the Multidisciplinary Association for Psychedelic Studies (MAPS) that humanity's future would be aided by the therapeutic and spiritual potential of psychedelic substances. The article traces the trajectory of MAPS from inception in 1986 to its present, noting future goals with respect to research, outreach, and harm reduction. MAPS was created as a non-profit psychedelic pharmaceutical company in response to the 1985 scheduling of 3,4-methylenedioxymethamphetamine (MDMA). Overcoming many hurdles, MAPS developed the first double-blind, placebo-controlled trial of MDMA-assisted psychotherapy for posttraumatic stress disorder (PTSD) and plans for FDA prescription approval in 2021. MAPS' program of research expanded to include a trial of lysergic acid diethylamide (LSD)-assisted psychotherapy for anxiety when facing life-threatening illness, observational studies of ibogaine in the treatment of addiction, and studies of MDMA for social anxiety in people with autism spectrum disorders. MAPS meets the challenges of drug development through a clinical research team led by a former Novartis drug development professional experienced in the conduct, monitoring, and analysis of clinical trials. MAPS' harm-reduction efforts are intended to avoid backlash and build a post-prohibition world by assisting non-medical users to transform difficult psychedelic experiences into opportunities for growth. PMID:24830183

  15. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  16. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  17. Designing Water Rockets as a Multi-disciplinary Project for Physics, Calculus, and Engineering Courses

    NASA Astrophysics Data System (ADS)

    Fisher, Paul; Craig, David; Hunt, Emily; Lockwood, Pamela

    2007-10-01

    We report the development of a cross-disciplinary activity for strengthening and relating student understanding of concepts from introductory physics, calculus, and engineering courses. Students, most simultaneously enrolled in all three classes, used material from physics and calculus to design rockets built from soda water bottles. They then constructed these rockets and a launcher in their engineering class and concluded the project with a public launch. Topics addressed include kinematics, dynamics, and fluid dynamics.

  18. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  19. Flexible Wing Model for Structural Sizing and Multidisciplinary Design Optimization of a Strut-Braced Wing

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.

    2000-01-01

    This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.

  20. A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.

  1. Prospective study of cost of care at multidisciplinary ALS centers adhering to American Academy of Neurology (AAN) ALS practice parameters.

    PubMed

    Boylan, Kevin; Levine, Todd; Lomen-Hoerth, Catherine; Lyon, Mary; Maginnis, Kimberly; Callas, Peter; Gaspari, Celeste; Tandan, Rup

    2015-01-01

    Multidisciplinary care in ALS is associated with longer survival, improved quality of life, and reduced hospital admissions, but there are no published data on institutional costs associated with multidisciplinary ALS care at U.S. centers. We prospectively examined institutional costs, adherence to AAN Practice Parameters and patient satisfaction in multidisciplinary ALS clinics at 18 U.S. ALS centers. Centers reported patient volumes; direct costs for staff salary/benefits, supplies and equipment; and institutional non-salary and overhead costs over a three-month period. In 1117 patients seen during this period, mean age was 61.5 years (range 25-91 years), 56% were male, and mean ALSFRS-R score was 29. Mean total salary/benefit cost per clinic day for all providers was $2964 (range $1692-$5236 across centers). Mean salary/benefit cost per patient per clinic was $507 (range $258-$806 across centers). Differences among centers in reporting non-salary costs prevented meaningful analysis. Practice parameter adherence and patient satisfaction were high. This prospective collaborative study demonstrates the direct financial burden of evidence-based multidisciplinary ALS care in the U.S.; more refined non-salary and overhead cost data are needed to evaluate the full cost impact of care. These data may be useful in supporting evidence-based models of patient centered care for ALS. PMID:26462131

  2. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2)

    SciTech Connect

    Greenberg, F.; Lewis, R.A.; Potocki, L.

    1996-03-29

    Smith-Magenis syndrome (SMS) is a multiple congenital anomaly, mental retardation (MCA/MR) syndrome associated with deletion of chromosome 17 band p11.2. As part of a multi-disciplinary clinical, cytogenetic, and molecular approach to SMS, detailed clinical studies including radiographic neurologic, developmental, ophthalmologic, otolaryngologic, and audiologic evaluations were performed on 27 SMS patients. Significant findings include otolaryngologic abnormalities in 94%, eye abnormalities in 85%, sleep abnormalities (especially reduced REM sleep) in 75%, hearing impairment in 68% (approximately 65% conductive and 35% sensorineural), scoliosis in 65% brain abnormalities (predominantly ventriculomegaly) in 52%, cardiac abnormalities in at least 37%, renal anomalies (especially duplication of the collecting system) in 35%, low thyroxine levels in 29%, low immunoglobulin levels in 23%, and forearm abnormalities in 16%. The measured IQ ranged between 20-78, most patients falling in the moderate range of mental retardation at 40-54, although several patients scored in the mild or borderline range. The frequency of these many abnormalities in SMS suggests that patients should be evaluated thoroughly for associated complications both at the time of diagnosis and at least annually thereafter. 42 refs., 2 figs., 3 tabs.

  3. Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study.

    PubMed

    Croce, Gianluca; Carniato, Fabio; Milanesio, Marco; Boccaleri, Enrico; Paul, Geo; van Beek, Wouter; Marchese, Leonardo

    2009-11-21

    This work is focused on a multidisciplinary study of a completely condensed octaisobutyl-silsesquioxane (IBUPOSS) as a model of the alkyl POSS family. IBUPOSS is characterized by the presence of eight isobutyl groups bonded to the corners of the siliceous framework. Differential scanning calorimetric measurements and an innovative simultaneous in situ Raman/XRPD experiment suggested that IBUPOSS undergoes a solid phase transition around 330 K, and indicated that this transition is related to a change in the conformational freedom of the isobutyl chains. The X-ray powder diffraction (XRPD) pattern of the high temperature phase was indexed in the high symmetry [R3m] space group. The Raman data indicated a larger mobility of the aliphatic side chains at high temperature, thus inducing a disorder in the IBUPOSS moiety. Multidimensional heteronuclear solid-state NMR experiments were employed to probe the structural and motional features of the observed phase transition. The various conformations can be accounted for by a pseudo-D(3h) symmetry able to obey to the [R3m] space group. Simulations on molecular mechanics and dynamics, together with quantum-chemical calculations, confirmed this hypothesis and gave some hints on the conformational mobility and the energetic features of IBUPOSS, a base material with relevant applications in catalysis and polymer science. PMID:19865764

  4. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1994-01-01

    The straightforward automatic-differentiation and the hand-differentiated incremental iterative methods are interwoven to produce a hybrid scheme that captures some of the strengths of each strategy. With this compromise, discrete aerodynamic sensitivity derivatives are calculated with the efficient incremental iterative solution algorithm of the original flow code. Moreover, the principal advantage of automatic differentiation is retained (i.e., all complicated source code for the derivative calculations is constructed quickly with accuracy). The basic equations for second-order sensitivity derivatives are presented; four methods are compared. Each scheme requires that large systems are solved first for the first-order derivatives and, in all but one method, for the first-order adjoint variables. Of these latter three schemes, two require no solutions of large systems thereafter. For the other two for which additional systems are solved, the equations and solution procedures are analogous to those for the first order derivatives. From a practical viewpoint, implementation of the second-order methods is feasible only with software tools such as automatic differentiation, because of the extreme complexity and large number of terms. First- and second-order sensitivities are calculated accurately for two airfoil problems, including a turbulent flow example; both geometric-shape and flow-condition design variables are considered. Several methods are tested; results are compared on the basis of accuracy, computational time, and computer memory. For first-order derivatives, the hybrid incremental iterative scheme obtained with automatic differentiation is competitive with the best hand-differentiated method; for six independent variables, it is at least two to four times faster than central finite differences and requires only 60 percent more memory than the original code; the performance is expected to improve further in the future.

  5. Engaging Students in Climate Change Science and Communication through a Multi-disciplinary Study Abroad Program

    NASA Astrophysics Data System (ADS)

    North, L. A.; Polk, J.; Strenecky, B.

    2014-12-01

    The implications of the climate change phenomenon are far-reaching, and will impact every person on Earth. These problems will be complex, and will require leaders well-versed in interdisciplinary learning and international understanding. To employ a multi-disciplinary approach to studying the impact climate change is having in the world in which we live, a team of 57 Western Kentucky University (WKU) faculty, staff, and students participated in a study abroad program to seven ports in the North Sea and North Atlantic, including three ports in Iceland, onboard the Semester at Sea ship, MV Explorer. This program combined interdisciplinary learning, service learning, and international understanding toward the goal of preparing the leaders of tomorrow with the skills to address climate change challenges. Together, the group learned how climate change affects the world from varied academic perspectives, and how more often than not these perspectives are closely interrelated. Courses taught during the experience related to climate change science and communication, economics, future trends, and K-12 education. Each student also participated in a The $100 Solution™ service-learning course. While in port, each class engaged in a discipline-specific activities related to the climate change topic, while at sea students participated in class lectures, engaged in shipboard lectures by international experts in their respective fields, and participated in conversations with lifelong learners onboard the ship. A culminating point of the study abroad experience was a presentation by the WKU students to over 100 persons from the University of Akureyri in Akureyri, Iceland, representatives of neighboring Icelandic communities, environmental agencies, and tourism bureaus about what they had learned about climate change during their travels. By forging this relationship, students were able to share their knowledge, which in turn gave them a deeper understanding of the issues they

  6. Multidisciplinary Design Investigation of Truss-Braced Wing Aircraft. Phase 4

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Kapania, R. K.; Mason, W. H.; Schetz, J. A.

    2000-01-01

    The subject grant was in effect from 7/l/99 to 10/31/99. The objective of this grant was to complete a strut-braced wing study which began, which was in effect from 6/27/96 until 9/15/99. While the initial grant was on-going, we were also under subcontract to Lockheed-Martin, Aerospace Systems Division, Marietta, GA to do additional studies related to the strut-braced wing grant "A Structural and Aerodynamic Investigation of a Strut-Braced Wing Transonic Aircraft Concept", 4/l/98-11/15/98. Lockheed-Martin was under contract to NASA Langley. Finally the research under this grant has led to a joint proposal from NASA Langley, Locheed-Martin, Virginia Tech and NASA Dryden to develop a transonic strut-braced wing demonstration aircraft in response to Flight Research for Revolutionary Aeronautical Concepts (REVCON). This final report summarizes the research done, augmented by the additional concommitant research projects mentioned above.

  7. Multidisciplinary rehabilitation for chronic low back pain: systematic review

    PubMed Central

    Guzmán, Jaime; Esmail, Rosmin; Karjalainen, Kaija; Malmivaara, Antti; Irvin, Emma; Bombardier, Claire

    2001-01-01

    Objective To assess the effect of multidisciplinary biopsychosocial rehabilitation on clinically relevant outcomes in patients with chronic low back pain. Design Systematic literature review of randomised controlled trials. Participants A total of 1964 patients with disabling low back pain for more than three months. Main outcome measures Pain, function, employment, quality of life, and global assessments. Results Ten trials reported on a total of 12 randomised comparisons of multidisciplinary treatment and a control condition. There was strong evidence that intensive multidisciplinary biopsychosocial rehabilitation with functional restoration improves function when compared with inpatient or outpatient non-multidisciplinary treatments. There was moderate evidence that intensive multidisciplinary biopsychosocial rehabilitation with functional restoration reduces pain when compared with outpatient non-multidisciplinary rehabilitation or usual care. There was contradictory evidence regarding vocational outcomes of intensive multidisciplinary biopsychosocial intervention. Some trials reported improvements in work readiness, but others showed no significant reduction in sickness leaves. Less intensive outpatient psychophysical treatments did not improve pain, function, or vocational outcomes when compared with non-multidisciplinary outpatient therapy or usual care. Few trials reported effects on quality of life or global assessments. Conclusions The reviewed trials provide evidence that intensive multidisciplinary biopsychosocial rehabilitation with functional restoration reduces pain and improves function in patients with chronic low back pain. Less intensive interventions did not show improvements in clinically relevant outcomes. What is already known on this topicDisabling chronic pain is regarded as the result of interrelating physical, psychological, and social or occupational factors requiring multidisciplinary interventionTwo previous systematic reviews of

  8. Whale Multi-Disciplinary Studies: A Marine Education Infusion Unit. Northern New England Marine Education Project.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. Coll. of Education.

    This multidisciplinary unit deals with whales, whaling lore and history, and the interaction of the whale with the complex marine ecosystem. It seeks to teach adaptation of marine organisms. It portrays the concept that man is part of the marine ecosystem and man's activities can deplete and degrade marine ecosystems, endangering the survival of…

  9. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1993-01-01

    In this study involving advanced fluid flow codes, an incremental iterative formulation (also known as the delta or correction form) together with the well-known spatially-split approximate factorization algorithm, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For smaller 2D problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods are needed for larger 2D and future 3D applications, however, because direct methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioning of the coefficient matrix; this problem can be overcome when these equations are cast in the incremental form. These and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two sample airfoil problems: (1) subsonic low Reynolds number laminar flow; and (2) transonic high Reynolds number turbulent flow.

  10. Effectiveness of a multidisciplinary heart failure disease management programme on 1-year mortality: Prospective cohort study.

    PubMed

    Laborde-Castérot, Hervé; Agrinier, Nelly; Zannad, Faiez; Mebazaa, Alexandre; Rossignol, Patrick; Girerd, Nicolas; Alla, François; Thilly, Nathalie

    2016-09-01

    We performed a multicenter prospective observational cohort study (Epidémiologie et Pronostic de l'Insuffisance Cardiaque Aiguë en Lorraine, Epidemiology and Prognosis of Acute Heart Failure in Lorraine [EPICAL2]) to evaluate the effectiveness on mortality of a community-based multidisciplinary disease management programme (DMP) for heart failure (HF) patients.Between October 2011 and October 2012, 1816 patients, who were hospitalized for acute HF or who developed acute HF during a hospitalization, were included from 21 hospitals in a northeast region of France. At hospital admission, their mean age was 77.3 (standard deviation [SD] 11.6) years and mean left ventricular ejection fraction was 45.0 (SD 16.0)%. A subset of patients were enrolled in a multidimensional DMP for HF (n = 312, 17.2%), based on structured patient education, home monitoring visits by HF-trained nurses, and automatic alerts triggered by significant clinical and biological changes to the patient. The DMP involved general practitioners, nurses, and cardiologists collaborating via an individual web-based medical electronic record. The outcome was all-cause mortality from the 3rd to the 12th month after discharge. During the follow-up, a total of 377 (20.8%) patients died: 321 (21.3%) in the control group and 56 (17.9%) in the DMP group. In a propensity score analysis, DMP was associated with lower 1-year all-cause mortality (hazard ratio 0.65, 95% CI 0.46-0.92). Instrumental variable analysis gave similar results (hazard ratio 0.56, 0.27-1.16).In a real world setting, a multidimensional DMP for HF with structured patient education, home nurse monitoring, and appropriate physician alerts may improve survival when implemented after discharge from hospitalization due to worsening HF.

  11. Effectiveness of a multidisciplinary heart failure disease management programme on 1-year mortality: Prospective cohort study.

    PubMed

    Laborde-Castérot, Hervé; Agrinier, Nelly; Zannad, Faiez; Mebazaa, Alexandre; Rossignol, Patrick; Girerd, Nicolas; Alla, François; Thilly, Nathalie

    2016-09-01

    We performed a multicenter prospective observational cohort study (Epidémiologie et Pronostic de l'Insuffisance Cardiaque Aiguë en Lorraine, Epidemiology and Prognosis of Acute Heart Failure in Lorraine [EPICAL2]) to evaluate the effectiveness on mortality of a community-based multidisciplinary disease management programme (DMP) for heart failure (HF) patients.Between October 2011 and October 2012, 1816 patients, who were hospitalized for acute HF or who developed acute HF during a hospitalization, were included from 21 hospitals in a northeast region of France. At hospital admission, their mean age was 77.3 (standard deviation [SD] 11.6) years and mean left ventricular ejection fraction was 45.0 (SD 16.0)%. A subset of patients were enrolled in a multidimensional DMP for HF (n = 312, 17.2%), based on structured patient education, home monitoring visits by HF-trained nurses, and automatic alerts triggered by significant clinical and biological changes to the patient. The DMP involved general practitioners, nurses, and cardiologists collaborating via an individual web-based medical electronic record. The outcome was all-cause mortality from the 3rd to the 12th month after discharge. During the follow-up, a total of 377 (20.8%) patients died: 321 (21.3%) in the control group and 56 (17.9%) in the DMP group. In a propensity score analysis, DMP was associated with lower 1-year all-cause mortality (hazard ratio 0.65, 95% CI 0.46-0.92). Instrumental variable analysis gave similar results (hazard ratio 0.56, 0.27-1.16).In a real world setting, a multidimensional DMP for HF with structured patient education, home nurse monitoring, and appropriate physician alerts may improve survival when implemented after discharge from hospitalization due to worsening HF. PMID:27631204

  12. Methane seepage and gas hydrates: The need for multidisciplinary and long-term methane flux studies

    NASA Astrophysics Data System (ADS)

    Greinert, J.

    2012-12-01

    Methane seepage and gas hydrates started to receive more interest in the marine science community in the early 80s; exploratory studies followed, which were often hampered by the limited technical capabilities when compared to modern technologies that are available today (e.g. ROVs, high resolution 3D seismic, pressurized coring). General research topics have changed from curiosity-driven 'what is out there' towards gaining a detailed understanding of microbial processes in the sediment and geophysical quantifications of gas hydrates in their different locations around the world. Environmental questions fueled by the 'clathrate gun hypothesis' and the possible future impact of decomposing gas hydrates on atmospheric methane concentrations became research topics for a number of scientists, whereas others are researching gas hydrates and its potential use as an energy resource coupled with CO2-sequestering. Today the general phenomenon of gas hydrate related seepage and the biogeochemical processes involved are well understood. Large uncertainties still exist with regard to large-scale methane flux extrapolations from the seafloor through the water column and into the atmosphere, mainly due to lack of multidisciplinary and long-term observations . Studying the temporal variability of fluid and bubble release from the seafloor in high spatial and temporal resolution still does not do away with the problem of how to extrapolate such local flux measurements, considering tidal, seasonal changes, let alone changes on a longer time scale (glacial/interglacial). Examples provided from studies in the Pacific, the Black Sea and North Sea as well as from offshore Svalbard will highlight the temporal variability of bubble release, the impact of environmental parameters on this release and biogeochemical processes related to methane oxidation and production in the water column. Although the assumption is true that bubble release from deeper than 100m water depth will not

  13. Multidisciplinary studies of the social, economic and political impact resulting from recent advances in satellite meteorology, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The multidisciplinary studies explore and evaluate the impact of the meteorological satellite and the concomitant impact of the data derived from it on various user groups. As expected, the primary impact related to those who would use satellite data for weather prediction and related purposes. A secondary impact was in the area of international concerns where GARP and other international meteorological activities were affected and international law was developed. A tertiary impact was exemplified by satellite photographs utilized in advertisements and related materials. The case studies, supporting studies, and independent studies all emphasize the potential of the meteorological satellite.

  14. Fibromyalgia with severe forms of progression in a multidisciplinary therapy setting with emphasis on hyperthermia therapy – a prospective controlled study

    PubMed Central

    Romeyke, Tobias; Scheuer, Hans Christoph; Stummer, Harald

    2015-01-01

    Introduction Fibromyalgia syndrome (FMS) is a multi-factorial disease involving physiological as well as psychological factors. The aim of the study was to investigate a multidisciplinary inpatient treatment with emphasis on hyperthermia therapy by patients with widespread pain. Materials and methods The study involved 104 patients suffering from severely progressive FMS. A convenience sample and a prospective cohort design were used. The patients were treated in an acute hospital focusing on rheumatologic pain therapy and multidisciplinary complementary medicine. One patient group was treated with inclusion of hyperthermia therapy and the other group without. The therapy density (number of performed therapies per patient) was determined for every patient. Functional capacity measured by the Hannover functional status questionnaire (Funktionsfragebogen Hannover) and symptoms (von Zerssen complaint list) were analyzed for both groups on admission and on discharge. Results On admission, no significant difference could be established between control group (CG; multimodal without hyperthermia) and hyperthermia group (HG; multimodal with hyperthermia) (functional capacity, P=0.936). Functional capacity improved for the CG and the HG. On discharge, there was a significant difference between the two groups (functional capacity, P=0.039). There were no significant differences in fibromyalgia symptoms between CG (mean 41.8) and HG (mean 41.8) on their admission to hospital (P=0.988). On discharge, there was a significant difference (P=0.024) between the two groups (HG, mean 30.6; CG, mean 36.6). The inpatient therapy of patients with severely progressive fibromyalgia is characterized by a high frequency of therapy input. Conclusion FMS, especially with severe progression and a high degree of chronification, demands a multidisciplinary approach. In addition to the use of complementary medical procedures, integration of hyperthermia in the treatment process is a useful option

  15. Benefits of multidisciplinary collaboration for earthquake casualty estimation models: recent case studies

    NASA Astrophysics Data System (ADS)

    So, E.

    2010-12-01

    Earthquake casualty loss estimation, which depends primarily on building-specific casualty rates, has long suffered from a lack of cross-disciplinary collaboration in post-earthquake data gathering. An increase in our understanding of what contributes to casualties in earthquakes involve coordinated data-gathering efforts amongst disciplines; these are essential for improved global casualty estimation models. It is evident from examining past casualty loss models and reviewing field data collected from recent events, that generalized casualty rates cannot be applied globally for different building types, even within individual countries. For a particular structure type, regional and topographic building design effects, combined with variable material and workmanship quality all contribute to this multi-variant outcome. In addition, social factors affect building-specific casualty rates, including social status and education levels, and human behaviors in general, in that they modify egress and survivability rates. Without considering complex physical pathways, loss models purely based on historic casualty data, or even worse, rates derived from other countries, will be of very limited value. What’s more, as the world’s population, housing stock, and living and cultural environments change, methods of loss modeling must accommodate these variables, especially when considering casualties. To truly take advantage of observed earthquake losses, not only do damage surveys need better coordination of international and national reconnaissance teams, but these teams must integrate difference areas of expertise including engineering, public health and medicine. Research is needed to find methods to achieve consistent and practical ways of collecting and modeling casualties in earthquakes. International collaboration will also be necessary to transfer such expertise and resources to the communities in the cities which most need it. Coupling the theories and findings from

  16. The LUSI LAB project: a multidisciplinary study of focussed fluid flow

    NASA Astrophysics Data System (ADS)

    Mazzini, A.

    2012-12-01

    The 29th of May 2006 several gas and mud eruption sites suddenly appeared along a fault in the NE of Java, Indonesia. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active. This disaster has forced 50.000 people to be evacuated and an area of more than 7 km2 is covered by mud. The social impact of the eruption and its spectacular dimensions still attract the attention of international media reporting on the "largest mud eruption site on Earth". Our investigations revealed that the Watukosek fault system reactivated after the 27-05-2006 Yogyakarta earthquake allowing the release of overpressured fluids along the fault planes. Sampling results indicate that the main source of clay and fluids was traced from the overpressured units located at ~1500 m depth. Further, analyses and modelling indicate that Lusi gas was generated at high temperatures (>220°C) with maturity and isotopic characteristics corresponding to the oil-prone Eocene, Ngimbang shales situated at 4,400 m. Hydrocarbon, CO2 and helium analyses are consistent with a scenario of deep sited (>4000 m) magmatic intrusions and hydrothermal fluids responsible for the enhanced heat that altered source rocks and/or gas reservoirs. The neighbouring magmatic Arjuno complex and its fluid-pressure system combined with high seismic activity could have played a key role in the Lusi genesis and evolution. Despite the work done, still many unanswered questions remain. What lies beneath Lusi? If Lusi is not a mud volcano, how large is the connected hydrothermal system? How do the frequent seismic activity and the neighbouring Arjuno Welirang volcanic complex effect pulsating Lusi behaviour? What are the mechanisms triggering the eruption? How long will the eruption last? Are more eruptions like this one likely to occur? LUSI LAB is an ambitious project that aims to answer these questions and to perform a multidisciplinary study using

  17. What constitutes an excellent allied health care professional? A multidisciplinary focus group study

    PubMed Central

    Paans, Wolter; Wijkamp, Inge; Wiltens, Egbert; Wolfensberger, Marca V

    2013-01-01

    Background Determining what constitutes an excellent allied health care professional (AHCP) is important, since this is what will guide the development of curricula for training future physical therapists, oral hygienists, speech therapists, diagnostic radiographers, and dietitians. This also determines the quality of care. Aim To describe perspectives of AHCPs on which characteristics are commonly associated with an excellent AHCP. Methods AHCPs’ perspectives were derived from three focus group discussions. Twenty-one health care professionals participated. The final analysis of the focus group discussions produced eight domains, in which content validity was obtained through a Delphi panel survey of 27 contributing experts. Results According to the survey, a combination of the following characteristics defines an excellent AHCP: (1) cognizance, to obtain and to apply knowledge in a broad multidisciplinary health care field; (2) cooperativity, to effectively work with others in a multidisciplinary context; (3) communicative, to communicate effectively at different levels in complex situations; (4) initiative, to initiate new ideas, to act proactively, and to follow them through; (5) innovative, to devise new ideas and to implement alternatives beyond current practices; (6) introspective, to self-examine and to reflect; (7) broad perspective, to capture the big picture; and (8) evidence-driven, to find and to use scientific evidence to guide one’s decisions. Conclusion The AHCPs perspectives can be used as a reference for personal improvement for supervisors and professionals in clinical practice and for educational purposes. These perspectives may serve as a guide against which talented students can evaluate themselves. PMID:24049449

  18. Multidisciplinary Team Contributions Within a Dedicated Outpatient Palliative Radiotherapy Clinic: A Prospective Descriptive Study

    SciTech Connect

    Pituskin, Edith; Fairchild, Alysa; Dutka, Jennifer; Gagnon, Lori; Driga, Amy; Tachynski, Patty; Borschneck, Jo-Ann; Ghosh, Sunita

    2010-10-01

    Purpose: Patients with bone metastases may experience pain, fatigue, and decreased mobility. Multiple medications for analgesia are often required, each with attendant side effects. Although palliative-intent radiotherapy (RT) is effective in decreasing pain, additional supportive care interventions may be overlooked. Our objective was to describe the feasibility of multidisciplinary assessment of patients with symptomatic bone metastases attending a dedicated outpatient palliative RT clinic. Methods and Materials: Consecutive patients referred for RT for painful bone metastases were screened for symptoms and needs relevant to their medications, nutritional intake, activities of daily living, and psychosocial and spiritual concerns from January 1 to December 31, 2007. Consultations by appropriate team members and resulting recommendations were collected prospectively. Patients who received RT were contacted by telephone 4 weeks later to assess symptom outcomes. Results: A total of 106 clinic visits by 82 individual patients occurred. As determined by screening form responses, the clinical Pharmacist, Occupational Therapist, Registered Dietician and Social Worker were consulted to provide assessments and recommendations within the time constraints presented by 1-day palliative RT delivery. In addition to pain relief, significant improvements in tiredness, depression, anxiety, drowsiness and overall well-being were reported at 4 weeks. Conclusions: Systematic screening of this population revealed previously unmet needs, addressed in the form of custom verbal and written recommendations. Multidisciplinary assessment is associated with a high number of recommendations and decreased symptom distress. Our findings lend strong support to the routine assessment by multiple supportive care professionals for patients with advanced cancer being considered for palliative RT.

  19. A Multidisciplinary Approach to Research in Small-Scale Societies: Studying Emotions and Facial Expressions in the Field

    PubMed Central

    Crivelli, Carlos; Jarillo, Sergio; Fridlund, Alan J.

    2016-01-01

    Although cognitive science was multidisciplinary from the start, an under-emphasis on anthropology has left the field with limited research in small scale, indigenous societies. Neglecting the anthropological perspective is risky, given that once-canonical cognitive science findings have often been shown to be artifacts of enculturation rather than cognitive universals. This imbalance has become more problematic as the increased use of Western theory-driven approaches, many of which assume human uniformity (“universality”), confronts the absence of a robust descriptive base that might provide clarifying or even contrary evidence. We highlight the need for remedies to such shortcomings by suggesting a two-fold methodological shift. First, studies conducted in indigenous societies can benefit by relying on multidisciplinary research groups to diminish ethnocentrism and enhance the quality of the data. Second, studies devised for Western societies can readily be adapted to the changing settings encountered in the field. Here, we provide examples, drawn from the areas of emotion and facial expressions, to illustrate potential solutions to recurrent problems in enhancing the quality of data collection, hypothesis testing, and the interpretation of results. PMID:27486420

  20. A Multidisciplinary Approach to Research in Small-Scale Societies: Studying Emotions and Facial Expressions in the Field.

    PubMed

    Crivelli, Carlos; Jarillo, Sergio; Fridlund, Alan J

    2016-01-01

    Although cognitive science was multidisciplinary from the start, an under-emphasis on anthropology has left the field with limited research in small scale, indigenous societies. Neglecting the anthropological perspective is risky, given that once-canonical cognitive science findings have often been shown to be artifacts of enculturation rather than cognitive universals. This imbalance has become more problematic as the increased use of Western theory-driven approaches, many of which assume human uniformity ("universality"), confronts the absence of a robust descriptive base that might provide clarifying or even contrary evidence. We highlight the need for remedies to such shortcomings by suggesting a two-fold methodological shift. First, studies conducted in indigenous societies can benefit by relying on multidisciplinary research groups to diminish ethnocentrism and enhance the quality of the data. Second, studies devised for Western societies can readily be adapted to the changing settings encountered in the field. Here, we provide examples, drawn from the areas of emotion and facial expressions, to illustrate potential solutions to recurrent problems in enhancing the quality of data collection, hypothesis testing, and the interpretation of results. PMID:27486420

  1. Multidisciplinary Service Utilization Pattern by Advanced Head and Neck Cancer Patients: A Single Institution Study

    PubMed Central

    Junn, Jacqueline C.; Kim, Irene A.; Zahurak, Marianna L.; Tan, Marietta; Fan, Katherine Y.; Lake, Spencer T.; Zaboli, David; Messing, Barbara P.; Ulmer, Karen; Harrer, Karen B.; Gold, Dorothy; Ryniak, Keri L.; Zinreich, Eva S.; Tang, Mei; Levine, Marshall A.; Blanco, Ray G.; Saunders, John R.; Califano, Joseph A.; Ha, Patrick K.

    2012-01-01

    Purpose. To analyze the patterns and associations of adjunctive service visits by head and neck cancer patients receiving primary, concurrent chemoradiation therapy. Methods. Retrospective chart review of patients receiving adjunctive support during a uniform chemoradiation regimen for stages III-IV head and neck squamous cell carcinoma. Univariate and multivariate models for each outcome were obtained from simple and multivariate linear regression analyses. Results. Fifty-two consecutive patients were assessed. Female gender, single marital status, and nonprivate insurance were factors associated with an increased number of social work visits. In a multivariate analysis, female gender and marital status were related to increased social work services. Female gender and stage IV disease were significant for increased nursing visits. In a multivariate analysis for nursing visits, living greater than 20 miles between home and hospital was a negative predictive factor. Conclusion. Treatment of advanced stage head and neck cancer with concurrent chemoradiation warrants a multidisciplinary approach. Female gender, single marital status, and stage IV disease were correlated with increased utilization of social work and nursing services. Distance over 20 miles from the center was a negative factor. This information may help guide the treatment team to allocate resources for the comprehensive care of patients. PMID:23118755

  2. Reducing patients’ suicide ideation through training mental health teams in the application of the Dutch multidisciplinary practice guideline on assessment and treatment of suicidal behavior: study protocol of a randomized controlled trial

    PubMed Central

    2013-01-01

    Background To strengthen suicide prevention skills in mental health care in The Netherlands, multidisciplinary teams throughout the country are trained in the application of the new Dutch guideline on the assessment and treatment of suicidal behavior. Previous studies have shown beneficial effects of additional efforts for guideline implementation on professionals’ attitude, knowledge, and skills. However, the effects on patients are equally important, but are rarely measured. The main objective of this study is to examine whether patients of multidisciplinary teams who are trained in guideline application show greater recovery from suicide ideation than patients of untrained teams. Methods/Design This is a multicentre cluster randomized controlled trial (RCT), in which multidisciplinary teams from mental health care institutions are matched in pairs, and randomly allocated to either the experimental or control condition. In the experimental condition, next to the usual dissemination of the guideline (internet, newsletter, books, publications, and congresses), teams will be trained in the application of the guideline via a 1-day small interactive group training program supported by e-learning modules. In the control condition, no additional actions next to usual dissemination of the guideline will be undertaken. Assessments at patient level will start when the experimental teams are trained. Assessments will take place upon admission and after 3 months, or earlier if the patient is discharged. The primary outcome is suicide ideation. Secondary outcomes are non-fatal suicide attempts, level of treatment satisfaction, and societal costs. Both a cost-effectiveness and cost-utility analysis will be performed. The effects of the intervention will be examined in multilevel models. Discussion The strengths of this study are the size of the study, RCT design, training of complete multidisciplinary teams, and the willingness of both management and staff to participate

  3. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1992-01-01

    Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.

  4. A multi-stakeholder framework for sustainable energy behavior: A multidisciplinary systems study

    NASA Astrophysics Data System (ADS)

    Khansari, Nasrin

    Growth of population and moving towards over-consumption and over-pollution are significant threats to the environment and therefore necessitate moving towards sustainability approaches. CO2 emissions are considered to be the main basis of the incredible increase in the earth's surface temperature in recent years. Most emissions result from human activities. Thus, developing a detailed framework representing the parameters affecting individuals' energy behaviors is required. This dissertation offers an integrated conceptual framework to increase the efficiency of energy systems under complex and uncertainty conditions, facilitate energy consumption problem solving, and support the development of capacities at the individual, social, and technical levels to improve managing energy consumptions in the future. This research presents a conceptual soft systems model to explore the process of individuals' energy behavior change based on socio-structural and techno-structural contexts. In addition, a comprehensive model based on systems dynamics principles is presented to address the issue of CO2 emissions related to the households' energy consumption behavior. The proposed systems dynamics model provides a broad overview of the key agents affecting energy consumption, including government/public sector, households, and power industry. The model is created based on the research in the literature discussing the causal relations between various variables. The proposed systems dynamics model is verified by simulating different scenarios. In this research a survey is designed and conducted to investigate the role of individual, social and technical behaviors in reducing energy consumption, energy costs and carbon footprints based on the energy use profile. In sum, this study investigates the process of energy behavior change based on socio-structural and techno-structural contexts.

  5. User's guide for ENSAERO: A multidisciplinary program for fluid/structural/control interaction studies of aircraft (release 1)

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1994-01-01

    Strong interactions can occur between the flow about an aerospace vehicle and its structural components resulting in several important aeroelastic phenomena. These aeroelastic phenomena can significantly influence the performance of the vehicle. At present, closed-form solutions are available for aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for aeroelasticity involving complex nonlinear flows with shock waves, vortices, flow separations, and aerodynamic heating, computational methods are still under development. These complex aeroelastic interactions can be dangerous and limit the performance of aircraft. Examples of these detrimental effects are aircraft with highly swept wings experiencing vortex-induced aeroelastic oscillations, transonic regime at which the flutter speed is low, aerothermoelastic loads that play a critical role in the design of high-speed vehicles, and flow separations that often lead to buffeting with undesirable structural oscillations. The simulation of these complex aeroelastic phenomena requires an integrated analysis of fluids and structures. This report presents a summary of the development, applications, and procedures to use the multidisciplinary computer code ENSAERO. This code is based on the Euler/Navier-Stokes flow equations and modal/finite-element structural equations.

  6. Design Thinking: Employing an Effective Multidisciplinary Pedagogical Framework to Foster Creativity and Innovation in Rural and Remote Education

    ERIC Educational Resources Information Center

    Anderson, Neil

    2012-01-01

    This paper outlines a project to develop and track "design thinking" skills within groups of students in late primary and early secondary years of schooling in order to strengthen their creative skills and innovative mindsets. The outcome of the research will be the development of a model for the broad-based implementation of design thinking in…

  7. Effectiveness of three treatment strategies on occupational limitations and quality of life for patients with non-specific chronic low back pain: Is a multidisciplinary approach the key feature to success: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Chronic low back pain (cLBP) is a significant public health problem, being the primary cause of work absenteeism, as well as affecting sufferers’ quality of life, in industrialized society. International guidelines recommend intensive multidisciplinary approaches for patients with cLBP. However, these costly and time-consuming programs can only be offered to a minority of the most heavily affected patients and therefore do not seem likely to respond to public health requirements. Lighter programs may be an alternative to full time hospital-based programs with valuable results in terms of disability and occupational activity for cLBP patients. It is therefore important to define both what the determining components of management to improve activity restriction are and how to treat a larger number of patients more effectively at a lower cost. The aim of this study is to compare three programs with various levels of intensity and multidisciplinary. Methods/Design This paper describes the protocol for a prospective, randomized, controlled, clinical trial in working aged patients with cLBP. Three treatment strategies are compared: (1) intensive and multidisciplinary program conducted in a rehabilitation center; (2) less intensive outpatient program conducted by a private physiotherapist; (3) mixed strategy combining the same out program with a multidisciplinary intervention. The primary outcome of the trial is the impact of the mixed strategy on being able to work compared to hospital centered-program and out program. The secondary outcome is the impact of the mixed strategy on quality of life and social ability compared to the two others programs. The intervention part of the trial programs will take 5 weeks and observational follow-up will take 12 months. The sample size will be 180 participants (60 for each arm). The project has been approved by the Ethical Committee of Angers Hospital, France. Discussion On the hypothesis that a multidisciplinary

  8. Environmental transformations and cultural changes: A multidisciplinary case study for the Late Glacial and Final Palaeolithic from Northern Germany

    NASA Astrophysics Data System (ADS)

    Turner, F.; Tolksdorf, J. F.; Viehberg, F.; Schwarz, A.; von Bramann, U.; Bittmann, F.; Kaiser, K.; Schwalb, A.; Staesche, U.; Breest, K.; Pott, R.; Veil, S.

    2012-04-01

    In contrast to younger periods, studies integrating archaeological and environmental records for the Palaeolithic are still rare. Especially our knowledge about interactions between the drastic climatic/environmental changes and cultural developments during the Late Glacial is very limited. This multidisciplinary case study from river Jeetzel, a western Elbe tributary in Northern Germany, combines high resolution palaeoenvironmental investigations with fine-scaled archaeological research on stratified and surface sites. Various dating methods (palynostratigraphy, radiocarbon- and OSL-dating) and analyses of environmental and climatological proxies (pollen and plant macro-remains, ostracods, diatoms and green algae) on river palaeochannel sediments allow detailed reconstruction of interactions between Late Glacial climate, vegetation and fluvial developments. Biostratigraphical analyses on stratified archaeological sites and dating of charcoal / bone fragments from artefact scatters place the Late Palaeolithic occupation of Early Federmesser groups in an environmental context. Thus the former production of hitherto unknown amber art (amongst others a figurine representing a moose) can be ascribed to the Older Dryas and Early Allerød, which are the periods of main Late Glacial afforestation. Therewith our investigations suggest that Final Palaeolithic cultural changes may have been triggered by climatic and environmental transformations.

  9. Health promotion in Australian multi-disciplinary primary health care services: case studies from South Australia and the Northern Territory.

    PubMed

    Baum, Fran; Freeman, Toby; Jolley, Gwyn; Lawless, Angela; Bentley, Michael; Värttö, Kaisu; Boffa, John; Labonte, Ronald; Sanders, David

    2014-12-01

    This paper reports on the health promotion and disease prevention conducted at Australian multi-disciplinary primary health care (PHC) services and considers the ways in which the organizational environment affects the extent and type of health promotion and disease prevention activity. The study involves five PHC services in Adelaide and one in Alice Springs. Four are managed by a state health department and two by boards of governance. The study is based on an audit of activities and on 68 interviews conducted with staff. All the sites undertake health promotion and recognize its importance but all report that this activity is under constant pressure resulting from the need to provide services to people who have health problems. We also found an increased focus on chronic disease management and prevention which prioritized individuals and behavioural change strategies rather than addressing social determinants affecting whole communities. There was little health promotion work that reflected a salutogenic approach to the creation of health. Most activity falls under three types: parenting and child development, chronic disease prevention and mental health. Only the non-government organizations reported advocacy on broader policy issues. Health reform and consequent reorganizations were seen to reduce the ability of some services to undertake health promotion. The paper concludes that PHC in Australia plays an important role in disease prevention, but that there is considerable scope to increase the amount of community-based health promotion which focuses on a salutogenic view of health and which engages in community partnerships. PMID:23656732

  10. Health promotion in Australian multi-disciplinary primary health care services: case studies from South Australia and the Northern Territory.

    PubMed

    Baum, Fran; Freeman, Toby; Jolley, Gwyn; Lawless, Angela; Bentley, Michael; Värttö, Kaisu; Boffa, John; Labonte, Ronald; Sanders, David

    2014-12-01

    This paper reports on the health promotion and disease prevention conducted at Australian multi-disciplinary primary health care (PHC) services and considers the ways in which the organizational environment affects the extent and type of health promotion and disease prevention activity. The study involves five PHC services in Adelaide and one in Alice Springs. Four are managed by a state health department and two by boards of governance. The study is based on an audit of activities and on 68 interviews conducted with staff. All the sites undertake health promotion and recognize its importance but all report that this activity is under constant pressure resulting from the need to provide services to people who have health problems. We also found an increased focus on chronic disease management and prevention which prioritized individuals and behavioural change strategies rather than addressing social determinants affecting whole communities. There was little health promotion work that reflected a salutogenic approach to the creation of health. Most activity falls under three types: parenting and child development, chronic disease prevention and mental health. Only the non-government organizations reported advocacy on broader policy issues. Health reform and consequent reorganizations were seen to reduce the ability of some services to undertake health promotion. The paper concludes that PHC in Australia plays an important role in disease prevention, but that there is considerable scope to increase the amount of community-based health promotion which focuses on a salutogenic view of health and which engages in community partnerships.

  11. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  12. Integrated multidisciplinary biostratigraphic and paleoecologic study of southern California Neogene coastal sections

    SciTech Connect

    Blake, G.H.; Arends, R.G.; Filewicz, M.V.; Thornton, M.L.C.; Vork, D.R.

    1988-03-01

    This integrated biostratigraphic and paleoecologic study of several Neogene sections of coastal southern California is based on the use of diatoms, calcareous nannofossils, palynology, and benthic foraminifera. The study included the Naples Bluff, Topanga Canyon, and Newport Bay sections, and DSDP Site 468.

  13. Multidisciplinary design optimization of a fighter aircraft with damage tolerance constraints and a probabilistic model of the fatigue environment

    NASA Astrophysics Data System (ADS)

    Arrieta, Albert Joseph

    2001-07-01

    Damage tolerance analysis (DTA) was considered in the global design optimization of an aircraft wing structure. Residual strength and fatigue life requirements, based on the damage tolerance philosophy, were investigated as new design constraints. In general, accurate fatigue prediction is difficult if the load environment is not known with a high degree of certainty. To address this issue, a probabilistic approach was used to describe the uncertain load environment. Probabilistic load spectra models were developed from flight recorder data. The global/local finite element approach allowed local fatigue requirements to be considered in the global design optimization. AFGROW fatigue crack growth analysis provided a new strength criterion for satisfying damage tolerance requirements within a global optimization environment. Initial research with the ASTROS program used the probabilistic load model and this damage tolerance constraint to optimize cracked skin panels on the lower wing of a fighter/attack aircraft. For an aerodynamic and structural model similar to an F-16, ASTROS simulated symmetric and asymmetric maneuvers during the optimization. Symmetric maneuvers, without underwing stores, produced the highest stresses and drove the optimization of the inboard lower wing skin. Asymmetric maneuvers, with underwing stores, affected the optimum thickness of the outboard hard points. Subsequent design optimizations included von Mises stress, aileron effectiveness, and lift effectiveness constraints simultaneously. This optimization was driven by the DTA and von Mises stress constraints and, therefore, DTA requirements can have an active role to play in preliminary aircraft design.

  14. Integrating Augmented Reality in Higher Education: A Multidisciplinary Study of Student Perceptions

    ERIC Educational Resources Information Center

    Delello, Julie A.; McWhorter, Rochell R.; Camp, Kerri M.

    2015-01-01

    Augmented reality (AR) is an emerging technology that blends physical objects with virtual reality. Through the integration of digital and print media, a gap between the "on and offline" worlds are merged, radically shifting student-computer interaction in the classroom. This research examined the results of a multiple case study on the…

  15. The Carbon Cycle and the Earth Systems--Studying the Carbon Cycle in Multidisciplinary Environmental Context.

    ERIC Educational Resources Information Center

    Gudovitch, Yossi; Orion, Nir

    This paper describes a method that attempts to confront the challenges of developing an environmentally-based earth sciences program. The research scheme includes five stages: (1) predevelopment study; (2) curriculum development; (3) implementation; (4) formative evaluation; and (5) curriculum modification. The research results indicate that the…

  16. A Multidisciplinary Approach to Sustainable Management of Watershed Resources

    EPA Science Inventory

    The lack of integration in the study and management of water resource problems suggests the need for a multidisciplinary approach. As practiced in the Shepherd Creek stormwater management study (Cincinnati OH), we envision a multidisciplinary approach involving economic incentive...

  17. Disorders of sex development: a genetic study of patients in a multidisciplinary clinic.

    PubMed

    Laino, Luigi; Majore, Silvia; Preziosi, Nicoletta; Grammatico, Barbara; De Bernardo, Carmelilia; Scommegna, Salvatore; Rapone, Anna Maria; Marrocco, Giacinto; Bottillo, Irene; Grammatico, Paola

    2014-12-01

    Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient.

  18. Disorders of sex development: a genetic study of patients in a multidisciplinary clinic

    PubMed Central

    Laino, Luigi; Majore, Silvia; Preziosi, Nicoletta; Grammatico, Barbara; De Bernardo, Carmelilia; Scommegna, Salvatore; Rapone, Anna Maria; Marrocco, Giacinto; Bottillo, Irene; Grammatico, Paola

    2014-01-01

    Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient. PMID:25248670

  19. A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica.

    PubMed

    Hartnett, Andrej; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-11-01

    The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: strategy I involves the induction of a Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the green alga Tetraselmis suecica. Short term radio-iron uptake studies indicate that iron is taken up by Tetraselmis in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and X-ray absorption spectroscopies, to identify three metabolites. The first exhibits Mössbauer parameters typical of a [Fe(4)S(4)](2+) cluster and which accounts for approximately 10% of the total intracellular iron pool. The second displays a spectrum typical of a [Fe(II)O(6)] system accounting for approximately 2% of the total pool. The largest component (ca. 85+%) consists of polymeric iron-oxo mineral species with parameters between that of the crystalline ferrihydrite core of animal ferritins and the amorphous hydrated ferric phosphate of bacterial and plant ferritins.

  20. Multidisciplinary approach in a water salinity study of the southern San Pitch drainage, Sanpete County, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.

    2015-12-01

    Geologic mapping and geophysical techniques corroborate surface water surveys to identify regions in the subsurface that likely influence San Pitch River salinity in central Utah. Geologic mapping reveals that two members of the Arapien Shale are likely present in the subsurface beneath the areas where saline springs are found. Previous studies specified halite deposits in one member, and indicated the other member is known to contain halite in the general region. A total of 49 unique Transient Electromagnetic Method (TEM) stations were measured in the study area using a ground loop layout. Modeling of TEM data reveals one very shallow conductive body (1 to 10 ohm.m) between desilting basins and the San Pitch River that we interpret to be saline groundwater. A larger, deeper, and more continuous conductive body, observed in the northeast part of the study area, is interpreted as a geologic feature, most likely Arapien Shale. We measured or estimated discharge (flow) at 53 unique locations within streams and from seeps and springs, and estimated water quality (field parameters) at 172 different sites within the flow regime, measuring some sites multiple times during different seasons. Our results show that a 1.6 mile reach of the San Pitch River between the Highway 89 bridge and the confluence with Twelvemile Creek is a major source of salt loading; salt load increases from mostly less than 50 g/s above the bridge to nearly 300 g/s above the confluence. An addition of 80 to 90 g/s salt load from Twelvemile Creek, which carries salt from a 10-acre saline marsh, combines to bring the overall salt load carried by the San Pitch River at a point of irrigation use 3 miles downstream to between approximately 400 g/s in the spring to approximately 650 g/s in autumn. Our combined geologic, geophysical, and hydrologic assessment indicates that the source of salinity in the San Pitch River and Twelvemile Creek is dissolution of salt from the Arapien Shale and its erosional

  1. Multidisciplinary geophysical study of the NE sector of the unstable flank of Etna volcano

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Cocina, Ornella; Siniscalchi, Agata; Barberi, Graziella; Guglielmino, Francesco; Romano, Gerardo; Sicali, Simona; Tripaldi, Simona

    2015-04-01

    On volcanic areas, usually characterized by complex structural environments, a lot of independent geophysical studies are usually performed. The non-uniqueness of the geophysical inverse models, the different level of resolution and sensitivity of the results spurred us to integrate independent geophysical datasets and results collected on Mt. Etna volcano, in order to obtain more accurate and reliable model interpretation. Mt. Etna volcano is located along the eastern coast of Sicily and it is characterized by a complex structural setting. In this region, the general N-S compressive regime related to the Africa - Europe collision interacts with the WNW-ESE extensional regime associated to the Malta Escarpment dynamics, observable along the eastern coast of Sicily. At Mt Etna, a great number of studies concerns the existence of instability phenomena; a general eastward motion of the eastern flank of the volcano has been measured with always increasing detail and its relationship with the eruptive and magmatic activity is being investigated. The unstable flank appears bounded to the north by the E-W-trending Provenzana - Pernicana Fault System and to the SW by the NS Ragalna Fault system. Eastwards, this area is divided by several NW-SE trending faults. Recent studies consider this area as divided into several blocks characterized by different shape and kinematics. Ground deformation studies (GPS and InSAR) define the NE portion of the unstable flank as the most mobile one. In the frame of the MEDiterranean Supersites Volcanoes (MED-SUV) project, ground deformation data (GPS and INSAR), 3D seismicity, seismic tomography and two resistivity model profiles, have been analyzed together, in order to put some constraints on the deep structure of the NE sector of the unstable flank. Seismic data come from the permanent network run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Sezione di Catania, Osservatorio Etneo. Ground deformation data comes from In

  2. Multidisciplinary study to optimize reservoir management of the North Penwell (San Andres) unit, Ector County Texas

    SciTech Connect

    Siemers, W.T.; Howard, J.J.; Gerard, M.G.

    1995-09-01

    A reservoir characterization study of the North Penwell (San Andres) Unit was undertaken to optimize a waterflood expansion project. The Permian San Andres Formation in Penwell Field is composed of dolostones deposited as repeated, shallowing-upward, peritidal, carbonate sequences on the eastern shelf of the Central Basin Platform, forming a reservoir with complex internal geometry. Late-diagenetic dissolution of anhydrite and dolomite, marked by the complex internal geometry. Late-diagenetic dissolution of anhydrite and dolomite, marked by the alteration of anhydrite to gypsum within the subtidal, peloidal/skeletal, grain-rich lithofacies, is the major contributor to good porosity development and determines the occurrence of improved reservoir quality. Ranges in reservoir quality are linked to variable aspect (pore/throat) ratios derived from a unique combination of diagenetically evolved polymodal pore-size distributions and unimodal throat-size distributions. The best quality reservoir rocks are dolomitized packstones and grainstones with a well-developed, solution-enhanced interparticle/grain-moldic pore system of intermediate pore size. The subtidal grain-rich intervals serve as major flow units within the reservoir because of their good lateral continuity and internally consistent flow characteristics. A model based on an open-restricted-closed diagenetic system is proposed in which high-quality reservoir flow units grade into layers of anhydrite-cemented dolostones representing the hydrologically less active boundaries of the flow units. The flow units defined by the distribution of porosity and permeability identified from the petrologic study were utilized to construct a preliminary 3-dimensional geocellular model. A reservoir simulation pattern model was used to test the geological model by matching simulation results with field performance.

  3. An overview of the Guangzhou biobank cohort study-cardiovascular disease subcohort (GBCS-CVD): a platform for multidisciplinary collaboration.

    PubMed

    Jiang, C Q; Lam, T H; Lin, J M; Liu, B; Yue, X J; Cheng, K K; Tomlinson, B; Wong, K S; Cheung, B M Y; Thomas, G N

    2010-02-01

    The Guangzhou Biobank Cohort Study (GBCS, n=30 519, age >or=50 years) was established to examine the effects of genetic and environmental influences on health problems and chronic disease development. Guangzhou is undergoing massive economic development, but from a baseline that had remained unchanged for millennia. The Cardiovascular Disease Subcohort (GBCS-CVD) consists of 2000 participants who have been intensively phenotyped including a range of surrogate markers of vascular disease, including carotid artery intima-media thickness, cerebral artery stenoses, arterial stiffness, ankle-to-brachial blood pressure index and albuminuria, as well as coagulatory and inflammatory markers. Plasma and leukocytes are stored in liquid nitrogen for future studies. Preliminary demographic data show the female volunteers are younger than the male ones, but present with greater levels of adiposity including central obesity (31 vs 16%). Women had more body fat (33 vs 24%) and associated levels of adipokines. Despite this, body mass index and hip circumferences were similar, which contrasts with Caucasian populations. Men had more physician-diagnosed vascular disease (6.1 vs 2.5%), hypertension (42 vs 34%) and hyperglycaemia (36.6 vs 29.6%) than the women, but were less insulin resistant. In men, smoking (40 vs 2%) and drinking alcohol (67 vs 50%) was more common and they also had lower energy expenditures. The genotype distributions of the 15 typed single nucleotide polymorphisms were all in Hardy-Weinberg equilibrium. This article describes the rationale and methodology for the study. Given the comprehensive characterization of demographic and psychosocial determinants and biochemistry, the study provides a unique platform for multidisciplinary collaboration in a highly dynamic setting. PMID:19587700

  4. Methane seepage along the Hikurangi Margin offshore New Zealand: 6 years of multidisciplinary studies

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Bialas, J.; Klaucke, I.; Crutchley, G.; Dale, A.; Linke, P.; Sommer, S.; Bowden, D.; Rowden, A.; de Haas, H.; de Stigter, H.; Faure, K.

    2012-12-01

    Detailed studies in 2006, 2007 and 2011 along the east coast of New Zealand's North Island highlighted the close link of sub-bottom fluid pathways and seafloor expressions of methane seepage such as clam fields, carbonate build-ups, tubeworms, bacterial mats and methane release (Marine Geology 272). Prior to our studies, only accidental observations of hydroacoustic anomalies, recoveries of calyptogena shells and methane-derived carbonate chimneys indicated active seepage. Wide areas of the sub-seafloor show BSR structures, gas migration pathways, gas chimneys and blanking zones, which are closely linked to actual seep sites. Sidescan surveys showed four prominent seep areas at Omakere Ridge in 1120m water depth, three of them perfectly matching the shapes and locations of faults seen in high resolution 3D-seismic surveys. The fourth seep, Bear's Paw, on its western side represents an old seep which developed into a cold water coral habitat. At the actively seeping eastern part, gas hydrates could be retrieved and bubble release was observed hydroacoustically and confirmed by high dissolved methane values (380nM). No strong microbial oxidation effects could be found in δ13C values plotting along a mixing curve between pure seep (-70 ‰PDB) and atmospheric methane (-47 ‰PDB). Lander deployments show a tide-influenced gas discharge with sometimes eruptive bubble release with possible plume development transporting methane-charged water higher up into the water column. Rock Garden, with just above 600m water depth at its top outside the gas hydrate stability zone, hosts two main seep areas. ROV observations at Faure Site document eruptive releases of free gas from decimeter-wide craters at the seafloor. Flux estimates show peak releases of 420ml/min with bubbles up to 9mm in diameter. Concentrations of dissolved methane reach up to 3500nM close to the bottom, but higher concentrations are limited to below 400m of water depth; here, methane is transported towards

  5. X-traktor: A Rookie Robot, Simple, Yet Complex, Impeccably Designed, a Very Innovative Multidisciplinary Engineering Masterpiece

    NASA Technical Reports Server (NTRS)

    Henderson, A. J., Jr.

    2001-01-01

    FIRST is the acronym of For Inspiration and Recognition of Science and Technology. FIRST is a 501.C.3 non-profit organization whose mission is to generate an interest in science and engineering among today's young adults and youth. This mission is accomplished through a robot competition held annually in the spring of each year. NASAs Marshall Space Flight Center, Education Programs Department, awarded a grant to Lee High School, the sole engineering magnet school in Huntsville, Alabama. MSFC awarded the grant in hopes of fulfilling its goal of giving back invaluable resources to its community and engineers, as well as educating tomorrow's work force in the high-tech area of science and technology. Marshall engineers, Lee High School students and teachers, and a host of other volunteers and parents officially initiated this robot design process and competitive strategic game plan. The FIRST Robotics Competition is a national engineering contest, which immerses high school students in the exciting world of science and engineering. Teaming with engineers from government agencies, businesses, and universities enables the students to learn about the engineering profession. The students and engineers have six weeks to work together to brainstorm, design, procure, construct, and test their robot. The team then competes in a spirited, 'no-holds barred' tournament, complete with referees, other FIRST-designed robots, cheerleaders, and time clocks. The partnerships developed between schools, government agencies, businesses, and universities provide an exchange of resources and talent that build cooperation and expose students to new and rewarding career options. The result is a fun, exciting, and stimulating environment in which all participants discover the important connections between classroom experiences and real-world applications. This paper will highlight the story, engineering development, and evolutionary design of Xtraktor, the rookie robot, a manufacturing

  6. Rational design on controlled release ion-exchange polymeric microspheres and polymer-lipid hybrid nanoparticles for the delivery of water-soluble drugs through a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang

    surfactants applied. A three-factor spherical composite experimental design was used to map the cause-and-effect relationship. PLN with high drug loading efficiency (92%) and small particle size (100 nm) were predicted by ANN and confirmed by experiment. The roles of various factors on the properties of PLN were also investigated. In summary, this thesis demonstrates that an integrated multidisciplinary strategy ranging from preformulation to formulation to optimization is suitable for the rational design of SP-DS microspheres and PLN with desired properties.

  7. A Multidisciplinary Approach for Estimation of Seismic Losses: A Case Study in Turkey

    NASA Astrophysics Data System (ADS)

    Askan, A.; Erberik, M.; Un, E.

    2012-12-01

    Estimation of seismic losses including the physical, economic and social losses as well as casualties concern a wide range of authorities varying from geophysical and earthquake engineers, physical and economic planners to insurance companies. Due to the inherent uncertainties involved at each component, a probabilistic framework is required to estimate seismic losses. This study aims to propose an integrated method for predicting the potential seismic loss for a selected urban region. The main components of the proposed loss model are the seismic hazard estimation tool, building vulnerability functions, human losses and economic losses as functions of damage states of buildings. The input data for risk calculations involves regional seismicity and building fragility information. The casualty model for a given damage level considers the occupancy type, population of the building, occupancy at the time of earthquake occurrence, number of trapped occupants in the collapse, injury distribution at collapse and mortality post collapse. The economic loss module involves direct economic loss to buildings in terms of replacement, structural repair, non-structural repair costs and contents losses. Finally, the proposed loss model combines the input components within a conditional probability approach. The results are expressed in terms of expected loss. We calibrate the method with loss data from the 12 November 1999 Düzce earthquake and then predict losses for another city in Turkey (Bursa) with high seismic hazard.

  8. A multidisciplinary study on the crustal nature of volcanic conduits and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Flinders, Ashton F.

    Volcanic settings vary widely not only in their eruptive style and products, but in the manner magma travels from deep sources to individual eruptive centers. Imaging these pathways, and their associated crustal reservoirs, provides unique and unprecedented views into these environments. Imaging techniques are varied with the strength of the technique often based on data availability. As such, we focus on two methods---gravity and seismic---in two different settings, each with its own unique volcanic environments, crustal structures, and associated data resources. The first, the Hawaiian Islands, are the most geologically studied hot-spot islands in the world, yet the only large-scale compilation of marine and land gravity data is more than 45 years old. We present a new chain-wide gravity compilation allowing us to locate current and former volcanic centers, major rift zones, a previously suggested volcano, and show that volcanoes along the chain are composed of a small proportion of intrusive material (<30% by volume). At the second area, the arc-volcanism of southern Washington, we used ambient seismic noise methods to constrain the crustal pathways of deep-sourced melt to the surface. We image two zones of reduced velocity, one of which correlates with a proposed extensive zone of mid-crustal partial melt which likely supplies evolved magmas to the surrounding volcanoes and vents, including Mounts St. Helens and Adams.

  9. Behavioral predictors of attrition in adolescents participating in a multidisciplinary obesity treatment program: EVASYON study.

    PubMed

    De Miguel-Etayo, P; Muro, C; Santabárbara, J; López-Antón, R; Morandé, G; Martín-Matillas, M; Azcona-San Julián, M C; Martí, A; Campoy, C; Marcos, A; Moreno, L A; Garagorri, J M

    2016-01-01

    The aims of this study were to identify the cognitive and behavioral predictors of dropping out and to estimate the attrition rate during different phases of an intervention program to treat overweight and obesity in adolescents. Overweight/obese adolescents (n=156, aged: 13-16 years; 71 male and 85 female subjects) were included in a multicomponent (diet, physical activity and psychological support) family-based group treatment program. At baseline and after 2 months (intensive phase) and 13 months (extensive phase) of follow-up, we measured adolescents' cognitive and behavioral dimensions, together with the parents' perception of their child's behavior. Of the 156 adolescents selected, 112 completed the full program (drop-out rate of 28.2%). The risk of dropping out during the extensive phase increased by 20% for each unit increase in the adolescent's social insecurity score (odds ratio=1.20, 95% confidence interval=1.07-1.34, P=0.002). The adolescents who had a high interoceptive awareness showed a significant decrease of 13.0% in the probability of dropping out (odds ratio=0.87, 95% confidence interval=0.77-0.99, P=0.040). Adolescents' social insecurity was the main predictor of drop-out in a multicomponent family-group-based obesity treatment program. To reduce attrition rates in these programs, the individual's social insecurity level needs to be reduced, whereas the family's awareness of eating-related behavior needs adjustment.

  10. Using Student-Generated Analogies to Investigate Conceptions of Energy: A multidisciplinary study

    NASA Astrophysics Data System (ADS)

    Anderman Lancor, Rachael

    2014-01-01

    The concept of energy is widely employed in introductory science courses. However, the term energy is defined and utilized in different ways depending on the context, even within a given discipline. Through the lens of metaphor theory, these various definitions of energy are seen as metaphors that highlight and obscure characteristics of energy. Working under this framework, undergraduate students in introductory biology, chemistry, and physics courses were asked to write analogies that reflect their understanding of the role of energy in the context of ecosystems (n = 49), chemical reactions (n = 36), mechanical systems (n = 65), and electrical circuits (n = 44). These analogies were analyzed qualitatively using metaphor theory to gain understanding of how students conceptualize energy in these different contexts. The results of this study indicate that students use seven different conceptual metaphors to explain the role of energy in various scientific contexts: energy as a substance that can be accounted for, energy as a substance that can flow, can change forms, can be carried, can be lost, can be an ingredient or a product, and energy as a process or interaction. This result gives teachers a framework to use in evaluating student ideas about energy.

  11. Multidisciplinary population monitoring when demographic data are sparse: a case study of remote trout populations

    PubMed Central

    Fraser, Dylan J; Calvert, Anna M; Bernatchez, Louis; Coon, Andrew

    2013-01-01

    The potential of genetic, genomic, and phenotypic metrics for monitoring population trends may be especially high in isolated regions, where traditional demographic monitoring is logistically difficult and only sporadic sampling is possible. This potential, however, is relatively underexplored empirically. Over eleven years, we assessed several such metrics along with traditional ecological knowledge and catch data in a socioeconomically important trout species occupying a large, remote lake. The data revealed largely stable characteristics in two populations over 2–3 generations, but possible contemporary changes in a third population. These potential shifts were suggested by reduced catch rates, reduced body size, and changes in selection implied at one gene-associated single nucleotide polymorphism. A demographic decline in this population, however, was ambiguously supported, based on the apparent lack of temporal change in effective population size, and corresponding traditional knowledge suggesting little change in catch. We illustrate how the pluralistic approach employed has practicality for setting future monitoring efforts of these populations, by guiding monitoring priorities according to the relative merits of different metrics and availability of resources. Our study also considers some advantages and disadvantages to adopting a pluralistic approach to population monitoring where demographic data are not easily obtained. PMID:24455128

  12. Giant Serpentine Aneurysms: Multidisciplinary Management

    PubMed Central

    Anshun, W.; Feng, L.; Daming, W.

    2000-01-01

    Summary Sixty-five cases of intracranial giant serpentine aneurysms (GSΛs), including 61 cases reported in the literature and four additional cases presented in this study were reviewed. The clinical presentation, possible causes, natural history, and especially management of GSAs are discussed with emphasis on the need for aggressive intervention and multidisciplinary management. PMID:20667180

  13. CATALISE: A Multinational and Multidisciplinary Delphi Consensus Study. Identifying Language Impairments in Children

    PubMed Central

    Snowling, Margaret J.; Thompson, Paul A.; Greenhalgh, Trisha

    2016-01-01

    Delayed or impaired language development is a common developmental concern, yet there is little agreement about the criteria used to identify and classify language impairments in children. Children's language difficulties are at the interface between education, medicine and the allied professions, who may all adopt different approaches to conceptualising them. Our goal in this study was to use an online Delphi technique to see whether it was possible to achieve consensus among professionals on appropriate criteria for identifying children who might benefit from specialist services. We recruited a panel of 59 experts representing ten disciplines (including education, psychology, speech-language therapy/pathology, paediatrics and child psychiatry) from English-speaking countries (Australia, Canada, Ireland, New Zealand, United Kingdom and USA). The starting point for round 1 was a set of 46 statements based on articles and commentaries in a special issue of a journal focusing on this topic. Panel members rated each statement for both relevance and validity on a seven-point scale, and added free text comments. These responses were synthesised by the first two authors, who then removed, combined or modified items with a view to improving consensus. The resulting set of statements was returned to the panel for a second evaluation (round 2). Consensus (percentage reporting 'agree' or 'strongly agree') was at least 80 percent for 24 of 27 round 2 statements, though many respondents qualified their response with written comments. These were again synthesised by the first two authors. The resulting consensus statement is reported here, with additional summary of relevant evidence, and a concluding commentary on residual disagreements and gaps in the evidence base. PMID:27392128

  14. CATALISE: A Multinational and Multidisciplinary Delphi Consensus Study. Identifying Language Impairments in Children.

    PubMed

    Bishop, D V M; Snowling, Margaret J; Thompson, Paul A; Greenhalgh, Trisha

    2016-01-01

    Delayed or impaired language development is a common developmental concern, yet there is little agreement about the criteria used to identify and classify language impairments in children. Children's language difficulties are at the interface between education, medicine and the allied professions, who may all adopt different approaches to conceptualising them. Our goal in this study was to use an online Delphi technique to see whether it was possible to achieve consensus among professionals on appropriate criteria for identifying children who might benefit from specialist services. We recruited a panel of 59 experts representing ten disciplines (including education, psychology, speech-language therapy/pathology, paediatrics and child psychiatry) from English-speaking countries (Australia, Canada, Ireland, New Zealand, United Kingdom and USA). The starting point for round 1 was a set of 46 statements based on articles and commentaries in a special issue of a journal focusing on this topic. Panel members rated each statement for both relevance and validity on a seven-point scale, and added free text comments. These responses were synthesised by the first two authors, who then removed, combined or modified items with a view to improving consensus. The resulting set of statements was returned to the panel for a second evaluation (round 2). Consensus (percentage reporting 'agree' or 'strongly agree') was at least 80 percent for 24 of 27 round 2 statements, though many respondents qualified their response with written comments. These were again synthesised by the first two authors. The resulting consensus statement is reported here, with additional summary of relevant evidence, and a concluding commentary on residual disagreements and gaps in the evidence base. PMID:27392128

  15. Perceived "out of control" sexual behavior in a cohort of young adults from the Dunedin Multidisciplinary Health and Development Study.

    PubMed

    Skegg, Keren; Nada-Raja, Shyamala; Dickson, Nigel; Paul, Charlotte

    2010-08-01

    Out of control sexual behavior, also known as compulsive sexual behavior or sexual addiction, has not been studied in a representative sample of the general population. At age 32 years, 940 (93%) of 1,015 members of the birth cohort of the Dunedin Multidisciplinary Health and Development Study responded to a series of questions about sexual behavior, administered by computer. We enquired about sexual fantasies, urges or behavior that participants regarded as out of control during the previous year, and defined such experiences as out of control sexual experiences (OCSE). Nearly 13% of men and 7% of women reported OCSE in the past year. Women who reported such experiences were more likely than other women to have reported (elsewhere in the interview) having had high numbers of opposite sex partners, concurrent sexual relationships, or sex with a partner met on the internet, as well as a higher likelihood of same-sex attraction or behavior. Among men reporting OCSE, there was an association with having paid for heterosexual sex and with same-sex attraction and behavior. Few believed that OCSE had interfered with their lives (3.8% of all men and 1.7% of all women in the cohort). Only 0.8% of men and 0.6% of women reported that their actual sexual behavior had interfered with their lives. OCSE were also analyzed in relation to certain personality traits and to childhood sexual abuse (CSA). Some evidence of a link with impulsivity (women only) and negative affectivity was found. CSA was associated with OCSE among men. In conclusion, this population-based study has provided the first empirical estimations of the occurrence of OCSE and its relationship to a range of sexual behaviors in a representative sample.

  16. Education for health: case studies of two multidisciplinary MPH/MSc public health programmes in the UK.

    PubMed

    El Ansari, W; Russell, J; Wills, J

    2003-09-01

    Amidst the winds of change that are blowing across the UK public health (PH) landscape in relation to the essential abilities and national standards that are required for the 'art and science' of PH, the preparation for a new cadre of 'PH professionals' is already underway. Several postgraduate masters programmes in public health (MPH) have taken on board the challenge of addressing the requisite sets of skills and expertise as a guide to their content and delivery. Although there are recommendations regarding teaching PH to undergraduate medical students, little consensus seems to exist on teaching postgraduate PH to non-medically qualified professionals, health managers and administrators. Employing a case study approach, this article analyses the methods used, philosophies and processes, structure and organization, outcomes to date, and lessons learnt from MPH programmes implemented at two institutions in the UK. The programmes have been initiated recently, and have had the opportunity to take on board the recent national guidelines about training standards. The findings indicate that preparatory work of the programmes, and the challenges and strengths in meeting the recent policy developments in PH training are pertinent points. The MPH programmes highlight key issues in interprofessional education and its purpose, its process and its outcomes in relation to multidisciplinary specialist practice. These programmes provide a variety of models for others wishing to develop or restructure their postgraduate PH teaching programmes. The finalization of the national standards for specialist practice in PH in the UK is encouraged, along with clearer working definitions of the domains of expertise required. Collectively, attention to these measures can ensure that the processes which teaching programmes embrace to refine their content and delivery will equip tomorrow's professionals with PH knowledge and skills.

  17. A New Multidisciplinary Home Care Telemedicine System to Monitor Stable Chronic Human Immunodeficiency Virus-Infected Patients: A Randomized Study

    PubMed Central

    León, Agathe; Cáceres, César; Fernández, Emma; Chausa, Paloma; Martin, Maite; Codina, Carles; Rousaud, Araceli; Blanch, Jordi; Mallolas, Josep; Martinez, Esteban; Blanco, Jose L.; Laguno, Montserrat; Larrousse, Maria; Milinkovic, Ana; Zamora, Laura; Canal, Neus; Miró, Josep M.; Gatell, Josep M.; Gómez, Enrique J.; García, Felipe

    2011-01-01

    Background Antiretroviral therapy has changed the natural history of human immunodeficiency virus (HIV) infection in developed countries, where it has become a chronic disease. This clinical scenario requires a new approach to simplify follow-up appointments and facilitate access to healthcare professionals. Methodology We developed a new internet-based home care model covering the entire management of chronic HIV-infected patients. This was called Virtual Hospital. We report the results of a prospective randomised study performed over two years, comparing standard care received by HIV-infected patients with Virtual Hospital care. HIV-infected patients with access to a computer and broadband were randomised to be monitored either through Virtual Hospital (Arm I) or through standard care at the day hospital (Arm II). After one year of follow up, patients switched their care to the other arm. Virtual Hospital offered four main services: Virtual Consultations, Telepharmacy, Virtual Library and Virtual Community. A technical and clinical evaluation of Virtual Hospital was carried out. Findings Of the 83 randomised patients, 42 were monitored during the first year through Virtual Hospital (Arm I) and 41 through standard care (Arm II). Baseline characteristics of patients were similar in the two arms. The level of technical satisfaction with the virtual system was high: 85% of patients considered that Virtual Hospital improved their access to clinical data and they felt comfortable with the videoconference system. Neither clinical parameters [level of CD4+ T lymphocytes, proportion of patients with an undetectable level of viral load (p = 0.21) and compliance levels >90% (p = 0.58)] nor the evaluation of quality of life or psychological questionnaires changed significantly between the two types of care. Conclusions Virtual Hospital is a feasible and safe tool for the multidisciplinary home care of chronic HIV patients. Telemedicine should be considered as an

  18. Determinants of treatment plan implementation in multidisciplinary team meetings for patients with chronic diseases: a mixed-methods study

    PubMed Central

    Raine, Rosalind; Xanthopoulou, Penny; Wallace, Isla; Nic a’ Bháird, Caoimhe; Lanceley, Anne; Clarke, Alex; Livingston, Gill; Prentice, Archie; Ardron, Dave; Harris, Miriam; King, Michael; Michie, Susan; Blazeby, Jane M; Austin-Parsons, Natalie; Gibbs, Simon; Barber, Julie

    2014-01-01

    Objective Multidisciplinary team (MDT) meetings are assumed to produce better decisions and are extensively used to manage chronic disease in the National Health Service (NHS). However, evidence for their effectiveness is mixed. Our objective was to investigate determinants of MDT effectiveness by examining factors influencing the implementation of MDT treatment plans. This is a proxy measure of effectiveness, because it lies on the pathway to improvements in health, and reflects team decision making which has taken account of clinical and non-clinical information. Additionally, this measure can be compared across MDTs for different conditions. Methods We undertook a prospective mixed-methods study of 12 MDTs in London and North Thames. Data were collected by observation of 370 MDT meetings, interviews with 53 MDT members, and from 2654 patient medical records. We examined the influence of patient-related factors (disease, age, sex, deprivation, whether their preferences and other clinical/health behaviours were mentioned) and MDT features (as measured using the ‘Team Climate Inventory’ and skill mix) on the implementation of MDT treatment plans. Results The adjusted odds (or likelihood) of implementation was reduced by 25% for each additional professional group represented at the MDT meeting. Implementation was more likely in MDTs with clear goals and processes and a good ‘Team Climate’ (adjusted OR 1.96; 95% CI 1.15 to 3.31 for a unit increase in Team Climate Inventory (TCI) score). Implementation varied by disease category, with the lowest adjusted odds of implementation in mental health teams. Implementation was also lower for patients living in more deprived areas (adjusted odds of implementation for patients in the most compared with least deprived areas was 0.60, 95% CI 0.39 to 0.91). Conclusions Greater multidisciplinarity is not necessarily associated with more effective decision making. Explicit goals and procedures are also crucial. Decision

  19. Multi-disciplinary data organization and visualization models for clinical and pre-clinical studies: A case study in the application of proton beam radiosurgery for treating spinal cord injury related pain

    NASA Astrophysics Data System (ADS)

    Verma, Sneha K.; Liu, Brent J.

    2016-03-01

    An increasing adoption of electronic medical records has made information more accessible to clinicians and researchers through dedicated systems such as HIS, RIS and PACS. The speed and the amount at which information are generated in a multi-institutional clinical study make the problem complicated compared to day-to-day hospital workflow. Often, increased access to the information does not translate into the efficient use of that information. Therefore, it becomes crucial to establish models which can be used to organize and visualize multi-disciplinary data. Good visualization in turn makes it easy for clinical decision-makers to reach a conclusion within a small span of time. In a clinical study involving multi-disciplinary data and multiple user groups who need access to the same data and presentation states based on the stage of the clinical trial or the task are crucial within the workflow. Therefore, in order to demonstrate the conceptual system design and system workflow, we will be presenting a clinical trial based on application of proton beam for radiosurgery which will utilize our proposed system. For demonstrating user role and visualization design purposes, we will be focusing on three different user groups which are researchers involved in patient enrollment and recruitment, clinicians involved in treatment and imaging review and lastly the principle investigators involved in monitoring progress of clinical study. Also datasets for each phase of the clinical study including preclinical and clinical data as it related to subject enrollment, subject recruitment (classifier), treatment (DICOM), imaging, and pathological analysis (protein staining) of outcomes.

  20. The anatomy of clinical decision-making in multidisciplinary cancer meetings: A cross-sectional observational study of teams in a natural context.

    PubMed

    Soukup, Tayana; Petrides, Konstantinos V; Lamb, Benjamin W; Sarkar, Somita; Arora, Sonal; Shah, Sujay; Darzi, Ara; Green, James S A; Sevdalis, Nick

    2016-06-01

    In the UK, treatment recommendations for patients with cancer are routinely made by multidisciplinary teams in weekly meetings. However, their performance is variable.The aim of this study was to explore the underlying structure of multidisciplinary decision-making process, and examine how it relates to team ability to reach a decision.This is a cross-sectional observational study consisting of 1045 patient reviews across 4 multidisciplinary cancer teams from teaching and community hospitals in London, UK, from 2010 to 2014. Meetings were chaired by surgeons.We used a validated observational instrument (Metric for the Observation of Decision-making in Cancer Multidisciplinary Meetings) consisting of 13 items to assess the decision-making process of each patient discussion. Rated on a 5-point scale, the items measured quality of presented patient information, and contributions to review by individual disciplines. A dichotomous outcome (yes/no) measured team ability to reach a decision. Ratings were submitted to Exploratory Factor Analysis and regression analysis.The exploratory factor analysis produced 4 factors, labeled "Holistic and Clinical inputs" (patient views, psychosocial aspects, patient history, comorbidities, oncologists', nurses', and surgeons' inputs), "Radiology" (radiology results, radiologists' inputs), "Pathology" (pathology results, pathologists' inputs), and "Meeting Management" (meeting chairs' and coordinators' inputs). A negative cross-loading was observed from surgeons' input on the fourth factor with a follow-up analysis showing negative correlation (r = -0.19, P < 0.001). In logistic regression, all 4 factors predicted team ability to reach a decision (P < 0.001).Hawthorne effect is the main limitation of the study.The decision-making process in cancer meetings is driven by 4 underlying factors representing the complete patient profile and contributions to case review by all core disciplines. Evidence of dual-task interference was

  1. A multi-disciplinary approach to study coastal complex landslides: the case of Torino di Sangro (Central Italy)

    NASA Astrophysics Data System (ADS)

    Sciarra, Marco; Carabba, Luigi; Urbano, Tullio; Calista, Monia

    2016-04-01

    This work illustrates the studies carried out on a complex landslide phenomenon between the Sangro and Osento River's mouths, near Torino di Sangro village in Southern Abruzzo Region (Italy). Historical activity of this landslide is well-documented since 1916; the activation/reactivation of the movements caused several interruptions of a national railway and the damage of few houses. The Torino di Sangro case study can be regarded as representative of many large landslides distributed along the central Adriatic coast (e.g., Ancona, Ortona, Vasto and Petacciato Landslides) that affect densely populated urban areas with a large amount of man-made infrastructure. The main controlling factors of these large and deep-seated landslides are still debated. From the geological and geomorphological viewpoint, the central Adriatic coast is characterized by a low-relief landscape (mesa) carved on clay-sandstone-conglomerate bedrock belonging to the Upper Pliocene - Lower Pleistocene marine deposits and locally to the Middle Pleistocene marine to continental transitional deposits. This high coast is widely affected by slope instability (rock falls, rotational, complex and shallow landslides) on both active and inactive sea cliffs, the first being mainly affected by wave-cut erosion and the latter influenced by heavy rainfall and changes of pore pressure. The main landslide has the typical characteristics of a deep-seated gravitation deformation. The landslide study was based on a multidisciplinary approach including: 1) definition and GIS mapping of geology and geomorphology factors (slope, aspect, topographic curvature, bedrock lithology, near-surface deposits, deposit thickness and land use), by means of DTM processing, multi-temporal analysis, and large-scale geomorphological field survey; 2) monitoring system in the landslide; 3) application of empiric models for the analysis of unstable sandstone-conglomerate escarpments; 4) slope stability analysis performed using a

  2. Multidisciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  3. Dynamically Reconfigurable Approach to Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalie M.; Lewis, Robert Michael

    2003-01-01

    The complexity and autonomy of the constituent disciplines and the diversity of the disciplinary data formats make the task of integrating simulations into a multidisciplinary design optimization problem extremely time-consuming and difficult. We propose a dynamically reconfigurable approach to MDO problem formulation wherein an appropriate implementation of the disciplinary information results in basic computational components that can be combined into different MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. We believe that this structure can and should be used to formulate and solve optimization problems in the multidisciplinary context. The present work identifies the basic computational components in several MDO problem formulations and examines the dynamically reconfigurable approach in the context of a popular class of optimization methods. We show that if the disciplinary sensitivity information is implemented in a modular fashion, the transfer of sensitivity information among the formulations under study is straightforward. This enables not only experimentation with a variety of problem formations in a research environment, but also the flexible use of formulations in a production design environment.

  4. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  5. Seal design alternatives study

    SciTech Connect

    Van Sambeek, L.L.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information.

  6. Shuttle communications design study

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1975-01-01

    The design and development of a space shuttle communication system are discussed. The subjects considered include the following: (1) Ku-band satellite relay to shuttle, (2) phased arrays, (3) PN acquisition, (4) quadriplexing of direct link ranging and telemetry, (5) communications blackout on launch and reentry, (6) acquisition after blackout on reentry, (7) wideband communications interface with the Ku-Band rendezvous radar, (8) aeroflight capabilities of the space shuttle, (9) a triple multiplexing scheme equivalent to interplex, and (10) a study of staggered quadriphase for use on the space shuttle.

  7. EDITORIAL: Siberia Integrated Regional Study: multidisciplinary investigations of the dynamic relationship between the Siberian environment and global climate change

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Vaganov, E. A.

    2010-03-01

    -Biosphere Program: integrated regional study of contemporary natural and climatic changes' is one of several funded interdisciplinary projects, and it serves to unite regional studies from 14 RAS and SB RAS institutes and 5 universities. In the course of this and similar national1 and international projects, ENVIROMIS and ENVIROMIS-2 (Environmental Observations, Modelling and Information Systems) was formed, which is the SIRS professional community comprising regional, national and international specialists dealing with Siberian environmental dynamics studies. Results of those and parallel projects were analyzed in by coordinated activities: 'Enviro-RISKS-Man-induced Environmental Risks: monitoring, management and remediation of man-made changes in Siberia' [12]. Currently, a new set of SB RAS integrated2 and international projects within the Asia-Pacific Network for Global Change Study (APN) and ISTC are under way. While a number of projects have been initiated and clustered under the SIRS umbrella and their results and data are distributed through the SIRS web portal (http://sirs.scert.ru/), the organizational SIRS infrastructure is inadequate. SIRS has neither SB RAS stable funding nor a dedicated Project Office. Both obstacles are a major concern for the SIRS governing body. Information-computational infrastructure development The SIRS informational-computational infrastructure, which is currently under extensive development, is designed to stimulate national and international cooperative Earth science investigations, easily exchange data and knowledge, coordinate activities, and optimize the usage of resources, services and applications [13]. The infrastructure is organized as a set of thematic, bilingual (Russian and English), internet-accessible informational-computational systems, the first of which is the scientific web portal ATMOS (http://atmos.iao.ru/). ATMOS is an integrated set of distributed topical websites, combining standard multimedia information with research

  8. Breakfast: a multidisciplinary approach

    PubMed Central

    2013-01-01

    Background The role of breakfast as an essential part of an healthy diet has been only recently promoted even if breakfast practices were known since the Middle Age. The growing scientific evidences on this topic are extremely sector-based nevertheless breakfast could be regarded from different point of views and from different expertises. This approach, that take into account history, sociology, anthropology, medicine, psychology and pedagogy, is useful to better understand the value of this meal in our culture. The aim of this paper was to analyse breakfast-related issues based on a multidisciplinary approach with input by specialists from different fields of learning. Discussion Breakfast is now recommended as part of a diet because it is associated with healthier macro- and micronutrient intakes, body mass index and lifestyle. Moreover recent studies showed that breakfast improves cognitive function, intuitive perception and academic performance. Research demonstrates the importance of providing breakfast not only to children but in adults and elderly too. Although the important role breakfast plays in maintaining the health, epidemiological data from industrialised countries reveal that many individuals either eat a nutritionally unhealthy breakfast or skip it completely. Summary The historical, bio-psychological and educational value of breakfast in our culture is extremely important and should be recognized and stressed by the scientific community. Efforts should be done to promote this practice for the individual health and well-being. PMID:23842429

  9. ATW neutronics design studies.

    SciTech Connect

    Wade, D. C.; Yang, W. S.; Khalil, H.

    2000-11-10

    The Accelerator Transmutation of Waste (ATW) concept has been proposed as a transuranics (TRU) (and long-lived fission product) incinerator for processing the 87,000 metric tonnes of Light Water Reactor used fuel which will have been generated by the time the currently deployed fleet of commercial reactors in the US reach the end of their licensed lifetime. The ATW is proposed to separate the uranium from the transuranics and fission products in the LWR used fuel, to fission the transuranics, to send the LWR and ATW generated fission products to the geologic repository and to send the uranium to either a low level waste disposal site or to save it for future use. The heat liberated in fissioning the transuranics would be converted to electricity and sold to partially offset the cost of ATW construction and operations. Options for incineration of long-lived fission products are under evaluation. A six-year science-based program of ATW trade and system studies was initiated in the US FY 2000 to achieve two main purposes: (1) ''to evaluate ATW within the framework of nonproliferation, waste management, and economic considerations,'' and (2) ''to evaluate the efficacy of the numerous technical options for ATW system configuration.'' This paper summarizes the results from neutronics and thermal/hydraulics trade studies which were completed at Argonne National Laboratory during the first year of the program. Core designs were developed for Pb-Bi cooled and Na cooled 840 MW{sub th} fast spectrum transmuter designs employing recycle. Additionally, neutronics analyses were performed at Argonne for a He cooled 600 MW{sub th} hybrid thermal and fast core design proposed by General Atomics Co. which runs critical for 3/4 and subcritical for 1/4 of its four year once-thin burn cycle. The mass flows and the ultimate loss of transuranic isotopes to the waste stream per unit of heat generated during transmutation have been calculated on a consistent basis and are compared. (Long

  10. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  11. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full

  12. Study protocol of effectiveness of a biopsychosocial multidisciplinary intervention in the evolution of non-speficic sub-acute low back pain in the working population: cluster randomised trial

    PubMed Central

    2010-01-01

    Background Non-specific low back pain is a common cause for consultation with the general practitioner, generating increased health and social costs. This study will analyse the effectiveness of a multidisciplinary intervention to reduce disability, severity of pain, anxiety and depression, to improve quality of life and to reduce the incidence of chronic low back pain in the working population with non-specific low back pain, compared to usual clinical care. Methods/Design A Cluster randomised clinical trial will be conducted in 38 Primary Health Care Centres located in Barcelona, Spain and its surrounding areas. The centres are randomly allocated to the multidisciplinary intervention or to usual clinical care. Patients between 18 and 65 years old (n = 932; 466 per arm) and with a diagnostic of a non-specific sub-acute low back pain are included. Patients in the intervention group are receiving the recommendations of clinical practice guidelines, in addition to a biopsychosocial multidisciplinary intervention consisting of group educational sessions lasting a total of 10 hours. The main outcome is change in the score in the Roland Morris disability questionnaire at three months after onset of pain. Other outcomes are severity of pain, quality of life, duration of current non-specific low back pain episode, work sick leave and duration, Fear Avoidance Beliefs and Goldberg Questionnaires. Outcomes will be assessed at baseline, 3, 6 and 12 months. Analysis will be by intention to treat. The intervention effect will be assessed through the standard error of measurement and the effect-size. Responsiveness of each scale will be evaluated by standardised response mean and receiver-operating characteristic method. Recovery according to the patient will be used as an external criterion. A multilevel regression will be performed on repeated measures. The time until the current episode of low back pain takes to subside will be analysed by Cox regression. Discussion We hope

  13. The Pilot Restoration Yard of the Church of San Frediano in Pisa: Results of a Multidisciplinary Study

    NASA Astrophysics Data System (ADS)

    Baracchini, C.; Pini, R.; Fabiani, F.; Ciafaloni, M.; Siano, S.; Salimbeni, R.; Sabatini, G.; Giamello, M.; Franzini, M.; Lezzerini, M.; Spampinato, M.; Gravina, F.; Andreazzoli, F.

    In the frame of the EC Project "RIS+ Tuscany: Transfer of innovative technologies for Cultural Heritage" we carried out a pilot restoration yard to apply and evaluate laser cleaning procedures in the conservation of stones and decorations on the façade of the church of S. Frediano (XI-XII Cent.) in Pisa. A multidisciplinary scientific committee was established, formed by art historians, architects, physicists, geologists, and conservators. Italian firms involved in conservation services and in laser technology participated in the project. The conservation has been recently completed after two years of work, providing a critical evaluation on the effectiveness and safety of optimized laser cleaning operations, the definition of an integrated conservation protocol which included the laser technique, as well as other conventional cleaning techniques, and the evaluation of time productivity and operative costs of laser operations.

  14. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  15. The City: A Multidisciplinary Unit Exercising the Higher Level Thinking Skills of Analysis, Synthesis, and Evaluation.

    ERIC Educational Resources Information Center

    Burger, Celia R.

    Designed for use with sixth grade students, this multidisciplinary unit combines independent study of urban areas with activities to develop students' higher level thinking skills. Following suggestions to teachers on strategies for introducing the unit, four options for independent study are described. The first is a study of a topic related to…

  16. Localized Pancreatic Cancer: Multidisciplinary Management.

    PubMed

    Coveler, Andrew L; Herman, Joseph M; Simeone, Diane M; Chiorean, E Gabriela

    2016-01-01

    Pancreatic cancer is an aggressive cancer that continues to have single-digit 5-year mortality rates despite advancements in the field. Surgery remains the only curative treatment; however, most patients present with late-stage disease deemed unresectable, either due to extensive local vascular involvement or the presence of distant metastasis. Resection guidelines that include a borderline resectable group, as well as advancements in neoadjuvant chemotherapy and radiation that improve resectability of locally advanced disease, may improve outcomes for patients with more invasive disease. Multi-agent chemotherapy regimens fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) and nab-paclitaxel with gemcitabine improved response rates and survival in metastatic pancreatic cancer and are now being used in earlier stages for patients with localized potentially resectable and unresectable disease, with goals of downstaging tumors to allow margin-negative resection and reducing systemic recurrence. Chemoradiotherapy, although still controversial for both resectable and unresectable pancreatic cancer, is being used in the context of contemporary chemotherapy backbone regimens, and novel radiation techniques such as stereotactic body frame radiation therapy (SBRT) are studied on the premise of maintaining or improving efficacy and reducing treatment duration. Patient selection for optimal treatment designation is currently provided by multidisciplinary tumor boards, but biomarker discovery, in blood, tumors, or through novel imaging, is an area of intense research. Results to date suggest that some patients with unresectable disease at the outset have survival rates as good as those with initially resectable disease if able to undergo surgical resection. Long-term follow-up and improved clinical trials options are needed to determine optimal treatment modalities for patients with localized pancreatic cancer. PMID:27249726

  17. Multidisciplinary management of complex care.

    PubMed

    Schofield, Deborah; Fuller, Jeffrey; Wagner, Scott; Friis, Leanne; Tyrell, Bill

    2009-02-01

    Rural and remote areas of Australia are facing serious health workforce shortages. Multidisciplinary teams are one way of making the most of the rural workforce. In this paper, the advantages of multidisciplinary care in terms of patient outcomes, clinician satisfaction and system efficiency are considered with reference to an innovative rural multidisciplinary model that highlights how these positive outcomes can be achieved. Ways of developing the capacity of the future workforce for work in multidisciplinary teams are discussed.

  18. Studies in Interior Design

    ERIC Educational Resources Information Center

    Environ Planning Design, 1970

    1970-01-01

    Floor plans and photographs illustrate a description of the Samuel C. Williams Library at Stevens Institute of Technology, Hoboken, N.J. The unusual interior design allows students to take full advantage of the library's resources. (JW)

  19. The effect of family-based multidisciplinary cognitive behavioral treatment in children with obesity: study protocol for a randomized controlled trial

    PubMed Central

    2011-01-01

    Background The prevalence of childhood obesity has increased rapidly during the last three decades in the Netherlands. It is assumed that mainly environmental factors have contributed to this trend. Parental overweight and low social economic status are risk factors for childhood obesity. Childhood obesity affects self-esteem and has negative consequences on cognitive and social development. Obese children tend to become obese adults, which increases the risk for developing cardiovascular complications, type 2 diabetes mellitus, and psychosocial problems. Additionally, the secretion of several gastrointestinal hormones, responsible for appetite and food intake, is impaired in obese subjects. Weight reduction through lifestyle changes in order to change health risks is, until now, suggested as the preferred treatment for childhood obesity. The objective of this study is the effect evaluation of a family-based cognitive behavioral multidisciplinary lifestyle treatment. The intervention aims to establish long-term weight reduction and stabilization, reduction of obesity-related health consequences and improvement of self-image by change of lifestyle and learning cognitive behavioral techniques. Study design/Methods In this randomized clinical trial newly presented children with obesity (8-17 years old) are divided, by randomization, in an intervention and control group, both consisting of 40 obese children. The intervention is carried out in groups of 8-11 children, and consists of respectively 7 and 5 separate group meetings for the children and their parents and 1 joint group meeting of 2 ½ hours. Main topics are education on nutrition, self-control techniques, social skills, physical activity and improvement of self-esteem. The control group is given advice on physical activity and nutrition. For normal data comparison, data were collected of 40 normal-weight children, 8-17 years old. Discussion Because of the increasing prevalence of childhood obesity and the

  20. How teams use indicators for quality improvement - a multiple-case study on the use of multiple indicators in multidisciplinary breast cancer teams.

    PubMed

    Gort, Marjan; Broekhuis, Manda; Regts, Gerdien

    2013-11-01

    A crucial issue in healthcare is how multidisciplinary teams can use indicators for quality improvement. Such teams have increasingly become the core component in both care delivery and in many quality improvement methods. This study aims to investigate the relationships between (1) team factors and the way multidisciplinary teams use indicators for quality improvement, and (2) both team and process factors and the intended results. An in-depth, multiple-case study was conducted in the Netherlands in 2008 involving four breast cancer teams using six structure, process and outcome indicators. The results indicated that the process of using indicators involves several stages and activities. Two teams applied a more intensive, active and interactive approach as they passed through these stages. These teams were perceived to have achieved good results through indicator use compared to the other two teams who applied a simple control approach. All teams experienced some difficulty in integrating the new formal control structure, i.e. measuring and managing performance, in their operational task, and in using their 'new' managerial task to decide as a team what and how to improve. Our findings indicate the presence of a network of relationships between team factors, the controllability and actionability of indicators, the indicator-use process, and the intended results.

  1. Breaking Down the Siloes: Developing Effective Multidisciplinary HIV Research Teams.

    PubMed

    Magnus, Manya; Castel, Amanda

    2016-09-01

    As the HIV epidemic passes its 35 years mark, the role of multidisciplinary approaches to HIV research has become increasingly important. Development of diverse, cross-cutting research teams has been found to be key to engaging and retaining participants in population-based studies; it is also a crucial component of designing studies capable of examining the sensitive and nuanced issues that surround HIV related risk and adherence behavior. Expanding our understanding of these issues is central to being able to overcome them and ultimately to the development of best practices for translation of research discovery into improvements in prevention and care. The objectives of this paper are to characterize the importance of multidisciplinary teams in HIV research where they are critical to gaining information that can have a positive impact on the epidemic and to propose specific methods for creating teams to conduct research with optimal public health impact. PMID:27435076

  2. Multidisciplinary computational aerosciences

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1992-01-01

    As the challenges of single disciplinary computational physics are met, such as computational fluid dynamics, computational structural mechanics, computational propulsion, computational aeroacoustics, computational electromagnetics, etc., scientists have begun investigating the combination of these single disciplines into what is being called multidisciplinary computational aerosciences (MCAS). The combination of several disciplines not only offers simulation realism but also formidable computational challenges. The solution of such problems will require computers orders of magnitude larger than those currently available. Such computer power can only be supplied by massively parallel machines because of the current speed-of-light limitation of conventional serial systems. Even with such machines, MCAS problems will require hundreds of hours for their solution. To efficiently utilize such a machine, research is required in three areas that include parallel architectures, systems software, and applications software. The main emphasis of this paper is the applications software element. Examples that demonstrate application software for multidisciplinary problems currently being solved at NASA Ames Research Center are presented. Pacing items for MCAS are discussed such as solution methodology, physical modeling, computer power, and multidisciplinary validation experiments.

  3. Architecture as Design Study.

    ERIC Educational Resources Information Center

    Kauppinen, Heta

    1989-01-01

    Explores the use of analogies in architectural design, the importance of Gestalt theory and aesthetic cannons in understanding and being sensitive to architecture. Emphasizes the variation between public and professional appreciation of architecture. Notes that an understanding of architectural process enables students to improve the aesthetic…

  4. Directions in Environmental Gerontology: A Multidisciplinary Field

    ERIC Educational Resources Information Center

    Kendig, Hal

    2003-01-01

    This article considers developments and directions for environmental gerontology drawing on the three papers in this Forum. The multidisciplinary field came of age during the 1960s with Powell Lawton's powerful environmental press paradigm and its applications to empirical research and building design. Recent theoretical developments in Europe and…

  5. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  6. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  7. Grip on challenging behaviour: a multidisciplinary care programme for managing behavioural problems in nursing home residents with dementia. Study protocol

    PubMed Central

    2011-01-01

    Background Behavioural problems are common in nursing home residents with dementia and they often are burdensome for both residents and nursing staff. In this study, the effectiveness and cost-effectiveness of a new care programme for managing behavioural problems will be evaluated. Methods/Design The care programme is based on Dutch national guidelines. It will consist of four steps: detection, analysis, treatment and evaluation. A stepped wedge design will be used. A total of 14 dementia special care units will implement the care programme. The primary outcome is behavioural problems. Secondary outcomes will include quality of life, prescription rate of antipsychotics, use of physical restraints and workload and job satisfaction of nursing staff. The effect of the care programme will be estimated using multilevel linear regression analysis. An economic evaluation from a societal perspective will also be carried out. Discussion The care programme is expected to be cost-effective and effective in decreasing behavioural problems, workload of nursing staff and in increasing quality of life of residents. Trial registration The Netherlands National Trial Register (NTR). Trial number: NTR 2141 PMID:21338502

  8. Effectiveness of a multidisciplinary critical pathway based on a computerised physician order entry system for ST-segment elevation myocardial infarction management in the emergency department: a retrospective observational study

    PubMed Central

    Park, Yoo Seok; Chung, Sung Phil; You, Je Sung; Kim, Min Joung; Chung, Hyun Soo; Hong, Jung Hwa; Lee, Hye Sun; Wang, Jinwon; Park, Incheol

    2016-01-01

    Objectives The purpose of this study was to investigate whether a multidisciplinary organised critical pathway (CP) for ST-segment elevation myocardial infarction (STEMI) management can significantly attenuate differences in the duration from emergency department (ED) arrival to evaluation and treatment, regardless of the arrival time, by eliminating off-hour and weekend effects. Design Retrospective observational cohort study. Setting 2 tertiary academic hospitals. Participants Consecutive patients in the Fast Interrogation Rule for STEMI (FIRST) program. Interventions A study was conducted on patients in the FIRST program, which uses a computerised physician order entry (CPOE) system. The patient demographics, time intervals and clinical outcomes were analysed based on the arrival time at the ED: group 1, normal working hours on weekdays; group 2, off-hours on weekdays; group 3, normal working hours on weekends; and group 4, off-hours on weekends. Primary and secondary outcome measures Clinical outcomes categorised according to 30-day mortality, in-hospital mortality and the length of stay. Results The duration from door-to-data or FIRST activation did not differ significantly among the 4 groups. The median duration between arrival and balloon placement during percutaneous coronary intervention did not significantly exceed 90 min, and the proportions (89.6–95.1%) of patients with door-to-balloon times within 90 min did not significantly differ among the 4 groups, regardless of the ED arrival time (p=0.147). Moreover, no differences in the 30-day (p=0.8173) and in-hospital mortality (p=0.9107) were observed in patients with STEMI. Conclusions A multidisciplinary CP for STEMI based on a CPOE system can effectively decrease disparities in the door-to-data duration and proportions of patients with door-to-balloon times within 90 min, regardless of the ED arrival time. The application of a multidisciplinary CP may also help attenuate off-hour and weekend

  9. A multidisciplinary approach to the study of cultural heritage environments: Experience at the Palatina Library in Parma.

    PubMed

    Pasquarella, C; Balocco, C; Pasquariello, G; Petrone, G; Saccani, E; Manotti, P; Ugolotti, M; Palla, F; Maggi, O; Albertini, R

    2015-12-01

    The aim of this paper is to describe a multidisciplinary approach including biological and particle monitoring, and microclimate analysis associated with the application of the Computational Fluid Dynamic (CFD). This approach was applied at the Palatina historical library in Parma. Monitoring was performed both in July and in December, in the absence of visitors and operators. Air microbial monitoring was performed with active and passive methods. Airborne particles with a diameter of ≥0.3, ≥0.5, ≥1 and ≥5 μm/m3, were counted by a laser particle counter. The surface contamination of shelves and manuscripts was assessed with nitrocellulose membranes. A spore trap sampler was used to identify both viable and non-viable fungal spores by optical microscope. Microbiological contaminants were analyzed through cultural and molecular biology techniques. Microclimatic parameters were also recorded. An infrared thermal camera provided information on the surface temperature of the different building materials, objects and components. Transient simulation models, for coupled heat and mass-moisture transfer, taking into account archivist and general public movements, combined with the related sensible and latent heat released into the environment, were carried out applying the CFD-FE (Finite Elements) method. Simulations of particle tracing were carried out. A wide variability in environmental microbial contamination, both for air and surfaces, was observed. Cladosporium spp., Alternaria spp., Aspergillus spp., and Penicillium spp. were the most frequently found microfungi. Bacteria such as Streptomyces spp., Bacillus spp., Sphingomonas spp., and Pseudoclavibacter as well as unculturable colonies were characterized by molecular investigation. CFD simulation results obtained were consistent with the experimental data on microclimatic conditions. The tracing and distribution of particles showed the different slice planes of diffusion mostly influenced by the convective

  10. A multidisciplinary approach to the study of cultural heritage environments: Experience at the Palatina Library in Parma.

    PubMed

    Pasquarella, C; Balocco, C; Pasquariello, G; Petrone, G; Saccani, E; Manotti, P; Ugolotti, M; Palla, F; Maggi, O; Albertini, R

    2015-12-01

    The aim of this paper is to describe a multidisciplinary approach including biological and particle monitoring, and microclimate analysis associated with the application of the Computational Fluid Dynamic (CFD). This approach was applied at the Palatina historical library in Parma. Monitoring was performed both in July and in December, in the absence of visitors and operators. Air microbial monitoring was performed with active and passive methods. Airborne particles with a diameter of ≥0.3, ≥0.5, ≥1 and ≥5 μm/m3, were counted by a laser particle counter. The surface contamination of shelves and manuscripts was assessed with nitrocellulose membranes. A spore trap sampler was used to identify both viable and non-viable fungal spores by optical microscope. Microbiological contaminants were analyzed through cultural and molecular biology techniques. Microclimatic parameters were also recorded. An infrared thermal camera provided information on the surface temperature of the different building materials, objects and components. Transient simulation models, for coupled heat and mass-moisture transfer, taking into account archivist and general public movements, combined with the related sensible and latent heat released into the environment, were carried out applying the CFD-FE (Finite Elements) method. Simulations of particle tracing were carried out. A wide variability in environmental microbial contamination, both for air and surfaces, was observed. Cladosporium spp., Alternaria spp., Aspergillus spp., and Penicillium spp. were the most frequently found microfungi. Bacteria such as Streptomyces spp., Bacillus spp., Sphingomonas spp., and Pseudoclavibacter as well as unculturable colonies were characterized by molecular investigation. CFD simulation results obtained were consistent with the experimental data on microclimatic conditions. The tracing and distribution of particles showed the different slice planes of diffusion mostly influenced by the convective

  11. Multidisciplinary study of sediments deposited in the Ross Sea (Antarctica) during the last 50 ka: information on changes of ice extent during the glacial-interglacial transition

    NASA Astrophysics Data System (ADS)

    Del Carlo, Paola; Baneschi, Ilaria; Bertagnini, Antonella; Boschi, Chiara; Cascella, Antonio; Colizza, Ester; Di Roberto, Alessio; Di Vincenzo, Gianfranco; Finocchiaro, Furio; Landi, Patrizia; Lirer, Fabrizio; Pompilio, Massimo; Sagnotti, Leonardo; Sangiorgi, Francesca; Sprovieri, Mario; Wrinkler, Aldo

    2013-04-01

    In the Ross Sea (Antarctica), sedimentation is controlled by the dynamics of the ice shelves, fluctuations of the ice sheets extensions (Eastern and Western) and volcanic activity from several volcanic complex of the Victoria Land. Marine sediments consisting of alternated glacigenic, biogenic and volcanic deposits can be interpreted in terms of changes in paleoclimate and paleoenvironment conditions. In this project we present a multidisciplinary study (comprising tephrostratigraphy, petrology, paleomagnetism, rock magnetism, TIC/TOC geochemistry, Ar/Ar dating, palinology and integrated biostratigraphy of forams and calcareous nannoplankton) of the sediments recovered in selected cores from Ross Sea during 1999 and 2000 cruises and stored in the Italian archive at Museo Nazionale dell'Antartide (Trieste). Results provide new data on local and/or global changes of paleoclimate and paleoenvironmental conditions over the past 50 Ka. Furthermore, the study of the recovered volcanic deposits adds new information about the poorly known, recent volcanic activity in the Victoria Land area.

  12. Advances in Multi-disciplinary Interoperability

    NASA Astrophysics Data System (ADS)

    Pearlman, J.; Nativi, S.; Craglia, M.; Huerta, J.; Rubio-Iglesias, J. M.; Serrano, J. J.

    2012-04-01

    The challenge for addressing issues such as climate change, food security or ecosystem sustainability is that they require multi-disciplinary collaboration and the ability to integrate information across scientific domains. Multidisciplinary collaborations are difficult because each discipline has its own "language", protocols and formats for communicating within its community and handling data and information. EuroGEOSS demonstrates the added value to the scientific community and to society of making existing systems and applications interoperable and useful within the GEOSS and INSPIRE frameworks. In 2010, the project built an initial operating capacity of a multi-disciplinary Information System addressing three areas: drought, forestry and biodiversity. It is now furthering this development into an advanced operating capacity (http://www.eurogeoss.eu). The key to this capability is the creation of a broker that supports access to multiple resources through a common user interface and the automation of data search and access using state of the art information technology. EuroGEOSS hosted a conference on information systems and multi-disciplinary applications of science and technology. "EuroGEOSS: advancing the vision of GEOSS" provided a forum for developers, users and decision-makers working with advanced multi-disciplinary information systems to improve science and decisions for complex societal issues. In particular, the Conference addressed: Information systems for supporting multi-disciplinary research; Information systems and modeling for biodiversity, drought, forestry and related societal benefit areas; and Case studies of multi-disciplinary applications and outcomes. This paper will discuss the major finding of the conference and the directions for future development.

  13. Scripting for Construction of a Transactive Memory System in Multidisciplinary CSCL Environments

    ERIC Educational Resources Information Center

    Noroozi, Omid; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin; Chizari, Mohammad

    2013-01-01

    Establishing a Transactive Memory System (TMS) is essential for groups of learners, when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) could be designed to facilitate the TMS. This study investigates how various aspects of a TMS (i.e., specialization, coordination, and trust)…

  14. Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies

    PubMed Central

    Imbrici, Paola; Altamura, Concetta; Camerino, Giulia Maria; Mangiatordi, Giuseppe Felice; Conte, Elena; Maggi, Lorenzo; Brugnoni, Raffaella; Musaraj, Kejla; Caloiero, Roberta; Alberga, Domenico; Marsano, Renè Massimiliano; Ricci, Giulia; Siciliano, Gabriele; Nicolotti, Orazio; Mora, Marina; Bernasconi, Pia; Desaphy, Jean-Francois; Mantegazza, Renato; Camerino, Diana Conte

    2016-01-01

    Myotonia congenita is an inherited disease that is characterized by impaired muscle relaxation after contraction caused by loss-of-function mutations in the skeletal muscle ClC-1 channel. We report a novel ClC-1 mutation, T335N, that is associated with a mild phenotype in 1 patient, located in the extracellular I-J loop. The purpose of this study was to provide a solid correlation between T335N dysfunction and clinical symptoms in the affected patient as well as to offer hints for drug development. Our multidisciplinary approach includes patch-clamp electrophysiology on T335N and ClC-1 wild-type channels expressed in tsA201 cells, Western blot and quantitative PCR analyses on muscle biopsies from patient and unaffected individuals, and molecular dynamics simulations using a homology model of the ClC-1 dimer. T335N channels display reduced chloride currents as a result of gating alterations rather than altered surface expression. Molecular dynamics simulations suggest that the I-J loop might be involved in conformational changes that occur at the dimer interface, thus affecting gating. Finally, the gene expression profile of T335N carrier showed a diverse expression of K+ channel genes, compared with control individuals, as potentially contributing to the phenotype. This experimental paradigm satisfactorily explained myotonia in the patient. Furthermore, it could be relevant to the study and therapy of any channelopathy.—Imbrici, P., Altamura, C., Camerino, G. M., Mangiatordi, G. F., Conte, E., Maggi, L., Brugnoni, R., Musaraj, K., Caloiero, R., Alberga, D., Marsano, R. M., Ricci, G., Siciliano, G., Nicolotti, O., Mora, M., Bernasconi, P., Desaphy, J.-F., Mantegazza, R., Camerino, D. C. Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies. PMID:27324117

  15. Paired watershed study design

    SciTech Connect

    Clausen, J.C.; Spooner, J.

    1993-09-01

    The purpose of the fact sheet is to describe the paired watershed approach for conducting nonpoint source (NPS) water quality studies. The basic approach requires a minimum of two watersheds - control and treatment - and two periods of study - calibration and treatment. The basis of the paired watershed approach is that there is a quantifiable relationship between paired water quality data for the two watersheds, and that this relationship is valid until a major change is made in one of the watersheds.

  16. Study and implementation of urogenital schistosomiasis elimination in Zanzibar (Unguja and Pemba islands) using an integrated multidisciplinary approach

    PubMed Central

    2012-01-01

    Background Schistosomiasis is a parasitic infection that continues to be a major public health problem in many developing countries being responsible for an estimated burden of at least 1.4 million disability-adjusted life years (DALYs) in Africa alone. Importantly, morbidity due to schistosomiasis has been greatly reduced in some parts of the world, including Zanzibar. The Zanzibar government is now committed to eliminate urogenital schistosomiasis. Over the next 3–5 years, the whole at-risk population will be administered praziquantel (40 mg/kg) biannually. Additionally, snail control and behaviour change interventions will be implemented in selected communities and the outcomes and impact measured in a randomized intervention trial. Methods/Design In this 5-year research study, on both Unguja and Pemba islands, urogenital schistosomiasis will be assessed in 45 communities with urine filtration and reagent strips in 4,500 schoolchildren aged 9–12 years annually, and in 4,500 first-year schoolchildren and 2,250 adults in years 1 and 5. Additionally, from first-year schoolchildren, a finger-prick blood sample will be collected and examined for Schistosoma haematobium infection biomarkers. Changes in prevalence and infection intensity will be assessed annually. Among the 45 communities, 15 were randomized for biannual snail control with niclosamide, in concordance with preventive chemotherapy campaigns. The reduction of Bulinus globosus snail populations and S. haematobium-infected snails will be investigated. In 15 other communities, interventions triggering behaviour change have been designed and will be implemented in collaboration with the community. A change in knowledge, attitudes and practices will be assessed annually through focus group discussions and in-depth interviews with schoolchildren, teachers, parents and community leaders. In all 45 communities, changes in the health system, water and sanitation infrastructure will be annually tracked by

  17. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity.

    PubMed

    Farré, Marta; Robinson, Terence J; Ruiz-Herrera, Aurora

    2015-05-01

    Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders. PMID:25739389

  18. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity.

    PubMed

    Farré, Marta; Robinson, Terence J; Ruiz-Herrera, Aurora

    2015-05-01

    Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders.

  19. Toll-like Receptor 4 and Comorbid Pain in Interstitial Cystitis/Bladder Pain Syndrome: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network Study

    PubMed Central

    Schrepf, Andrew; Bradley, Catherine S.; O'Donnell, Michael; Luo, Yi; Harte, Steven E.; Kreder, Karl; Lutgendorf, Susan

    2015-01-01

    Background Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a condition characterized by pelvic pain and urinary symptoms. Some IC/BPS patients have pain confined to the pelvic region, while others suffer widespread pain. Inflammatory processes have previously been linked to pelvic pain in IC/BPS, but their association with widespread pain in IC/BPS has not been characterized. Methods Sixty-six women meeting criteria for IC/BPS completed self-report measures of pain as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP), collected 3 days of saliva for cortisol assays, and provided blood samples. Peripheral blood mononuclear cells (PBMCs) were stimulated with Toll-Like Receptor (TLR) 2 and 4 agonists and cytokines were measured in supernatant; IL-6 was also measured in plasma. Associations between inflammatory variables and the likelihood of endorsing extra-pelvic pain, or the presence of a comorbid syndrome, were tested by logistic regression and General Linear Models, respectively. A subset of patients (n=32) completed Quantitative Sensory Testing. Results A one standard deviation increase in TLR-4 inflammatory response was associated with a 1.59 greater likelihood of endorsing extra-pelvic pain (p = .019). Participants with comorbid syndromes also had higher inflammatory responses to TLR-4 stimulation in PBMCs (p = .016). Lower pressure pain thresholds were marginally associated with higher TLR-4 inflammatory responses (p = .062), and significantly associated with higher IL-6 in plasma (p = .031). Conclusions TLR-4 inflammatory responses in PBMCs are a marker of widespread pain in IC/BPS, and should be explored in other conditions characterized by medically unexplained pain. PMID:25771510

  20. A new design approach to innovative spectrometers. Case study: TROPOLITE

    NASA Astrophysics Data System (ADS)

    Volatier, Jean-Baptiste; Baümer, Stefan; Kruizinga, Bob; Vink, Rob

    2014-05-01

    Designing a novel optical system is a nested iterative process. The optimization loop, from a starting point to final system is already mostly automated. However this loop is part of a wider loop which is not. This wider loop starts with an optical specification and ends with a manufacturability assessment. When designing a new spectrometer with emphasis on weight and cost, numerous iterations between the optical- and mechanical designer are inevitable. The optical designer must then be able to reliably produce optical designs based on new input gained from multidisciplinary studies. This paper presents a procedure that can automatically generate new starting points based on any kind of input or new constraint that might arise. These starting points can then be handed over to a generic optimization routine to make the design tasks extremely efficient. The optical designer job is then not to design optical systems, but to meta-design a procedure that produces optical systems paving the way for system level optimization. We present here this procedure and its application to the design of TROPOLITE a lightweight push broom imaging spectrometer.

  1. Chronic pain patients with possible co-morbid post-traumatic stress disorder admitted to multidisciplinary pain rehabilitation—a 1-year cohort study

    PubMed Central

    Andersen, Tonny Elmose; Andersen, Lou-Ann Christensen; Andersen, Per Grünwald

    2014-01-01

    Background Although post-traumatic stress disorder (PTSD) is a common co-morbidity in chronic pain, little is known about the association between PTSD and pain in the context of chronic pain rehabilitation. Objective The aim of the present study was two-fold: (1) to investigate the association of a possible PTSD diagnosis with symptoms of pain, physical and mental functioning, as well as the use of opioids, and (2) to compare the outcome of multidisciplinary chronic pain rehabilitation for patients with a possible PTSD diagnosis at admission with patients without PTSD at admission. Method A consecutively referred cohort of 194 patients completed a baseline questionnaire at admission covering post-traumatic stress, pain symptoms, physical and mental functioning, as well as self-reported sleep quality and cognitive difficulties. Medication use was calculated from their medical records. A total of 95 were admitted to further multidisciplinary treatment and included in the outcome study. Results A high prevalence of possible PTSD was found (26.3%). Patients with possible co-morbid PTSD experienced significantly poorer general and mental health, poorer sleep quality, and more cognitive problems as well as inferior social functioning compared to patients without PTSD. Possible co-morbid PTSD did not result in higher use of opioids or sedatives. Surprisingly, possible co-morbid PTSD at admission was not associated with lower levels of symptom reduction from pre- to post-treatment. Conclusions Possible co-morbid PTSD in chronic pain is a major problem associated with significantly poorer functioning on several domains. Nevertheless, our results indicate that pain-related symptoms could be treated with success despite possible co-morbid PTSD. However, since PTSD was only measured at admission it is not known whether rehabilitation actually reduced PTSD. PMID:25147628

  2. Halitosis: the multidisciplinary approach

    PubMed Central

    Bollen, Curd ML; Beikler, Thomas

    2012-01-01

    Halitosis, bad breath or oral malodour are all synonyms for the same pathology. Halitosis has a large social and economic impact. For the majority of patients suffering from bad breath, it causes embarrassment and affects their social communication and life. Moreover, halitosis can be indicative of underlying diseases. Only a limited number of scientific publications were presented in this field until 1995. Ever since, a large amount of research is published, often with lack of evidence. In general, intraoral conditions, like insufficient dental hygiene, periodontitis or tongue coating are considered to be the most important cause (85%) for halitosis. Therefore, dentists and periodontologists are the first-line professionals to be confronted with this problem. They should be well aware of the origin, the detection and especially of the treatment of this pathology. In addition, ear–nose–throat-associated (10%) or gastrointestinal/endocrinological (5%) disorders may contribute to the problem. In the case of halitophobia, psychiatrical or psychological problems may be present. Bad breath needs a multidisciplinary team approach: dentists, periodontologists, specialists in family medicine, ear–nose–throat surgeons, internal medicine and psychiatry need to be updated in this field, which still is surrounded by a large taboo. Multidisciplinary bad breath clinics offer the best environment to examine and treat this pathology that affects around 25% of the whole population. This article describes the origin, detection and treatment of halitosis, regarded from the different etiological origins. PMID:22722640

  3. Stronger Disciplinary Identities in Multidisciplinary Research Schools

    ERIC Educational Resources Information Center

    Geschwind, Lars; Melin, Göran

    2016-01-01

    In this study, two multidisciplinary Social Sciences and Humanities research schools in Sweden have been investigated regarding disciplinary identity-making. This study investigates the meetings between different disciplines around a common thematic area of study for Ph.D. students. The Ph.D. students navigate through a complex social and…

  4. GRC RBCC Concept Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady

    2001-01-01

    This report outlines the GRC RBCC Concept for Multidisciplinary Analysis. The multidisciplinary coupling procedure is presented, along with technique validations and axisymmetric multidisciplinary inlet and structural results. The NPSS (Numerical Propulsion System Simulation) test bed developments and code parallelization are also presented. These include milestones and accomplishments, a discussion of running R4 fan application on the PII cluster as compared to other platforms, and the National Combustor Code speedup.

  5. Gamified physical activation of young men – a Multidisciplinary Population-Based Randomized Controlled Trial (MOPO study)

    PubMed Central

    2013-01-01

    Background Inactive and unhealthy lifestyles are common among adolescent men. The planned intervention examines the effectiveness of an interactive, gamified activation method, based on tailored health information, peer networks and participation, on physical activity, health and wellbeing in young men. We hypothesize that following the intervention the physical activation group will have an improved physical activity, as well as self-determined and measured health compared with the controls. Methods/design Conscription-aged men (18 years) attending compulsory annual call-ups for military service in the city of Oulu in Finland (n = 1500) will be randomized to a 6-months intervention (n = 640) or a control group (n = 640) during the fall 2013. A questionnaire on health, health behaviour, diet and wellbeing is administered in the beginning and end of the intervention. In addition, anthropometric measures (height, weight and waist circumference), body composition, grip strength, heart rate variability and aerobic fitness will be measured. The activation group utilizes an online gamified activation method in combination with communal youth services, objective physical activity measurement, social networking, tailored health information and exercise programs according to baseline activity level and the readiness of changes of each individual. Daily physical activity of the participants is monitored in both the activation and control groups. The activation service rewards improvements in physical activity or reductions in sedentary behaviour. The performance and completion of the military service of the participants will also be followed. Discussion The study will provide new information of physical activity, health and health behaviour of young men. Furthermore, a novel model including methods for increasing physical activity among young people is developed and its effects tested through an intervention. This unique gamified service for activating young men

  6. RAD hard PROM design study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of a preliminary study on the design of a radiation hardened fusible link programmable read-only memory (PROM) are presented. Various fuse technologies and the effects of radiation on MOS integrated circuits are surveyed. A set of design rules allowing the fabrication of a radiation hardened PROM using a Si-gate CMOS process is defined. A preliminary cell layout was completed and the programming concept defined. A block diagram is used to describe the circuit components required for a 4 K design. A design goal data sheet giving target values for the AC, DC, and radiation parameters of the circuit is presented.

  7. Bio-hybrid interfaces to study neuromorphic functionalities: New multidisciplinary evidences of cell viability on poly(anyline) (PANI), a semiconductor polymer with memristive properties.

    PubMed

    Juarez-Hernandez, Leon J; Cornella, Nicola; Pasquardini, Laura; Battistoni, Silvia; Vidalino, Laura; Vanzetti, Lia; Caponi, Silvia; Dalla Serra, Mauro; Iannotta, Salvatore; Pederzolli, Cecilia; Macchi, Paolo; Musio, Carlo

    2016-01-01

    The interfacing of artificial devices with biological systems is a challenging field that crosses several disciplines ranging from fundamental research (biophysical chemistry, neurobiology, material and surface science) to frontier technological application (nanotechnology, bioelectronics). The memristor is the fourth fundamental circuit element, whose electrical properties favor applications in signal processing, neural networks, and brain-computer interactions and it represents a new frontier for technological applications in many fields including the nanotechnologies, bioelectronics and the biosensors. Using multidisciplinary approaches, covering surface science, cell biology and electrophysiology, we successfully implemented a living bio-hybrid system constituted by cells adhering to films of poly(aniline) (PANI), a semiconductor polymer having memristive properties assembled with polyelectrolytes. Here we tested whether the PANI devices could support survivor, adhesion and differentiation of several cell lines, including the neuron-like SHSY5Y cells. Moreover, we performed electrophysiology on these cells showing that the biophysical properties are retained with differences occurring in the recorded ion currents. Taken together, the cell viability here reported is the key requirement to design and develop a reliable functional memristor-based bio-hybrid able to mimic neuronal activity and plasticity.

  8. Bio-hybrid interfaces to study neuromorphic functionalities: New multidisciplinary evidences of cell viability on poly(anyline) (PANI), a semiconductor polymer with memristive properties.

    PubMed

    Juarez-Hernandez, Leon J; Cornella, Nicola; Pasquardini, Laura; Battistoni, Silvia; Vidalino, Laura; Vanzetti, Lia; Caponi, Silvia; Dalla Serra, Mauro; Iannotta, Salvatore; Pederzolli, Cecilia; Macchi, Paolo; Musio, Carlo

    2016-01-01

    The interfacing of artificial devices with biological systems is a challenging field that crosses several disciplines ranging from fundamental research (biophysical chemistry, neurobiology, material and surface science) to frontier technological application (nanotechnology, bioelectronics). The memristor is the fourth fundamental circuit element, whose electrical properties favor applications in signal processing, neural networks, and brain-computer interactions and it represents a new frontier for technological applications in many fields including the nanotechnologies, bioelectronics and the biosensors. Using multidisciplinary approaches, covering surface science, cell biology and electrophysiology, we successfully implemented a living bio-hybrid system constituted by cells adhering to films of poly(aniline) (PANI), a semiconductor polymer having memristive properties assembled with polyelectrolytes. Here we tested whether the PANI devices could support survivor, adhesion and differentiation of several cell lines, including the neuron-like SHSY5Y cells. Moreover, we performed electrophysiology on these cells showing that the biophysical properties are retained with differences occurring in the recorded ion currents. Taken together, the cell viability here reported is the key requirement to design and develop a reliable functional memristor-based bio-hybrid able to mimic neuronal activity and plasticity. PMID:26263829

  9. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  10. Designing case-control studies.

    PubMed Central

    Yanagawa, T

    1979-01-01

    Identification of confounding factors, evaluation of their influence on cause-effect associations, and the introduction of appropriate ways to account for these factors are important considerations in designing case-control studies. This paper presents designs useful for these purposes, after first providing a statistical definition of a confounding factor. Differences in the ability to identify and evaluate confounding factors and estimate disease risk between designs employing stratification (matching) and designs randomly sampling cases and controls are noted. Linear logistic models for the analysis of data from such designs are described and are shown to liberalize design requirements and to increase relative risk estimation efficiency. The methods are applied to data from a multiple factor investigation of lung cancer patients and controls. PMID:540588

  11. Man and Environment, A Multidisciplinary Teachers Guide.

    ERIC Educational Resources Information Center

    Martin, F. H.; And Others

    This multidisciplinary guide, developed for teachers in the secondary schools, stresses the use of Man and Environment in Arkansas. The guide illustrates how teachers in social studies, the arts, English, science, physical education and health, home economics, and mathematics can implement these materials into their present classroom situations. A…

  12. Improving Student Achievement in a Multidisciplinary Context

    ERIC Educational Resources Information Center

    Chapman, Amanda; Bloxham, Sue

    2004-01-01

    This article analyses interim findings of an ongoing action research project into the use of assessment criteria and grade descriptors in the assessment process. The project is multidisciplinary and covers areas as diverse as Sports Sociology, Economics, Youth and Community Studies, and Education. The idea is to equip first-year students with the…

  13. Multidisciplinary Studies of the Fate and Transport of Contaminants in Ground Water at the U.S. Geological Survey Cape Cod Toxic Substances Hydrology Program Research Site, Massachusetts

    NASA Astrophysics Data System (ADS)

    Leblanc, D. R.; Smith, R. L.; Kent, D. B.; Barber, L. B.; Harvey, R. W.

    2008-12-01

    The U.S. Geological Survey conducts multidisciplinary research on the physical, chemical, and microbiological processes affecting ground-water contaminants of global concern at its Cape Cod Toxic Substances Hydrology Program site in Massachusetts, USA. The work centers on a 6-kilometer-long plume of treated wastewater in a glacial sand and gravel aquifer. The plume is characterized by distinct geochemical zones caused by the biodegradation of organic materials in treated wastewater that was disposed to the aquifer by rapid infiltration during the period 1936-95. A core group of hydrogeologists, geochemists, microbiologists, and geophysicists has been involved in the research effort for more than two decades. The effort has been enhanced by stable funding, a readily accessible site, a relatively simple hydrologic setting, and logistical support from an adjacent military base. The research team uses a three-part approach to plan and conduct research at the site. First, detailed spatial and temporal monitoring of the plume since the late 1970s provides field evidence of important contaminant-transport processes and provides the basis for multidisciplinary, process-oriented studies. Second, ground-water tracer experiments are conducted in various geochemical zones in the plume to study factors that control the rate and extent of contaminant transport. Several arrays of multilevel sampling devices, including an array with more than 15,000 individual sampling points, are used to conduct these experiments. Plume-scale (kilometers) and tracer-test-scale (1- 100 meters) studies are complemented by laboratory experiments and mathematical modeling of flow and reactive transport. Third, results are applied to the treated-wastewater plume, other contaminant plumes at the military base, and other sites nationally to evaluate the applicability of the findings and to point toward further research. Examples of findings to date include that (1) macrodispersivity can be related to

  14. Multidisciplinary survey of erectile impotence.

    PubMed Central

    Collins, W. E.; McKendry, J. B.; Silverman, M.; Krul, L. E.; Collins, J. P.; Irvine, A. H.

    1983-01-01

    A study was done of 220 men referred principally by family physicians to a multidisciplinary erectile dysfunction study group to determine the factors causing or contributing to impotence that had persisted for more than 2 months and for which no cause was apparent. The men were aged 21 to 79 (mean 50.3) years, and the duration of impotence was a few months to 15 years (mean 2.65 years). The men were to be assessed from general medical, endocrinologic/metabolic, psychiatric and urogenital viewpoints. The significance of the causal or contributory factors detected was scored by application of defined criteria and a four-point scale. The degree of loss of potency and of libido as well as level of concern were also scored by each specialist. Impotence was complete in 60%, and an associated decline in libido was reported by 38%. The level of concern was high--that is, normal--in 81% and slightly reduced in 9%. Full investigation by all the specialists was precluded by the severity of other conditions in 16 patients, by the return of potency following relief of anxiety/depression or genitourinary tract infection in 16 and for logistic or other reasons in 34. Although the cause of the impotence could be attributed in 186 of the patients, only 154 were fully assessed. Among these patients general medical factors were contributory in 46%, endocrinologic/metabolic factors in 44%, psychogenic factors (primary or secondary) in 60% and urogenital factors in 49%. Multiple contributing factors were identified in 65%, which underscores the importance of a multidisciplinary approach to assessing many cases of impotence. PMID:6850465

  15. Optical Telescope Design Study Results

    NASA Astrophysics Data System (ADS)

    Livas, J.; Sankar, S.

    2015-05-01

    We report on the results of a study conducted from Nov 2012-Apr 2013 to develop a telescope design for a space-based gravitational wave detector. The telescope is needed for efficient power delivery but since it is directly in the beam path, the design is driven by the requirements for the overall displacement sensitivity of the gravitational wave observatory. Two requirements in particular, optical pathlength stability and scattered light performance, are beyond the usual specifications for good image quality encountered in traditional telescopic systems. An important element of the study was to tap industrial expertise to develop an optimized design that can be reliably manufactured. Key engineering and design trade-offs and the sometimes surprising results will be presented.

  16. Equilibrium Studies of Designed Metalloproteins.

    PubMed

    Gibney, B R

    2016-01-01

    Complete thermodynamic descriptions of the interactions of cofactors with proteins via equilibrium studies are challenging, but are essential to the evaluation of designed metalloproteins. While decades of studies on protein-protein interaction thermodynamics provide a strong underpinning to the successful computational design of novel protein folds and de novo proteins with enzymatic activity, the corresponding paucity of data on metal-protein interaction thermodynamics limits the success of computational metalloprotein design efforts. By evaluating the thermodynamics of metal-protein interactions via equilibrium binding studies, protein unfolding free energy determinations, proton competition equilibria, and electrochemistry, a more robust basis for the computational design of metalloproteins may be provided. Our laboratory has shown that such studies provide detailed insight into the assembly and stability of designed metalloproteins, allow for parsing apart the free energy contributions of metal-ligand interactions from those of porphyrin-protein interactions in hemeproteins, and even reveal their mechanisms of proton-coupled electron transfer. Here, we highlight studies that reveal the complex interplay between the various equilibria that underlie metalloprotein assembly and stability and the utility of making these detailed measurements. PMID:27586343

  17. Exploring Faculty Perceptions of the Impact of Accelerated Developmental Education Courses on Their Pedagogy: A Multidisciplinary Study

    ERIC Educational Resources Information Center

    Walker, Monica W.

    2015-01-01

    The purpose of the qualitative descriptive study is to engage community college faculty in systematic reflection of their perceptions of the impact of redesigned accelerated developmental education courses on their pedagogy and student success. Study participants include twenty-six English, Mathematics, and Reading faculty who have experience…

  18. Visual Design Principles: An Empirical Study of Design Lore

    ERIC Educational Resources Information Center

    Kimball, Miles A.

    2013-01-01

    Many books, designers, and design educators talk about visual design principles such as balance, contrast, and alignment, but with little consistency. This study uses empirical methods to explore the lore surrounding design principles. The study took the form of two stages: a quantitative literature review to determine what design principles are…

  19. Exploring Flexible and Multidisciplinary Approaches to Applied Science Research Project Assessments: Case Studies from the NASA DEVELOP National Program

    NASA Astrophysics Data System (ADS)

    Crepps, G.; Childs-Gleason, L. M.; Favors, J. E.; Ross, K. W.; Rogers, L.; Allsbrook, K. N.; Ruiz, M. L.

    2015-12-01

    Within the NASA DEVELOP National Program, teams conduct rapid prototype and feasibility projects, applying NASA Earth Observations to a broad range of problems in diverse focus areas, including water resources, agriculture, disaster management, and ecological forecasting, with the goal of assisting partner organizations in their decision making processes. Projects vary in scope, design, and satellite data utilized. As a result, there is no "fixed" set of indicators that encompasses all relevant impacts of all projects. Rather, a flexible toolkit of both shared indicators and individualized approaches is needed to capture the diverse outcomes of these projects, while still allowing for comparability of the projects. This has been done through the creation of pre- and post-project partner assessments that capture partner needs, capabilities, and expectations. This provides both baseline data and an overview of project impacts on partners. Selected projects are then individually assessed in greater detail through partner follow-ups and research into the quantification of project impacts utilizing interdisciplinary approaches to fit each project. This process is discussed through three examples of project impact assessments that draw from varied discipline approaches including cost benefit analysis and ecosystem services.

  20. Urinary Metabolomics Identifies a Molecular Correlate of Interstitial Cystitis/Bladder Pain Syndrome in a Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network Cohort.

    PubMed

    Parker, Kaveri S; Crowley, Jan R; Stephens-Shields, Alisa J; van Bokhoven, Adrie; Lucia, M Scott; Lai, H Henry; Andriole, Gerald L; Hooton, Thomas M; Mullins, Chris; Henderson, Jeffrey P

    2016-05-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a poorly understood syndrome affecting up to 6.5% of adult women in the U.S. The lack of broadly accepted objective laboratory markers for this condition hampers efforts to diagnose and treat this condition. To identify biochemical markers for IC/BPS, we applied mass spectrometry-based global metabolite profiling to urine specimens from a cohort of female IC/BPS subjects from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. These analyses identified multiple metabolites capable of discriminating IC/BPS and control subjects. Of these candidate markers, etiocholan-3α-ol-17-one sulfate (Etio-S), a sulfoconjugated 5-β reduced isomer of testosterone, distinguished female IC/BPS and control subjects with a sensitivity and specificity >90%. Among IC/BPS subjects, urinary Etio-S levels are correlated with elevated symptom scores (symptoms, pelvic pain, and number of painful body sites) and could resolve high- from low-symptom IC/BPS subgroups. Etio-S-associated biochemical changes persisted through 3-6months of longitudinal follow up. These results raise the possibility that an underlying biochemical abnormality contributes to symptoms in patients with severe IC/BPS. PMID:27322470

  1. [Chagas disease in a non endemic country: a study in the district of Bologna (Italy). Multidisciplinary analysis of the disease in the Latin American migrant population].

    PubMed

    Di Girolamo, C; Marta, B L; Ciannameo, A; Cacciatore, F; Balestra, G L; Bodini, C; Taroni, F

    2010-01-01

    Chagas disease is a parasitic illness endemic in 21 countries of Central and South America, affecting over 10 million people. Due to the increase of migration flows to Europe, Chagas disease is an emerging public health issue in non endemic countries. In Italy, where no specific policy has yet been developed, the Centre for International Health of the University of Bologna is carrying out the project "Chagas disease in a non endemic country: a study in the district of Bologna". A multidisciplinary and multi-method approach was adopted to estimate the problem and its impact in our territory. A retrospective analysis was performed searching several databases in order to collect information concerning the demographic and epidemiological profile of Latin American migrants coming from endemic countries. At the same time, a preliminary ethnographic research was conducted to start unveiling the main socio-anthropological characteristics of this population, thanks to the involvement of key informants and community associations. According to preliminary findings, Chagas disease is a present and possibly increasing reality in our territory. Due to the particular features of the affected population, socio-cultural variables have to be considered for their impact on the visibility of the condition and on health seeking behaviors.

  2. Integrated Multidisciplinary Assessment of Environmentally Realistic Complex Mixtures of Drinking Water Disinfection ByProducts (DBPs) (The 4Lab Study)

    EPA Science Inventory

    More than 600 DBPs have been identified; yet ~50% of the total organic halide from chlorination is unidentified. Epidemiology studies suggest associations between human use of chlorinated water and reproductive/developmental effects (pregnancy loss, low birth weight), that are un...

  3. Multidisciplinary experiment on studying short-period variability of the sedimentary process in the northeastern part of the Black Sea

    NASA Astrophysics Data System (ADS)

    Klyuvitkin, A. A.; Ostrovskii, A. G.; Novigatskii, A. N.; Lisitzin, A. P.

    2016-07-01

    The principal aim of this work is to reveal the regularities of short-period synoptic variability of vertical flows and the composition of settling sedimentary material, to obtain information on the quantitative characteristics of the processes that influence sound-scattering layers in the water layer above the continental slope behind the shelf edge in the northeastern part of the Black Sea. The results were obtained due to improvement of the equipment and the procedures for performing sea experiments on studying physicogeological, biological, and hydrophysical processes in the upper illuminated layer of phytoplankton development.

  4. Core outcome measures for exercise studies in people with multiple sclerosis: recommendations from a multidisciplinary consensus meeting.

    PubMed

    Paul, Lorna; Coote, Susan; Crosbie, Jean; Dixon, Diane; Hale, Leigh; Holloway, Ed; McCrone, Paul; Miller, Linda; Saxton, John; Sincock, Caroline; White, Lesley

    2014-10-01

    Evidence shows that exercise is beneficial for people with multiple sclerosis (MS); however, statistical pooling of data is difficult because of the diversity of outcome measures used. The objective of this review is to report the recommendations of an International Consensus Meeting for a core set of outcome measures for use in exercise studies in MS. From the 100 categories of the International Classification of Function Core Sets for MS, 57 categories were considered as likely/potentially likely to be affected by exercise and were clustered into seven core groups. Outcome measures to address each group were evaluated regarding, for example, psychometric properties. The following are recommended: Modified Fatigue Impact Scale (MFIS) or Fatigue Severity Scale (FSS) for energy and drive, 6-Minute Walk Test (6MWT) for exercise tolerance, Timed Up and Go (TUG) for muscle function and moving around, Multiple Sclerosis Impact Scale (MSIS-29) or Multiple Sclerosis Quality of Life-54 Instrument (MSQoL54) for quality of life and body mass index (BMI) or waist-hip ratio (WHR) for the health risks associated with excess body fat. A cost effectiveness analysis and qualitative evaluation should be included where possible. Using these core measures ensures that future meta-analyses of exercise studies in MS are more robust and thus more effectively inform practice.

  5. A multidisciplinary study on the Xiangshan uranium-bearing caldera structure: evidences from anisotropy of magnetic susceptibility and gravity modeling

    NASA Astrophysics Data System (ADS)

    Li, Guangrong; Guo, Fusheng; Wu, Changzhi

    2016-04-01

    As the world's third largest volcanic type uranium ore field, Xiangshan volcanic basin attracted scientific research as well as large amount of industry investment. Gradually, it came to reach a consensus that a "three-storeyed type" model: under the uranium mineralized volcanic rocks, there were still Pb-Zn and Ag. However, these research results and drill cores also brought hot debates which focus on the locations of volcanic calderas because researchers believed it related to the pathways of U-Pb-Zn-Ag-bearing fluid. Here we report the first systematic study of paleoflow of the two main uranium-bearing wall rocks, aiming to find the volcanic vents. This study integrates results of anisotropy of magnetic susceptibility (AMS) and magnetotelluric sounding (MT) in addition field geological observation. It shows that (1) rhyodacite and porphyritic lava are the main wall rock of uranium ore, which outcrop about 350km2 covering 80% of the Xiangshan basin; (2) magnetite and hematite are the main magnetic minerals; (3) the rhyodacite developed in the North-West-most of Xiangshan basin illustrated North-East magnetic lineation with low-angle-foliation, and those rhyodacite located a few kilometers to the East of the previews one displayed progressively North-West magnetic foliation with barely horizontal foliation. It indicated probably all these rhyodacite flowed from the South; (4) whereas to the porphyritic lava, it shows variable magnetic lineation around the basin, which may suggest five volcanic calderas. It is noteworthy that the AMS results are consistent with fielded lineation observation and MT; (4) finally, a gravity modeling has been conducted and the result shows that the bodies of rhyodacite and porphyritic lava are laccolithic with relative thick center that may interpret as feeder of magma.

  6. Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus

    PubMed Central

    Matzanke, Berthold F.; Küpper, Frithjof C.; Carrano, Carl J.

    2012-01-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood, with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins, while strategy II plants utilize high-affinity, iron-specific, binding compounds called phytosiderophores. In contrast, little is known about the corresponding systems in marine, plant-like lineages, particularly those of multicellular algae (seaweeds). Herein the first study of the iron uptake and storage mechanisms in the brown alga Ectocarpus siliculosus is reported. Genomic data suggest that Ectocarpus may use a strategy I approach. Short-term radio-iron uptake studies verified that iron is taken up by Ectocarpus in a time- and concentration-dependent manner consistent with an active transport process. Upon long-term exposure to 57Fe, two metabolites have been identified using a combination of Mössbauer and X-ray absorption spectroscopies. These include an iron–sulphur cluster accounting for ~26% of the total intracellular iron pool and a second component with spectra typical of a polymeric (Fe3+O6) system with parameters similar to the amorphous phosphorus-rich mineral core of bacterial and plant ferritins. This iron metabolite accounts for ~74% of the cellular iron pool and suggests that Ectocarpus contains a non-ferritin but mineral-based iron storage pool. PMID:22945940

  7. Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin

    PubMed Central

    Kring, David A.; Kramer, Georgiana Y.; Collins, Gareth S.; Potter, Ross W. K.; Chandnani, Mitali

    2016-01-01

    The Schrödinger basin on the lunar farside is ∼320 km in diameter and the best-preserved peak-ring basin of its size in the Earth–Moon system. Here we present spectral and photogeologic analyses of data from the Moon Mineralogy Mapper instrument on the Chandrayaan-1 spacecraft and the Lunar Reconnaissance Orbiter Camera (LROC) on the LRO spacecraft, which indicates the peak ring is composed of anorthositic, noritic and troctolitic lithologies that were juxtaposed by several cross-cutting faults during peak-ring formation. Hydrocode simulations indicate the lithologies were uplifted from depths up to 30 km, representing the crust of the lunar farside. Through combining geological and remote-sensing observations with numerical modelling, we show that a Displaced Structural Uplift model is best for peak rings, including that in the K–T Chicxulub impact crater on Earth. These results may help guide sample selection in lunar sample return missions that are being studied for the multi-agency International Space Exploration Coordination Group. PMID:27762265

  8. A multidisciplinary approach to unravel hydrothermal explosions: a case-study from Gengissig lake (Kverkfjöll volcano, Iceland)

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Scheu, Bettina; Gudmundsson, Magnus T.; Reynolds, Hannah I.; Dürig, Tobias; Strehlow, Karen; Rott, Stefanie; Dingwell, Donald B.

    2015-04-01

    On August 15, 2013, a small jökulhlaup occurred when the Gengissig ice-dammed lake drained at Kverkfjöll, a central volcano with an active geothermal area located at the northern edge of Vatnajökull. The lake level dropped by approximately 30 m, decreasing pressure on the lake bed and triggering several steam-driven explosions. The explosions involved the surficial part of a hydrothermally altered glacio-lacustrine deposit mainly composed of pyroclasts, lava fragments and volcanic bombs, interbedded with clay-rich layers. Small fans of ejecta were formed, reaching a distance of 1 km north of the lake covering an area of approximately 0.3 km2, with a maximum thickness of 40 cm at the crater walls. The explosions, triggered by the rapid boiling in the surficial geothermal reservoir which followed the abrupt decrease in confining pressure, ejected approximately 104 m3 of mostly loose material. The thermal and craterization energy, calculated for the explosion areas, are on the order of 10^11 and 10^10J, respectively. Comparison of the calculated energies with those estimated by the volume of the ejecta and the crater sizes, yields a good agreement between models and field data. Morphological analyses (SEM) were used for a qualitative estimation of amount of freshly-fragmented clasts in the ejected material revealing that a low but significant energy consumption by fragmentation occurred. Decompression experiments were performed in the lab mimicking the conditions due to the drainage of the lake. A large amount of fine material was produced in these experiments possibly indicating active fragmentation. Furthermore, ejection velocities of the particles of 40-50 m/s, measured via high-speed videos, are consistent with those estimated from the field. This study demonstrates how the effective combination of field and lab data together with theoretical modeling can provide robust constraints on energy release and partitioning for such low-magnitude yet hazardous, steam

  9. Challenges of Trainees in a Multidisciplinary Research Program: Nano-Biotechnology

    ERIC Educational Resources Information Center

    Kriegel, Christina; Koehne, Jessica; Tinkle, Sally; Maynard, Andrew D.; Hill, Rodney A.

    2011-01-01

    The breadth of knowledge required for the multidisciplinary field of nanotechnology challenges and extends traditional concepts of multidisciplinary graduate education. There is a paucity of information, both general reporting and peer-reviewed studies, on the challenges for graduate students working in this multidisciplinary paradigm, from the…

  10. On the Origin of the High Lava Plains Volcanic Track: A Detailed Tomographic Study and Multidisciplinary Interpretation

    NASA Astrophysics Data System (ADS)

    James, D. E.; Fouch, M. J.; Wagner, L. S.; Carlson, R. W.; Eagar, K. C.; Roth, J. B.

    2011-12-01

    , submitted, 2011). We interpret the new body wave tomography in relationship to both crustal structure and recently published regional 3-D surface wave inversions of the crust and uppermost mantle (e.g., Wagner et al., EPSL, vol. 299, 273-284, 2010): The crustal studies reveal zones of abnormally high Poisson's ratios and low seismic velocities in the crust beneath northcentral and southern Oregon, marking the likely presence of partial melt adjacent to, but not within, the main HLP lineament. The surface wave results likewise show an apparent lack of correlation between low S-wave velocities in the uppermost mantle and the track of the HLP lineament itself. We will present detailed cross-sectional and map images that help better define the relationship between uppermost mantle structure and the on-going HLP volcanism. Finally, we will present and assess arguments as to subduction vs. plume origins of the HLP and the surrounding tectonic terranes.

  11. Multidisciplinary systems optimization by linear decomposition

    NASA Technical Reports Server (NTRS)

    Sobieski, J.

    1984-01-01

    In a typical design process major decisions are made sequentially. An illustrated example is given for an aircraft design in which the aerodynamic shape is usually decided first, then the airframe is sized for strength and so forth. An analogous sequence could be laid out for any other major industrial product, for instance, a ship. The loops in the discipline boxes symbolize iterative design improvements carried out within the confines of a single engineering discipline, or subsystem. The loops spanning several boxes depict multidisciplinary design improvement iterations. Omitted for graphical simplicity is parallelism of the disciplinary subtasks. The parallelism is important in order to develop a broad workfront necessary to shorten the design time. If all the intradisciplinary and interdisciplinary iterations were carried out to convergence, the process could yield a numerically optimal design. However, it usually stops short of that because of time and money limitations. This is especially true for the interdisciplinary iterations.

  12. The OpenForest Portal as an Open Learning Ecosystem: Co-Developing in the Study of a Multidisciplinary Phenomenon in a Cultural Context

    ERIC Educational Resources Information Center

    Liljeström, Anu; Enkenberg, Jorma; Vanninen, Petteri; Vartiainen, Henriikka; Pöllänen, Sinikka

    2014-01-01

    This paper discusses the OpenForest portal and its related multidisciplinary learning project. The OpenForest portal is an open learning environment and ecosystem, in which students can participate in co-developing and co-creating practices. The aim of the OpenForest ecosystem is to create an extensive interactive network of diverse learning…

  13. Submarine Landslides: A Multidisciplinary Crossroad

    NASA Astrophysics Data System (ADS)

    Moscardelli, L. G.

    2014-12-01

    The study of submarine landslides has advanced considerably in the last decade. A multitude of geoscience disciplines, including marine, petroleum and planetary geology, as well as geohazard assessments, are concerned with the study of these units. Oftentimes, researchers working in these fields disseminate their findings within their own communities and a multidisciplinary approach seems to lack. This presentation showcases several case studies in which a broader approach has increased our understanding of submarine landslides in a variety of geologic settings. Three-dimensional seismic data from several continental margins (Trinidad, Brazil, Morocco, Canada, GOM), as well as data from outcrop localities are shown to explore geomorphological complexities associated with submarine landslides. Discussion associated with the characterization and classification of submarine landslides is also part of this work. Topics that will be cover include: 1) how data from conventional oil and gas exploration activities can be used to increase our understanding of the dynamic behavior of submarine landslides, 2) analogies between terrestrial submarine landslides and potential Martian counterparts, 3) impact of submarine landslides in margin construction, as well as their economic significance and 4) the importance of quantifying the morphology of submarine landslides in a systematic fashion.

  14. N-ICE2015: Multi-disciplinary study of the young sea ice system north of Svalbard from winter to summer.

    NASA Astrophysics Data System (ADS)

    Steen, Harald; Granskog, Mats; Assmy, Philipp; Duarte, Pedro; Hudson, Stephen; Gerland, Sebastian; Spreen, Gunnar; Smedsrud, Lars H.

    2016-04-01

    The Arctic Ocean is shifting to a new regime with a thinner and smaller sea-ice area cover. Until now, winter sea ice extent has changed less than during summer, as the heat loss to the atmosphere during autumn and winter is large enough form an ice cover in most regions. The insulating snow cover also heavily influences the winter ice growth. Consequently, the older, thicker multi-year sea ice has been replace by a younger and thinner sea. These large changes in the sea ice cover may have dramatic consequences for ecosystems, energy fluxes and ultimately atmospheric circulation and the Northern Hemisphere climate. To study the effects of the changing Arctic the Norwegian Polar Institute, together with national and international partners, launched from January 11 to June 24, 2015 the Norwegian Young Sea ICE cruise 2015 (N-ICE2015). N-ICE2015 was a multi-disciplinary cruise aimed at simultaneously studying the effect of the Arctic Ocean changes in the sea ice, the atmosphere, in radiation, in ecosystems. as well as water chemistry. R/V Lance was frozen into the drift ice north of Svalbard at about N83 E25 and drifted passively southwards with the ice until she was broken loose. When she was loose, R/V Lance was brought back north to a similar starting position. While fast in the ice, she served as a living and working platform for 100 scientist and engineers from 11 countries. One aim of N-ICE2015 is to present a comprehensive data-set on the first year ice dominated system available for the scientific community describing the state and changes of the Arctic sea ice system from freezing to melt. Analyzing the data is progressing and some first results will be presented.

  15. Pleistocene soil development and paleoenvironmental dynamics in East Africa: a multidisciplinary study of the Homo-bearing Aalat succession, Dandiero Basin

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Mercatante, Giuseppe; Donato, Paola; Ghinassi, Massimiliano; Carnevale, Giorgio; Delfino, Massimo; Oms, Oriol; Papini, Mauro; Pavia, Marco; Sani, Federico; Rook, Lorenzo

    2015-04-01

    Pleistocene environmental changes in East Africa, largely documented by deep marine or lacustrine records correlated with inland high-resolution, Homo-bearing stratigraphic successions, have been so far interpreted as a major cause of faunal dispersal and human evolution. However, only few studies focused on reconstruction of paleoenvironmental dynamics from continental successions, given the usually poor continuity and extension of stratigraphic records. In this work we report on a multidisciplinary study of the Early to Middle Pleistocene sedimentary fill of the Dandiero Basin (Eritrean Danakil), a morpho-tectonic depression in the East African Rift System, which represents the only continental stratigraphy including human remains of Homo erectus/ergaster and abundant fossil vertebrates in the northernmost sector of this region. Sedimentological, pedological, volcanological and paleontological investigations were performed on the Aalat section, located in the northern part of the Dandiero Basin, as tools for an integrated reconstruction of the Early-Middle Pleistocene transition in East Africa. This section is almost 300 m thick and records repeated shifts from fluvial to deltaic and lacustrine depositional environments, as a response to local tectonic activity and climate changes. Sedimentary facies distribution and paleocurrent data show that sedimentation was controlled by a NS-trending axial drainage. Some tephra layers were identified both at the bottom and the top of the section, whereas two main fossiliferous layers were detected in its lower part. Terrestrial vertebrate faunas include a typical Early to Middle Pleistocene East African mammalian assemblage, where taxa characterized by strong water dependence prevail. Also the ichthyofauna is consistent with the shallow water fluvio-lacustrine paleobiotopes. High-quality paleomagnetic analyses, integrated with radiometric dating and vertebrate paleontology, allowed to substantiate the chronological

  16. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1993-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of layered multi-material hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loads. The effect of aggressive environments is also simulated. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermo-mechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loads lead to different tailored designs, even those competing with each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  17. Work domain analysis for enhancing collaborations: a study of the management of microsystems design.

    PubMed

    Durugbo, Christopher

    2012-01-01

    Collaboration is an important process that enables organisations to achieve goals or solve problems and, in design processes, is an important factor for accomplishing interdisciplinary and multidisciplinary tasks. An understanding of the functional configuration of organisations could therefore offer a useful insight into collaborations of designers. This study makes use of work domain analysis (WDA) to analyse the management of design by organisations within the microsystems technology (MST) domain. The WDA considers the functional configuration of MST companies in terms of management constraints and boundaries. This study also makes use of the WDA to suggest ways of establishing collaborative design and enhancing collaboration between organisations. Practitioner Summary: The results of this methodical analysis offer useful insights for managing design functions. This study also presents recommendations for enhancing collaboration in organisations. The ability to manage and collaborate in design functions is valuable for improving the productivity, cost-effectiveness and time-to-market systems. PMID:22506645

  18. Multidisciplinary approaches to solar hydrogen

    PubMed Central

    Bren, Kara L.

    2015-01-01

    This review summarizes three different approaches to engineering systems for the solar-driven evolution of hydrogen fuel from water: molecular, nanomaterials and biomolecular. Molecular systems have the advantage of being highly amenable to modification and detailed study and have provided great insight into photophysics, electron transfer and catalytic mechanism. However, they tend to display poor stability. Systems based on nanomaterials are more robust but also are more difficult to synthesize in a controlled manner and to modify and study in detail. Biomolecular systems share many properties with molecular systems and have the advantage of displaying inherently high efficiencies for light absorption, electron–hole separation and catalysis. However, biological systems must be engineered to couple modules that capture and convert solar photons to modules that produce hydrogen fuel. Furthermore, biological systems are prone to degradation when employed in vitro. Advances that use combinations of these three tactics also are described. Multidisciplinary approaches to this problem allow scientists to take advantage of the best features of biological, molecular and nanomaterials systems provided that the components can be coupled for efficient function. PMID:26052425

  19. Multidisciplinary approach to constrain kinematics of fault zones at shallow depths: a case study from the Cameros-Demanda thrust (North Spain)

    NASA Astrophysics Data System (ADS)

    Casas-Sainz, A. M.; Román-Berdiel, T.; Oliva-Urcia, B.; García-Lasanta, C.; Villalaín, J. J.; Aldega, L.; Corrado, S.; Caricchi, C.; Invernizzi, C.; Osácar, M. C.

    2016-06-01

    Thrusting at shallow depths often precludes analysis by means of structural indicators effective in other geological contexts (e.g., mylonites, sheath folds, shear bands). In this paper, a combination of techniques (including structural analysis, magnetic methods, as anisotropy of magnetic susceptibility and paleomagnetism, and paleothermometry) is used to define thrusting conditions, deformation, and transport directions in the Cameros-Demanda thrust (North Spain). Three outcrops were analyzed along this intraplate, large-scale major structure having 150 km of outcropping length, 30 km of maximum horizontal displacement, and 5 km of vertical throw. Results obtained by means of the different techniques are compared with data derived from cross sections and stratigraphic analysis. Mixed-layer illite-smectite and vitrinite reflectance indicating deep diagenetic conditions and mature stage of hydrocarbon generation suggests shallow depths during deformation, thus confirming that the protolith for most of the fault rocks is the footwall of the main thrust. Kinematic indicators (foliation, S/C structures, and slickenside striations) indicate altogether a dominant NNW movement of the hanging wall in the western zone and NE in the eastern zone of the thrust, thus implying strain partitioning between different branches of the main thrust. The study of AMS in fault rocks (nearly 400 samples of fault gouge, breccia, and microbreccia) indicates that the strike of magnetic foliation is oblique to the transport direction and that the magnetic lineation parallelizes the projection of the transport direction onto the k max/k int plane in sites with strong shear deformation. Paleomagnetism applied to fault rocks indicates the existence of remagnetizations linked to thrusting, in spite of the shallow depth for deformation, and a strong deformation or scattering of the magnetic remanence vectors in the fault zone. The application of the described techniques and consistency of

  20. Study protocol of cost-effectiveness and cost-utility of a biopsychosocial multidisciplinary intervention in the evolution of non-specific sub-acute low back pain in the working population: cluster randomised trial

    PubMed Central

    2011-01-01

    Background Low back pain (LBP), with high incidence and prevalence rate, is one of the most common reasons to consult the health system and is responsible for a significant amount of sick leave, leading to high health and social costs. The objective of the study is to assess the cost-effectiveness and cost-utility analysis of a multidisciplinary biopsychosocial educational group intervention (MBEGI) of non-specific sub-acute LBP in comparison with the usual care in the working population recruited in primary healthcare centres. Methods/design The study design is a cost-effectiveness and cost-utility analysis of a MBEGI in comparison with the usual care of non-specific sub-acute LBP. Measures on effectiveness and costs of both interventions will be obtained from a cluster randomised controlled clinical trial carried out in 38 Catalan primary health care centres, enrolling 932 patients between 18 and 65 years old with a diagnosis of non-specific sub-acute LBP. Effectiveness measures are: pharmaceutical treatments, work sick leave (% and duration in days), Roland Morris disability, McGill pain intensity, Fear Avoidance Beliefs (FAB) and Golberg Questionnaires. Utility measures will be calculated from the SF-12. The analysis will be performed from a social perspective. The temporal horizon is at 3 months (change to chronic LBP) and 12 months (evaluate the outcomes at long term). Assessment of outcomes will be blinded and will follow the intention-to-treat principle. Discussion We hope to demonstrate the cost-effectiveness and cost-utility of MBEGI, see an improvement in the patients' quality of life, achieve a reduction in the duration of episodes and the chronicity of non-specific low back pain, and be able to report a decrease in the social costs. If the intervention is cost-effectiveness and cost-utility, it could be applied to Primary Health Care Centres. Trial registration ISRCTN: ISRCTN58719694 PMID:21859489

  1. Reflections on the Role of the "Users": Challenges in a Multi-Disciplinary Context of Learner-Centred Design for Children on the Autism Spectrum

    ERIC Educational Resources Information Center

    Parsons, Sarah; Cobb, Sue

    2014-01-01

    Technology design in the field of human-computer interaction has developed a continuum of participatory research methods, closely mirroring methodological approaches and epistemological discussions in other fields. This paper positions such approaches as examples of inclusive research (to varying degrees) within education, and illustrates the…

  2. The AQUA-FONTIS study: protocol of a multidisciplinary, cross-sectional and prospective longitudinal study for developing standardized diagnostics and classification of non-thyroidal illness syndrome

    PubMed Central

    Dietrich, Johannes W; Stachon, Axel; Antic, Biljana; Klein, Harald H; Hering, Steffen

    2008-01-01

    Background Non-thyroidal illness syndrome (NTIS) is a characteristic functional constellation of thyrotropic feedback control that frequently occurs in critically ill patients. Although this condition is associated with significantly increased morbidity and mortality, there is still controversy on whether NTIS is caused by artefacts, is a form of beneficial adaptation, or is a disorder requiring treatment. Trials investigating substitution therapy of NTIS revealed contradictory results. The comparison of heterogeneous patient cohorts may be the cause for those inconsistencies. Objectives Primary objective of this study is the identification and differentiation of different functional states of thyrotropic feedback control in order to define relevant evaluation criteria for the prognosis of affected patients. Furthermore, we intend to assess the significance of an innovative physiological index approach (SPINA) in differential diagnosis between NTIS and latent (so-called "sub-clinical") thyrotoxicosis. Secondary objective is observation of variables that quantify distinct components of NTIS in the context of independent predictors of evolution, survival or pathophysiological condition and influencing or disturbing factors like medication. Design The approach to a quantitative follow-up of non-thyroidal illness syndrome (AQUA FONTIS study) is designed as both a cross-sectional and prospective longitudinal observation trial in critically ill patients. Patients are observed in at least two evaluation points with consecutive assessments of thyroid status, physiological and clinical data in additional weekly observations up to discharge. A second part of the study investigates the neuropsychological impact of NTIS and medium-term outcomes. The study design incorporates a two-module structure that covers a reduced protocol in form of an observation trial before patients give informed consent. Additional investigations are performed if and after patients agree in

  3. Multidisciplinary Management of Laryngeal Carcinoma

    SciTech Connect

    Mendenhall, William M. Mancuso, Anthony A.; Hinerman, Russell W.; Malyapa, Robert S.; Werning, John W.; Amdur, Robert J.; Villaret, Douglas B.

    2007-10-01

    The management of head and neck cancer has evolved into a multidisciplinary approach in which patients are evaluated before treatment and decisions depend on prospective multi-institutional trials, as well as retrospective outcome studies. The choice of one or more modalities to use in a given case varies with the tumor site and extent, as exemplified in the treatment of laryngeal squamous cell carcinomas. The goals of treatment include cure, laryngeal voice preservation, voice quality, optimal swallowing, and minimal xerostomia. Treatment options include transoral laser excision, radiotherapy (both definitive and postoperative), open partial laryngectomy, total laryngectomy, and neck dissection. The likelihood of local control and preservation of laryngeal function is related to tumor volume. Patients who have a relatively high risk of local recurrence undergo follow-up computed tomography scans every 3-4 months for the first 2 years after radiotherapy. Patients with suspicious findings on computed tomography might benefit from fluorodeoxyglucose positron emission tomography to differentiate post-radiotherapy changes from tumor.

  4. Does Cancer Literature Reflect Multidisciplinary Practice? A Systematic Review of Oncology Studies in the Medical Literature Over a 20-Year Period

    SciTech Connect

    Holliday, Emma B.; Ahmed, Awad A.; Yoo, Stella K.; Jagsi, Reshma; Hoffman, Karen E.

    2015-07-15

    Purpose: Quality cancer care is best delivered through a multidisciplinary approach requiring awareness of current evidence for all oncologic specialties. The highest impact journals often disseminate such information, so the distribution and characteristics of oncology studies by primary intervention (local therapies, systemic therapies, and targeted agents) were evaluated in 10 high-impact journals over a 20-year period. Methods and Materials: Articles published in 1994, 2004, and 2014 in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Lancet Oncology, Journal of Clinical Oncology, Annals of Oncology, Radiotherapy and Oncology, International Journal of Radiation Oncology, Biology, Physics, Annals of Surgical Oncology, and European Journal of Surgical Oncology were identified. Included studies were prospectively conducted and evaluated a therapeutic intervention. Results: A total of 960 studies were included: 240 (25%) investigated local therapies, 551 (57.4%) investigated systemic therapies, and 169 (17.6%) investigated targeted therapies. More local therapy trials (n=185 [77.1%]) evaluated definitive, primary treatment than systemic (n=178 [32.3%]) or targeted therapy trials (n=38 [22.5%]; P<.001). Local therapy trials (n=16 [6.7%]) also had significantly lower rates of industry funding than systemic (n=207 [37.6%]) and targeted therapy trials (n=129 [76.3%]; P<.001). Targeted therapy trials represented 5 (2%), 38 (10.2%), and 126 (38%) of those published in 1994, 2004, and 2014, respectively (P<.001), and industry-funded 48 (18.9%), 122 (32.6%), and 182 (54.8%) trials, respectively (P<.001). Compared to publication of systemic therapy trial articles, articles investigating local therapy (odds ratio: 0.025 [95% confidence interval: 0.012-0.048]; P<.001) were less likely to be found in high-impact general medical journals. Conclusions: Fewer studies evaluating local therapies, such as surgery and radiation, are published in

  5. Integrated Multidisciplinary Optimization Objects

    NASA Technical Reports Server (NTRS)

    Alston, Katherine

    2014-01-01

    OpenMDAO is an open-source MDAO framework. It is used to develop an integrated analysis and design environment for engineering challenges. This Phase II project integrated additional modules and design tools into OpenMDAO to perform discipline-specific analysis across multiple flight regimes at varying levels of fidelity. It also showcased a refined system architecture that allows the system to be less customized to a specific configuration (i.e., system and configuration separation). By delivering a capable and validated MDAO system along with a set of example applications to be used as a template for future users, this work greatly expands NASA's high-fidelity, physics-based MDAO capabilities and enables the design of revolutionary vehicles in a cost-effective manner. This proposed work complements M4 Engineering's expertise in developing modeling and simulation toolsets that solve relevant subsonic, supersonic, and hypersonic demonstration applications.

  6. Design Evolution Study - Aging Options

    SciTech Connect

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  7. “Partners rather than just providers…”: A qualitative study on health care professionals’ views on implementation of multidisciplinary group meetings in the North West London Integrated Care Pilot

    PubMed Central

    Kassianos, Angelos P.; Ignatowicz, Agnieszka; Greenfield, Geva; Majeed, Azeem; Car, Josip; Pappas, Yannis

    2015-01-01

    Introduction Multidisciplinary group meetings are one of the key drivers of facilitating integrated care. Health care professionals attending such groups have a key role in the success of these discussions and hence, in the forming of multi-professional integrated care. The study aimed to explore the professionals’ experiences and views of participating and implementing the groups in integrated care context. Methods A qualitative study including 25 semi-structured interviews with professionals participating in the Northwest London Integrated Care Pilot analysed using thematic content analysis. Results Participants mentioned a number of benefits of participating in the meetings, including shared learning and shared decision-making between different services and specialties. Yet, they perceived barriers that diminish the efficiency of the groups, such as time constraints, group dynamics and technicalities. The participants felt that the quality of discussions and facilitation could be improved, as well as technical arrangements that would make them easier to participate. Most of the participants perceived the groups to be beneficial for providers mostly questioning the benefits for patient care. Conclusion Findings provide an insight into how health professionals’ views of their participation to the multidisciplinary group meetings can be more effectively translated into more tangible benefits to the patients. To benefit patient care, the multidisciplinary groups need to be more patient-oriented rather than provider-oriented, while overcoming professional boundaries for participating. PMID:26351410

  8. Design Issues in Transgender Studies

    PubMed Central

    Emel, Lynda; Hanscom, Brett; Zangeneh, Sahar

    2016-01-01

    Abstract: Transgender individuals constitute an important focus for HIV prevention, but studies in this population present some unique methodologic and operational challenges. We consider issues related to sampling, sample size, number of sites, and trial cost. We discuss relevant design issues for evaluating interventions in both HIV-negative and HIV-infected transgender populations, as well as a method for assessing the impact of an intervention on population HIV incidence. We find that HIV-endpoint studies of transgender individuals will likely require fewer participants but more sites and have higher operational costs than HIV prevention trials in other populations. Because any intervention targeted to transgender individuals will likely include antiretroviral drugs, small scale studies looking at potential interactions between antiretroviral therapy and hormone therapy are recommended. Finally, assessing the impact of an intervention targeted to transgender individuals will require better information on the contribution of such individuals to the population HIV incidence. PMID:27429191

  9. Design Issues in Transgender Studies.

    PubMed

    Hughes, James P; Emel, Lynda; Hanscom, Brett; Zangeneh, Sahar

    2016-08-15

    Transgender individuals constitute an important focus for HIV prevention, but studies in this population present some unique methodologic and operational challenges. We consider issues related to sampling, sample size, number of sites, and trial cost. We discuss relevant design issues for evaluating interventions in both HIV-negative and HIV-infected transgender populations, as well as a method for assessing the impact of an intervention on population HIV incidence. We find that HIV-endpoint studies of transgender individuals will likely require fewer participants but more sites and have higher operational costs than HIV prevention trials in other populations. Because any intervention targeted to transgender individuals will likely include antiretroviral drugs, small scale studies looking at potential interactions between antiretroviral therapy and hormone therapy are recommended. Finally, assessing the impact of an intervention targeted to transgender individuals will require better information on the contribution of such individuals to the population HIV incidence. PMID:27429191

  10. The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites.

  11. Study designs for dependent happenings.

    PubMed

    Halloran, M E; Struchiner, C J

    1991-09-01

    In 1916, Sir Ronald Ross defined "dependent happenings" as events where the number affected in a unit of time depends on the number already affected. That is, the incidence depends on the prevalence, a characteristic of many infectious diseases. Because of this dependence, interventions against infectious diseases can have not only direct protective effects for the person receiving an intervention, but also indirect effects resulting from changes in the intensity of transmission in the population. This paper develops the conceptual framework for four types of study designs that differentiate and account for direct and indirect effects of intervention programs in dependent happenings.

  12. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  13. Multi-Disciplinary Analysis and Optimization Frameworks

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2009-01-01

    Since July 2008, the Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed one major milestone, Define Architecture & Interfaces for Next Generation Open Source MDAO Framework Milestone (9/30/08), and is completing the Generation 1 Framework validation milestone, which is due December 2008. Included in the presentation are: details of progress on developing the Open MDAO framework, modeling and testing the Generation 1 Framework, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations

  14. MIUS community conceptual design study

    NASA Technical Reports Server (NTRS)

    Fulbright, B. E.

    1976-01-01

    The feasibility, practicality, and applicability of the modular integrated utility systems (MIUS) concept to a satellite new-community development with a population of approximately 100,000 were analyzed. Two MIUS design options, the 29-MIUS-unit (option 1) and the 8-MIUS-unit (option 2) facilities were considered. Each resulted in considerable resource savings when compared to a conventional utility system. Economic analyses indicated that the total cash outlay and operations and maintenance costs for these two options were considerably less than for a conventional system. Computer analyses performed in support of this study provided corroborative data for the study group. An environmental impact assessment was performed to determine whether the MIUS meets or will meet necessary environmental standards. The MIUS can provide improved efficiency in the conservation of natural resources while not adversely affecting the physical environment.

  15. The Safe Passage Study: Design, Methods, Recruitment, and Follow-Up Approach

    PubMed Central

    Dukes, Kimberly A.; Burd, Larry; Elliott, Amy J.; Fifer, William P.; Folkerth, Rebecca D.; Hankins, Gary D.V.; Hereld, Dale; Hoffman, Howard J.; Myers, Michael M.; Odendaal, Hein J.; Signore, Caroline; Sullivan, Lisa M.; Willinger, Marian; Wright, Colleen; Kinney, Hannah C.

    2014-01-01

    Background The Safe Passage Study is a large, prospective, multidisciplinary study designed to (1) investigate the association between prenatal alcohol exposure, sudden infant death syndrome (SIDS), and stillbirth, and (2) determine the biological basis of the spectrum of phenotypic outcomes from exposure, as modified by environmental and genetic factors that increase the risk of stillbirth, SIDS, and in surviving children, fetal alcohol spectrum disorders. Methods The results provided are based on an interim assessment of 6004 women enrolled, out of the 12 000 projected, from the Northern Plains, US, and Cape Town, South Africa, areas known to be of high risk for maternal drinking during pregnancy. Research objectives, study design, and descriptive statistics, including consent, recruitment, and retention information, are provided. Results Overall visit compliance is 87%, and includes prenatal, delivery/newborn, and postnatal contacts through 1 year post-delivery. Pregnancy outcome ascertainment is 98% prior to medical chart review; less than 2% of women withdraw. Consent for the use of DNA and placental tissue exceed 94%, and consent to participate in the autopsy portion of the study is 71%. Conclusions The Safe Passage Study is the first multi-site study of SIDS and stillbirth to integrate prospectively collected exposure information with multidisciplinary biological information in the same maternal and fetal/ infant dyad using a common protocol. Essential components of the study design and its success are close ties to the community and rigorous systems and processes to ensure compliance with the study protocol and procedures. PMID:25131605

  16. Multidisciplinary disease management in rheumatology.

    PubMed

    Oliver, Susan

    2003-11-01

    With an increasingly ageing population, the number of patients with osteoarthritis and rheumatoid arthritis is expected to rise. High-quality patient education and self-management are essential in these chronic debilitating conditions. A multidisciplinary team has produced a template to guide the assessment, treatment and holistic care of patients in primary care.

  17. Stress-induced comenditic trachyte effusion triggered by trachybasalt intrusion: multidisciplinary study of the AD 1761 eruption at Terceira Island (Azores)

    NASA Astrophysics Data System (ADS)

    Pimentel, A.; Zanon, V.; de Groot, L. V.; Hipólito, A.; Di Chiara, A.; Self, S.

    2016-03-01

    The AD 1761 eruption on Terceira was the only historical subaerial event on the island and one of the last recorded in the Azores. The eruption occurred along the fissure zone that crosses the island and produced a trachybasalt lava flow and scoria cones. Small comenditic trachyte lava domes (known as Mistérios Negros) were also thought by some to have formed simultaneously on the eastern flank of Santa Bárbara Volcano. Following a multidisciplinary approach, we combined geological mapping, paleomagnetic, petrographic, mineral and whole-rock geochemical and structural analyses to study this eruption. The paleomagnetic dating method compared geomagnetic vectors (directions and intensities) recorded by both the AD 1761 lava flow and Mistérios Negros domes and revealed that the two events were indeed coeval. Based on new data and interpretation of historical records, we have accordingly reconstructed the AD 1761 eruptive dynamics and distinguished three phases: (1) a precursory phase characterized by decreased degassing in the fumarolic field of Pico Alto Volcano and a gradual increase of seismic activity, which marked the intrusion of trachybasalt magma; (2) a first eruptive phase that started with phreatic explosions on the eastern flank of Santa Bárbara Volcano, followed by the inconspicuous effusion of comenditic trachyte (66 wt% SiO2), forming a WNW-ESE-oriented chain of lava domes; and (3) a second eruptive phase on the central part of the fissure zone, where a Hawaiian to Strombolian-style eruption formed small scoria cones (E-W to ENE-WSW-oriented) and a trachybasalt lava flow (50 wt% SiO2) which buried 27 houses in Biscoitos village. Petrological analyses show that the two batches of magma were emitted independently without evidence of interaction. We envisage that the dome-forming event was triggered by local stress changes induced by intrusion of the trachybasalt dyke along the fissure zone, which created tensile stress conditions that promoted ascent

  18. Managing Complexity in Multidisciplinary Visualization

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    As high performance computing technology progresses, computational simulations are becoming more advanced in their capabilities. In the computational aerosciences domain, single discipline steady-state simulations computed on a single grid are far from the state-of-the-art. In their place are complex, time-dependent multidisciplinary simulations that attempt to model a given geometry more realistically. The product of these multidisciplinary simulations is a massive amount of data stored in different formats, grid topologies, units of measure, etc., as a result of the differences in the simulated physical domains. In addition to the challenges posed by setting up and performing the simulation, additional challenges exist in analyzing computational results. Visualization plays an important role in the advancement of multidisciplinary simulations. To date, visualization has been used to aid in the interpretation of large amounts of simulation data. Because the human visual system is effective in digesting a large amount of information presented graphically, visualization has helped simulation scientists to understand complex simulation results. As these simulations become even more complex, integrating several different physical domains, visualization will be critical to digest the massive amount of information. Another important role for visualization is to provide a common communication medium from which the domain scientists can use to develop, debug, and analyze their work. Multidisciplinary analyses are the next step in simulation technology, not only in computational aerosciences, but in many other areas such as global climate modeling. Visualization researchers must understand and work towards the challenges posed by multidisciplinary simulation scenarios. This paper addresses some of these challenges, describing technologies that must be investigated to create a useful visualization analysis tool for domain scientists.

  19. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  20. Implementation of generalized optimality criteria in a multidisciplinary environment

    NASA Technical Reports Server (NTRS)

    Canfield, R. A.; Venkayya, V. B.

    1989-01-01

    A generalized optimality criterion method consisting of a dual problem solver combined with a compound scaling algorithm was implemented in the multidisciplinary design tool, ASTROS. This method enables, for the first time in a production design tool, the determination of a minimum weight design using thousands of independent structural design variables while simultaneously considering constraints on response quantities in several disciplines. Even for moderately large examples, the computational efficiency is improved significantly relative to the conventional approach.

  1. Information Management for a Large Multidisciplinary Project

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Randall, Donald P.; Cronin, Catherine K.

    1992-01-01

    In 1989, NASA's Langley Research Center (LaRC) initiated the High-Speed Airframe Integration Research (HiSAIR) Program to develop and demonstrate an integrated environment for high-speed aircraft design using advanced multidisciplinary analysis and optimization procedures. The major goals of this program were to evolve the interactions among disciplines and promote sharing of information, to provide a timely exchange of information among aeronautical disciplines, and to increase the awareness of the effects each discipline has upon other disciplines. LaRC historically has emphasized the advancement of analysis techniques. HiSAIR was founded to synthesize these advanced methods into a multidisciplinary design process emphasizing information feedback among disciplines and optimization. Crucial to the development of such an environment are the definition of the required data exchanges and the methodology for both recording the information and providing the exchanges in a timely manner. These requirements demand extensive use of data management techniques, graphic visualization, and interactive computing. HiSAIR represents the first attempt at LaRC to promote interdisciplinary information exchange on a large scale using advanced data management methodologies combined with state-of-the-art, scientific visualization techniques on graphics workstations in a distributed computing environment. The subject of this paper is the development of the data management system for HiSAIR.

  2. Novel Compressor Blade Design Study

    NASA Astrophysics Data System (ADS)

    Srinivas, Abhay

    Jet engine efficiency goals are driving compressors to higher pressure ratios and engines to higher bypass ratios, each one driving to smaller cores. This is leading to larger tip gaps relative to the blade height. These larger relative tip clearances would negate some of the cycle improvements, and ways to mitigate this effect must be found. A novel split tip blade geometry has been created which helps improve the efficiency at large clearances while also improving operating range. Two identical blades are leaned in opposite directions starting at 85% span. They are cut at mid chord and the 2 halves then merged together so a split tip is created. The result is similar to the alula feathers on a soaring bird. The concept is that the split tip will energize the tip flow and increase range. For higher relative tip clearance, this will also improve efficiency. The 6th rotor of a highly loaded 10 stage machine was chosen as the baseline for this study. Three dimensional CFD simulations were performed using CD Adapco's Star-CCM+ at 5 clearances for the baseline and split tip geometry. The choking flow and stall margin of the split tip blade was higher than that of the baseline blade for all tip clearances. The pressure ratio of the novel blade was higher than that of the baseline blade near choke, but closer to stall it decreased. The sensitivity of peak efficiency to clearance was improved. At tight clearances of 0.62% of blade height, the maximum efficiency of the new design was less than the baseline blade, but as the tip clearance was increased above 2.5%, the maximum efficiency increased. Structural analysis was also performed to ascertain the feasibility of the design.

  3. Rapid Geometry Creation for Computer-Aided Engineering Parametric Analyses: A Case Study Using ComGeom2 for Launch Abort System Design

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica; Gage, Peter; Manning, Ted

    2007-01-01

    ComGeom2, a tool developed to generate Common Geometry representation for multidisciplinary analysis, has been used to create a large set of geometries for use in a design study requiring analysis by two computational codes. This paper describes the process used to generate the large number of configurations and suggests ways to further automate the process and make it more efficient for future studies. The design geometry for this study is the launch abort system of the NASA Crew Launch Vehicle.

  4. Recommending Research Profiles for Multidisciplinary Academic Collaboration

    ERIC Educational Resources Information Center

    Gunawardena, Sidath Deepal

    2013-01-01

    This research investigates how data on multidisciplinary collaborative experiences can be used to solve a novel problem: recommending research profiles of potential collaborators to academic researchers seeking to engage in multidisciplinary research collaboration. As the current domain theories of multidisciplinary collaboration are insufficient…

  5. Multidisciplinary teamwork and communication training.

    PubMed

    Deering, Shad; Johnston, Lindsay C; Colacchio, Kathryn

    2011-04-01

    Every delivery is a multidisciplinary event, involving nursing, obstetricians, anesthesiologists, and pediatricians. Patients are often in labor across multiple provider shifts, necessitating numerous handoffs between teams. Each handoff provides an opportunity for errors. Although a traditional approach to improving patient outcomes has been to address individual knowledge and skills, it is now recognized that a significant number of complications result from team, rather than individual, failures. In 2004, a Sentinel Alert issued by the Joint Commission revealed that most cases of perinatal death and injury are caused by problems with an organization's culture and communication failures. It was recommended that hospitals implement teamwork training programs in an effort to improve outcomes. Instituting a multidisciplinary teamwork training program that uses simulation offers a risk-free environment to practice skills, including communication, role clarification, and mutual support. This experience should improve patient safety and outcomes, as well as enhance employee morale. PMID:21440817

  6. Structure and hydrogeochemical functioning of a sparkling natural mineral water system determined using a multidisciplinary approach: a case study from southern France

    NASA Astrophysics Data System (ADS)

    Maréchal, J. C.; Lachassagne, P.; Ladouche, B.; Dewandel, B.; Lanini, S.; Le Strat, P.; Petelet-Giraud, E.

    2013-12-01

    Natural mineral waters (NMW), often used to produce bottled water, are of high socio-economic interest and need appropriate management to ensure the sustainability of the resource. A complex sparkling NMW system at La Salvetat, southern France, was investigated using a multidisciplinary approach. Geological and geophysical investigations, pumping test analyses, time-series signal processing, hydrogeochemical and isotopic data (both stable and radiogenic), and numerical modelling provided complementary information on the geometry, hydrodynamic characteristics and functioning of this mineral system. The conceptual model consists of a compartmentalized reservoir characterized by two subvertical, parallel deeply rooted hydraulically independent permeable structures that are fed by deep CO2-rich crustal fluids. The non-mineralized shallow aquifer system corresponds to a fissured layer within the weathered zone that is recharged by leakage from the overlying saprolite. This surficial aquifer responds rapidly to recharge (40-80 days), whereas the deep system's response to recharge is much longer (up to 120 days). This research demonstrates the need for multidisciplinary approaches and modelling (quantity, hydrochemistry) for understanding complex NMW systems. This knowledge is already being applied by the bottling company that manages the resource at La Salvetat, and would be useful for conceptualising other NMW sites.

  7. Concentrator enhanced solar arrays design study

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1978-01-01

    The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.

  8. A Unified Approach to Modeling Multidisciplinary Interactions

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Bhatia, Kumar G.

    2000-01-01

    There are a number of existing methods to transfer information among various disciplines. For a multidisciplinary application with n disciplines, the traditional methods may be required to model (n(exp 2) - n) interactions. This paper presents a unified three-dimensional approach that reduces the number of interactions from (n(exp 2) - n) to 2n by using a computer-aided design model. The proposed modeling approach unifies the interactions among various disciplines. The approach is independent of specific discipline implementation, and a number of existing methods can be reformulated in the context of the proposed unified approach. This paper provides an overview of the proposed unified approach and reformulations for two existing methods. The unified approach is specially tailored for application environments where the geometry is created and managed through a computer-aided design system. Results are presented for a blended-wing body and a high-speed civil transport.

  9. Establishing a framework for building multidisciplinary programs.

    PubMed

    Meguid, Cheryl; Ryan, Carrie E; Edil, Barish H; Schulick, Richard D; Gajdos, Csaba; Boniface, Megan; Schefter, Tracey E; Purcell, W Thomas; McCarter, Martin

    2015-01-01

    While most providers support the concept of a multidisciplinary approach to patient care, challenges exist to the implementation of successful multidisciplinary clinical programs. As patients become more knowledgeable about their disease through research on the Internet, they seek hospital programs that offer multidisciplinary care. At the University of Colorado Hospital, we utilize a formal multidisciplinary approach across a variety of clinical settings, which has been beneficial to patients, providers, and the hospital. We present a reproducible framework to be used as a guide to develop a successful multidisciplinary program.

  10. Establishing a framework for building multidisciplinary programs

    PubMed Central

    Meguid, Cheryl; Ryan, Carrie E; Edil, Barish H; Schulick, Richard D; Gajdos, Csaba; Boniface, Megan; Schefter, Tracey E; Purcell, W Thomas; McCarter, Martin

    2015-01-01

    While most providers support the concept of a multidisciplinary approach to patient care, challenges exist to the implementation of successful multidisciplinary clinical programs. As patients become more knowledgeable about their disease through research on the Internet, they seek hospital programs that offer multidisciplinary care. At the University of Colorado Hospital, we utilize a formal multidisciplinary approach across a variety of clinical settings, which has been beneficial to patients, providers, and the hospital. We present a reproducible framework to be used as a guide to develop a successful multidisciplinary program. PMID:26664132

  11. Recent Advances in Multidisciplinary Analysis and Optimization, part 1

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  12. Recent Advances in Multidisciplinary Analysis and Optimization, part 3

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: aircraft design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  13. Recent Advances in Multidisciplinary Analysis and Optimization, part 2

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  14. Using Student Technical Conferences to Build Multidisciplinary Teamwork Skills

    ERIC Educational Resources Information Center

    Silverstein, David L.

    2007-01-01

    An open-ended student conference project involving sophomore, junior, and senior chemical engineering students is described. The project is designed to address outcomes in each of the courses in which those students are enrolled, as well as broader "soft skills" including multidisciplinary teamwork, communications, lifelong learning, and…

  15. High School Bridge Program: A Multidisciplinary STEM Research Program

    ERIC Educational Resources Information Center

    Zhe, Jiang; Doverspike, Dennis; Zhao, Julie; Lam, Paul; Menzemer, Craig

    2010-01-01

    A Science, Technology, Engineering and Math (STEM) summer Bridge Program was developed for high school students. The program was designed to encourage students to consider choosing an engineering major in college and to explore STEM as a future career. This was accomplished through a 10-week program involving multidisciplinary research activities.…

  16. Implementing effective and sustainable multidisciplinary clinical thoracic oncology programs.

    PubMed

    Osarogiagbon, Raymond U; Freeman, Richard K; Krasna, Mark J

    2015-08-01

    Three models of care are described, including two models of multidisciplinary care for thoracic malignancies. The pros and cons of each model are discussed, the evidence supporting each is reviewed, and the need for more (and better) research into care delivery models is highlighted. Key stakeholders in thoracic oncology care delivery outcomes are identified, and the need to consider stakeholder perspectives in designing, validating and implementing multidisciplinary programs as a vehicle for quality improvement in thoracic oncology is emphasized. The importance of reconciling stakeholder perspectives, and identify meaningful stakeholder-relevant benchmarks is also emphasized. Metrics for measuring program implementation and overall success are proposed. PMID:26380186

  17. Multidisciplinary Analysis and Optimization Generation 1 and Next Steps

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2008-01-01

    The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: "Requirements Definition" Milestone (1/31/08); "GEN 1 Integrated Multi-disciplinary Toolset" (Annual Performance Goal) (6/30/08); and "Define Architecture & Interfaces for Next Generation Open Source MDAO Framework" Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.

  18. Implementing effective and sustainable multidisciplinary clinical thoracic oncology programs

    PubMed Central

    Freeman, Richard K.; Krasna, Mark J.

    2015-01-01

    Three models of care are described, including two models of multidisciplinary care for thoracic malignancies. The pros and cons of each model are discussed, the evidence supporting each is reviewed, and the need for more (and better) research into care delivery models is highlighted. Key stakeholders in thoracic oncology care delivery outcomes are identified, and the need to consider stakeholder perspectives in designing, validating and implementing multidisciplinary programs as a vehicle for quality improvement in thoracic oncology is emphasized. The importance of reconciling stakeholder perspectives, and identify meaningful stakeholder-relevant benchmarks is also emphasized. Metrics for measuring program implementation and overall success are proposed. PMID:26380186

  19. Student-Designed River Study.

    ERIC Educational Resources Information Center

    Turkall, Sheila Florian

    1996-01-01

    Describes an integrated student-designed investigation in which students explore different aspects of the Chagrin River including the river ecosystem, velocity and average depth, river flooding, water quality, and economic and political factors. (JRH)

  20. Opus: A Coordination Language for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Chapman, Barbara; Haines, Matthew; Mehrotra, Piyush; Zima, Hans; vanRosendale, John

    1997-01-01

    Data parallel languages, such as High Performance fortran, can be successfully applied to a wide range of numerical applications. However, many advanced scientific and engineering applications are multidisciplinary and heterogeneous in nature, and thus do not fit well into the data parallel paradigm. In this paper we present Opus, a language designed to fill this gap. The central concept of Opus is a mechanism called ShareD Abstractions (SDA). An SDA can be used as a computation server, i.e., a locus of computational activity, or as a data repository for sharing data between asynchronous tasks. SDAs can be internally data parallel, providing support for the integration of data and task parallelism as well as nested task parallelism. They can thus be used to express multidisciplinary applications in a natural and efficient way. In this paper we describe the features of the language through a series of examples and give an overview of the runtime support required to implement these concepts in parallel and distributed environments.

  1. A study of commuter airplane design optimization

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Wyatt, R. D.; Griswold, D. A.; Hammer, J. L.

    1977-01-01

    Problems of commuter airplane configuration design were studied to affect a minimization of direct operating costs. Factors considered were the minimization of fuselage drag, methods of wing design, and the estimated drag of an airplane submerged in a propellor slipstream; all design criteria were studied under a set of fixed performance, mission, and stability constraints. Configuration design data were assembled for application by a computerized design methodology program similar to the NASA-Ames General Aviation Synthesis Program.

  2. An innovative, multidisciplinary strategy to improve retention of nursing students from disadvantaged backgrounds.

    PubMed

    Igbo, Immaculata N; Straker, Kathleen C; Landson, Margie J; Symes, Lene; Bernard, Lillian F; Hughes, Lisa A; Carroll, Theresa L

    2011-01-01

    Nursing students from disadvantaged backgrounds must overcome many barriers in order to succeed. This article will focus on how a multidisciplinary team helped 76 percent of these high-risk students persist in their nursing programs by addressing some of these barriers. Three baccalaureate nursing schools in the Texas Medical Center embarked on a three-year retention program designed to enhance the success of students identified by federal criteria as being at risk. Multidisciplinary teams led various activities, including a study skills component, which included preparing for lectures, taking notes, critical thinking, and test-taking strategies. Also addressed were written and oral communication skills, medical terminology, critical thinking, career coaching, and socialization activities. Collaboration among faculty and students at the three schools was key to the success of the program. PMID:22235693

  3. An innovative, multidisciplinary strategy to improve retention of nursing students from disadvantaged backgrounds.

    PubMed

    Igbo, Immaculata N; Straker, Kathleen C; Landson, Margie J; Symes, Lene; Bernard, Lillian F; Hughes, Lisa A; Carroll, Theresa L

    2011-01-01

    Nursing students from disadvantaged backgrounds must overcome many barriers in order to succeed. This article will focus on how a multidisciplinary team helped 76 percent of these high-risk students persist in their nursing programs by addressing some of these barriers. Three baccalaureate nursing schools in the Texas Medical Center embarked on a three-year retention program designed to enhance the success of students identified by federal criteria as being at risk. Multidisciplinary teams led various activities, including a study skills component, which included preparing for lectures, taking notes, critical thinking, and test-taking strategies. Also addressed were written and oral communication skills, medical terminology, critical thinking, career coaching, and socialization activities. Collaboration among faculty and students at the three schools was key to the success of the program.

  4. A multidisciplinary database for global distribution

    SciTech Connect

    Wolfe, P.J.

    1996-12-31

    The issue of selenium toxicity in the environment has been documented in the scientific literature for over 50 years. Recent studies reveal a complex connection between selenium and human and animal populations. This article introduces a bibliographic citation database on selenium in the environment developed for global distribution via the Internet by the University of Wyoming Libraries. The database incorporates material from commercial sources, print abstracts, indexes, and U.S. government literature, resulting in a multidisciplinary resource. Relevant disciplines include, biology, medicine, veterinary science, botany, chemistry, geology, pollution, aquatic sciences, ecology, and others. It covers the years 1985-1996 for most subject material, with additional years being added as resources permit.

  5. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, P.; Partnership, Emso

    2009-04-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO development relays upon the synergy between the scientific community and the industry to improve the European competitiveness with respect to countries like USA/Canada, NEPTUNE, VENUS and MARS projects, Taiwan, MACHO project, and Japan, DONET project. In Europe the development of an underwater network is based on previous EU-funded projects since early '90, and presently supported by EU initiatives. The EMSO infrastructure will constitute the extension to the sea of the land-based networks. Examples of data recorded by seafloor observatories will be presented. EMSO is presently at the stage of Preparatory Phase (PP), funded in the EC FP7 Capacities Programme. The project has started in April 2008 and will last 4 years with the participation of 12 Institutions representing 12 countries. EMSO potential will be significantly increased also with the interaction with other Research Infrastructures addressed to Earth Science. 2. IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph Waldmann); IMI-Irish Marine Institute (Ireland, ref. Michael Gillooly); UTM-CSIC-Unidad de

  6. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  7. Advanced Design Studies. Final report

    SciTech Connect

    Steiner, Don

    2012-12-01

    The ARIES-CS project was a multi-year multi-institutional project to assess the feasibility of a compact stellarator as a fusion power plant. The work herein describes efforts to help design one aspect of the device, the divertor, which is responsible for the removal of particle and heat flux from the system, acting as the first point of contact between the magnetically confined hot plasma and the outside world. Specifically, its location and topology are explored, extending previous work on the sub ject. An optimized design is determined for the thermal particle flux using a suite of 3D stellarator design codes which trace magnetic field lines from just inside the confined plasma edge to their strike points on divertor plates. These divertor plates are specified with a newly developed plate design code. It is found that a satisfactory thermal design exists which maintains the plate temperature and heat load distribution below tolerable engineering limits. The design is unique, including a toroidal taper on the outboard plates which was found to be important to our results. The maximum thermal heat flux for the final design was 3.61 M W/m2 and the maximum peaking factor was 10.3, below prescribed limits of 10 M W/m2 and 15.6, respectively. The median length of field lines reaching the plates is about 250 m and their average angle of inclination to the surface is 2 deg. Finally, an analysis of the fast alphas, resulting from fusion in the core, which escape the plasma was performed. A method is developed for obtaining the mapping from magnetic coordinates to real-space coordinates for the ARIES-CS. This allows the alpha exit locations to be identified in real space for the first time. These were then traced using the field line algorithm as well as a guiding center routine accounting for their mass, charge, and specific direction and energy. Results show that the current design is inadequate for accommodating the alpha heat flux, capturing at most 1/3 of lost alphas

  8. A channel simulator design study

    NASA Technical Reports Server (NTRS)

    Devito, D. M.; Goutmann, M. M.; Harper, R. C.

    1971-01-01

    A propagation path simulator was designed for the channel between a Tracking and Data Relay Satellite in geostationary orbit and a user spacecraft orbiting the earth at an altitude between 200 and 4000 kilometers. The simulator is required to duplicate the time varying parameters of the propagation channel.

  9. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?

    PubMed

    Solomon, Gregg E A; Carley, Stephen; Porter, Alan L

    2016-01-01

    Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples).

  10. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?

    PubMed Central

    Solomon, Gregg E. A.; Carley, Stephen; Porter, Alan L.

    2016-01-01

    Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples). PMID:27043924

  11. Multidisciplinary approaches to the pressure ulcer problem.

    PubMed

    Bogie, Kath M; Ho, Chester H

    2007-10-01

    Multiple factors affect the specific condition and overall clinical profile of individuals at risk for chronic wounds. The complexity of the pressure ulcer problem lends itself to the application of the National Institute of Health Roadmap Initiative that encourages interdisciplinary research and new organizational models. An overview of research studies relevant to telemedicine and neuromuscular electrical stimulation in the care and prevention of pressure ulcers as well as preliminary results of an innovative multidisciplinary skin care team approach to the primary and tertiary prevention of pressure ulcers are encouraging. The team's pilot study results indicate that patients are satisfied with telehealth provision of care; however, literature and experience also suggest that discrepancies in the inter-rater assessment of wounds using digital photography remain, particularly with regard to wound dimension variables assessed (P<0.01). In another endeavor, the skin care team developed a Longitudinal Analysis with Self-Registration statistical algorithm to assess the effects of electrical stimulation; in a preliminary study, this tool documented improvement in gluteus maximus health and resultant ability to withstand pressure. As the number of groups pursuing multidisciplinary research and care increases, so, too, will the evidence base required to address these common, and complex, chronic wounds. PMID:17978412

  12. Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard

    2002-01-01

    The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.

  13. Multidisciplinary Care of Laryngeal Cancer.

    PubMed

    Salvador-Coloma, Carmen; Cohen, Ezra

    2016-08-01

    Treatment of larynx cancer has changed dramatically over the past several years. Novel modalities of treatment have been introduced as organ preservation has been developed. In addition, new targeted therapies have appeared, and improvements in radiotherapeutic and surgical techniques have been introduced. Thus, a large variety of treatment options is increasing local control rates and overall survival; however, selecting the most appropriate treatment remains a challenging decision. This article focuses on the multidisciplinary care of early-stage and locally advanced larynx cancer and attempts to sum up different approaches. Moreover, it reviews state-of-the-art treatment in larynx preservation, which has been consolidated in recent years. PMID:27511718

  14. Scoping study: Substation design workstation

    SciTech Connect

    Mauser, S.F. ); Conroy, M.W. ); Singh, N.M. )

    1993-03-01

    This project conducted a survey, consisting of a written questionaire, a workshop, and site visits to determine what facets of substation engineering would benefit from incorporation into a workstation environment. Based on the needs expressed by the respondents, a program for the staged development of a Substation Workstation is recommended. Six analytical function modules for assisting in substation engineering were identified for potential inclusion in the workstation: Initial Planning Activities; Physical Plant Design; Analytical Functions; Civil/Structural Design; Environmental Design; and Project Management. The initial release of the Substation Workstation is recommended to include the workstation environment (including MENTOR -- a concept for on-line help, tutorials, notepad, a minor spreadsheet, and interfaces to other regular desktop functions) and portions of the first three functional modules listed above. Recommendations for progress beyond this first release of the workstation included the development of additional capabilities within the initial functional modules, as well as the development of the remaining modules. An overlap exists between the analytical requirements for this workstation and those already included in the EPRI TLWorkstation and the ICWorkstation. In some cases, elements of these other workstations are also suggested for incorporation into the Substation Workstation (such as the foundation analyses from the TLWorkstation), and in others, an assimilation of the other workstation into the Substation Workstation is recommended (as with the ICWorkstation). Estimated resources for implementing the recommended program, including both costs and development time, are also provided.

  15. Multidisciplinary treatment of disability in ehlers-danlos syndrome hypermobility type/hypermobility syndrome: A pilot study using a combination of physical and cognitive-behavioral therapy on 12 women.

    PubMed

    Bathen, Trine; Hångmann, Anett Bjørnødegård; Hoff, Marie; Andersen, Liv Øinaes; Rand-Hendriksen, Svend

    2013-12-01

    Ehlers-Danlos Syndrome hypermobility type (EDS-HT) and joint hypermobility syndrome (JHS) are two overlapping heritable connective tissue disorders. Patients with these conditions have many and various complaints; limitations in performing daily activities, reduced muscle strength and proprioception, kinesiophobia, and pain. There is a lack of evidence-based treatment approaches; a few studies have shown effect of physiotherapy. Many authors propose multidisciplinary treatment, but this has neither been described nor evaluated for this patient group. The aim of this pilot study was to investigate if a multidisciplinary rehabilitation program combining physical and cognitive-behavioral therapy was feasible, safe and effective for 12 women with EDS-HT/JHS. Intervention was offered as a group program and consisted of three parts: (1) Two and a half week in a rehabilitation unit with testing, physical training, group discussions and lectures. (2) Individual home exercises for three months with weekly guidance by local physiotherapist. (3) Readmission four days for retesting and further training advice. All participants completed the intervention. We found significant changes in perceived performance of daily activities, significant increase of muscle strength and endurance and a significant reduction of kinesiophobia. There were smaller changes in self-perceived pain. The participants also reported increased participation in daily life. PMID:23913726

  16. [Multidisciplinary therapy of Tourette syndrome].

    PubMed

    Bábel, B Tamás; Németh, Attila; Gádoros, Júlia; Bihari, Katalin

    2003-02-01

    The marked fluctuation in symptoms with a spectrum of behavioral problems contribute to misdiagnosis of Tourette syndrome. The authors review the recent progress in diagnosis and management with an emphasis on multidisciplinary approach. Possible associations with various genes have been found in etiology of Tourette syndrome. Development of the disease comes of dopaminerg neurotransmission disorder resulting in cortico-striato-thalamic system dysfunction. Tics are brief movements or sounds that occur intermittently and unpredictably mimicking fragments of normal behavior. Diagnostic criteria are based on the motor and vocal phenomena and their dynamics. The key concept in management are the tic severity scaling correlating with quality of life measurements. Therapeutic interventions indicated at severe alteration in patient's quality of life. Treatment plan combines various drug protocols, psychotherapy and behavioral therapy which should be optimalized for most disabling symptom. Social isolation and self injurious behavior complicates the treatment resistant, severe cases. In these subgroup of patient, an adequate selection of stereotactic intervention could provide an effective control of tic severity or behavioral disorder. Tourette syndrome, as a typical neuropsychiatric disorder, is a striking example for improved efficacy of multidisciplinary approach.

  17. Learning Geomicrobiology as a Team Using Microbial Mats, a Multidisciplinary Approach

    PubMed Central

    Rios-Velazquez, Carlos; Casillas-Martinez, Lilliam; Visscher, Pieter T.

    2007-01-01

    Microbial mats are one of the best suited laminar organo-sedimentary ecosystems for students from different educational backgrounds to visualize the direct relationship between microbes and minerals. We have used tropical hypersaline microbial mats from Puerto Rico as educational tools to promote active learning of geomicrobiology introductory concepts for undergraduate students organized in multidisciplinary teams with biological and geological backgrounds. Besides field trips and independent research projects focused on microbial mats, four intensive workshops and one capstone activity were designed to expose students to the different geomicrobiology subdisciplines (microbiology, molecular biology, geology, and geochemistry). The teaching-learning process was assessed using pre- and posttests, group discussions, activities including Gallery Walks and exquisite cadaver’s, case studies, and focal interviews. While the posttest showed a significant difference in conceptual understanding, the Gallery Walk and the capstone activities demonstrated increase in the depth, coherence, and thoughtfulness in answering questions, including a clear integration of the different subdisciplines during their presentations. Finally, the main themes described by the students as important outcomes of their participation in the Research at Undergraduate Institutions: Microbial Observatory (RUI-MO) program were: (i) the opportunity to study and learn new and different science disciplines, (ii) the microbial mats were excellent tools to learn from and integrate different science disciplines, and (iii) working in multidisciplinary teams gave them the opportunity to learn from their peers’ discipline backgrounds. To our knowledge this is the first educational initiative that uses tropical hypersaline microbial mats to teach geomicrobiology in a multidisciplinary fashion. PMID:23653817

  18. Crisis resource management: evaluating outcomes of a multidisciplinary team.

    PubMed

    Jankouskas, Tara; Bush, Mary Chasko; Murray, Bosseau; Rudy, Sally; Henry, Jody; Dyer, Anne Marie; Liu, Wenlei; Sinz, Elizabeth

    2007-01-01

    Crisis resource management (CRM) is a team-training program that teaches nontechnical skills such as: collaboration, communication, task management, teamwork, and leadership. The purpose of this study was to evaluate improvement in the nontechnical skills of a multidisciplinary team of pediatric residents, anesthesiology residents and pediatric nurses following participation in the CRM educational program. Self-efficacy theory guided the teaching method used in the CRM program. The Collaboration and Satisfaction about Care Decisions instrument and the Anesthetists' Nontechnical Skills System served as outcome measures. Seven multidisciplinary groups were studied with a total of 40 subjects. A significant increase was found in posttest scores for perceived collaboration and satisfaction with care and in numerical ratings of observed team skills following the CRM program. The results suggest multidisciplinary team participation in the CRM program increased perceived team collaboration, satisfaction with care, and observed teamwork skills.

  19. Oncoplastic multidisciplinary meetings: a necessity or luxury?

    PubMed Central

    Rusby, Jennifer E; Gough, Jenny; Harris, Paul A; MacNeill, Fiona A

    2011-01-01

    Although there is scant evidence to support multidisciplinary meetings in any cancer specialty, they are now regarded as best practice. We believe the oncoplastic multidisciplinary meeting plays a similarly important role, consolidating oncoplastic multidisciplinary working and allowing transparent decision making, standardisation of care and recording of results. This may drive oncoplastic surgery to an evidence-based position from which oncoplastic excellence can be achieved. PMID:22043493

  20. Professional development for design-based learning in engineering education: a case study

    NASA Astrophysics Data System (ADS)

    Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim

    2015-01-01

    Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects. We conducted an intervention for the professional development of the DBL teachers in the Mechanical Engineering and the Electrical Engineering departments. We used the Experiential Learning Cycle as an educational model for the professionalisation programme. The findings show that the programme encouraged teachers to apply the DBL theoretical framework. However, there are some limitations with regard to specific project characteristics. Further research into supporting teachers to develop open-ended and multidisciplinary activities in the projects that support learning is recommended.

  1. A Multidisciplinary Approach to Improving SCIP Compliance.

    PubMed

    Huntington, Ciara R; Strayer, Melissa; Huynh, Toan; Green, John M

    2015-07-01

    The Surgical Care Improvement Project (SCIP) is a national program aimed at reducing perioperative complications and is a quality benchmark metric for Centers for Medicare and Medicaid Services. This study evaluates whether a multidisciplinary program improved an institution's compliance with SCIP measures. Analysis of the facility's performance data identified three key areas of SCIP noncompliance: 1) timely discontinuation of perioperative antibiotics and urinary catheters, 2) initiation of venous thromboembolism prophylaxis, and 3) perioperative beta blocker administration. Multidisciplinary teams collaborated with providers and department chairs in reviewing and enable SCIP compliance. Anesthesia staff managed preoperative antibiotics. SCIP-compliant order sets, venous thromboembolism pop-up alerts, and progress note templates were added to the electronic medical record. Standardized education was provided to explain SCIP requirements, review noncompliant cases, and update teams on SCIP performance. Data were captured from January 2009 to March 2014. Ten SCIP fallouts were reported for general surgery specialties in January 2013, when the SCIP compliance project launched. Specifically, colon-related surgery achieved 100 per cent compliance. Six months after implementation, overall SCIP compliance at our institution improved by 65 per cent (from 90.7-98.6% compliance). PMID:26140888

  2. A Multidisciplinary Approach to Improving SCIP Compliance.

    PubMed

    Huntington, Ciara R; Strayer, Melissa; Huynh, Toan; Green, John M

    2015-07-01

    The Surgical Care Improvement Project (SCIP) is a national program aimed at reducing perioperative complications and is a quality benchmark metric for Centers for Medicare and Medicaid Services. This study evaluates whether a multidisciplinary program improved an institution's compliance with SCIP measures. Analysis of the facility's performance data identified three key areas of SCIP noncompliance: 1) timely discontinuation of perioperative antibiotics and urinary catheters, 2) initiation of venous thromboembolism prophylaxis, and 3) perioperative beta blocker administration. Multidisciplinary teams collaborated with providers and department chairs in reviewing and enable SCIP compliance. Anesthesia staff managed preoperative antibiotics. SCIP-compliant order sets, venous thromboembolism pop-up alerts, and progress note templates were added to the electronic medical record. Standardized education was provided to explain SCIP requirements, review noncompliant cases, and update teams on SCIP performance. Data were captured from January 2009 to March 2014. Ten SCIP fallouts were reported for general surgery specialties in January 2013, when the SCIP compliance project launched. Specifically, colon-related surgery achieved 100 per cent compliance. Six months after implementation, overall SCIP compliance at our institution improved by 65 per cent (from 90.7-98.6% compliance).

  3. Critical Studies in Art and Design Education.

    ERIC Educational Resources Information Center

    Thistlewood, David, Ed.

    This book brings together British and U.S. contributions to the debate of a critical studies approach to art and design education. The approach links practice and appreciation. But critical differences exist in definitions of the term design, with the U.S. recognition of design as the use of principles and elements of art in works and a British…

  4. An explorative outcome study of CBT-based multidisciplinary treatment in a diverse group of refugees from a Danish treatment centre for rehabilitation of traumatized refugees.

    PubMed

    Palic, Sabina; Elklit, Ask

    2009-01-01

    A group of highly traumatized refugees n = 26 with diverse cultural backgrounds in a Danish Clinic for Traumatized Refugees (CTR) was assessed for symptoms of post-traumatic stress disorder and other aspects of general functioning. Patients were assessed at intake, after the end of treatment and six months later. The results point to very high symptom levels and a large need for treatment in this population. Psychiatric symptoms and their correlates were assessed with the Harvard Trauma Questionnaire (HTQ), the Trauma Symptom Checklist-23 (TSC-23), the Global Assessment of Function (GAF), and the Crisis Support Scale (CSS). The Trail Making Test A & B (TMT) was used as a screening instrument for acquired brain damage, with promising results. Indications of effectiveness from 16-18 weeks of multidisciplinary treatment (physiotherapy, pharmacotherapy, psychotherapy, and social counseling) were supported with small to medium effect sizes on most outcome measures. The results are discussed in terms of clinical implications and future treatment, assessment, and research needs. PMID:20065543

  5. An initiative in multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The optimization formulation is described in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.

  6. Recent advances in multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.

    1992-01-01

    A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.

  7. An initiative in multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1988-01-01

    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.

  8. Recycler ring conceptual design study

    SciTech Connect

    Jackson, G.

    1995-07-18

    The Tevatron Collider provides the highest center of mass energy collisions in the world. To fully exploit this unique tool, Fermilab is committed to a program of accelerator upgrades for the purpose of increasing the Collider luminosity. Over the past 7 years the luminosity has been increased from a peak of 1.6{times}10{sup 30}cm{sup {minus}2}sec{sup {minus}1} in 1989 to over 3{times}10{sup 31}cm{sup {minus}2}sec{sup {minus}1} during 1995. The Main Injector will supply a larger flux of protons for antiproton production and more intense proton bunches for use in the Collider, and this is expected to increase the peak luminosity to close to 1{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}. Further increases in luminosity will require additional upgrades to the Fermilab accelerator complex. This report documents the design of a new fixed-energy storage ring to be placed in the Main Injector tunnel which will provide an initial factor of 2 increase to 2{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}, and ultimately provide the basis for an additional order of magnitude luminosity increase up to 1{times}10{sup 33}cm{sup {minus}2}sec{sup {minus}1}.

  9. Vehicle systems design optimization study

    SciTech Connect

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  10. Interval Management Display Design Study

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Beyer, Timothy M.; Cooke, Stuart D.; Grant, Karlus A.

    2014-01-01

    In 2012, the Federal Aviation Administration (FAA) estimated that U.S. commercial air carriers moved 736.7 million passengers over 822.3 billion revenue-passenger miles. The FAA also forecasts, in that same report, an average annual increase in passenger traffic of 2.2 percent per year for the next 20 years, which approximates to one-and-a-half times the number of today's aircraft operations and passengers by the year 2033. If airspace capacity and throughput remain unchanged, then flight delays will increase, particularly at those airports already operating near or at capacity. Therefore it is critical to create new and improved technologies, communications, and procedures to be used by air traffic controllers and pilots. National Aeronautics and Space Administration (NASA), the FAA, and the aviation industry are working together to improve the efficiency of the National Airspace System and the cost to operate in it in several ways, one of which is through the creation of the Next Generation Air Transportation System (NextGen). NextGen is intended to provide airspace users with more precise information about traffic, routing, and weather, as well as improve the control mechanisms within the air traffic system. NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) Project is designed to contribute to the goals of NextGen, and accomplishes this by integrating three NASA technologies to enable fuel-efficient arrival operations into high-density airports. The three NASA technologies and procedures combined in the ATD-1 concept are advanced arrival scheduling, controller decision support tools, and aircraft avionics to enable multiple time deconflicted and fuel efficient arrival streams in high-density terminal airspace.

  11. Vocational rehabilitation: a multidisciplinary intervention.

    PubMed

    Gobelet, C; Luthi, F; Al-Khodairy, A T; Chamberlain, M A

    2007-09-15

    Vocational rehabilitation is by definition a multidisciplinary intervention in a process linked to the facilitation of return to work or to the prevention of loss of the work. Clinical staff in contact with a person who has lost his job (general practitioner, specialized physician) must promote vocational rehabilitation. Medical rehabilitation for those with disabilities, whether new or old, has to be followed without delay by vocational rehabilitation. It is even better if these two intertwined processes are overlapping. They involve many professionals including physiotherapists, occupational therapists, psychologists, vocational trainers, job counsellors, teachers, case-managers, job placement agencies. Vocational rehabilitation has a financial cost, borne by many state organizations (security, social system, social affairs) as well as by employers and private insurances, which are in case of accident, concerned by this process. However, the evidence suggests that this is recouped 2- to 10-fold as suggested by the British Society of Rehabilitation Medicine.

  12. [Multidisciplinary tailoring of therapy of metastatic colon cancer].

    PubMed

    Österlund, Pia; Isoniemi, Helena; Scheinin, Tom; Ristimäki, Ari; Lantto, Eila

    2016-01-01

    Treatment of colon cancer requires multidisciplinary team work. The multitude of therapies in metastatic colon cancer have led to longer overall survival with fewer symptoms. Median survival has increased from 5 months with the best supportive care to 30-40 months in randomized studies, even with curative treatment in some patients. Tailoring of the treatment is best done by a multidisciplinary team considering radiotherapy and operation of the primary tumor, resection of liver, lung and peritoneal metastases, medical treatment alternatives, palliative care, ablative methods etc. Without skillful surgeons, oncologists, pathologists, geneticists, radiologists etc. the best treatment opportunities may be missed. PMID:27483635

  13. Observational study of patients with gastroenteropancreatic and bronchial neuroendocrine tumors in Argentina: Results from the large database of a multidisciplinary group clinical multicenter study

    PubMed Central

    O’CONNOR, JUAN MANUEL; MARMISSOLLE, FABIANA; BESTANI, CLAUDIA; PESCE, VERONICA; BELLI, SUSANA; DOMINICHINI, ENZO; MENDEZ, GUILLERMO; PRICE, PAOLA; GIACOMI, NORA; PAIROLA, ALEJANDRO; LORIA, FERNANDO SÁNCHEZ; HUERTAS, EDUARDO; MARTIN, CLAUDIO; PATANE, KARINA; POLERI, CLAUDIA; ROSENBERG, MOISES; CABANNE, ANA; KUJARUK, MIRTA; CAINO, ANALIA; ZAMORA, VICTOR; MARIANI, JAVIER; DIOCA, MARIANO; PARMA, PATRICIA; PODESTA, GUSTAVO; ANDRIANI, OSCAR; GONDOLESI, GABRIEL; ROCA, ENRIQUE

    2014-01-01

    % confidence interval, 58.0–71.4%) in GEP-NET and 100.0% in typical carcinoid of the lung. This observational, non-interventional, longitudinal study aimed to accumulate relevant information regarding the epidemiology, clinical presentation and current practices in the treatment of NET patients in Argentina, providing insight into regional differences and patterns of care in this heterogeneous disease. PMID:25054030

  14. Mobile Variable Depth Sampling System Design Study

    SciTech Connect

    BOGER, R.M.

    2000-08-25

    A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study.

  15. Lunar NTR vehicle design and operations study

    NASA Technical Reports Server (NTRS)

    Hodge, John

    1993-01-01

    The results of a lunar nuclear thermal rocket (NTR) vehicle design and operations study are presented in text and graphic form. The objectives of the study were to evaluate the potential applications of a specific NTR design to past and current (First Lunar Outpost) mission profiles for piloted and cargo lunar missions, and to assess the applicability of utilizing lunar vehicle design concepts for Mars missions.

  16. Undergraduate Studies in Earthquake Information Technology (UseIT): Preparing Students for the Twenty-First Century Work Force via a Multidisciplinary and Collaborative Learning Experience

    NASA Astrophysics Data System (ADS)

    Degroot, R. M.; Jordan, T. H.; Benthien, M. L.; Ihrig, M.; Berti, R.

    2009-12-01

    UseIT is one of the three undergraduate research programs sponsored by the Southern California Earthquake Center (SCEC). The program allows students to work in multi-disciplinary collaborative teams to tackle a scientific “Grand Challenge.” The topic varies each year but it always entails performing computer science research that is needed by earthquake scientists, educators, and other target audiences. The program allows undergraduates to use the advanced tools of information technology to solve important problems in interdisciplinary earthquake research. Since the program began in 2002, 145 students have participated in UseIT. The program stresses problem solving and interdisciplinary cross training. A key aspect of the UseIT program is its flexible, yet structured, team approach. Students share their diverse skills and interests, creating a powerful synergy through this peer mentoring. The majority of UseIT interns have considerable computer science skill or aptitude, but successful UseIT interns have hailed from nearly three-dozen disciplines, all class levels, and all skill levels. Successful UseIT interns have in common a willingness to step outside their comfort zones and try new things. During the 2009 internship the focus of the program was to deliver SCEC Virtual Display of Objects (VDO) images and animations of faults and earthquake sequences to SCEC, the Earthquake Country Alliance, and other virtual organizations via a content management system that captures the metadata and guides the user. SCEC-VDO is the SCEC intern-developed visualization software that allows the user to see earthquake related phenomena in three and four dimensions. The 2009 Grand Challenge had special relevance for the interns because the products they created were used for The Great California ShakeOut. This talk will discuss lessons learned from this program, how it addresses the needs of the 21st century STEM work force, and highlights of the 2009 internship.

  17. Multidisciplinary Optimization for Aerospace Using Genetic Optimization

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Hahn, Edward E.; Herrera, Claudia Y.

    2007-01-01

    In support of the ARMD guidelines NASA's Dryden Flight Research Center is developing a multidisciplinary design and optimization tool This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Optimization has made its way into many mainstream applications. For example NASTRAN(TradeMark) has its solution sequence 200 for Design Optimization, and MATLAB(TradeMark) has an Optimization Tool box. Other packages, such as ZAERO(TradeMark) aeroelastic panel code and the CFL3D(TradeMark) Navier-Stokes solver have no built in optimizer. The goal of the tool development is to generate a central executive capable of using disparate software packages ina cross platform network environment so as to quickly perform optimization and design tasks in a cohesive streamlined manner. A provided figure (Figure 1) shows a typical set of tools and their relation to the central executive. Optimization can take place within each individual too, or in a loop between the executive and the tool, or both.

  18. Statistical design and evaluation of biomarker studies.

    PubMed

    Dobbin, Kevin K

    2014-01-01

    We review biostatistical aspects of biomarker studies, including design and analysis issues, covering the range of settings required for translational research-from early exploratory studies through clinical trials.

  19. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. An optimization framework call improve the design process while reducing time and costs. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. Since the release of version 4.0, the MDO Branch has gained experience with the iSIGHT framework developed by Engineous Software, Inc. This paper describes experiences with four aerospace applications: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. All applications have been successfully tested using the iSIGHT framework, except for the aerospike nozzle problem, which is in progress. Brief overviews of each problem are provided. The problem descriptions include the number and type of disciplinary codes, as well as all estimate of the multidisciplinary analysis execution time. In addition, the optimization methods, objective functions, design variables, and design constraints are described for each problem. Discussions on the experience gained and lessons learned are provided for each problem. These discussions include the advantages and disadvantages of using the iSIGHT framework for each case as well as the ease of use of various advanced features. Potential areas of improvement are identified.

  20. The Convoy Model: Explaining Social Relations From a Multidisciplinary Perspective

    PubMed Central

    Antonucci, Toni C.

    2014-01-01

    Purpose of the Study: Social relations are a key aspect of aging and the life course. In this paper, we trace the scientific origins of the study of social relations, focusing in particular on research grounded in the convoy model. Design and Methods: We first briefly review and critique influential historical studies to illustrate how the scientific study of social relations developed. Next, we highlight early and current findings grounded in the convoy model that have provided key insights into theory, method, policy, and practice in the study of aging. Results: Early social relations research, while influential, lacked the combined approach of theoretical grounding and methodological rigor. Nevertheless, previous research findings, especially from anthropology, suggested the importance of social relations in the achievement of positive outcomes. Considering both life span and life course perspectives and grounded in a multidisciplinary perspective, the convoy model was developed to unify and consolidate scattered evidence while at the same time directing future empirical and applied research. Early findings are summarized, current evidence presented, and future directions projected. Implications: The convoy model has provided a useful framework in the study of aging, especially for understanding predictors and consequences of social relations across the life course. PMID:24142914

  1. E-Learning and Development: Lessons from Multi-Disciplinary Capacity Strengthening

    ERIC Educational Resources Information Center

    Babu, Suresh Chandra

    2014-01-01

    This paper documents the experience and lessons from implementing an e-learning program aimed at creating multidisciplinary research capacity. It presents a case study of bringing together a multidisciplinary group of professionals on-line to learn the skills needed to be a successful researcher in the context of HIV/AIDS and food security…

  2. Assessing and evaluating multidisciplinary translational teams: a mixed methods approach.

    PubMed

    Wooten, Kevin C; Rose, Robert M; Ostir, Glenn V; Calhoun, William J; Ameredes, Bill T; Brasier, Allan R

    2014-03-01

    A case report illustrates how multidisciplinary translational teams can be assessed using outcome, process, and developmental types of evaluation using a mixed-methods approach. Types of evaluation appropriate for teams are considered in relation to relevant research questions and assessment methods. Logic models are applied to scientific projects and team development to inform choices between methods within a mixed-methods design. Use of an expert panel is reviewed, culminating in consensus ratings of 11 multidisciplinary teams and a final evaluation within a team-type taxonomy. Based on team maturation and scientific progress, teams were designated as (a) early in development, (b) traditional, (c) process focused, or (d) exemplary. Lessons learned from data reduction, use of mixed methods, and use of expert panels are explored.

  3. A Multidisciplinary Engineering Summer School in an Industrial Setting

    ERIC Educational Resources Information Center

    Larsen, Peter Gorm; Fernandes, Joao M.; Habel, Jacek; Lehrskov, Hanne; Vos, Richard J. C.; Wallington, Oliver; Zidek, Jan

    2009-01-01

    Most university-level engineering studies produce technically skilled engineers. However, typically students face several difficulties when working in multidisciplinary teams when they initiate their industrial careers. In a globalised world, it becomes increasingly important that engineers are capable of collaborating across disciplinary…

  4. Multi-Disciplinary Learning through a Database Development Project

    ERIC Educational Resources Information Center

    Ng, Vincent; Lau, Chloe; Shum, Pearl

    2012-01-01

    Recently, there are many good examples of how multi-disciplinary learning can support students to learn collaboratively and not solely focus on a single professional sector. During the Fall 2011 and Spring 2012 semesters, we have attempted to gather students studying different professional domains together. Students from the Department of…

  5. The Interplay of Conflict and Analogy in Multidisciplinary Teams

    ERIC Educational Resources Information Center

    Paletz, Susannah B. F.; Schunn, Christian D.; Kim, Kevin H.

    2013-01-01

    Creative teamwork in multidisciplinary teams is a topic of interest to cognitive psychologists on the one hand, and to both social and organizational psychologists on the other. However, the interconnections between cognitive and social layers have been rarely explored. Drawing on mental models and dissonance theories, the current study takes a…

  6. Decisions about Product Safety. A Multidisciplinary Teaching Unit.

    ERIC Educational Resources Information Center

    Procter and Gamble Educational Services, Cincinnati, OH.

    A multidisciplinary educational unit featuring product safety decisions made by businesses and consumers is presented. teach critical thinking and decision making while supplementing the science, home economics, social studies, and economics curricula. The activities rely extensively, though not exclusively, on Procter & Gamble's experiences in…

  7. A Multidisciplinary Training Team in the Public Schools

    ERIC Educational Resources Information Center

    Buktenica, Norman A.

    1970-01-01

    A multidisciplinary team approach to assessing needs and working toward prevention of school maladaptation are fostered, instead of responding to crises via a case study approach. Children are viewed in the social context of the classroom, the position of the teacheris bolstered, participation of parents is encouraged, and more cooperative use of…

  8. ACSYNT inner loop flight control design study

    NASA Technical Reports Server (NTRS)

    Bortins, Richard; Sorensen, John A.

    1993-01-01

    The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between

  9. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  10. Preliminary design study of lunar housing configurations

    NASA Technical Reports Server (NTRS)

    Reynolds, K. H.

    1992-01-01

    A preliminary design study assesses various configurations for habitation of the lunar surface. The study assumes an initial 4-man habitation module expandable to a 48-man concept. Through the numerous coupling combinations of identical modules, five basic configuration types are identified. A design model presents each configuration in light of certain issues. The issues include circulation, internal and external spatial characteristics, functional organizations, and future growth potential. The study discusses the attributes, potentials, and unique requirements of each configuration.

  11. [Irritable Bowel Syndrome treatment: a multidisciplinary approach].

    PubMed

    Shani-Zur, Dana; Wolkomir, Keren

    2015-01-01

    Irritable Bowel Syndrome affects 9-23% of the general population. This diagnosis contributes to more frequent doctor visits and multiple consultations by patients. The current approach to treating IBS is symptomatic and consists of a regimen of first line pharmacological treatment options; the use of anti-depressant drugs is also common. The efficiency of complementary medicine in the treatment of IBS has been studied in the last few years. Qualitative multidisciplinary approach studies, using personalized medicines with complementary therapies are needed. We present the case of a 39-year-old woman with a diagnosis of IBS since 2009, who complained about gastrointestinal symptoms since the age of 13 and severe episodes of spasmodic stomach aches in the last year self-ranked as 10, on a 0-10 scale; 3-4 episodes a month, which last for 5 days, accompanied by severe flatulence and bloating. In addition, she has constipation (one bowel movement every 10 days), alternating with multiple diarrheic bowel movements (6 times a day). Using a multidisciplinary approach, including medicinal care, Chinese medicine, reflexology and naturopathy resulted in significant improvement in symptoms and quality of life, as well as gradual reduction of drugs, approved by her physician. Stomach ache self-ranked now as 1, on a 0-10 scale; and flatulence and bloating self-ranked as mild. Bowel movement frequency increased and is now every other day. She no longer has diarrheic and/or multiple bowel movements. This case report emphasizes the importance of integrative treatment in IBS and its benefit in improving patients' quality of life.

  12. Mirror Advanced Reactor Study interim design report

    SciTech Connect

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  13. Systematic Review of Multidisciplinary Chronic Pain Treatment Facilities.

    PubMed

    Fashler, Samantha R; Cooper, Lynn K; Oosenbrug, Eric D; Burns, Lindsay C; Razavi, Shima; Goldberg, Lauren; Katz, Joel

    2016-01-01

    This study reviewed the published literature evaluating multidisciplinary chronic pain treatment facilities to provide an overview of their availability, caseload, wait times, and facility characteristics. A systematic literature review was conducted using PRISMA guidelines following a search of MEDLINE, PsycINFO, and CINAHL databases. Inclusion criteria stipulated that studies be original research, survey more than one pain treatment facility directly, and describe a range of available treatments. Fourteen articles satisfied inclusion criteria. Results showed little consistency in the research design used to describe pain treatment facilities. Availability of pain treatment facilities was scarce and the reported caseloads and wait times were generally high. A wide range of medical, physical, and psychological pain treatments were available. Most studies reported findings on the percentage of practitioners in different health care professions employed. Future studies should consider using more comprehensive search strategies to survey facilities, improving clarity on what is considered to be a pain treatment facility, and reporting on a consistent set of variables to provide a clear summary of the status of pain treatment facilities. This review highlights important information for policymakers on the scope, demand, and accessibility of pain treatment facilities. PMID:27445618

  14. Systematic Review of Multidisciplinary Chronic Pain Treatment Facilities

    PubMed Central

    Fashler, Samantha R.; Cooper, Lynn K.; Oosenbrug, Eric D.; Burns, Lindsay C.; Razavi, Shima; Goldberg, Lauren; Katz, Joel

    2016-01-01

    This study reviewed the published literature evaluating multidisciplinary chronic pain treatment facilities to provide an overview of their availability, caseload, wait times, and facility characteristics. A systematic literature review was conducted using PRISMA guidelines following a search of MEDLINE, PsycINFO, and CINAHL databases. Inclusion criteria stipulated that studies be original research, survey more than one pain treatment facility directly, and describe a range of available treatments. Fourteen articles satisfied inclusion criteria. Results showed little consistency in the research design used to describe pain treatment facilities. Availability of pain treatment facilities was scarce and the reported caseloads and wait times were generally high. A wide range of medical, physical, and psychological pain treatments were available. Most studies reported findings on the percentage of practitioners in different health care professions employed. Future studies should consider using more comprehensive search strategies to survey facilities, improving clarity on what is considered to be a pain treatment facility, and reporting on a consistent set of variables to provide a clear summary of the status of pain treatment facilities. This review highlights important information for policymakers on the scope, demand, and accessibility of pain treatment facilities. PMID:27445618

  15. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley is investigating frameworks for supporting multidisciplinary analysis and optimization research. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. This year, the MDO Branch has gained experience with the iSIGHT framework. This paper describes experiences with four aerospace applications, including: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. Brief overviews of each problem are provided, including the number and type of disciplinary codes and computation time estimates. In addition, the optimization methods, objective functions, design variables, and constraints are described for each problem. For each case, discussions on the advantages and disadvantages of using the iSIGHT framework are provided as well as notes on the ease of use of various advanced features and suggestions for areas of improvement.

  16. Cost studies for commercial fuselage crown designs

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Smith, P. J.; Truslove, G.; Willden, K. S.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Studies were conducted to evaluate the cost and weight potential of advanced composite design concepts in the crown region of a commercial transport. Two designs from each of three design families were developed using an integrated design-build team. A range of design concepts and manufacturing processes were included to allow isolation and comparison of cost centers. Detailed manufacturing/assembly plans were developed as the basis for cost estimates. Each of the six designs was found to have advantages over the 1995 aluminum benchmark in cost and weight trade studies. Large quadrant panels and cobonded frames were found to save significant assembly labor costs. Comparisons of high- and intermediate-performance fiber systems were made for skin and stringer applications. Advanced tow placement was found to be an efficient process for skin lay up. Further analysis revealed attractive processes for stringers and frames. Optimized designs were informally developed for each design family, combining the most attractive concepts and processes within that family. A single optimized design was selected as the most promising, and the potential for further optimization was estimated. Technical issues and barriers were identified.

  17. High-frequency study of epibenthic megafaunal community dynamics in Barkley Canyon: A multi-disciplinary approach using the NEPTUNE Canada network

    NASA Astrophysics Data System (ADS)

    Matabos, Marjolaine; Bui, Alice O. V.; Mihály, Steven; Aguzzi, Jacopo; Juniper, S. Kim; Ajayamohan, R. S.

    2014-02-01

    the importance of continuous sampling at high-frequency over long durations by enhancing our ability to detect species activity patterns and will contribute to the design of studies and experiments to understand the interaction of factors acting at multiple temporal scales in submarine canyons.

  18. [Tokophobia--a multidisciplinary problem].

    PubMed

    Billert, Hanna

    2007-10-01

    Pathological fear of childbirth known as "tokophobia" affects about 6-10% pregnancies and is of concern mainly because of remarkable sequele regarding women's morbidity, the neurobehavioral development of their children, and cesarean section on maternal request (CSMR). Fear of labor is a multidimensional problem involving a number of biological, psychological and social background factors and may be divided into primary and secondary tokophobia and tokophobia as a symptom of depression. Fear of childbirth is closely related to the fear of labor pain. It appears that women who experience fear, suffer from more pain due to alterations in the mechanisms of pregnancy induced analgesia. Despite no relevant connection between tokophobia and request for effective analgesia for labor pain relief, neuraxial techniques should always be available, especially to women with increased levels of negative emotions. However, epidural analgesia itself may increase fear level at the end and after labor and delivery. The mainstay of tokphobia treatment constitutes psychotherapeutic methods, which decrease negative labor experience; their impact on CSMR is controversial. There is a strong need for multidisciplinary approach to tokophobia due to its complexity and obstetric, anesthesiological, psychological and psychiatric implications.

  19. Multidisciplinary care in cystic fibrosis: a clinical-nutrition review.

    PubMed

    Haack, A; Carvalho Garbi Novaes, M R

    2012-01-01

    The multidisciplinary care, at different referral centers of cystic fibrosis, is aimed at monitoring and treating cystic fibrosis patients. Mortality attributed to this hereditary disease is high, since it affects the exocrine glands, involving multiple organs, and evolves in a chronic, progressive way. However, systemized care and the improved, shared understanding of gastroenterologists, nutritionists and pulmonologists, contribute to prolonged survival and abated morbimortality. The aim of this study is to describe the main aspects of clinical and nutritional intervention in cystic fibrosis patients so that monitoring by a multidisciplinary team is optimized and performed as early as possible. The review was carried out on articles indexed in the Medline, Lilacs, SciELO, Current Contents and Cochrane databases, finding 189 articles in Portuguese, English and Spanish, with emphasis on articles published between 2000 and 2011. Due to the scientific relevant contribution, some publications before 2000 were included totalized 77 related to the multidisciplinary care. The reviewed studies suggest that multidisciplinary care is essential for knowledge integration in order to impose permanent update of scientific information, thereby contributing to the development of intervention strategies that enhance survival and motivate the development of skills to cope with the complex treatment regimen that is necessary for cystic fibrosis treatment and prevention of related complications.

  20. Multidisciplinary care in cystic fibrosis: a clinical-nutrition review.

    PubMed

    Haack, A; Carvalho Garbi Novaes, M R

    2012-01-01

    The multidisciplinary care, at different referral centers of cystic fibrosis, is aimed at monitoring and treating cystic fibrosis patients. Mortality attributed to this hereditary disease is high, since it affects the exocrine glands, involving multiple organs, and evolves in a chronic, progressive way. However, systemized care and the improved, shared understanding of gastroenterologists, nutritionists and pulmonologists, contribute to prolonged survival and abated morbimortality. The aim of this study is to describe the main aspects of clinical and nutritional intervention in cystic fibrosis patients so that monitoring by a multidisciplinary team is optimized and performed as early as possible. The review was carried out on articles indexed in the Medline, Lilacs, SciELO, Current Contents and Cochrane databases, finding 189 articles in Portuguese, English and Spanish, with emphasis on articles published between 2000 and 2011. Due to the scientific relevant contribution, some publications before 2000 were included totalized 77 related to the multidisciplinary care. The reviewed studies suggest that multidisciplinary care is essential for knowledge integration in order to impose permanent update of scientific information, thereby contributing to the development of intervention strategies that enhance survival and motivate the development of skills to cope with the complex treatment regimen that is necessary for cystic fibrosis treatment and prevention of related complications. PMID:22732957

  1. Research Design in Marital Adjustment Studies.

    ERIC Educational Resources Information Center

    Croake, James W.; Lyon, Rebecca S.

    1978-01-01

    The numerous marital adjustment studies which exist in the literature are confounded by basic design problems. Marital stability should be the baseline for data. It is then possible to discuss "happiness,""success,""adjustment," and "satisfaction." (Author)

  2. Design optimization studies using COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Pitrof, Stephen M.; Bharatram, G.; Venkayya, Vipperla B.

    1993-01-01

    The purpose of this study is to create, test and document a procedure to integrate mathematical optimization algorithms with COSMIC NASTRAN. This procedure is very important to structural design engineers who wish to capitalize on optimization methods to ensure that their design is optimized for its intended application. The OPTNAST computer program was created to link NASTRAN and design optimization codes into one package. This implementation was tested using two truss structure models and optimizing their designs for minimum weight, subject to multiple loading conditions and displacement and stress constraints. However, the process is generalized so that an engineer could design other types of elements by adding to or modifying some parts of the code.

  3. Multidisciplinary Environments: A History of Engineering Framework Development

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Gillian, Ronnie E.

    2006-01-01

    This paper traces the history of engineering frameworks and their use by Multidisciplinary Design Optimization (MDO) practitioners. The approach is to reference papers that have been presented at one of the ten previous Multidisciplinary Analysis and Optimization (MA&O) conferences. By limiting the search to MA&O papers, the authors can (1) identify the key ideas that led to general purpose MDO frameworks and (2) uncover roadblocks that delayed the development of these ideas. The authors make no attempt to assign credit for revolutionary ideas or to assign blame for missed opportunities. Rather, the goal is to trace the various threads of computer architecture and software framework research and to observe how these threads contributed to the commercial framework products available today.

  4. The Study Designed by a Committee

    PubMed Central

    Henry, David B.; Farrell, Albert D.

    2009-01-01

    This article describes the research design of the Multisite Violence Prevention Project (MVPP), organized and funded by the National Center for Injury Prevention and Control (NCIPC) at the Centers for Disease Control and Prevention (CDC). CDC's objectives, refined in the course of collaboration among investigators, were to evaluate the efficacy of universal and targeted interventions designed to produce change at the school level. The project's design was developed collaboratively, and is a 2 × 2 cluster-randomized true experimental design in which schools within four separate sites were assigned randomly to four conditions: (1) no-intervention control group, (2) universal intervention, (3) targeted intervention, and (4) combined universal and targeted interventions. A total of 37 schools are participating in this study with 8–12 schools per site. The impact of the interventions on two successive cohorts of sixth-grade students will be assessed based on multiple waves of data from multiple sources of information, including teachers, students, parents, and archival data. The nesting of students within teachers, families, schools and sites created a number of challenges for designing and implementing the study. The final design represents both resolution and compromise on a number of creative tensions existing in large-scale prevention trials, including tensions between cost and statistical power, and between internal and external validity. Strengths and limitations of the final design are discussed. PMID:14732183

  5. Controlled air incinerator conceptual design study

    SciTech Connect

    Not Available

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.

  6. Engineering study for ISSTRS design concept

    SciTech Connect

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  7. Office Design: A Study of Environment.

    ERIC Educational Resources Information Center

    Manning, Peter, Ed.

    Reporting upon a study of environment which was based on the design of office buildings and office space, the study forms part of a continuing program of environmental research sponsored by Pilkington Brothers Limited of St. Helens, England. In this report the word 'environment' is used in the sense of the sum of the physical and emotional…

  8. Lowering Entry Barriers for Multidisciplinary Cyber(e)-Infrastructures

    NASA Astrophysics Data System (ADS)

    Nativi, S.

    2012-04-01

    Multidisciplinarity is more and more important to study the Earth System and address Global Changes. To achieve that, multidisciplinary cyber(e)-infrastructures are an important instrument. In the last years, several European, US and international initiatives have been started to carry out multidisciplinary infrastructures, including: the Spatial Information in the European Community (INSPIRE), the Global Monitoring for Environment and Security (GMES), the Data Observation Network for Earth (DataOne), and the Global Earth Observation System of Systems (GEOSS). The majority of these initiatives are developing service-based digital infrastructures asking scientific Communities (i.e. disciplinary Users and data Producers) to implement a set of standards for information interoperability. For scientific Communities, this has represented an entry barrier which has proved to be high, in several cases. In fact, both data Producers and Users do not seem to be willing to invest precious resources to become expert on interoperability solutions -on the contrary, they are focused on developing disciplinary and thematic capacities. Therefore, an important research topic is lowering entry barriers for joining multidisciplinary cyber(e)-Infrastructures. This presentation will introduce a new approach to achieve multidisciplinary interoperability underpinning multidisciplinary infrastructures and lowering the present entry barriers for both Users and data Producers. This is called the Brokering approach: it extends the service-based paradigm by introducing a new a Brokering layer or cloud which is in charge of managing all the interoperability complexity (e.g. data discovery, access, and use) thus easing Users' and Producers' burden. This approach was successfully experimented in the framework of several European FP7 Projects and in GEOSS.

  9. Multidisciplinary approach to the challenge of hemostasis.

    PubMed

    Levy, Jerrold H; Dutton, Richard P; Hemphill, J Claude; Shander, Aryeh; Cooper, David; Paidas, Michael J; Kessler, Craig M; Holcomb, John B; Lawson, Jeffrey H

    2010-02-01

    A multidisciplinary panel consisting of experts chosen by the 2 chairs of the group representing experts in anesthesiology, blood banking, hematology, critical care medicine, and various surgical disciplines (trauma, cardiac, pediatric, neurologic, obstetrics, and vascular) convened in January 2008 to discuss hemostasis and management of the bleeding patient across different clinical settings, with a focus on perioperative considerations. Although there are many ways to define hemostasis, one clinical definition would be control of bleeding without the occurrence of pathologic thrombotic events (i.e., when balance among procoagulant, anticoagulant, fibrinolytic, and antifibrinolytic activities is achieved). There are common hemostatic challenges that include lack of scientific evidence and standardized guidelines for the use of therapeutic drugs, need for reliable and rapid laboratory tools for measuring hemostasis, and individual variability. Clinically meaningful and accurate real-time laboratory data reflecting a patient's hemostatic status are needed to guide treatment decisions. Current available routine laboratory tests of hemostasis (e.g., platelet count, prothrombin time/international normalized ratio, and activated partial thromboplastin time) do not reflect the complexity of in vivo hemostasis and can mislead the clinician. Although point-of-care coagulation monitoring tests including measures of thromboelastography/elastometry provide insight into overall hemostatic status, they are time-consuming to perform, complex to interpret, and require trained personnel. There is a particular need to develop laboratory tests that can measure the effects of anticoagulant and antiplatelet agents for individual patients, predict bleeding complications, and guide therapy when and if treatment with blood products or pharmacologic drugs is required. Formation of an organization comprised of specialists who treat bleeding patients will foster multidisciplinary

  10. Multidisciplinary education in medical informatics--a course for medical and informatics students.

    PubMed

    Breil, Bernhard; Fritz, Fleur; Thiemann, Volker; Dugas, Martin

    2010-01-01

    Design and implementation of healthcare information systems affect both computer scientists and health care professionals. In this paper we present our approach to integrate the management of information systems in the education of healthcare professionals and computer scientists alike. We designed a multidisciplinary course for medical and informatics students to provide them with practical experience concerning the design and implementation of medical information systems. This course was implemented in the curriculum of the University of Münster in 2009. The key element is a case study that is performed by small teams of medical and informatics students. A practical course on management of information systems can be useful for medical students who want to enhance their knowledge in information systems as well as for informatics students with particular interests in medicine.

  11. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  12. Experimental design of a waste glass study

    SciTech Connect

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150{degrees}C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases.

  13. Study designs in thoracic surgery research

    PubMed Central

    Terzi, Alberto; Bertolaccini, Luca

    2016-01-01

    In this short review, we’ll try to specify the differences between evaluation procedures of groups of data, as they present to researchers. The way and time data are gathered defines the type of study is going to shape. When we observe a cluster of data without deliberately interfering with the process we mean to evaluate, we perform an observational study. Observational studies are the main topic of this issue. Upon the contrary, experimental studies imply the direct action of the observer on the study population in order to define the role of a given exposure. The topic of experimental study design will be covered in another issue of this series.

  14. Phenotypic extremes in rare variant study designs.

    PubMed

    Peloso, Gina M; Rader, Daniel J; Gabriel, Stacey; Kathiresan, Sekar; Daly, Mark J; Neale, Benjamin M

    2016-06-01

    Currently, next-generation sequencing studies aim to identify rare and low-frequency variation that may contribute to disease. For a given effect size, as the allele frequency decreases, the power to detect genes or variants of interest also decreases. Although many methods have been proposed for the analysis of such data, study design and analytic issues still persist in data interpretation. In this study we present sequencing data for ABCA1 that has known rare variants associated with high-density lipoprotein cholesterol (HDL-C). We contrast empirical findings from two study designs: a phenotypic extreme sample and a population-based random sample. We found differing strengths of association with HDL-C across the two study designs (P=0.0006 with n=701 phenotypic extremes vs P=0.03 with n=1600 randomly sampled individuals). To explore this apparent difference in evidence for association, we performed a simulation study focused on the impact of phenotypic selection on power. We demonstrate that the power gain for an extreme phenotypic selection study design is much greater in rare variant studies than for studies of common variants. Our study confirms that studying phenotypic extremes is critical in rare variant studies because it boosts power in two ways: the typical increases from extreme sampling and increasing the proportion of relevant functional variants ascertained and thereby tested for association. Furthermore, we show that when combining statistical evidence through meta-analysis from an extreme-selected sample and a second separate population-based random sample, power is lower when a traditional sample size weighting is used compared with weighting by the noncentrality parameter. PMID:26350511

  15. Strengthening Multidisciplinary Research on Climate and Environmental Change

    NASA Astrophysics Data System (ADS)

    Beer, Tom; Li, Jianping; Alverson, Keith

    2014-08-01

    The difficulty with multidisciplinary research is finding common ground for scientists, whose approach to a particular scientific problem can differ radically. For example, there is agreement between the geophysical community and the food science and technology community that food security is an important issue. However, the climate change community sees possible solutions coming from more detailed studies on the links between climate change and agriculture, whereas the food science community sees possible solutions emerging from studies of food logistics and supply chains.

  16. Multi-Disciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  17. A systematic evaluation of a multidisciplinary social work-lawyer elder mistreatment intervention model.

    PubMed

    Rizzo, Victoria M; Burnes, David; Chalfy, Amy

    2015-01-01

    This study introduces a conceptually based, systematic evaluation process employing multivariate techniques to evaluate a multidisciplinary social work-lawyer intervention model (JASA-LEAP). Logistic regression analyses were used with a random sample of case records (n = 250) from three intervention sites. Client retention, program fidelity, and exposure to multidisciplinary services were significantly related to reduction in mistreatment risk at case closure. Female gender, married status, and living with perpetrator significantly predicted unfavorable outcomes. This study extends the elder mistreatment program evaluation literature beyond descriptive/bivariate evaluation strategies. Findings suggest that a multidisciplinary social work-lawyer elder mistreatment intervention model is a successful approach.

  18. Instructional Design by Novice Designers: Two Empirical Studies

    ERIC Educational Resources Information Center

    Verstegen, Danielle; Barnard, Yvonne; Pilot, Albert

    2008-01-01

    In many cases advanced instructional products, such as computer-based training, e-learning programs, simulations, and simulators are not designed by experienced instructional designers, but by novices: subject matter experts, teachers, instructors, or inexperienced designers. The literature indicates that these novices do not always have the…

  19. Current and future perspectives on lumbar degenerative disc disease: a UK survey exploring specialist multidisciplinary clinical opinion

    PubMed Central

    McGregor, Alison H

    2016-01-01

    Objectives Despite lumbar degenerative disc disease (LDDD) being significantly associated with non-specific low back pain and effective treatment remaining elusive, specialist multidisciplinary clinical stakeholder opinion remains unexplored. The present study examines the views of such experts. Design A reliable and valid electronic survey was designed to establish trends using theoretical constructs relating to current assessment and management practices. Clinicians from the Society of Back Pain Research (SBPR) UK were invited to take part. Quantitative data were collated and coded using Bristol Online Surveys (BOS) software, and content analysis was used to systematically code and categorise qualitative data. Setting Specialist multidisciplinary spinal interest group in the UK. Participants 38/141 clinically active, multidisciplinary SBPR members with specialist spinal interest participated. Among them, 84% had >9 years postgraduate clinical experience. Interventions None. Outcome measures Frequency distributions were used to establish general trends in quantitative data. Qualitative responses were coded and categorised in relation to each theme and percentage responses were calculated. Results LDDD symptom recurrence, in the absence of psychosocial influence, was associated with physical signs of joint stiffness (26%), weakness (17%) and joint hypermobility (6%), while physical factors (21%) and the ability to adapt (11%) were postulated as reasons why some experience pain and others do not. No one management strategy was supported exclusively or with consensus. Regarding effective modalities, there was no significant difference between allied health professional and medic responses (p=0.1–0.8). The future of LDDD care was expressed in terms of improvements in patient communication (35%), patient education (38%) and treatment stratification (24%). Conclusions Results suggest that multidisciplinary expert spinal clinicians appear to follow UK

  20. Identifying the key elements of an education package to up-skill multidisciplinary adult specialist palliative care teams caring for young adults with life-limiting conditions: an online Delphi study

    PubMed Central

    Sivell, Stephanie; Lidstone, Victoria; Taubert, Mark; Thompson, Catherine; Nelson, Annmarie

    2015-01-01

    Objectives To collect the views of experts to inform the development of an education package for multidisciplinary adult specialist palliative care (SPC) teams caring for young people with life-limiting conditions. Methods A modified online Delphi process collated expert opinion on format, delivery and content of an education package to up-skill adult SPC teams. Round 1 participants (n=44) answered free-text questions, generating items for Round 2. In Round 2, 68 participants rated the extent to which they agreed/disagreed with the items on 5-point Likert-type scales. Median and mean scores assessed the importance of each item. IQR scores assessed level of consensus for each item; items lacking consensus were rerated by 35 participants in Round 3. Results In the Delphi, consensus was reached on a range of suggested formats, on who should deliver the training, and on several clinical, psychosocial and practical topics. Conclusions Development of a continuous/rolling programme of education, tailored for content and mode of delivery and incorporated into working practice is recommended. As a direct outcome of the results of this study, a series of six linked study days has been established, focusing specifically on the issues around caring for young adults with life-limiting conditions and palliative care needs. PMID:24670554

  1. Designing a Futuristic Business Studies Curriculum

    ERIC Educational Resources Information Center

    Mei, Chiew Wye; Siraj, Saedah

    2013-01-01

    This paper is a discourse on the theoretical aspects underpinning the design of the Business Studies curriculum domain. It draws on recent shifts in the business and educational environment of Malaysia, and maps out the methodology and method for expanding and revamping the core ground of the discipline. Using the pragmatic worldview stance, this…

  2. Overall Rationale and Design of Study.

    ERIC Educational Resources Information Center

    Hegsted, D. Mark

    This paper outlines research designed to establish dietary correlates of malnutrition, and questions the common assumption that high protein foods should be used as dietary supplements in humans. Because thorough investigation of dietary needs in children is ethically unfeasible, squirrel monkeys were used in the research to study the biological…

  3. Deepening Kindergarteners' Science Vocabulary: A Design Study

    ERIC Educational Resources Information Center

    Parsons, Allison Ward; Bryant, Camille Lawrence

    2016-01-01

    Early, effective instruction to introduce both science vocabulary and general academic language may help children build a strong conceptual and linguistic foundation for later instruction. In this study, a design research intervention was employed to expose children to a variety of interrelated science content words to increase both the breadth…

  4. Preliminary design study of a baseline MIUS

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.; Shields, V. E.; Rippey, J. O.; Roberts, H. L.; Wadle, R. C.; Wallin, S. P.; Gill, W. L.; White, E. H.; Monzingo, R.

    1977-01-01

    Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix.

  5. The study design and methodology for the ARCHER study - adolescent rural cohort study of hormones, health, education, environments and relationships

    PubMed Central

    2012-01-01

    Background Adolescence is characterized by marked psychosocial, behavioural and biological changes and represents a critical life transition through which adult health and well-being are established. Substantial research confirms the role of psycho-social and environmental influences on this transition, but objective research examining the role of puberty hormones, testosterone in males and oestradiol in females (as biomarkers of puberty) on adolescent events is lacking. Neither has the tempo of puberty, the time from onset to completion of puberty within an individual been studied, nor the interaction between age of onset and tempo. This study has been designed to provide evidence on the relationship between reproductive hormones and the tempo of their rise to adult levels, and adolescent behaviour, health and wellbeing. Methods/Design The ARCHER study is a multidisciplinary, prospective, longitudinal cohort study in 400 adolescents to be conducted in two centres in regional Australia in the State of New South Wales. The overall aim is to determine how changes over time in puberty hormones independently affect the study endpoints which describe universal and risk behaviours, mental health and physical status in adolescents. Recruitment will commence in school grades 5, 6 and 7 (10–12 years of age). Data collection includes participant and parent questionnaires, anthropometry, blood and urine collection and geocoding. Data analysis will include testing the reliability and validity of the chosen measures of puberty for subsequent statistical modeling to assess the impact over time of tempo and onset of puberty (and their interaction) and mean-level repeated measures analyses to explore for significant upward and downward shifts on target outcomes as a function of main effects. Discussion The strengths of this study include enrollment starting in the earliest stages of puberty, the use of frequent urine samples in addition to annual blood samples to measure

  6. LST phase A design update study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An update is presented of the Phase A study of the Large Space Telescope (LST), based on changes in guidelines and new data developed subsequent to the Phase A study. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. A low cost design approach was followed. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and sharing of shuttle maintenance flights with other payloads (See N73-18449 through N73-18453)

  7. An empirical study of software design practices

    NASA Technical Reports Server (NTRS)

    Card, David N.; Church, Victor E.; Agresti, William W.

    1986-01-01

    Software engineers have developed a large body of software design theory and folklore, much of which was never validated. The results of an empirical study of software design practices in one specific environment are presented. The practices examined affect module size, module strength, data coupling, descendant span, unreferenced variables, and software reuse. Measures characteristic of these practices were extracted from 887 FORTRAN modules developed for five flight dynamics software projects monitored by the Software Engineering Laboratory (SEL). The relationship of these measures to cost and fault rate was analyzed using a contingency table procedure. The results show that some recommended design practices, despite their intuitive appeal, are ineffective in this environment, whereas others are very effective.

  8. Types of studies and research design

    PubMed Central

    Kapoor, Mukul Chandra

    2016-01-01

    Medical research has evolved, from individual expert described opinions and techniques, to scientifically designed methodology-based studies. Evidence-based medicine (EBM) was established to re-evaluate medical facts and remove various myths in clinical practice. Research methodology is now protocol based with predefined steps. Studies were classified based on the method of collection and evaluation of data. Clinical study methodology now needs to comply to strict ethical, moral, truth, and transparency standards, ensuring that no conflict of interest is involved. A medical research pyramid has been designed to grade the quality of evidence and help physicians determine the value of the research. Randomised controlled trials (RCTs) have become gold standards for quality research. EBM now scales systemic reviews and meta-analyses at a level higher than RCTs to overcome deficiencies in the randomised trials due to errors in methodology and analyses. PMID:27729687

  9. Cryogenic Propellant Management Device: Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Wollen, Mark; Merino, Fred; Schuster, John; Newton, Christopher

    2010-01-01

    Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space.

  10. Thermodynamic Studies for Drug Design and Screening

    PubMed Central

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  11. Improving outcomes in lung cancer: the value of the multidisciplinary health care team

    PubMed Central

    Denton, Eve; Conron, Matthew

    2016-01-01

    Lung cancer is a major worldwide health burden, with high disease-related morbidity and mortality. Unlike other major cancers, there has been little improvement in lung cancer outcomes over the past few decades, and survival remains disturbingly low. Multidisciplinary care is the cornerstone of lung cancer treatment in the developed world, despite a relative lack of evidence that this model of care improves outcomes. In this article, the available literature concerning the impact of multidisciplinary care on key measures of lung cancer outcomes is reviewed. This includes the limited observational data supporting improved survival with multidisciplinary care. The impact of multidisciplinary care on other benchmark measures of quality lung cancer treatment is also examined, including staging accuracy, access to diagnostic investigations, improvements in clinical decision making, better utilization of radiotherapy and palliative care services, and improved quality of life for patients. Health service research suggests that multidisciplinary care improves care coordination, leading to a better patient experience, and reduces variation in care, a problem in lung cancer management that has been identified worldwide. Furthermore, evidence suggests that the multidisciplinary model of care overcomes barriers to treatment, promotes standardized treatment through adherence to guidelines, and allows audit of clinical services and for these reasons is more likely to provide quality care for lung cancer patients. While there is strengthening evidence suggesting that the multidisciplinary model of care contributes to improvements in lung cancer outcomes, more quality studies are needed. PMID:27099511

  12. Improving outcomes in lung cancer: the value of the multidisciplinary health care team.

    PubMed

    Denton, Eve; Conron, Matthew

    2016-01-01

    Lung cancer is a major worldwide health burden, with high disease-related morbidity and mortality. Unlike other major cancers, there has been little improvement in lung cancer outcomes over the past few decades, and survival remains disturbingly low. Multidisciplinary care is the cornerstone of lung cancer treatment in the developed world, despite a relative lack of evidence that this model of care improves outcomes. In this article, the available literature concerning the impact of multidisciplinary care on key measures of lung cancer outcomes is reviewed. This includes the limited observational data supporting improved survival with multidisciplinary care. The impact of multidisciplinary care on other benchmark measures of quality lung cancer treatment is also examined, including staging accuracy, access to diagnostic investigations, improvements in clinical decision making, better utilization of radiotherapy and palliative care services, and improved quality of life for patients. Health service research suggests that multidisciplinary care improves care coordination, leading to a better patient experience, and reduces variation in care, a problem in lung cancer management that has been identified worldwide. Furthermore, evidence suggests that the multidisciplinary model of care overcomes barriers to treatment, promotes standardized treatment through adherence to guidelines, and allows audit of clinical services and for these reasons is more likely to provide quality care for lung cancer patients. While there is strengthening evidence suggesting that the multidisciplinary model of care contributes to improvements in lung cancer outcomes, more quality studies are needed. PMID:27099511

  13. Multidisciplinary Russian biomedical research in space

    NASA Astrophysics Data System (ADS)

    Orlov, O. I.; Sychev, V. N.; Samarin, G. I.; Ilyin, E. A.; Belakovskiy, M. S.; Kussmaul, A. R.

    2014-08-01

    Research activities on a comprehensive multidisciplinary program are vital for enhancement of the system of crew's medical care, environmental health and hygiene in space missions. The primary goal of the program must be identification of patterns, intensity and dynamics of structural and functional shifts in organism induced by an aggregate of spaceflight factors including microgravity, isolation, artificial environment, space radiation, etc. Also, the program must pursue differential assessment of emerging deviations from the standpoint of adequacy to the spaceflight conditions and prospects of returning to Earth and guide the development of principles, methods and techniques necessary to maintain health and working capacity of humans during short- and long-duration missions and on return to Earth. Over 50 years, since 1963, the IBMP researchers apply systemic and innovational approaches to fundamental and exploratory studies in the fields of medical sciences, radiation biology, engineering science, biotechnology, etc. with participation of various biological specimens and human volunteers. Investigations aboard manned spacecrafts and biological satellites as well as in ground-based laboratories further enhancement of the medical care system for crews on orbital and remote space missions; they give insight into the fundamental problems of gravitational physiology and biology, psychophysiology, radiation biology, and contribute thereby to the development of knowledge, methods and technologies, as well as medical and scientific equipment.

  14. A Model for Teaching Information Design

    ERIC Educational Resources Information Center

    Pettersson, Rune

    2011-01-01

    The author presents his views on the teaching of information design. The starting point includes some general aspects of teaching and learning. The multidisciplinary structure and content of information design as well as the combined practical and theoretical components influence studies of the discipline. Experiences from working with a model for…

  15. Prehistoric ceramics as recorders of the earth's magnetic field intensity : case studies from North-Central Greece and a multidisciplinary approach for material selection

    NASA Astrophysics Data System (ADS)

    Kondopoulou, Despina; Gomez-Paccard, Miriam; Aidona, Elina; Rathossi, Christina; Carvallo, Claire; Tema, Evdokia; Efthimiadis, Konstantinos

    2014-05-01

    Archaeomagnetic studies have been performed on Greek materials since the 70's, initially by foreign research groups. Development at national scale and improvements of techniques lead to the elaboration of robust databases which, together with the ones of Bulgaria constitute an almost continuous recording of the three elements of the geomagnetic field for the South Balkans during the last eight millennia. At a local scale, important dispersions and several chronological gaps are observed. The most prominent is the one for the Neolithic and Chalcolithic periods and the effort of the Thessaloniki research group and collaborators to fill this gap resulted in new, accurate results for the direction and intensity of the field using in situ burnt structures. In parallel, several collections of ceramics and pottery belonging to this period have been selected and six of them already studied. Among them, new results from two Chalcolithic - Bronze age sites in Northern Greece are presented here, obtained through a classical Thellier experiment, and following all accompanying corrections -TRM anisotropy and cooling rate. The new results are compared and discussed along with the four previously published ones, which include two Neolithic sites as well, and a better constrained pattern for the intensity variation at this period starts to appear. The use of pottery for intensity studies revealed in two other, unpublished, studies unexpected difficulties, with anomalously high rates of failure, in spite of careful pre-selection based on worldwide established criteria, concerning their magnetic properties and suitability. In order to reduce this risk, an effort is provided in the new study presented here, to insert additional information from other disciplines-optical and magnetic methods. For this purpose First Order Reversal Curves (FORC) diagrams and detailed mineralogical analysis were used in order to better characterize the material's potential for intensity studies. Most

  16. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mardechay

    1992-01-01

    The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.

  17. Multidisciplinary management for esophageal and gastric cancer.

    PubMed

    Boniface, Megan M; Wani, Sachin B; Schefter, Tracey E; Koo, Phillip J; Meguid, Cheryl; Leong, Stephen; Kaplan, Jeffrey B; Wingrove, Lisa J; McCarter, Martin D

    2016-01-01

    The management of esophageal and gastric cancer is complex and involves multiple specialists in an effort to optimize patient outcomes. Utilizing a multidisciplinary team approach starting from the initial staging evaluation ensures that all members are in agreement with the plan of care. Treatment selection for esophageal and gastric cancer often involves a combination of chemotherapy, radiation, surgery, and palliative interventions (endoscopic and surgical), and direct communication between specialists in these fields is needed to ensure appropriate clinical decision making. At the University of Colorado, the Esophageal and Gastric Multidisciplinary Clinic was created to bring together all experts involved in treating these diseases at a weekly conference in order to provide patients with coordinated, individualized, and patient-centered care. This review details the essential elements and benefits of building a multidisciplinary program focused on treating esophageal and gastric cancer patients.

  18. Multidisciplinary management for esophageal and gastric cancer

    PubMed Central

    Boniface, Megan M; Wani, Sachin B; Schefter, Tracey E; Koo, Phillip J; Meguid, Cheryl; Leong, Stephen; Kaplan, Jeffrey B; Wingrove, Lisa J; McCarter, Martin D

    2016-01-01

    The management of esophageal and gastric cancer is complex and involves multiple specialists in an effort to optimize patient outcomes. Utilizing a multidisciplinary team approach starting from the initial staging evaluation ensures that all members are in agreement with the plan of care. Treatment selection for esophageal and gastric cancer often involves a combination of chemotherapy, radiation, surgery, and palliative interventions (endoscopic and surgical), and direct communication between specialists in these fields is needed to ensure appropriate clinical decision making. At the University of Colorado, the Esophageal and Gastric Multidisciplinary Clinic was created to bring together all experts involved in treating these diseases at a weekly conference in order to provide patients with coordinated, individualized, and patient-centered care. This review details the essential elements and benefits of building a multidisciplinary program focused on treating esophageal and gastric cancer patients. PMID:27217796

  19. Fibromyalgia: a complex syndrome requiring a multidisciplinary approach.

    PubMed

    Spaeth, Michael; Briley, Mike

    2009-06-01

    Fibromyalgia is a pain syndrome which is not due to tissue damage or inflammation and is thus fundamentally different from rheumatic disorders and many other pain conditions. In addition to widespread pain it is associated with a range of other symptoms such as sleep disturbance, fatigue, cognitive disturbance, stiffness and depressive symptoms. A number of multidisciplinary therapeutic programmes involving education, exercise and cognitive therapy have been shown to be effective in bringing relief. The various medications that are currently being developed for the treatment of fibromyalgia are based on different mechanistic approaches. In particular, serotonin noradrenaline reuptake inhibitors (SNRI) such as duloxetine and milnacipran and alpha2-delta receptor ligands such as pregabalin have been shown, in a variety of placebo-controlled studies, to bring significant relief from pain and other symptoms. The complex symptomatology of fibromyalgia will, however, continue to require a multidisciplinary approach including education and exercise in addition to drug therapy to achieve the most efficient management of fibromyalgia.

  20. A multidisciplinary approach to understand landsliding at catchment scale: a case study for landsliding at Pinka flat, Western Pannonian Alpine Foothill, Hungary

    NASA Astrophysics Data System (ADS)

    Kovács, Gábor; Raveloson, Andrea; Székely, Balázs; Timár, Gábor

    2013-04-01

    The northern scarp of the Pinka flat - situated in the western part of the Pannonian Basin - is largely characterized by landslides and gullies. This area is a transition zone between the uplifting Eastern Alps and the subsiding Little Hungarian Plain. The interaction of the juxtaposed units results in neotectonically induced features, such as unstable slopes, gullies and landslides. These mass movements represented economical and social hazard in the 20th century. Earlier studies of this area (eg. Kecskés, 1968; Szilágyi, 1989) concentrated on regional scale, but the real nature of mass movements is still unclear. Therefore our goal was to study the landslides on smaller scales. This contribution presents an individual landslide (in the vicinity of Olad, outskirt of Szombathely) that has been examined in detail, using different geophysical and geomorphological methods. Field surveys and geomorphological measurements have been achieved several times (from 2006) to have a better view on the role of geomorphology in the formation of the landslide. Fixed points were deployed inside the landslide as well as near to it to quantify movements of surface over time. The structure of the slope was studied using shallow boreholes and vertical electrical sounding (VES) measurements. Furthermore Electrical Resistivity Tomography (ERT) was used along several transverse and longitudinal profiles to complement these studies with two dimensional electrical resistivity sections. Results from the last 6 years show that the evolution of the landslide seems to be triggered by the weather conditions of the Alpine foothills and the northern scarp of Pinka flat, though the origin of the landslide is neotectonic. Geophysical results show that the sliding mass is situated on a clayey layer. The main cause of mass movement seems to be the slope-parallel layering of the clayey and sandy sediment, though recent time human influence played an important role as well. This research was financed

  1. DU-AGG pilot plant design study

    SciTech Connect

    Lessing, P.A.; Gillman, H.

    1996-07-01

    The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule.

  2. Physical design study of the CEPC booster

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang

    2016-09-01

    A physical design study of the Circular Electron-Positron Collider (CEPC) booster is reported. The booster provides 120 GeV electron and positron beams for the CEPC collider with top-up injection. The booster is mounted above the collider in the same tunnel. To save cost, the energy of the linac injector for the booster is chosen as 6 GeV, corresponding to a magnetic field of 30.7 Gs. In this paper, the booster lattice is described and optimization of the cell length is discussed. A novel scheme of bypass near the detector of the collider is designed. The extremely low magnetic field caused by low injection energy is studied, and a new ideal of wiggling bands is proposed to mitigate the low-field problem. Beam transfer and injection from the linac to the booster are considered.

  3. Facies and sedimentary environments of the cretaceous La Luna Formation in San Pedro Del Rio section, Venezuelan Andes: A multidisciplinary study

    SciTech Connect

    Boesi, H.T.R.; Lorente, M.A.; Mompart, L.; Murat, B.; Testamarck ); Facon, R. )

    1993-02-01

    Vertical variations in facies and sedimentary environments in an outcrop of the La Luna Formation in the Venezuela Andes were evaluated with an integrated study of sedimentology, micropaleontology, palynology, visual kerogen, organic geochemistry and field geology. Up to now, the La Luna Formation, main hydrocarbon source rock in the Maracaibo Basin, has been considered for calculations of oil generation as an homogeneous interval with similar properties across the basin. However, this study reveals important vertical variations in organic facies and sedimentary environments. The microfacies range from almost pure carbonate (recrystallized) mudstone to almost pure shale, with a varying organic content. An overall upward change from oxic to anoxic environments can be recognized, culminating in a chert-rich interval (Ftanita de Tachira Member). The total organic carbon content is high throughout, with the exception of low to moderate values in the chert. The organic matter is mature to postmature. Phosphatic intervals are also developed, supporting a model of platform-edge upwelling and high organic productivity. The presence of rare volcanic grains suggests comtemporaneous volcanic activity within adjacent areas (Colombian Andes ).

  4. Space systems design at Utah State University - A total approach

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.

    1992-01-01

    An account is given of an Advanced Design Program, developed under the auspices of NASA/USRA, which uses a six quarter-hour multidisciplinary systems-design course to teach spacecraft design. The course integrates engineering skills with system-design principles, while emphasizing written and oral communications. The setting for such student efforts is patterned after existing high-tech spacecraft-design organizations. The classes address design tradeoff decisions, parametric studies, and design reviews, as well as project-continuations.

  5. Preliminary shuttle structural dynamics modeling design study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.

  6. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  7. Conceptual design studies for surface infrastructure

    NASA Technical Reports Server (NTRS)

    Bufkin, Ann L.; Jones, William R., II

    1986-01-01

    The utimate design of a manned Mars base will be the result of considerable engineering analysis and many trade studies to optimize the configuration. Many options and scenarios are available and all need to be considered at this time. Initial base elements, two base configuration concepts, internal space architectural concerns, and two base set-up scenarios are discussed. There are many variables as well as many unknowns to be reckoned with before people set foot on the red planet.

  8. A multidisciplinary approach to describe protists: a morphological, ultrastructural, and molecular study on Peritromus kahli Villeneuve-Brachon, 1940 (Ciliophora, Heterotrichea).

    PubMed

    Rosati, Giovanna; Modeo, Letizia; Melai, Michele; Petroni, Giulio; Verni, Franco

    2004-01-01

    This study represents the first extended report on a species of the ciliate genus Peritromus, widespread in marine biotopes, characterized by a dorso-ventral differentiation peculiar among Heterotrichea. Morphological observations (live, stained, scanning, and transmission electron microscope) were combined with behavioral and molecular data. On the basis of the whole body of observations, the species was recognized as Peritromus kahli. Scanning and transmission electron microscopy have revealed a number of features such as peculiar chalice-like structures external to the dorsal surface, two types of extrusomes, and differences between dorsal and ventral somatic ciliature. The almost complete SSrDNA gene sequence was also determined. A molecular phylogenetic analysis indicated that Peritromus diverged early from other members of the Class Heterotrichea. The dorso-ventral differentiation that certainly influences the behavior of P. kahli (e.g. preference for crawling and thigmotaxis) may have been selected as an adaptation to the constraints of the interstitial habitat.

  9. Relation between magnetic parameters and nematode abundance in agricultural soils of Portugal--a multidisciplinary study in the scope of environmental magnetism.

    PubMed

    Lourenço, Ana; Esteves, Ivânia; Rocha, Armando; Abrantes, Isabel; Gomes, Celeste

    2015-04-01

    Soil is composed of different types of particles which are either natural or of anthropogenic origin. Anthropogenic particles are often related to the presence of heavy metals and thus provide information on soil quality. Magnetic parameters can detect the presence of such particles and may be used as a proxy for environmental pollution. This study explores the relationships between magnetic particles and the nematofauna of agricultural soils. Magnetic, pedological, microscopy and nematological analyses were conducted in soils collected from major regions of potato production in Portugal. The magnetic characterisation of soils identified regions with magnetic particles with possible anthropogenic origin. Microscopy analysis revealed the presence of spherical particles dominantly composed of Fe, O and C. A positive and significant relationship was found between saturation isothermal remanent magnetisation (SIRM) and mass-specific susceptibility (χ), confirming the importance the ferrimagnetic fraction to magnetic properties. The nematode communities were composed of nematodes belonging to four trophic groups (bacterial feeding, plant feeders, fungal feeders and omnivores/predators). The relationships between magnetic parameters and the nematodes showed that (1) S-25 has a linear correlation with number of nematodes per kilogram of soil and with plant feeders' trophic group and (2) SIRM correlates with the bacterial feeders trophic group. This study reveals that magnetic proxies may provide means for detecting regions with higher levels of pollution, possibly related to heavy metals. Due to the large background variability found in magnetic parameters, the sampling spacial mesh should to be further refined and the input of magnetic minerals needs to be locally calibrated. PMID:25740688

  10. Relation between magnetic parameters and nematode abundance in agricultural soils of Portugal--a multidisciplinary study in the scope of environmental magnetism.

    PubMed

    Lourenço, Ana; Esteves, Ivânia; Rocha, Armando; Abrantes, Isabel; Gomes, Celeste

    2015-04-01

    Soil is composed of different types of particles which are either natural or of anthropogenic origin. Anthropogenic particles are often related to the presence of heavy metals and thus provide information on soil quality. Magnetic parameters can detect the presence of such particles and may be used as a proxy for environmental pollution. This study explores the relationships between magnetic particles and the nematofauna of agricultural soils. Magnetic, pedological, microscopy and nematological analyses were conducted in soils collected from major regions of potato production in Portugal. The magnetic characterisation of soils identified regions with magnetic particles with possible anthropogenic origin. Microscopy analysis revealed the presence of spherical particles dominantly composed of Fe, O and C. A positive and significant relationship was found between saturation isothermal remanent magnetisation (SIRM) and mass-specific susceptibility (χ), confirming the importance the ferrimagnetic fraction to magnetic properties. The nematode communities were composed of nematodes belonging to four trophic groups (bacterial feeding, plant feeders, fungal feeders and omnivores/predators). The relationships between magnetic parameters and the nematodes showed that (1) S-25 has a linear correlation with number of nematodes per kilogram of soil and with plant feeders' trophic group and (2) SIRM correlates with the bacterial feeders trophic group. This study reveals that magnetic proxies may provide means for detecting regions with higher levels of pollution, possibly related to heavy metals. Due to the large background variability found in magnetic parameters, the sampling spacial mesh should to be further refined and the input of magnetic minerals needs to be locally calibrated.

  11. A Numerical Climate Observing Network Design Study

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2003-01-01

    This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".

  12. Development of a multidisciplinary method to determine risk factors for arm fracture in falls from playground equipment

    PubMed Central

    Sherker, S; Ozanne-Smith, J; Rechnitzer, G; Grzebieta, R

    2003-01-01

    Objectives: To present the development of a novel multidisciplinary method to investigate physical risk factors for playground related arm fracture. Rationale: Previous playground injury research has been limited in its ability to determine risk factors for arm fractures, despite their common and costly occurrence. Biomechanical studies have focused exclusively on head injury. Few epidemiological studies have quantified surface impact attenuation and none have investigated specific injury outcomes such as arm fracture. Design: An unmatched case-control study design was developed. An instrumented child dummy and rig were designed to simulate real playground falls in situ. Validated output from the dummy was used to quantify arm load. Other field measurements included equipment height, fall height, surface depth, headform deceleration, and head injury criterion. Discussion: Validated methods of biomechanics and epidemiology were combined in a robust design. The principle strength of this method was the use of a multidisciplinary approach to identify and quantify risk and protective factors for arm fracture in falls from playground equipment. Application of this method will enable countermeasures for prevention of playground related arm fracture to be developed. PMID:12966022

  13. Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics.

    PubMed

    Restif, Olivier; Hayman, David T S; Pulliam, Juliet R C; Plowright, Raina K; George, Dylan B; Luis, Angela D; Cunningham, Andrew A; Bowen, Richard A; Fooks, Anthony R; O'Shea, Thomas J; Wood, James L N; Webb, Colleen T

    2012-10-01

    Infectious disease ecology has recently raised its public profile beyond the scientific community due to the major threats that wildlife infections pose to biological conservation, animal welfare, human health and food security. As we start unravelling the full extent of emerging infectious diseases, there is an urgent need to facilitate multidisciplinary research in this area. Even though research in ecology has always had a strong theoretical component, cultural and technical hurdles often hamper direct collaboration between theoreticians and empiricists. Building upon our collective experience of multidisciplinary research and teaching in this area, we propose practical guidelines to help with effective integration among mathematical modelling, fieldwork and laboratory work. Modelling tools can be used at all steps of a field-based research programme, from the formulation of working hypotheses to field study design and data analysis. We illustrate our model-guided fieldwork framework with two case studies we have been conducting on wildlife infectious diseases: plague transmission in prairie dogs and lyssavirus dynamics in American and African bats. These demonstrate that mechanistic models, if properly integrated in research programmes, can provide a framework for holistic approaches to complex biological systems. PMID:22809422

  14. Multidisciplinary management of pregnancy in complex congenital heart disease: a model for coordination of care.

    PubMed

    Harris, Rachel C; Fries, Melissa H; Boyle, Annelee; Adeniji-Adele, Hassan; Cherian, Zacharia; Klein, Nancy; John, Anitha S

    2014-01-01

    With advancements in medical care, many women with complex congenital heart disease (CHD) are now living into adulthood and childbearing years. The strains of pregnancy and parturition can be dangerous in such patients, and careful interdisciplinary plans must be made to optimize maternal and fetal health through this process. Several large studies have been published regarding risk prediction and medical management of pregnancy in complex CHD, though few case studies detailing clinical care plans have been published. The objective of this report is to describe the process of developing a detailed pregnancy and delivery care plan for three women with complex CHD, including perspectives from the multidisciplinary specialists involved in the process. This article demonstrates that collaboration between specialists in the fields of cardiology, anesthesiology, high-risk obstetrics, maternal fetal medicine, and neonatology results in clinically successful individualized treatment plans for the management of pregnancy in complex CHD. Multidisciplinary collaboration is a crucial element in the management of pregnancy in complex CHD. We provide a template used in three cases which can serve as a model for the design of future care plans.

  15. Pressure ulcer prevention: the role of the multidisciplinary team.

    PubMed

    Samuriwo, Ray

    Pressure ulcer prevention has long been a priority for health professionals; however, poor pressure-ulcer-related practices like poor documentation continue to be identified. Research has shown that the attitude and behaviour of some nurses towards pressure ulcer prevention are not conducive to the best possible patient outcomes.This article reviews the findings of a Straussian grounded theory study, which sought to ascertain the value that is placed on pressure ulcer prevention by nurses, but also revealed the role that other health professionals in the multidisciplinary team play in the maintenance of skin integrity. The findings of this study which are presented in this paper highlight a number of important issues. Firstly, nurses are expected to know how to prevent and manage pressure ulcers, but in reality they are very reliant on the advice and support of other health professionals to maintain their patients' skin integrity. In addition,the level of support that nurses get from other health professionals in the multidisciplinary varies tremendously. Therefore, nurses in clinical practice need to be proactive in seeking input from other health professionals, as there are many members of the multidisciplinary team who are able to give them the advice and support that they need in prevention and management. PMID:22489336

  16. Microgravity isolation system design: A case study

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. In this paper, extended H(sub 2) synthesis is used to design an active isolator (i.e., controller) for a realistic single-input-multiple-output (SIMO) microgravity vibration isolation problem. Complex mu-analysis methods are used to analyze the isolation system with respect to sensor, actuator, and umbilical uncertainties. The paper fully discusses the design process employed and the insights gained. This design case study provides a practical approach for isolation problems of greater complexity. Issues addressed include a physically intuitive state-space description of the system, disturbance and noise filters, filters for frequency weighting, and uncertainty models. The controlled system satisfies all the performance specifications and is robust with respect to model uncertainties.

  17. A Multidisciplinary Assessment of "Chesteropoly" as an Academic-Service Experience

    ERIC Educational Resources Information Center

    Bonk, Robert J.; Simons, Lori N.; Scepansky, Timothy M.; Blank, Nancy B.; Berman, Elisa B.

    2009-01-01

    Because service-learning challenges participants to widen perspectives on social issues, we designed and assessed a multi-semester, multidisciplinary project with both academic and service objectives. In this project, undergraduate students developed a script and video centered on a board game designed to educate high-school students about their…

  18. Is there a role for clinical practice guidelines in multidisciplinary tumor board meetings? A descriptive study of knowledge transfer between research and practice.

    PubMed

    Kostaras, Xanthoula; Shea-Budgell, Melissa A; Malcolm, Emily; Easaw, Jacob C; Roa, Wilson; Hagen, Neil A

    2012-03-01

    The aim of this study was to characterize practice patterns and decision-making processes of healthcare providers attending weekly neuro-oncology tumor board meetings, and to assess their familiarity with clinical practice guidelines (CPGs) in neuro-oncology. Members of the Neuro-Oncology Tumor Team at two tertiary cancer centers completed a web-based questionnaire assessing characteristics of weekly tumor board meetings and perceptions of CPGs. Twenty-three (66%) tumor team members responded. Diagnostic imaging results and interpretation, medical, surgical, and/or radiation treatment planning, and pathology results and interpretation were the most commonly identified aspects of patient care discussed at tumor board meetings, and almost all respondents indicated that these meetings were "very beneficial" to their own practice. When deciding on a treatment plan, respondents rely most on the clinical expertise of colleagues, medical literature, personal experience, active clinical trial protocols, and published CPGs. Opinions of the local CPGs varied considerably, and while 56% of respondents supported regular discussion of them during meetings, only 32% indicated that they were routinely reviewed. Updating the literature more frequently, implementing a formal grading system for the evidence, and incorporating clinical care pathways were the most frequently cited methods to improve the CPGs. Tumor board meetings are beneficial to the treatment planning process for neuro-oncology patients.

  19. Results of a multidisciplinary study in the Marmara Supersite, on-shore area: Büyükçekmece landslide

    NASA Astrophysics Data System (ADS)

    Coccia, Stella; Bigarré, Pascal; Ergintav, Semih; Ozel, Oguz; Yalcinkaya, Esref; Ozalabey, Serdar; Bourdeau, Céline; Martino, Salvatore; Lenti, Luca; Zucca, Francesco; Moro, Marco

    2016-04-01

    The MARsite project (Nov 2012-Avril 2016), one of the three SUPERSITE concept FP7 projects, deals with the definition of new directions in seismic hazard assessment through focused earth observation in the Marmara Supersite. This project gathers different research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region. This region is one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. The 6th Work Package of MARsite project offered a very valuable frame to undertake simultaneous and complementary scientific investigations and studies to get deeper insight in the seismic and rainfall landslide topic, ranging from methodology to hazard assessment tool. This package focused on two sub-regional areas of high interest. First, the Avcilar-Beylikdüzü peninsula, located westwards of Istanbul, is a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. Second, the off-shore entrance of the Izmit Gulf, close to the termination of the surface rupture of the 1999 earthquake, that shows an important slump mass facing the Istanbul coastline. For the on-shore area, after refining the landslide inventory of the peninsula, one of the nine inventoried rototranslational landslides was chosen as pilot site, the Büyükçekmece landslide. This landslide has a continuous activity and a composite mechanism (including several secondary sliding surfaces); it moves at low velocity and involves sandy and clayey deposits of a local Cenozoic Succession damaging several infrastructures, such as buildings and roads. Various geophysical campaigns were carried out and then a field temporary multi-parameter monitoring was set up, composed of GPS-RTK, two seismic probes, thermometer, rain-gauge, moisture, etc.. Hyperspectral and Dinsar imagery technologies were also deployed to

  20. Sometimes Sperm Whales (Physeter macrocephalus) Cannot Find Their Way Back to the High Seas: A Multidisciplinary Study on a Mass Stranding

    PubMed Central

    Mazzariol, Sandro; Di Guardo, Giovanni; Petrella, Antonio; Marsili, Letizia; Fossi, Cristina M.; Leonzio, Claudio; Zizzo, Nicola; Vizzini, Salvatrice; Gaspari, Stefania; Pavan, Gianni; Podestà, Michela; Garibaldi, Fulvio; Ferrante, Margherita; Copat, Chiara; Traversa, Donato; Marcer, Federica; Airoldi, Sabina; Frantzis, Alexandros; De Bernaldo Quirós, Yara; Cozzi, Bruno; Fernández, Antonio

    2011-01-01

    Background Mass strandings of sperm whales (Physeter macrocephalus) remain peculiar and rather unexplained events, which rarely occur in the Mediterranean Sea. Solar cycles and related changes in the geomagnetic field, variations in water temperature and weather conditions, coast geographical features and human activities have been proposed as possible causes. In December 2009, a pod of seven male sperm whales stranded along the Adriatic coast of Southern Italy. This is the sixth instance from 1555 in this basin. Methodology/Principal Findings Complete necropsies were performed on three whales whose bodies were in good condition, carrying out on sampled tissues histopathology, virology, bacteriology, parasitology, and screening of veins looking for gas emboli. Furthermore, samples for age determination, genetic studies, gastric content evaluation, stable isotopes and toxicology were taken from all the seven specimens. The animals were part of the same group and determined by genetic and photo-identification to be part of the Mediterranean population. Causes of death did not include biological agents, or the “gas and fat embolic syndrome”, associated with direct sonar exposure. Environmental pollutant tissue concentrations were relatively high, in particular organochlorinated xenobiotics. Gastric content and morphologic tissue examinations showed a prolonged starvation, which likely caused, at its turn, the mobilization of lipophilic contaminants from the adipose tissue. Chemical compounds subsequently entered the blood circulation and may have impaired immune and nervous functions. Conclusions/Significance A multi-factorial cause underlying this sperm whales' mass stranding is proposed herein based upon the results of postmortem investigations as well as of the detailed analyses of the geographical and historical background. The seven sperm whales took the same “wrong way” into the Adriatic Sea, a potentially dangerous trap for Mediterranean sperm whales