Science.gov

Sample records for multidrug-resistant bacteria interest

  1. [Innovative treatments for multidrug-resistant bacteria].

    PubMed

    Pierre, Tattevin; Aurélien, Lorleac'h; Matthieu, Revest

    2014-03-01

    The spread of multidrug-resistant bacteria has accelerated sharply in the last decade. According to the World Health Organization they are responsible for an estimated 25 000 deaths in Europe each year. In addition, few new antibiotics are under development, raising the spectrum of a return to the "pre-antibiotic era". Non antibiotic antibacterial agents have recently attracted renewed interest. The most promising candidates are: i) phages (bacteria-infecting viruses) have been widely used in Eastern European countries since the 1930s but come up against logistic and regulatory obstacles due to the evolutionary nature of these biologic agents, while convincing clinical data are lacking; ii) bacteriocines are smallantibacterialpeptidesproducedby numerous bacteria; some have a rapid bactericidal effect, good tolerability, and a limited impact on the commensal flora; however, clinical use of bacteriocines is complicated by their fragility, poor penetration, and substantial risk of resistance selection ; iii) antisense oligonucleo tides act by inactivating genes through specific interaction with a complementary DNA or RNA fragment, potentially allowing specific inhibition of selected bacterial virulence factors. However, this therapeutic class may be more suitable for viral or genetic diseases than for multidrug-resistant bacterial infections, owing to the difficulty of delivering them inside bacteria. PMID:26427289

  2. [Travellers and multi-drug resistance bacteria].

    PubMed

    Takeshita, Nozomi

    2012-02-01

    The number of international travellers has increased. There is enormous diversity in medical backgrounds, purposes of travel, and travelling styles among travellers. Travellers are hospitalized abroad because of exotic and common diseases via medical tourism. This is one way of transporting and importing human bacteria between countries, including multi-drug resistant organisms. In developing countries, the antimicrobial resistance in Shigella sp. and Salmonella sp. have been a problem, because of this trend, the first choice of antibiotics has changed in some countries. Community acquired infections as well as hospital acquired infections with MRSA, multi-drug resistance (MDR) Pseudomonas aeruginosa, and ESBL have been a problem. This review will discuss the risk of MDR bacterial infectious diseases for travellers. PMID:22413540

  3. Combination Approaches to Combat Multi-Drug Resistant Bacteria

    PubMed Central

    Worthington, Roberta J.; Melander, Christian

    2013-01-01

    The increasing prevalence of infections caused by multi-drug resistant bacteria is a global health problem that is exacerbated by the dearth of novel classes of antibiotics entering the clinic over the past 40 years. Herein we describe recent developments toward combination therapies for the treatment of multi-drug resistant bacterial infections. These efforts include antibiotic-antibiotic combinations, and the development of adjuvants that either directly target resistance mechanisms such as the inhibition of β-lactamase enzymes, or indirectly target resistance by interfering with bacterial signaling pathways such as two-component systems. We also discuss screening of libraries of previously approved drugs to identify non-obvious antimicrobial adjuvants. PMID:23333434

  4. [Old and new antibiotics for therapy of multidrug resistant bacteria].

    PubMed

    Pintado, V

    2016-09-01

    The lack of new antibiotics for multidrug-resistant bacteria is a matter of concern in microorganisms such as Pseudomonas aeruginosa, ESBL- and carbapenemase-producing Enterobacteriaceae, Acinetobacter baumannii, methicillin-resistant Staphylococcous aureus and vancomycin-resistant Enterococcus faecium. This situation has conditioned the reuse of "old" antibiotics (colistin, fosfomycin), the use of more recent antibiotics with new indications or dosage regimens (tigecycline, meropenem) and the introduction of "new" antibiotics (β-lactams, lipoglycopeptides, oxazolidinones) that are the subject of this review. PMID:27608312

  5. Metal nanobullets for multidrug resistant bacteria and biofilms.

    PubMed

    Chen, Ching-Wen; Hsu, Chia-Yen; Lai, Syu-Ming; Syu, Wei-Jhe; Wang, Ting-Yi; Lai, Ping-Shan

    2014-11-30

    Infectious diseases were one of the major causes of mortality until now because drug-resistant bacteria have arisen under broad use and abuse of antibacterial drugs. These multidrug-resistant bacteria pose a major challenge to the effective control of bacterial infections and this threat has prompted the development of alternative strategies to treat bacterial diseases. Recently, use of metallic nanoparticles (NPs) as antibacterial agents is one of the promising strategies against bacterial drug resistance. This review first describes mechanisms of bacterial drug resistance and then focuses on the properties and applications of metallic NPs as antibiotic agents to deal with antibiotic-sensitive and -resistant bacteria. We also provide an overview of metallic NPs as bactericidal agents combating antibiotic-resistant bacteria and their potential in vivo toxicology for further drug development.

  6. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.

    PubMed

    Rai, M K; Deshmukh, S D; Ingle, A P; Gade, A K

    2012-05-01

    In the present scenario, pharmaceutical and biomedical sectors are facing the challenges of continuous increase in the multidrug-resistant (MDR) human pathogenic microbes. Re-emergence of MDR microbes is facilitated by drug and/or antibiotic resistance, which is acquired way of microbes for their survival and multiplication in uncomfortable environments. MDR bacterial infections lead to significant increase in mortality, morbidity and cost of prolonged treatments. Therefore, development, modification or searching the antimicrobial compounds having bactericidal potential against MDR bacteria is a priority area of research. Silver in the form of various compounds and bhasmas have been used in Ayurveda to treat several bacterial infections since time immemorial. As several pathogenic bacteria are developing antibiotic resistance, silver nanoparticles are the new hope to treat them. This review discusses the bactericidal potential of silver nanoparticles against the MDR bacteria. This multiactional nanoweapon can be used for the treatment and prevention of drug-resistant microbes.

  7. Cationic compounds with activity against multidrug-resistant bacteria: interest of a new compound compared with two older antiseptics, hexamidine and chlorhexidine.

    PubMed

    Grare, M; Dibama, H Massimba; Lafosse, S; Ribon, A; Mourer, M; Regnouf-de-Vains, J-B; Finance, C; Duval, R E

    2010-05-01

    Use of antiseptics and disinfectants is essential in infection control practices in hospital and other healthcare settings. In this study, the in vitro activity of a new promising compound, para-guanidinoethylcalix[4]arene (Cx1), has been evaluated in comparison with hexamidine (HX) and chlorhexidine (CHX), two older cationic antiseptics. The MICs for 69 clinical isolates comprising methicillin-resistant Staphylococcus aureus, methicillin-sensitive S. aureus, coagulase-negative staphylococci (CoNS) (with or without mecA), vancomycin-resistant enterococci, Enterobacteriaceae producing various beta-lactamases and non-fermenting bacilli (Pseudomonas aeruginosa, Acinetobacter baumanii, Stenotrophomonas maltophilia) were determined. Cx1 showed similar activity against S. aureus, CoNS and Enterococcus spp., irrespective of the presence of mecA or van genes, or associated resistance genes, with very good activity against CoNS (MIC <1 mg/L). Variable activities were observed against Enterobacteriaceae; the MICs determined seemed to be dependent both on the genus (MICs of 2, 8 and 64 mg/L for Escherichia coli, Klebsiella pneumoniae and Yersinia enterocolitica, respectively) and on the resistance phenotype production of [Extended Spectrum beta-Lactase (ESBLs) or other beta-lactamases; overproduction of AmpC]. Poor activity was found against non-fermenting bacilli, irrespective of the resistance phenotype. CHX appeared to be the most active compound against all strains, with broad-spectrum and conserved activity against multidrug-resistant strains. HX showed a lower activity, essentially against Gram-positive strains. Consequently, the differences observed with respect to Cx1 suggest that they are certainly not the consequence of antibiotic resistance phenotypes, but rather the result of membrane composition modifications (e.g. of lipopolysaccharide), or of the presence of (activated) efflux-pumps. These results raise the possibility that Cx1 may be a potent new antibacterial

  8. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study

    PubMed Central

    Basak, Silpi; Singh, Priyanka; Rajurkar, Monali

    2016-01-01

    Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital. Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria. Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin. Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance. PMID:26942013

  9. [Fosfomycin--its significance for treatment of diseases due to multidrug-resistant bacteria].

    PubMed

    Stock, Ingo

    2015-01-01

    Fosfomycin is a bactericidal phosphonic acid derivative, which engages by inhibiting pyruvyltransferase at an early stage in the peptidoglycan synthesis. It shows a broad spectrum of activity that includes many multidrug-resistant gram-negative and gram-positive bacteria. Fosfomycin is active against most strains of Pseudomonas aeruginosa and several multidrug-resistant Enterobacteriaceae, e.g., Escherichia coli strains expressing extended spectrum beta-lactamases (ESBL) and Klebsiella pneumoniae strains with decreased susceptibilities to carbapenems. Most methicillin-resistant Staphylococcus aureus (MRSA) strains as well as enterococci with and without vancomycin resistance are also sensitive to fosfomycin. During the last decade, a variety of studies showed that fosfomycin is not only suitable for treating uncomplicated urinary tract diseases, but also for the treatment of many other diseases caused by bacterial pathogens with and without multidrug resistance. However, large controlled studies demonstrating the efficacy of the drug to treat diseases caused by multidrug-resistant bacteria are still missing. Considering the low number of antibacterial agents with good activity against multidrug-resistant bacteria, fosfomycin should be evaluated as an important antibiotic for the treatment of several severe illnesses due to these pathogens. However, because some multidrug-resistant bacteria are also resistant to fosfomycin, this agent should only be applied if the pathogen is sensitive to this drug. In addition, because rapid development of resistance cannot be excluded if fosfomycin will be applied alone, this drug should only be given in combination with other effective drugs for the treatment of serious systemic diseases due to multidrug-resistant bacterial pathogens.

  10. Photoexcited quantum dots for killing multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  11. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Hien, Nguyen Quoc; An, Pham Ngoc; Loan, Truong Thi Kieu; Hoa, Phan Thi

    2016-04-01

    The silver nanoparticles (AgNPs)/peco fabrics were prepared by immobilization of AgNPs on fabrics in which AgNPs were synthesized by γ-irradiation of the 10 mM AgNO3 chitosan solution at the dose of 17.6 kGy. The AgNPs size has been estimated to be about 11 nm from TEM image. The AgNPs content onto peco fabrics was of 143±6 mg/kg at the initial AgNPs concentration of 100 ppm. The AgNPs colloidal solution was characterized by UV-vis spectroscopy and TEM image. The antibacterial activity of AgNPs/peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumoniae was found to be over 99%. Effects of AgNPs fabics on multidrug-resistant pathogens from the clinical specimens were also tested.

  12. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  13. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    PubMed

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  14. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria.

    PubMed

    Zhang, Jiuyang; Chen, Yung Pin; Miller, Kristen P; Ganewatta, Mitra S; Bam, Marpe; Yan, Yi; Nagarkatti, Mitzi; Decho, Alan W; Tang, Chuanbing

    2014-04-01

    Bacteria are now becoming more resistant to most conventional antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings by deactivating conventional β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, through various mechanisms, resulting in increased mortality rates and hospitalization costs. Here we introduce a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of β-lactamase and effectively lysing bacterial cells. Various conventional β-lactam antibiotics, including penicillin-G, amoxicillin, ampicillin, and cefazolin, are protected from β-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties. These discoveries could provide a new pathway for designing macromolecular scaffolds to regenerate vitality of conventional antibiotics to kill multidrug-resistant bacteria and superbugs.

  15. In vitro Antibacterial Activity of Aqueous and Ethanol Extracts of Aristolochia indica and Toddalia asiatica Against Multidrug-Resistant Bacteria.

    PubMed

    Venkatadri, B; Arunagirinathan, N; Rameshkumar, M R; Ramesh, Latha; Dhanasezhian, A; Agastian, P

    2015-01-01

    Bacteria have developed multidrug resistance against available antimicrobial agents. Infectious diseases caused by these multidrug-resistant bacteria are major causes of morbidity and mortality in human beings. Synthetic drugs are expensive and inadequate for the treatment of diseases, causing side effects and ineffective against multidrug-resistant bacteria. The medicinal plants are promising to have effective antimicrobial property due to presence of phytochemical compounds like alkaloids, flavanoids, tannins and phenolic compounds. The present study aimed to find the antimicrobial activity of medicinal plants against multidrug-resistant bacteria. Multidrug-resistant bacteria were identified by Kirby-Bauer disc diffusion method. Production of β-lactamases (extended spectrum β-lactamases, metallo β-lactamase and AmpC β-lactamase) were identified by combination disc method. Antibacterial activity of aqueous and ethanol extract of Aristolochia indica and Toddalia asiatica were detected by agar well diffusion assay and minimum inhibitory concentration. All bacteria used in this study showed antibiotic resistance to ≥3 antibiotics. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis and Vibrio cholerae were found to be positive for β-lactamase production. Ethanol extract of Aristolochia indica showed more significant antibacterial activity against multidrug-resistant bacteria than Toddalia asiatica. Ethanol extracts of Aristolochia indica and Toddalia asiatica showed minimum inhibitory concentration values of 50-100 μg/ml and 100-200 μg/ml, respectively against multidrug-resistant bacteria. From this study, it was concluded that Aristolochia indica has more potential to treat multidrug-resistant bacteria than Toddalia asiatica. PMID:26997710

  16. [Should we screen for colonization to control the spread of multidrug resistant bacteria?].

    PubMed

    Lepelletier, D; Perron, S; Huguenin, H; Picard, M; Bemer, P; Caillon, J; Juvin, M-E; Drugeon, H

    2003-10-01

    Should we screen for colonization to control the spread of multidrug-resistant bacteria? A multidrug-resistant bacteria surveillance program was performed in 1999 at Laënnec Hospital (Nantes, France). After a 3-year period, the results permit us to determine the strategy to strengthen their spread. In 2001, Staphylococcus aureus resistant to methicillin represented 45% of the 202 multidrug-resistant bacteria isolated. The global incidence rate per 100 admissions remained stable between 1999 and 2001 (0.42%), but those of infections acquired in our institution decreased significantly from 0.27% in 1999 to 0.18% in 2001 (P < 0.05), particularly in medical care units (P < 0.04). In spite of this surveillance program and hygiene trainings, the global incidence remained stable during the study period, even if our action contributed to decrease the incidence of S. aureus resistant to methicillin acquired in our institution. Isolation precautions and screening for colonization policy in intensive care units are not sufficient to control the spread of MRB at hospital level. They should be strengthened by procedures for the transfer of infected or colonized patients and by antibiotic use control. PMID:14568591

  17. Multidrug-resistant Gram-negative bacteria in solid organ transplant recipients with bacteremias.

    PubMed

    Wan, Q Q; Ye, Q F; Yuan, H

    2015-03-01

    Bloodstream infections (BSIs) remain as life-threatening complications and are associated with significant morbidity and mortality among solid organ transplant (SOT) recipients. Multidrug-resistant (MDR) Gram-negative bacteria can cause serious bacteremias in these recipients. Reviews have aimed to investigate MDR Gram-negative bacteremias; however, they were lacking in SOT recipients in the past. To better understand the characteristics of bacteremias due to MDR Gram-negative bacteria, optimize preventive and therapeutic strategies, and improve the outcomes of SOT recipients, this review summarize the epidemiology, clinical and laboratory characteristics, and explores the mechanisms, prevention, and treatment of MDR Gram-negative bacteria.

  18. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria

    PubMed Central

    Piddock, Laura J. V.

    2006-01-01

    Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed. PMID:16614254

  19. [Monotherapy vs. combined therapy in the treatment of multi-drug resistance gramnegative bacteria].

    PubMed

    Martínez-Sagasti, F; González-Gallego, M A; Moneo-González, A

    2016-09-01

    The increasing number of multidrug resistant gram negative bacteria, particularly in patients with risk factors, but in those who suffer community infections as well, is doing more and more difficult to choose the appropriate treatment. The most challenging cases are due to the production of extended-spectrum-β-lactamases (ESBL) and carbapenemases. This mini-review will discuss the adequacy of administering carbapenems when suspecting infections due to ESBL that could be modified after knowing the MIC of the isolated bacteria and the combined therapy in cases of carbapenemases, being particularly important to include a carbapenem and/or colistine at high dosages in this combination. PMID:27608313

  20. Presence of multidrug-resistant enteric bacteria in dairy farm topsoil.

    PubMed

    Burgos, J M; Ellington, B A; Varela, M F

    2005-04-01

    In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement, and prophylaxis in food animals, leading to selection of drug and multidrug-resistant bacteria. To help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, it is not fully understood how widespread antibiotic-resistant bacteria are in agricultural settings. The lack of such surveillance data is especially evident in dairy farm environments, such as soil. It is also unknown to what extent various physiological modulators, such as salicylate, a component of aspirin and known model modulator of multiple antibiotic resistance (mar) genes, influence bacterial multi-drug resistance. We isolated and identified enteric soil bacteria from local dairy farms within Roosevelt County, NM, determined the resistance profiles to antibiotics associated with mar, such as chloramphenicol, nalidixic acid, penicillin G, and tetracycline. We then purified and characterized plasmid DNA and detected mar phenotypic activity. The minimal inhibitory concentrations (MIC) of antibiotics for the isolates ranged from 6 to >50 microg/mL for chloramphenicol, 2 to 8 microg/mL for nalidixic acid, 25 to >300 microg/mL for penicillin G, and 1 to >80 microg/mL for tetracycline. On the other hand, many of the isolates had significantly enhanced MIC for the same antibiotics in the presence of 5 mM salicylate. Plasmid DNA extracted from 12 randomly chosen isolates ranged in size from 6 to 12.5 kb and, in several cases, conferred resistance to chloramphenicol and penicillin G. It is concluded that enteric bacteria from dairy farm topsoil are multidrug resistant and harbor antibiotic-resistance plasmids. A role for dairy topsoil in zoonoses is suggested, implicating this environment as a reservoir for development of bacterial resistance against clinically relevant

  1. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan.

    PubMed

    Sato, Maiko; Ahmed, Ashraf M; Noda, Ayako; Watanabe, Hitoshi; Fukumoto, Yukio; Shimamoto, Tadashi

    2009-01-01

    Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, beta-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another.

  2. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan

    PubMed Central

    2009-01-01

    Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, β-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another. PMID:19930691

  3. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    PubMed

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use.

  4. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation.

    PubMed

    Chapin, Amy; Rule, Ana; Gibson, Kristen; Buckley, Timothy; Schwab, Kellogg

    2005-02-01

    The use of nontherapeutic levels of antibiotics in swine production can select for antibiotic resistance in commensal and pathogenic bacteria in swine. As a result, retail pork products, as well as surface and groundwaters contaminated with swine waste, have been shown to be sources of human exposure to antibiotic-resistant bacteria. However, it is unclear whether the air within swine operations also serves as a source of exposure to antibiotic-resistant bacterial pathogens. To investigate this issue, we sampled the air within a concentrated swine feeding operation with an all-glass impinger. Samples were analyzed using a method for the isolation of Enterococcus. A total of 137 presumptive Enterococcus isolates were identified to species level using standard biochemical tests and analyzed for resistance to erythromycin, clindamycin, virginiamycin, tetracycline, and vancomycin using the agar dilution method. Thirty-four percent of the isolates were confirmed as Enterococcus, 32% were identified as coagulase-negative staphylococci, and 33% were identified as viridans group streptococci. Regardless of bacterial species, 98% of the isolates expressed high-level resistance to at least two antibiotics commonly used in swine production. None of the isolates were resistant to vancomycin, an antibiotic that has never been approved for use in livestock in the United States. In conclusion, high-level multidrug-resistant Enterococcus, coagulase-negative staphylococci, and viridans group streptococci were detected in the air of a concentrated swine feeding operation. These findings suggest that the inhalation of air from these facilities may serve as an exposure pathway for the transfer of multidrug-resistant bacterial pathogens from swine to humans.

  5. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    PubMed Central

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  6. Multidrug resistant bacteria isolated from cockroaches in long-term care facilities and nursing homes.

    PubMed

    Pai, Hsiu-Hua

    2013-01-01

    Residents in long-term care facilities and nursing homes have a relative higher risk for infections. The nocturnal and filthy habits of cockroaches may be ideal disseminators of pathogenic microorganisms in these institutions. This study was designed to determine the infestation and vector potential of cockroaches under this institutional environment. Cockroaches were collected from 69 long-term care facilities and nursing homes in Kaohsiung City. Risk factors related to cockroach infestation were determined by questionnaire survey. In addition, bacteria were isolated and identified from the alimentary tract and external surface of these insects. Antibiotic resistances of these microorganisms were then determined. Cockroach infestation was found in 45 (65.2%) institutions and 558 cockroaches (119 Periplaneta americana and 439 Blattella germanica) were collected. A significant association was found between cockroach infestation and indoor environmental sanitation. From 250 adult cockroaches, 38 species of gram-negative bacteria, 20 species of glucose non-fermenter bacilli and 6 species of gram-positive bacteria were isolated. Moreover, antibiotic resistances were found among the bacteria isolated. These findings indicate that cockroaches have the potential in transmitting pathogenic bacteria with multidrug resistances in long-term care facilities and nursing homes.

  7. Incidence and diversity of antimicrobial multidrug resistance profiles of uropathogenic bacteria.

    PubMed

    Linhares, Inês; Raposo, Teresa; Rodrigues, António; Almeida, Adelaide

    2015-01-01

    The aim of this study was to assess the most frequent multidrug resistant (MDR) profiles of the main bacteria implicated in community-acquired urinary tract infections (UTI). Only the MDR profiles observed in, at least, 5% of the MDR isolates were considered. A quarter of the bacteria were MDR and the most common MDR profile, including resistance to penicillins, quinolones, and sulfonamides (antibiotics with different mechanisms of action, all mainly recommended by the European Association of Urology for empirical therapy of uncomplicated UTI), was observed, alone or in association with resistance to other antimicrobial classes, in the main bacteria implicated in UTI. The penicillin class was included in all the frequent MDR profiles observed in the ten main bacteria and was the antibiotic with the highest prescription during the study period. The sulfonamides class, included in five of the six more frequent MDR profiles, was avoided between 2000 and 2009. The results suggest that the high MDR percentage and the high diversity of MDR profiles result from a high prescription of antibiotics but also from antibiotic-resistant genes transmitted with other resistance determinants on mobile genetic elements and that the UTI standard treatment guidelines must be adjusted for the community of Aveiro District.

  8. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.

  9. Incidence and Diversity of Antimicrobial Multidrug Resistance Profiles of Uropathogenic Bacteria

    PubMed Central

    Linhares, Inês; Raposo, Teresa; Rodrigues, António

    2015-01-01

    The aim of this study was to assess the most frequent multidrug resistant (MDR) profiles of the main bacteria implicated in community-acquired urinary tract infections (UTI). Only the MDR profiles observed in, at least, 5% of the MDR isolates were considered. A quarter of the bacteria were MDR and the most common MDR profile, including resistance to penicillins, quinolones, and sulfonamides (antibiotics with different mechanisms of action, all mainly recommended by the European Association of Urology for empirical therapy of uncomplicated UTI), was observed, alone or in association with resistance to other antimicrobial classes, in the main bacteria implicated in UTI. The penicillin class was included in all the frequent MDR profiles observed in the ten main bacteria and was the antibiotic with the highest prescription during the study period. The sulfonamides class, included in five of the six more frequent MDR profiles, was avoided between 2000 and 2009. The results suggest that the high MDR percentage and the high diversity of MDR profiles result from a high prescription of antibiotics but also from antibiotic-resistant genes transmitted with other resistance determinants on mobile genetic elements and that the UTI standard treatment guidelines must be adjusted for the community of Aveiro District. PMID:25834814

  10. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria

    PubMed Central

    2013-01-01

    Background In response to the propagation of bacteria resistant to many antibiotics also called multi-drug resistant (MDR) bacteria, the discovery of new and more efficient antibacterial agents is primordial. The present study was aimed at evaluating the antibacterial activities of seven Cameroonian dietary plants (Adansonia digitata, Aframomum alboviolaceum, Aframomum polyanthum, Anonidium. mannii, Hibiscus sabdarifa, Ocimum gratissimum and Tamarindus indica). Methods The phytochemical screening of the studied extracts was performed using described methods whilst the liquid broth micro dilution was used for all antimicrobial assays against 27 Gram-negative bacteria. Results The results of the phytochemical tests indicate that all tested extracts contained phenols and triterpenes, other classes of chemicals being selectively present. The studied extracts displayed various degrees of antibacterial activities. The extracts of A. digitata, H. sabdarifa, A. polyanthum, A. alboviolaceum and O. gratissimum showed the best spectra of activity, their inhibitory effects being recorded against 81.48%, 66.66%, 62.96%, 55.55%, and 55.55% of the 27 tested bacteria respectively. The extract of A. polyanthum was very active against E. aerogenes EA294 with the lowest recorded minimal inhibitory concentration (MIC) of 32 μg/ml. Conclusion The results of the present work provide useful baseline information for the potential use of the studied edible plants in the fight against both sensitive and MDR phenotypes. PMID:23837916

  11. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  12. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  13. Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria.

    PubMed

    Luo, Yang; Hossain, Mainul; Wang, Chaoming; Qiao, Yong; An, Jincui; Ma, Liyuan; Su, Ming

    2013-01-21

    This paper describes a nanoparticle enhanced X-ray irradiation based strategy that can be used to kill multidrug resistant (MDR) bacteria. In the proof-of-concept experiment using MDR Pseudomonas aeruginosa (P. aeruginosa) as an example, polyclonal antibody modified bismuth nanoparticles are introduced into bacterial culture to specifically target P. aeruginosa. After washing off uncombined bismuth nanoparticles, the bacteria are irradiated with X-rays, using a setup that mimics a deeply buried wound in humans. Results show that up to 90% of MDR P. aeruginosa are killed in the presence of 200 μg ml(-1) bismuth nanoparticles, whereas only ∼6% are killed in the absence of bismuth nanoparticles when exposed to 40 kVp X-rays for 10 min. The 200 μg ml(-1) bismuth nanoparticles enhance localized X-ray dose by 35 times higher than the control with no nanoparticles. In addition, no significant harmful effects on human cells (HeLa and MG-63 cells) have been observed with 200 μg ml(-1) bismuth nanoparticles and 10 min 40 kVp X-ray irradiation exposures, rendering the potential for future clinical use. Since X-rays can easily penetrate human tissues, this bactericidal strategy has the potential to be used in effectively killing deeply buried MDR bacteria in vivo.

  14. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    PubMed

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance.

  15. Synergistic Antimicrobial Activity of Camellia sinensis and Juglans regia against Multidrug-Resistant Bacteria

    PubMed Central

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U.; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates.” We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens PMID:25719410

  16. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens. PMID:25719410

  17. Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination

    PubMed Central

    Morgan, Daniel J.; Rogawski, Elizabeth; Thom, Kerri A.; Johnson, J. Kristie; Perencevich, Eli N.; Shardell, Michelle; Leekha, Surbhi; Harris, Anthony D.

    2012-01-01

    Objective To assess the role of environmental contamination in the transmission of multidrug-resistant bacteria to healthcare workers’ clothing. Design Prospective cohort. Setting Six intensive care units at a tertiary care hospital. Subjects Healthcare workers including registered nurses, patient care technicians, respiratory therapists, occupational/physical therapists, and physicians. Interventions None. Measurements and Main Results One hundred twenty of 585 (20.5%) healthcare worker/patient interactions resulted in contamination of healthcare workers’ gloves or gowns. Multidrug-resistant Acinetobacter baumannii contamination occurred most frequently, 55 of 167 observations (32.9%; 95% confidence interval [CI] 25.8% to 40.0%), followed by multidrug-resistant Pseudomonas aeruginosa, 15 of 86 (17.4%; 95% CI 9.4% to 25.4%), vancomycin-resistant Enterococcus, 25 of 180 (13.9%, 95% CI 8.9, 18.9%) and methicillin-resistant Staphylococcus aureus, 21 of 152 (13.8%; 95% CI 8.3% to 19.2%). Independent risk factors associated with healthcare worker contamination with multidrug-resistant bacteria were positive environmental cultures (odds ratio [OR] 4.2; 95% CI 2.7–6.5), duration in room for >5 mins (OR 2.0; 95% CI 1.2–3.4), performing physical examinations (OR 1.7; 95% CI 1.1–2.8), and contact with the ventilator (OR 1.8; 95% CI, 1.1–2.8). Pulsed field gel electrophoresis determined that 91% of healthcare worker isolates were related to an environmental or patient isolate. Conclusions The contamination of healthcare workers’ protective clothing during routine care of patients with multidrug- resistant organisms is most frequent with A. baumannii. Environmental contamination was the major determinant of transmission to healthcare workers’ gloves or gowns. Compliance with contact precautions and more aggressive environmental cleaning may decrease transmission. PMID:22202707

  18. Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria.

    PubMed

    Hamoud, Razan; Reichling, Jurgen; Wink, Michael

    2014-01-01

    A combination of antimicrobial drugs has a potential to overcome multidrug resistant pathogens. In our study we tested the combination of an antimicrobial DNA-intercalating alkaloid (sanguinarine), a chelator (EDTA) with a standard antibiotic (vancomycin), i.e. drugs, which differ in their mode of action. The antibacterial activities of individual substances and of two-drug and three-drug combinations were evaluated for 34 strains of Gram-positive and Gramnegative bacteria (among them 23 clinical isolates) which are not sensitive for vancomycin. MIC and MBC values were determined for each drug individually. Sanguinarine demonstrated a strong activity against all the strains; its activity was comparable to that of antibiotics (MIC = 0.5 - 128 µg/ml). Time kill pharmacokinetics were studied for different concentrations of sanguinarine. A sanguinarine concentration of 16 x MIC was bactericidal against both Gram-positive and Gram-negative strains within 4 to 6 h of incubation. EDTA has only bacteriostatic activity against both Gram-positive and Gram-negative bacteria. As expected, vancomycin is active against Gram-positive bacteria (MIC = 0.125 - 16 µg/ml) but much weaker against Gram-negative bacteria (MIC = 4 - 128 µg/ml). Using the checkerboard design, two- and threedrug combinations were evaluated. Additive and synergistic effects were recorded for all sanguinarine + EDTA and sanguinarine + EDTA + vancomycin combinations against Gram-negative bacteria. Time kill assays indicated that only the combination of 1 x MIC sanguinarine + 1 x MIC EDTA + 1 x MIC vancomycin resulted in a synergistic interaction against MRSA. In the combination assays Gram-negative bacteria became sensitive for vancomycin. More experiments are needed to demonstrate that such a combination strategy also works under in vivo conditions and is clinically relevant.

  19. In vitro antibacterial potency of Butea monosperma Lam. against 12 clinically isolated multidrug resistant bacteria

    PubMed Central

    Sahu, Mahesh Chandra; Padhy, Rabindra Nath

    2013-01-01

    Objective To investigate the antibacterial activity, using cold and hot extraction procedures with five solvents, petroleum ether, acetone, ethanol, methanol and water to validate medicinal uses of Butea monosperma Lam (B. monosperma) in controlling infections; and to qualitatively estimate phytochemical constituents of leaf-extracts of the plant. Methods The antibacterial activity of leaf-extracts was evaluated by the agar-well diffusion method against clinically isolated 12 Gram-positive and -negative multidrug resistant (MDR) pathogenic bacteria in vitro. Values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of leaf-extracts against each bacterium were obtained in a 96-well micro-titre plate, by broth dilution micro-titre plate technique. Results The presence of tannins, flavonoids, starch, glycosides and carbohydrates in different leaf extracts was established. Pathogenic bacteria used were, Acinetobacter sp., Chromobacterium violaceum, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella sp., Enterococcus sp., Staphylococcus aureus (S. aureus), methicillin resistant S. aureus and vancomycin resistant S. aureus, along with standard bacterial strains. These MDR bacteria had been recorded to have significant inhibitions by leaf extracts, obtained by cold and hot extraction procedures with five solvents. In addition, the hot aqueous extract against Enterococcus sp. had the highest inhibition zone-size (21 mm). Ciprofloxacin 30 µg/disc was the positive/reference control and the diluting solvent, 10% dimethyl sulphoxide was the negative control. Recorded MIC values of different extracts ranged between 0.23 and 13.30 mg/mL, and MBC values were 0.52 to 30.00 mg/mL, for these bacteria. Conclusions Leaf-extracts with hot water and ethanol had shown significant antibacterial activity against all bacteria. B. monosperma leaf-extract could be used in treating infectious

  20. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.

    PubMed

    Konings, W N; Lolkema, J S; Bolhuis, H; van Veen, H W; Poolman, B; Driessen, A J

    1997-02-01

    Lactic acid bacteria play an essential role in many food fermentation processes. They are anaerobic organisms which obtain their metabolic energy by substrate phosphorylation. In addition three secondary energy transducing processes can contribute to the generation of a proton motive force: proton/substrate symport as in lactic acid excretion, electrogenic precursor/product exchange as in malolactic and citrolactic fermentation and histidine/histamine exchange, and electrogenic uniport as in malate and citrate uptake in Leuconostoc oenos. In several of these processes additional H+ consumption occurs during metabolism leading to the generation of a pH gradient, internally alkaline. Lactic acid bacteria have also developed multidrug resistance systems. In Lactococcus lactis three toxin excretion systems have been characterized: cationic toxins can be excreted by a toxin/proton antiport system and by an ABC-transporter. This cationic ABC-transporter has surprisingly high structural and functional analogy with the human MDR1-(P-glycoprotein). For anions an ATP-driven ABC-like excretion systems exist.

  1. Eradication of Multi-drug Resistant Bacteria by Ni Doped ZnO Nanorods: Structural, Raman and optical characteristics

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mansoor, Qaisar; Mahmood, Arshad; Ahmad, Amaar

    2014-07-01

    In this paper, ZnO nanorods doped with varying amounts of Ni have been prepared by chemical co-precipitation technique. Structural investigations provide the evidence that Ni is successfully doped into ZnO host matrix without having any secondary phases. Scanning electron microscopy (SEM) images reveal the formation of rodlike structure of undoped ZnO with average length and diameter of 1 μm and 80 nm, respectively. Raman spectroscopy results show that the E1LO phonons mode band shifts to the higher values with Ni doping, which is attributed to large amount of crystal defects. Ni doping is also found to greatly influence the optical properties of ZnO nanorods. The influence of Ni doping on antibacterial characteristics of ZnO nanorods have been studied by measuring the growth curves of Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria in the presence of prepared nanorods. ZnO nanorods antibacterial potency is found to increase remarkably with Ni doping against S. aureus and P. aeruginosa microbials, which might possibly be due to the increase in reactive oxygen species (ROS) generation. Interestingly, it is observed that Ni doped ZnO nanorods completely eradicates these multi-drug resistant bacteria.

  2. Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Luo, Yang; Hossain, Mainul; Wang, Chaoming; Qiao, Yong; An, Jincui; Ma, Liyuan; Su, Ming

    2012-12-01

    This paper describes a nanoparticle enhanced X-ray irradiation based strategy that can be used to kill multidrug resistant (MDR) bacteria. In the proof-of-concept experiment using MDR Pseudomonas aeruginosa (P. aeruginosa) as an example, polyclonal antibody modified bismuth nanoparticles are introduced into bacterial culture to specifically target P. aeruginosa. After washing off uncombined bismuth nanoparticles, the bacteria are irradiated with X-rays, using a setup that mimics a deeply buried wound in humans. Results show that up to 90% of MDR P. aeruginosa are killed in the presence of 200 μg ml-1 bismuth nanoparticles, whereas only ~6% are killed in the absence of bismuth nanoparticles when exposed to 40 kVp X-rays for 10 min. The 200 μg ml-1 bismuth nanoparticles enhance localized X-ray dose by 35 times higher than the control with no nanoparticles. In addition, no significant harmful effects on human cells (HeLa and MG-63 cells) have been observed with 200 μg ml-1 bismuth nanoparticles and 10 min 40 kVp X-ray irradiation exposures, rendering the potential for future clinical use. Since X-rays can easily penetrate human tissues, this bactericidal strategy has the potential to be used in effectively killing deeply buried MDR bacteria in vivo.This paper describes a nanoparticle enhanced X-ray irradiation based strategy that can be used to kill multidrug resistant (MDR) bacteria. In the proof-of-concept experiment using MDR Pseudomonas aeruginosa (P. aeruginosa) as an example, polyclonal antibody modified bismuth nanoparticles are introduced into bacterial culture to specifically target P. aeruginosa. After washing off uncombined bismuth nanoparticles, the bacteria are irradiated with X-rays, using a setup that mimics a deeply buried wound in humans. Results show that up to 90% of MDR P. aeruginosa are killed in the presence of 200 μg ml-1 bismuth nanoparticles, whereas only ~6% are killed in the absence of bismuth nanoparticles when exposed to 40 kVp X

  3. [Which alternatives are at our disposal in the anti-infectious therapeutics face to multi-drug resistant bacteria?].

    PubMed

    Bourlioux, P

    2013-05-01

    The development of multi-drug resistance to antibiotics during the last years and the few number of new active molecules launched on the market have limited the treatment of some infectious diseases. Which alternatives are at our disposal in the anti-infectious therapeutics face to multi-drug resistant bacteria? Considering the bibliographic data, we can note different facts: (1) some alternatives already exist, but correspond more to targeted useful and usable therapeutics as phage therapy, honey therapy, or maggot therapy; (2) some "old" antibiotics can find new bacterial targets and reinforce the anti-infectious therapy towards some multi-drug resistant bacteria; (3) new formulations can allow targeted drug delivery via nanoparticles and the association of molecules can reinforce the antibiotic antimicrobial effect; (4) new treatment could be potentially usable as: antimicrobial peptides, probiotics, herbal medicines, statins, phosphonosulfonates, fecal transplants...; (5) at least, we must not forget that "it's better to prevent than cure". So, besides the principles of hygiene that must be respected, it is necessary to promote (if possible) the development of new vaccines against bacteria responsible for nosocomial infections. Facing with this potential, we can say that new orientations are open with very different levels of success and that it is urgent to find new targets ignored or forgotten until now.

  4. Effective Targeted Photothermal Ablation of Multidrug Resistant Bacteria and Their Biofilms with NIR-Absorbing Gold Nanocrosses.

    PubMed

    Teng, Choon Peng; Zhou, Tielin; Ye, Enyi; Liu, Shuhua; Koh, Leng Duei; Low, Michelle; Loh, Xian Jun; Win, Khin Yin; Zhang, Lianhui; Han, Ming-Yong

    2016-08-01

    With the rapid evolution of antibiotic resistance in bacteria, antibiotic-resistant bacteria (in particular, multidrug-resistant bacteria) and their biofilms have been becoming more and more difficult to be effectively treated with conventional antibiotics. As such, there is a great demand to develop a nonantibiotic approach in efficiently eliminating such bacteria. Here, multibranched gold nanocrosses with strong near-infrared absorption falling in the biological window, which heat up quickly under near-infrared-light irradiation are presented. The gold nanocrosses are conjugated to secondary and primary antibodies for targeting PcrV, a type III secretion protein, which is uniquely expressed on the bacteria superbug, Pseudomonas aeruginosa. The conjugated gold nanocrosses are capable of completely destroying P. aeruginosa and its biofilms upon near-infrared-light irradiation for 5 min with an 800 nm laser at a low power density of ≈3.0 W cm(-2) . No bacterial activity is detected after 48 h postirradiation, which indicates that the heat generated from the irradiated plasmonic gold nanocrosses attached to bacteria is effective in eliminating and preventing the re-growth of the bacteria. Overall, the conjugated gold nanocrosses allow targeted and effective photothermal ablation of multidrug-resistant bacteria and their biofilms in the localized region with reduced nonspecific damage to normal tissue. PMID:27336752

  5. Prevalence of Multidrug-Resistant Bacteria on Fresh Vegetables Collected from Farmers' Markets in Connecticut.

    PubMed

    Karumathil, Deepti Prasad; Yin, Hsin-Bai; Kollanoor-Johny, Anup; Venkitanarayanan, Kumar

    2016-08-01

    This study determined the prevalence of multidrug-resistant (MDR) Acinetobacter baumannii on fresh vegetables collected from farmers' markets in Connecticut. One hundred samples each of fresh carrots, potatoes, and lettuce were sampled and streaked on selective media, namely Leeds Acinetobacter and MDR Acinetobacter agars. All morphologically different colonies from MDR Acinetobacter agar were identified by using Gram staining, biochemical tests, and PCR. In addition, susceptibility of the isolates to 10 antibiotics commonly used in humans, namely imipenem, ceftriaxone, cefepime, minocycline, erythromycin, colistin-sulfate, streptomycin, neomycin, doxycycline, and rifampin was determined by using an antibiotic disk diffusion assay. The results revealed that only two samples of potato and one sample of lettuce yielded A. baumannii. In addition, all carrot samples were found to be negative for the organism. However, several other opportunistic, MDR human pathogens, such as Burkholderia cepacia (1% potatoes, 5% carrots, and none in lettuce), Stenotrophomonas maltophilia (6% potatoes, 2% lettuce, and none in carrots), and Pseudomonas luteola (9% potatoes, 3% carrots, and none in lettuce) were recovered from the vegetables. Antibiotic susceptibility screening of the isolates revealed high resistance rates for the following: ceftriaxone (6 of 6), colistin-sulfate (5 of 6), erythromycin (5 of 6), and streptomycin (4 of 6) in B. cepacia; colistin-sulfate (11 of 11) and imipenem (10 of 11) in P. luteola; colistin-sulfate (8 of 8), ceftriaxone (8 of 8), cefepime (7 of 8), erythromycin (5 of 8), and imipenem (4 of 8) in S. maltophilia; and imipenem (3 of 3), ceftriaxone (3 of 3), erythromycin (3 of 3), and streptomycin (3 of 3) in A. baumannii. The results revealed the presence of MDR bacteria, including human pathogens on fresh produce, thereby highlighting the potential health risk in consumers, especially those with a compromised immune system.

  6. Prevalence of Multidrug-Resistant Bacteria on Fresh Vegetables Collected from Farmers' Markets in Connecticut.

    PubMed

    Karumathil, Deepti Prasad; Yin, Hsin-Bai; Kollanoor-Johny, Anup; Venkitanarayanan, Kumar

    2016-08-01

    This study determined the prevalence of multidrug-resistant (MDR) Acinetobacter baumannii on fresh vegetables collected from farmers' markets in Connecticut. One hundred samples each of fresh carrots, potatoes, and lettuce were sampled and streaked on selective media, namely Leeds Acinetobacter and MDR Acinetobacter agars. All morphologically different colonies from MDR Acinetobacter agar were identified by using Gram staining, biochemical tests, and PCR. In addition, susceptibility of the isolates to 10 antibiotics commonly used in humans, namely imipenem, ceftriaxone, cefepime, minocycline, erythromycin, colistin-sulfate, streptomycin, neomycin, doxycycline, and rifampin was determined by using an antibiotic disk diffusion assay. The results revealed that only two samples of potato and one sample of lettuce yielded A. baumannii. In addition, all carrot samples were found to be negative for the organism. However, several other opportunistic, MDR human pathogens, such as Burkholderia cepacia (1% potatoes, 5% carrots, and none in lettuce), Stenotrophomonas maltophilia (6% potatoes, 2% lettuce, and none in carrots), and Pseudomonas luteola (9% potatoes, 3% carrots, and none in lettuce) were recovered from the vegetables. Antibiotic susceptibility screening of the isolates revealed high resistance rates for the following: ceftriaxone (6 of 6), colistin-sulfate (5 of 6), erythromycin (5 of 6), and streptomycin (4 of 6) in B. cepacia; colistin-sulfate (11 of 11) and imipenem (10 of 11) in P. luteola; colistin-sulfate (8 of 8), ceftriaxone (8 of 8), cefepime (7 of 8), erythromycin (5 of 8), and imipenem (4 of 8) in S. maltophilia; and imipenem (3 of 3), ceftriaxone (3 of 3), erythromycin (3 of 3), and streptomycin (3 of 3) in A. baumannii. The results revealed the presence of MDR bacteria, including human pathogens on fresh produce, thereby highlighting the potential health risk in consumers, especially those with a compromised immune system. PMID:27497135

  7. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers.

    PubMed

    Shahi, Shailesh K; Kumar, Ashok

    2015-01-01

    Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely bla TEM, bla SHV, bla OXA, bla CTX-M-gp1, bla CTX-M-gp2, and bla CTX-M-gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for bla TEM (89.47%), bla OXA (52.63%), and bla CTX-M-gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria. PMID:26779134

  8. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers

    PubMed Central

    Shahi, Shailesh K.; Kumar, Ashok

    2016-01-01

    Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely blaTEM, blaSHV, blaOXA, blaCTX−M−gp1, blaCTX−M−gp2, and blaCTX−M−gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for blaTEM (89.47%), blaOXA (52.63%), and blaCTX−M−gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria. PMID:26779134

  9. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria

    PubMed Central

    2014-01-01

    Introduction The high incidence of multidrug-resistant (MDR) bacteria among patients admitted to ICUs has determined an increase of tigecycline (TGC) use for the treatment of severe infections. Many concerns have been raised about the efficacy of this molecule and increased dosages have been proposed. Our purpose is to investigate TGC safety and efficacy at higher than standard doses. Methods We conducted a retrospective study of prospectively collected data in the ICU of a teaching hospital in Rome. Data from all patients treated with TGC for a microbiologically confirmed infection were analyzed. The safety profile and efficacy of high dosing regimen use were investigated. Results Over the study period, 54 patients (pts) received TGC at a standard dose (SD group: 50 mg every 12 hours) and 46 at a high dose (HD group: 100 mg every 12 hours). Carbapenem-resistant Acinetobacter.baumannii (blaOXA-58 and blaOXA-23 genes) and Klebsiella pneumoniae (blaKPC-3 gene) were the main isolated pathogens (n = 79). There were no patients requiring TGC discontinuation or dose reduction because of adverse events. In the ventilation-associated pneumonia population (VAP) subgroup (63 patients: 30 received SD and 33 HD), the only independent predictor of clinical cure was the use of high tigecycline dose (odds ratio (OR) 6.25; 95% confidence interval (CI) 1.59 to 24.57; P = 0.009) whilst initial inadequate antimicrobial treatment (IIAT) (OR 0.18; 95% CI 0.05 to 0.68; P = 0.01) and higher Sequential Organ Failure Assessment (SOFA) score (OR 0.66; 95% CI 0.51 to 0.87; P = 0.003) were independently associated with clinical failure. Conclusions TGC was well tolerated at a higher than standard dose in a cohort of critically ill patients with severe infections. In the VAP subgroup the high-dose regimen was associated with better outcomes than conventional administration due to Gram-negative MDR bacteria. PMID:24887101

  10. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now.

    PubMed

    Freire-Moran, Laura; Aronsson, Bo; Manz, Chris; Gyssens, Inge C; So, Anthony D; Monnet, Dominique L; Cars, Otto

    2011-04-01

    Two commercial databases (Pharmaprojects and Adis Insight R&D) were queried for antibacterial agents in clinical development. Particular attention was given to antibacterial agents for systemic administration. For each agent, reviewers were requested to indicate whether its spectrum of activity covered a set of selected multidrug-resistant bacteria, and whether it had a new mechanism of action or a new target. In addition, PubMed was searched for antibacterial agents in development that appeared in review articles. Out of 90 agents that were considered to fulfil the inclusion criteria for the analysis, 66 were new active substances. Fifteen of these could be systemically administered and were assessed as acting via a new or possibly new mechanism of action or on a new or possibly new target. Out of these, 12 agents were assessed as having documented in vitro activity against antibiotic-resistant Gram-positive bacteria and only four had documented in vitro activity against antibiotic-resistant Gram-negative bacteria. Of these four, two acted on new or possibly new targets and, crucially, none acted via new mechanisms of action. There is an urgent need to address the lack of effective treatments to meet the increasing public health burden caused by multidrug-resistant bacteria, in particular against Gram-negative bacteria.

  11. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-drug Resistant Bacteria from Clinical Isolates

    PubMed Central

    Dahiya, Praveen; Purkayastha, Sharmishtha

    2012-01-01

    The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus. PMID:23716873

  12. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma.

    PubMed

    Park, Ji Hoon; Kumar, Naresh; Park, Dae Hoon; Yusupov, Maksudbek; Neyts, Erik C; Verlackt, Christof C W; Bogaerts, Annemie; Kang, Min Ho; Uhm, Han Sup; Choi, Eun Ha; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  13. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  14. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes.

    PubMed

    Fiorentino, Antonino; Ferro, Giovanna; Alferez, María Castro; Polo-López, Maria Inmaculada; Fernández-Ibañez, Pilar; Rizzo, Luigi

    2015-07-01

    Solar disinfection and solar-driven advanced oxidation processes (AOPs) (namely H2O2/sunlight, TiO2/sunlight, H2O2/TiO2/sunlight, solar photo-Fenton) were evaluated in the inactivation of indigenous antibiotic-resistant bacteria (ARB) in real urban wastewater. A multidrug resistant (MDR) Escherichia coli strain isolated from the effluent of the biological process of an urban wastewater treatment plant was the target ARB. The higher inactivation rates (residual density under detection limit, 2 CFUm L(-1)) were achieved with H2O2/TiO2/sunlight (cumulative energy per unit of volume (QUV) in the range 3-5 kJ L(-1), depending on H2O2/TiO2 ratio) and H2O2/sunlight (QUV of 8 kJ L(-1)) processes. All investigated processes did not affect antibiotic resistance of survived colonies. Moreover, H2O2/sunlight was compared with conventional chlorination process to evaluate bacterial regrowth potential and particularly the proportion of indigenous MDR E. coli with respect to total indigenous E. coli population. Chlorination (1.0 mg Cl2 L(-1)) was more effective than H2O2/sunlight (50 mg H2O2 L(-1)) to achieve total inactivation of MDR E. coli (15 min Vs 90 min) but less effective in controlling their regrowth (24 h Vs 48 h). Interestingly, the percentage of MDR E. coli in H2O2/sunlight treated samples decreased as incubation time increased; the opposite was observed for chlorinated samples. PMID:25874661

  15. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes.

    PubMed

    Fiorentino, Antonino; Ferro, Giovanna; Alferez, María Castro; Polo-López, Maria Inmaculada; Fernández-Ibañez, Pilar; Rizzo, Luigi

    2015-07-01

    Solar disinfection and solar-driven advanced oxidation processes (AOPs) (namely H2O2/sunlight, TiO2/sunlight, H2O2/TiO2/sunlight, solar photo-Fenton) were evaluated in the inactivation of indigenous antibiotic-resistant bacteria (ARB) in real urban wastewater. A multidrug resistant (MDR) Escherichia coli strain isolated from the effluent of the biological process of an urban wastewater treatment plant was the target ARB. The higher inactivation rates (residual density under detection limit, 2 CFUm L(-1)) were achieved with H2O2/TiO2/sunlight (cumulative energy per unit of volume (QUV) in the range 3-5 kJ L(-1), depending on H2O2/TiO2 ratio) and H2O2/sunlight (QUV of 8 kJ L(-1)) processes. All investigated processes did not affect antibiotic resistance of survived colonies. Moreover, H2O2/sunlight was compared with conventional chlorination process to evaluate bacterial regrowth potential and particularly the proportion of indigenous MDR E. coli with respect to total indigenous E. coli population. Chlorination (1.0 mg Cl2 L(-1)) was more effective than H2O2/sunlight (50 mg H2O2 L(-1)) to achieve total inactivation of MDR E. coli (15 min Vs 90 min) but less effective in controlling their regrowth (24 h Vs 48 h). Interestingly, the percentage of MDR E. coli in H2O2/sunlight treated samples decreased as incubation time increased; the opposite was observed for chlorinated samples.

  16. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant.

    PubMed

    Vimaladevi, Mohan; Divya, Kurunchi Chellapathi; Girigoswami, Agnishwar

    2016-09-01

    The antimicrobial photodynamic therapy is an alternative method for killing bacterial cells in view of the rising problem of antibiotic resistance microorganisms. The present study examined the effect of a water soluble photosensitizer, Rhodamine 6G (R6G) in stealth liposomes on multidrug resistant Pseudomonas aeruginosa in the presence of visible light. Liposomes were prepared with cholesterol and phospholipids that extracted from hen eggs in a cost effective way and characterized by light microscopy, particle size analyzer, electron microscopy, steady state spectrophotometry and spectrofluorometry. The photoefficacies of R6G in polymer encapsulated liposomes and positively charged liposomes are much higher compared to the free R6G (R6G in water) in terms of singlet oxygen quantum yield. This high potential of producing more reactive oxygen species (ROS) by liposomal nanoformulated R6G leads to efficient photodynamic inactivation of multidrug resistant gram negative bacteria in waste water. Though the singlet oxygen quantum yield of polymer coated liposomal R6G was higher than the cationic liposomal formulation, a faster decrease in bacterial survival was observed for positively charged liposomal R6G treated bacteria due to electrostatic charge interactions. Therefore, it can be concluded that the positively charged liposomal nanoformulations of laser dyes are efficient for photodynamic inactivation of multiple drug resistant gram negative microorganisms. PMID:27371913

  17. In vitro characterization of multivalent adhesion molecule 7-based inhibition of multidrug-resistant bacteria isolated from wounded military personnel.

    PubMed

    Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim

    2012-07-01

    Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens.

  18. Economic burden of multidrug-resistant bacteria in nursing homes in Germany: a cost analysis based on empirical data

    PubMed Central

    Huebner, Claudia; Roggelin, Marcus; Flessa, Steffen

    2016-01-01

    Objectives Infections and colonisations with multidrug-resistant organisms (MDROs) increasingly affect different types of healthcare facilities worldwide. So far, little is known about additional costs attributable to MDROs outside hospitals. The aim of this study was to analysis the economic burden of multidrug-resistant bacteria in nursing homes in Germany. Setting The cost analysis is performed from a microeconomic perspective of the healthcare facilities. Study took place in six long-term care facilities in north-eastern Germany. Participants Data of 71 residents with a positive MDRO status were included. Primary and secondary outcome measures The study analysed MDRO surveillance data from 2011 to 2013. It was supplemented by an empirical analysis to determine the burden on staff capacity and materials consumption. Results 11 793 days with a positive multidrug-resistant pathogen diagnosis could be included in the analysis. On average, 11.8 (SD±6.3) MDRO cases occurred per nursing home. Mean duration per case was 163.3 days (SD±97.1). The annual MDRO-related costs varied in nursing homes between €2449.72 and €153 263.74 on an average €12 682.23 per case. Main cost drivers were staff capacity (€43.95 per day and €7177.04 per case) and isolation materials (€24.70 per day and €4033.51 per case). Conclusions The importance of MDROs in nursing homes could be confirmed. MDRO-related cost data in this specific healthcare sector were collected for the first time. Knowledge about the burden of MDROs will enable to assess the efficiency of hygiene intervention measures in nursing homes in the future. PMID:26908511

  19. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health.

  20. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health. PMID:25504186

  1. Transfer of Multidrug-Resistant Bacteria between Intermingled Ecological Niches: The Interface between Humans, Animals and the Environment

    PubMed Central

    da Costa, Paulo Martins; Loureiro, Luís; Matos, Augusto J. F.

    2013-01-01

    The use of antimicrobial agents has been claimed to be the driving force for the emergence and spread of microbial resistance. However, several studies have reported the presence of multidrug-resistant bacteria in populations exposed to low levels of antimicrobial drugs or even never exposed. For many pathogens, especially those organisms for which asymptomatic colonization typically precedes infection (e.g., Enterococcus spp. and Escherichia coli), the selective effects of antimicrobial use can only be understood if we considerer all biological and environmental pathways which enable these bacteria, and the genes they carry, to spread between different biomes. This ecological framework provides an essential perspective for formulating antimicrobial use policies, precisely because it encompasses the root causes of these problems rather than merely their consequences. PMID:23343983

  2. Which strategies follow from the surveillance of multidrug-resistant bacteria to strengthen the control of their spread? A French experience.

    PubMed

    Lepelletier, Didier; Perron, Stéphanie; Huguenin, Hélène; Picard, Monique; Bemer, Pascale; Caillon, Jocelyne; Juvin, Marie-Emmanuelle; Drugeon, Henri Bernard

    2004-02-01

    Efforts to enhance standard precautions and to isolate patients with positive routine clinical cultures during 3 years were insufficient to decrease multidrug-resistant bacteria infection rates. Routine screening for carriage in high-risk patients may be necessary to halt transmission and control the hospital reservoir.

  3. Which strategies follow from the surveillance of multidrug-resistant bacteria to strengthen the control of their spread? A French experience.

    PubMed

    Lepelletier, Didier; Perron, Stéphanie; Huguenin, Hélène; Picard, Monique; Bemer, Pascale; Caillon, Jocelyne; Juvin, Marie-Emmanuelle; Drugeon, Henri Bernard

    2004-02-01

    Efforts to enhance standard precautions and to isolate patients with positive routine clinical cultures during 3 years were insufficient to decrease multidrug-resistant bacteria infection rates. Routine screening for carriage in high-risk patients may be necessary to halt transmission and control the hospital reservoir. PMID:14994943

  4. Insertion Sequence IS26 Reorganizes Plasmids in Clinically Isolated Multidrug-Resistant Bacteria by Replicative Transposition

    PubMed Central

    He, Susu; Hickman, Alison Burgess; Varani, Alessandro M.; Siguier, Patricia; Chandler, Michael; Dekker, John P.

    2015-01-01

    ABSTRACT Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve. PMID:26060276

  5. Variability of cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant bacteria in two Brazilian intensive care units

    PubMed Central

    Nicoli, Jacques R; Oliveira, Adriana

    2015-01-01

    Objective: To compare cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant organisms in two intensive care units. Methods: A prospective cohort study was performed in adult intensive care units of two hospitals in Belo Horizonte, Brazil (April 2012 to February 2013). Clinical and demographic data were first collected by reviewing patients’ charts. Then, samples collected with nasal, groin, and perineum swabs were cultivated in selective media for 48 h at 37°C. After isolation, determination of antimicrobial susceptibility and biochemical identification were performed. Results: A total of 53 cases of colonization were observed by the following bacteria in decreasing frequencies: imipenem-resistant Acinetobacter baumannii (50.9%), vancomycin-resistant Enterococcus faecalis (43.4%), extended-spectrum beta-lactamase–producing Klebsiella pneumoniae (37.7%), imipenem-resistant Pseudomonas aeruginosa (32.1%), oxacillin-resistant Staphylococcus aureus (7.5%), and imipenem-resistant Klebsiella pneumoniae (5.7%). Among these colonization cases, 26 (49.0%) were followed by infection with bacteria phenotypically similar to those of the colonization. A relation between high population levels of colonization by most of the multidrug-resistant organisms at anatomical sites and a subsequent infection was observed. After colonization/infection, bacterial population levels decreased progressively and spontaneously until disappearance by day 45 in all the anatomical sites and for all the multidrug-resistant organisms. Conclusion: There was a correlation between high population levels of colonization by multidrug-resistant organisms at anatomical sites and a subsequent infection. Reduction in multidrug-resistant organism populations after colonization at anatomical sites could be a preventive measure to reduce evolution to infection as well as transmission of these bacteria between patients in intensive care unit. PMID:26770762

  6. Antimicrobial Action of Water-Soluble β-Chitosan against Clinical Multi-Drug Resistant Bacteria

    PubMed Central

    Park, Seong-Cheol; Nam, Joung-Pyo; Kim, Jun-Ho; Kim, Young-Min; Nah, Jae-Woon; Jang, Mi-Kyeong

    2015-01-01

    Recently, the number of patients infected by drug-resistant pathogenic microbes has increased remarkably worldwide, and a number of studies have reported new antibiotics from natural sources. Among them, chitosan, with a high molecular weight and α-conformation, exhibits potent antimicrobial activity, but useful applications as an antibiotic are limited by its cytotoxicity and insolubility at physiological pH. In the present study, the antibacterial activity of low molecular weight water-soluble (LMWS) α-chitosan (α1k, α5k, and α10k with molecular masses of 1, 5, and 10 kDa, respectively) and β-chitosan (β1k, β5k, and β10k) was compared using a range of pathogenic bacteria containing drug-resistant bacteria isolated from patients at different pH. Interestingly, β5k and β10k exhibited potent antibacterial activity, even at pH 7.4, whereas only α10k was effective at pH 7.4. The active target of β-chitosan is the bacterial membrane, where the leakage of calcein is induced in artificial PE/PG vesicles, bacterial mimetic membrane. Moreover, scanning electron microscopy showed that they caused significant morphological changes on the bacterial surfaces. An in vivo study utilizing a bacteria-infected mouse model found that LMWS β-chitosan could be used as a candidate in anti-infective or wound healing therapeutic applications. PMID:25867474

  7. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite.

    PubMed

    Malka, Eyal; Perelshtein, Ilana; Lipovsky, Anat; Shalom, Yakov; Naparstek, Livnat; Perkas, Nina; Patick, Tal; Lubart, Rachel; Nitzan, Yeshayahu; Banin, Ehud; Gedanken, Aharon

    2013-12-01

    Zinc-doped copper oxide nanoparticles are synthesized and simultaneously deposited on cotton fabric using ultrasound irradiation. The optimization of the processing conditions, the specific reagent ratio, and the precursor concentration results in the formation of uniform nanoparticles with an average size of ≈30 nm. The antibacterial activity of the Zn-doped CuO Cu₀.₈₈Zn₀.₁₂O in a colloidal suspension or deposited on the fabric is tested against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) bacteria. A substantial enhancement of 10,000 times in the antimicrobial activity of the Zn-CuO nanocomposite compared to the pure CuO and ZnO nanoparticles (NPs) is observed after 10 min exposure to the bacteria. Similar activities are observed against multidrug-resistant bacteria (MDR), (i.e., Methicillin-resistant S. aureus and MDR E. coli) further emphasizing the efficacy of this composite. Finally, the mechanism for this enhanced antibacterial activity is presented.

  8. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria.

    PubMed

    Naqvi, Syed Zeeshan Haider; Kiran, Urooj; Ali, Muhammad Ishtiaq; Jamal, Asif; Hameed, Abdul; Ahmed, Safia; Ali, Naeem

    2013-01-01

    Biological synthesis of nanoparticles is a growing innovative approach that is relatively cheaper and more environmentally friendly than current physicochemical processes. Among various microorganisms, fungi have been found to be comparatively more efficient in the synthesis of nanomaterials. In this research work, extracellular mycosynthesis of silver nanoparticles (AgNPs) was probed by reacting the precursor salt of silver nitrate (AgNO3) with culture filtrate of Aspergillus flavus. Initially, the mycosynthesis was regularly monitored by ultraviolet-visible spectroscopy, which showed AgNP peaks of around 400-470 nm. X-ray diffraction spectra revealed peaks of different intensities with respect to angle of diffractions (2θ) corresponding to varying configurations of AgNPs. Transmission electron micrographs further confirmed the formation of AgNPs in size ranging from 5-30 nm. Combined and individual antibacterial activities of the five conventional antibiotics and AgNPs were investigated against eight different multidrug-resistant bacterial species using the Kirby-Bauer disk-diffusion method. The decreasing order of antibacterial activity (zone of inhibition in mm) of antibiotics, AgNPs, and their conjugates against bacterial group (average) was; ciprofloxacin + AgNPs (23) . imipenem + AgNPs (21) > gentamycin + AgNPs (19) > vancomycin + AgNPs (16) > AgNPs (15) . imipenem (14) > trimethoprim + AgNPs (14) > ciprofloxacin (13) > gentamycin (11) > vancomycin (4) > trimethoprim (0). Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2-7.0 (average, 2.8) fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficacy against various pathogenic microbes.

  9. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico

    PubMed Central

    Delgado-Gardea, Ma. Carmen E.; Tamez-Guerra, Patricia; Gomez-Flores, Ricardo; Zavala-Díaz de la Serna, Francisco Javier; Eroza-de la Vega, Gilberto; Nevárez-Moorillón, Guadalupe Virginia; Pérez-Recoder, María Concepción; Sánchez-Ramírez, Blanca; González-Horta, María del Carmen; Infante-Ramírez, Rocío

    2016-01-01

    Bacterial pathogens are a leading cause of waterborne disease, and may result in gastrointestinal outbreaks worldwide. Inhabitants of the Bassaseachic Falls National Park in Chihuahua, Mexico show seasonal gastroenteritis problems. This aim of this study was to detect enteropathogenic microorganisms responsible for diarrheal outbreaks in this area. In 2013, 49 surface water samples from 13 selected sampling sites along the Basaseachi waterfall and its main rivers, were collected during the spring, summer, autumn, and winter seasons. Fecal and total coliform counts were determined using standard methods; the AutoScan-4 system was used for identification of isolates and the antibiotic resistance profile by challenging each organism using 21 antibiotics. Significant differences among seasons were detected, where autumn samples resulted in the highest total (p < 0.05) and fecal (p < 0.001) coliform counts, whereas the lowest total coliform counts were recorded in spring. Significant differences between sampling sites were observed, where samples from sites 6, 8, and 11 had the highest total coliform counts (p < 0.009), whereas samples from site 9 exhibited the lowest one. From the microbiological analysis, 33 bacterial isolates from 13 different sites and four sampling seasons were selected; 53% of isolates were resistant to at least one antibiotic, and 15% exhibited a multidrug resistance (MDB) phenotype. MDB were identified as Klebsiella oxytoca (two out of four identified isolates), Escherichia coli (2/7), and Enterobacter cloacae (1/3). In addition, some water-borne microorganisms exhibited resistance to cefazoline, cefuroxime, ampicillin, and ampicillin-sulbactam. The presence of these microorganisms near rural settlements suggests that wastewater is the contamination source, providing one possible transmission mechanism for diarrheal outbreaks. PMID:27322297

  10. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico.

    PubMed

    Delgado-Gardea, Ma Carmen E; Tamez-Guerra, Patricia; Gomez-Flores, Ricardo; Zavala-Díaz de la Serna, Francisco Javier; Eroza-de la Vega, Gilberto; Nevárez-Moorillón, Guadalupe Virginia; Pérez-Recoder, María Concepción; Sánchez-Ramírez, Blanca; González-Horta, María Del Carmen; Infante-Ramírez, Rocío

    2016-01-01

    Bacterial pathogens are a leading cause of waterborne disease, and may result in gastrointestinal outbreaks worldwide. Inhabitants of the Bassaseachic Falls National Park in Chihuahua, Mexico show seasonal gastroenteritis problems. This aim of this study was to detect enteropathogenic microorganisms responsible for diarrheal outbreaks in this area. In 2013, 49 surface water samples from 13 selected sampling sites along the Basaseachi waterfall and its main rivers, were collected during the spring, summer, autumn, and winter seasons. Fecal and total coliform counts were determined using standard methods; the AutoScan-4 system was used for identification of isolates and the antibiotic resistance profile by challenging each organism using 21 antibiotics. Significant differences among seasons were detected, where autumn samples resulted in the highest total (p < 0.05) and fecal (p < 0.001) coliform counts, whereas the lowest total coliform counts were recorded in spring. Significant differences between sampling sites were observed, where samples from sites 6, 8, and 11 had the highest total coliform counts (p < 0.009), whereas samples from site 9 exhibited the lowest one. From the microbiological analysis, 33 bacterial isolates from 13 different sites and four sampling seasons were selected; 53% of isolates were resistant to at least one antibiotic, and 15% exhibited a multidrug resistance (MDB) phenotype. MDB were identified as Klebsiella oxytoca (two out of four identified isolates), Escherichia coli (2/7), and Enterobacter cloacae (1/3). In addition, some water-borne microorganisms exhibited resistance to cefazoline, cefuroxime, ampicillin, and ampicillin-sulbactam. The presence of these microorganisms near rural settlements suggests that wastewater is the contamination source, providing one possible transmission mechanism for diarrheal outbreaks. PMID:27322297

  11. Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients

    PubMed Central

    Paramythiotou, Elisabeth; Routsi, Christina

    2016-01-01

    The incidence of gram-negative multidrug-resistant (MDR) bacterial pathogens is increasing in hospitals and particularly in the intensive care unit (ICU) setting. The clinical consequences of infections caused by MDR pathogens remain controversial. The purpose of this review is to summarize the available data concerning the impact of these infections on mortality in ICU patients. Twenty-four studies, conducted exclusively in ICU patients, were identified through PubMed search over the years 2000-2015. Bloodstream infection was the only infection examined in eight studies, respiratory infections in four and variable infections in others. Comparative data on the appropriateness of empirical antibiotic treatment were provided by only seven studies. In ten studies the presence of antimicrobial resistance was not associated with increased mortality; on the contrary, in other studies a significant impact of antibiotic resistance on mortality was found, though, sometimes, mediated by inappropriate antimicrobial treatment. Therefore, a direct association between infections due to gram-negative MDR bacteria and mortality in ICU patients cannot be confirmed. Sample size, presence of multiple confounders and other methodological issues may influence the results. These data support the need for further studies to elucidate the real impact of infections caused by resistant bacteria in ICU patients. PMID:27152254

  12. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia*,**

    PubMed Central

    Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin

    2013-01-01

    OBJECTIVE: To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. METHODS: This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. RESULTS: Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). CONCLUSIONS: In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP. PMID:23857697

  13. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps

    PubMed Central

    2014-01-01

    Background The continuous spread of multidrug-resistant (MDR) bacteria, partially due to efflux pumps drastically reduced the efficacy of the antibiotic armory, increasing the frequency of therapeutic failure. The search for new compounds to potentiate the efficacy of commonly used antibiotics is therefore important. The present study was designed to evaluate the ability of the methanol extracts of four Cameroonian dietary plants (Capsicum frutescens L. var. facilulatum, Brassica oleacera L. var. italica, Brassica oleacera L. var. butyris and Basilicum polystachyon (L.) Moench.) to improve the activity of commonly used antibiotics against MDR Gram-negative bacteria expressing active efflux pumps. Methods The qualitative phytochemical screening of the plant extracts was performed using standard methods whilst the antibacterial activity was performed by broth micro-dilution method. Results All the studied plant extracts revealed the presence of alkaloids, phenols, flavonoids, triterpenes and sterols. The minimal inhibitory concentrations (MIC) of the studied extracts ranged from 256-1024 μg/mL. Capsicum frutescens var. facilulatum extract displayed the largest spectrum of activity (73%) against the tested bacterial strains whilst the lower MIC value (256 μg/mL) was recorded with Basilicum polystachyon against E. aerogenes ATCC 13048 and P. stuartii ATCC 29916. In the presence of PAβN, the spectrum of activity of Brassica oleacera var. italica extract against bacteria strains increased (75%). The extracts from Brassica oleacera var. butyris, Brassica oleacera var. italica, Capsicum frutescens var. facilulatum and Basilicum polystachyon showed synergistic effects (FIC ≤ 0.5) against the studied bacteria, with an average of 75.3% of the tested antibiotics. Conclusion These results provide promising information for the potential use of the tested plants alone or in combination with some commonly used antibiotics in the fight against MDR Gram-negative bacteria

  14. Carriage of Multidrug Resistant Bacteria on Frequently Contacted Surfaces and Hands of Health Care Workers

    PubMed Central

    Visalachy, Sowndarya; Kopula, Sridharan Sathyamoorthy; Sekar, Uma

    2016-01-01

    Introduction Maximal contact between the patients and Health Care Workers (HCWs) happens in the Intensive Care Units (ICU). Control of nosocomial infections requires compliance with hand hygiene and contamination free surfaces. Aim To determine the colonization of potential pathogens in the hands of HCWs and frequent contacted environmental surfaces. Materials and Methods A cross sectional study was conducted between September 2012 and May 2013 at Sri Ramachandra Medical College and Hospital. A total of 327 samples were collected using Glove juice technique from hands and swabs from frequently contacted surfaces. A sum of 157 samples were collected by glove juice technique from the hands of HCWs which included Consultants (20), Internees (3), Residents (10), Staff nurse (102) and support staff (22). A total of 170 samples were collected through swabbing which included frequently touched surfaces of apron and dress (140 which included 10 consultants, 3 internees, 9 Residents, 101 Staff nurse and 17 support staff), 9 door handle, 4 key board, 12 tap handles and 5 monitors. The samples were inoculated into Blood agar, Chocolate agar and Mac-Conkey agar plates and incubated at 370C aerobically. The plates showing growth were further processed to identify the organisms by Gram staining and biochemical reactions. Antibiotic susceptibility testing was done for the isolates by Kirby-baur disc diffusion method as per CLSI guidelines. Results Out of the 157 hand sampling done by glove juice method 67(42.7%) of them showed growth and 90(57.3%) showed no growth. The potential pathogens grown were 13 (8.3%), consisting of Methicillin Sensitive Staphylococcus aureus (MSSA) 6(3.8%), Methicillin Resistant Staphylococcus aureus (MRSA) 2(1.3%), Pseudomonas spp 4(2.6%) and Acenitobacter spp 1 (0.6%). The MRSA was seen in Consultant 1(5%; n=20) and Staff nurse 1(0.9%; n= 102). Among the 140 sampling from the dress of HCWs growth was observed in 69(49.3%) and growth was absent in 71(50.7%). The potential pathogens observed were 14(10%) and they are MSSA 5(3.6%), MRSA 1 (0.7%), Pseudomonas spp 2(1.4%), Acenitobacter spp 3(2.1%) Enterobacter spp 1(0.7%), Klebseilla pneumoniae 1(0.7%) and Candida spp 1(0.7%). One MRSA was isolated from staff nurse (0.9%; n=101). Similarly multi-drug resistant Klebsiella pneumoniae 1(0.9%; n=102). Out of the 30 environmental samples 16(53.3%) showed growth and in 14(56.7%) growth was absent. The potential pathogens isolated were 3(10%) which included MSSA 2(6.6%) and MRSA 1(3.4%) and were isolated from the monitor. Conclusion Adherence to infection control practices among all categories of HCWs is must for control of HAI. Glove juice method is a simple, easy and practical technique for determination of colonization of hands of HCWs and can be adapted as a methodology for screening the hands of HCWs. PMID:27437214

  15. MULTIDRUG-RESISTANT GRAM-NEGATIVE BACTERIA: INTER- AND INTRA-DISSEMINATION AMONG RESIDENTS WITH ADVANCED DEMENTIA

    PubMed Central

    D’Agata, Erika M.C.; Habtemariam, Daniel; Mitchell, Susan

    2015-01-01

    Objective To quantify the extent of inter- and intra-nursing home transmission of multidrug-resistant gram-negative bacteria (MDRGN) among residents with advanced dementia and characterize MDRGN colonization among these residents. Design Prospective cohort study Setting Twenty-two nursing homes in the greater Boston, Massachusetts area. Patients Residents with advanced dementia Methods Serial rectal surveillance cultures for MDRGN and residents characteristics were obtained every 3 months for 12 months or until death. Molecular typing of MDRGN isolates was performed by pulsed-field gel electrophoresis. Results A total of 190 MDRGN isolates from 152 residents with advanced dementia were included in the analyses. Both intra- and inter-nursing home transmission were identified. Co-colonization with more than one different MDRGN species occurred among 18.4% of residents. A total of 168 (88.4%), 20 (10.5%) and 2 (1%) of MDRGN isolates were resistant to three, four and five different antimicrobials or antimicrobial classes, respectively. Conclusions MDRGN are spread both within and between nursing homes among residents with advanced dementia. Infection control interventions should begin to target this high-risk group of nursing home residents. PMID:25920002

  16. Multidrug-resistant gram-negative bacteria colonization of healthy US military personnel in the US and Afghanistan

    PubMed Central

    2013-01-01

    Background The US military has seen steady increases in multidrug-resistant (MDR) gram-negative bacteria (GNB) infections in casualties from Iraq and Afghanistan. This study evaluates the prevalence of MDR GNB colonization in US military personnel. Methods GNB colonization surveillance of healthy, asymptomatic military personnel (101 in the US and 100 in Afghanistan) was performed by swabbing 7 anatomical sites. US-based personnel had received no antibiotics within 30 days of specimen collection, and Afghanistan-based personnel were receiving doxycycline for malaria chemoprophylaxis at time of specimen collection. Isolates underwent genotypic and phenotypic characterization. Results The only colonizing MDR GNB recovered in both populations was Escherichia coli (p=0.01), which was seen in 2% of US-based personnel (all perirectal) and 11% of Afghanistan-based personnel (10 perirectal, 1 foot+groin). Individuals with higher off-base exposures in Afghanistan did not show a difference in overall GNB colonization or MDR E. coli colonization, compared with those with limited off-base exposures. Conclusion Healthy US- and Afghanistan-based military personnel have community onset-MDR E. coli colonization, with Afghanistan-based personnel showing a 5.5-fold higher prevalence. The association of doxycycline prophylaxis or other exposures with antimicrobial resistance and increased rates of MDR E. coli colonization needs further evaluation. PMID:23384348

  17. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  18. Rifaximin combined with polymyxins: A potential regimen for selective decontamination of multidrug-resistant bacteria in the digestive tract?

    PubMed

    Betts, J W; Phee, L M; Wareham, D W

    2016-03-01

    Selective decontamination of the digestive tract (SDD) using combinations of oral non-absorbable antibiotics has been proposed as a means of preventing multidrug-resistant (MDR) infections. The minimum inhibitory concentrations (MICs) of rifaximin (RIFAX) were determined against 262 Gram-negative and Gram-positive bacterial isolates by broth microtitre assay. Rifampicin (RIF) was used as a comparator in the analysis. Synergistic interactions between RIFAX and polymyxin B (PMB) were assessed by using the chequerboard method and calculating the fractional inhibitory concentration index (FICI). The antimicrobial activities of both RIFAX and RIF were similar with little variation in the overall MIC distributions for Gram-negative non-fermenters and Gram-positive bacteria. However, against Enterobacteriaceae higher MICs (>16mg/L) were observed for RIFAX than for RIF (50% vs 27%). Amongst the 262 isolates tested, 100 could be considered resistant to RIFAX. Overall, the combination of RIFAX and PMB was more active against all of the isolates tested compared with either drug alone, with reductions of 2-11 doubling dilutions in individual MICs. Potent synergy was observed with the RIFAX+PMB combination using FICI criteria (FICI range 0.02-0.5). The data presented here suggest that combination therapy may be significantly more effective against isolates with RIFAX and/or PMB resistance and could be considered as part of a SDD regimen aimed at reducing enteric carriage of MDR pathogens in colonised and infected patients. PMID:27436386

  19. Surveillance of multidrug resistant uropathogenic bacteria in hospitalized patients in Indian

    PubMed Central

    Mishra, Monali Priyadarsini; Debata, Nagen Kumar; Padhy, Rabindra Nath

    2013-01-01

    Objective To record surveillance, antibiotic resistance of uropathogens of hospitalized patients over a period of 18 months. Methods Urine samples from wards and cabins were used for isolating urinary tract infection (UTI)-causing bacteria that were cultured on suitable selective media and identified by biochemical tests; and their antibiograms were ascertained by Kirby-Bauer's disc diffusion method, in each 6-month interval of the study period, using 18 antibiotics of five different classes. Results From wards and cabins, 1 245 samples were collected, from which 996 strains of bacteria belonging to 11 species were isolated, during April 2011 to September 2012. Two Gram-positive, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and nine Gram-negative bacteria, Acinetobacter baumannii, Citrobacter sp., Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis, Proteus vulgaris and Pseudomonas aeruginosa were isolated. Both S. aureus and E. faecalis were vancomycin resistant, and resistant-strains of all pathogens increased in each 6-month period of study. Particularly, all Gram-negatives were resistant to nitrofurantoin and co-trimoxazole, the most preferred antibiotics of empiric therapy for UTI. Conclusions Antibiograms of 11 UTI-causing bacteria recorded in this study indicated moderately higher numbers of strains resistant to each antibiotic studied, generating the fear of precipitating fervent episodes in public health particularly with bacteria, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and S. aureus. Moreover, vancomycin resistance in strains of S. aureus and E. faecalis is a matter of concern. PMID:23620859

  20. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    PubMed Central

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2013-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670

  1. Multidrug-resistant bacteria in unaccompanied refugee minors arriving in Frankfurt am Main, Germany, October to November 2015.

    PubMed

    Heudorf, Ursel; Krackhardt, Bernhard; Karathana, Maria; Kleinkauf, Niels; Zinn, Christian

    2016-01-01

    Many refugees arriving in Germany originate or have travelled through countries with high prevalence of multidrug-resistant Gram-negative organisms. Therefore, all unaccompanied refugee minors (<18 years-old) arriving in Frankfurt am Main between 12 October and 6 November 2015, were screened for multidrug-resistant Enterobacteriaceae in stool samples. Enterobacteriaceae with extended spectrum beta-lactamases (ESBL) were detected in 42 of 119 (35%) individuals, including nine with additional resistance to fluoroquinolones (8% of total screened), thus exceeding the prevalences in the German population by far. PMID:26838714

  2. Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria

    PubMed Central

    2013-01-01

    Background Many edible plants are used in Cameroon since ancient time to control microbial infections. This study was designed at evaluating the antibacterial activities of the methanol extracts of ten Cameroonian vegetables against a panel of twenty nine Gram negative bacteria including multi-drug resistant (MDR) strains. Methods The broth microdilution method was used to determine the Minimal Inhibitory Concentrations (MIC) and the Minimal Bactericidal Concentrations (MBC) of the studied extracts. When chloramphenicol was used as a reference antibiotic, the MICs were also determined in the presence of Phenylalanine-Arginine β-Naphtylamide (PAβN), an efflux pumps inhibitor (EPI). The phytochemical screening of the extracts was performed using standard methods. Results All tested extracts exhibited antibacterial activities, with the MIC values varying from 128 to 1024 mg/L. The studied extracts showed large spectra of action, those from L. sativa, S. edule, C. pepo and S. nigrum being active on all the 29 bacterial strains tested meanwhile those from Amaranthus hybridus, Vernonia hymenolepsis, Lactuca.carpensis and Manihot esculenta were active on 96.55% of the strains used. The plant extracts were assessed for the presence of large classes of secondary metabolites: alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, steroids, tannins and triterpenes. Each studied plant extract was found to contain compounds belonging to at least two of the above mentioned classes. Conclusion These results confirm the traditional claims and provide promising baseline information for the potential use of the tested vegetables in the fight against bacterial infections involving MDR phenotypes. PMID:23368430

  3. Detection of genes encoding multidrug resistance and biofilm virulence factor in uterine pathogenic bacteria in postpartum dairy cows.

    PubMed

    Kasimanickam, V R; Owen, K; Kasimanickam, R K

    2016-01-15

    Reckless use of antibiotics and/or development of biofilm are the rationale for the development of multidrug resistance (MDR) of pathogenic bacteria. The objective of the present study was to detect MDR genes in Trueperella pyogenes and to detect biofilm virulence factor (VF) genes in Escherichia coli isolated from the uterus of postpartum dairy cows. Uterine secretions from different parity postpartum Holstein cows (n = 40) were collected using cytobrush technique after a sterile procedure from cows with varying degree of uterine inflammatory conditions. The cytobrush was stored in a specimen collector, placed in a cooler with ice, and transported to the laboratory within 2 hours. The pathogens were isolated and were identified initially by their colony morphology and biochemical characteristics. To further identify and classify the single species, and to determine the presence of MDR and VF genes, the genes fragments were amplified using the respective primers by either singleplex or multiplex polymerase chain reaction protocol, and amplicons were detected by electrophoresis method. T pyogenes was isolated in 17 of 40 (42.5%) cows in the study population as recognized by the 16S rRNA gene. Of the positive T pyogenes samples, 8 of 17 (42.1%) were positive for integron type 1 (intI I), and none were positive for integron type 2 (intI II). Of those 8 positive for intI I, six of eight (66.7%) were positive for amplicons aadA5 and aadA24-ORF1 at 1048 and 1608 bp, respectively, associated with specific drug resistance. Presence of addA5 indicated resistance to sulfadiazine, bacitracin, florfenicol, and ceftiofur. Presence of addA24-ORF1 indicated resistant to sulfadiazine, bacitracin, penicillin, clindamycin, and erythromycin. E coli was isolated in 18 of 40 (45.0%) cows in the study population. The genes for VF, Agn43a, and Agn43 b, associated with biofilm production, were found in 6 of 18 (33.3%) of the positive isolates. Both T pyogenes MDR gene and E coli

  4. Sensitivity of surveillance testing for multidrug-resistant Gram-negative bacteria in the intensive care unit.

    PubMed

    Ridgway, Jessica P; Peterson, Lance R; Thomson, Richard B; Miller, Becky A; Wright, Marc-Oliver; Schora, Donna M; Robicsek, Ari

    2014-11-01

    We tested intensive care unit patients for colonization with multidrug-resistant Gram-negative bacilli (MDR GNB) and compared the results with those of concurrent clinical cultures. The sensitivity of the surveillance test for detecting MDR GNB was 58.8% (95% confidence interval, 48.6 to 68.5%). Among 133 patients with positive surveillance tests, 61% had no prior clinical culture with MDR GNB.

  5. Bacteriophage: Time to Re-Evaluate the Potential of Phage Therapy as a Promising Agent to Control Multidrug-Resistant Bacteria

    PubMed Central

    Sabouri Ghannad, Masoud; Mohammadi, Avid

    2012-01-01

    Nowadays the most difficult problem in treatment of bacterial infections is the appearance of resistant bacteria to the antimicrobial agents so that the attention is being drawn to other potential targets. In view of the positive findings of phage therapy, many advantages have been mentioned which utilizes phage therapy over chemotherapy and it seems to be a promising agent to replace the antibiotics. This review focuses on an understanding of phages for the treatment of bacterial infectious diseases as a new alternative treatment of infections caused by multiple antibiotic resistant bacteria. Therefore, utilizing bacteriophage may be accounted as an alternative therapy. It is appropriate time to re-evaluate the potential of phage therapy as an effective bactericidal and a promising agent to control multidrug-resistant bacteria. PMID:23494063

  6. Multidrug Resistant Acinetobacter

    PubMed Central

    Manchanda, Vikas; Sanchaita, Sinha; Singh, NP

    2010-01-01

    Emergence and spread of Acinetobacter species, resistant to most of the available antimicrobial agents, is an area of great concern. It is now being frequently associated with healthcare associated infections. Literature was searched at PUBMED, Google Scholar, and Cochrane Library, using the terms ‘Acinetobacter Resistance, multidrug resistant (MDR), Antimicrobial Therapy, Outbreak, Colistin, Tigecycline, AmpC enzymes, and carbapenemases in various combinations. The terms such as MDR, Extensively Drug Resistant (XDR), and Pan Drug Resistant (PDR) have been used in published literature with varied definitions, leading to confusion in the correlation of data from various studies. In this review various mechanisms of resistance in the Acinetobacter species have been discussed. The review also probes upon the current therapeutic options, including combination therapies available to treat infections due to resistant Acinetobacter species in adults as well as children. There is an urgent need to enforce infection control measures and antimicrobial stewardship programs to prevent the further spread of these resistant Acinetobacter species and to delay the emergence of increased resistance in the bacteria. PMID:20927292

  7. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

    PubMed

    Magiorakos, A-P; Srinivasan, A; Carey, R B; Carmeli, Y; Falagas, M E; Giske, C G; Harbarth, S; Hindler, J F; Kahlmeter, G; Olsson-Liljequist, B; Paterson, D L; Rice, L B; Stelling, J; Struelens, M J; Vatopoulos, A; Weber, J T; Monnet, D L

    2012-03-01

    Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided.

  8. Use of maggot therapy for treating a diabetic foot ulcer colonized by multidrug resistant bacteria in Brazil

    PubMed Central

    Pinheiro, Marilia A.R.Q.; Ferraz, Julianny B.; Junior, Miguel A.A.; Moura, Andrew D.; da Costa, Maria E.S.M.; Costa, Fagner J.M.D.; Neto, Valter F.A.; Neto, Renato M.; Gama, Renata A.

    2015-01-01

    This study reports the efficacy of maggot therapy in the treatment of diabetic foot ulcer infected with multidrug resistant microorganisms. A 74 year old female patient with diabetes for over 30 years, was treated with maggot therapy using larvae of Chrysomya megacephala. The microbiological samples were collected to evaluate aetiology of the infection. The therapy done for 43 days resulted in a reduction of necrosis and the ulcer's retraction of 0.7 cm2 in area. Analysis of the bacteriological swabs revealed the presence of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Further studies need to be done to confirm the role of maggot therapy in wound healing using a large sample and a proper study design. PMID:25963495

  9. Use of maggot therapy for treating a diabetic foot ulcer colonized by multidrug resistant bacteria in Brazil.

    PubMed

    Pinheiro, Marilia A R Q; Ferraz, Julianny B; Junior, Miguel A A; Moura, Andrew D; da Costa, Maria E S M; Costa, Fagner J M D; Neto, Valter F A; Neto, Renato M; Gama, Renata A

    2015-03-01

    This study reports the efficacy of maggot therapy in the treatment of diabetic foot ulcer infected with multidrug resistant microorganisms. A 74 year old female patient with diabetes for over 30 years, was treated with maggot therapy using larvae of Chrysomya megacephala. The microbiological samples were collected to evaluate aetiology of the infection. The therapy done for 43 days resulted in a reduction of necrosis and the ulcer's retraction of 0.7 cm [2] in area. Analysis of the bacteriological swabs revealed the presence of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Further studies need to be done to confirm the role of maggot therapy in wound healing using a large sample and a proper study design.

  10. Enhancement of the antibiotic activity of aminoglycosides by extracts from Anadenanthera colubrine (Vell.) Brenan var. cebil against multi-drug resistant bacteria.

    PubMed

    Barreto, Humberto M; Coelho, Kivia M R N; Ferreira, Josie H L; Dos Santos, Bernadete H C; de Abreu, Aislan P L; Coutinho, Henrique D M; da Silva, Romezio A C; de Sousa, Taciana O; Citó, Antonia M das G L; Lopes, José A D

    2016-06-01

    The aim of this work was to evaluate the antimicrobial activity of ethanol (EEAC) and hexane (HFAC) extracts from the stem bark of Anadenanthera colubrina (Vell.) Brenan var. cebil alone or in combination with aminoglycosides against multi-drug resistant (MDR) bacteria. Minimal inhibitory concentrations (MICs) of the extracts were determined by using microdilution assay. For the evaluation of extracts as modulators of antibiotic resistance, MICs of neomycin and amikacin were determined in presence or absence of each compound at sub-inhibitory concentrations. Both EEAC and HFAC did not show antimicrobial activity against MDR strains tested. However, the addition of EEAC and HFAC enhanced the activity of neomycin and amikacin against Staphylococcus aureus SA10 strain. When the natural products were replaced by chlorpromazine, the same effect was observed. Anadenanthera colubrine var. cebil may be a source of phytochemicals able to potentiate the aminoglycoside activity against MDR S. aureus by the inhibition of efflux pump.

  11. Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii.

    PubMed

    Xie, Junqiu; Gou, Yuanmei; Zhao, Qian; Wang, Kairong; Yang, Xiongli; Yan, Jiexi; Zhang, Wei; Zhang, Bangzhi; Ma, Chi; Wang, Rui

    2014-11-01

    Hospital-acquired infections caused by multidrug-resistant bacteria pose significant challenges for treatment, which necessitate the development of new antibiotics. Antimicrobial peptides are considered potential alternatives to conventional antibiotics. The skin of Anurans (frogs and toads) amphibians is an extraordinarily rich source of antimicrobial peptides. CPF-C1 is a typical cationic antimicrobial peptide that was originally isolated from the tetraploid frog Xenopus clivii. Our results showed that CPF-C1 has potent antimicrobial activity against both sensitive and multidrug-resistant bacteria. It disrupted the outer and inner membranes of bacterial cells. CPF-C1 induced both propidium iodide uptake into the bacterial cell and the leakage of calcein from large liposome vesicles, which suggests a mode of action that involves membrane disturbance. Scanning electron microscopy and transmission electron microscopy verified the morphologic changes of CPF-C1-treated bacterial cells and large liposome vesicles. The membrane-dependent mode of action signifies that the CPF-C1 peptide functions freely and without regard to conventional resistant mechanisms. Additionally, it is difficult for bacteria to develop resistance against CPF-C1 under this action mode. Other studies indicated that CPF-C1 had low cytotoxicity against mammalian cell. In conclusion, considering the increase in multidrug-resistant bacterial infections, CPF-C1 may offer a new strategy that can be considered a potential therapeutic agent for the treatment of diseases caused by multidrug-resistant bacteria.

  12. Antibacterial activities of the methanol extracts of Canarium schweinfurthii and four other Cameroonian dietary plants against multi-drug resistant Gram-negative bacteria.

    PubMed

    Dzotam, Joachim K; Touani, Francesco K; Kuete, Victor

    2016-09-01

    Bacterial infections are among the major cause of morbidity and mortality worldwide. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of five Cameroonian edible plants namely Colocasia esculenta, Triumfetta pentandra, Hibiscus esculentus, Canarium schweinfurthii and Annona muricata against a panel of 19 multidrug resistant Gram-negative bacterial strains. The liquid broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the standard phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols, triterpenes and steroids, other classes of chemicals being selectively distributed. Canarium schweinfurthii extract showed the best activity with MIC values ranging from 64 to 1024 μg/mL against 89.5% of the 19 tested bacteria strains. MIC values below or equal to 1024 μg/mL were also recorded with Triumfetta pentandra, Annona muricata, Colocasia esculenta and Hibiscus esculentus extracts respectively against 15/19 (78.9%), 11/19 (57.9%), 10/19 (52.6%) and 10/19 (52.6%) tested bacteria. Extract from C. schweinfurthii displayed the lowest MIC value (64 μg/mL) against Escherichia coli AG100ATet. Finally, the results of this work provide baseline information for the use of C. esculenta, T. pentandra, H. esculentus, C. schweinfurthii and A. muricata in the treatment of bacterial infections including multidrug resistant phenotypes.

  13. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.

  14. Antibacterial activities of the methanol extracts of Canarium schweinfurthii and four other Cameroonian dietary plants against multi-drug resistant Gram-negative bacteria.

    PubMed

    Dzotam, Joachim K; Touani, Francesco K; Kuete, Victor

    2016-09-01

    Bacterial infections are among the major cause of morbidity and mortality worldwide. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of five Cameroonian edible plants namely Colocasia esculenta, Triumfetta pentandra, Hibiscus esculentus, Canarium schweinfurthii and Annona muricata against a panel of 19 multidrug resistant Gram-negative bacterial strains. The liquid broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the standard phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols, triterpenes and steroids, other classes of chemicals being selectively distributed. Canarium schweinfurthii extract showed the best activity with MIC values ranging from 64 to 1024 μg/mL against 89.5% of the 19 tested bacteria strains. MIC values below or equal to 1024 μg/mL were also recorded with Triumfetta pentandra, Annona muricata, Colocasia esculenta and Hibiscus esculentus extracts respectively against 15/19 (78.9%), 11/19 (57.9%), 10/19 (52.6%) and 10/19 (52.6%) tested bacteria. Extract from C. schweinfurthii displayed the lowest MIC value (64 μg/mL) against Escherichia coli AG100ATet. Finally, the results of this work provide baseline information for the use of C. esculenta, T. pentandra, H. esculentus, C. schweinfurthii and A. muricata in the treatment of bacterial infections including multidrug resistant phenotypes. PMID:27579004

  15. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety. PMID:27247772

  16. A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: design, synthesis, activity against multidrug-resistant bacteria and Candida.

    PubMed

    Mishra, Biswajit; Leishangthem, Geeta Devi; Gill, Kamaldeep; Singh, Abhay K; Das, Swagata; Singh, Kusum; Xess, Immaculata; Dinda, Amit; Kapil, Arti; Patro, Ishan K; Dey, Sharmistha

    2013-02-01

    Lactoferrin (LF) is believed to contribute to the host's defense against microbial infections. This work focuses on the antibacterial and antifungal activities of a designed peptide, L10 (WFRKQLKW) by modifying the first eight N-terminal residues of bovine LF by selective homologous substitution of amino acids on the basis of hydrophobicity, L10 has shown potent antibacterial and antifungal properties against clinically isolated extended spectrum beta lactamases (ESBL), producing gram-negative bacteria as well as Candida strains with minimal inhibitory concentrations (MIC) ranging from 1 to 8 μg/mL and 6.5 μg/mL, respectively. The peptide was found to be least hemolytic at a concentration of 800 μg/mL. Interaction with lipopolysaccharide (LPS) and lipid A (LA) suggests that the peptide targets the membrane of gram-negative bacteria. The membrane interactive nature of the peptide, both antibacterial and antifungal, was further confirmed by visual observations employing electron microscopy. Further analyses, by means of propidium iodide based flow cytometry, also supported the membrane permeabilization of Candida cells. The peptide was also found to possess anti-inflammatory properties, by virtue of its ability to inhibit cyclooxygenase-2 (COX-2). L10 therefore emerges as a potential therapeutic remedial solution for infections caused by ESBL positive, gram-negative bacteria and multidrug-resistant (MDR) fungal strains, on account of its multifunctional activities. This study may open up new approach to develop and design novel antimicrobials. PMID:23026014

  17. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    PubMed Central

    2014-01-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA. PMID:25114655

  18. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-07-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2 θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.

  19. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    PubMed Central

    2013-01-01

    activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria. PMID:24119438

  20. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    PubMed

    Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  1. A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria

    PubMed Central

    Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  2. Carbapenem and multidrug resistance in Gram-negative bacteria in a single centre in Italy: considerations on in vitro assay of active drugs.

    PubMed

    Mezzatesta, Maria Lina; Caio, Carla; Gona, Floriana; Cormaci, Roberta; Salerno, Iasmine; Zingali, Tiziana; Denaro, Carmelo; Gennaro, Mauro; Quattrone, Cristiana; Stefani, Stefania

    2014-08-01

    In intensive care units (ICUs), the most important causes of nosocomial bacterial infections are mainly multidrug-resistant (MDR) and extensively drug-resistant (XDR) Acinetobacter baumannii and Klebsiella pneumoniae strains. Mortality related to these infections is very high due to lack of effective therapy and the severity of patient conditions. This study aimed to assess the prevalence of carbapenem resistance genes in 77 carbapenem-resistant Gram-negative bacteria isolated from severe infections (bloodstream, pulmonary and urinary tract) during the period 1 January to 31 July 2013 in a general ICU in Catania, Italy, and to examine their susceptibility to tigecycline and colistin using two different methods. In total, 52 A. baumannii belonging to the same sequence type (ST) 2 clone and carrying the bla(OXA-23) gene as well as 25 K. pneumoniae carrying bla(KPC-3) were isolated. Four distinct pulsotypes were identified in K. pneumoniae, which correlated with four distinct STs: ST258 and ST512, spread worldwide, and ST147 and ST395 detected for the first time in Italy. A. baumannii isolates showed an XDR profile and were fully susceptible only to colistin; all KPC-producing K. pneumoniae isolates were MDR, whilst colistin was active against 19 of 25 strains. These results show that broth microdilution (BMD) is a reliable in vitro susceptibility test for colistin, above all K. pneumoniae, whilst both the gradient test and BMD are suitable for tigecycline susceptibility testing of A. baumannii.

  3. Multidrug resistance and transferability of blaCTX-M among extended-spectrum β-lactamase-producing enteric bacteria in biofilm.

    PubMed

    Maheshwari, Meenu; Ahmad, Iqbal; Althubiani, Abdullah Safar

    2016-09-01

    This study aimed to investigate the occurrence of biofilm-forming extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and to evaluate their antibiotic resistance behaviour and transferability of the plasmid-encoded blaCTX-M gene in biofilm. ESBL production was confirmed using the combined disc test and Etest. Amplification of blaCTX-M was performed by PCR. Antibiotic susceptibility was evaluated using the disc diffusion assay and broth dilution method. Transfer of blaCTX-M in planktonic and biofilm state was performed by broth mating and filter mating experiments, respectively. Among 110 enteric bacteria, 24 (21.8%) isolates belonging to Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae were found to produce ESBL and formed varying levels of biofilm in vitro. Presence of blaCTX-M was detected in 18 (75%) ESBL-producing isolates. A many fold increase in resistance to antibiotics was observed in biofilm. Among ESBL-producers, seven isolates could transfer the blaCTX-M gene by conjugation, with transfer frequencies ranging from 2.22×10(-4) to 7.14×10(-2) transconjugants/recipient cell in the planktonic state and from 3.04×10(-3) to 9.15×10(-1) in biofilm. The transfer frequency of blaCTX-M was significantly higher in biofilm compared with the planktonic state, and co-transfer of ciprofloxacin resistance was also detected in five isolates. This study demonstrates that biofilm-forming ESBL-producing enteric bacteria with a greater transfer frequency of resistance genes will lead to frequent dissemination of β-lactam and fluoroquinolone resistance genes in environmental settings. The emergence and spread of such multidrug resistance is a serious threat to animal and public health. PMID:27530857

  4. Prevalence of multidrug resistant uropathogenic bacteria in pediatric patients of a tertiary care hospital in eastern India.

    PubMed

    Mishra, Monali P; Sarangi, Rachita; Padhy, Rabindra N

    2016-01-01

    Today, because systemic infections such as urinary tract infection (UTI) affect even pediatric patients, antibiotic resistant bacteria have become a constant clinical challenge. In the present study, a total of 1054 urine samples were collected from pediatric patients over 18 months. From these samples, 510 isolates of pathogenic bacteria were collected using HiCrome UTI agar. Antibiotic sensitivity tests of isolates were performed using the Kirby-Bauer method. Two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and 7 Gram-negative bacteria (Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella oxytoca, K. pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa) were isolated. Antibiograms of isolated bacteria were ascertained using antibiotics of 4 classes: aminoglycosides, β-lactams, fluoroquinolones and 2 stand-alones (co-trimoxazole and nitrofurantoin). Based on percent values of antibiotic resistance, isolated bacteria were (in decreasing order of number of isolated isolates): E. coli (109)>S. aureus (65)>E. faecalis (82)>E. aerogenes (64)>C. freundii (41)>P. aeruginosa (32)>K. pneumoniae (45)>K. oxytoca (50)>P. vulgaris (22). Surveillance results show that MDR isolates of 9 pathogenic bacteria were prevalent in the environment around the hospital. Thus, revisions to the antimicrobial stewardship program in this area of the country are required to increase clinician confidence in empiric therapy, which is often used for UTI cases. PMID:26617250

  5. Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption.

    PubMed

    Bhutani, Natasha; Muraleedharan, Chithra; Talreja, Deepa; Rana, Sonia Walia; Walia, Sandeep; Kumar, Ashok; Walia, Satish K

    2015-01-01

    Antibiotic resistance in bacteria is a global problem exacerbated by the dissemination of resistant bacteria via uncooked food, such as green leafy vegetables. New strains of bacteria are emerging on a daily basis with novel expanded antibiotic resistance profiles. In this pilot study, we examined the occurrence of antibiotic resistant bacteria against five classes of antibiotics on iceberg lettuce retailed in local convenience stores in Rochester, Michigan. In this study, 138 morphologically distinct bacterial colonies from 9 iceberg lettuce samples were randomly picked and tested for antibiotic resistance. Among these isolates, the vast majority (86%) demonstrated resistance to cefotaxime, and among the resistant bacteria, the majority showed multiple drug resistance, particularly against cefotaxime, chloramphenicol, and tetracycline. Three bacterial isolates (2.17%) out of 138 were extended spectrum beta-lactamase (ESBL) producers. Two ESBL producers (T1 and T5) were identified as Klebsiella pneumoniae, an opportunistic pathogen with transferable sulfhydryl variable- (SHV-) and TEM-type ESBLs, respectively. The DNA sequence analysis of the bla SHV detected in K. pneumoniae isolate T1 revealed 99% relatedness to bla SHV genes found in clinical isolates. This implies that iceberg lettuce is a potential reservoir of newly emerging and evolving antibiotic resistant bacteria and its consumption poses serious threat to human health. PMID:26064922

  6. Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption

    PubMed Central

    Talreja, Deepa; Rana, Sonia Walia; Walia, Sandeep; Walia, Satish K.

    2015-01-01

    Antibiotic resistance in bacteria is a global problem exacerbated by the dissemination of resistant bacteria via uncooked food, such as green leafy vegetables. New strains of bacteria are emerging on a daily basis with novel expanded antibiotic resistance profiles. In this pilot study, we examined the occurrence of antibiotic resistant bacteria against five classes of antibiotics on iceberg lettuce retailed in local convenience stores in Rochester, Michigan. In this study, 138 morphologically distinct bacterial colonies from 9 iceberg lettuce samples were randomly picked and tested for antibiotic resistance. Among these isolates, the vast majority (86%) demonstrated resistance to cefotaxime, and among the resistant bacteria, the majority showed multiple drug resistance, particularly against cefotaxime, chloramphenicol, and tetracycline. Three bacterial isolates (2.17%) out of 138 were extended spectrum beta-lactamase (ESBL) producers. Two ESBL producers (T1 and T5) were identified as Klebsiella pneumoniae, an opportunistic pathogen with transferable sulfhydryl variable- (SHV-) and TEM-type ESBLs, respectively. The DNA sequence analysis of the blaSHV detected in K. pneumoniae isolate T1 revealed 99% relatedness to blaSHV genes found in clinical isolates. This implies that iceberg lettuce is a potential reservoir of newly emerging and evolving antibiotic resistant bacteria and its consumption poses serious threat to human health. PMID:26064922

  7. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria.

    PubMed

    Valle, Demetrio L; Puzon, Juliana Janet M; Cabrera, Esperanza C; Rivera, Windell L

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs. PMID:27478476

  8. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria

    PubMed Central

    Valle, Demetrio L.; Puzon, Juliana Janet M.; Cabrera, Esperanza C.

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with Rf values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an Rf value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs. PMID:27478476

  9. Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3,4-dibromopyrrole-2,5-dione isolated from a Pseudoalteromonas sp.

    PubMed

    Whalen, Kristen E; Poulson-Ellestad, Kelsey L; Deering, Robert W; Rowley, David C; Mincer, Tracy J

    2015-03-27

    Members of the resistance nodulation cell division (RND) of efflux pumps play essential roles in multidrug resistance (MDR) in Gram-negative bacteria. Here, we describe the search for new small molecules from marine microbial extracts to block efflux and thus restore antibiotic susceptibility in MDR bacterial strains. We report the isolation of 3,4-dibromopyrrole-2,5-dione (1), an inhibitor of RND transporters, from Enterobacteriaceae and Pseudomonas aeruginosa, from the marine bacterium Pseudoalteromonas piscicida. 3,4-Dibromopyrrole-2,5-dione decreased the minimum inhibitory concentrations (MICs) of two fluoroquinolones, an aminoglycoside, a macrolide, a beta-lactam, tetracycline, and chloramphenicol between 2- and 16-fold in strains overexpressing three archetype RND transporters (AcrAB-TolC, MexAB-OprM, and MexXY-OprM). 3,4-Dibromopyrrole-2,5-dione also increased the intracellular accumulation of Hoechst 33342 in wild-type but not in transporter-deficient strains and prevented H33342 efflux (IC50 = 0.79 μg/mL or 3 μM), a hallmark of efflux pump inhibitor (EPI) functionality. A metabolomic survey of 36 Pseudoalteromonas isolates mapped the presence of primarily brominated metabolites only within the P. piscicida phylogenetic clade, where a majority of antibiotic activity was also observed, suggesting a link between halogenation and enhanced secondary metabolite biosynthetic potential. In sum, 3,4-dibromopyrrole-2,5-dione is a potent EPI and deserves further attention as an adjuvant to enhance the effectiveness of existing antibiotics. PMID:25646964

  10. Determination of microbial quality and plasmid-mediated multidrug resistant bacteria in fountain drinking water sources in Turkey.

    PubMed

    Akturk, Sayim; Dincer, Sadik; Toroglu, Sevil

    2012-11-01

    The bacterial contamination as the total aerobic bacteria, coliform and fecal coliform numbers were determined and analyzed for temperature, pH, conductivity and dissolved oxygen in seasonally collected water samples from fifteen different stations placed in Adana-Tufanbeyli road line during March 2008 - January 2009. In addition, antibiotic resistance profiles of isolates were examined against frequently used antibiotics, and analyzed plasmid DNAof multiple antibiotic resistant (MAR) isolates. Total aerobic bacteria in fountain water samples was determined as 3 x 10(3) CFU ml(-1) and total and fecal coliforms were determined 460 MPN/100 ml. Results obtained from biochemical analysis showed that 121 of the isolates were Proteus vulgaris, 69 Escherichia coli, 51 Pseudomonas aeruginosa and 28 Citrobacter spp. According to these results, the existence of Vibrio parahaemolyticus in stations 2 and 10, and Streptococcus faecalis in stations 11 and 15 respectively were confirmed. Clostridium perfringens was not detected in water samples. A total of 273 isolates were tested for antimicrobial susceptibility by agar disc diffusion methods. A total of sixteen antibiotics were used for determination of antibiotic resistance of isolates. Resistance to bacitracin, vancomycine, cephalothin and ampicillin was detected in 77, 77, 63 and 50%, respectively. Multiple antibiotic resistance (MAR) value > or = 0.25 was determined in 68.4% of identified 273 isolates and meaning of this percentage were resistant to four and more antibiotics. Plasmid DNA was isolated from 22 isolates with multiple antibiotic resistance index ranged from 0.3 to 0.6 taken randomly by agarose-gel electrophoresis, some of them contain a high-molecular weight plasmid DNA. Highlight of our study that the appearance of potential antibiotic resistances in fountain drinking water requires increased surveillance for risk assessment and prevention strategies to protect public health.

  11. Preparation of Thermosensitive Gel for Controlled Release of Levofloxacin and Their Application in the Treatment of Multidrug-Resistant Bacteria

    PubMed Central

    Alves, Danilo Antonini; Machado, Daisy; Pereira, Rafaella Fabiana Carneiro; de Hollanda, Luciana Maria; Araújo, Daniele Ribeiro

    2016-01-01

    Levofloxacin is a synthetic broad-spectrum antibacterial agent for oral or intravenous administration. Chemically, levofloxacin is the levorotatory isomer (L-isomer) of racemate ofloxacin, a fluoroquinolone antibacterial agent. Quinolone derivatives rapidly and specifically inhibit the synthesis of bacterial DNA. Levofloxacin has in vitro activity against a broad range of aerobic and anaerobic Gram-positive and Gram-negative bacteria. However, formulation of combined poloxamers thermoregulated (as Pluronic® F127) and levofloxacin for use in multiresistant bacterial treatment were poorly described in the current literature. Thus, the aim of the present work is to characterize poloxamers for levofloxacin controlled release and their use in the treatment of multidrug bacterial resistance. Micelles were produced in colloidal dispersions, with a diameter between 5 and 100 nm, which form spontaneously from amphiphilic molecules under certain conditions as concentration and temperature. Encapsulation of levofloxacin into nanospheres showed efficiency and enhancement of antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae when compared with only levofloxacin. Furthermore, all formulations were not cytotoxic for NIH/3T3 cell lineage. In conclusion, poloxamers combined with levofloxacin have shown promising results, better than alone, decreasing the minimal inhibitory concentration of the studied bacterial multiresistance strains. In the future, this new formulation will be used after being tested in animal models in patients with resistant bacterial strains. PMID:27689094

  12. Preparation of Thermosensitive Gel for Controlled Release of Levofloxacin and Their Application in the Treatment of Multidrug-Resistant Bacteria

    PubMed Central

    Alves, Danilo Antonini; Machado, Daisy; Pereira, Rafaella Fabiana Carneiro; de Hollanda, Luciana Maria; Araújo, Daniele Ribeiro

    2016-01-01

    Levofloxacin is a synthetic broad-spectrum antibacterial agent for oral or intravenous administration. Chemically, levofloxacin is the levorotatory isomer (L-isomer) of racemate ofloxacin, a fluoroquinolone antibacterial agent. Quinolone derivatives rapidly and specifically inhibit the synthesis of bacterial DNA. Levofloxacin has in vitro activity against a broad range of aerobic and anaerobic Gram-positive and Gram-negative bacteria. However, formulation of combined poloxamers thermoregulated (as Pluronic® F127) and levofloxacin for use in multiresistant bacterial treatment were poorly described in the current literature. Thus, the aim of the present work is to characterize poloxamers for levofloxacin controlled release and their use in the treatment of multidrug bacterial resistance. Micelles were produced in colloidal dispersions, with a diameter between 5 and 100 nm, which form spontaneously from amphiphilic molecules under certain conditions as concentration and temperature. Encapsulation of levofloxacin into nanospheres showed efficiency and enhancement of antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae when compared with only levofloxacin. Furthermore, all formulations were not cytotoxic for NIH/3T3 cell lineage. In conclusion, poloxamers combined with levofloxacin have shown promising results, better than alone, decreasing the minimal inhibitory concentration of the studied bacterial multiresistance strains. In the future, this new formulation will be used after being tested in animal models in patients with resistant bacterial strains.

  13. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    PubMed

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. PMID:26483137

  14. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    PubMed

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains.

  15. In Vitro Antibacterial Efficacy of 21 Indian Timber-Yielding Plants Against Multidrug-Resistant Bacteria Causing Urinary Tract Infection

    PubMed Central

    Mishra, Monali P.; Padhy, Rabindra N.

    2013-01-01

    Objectives To screen methanolic leaf extracts of 21 timber-yielding plants for antibacterial activity against nine species of uropathogenic bacteria isolated from clinical samples of a hospital (Enterococcus faecalis, Staphylococcus aureus, Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa). Methods Bacterial strains were subjected to antibiotic sensitivity tests by the Kirby–Bauer's disc diffusion method. The antibacterial potentiality of leaf extracts was monitored by the agar-well diffusion method with multidrug-resistant (MDR) strains of nine uropathogens. Results Two Gram-positive isolates, E. faecalis and S. aureus, were resistant to 14 of the 18 antibiotics used. Gram-negative isolates A. baumannii, C. freundii, E. aerogenes, E. coli, K. pneumoniae, P. mirabilis, and P. aeruginosa were resistant to 10, 12, 9, 11, 11, 10, and 11 antibiotics, respectively, of the 14 antibiotics used. Methanolic leaf extracts of Anogeissus acuminata had the maximum zone of inhibition size—29 mm against S. aureus and 28 mm against E. faecalis and P. aeruginosa. Cassia tora had 29 mm as the zone of inhibition size for E. faecalis, E. aerogenes, and P. aeruginosa. Based on the minimum inhibitory concentration and minimum bactericidal concentration values, the most effective 10 plants against uropathogens could be arranged in decreasing order as follows: C. tora > A. acuminata > Schleichera oleosa > Pterocarpus santalinus > Eugenia jambolana > Bridelia retusa > Mimusops elengi > Stereospermum kunthianum > Tectona grandis > Anthocephalus cadamba. The following eight plants had moderate control capacity: Artocarpus heterophyllus, Azadirachta indica, Dalbergia latifolia, Eucalyptus citriodora, Gmelina arborea, Pongamia pinnata, Pterocarpus marsupium, and Shorea robusta. E. coli, followed by A. baumannii, C. freundii, E. aerogenes, P. mirabilis, and P

  16. Multidrug-Resistant TB

    PubMed Central

    Cox, Helen; Coomans, Fons

    2016-01-01

    Abstract The right to enjoy the benefits of scientific progress (REBSP) is a little-known but potentially valuable right that can contribute to rights-based approaches to addressing multidrug-resistant TB (MDR-TB). We argue that better understanding of the REBSP may help to advance legal and civil society action for health rights. While the REBSP does not provide an individual entitlement to have a new drug developed for MDR-TB, it sets up entitlements to expect a state to establish a legislative and policy framework aimed at developing scientific capacity to address the most important health issues and at disseminating the outcomes of scientific research. By making scientific findings available and accessible, people can be enabled to claim the use of science for social benefits. Inasmuch as the market fails to address neglected diseases such as MDR-TB, the REBSP provides a potential counterbalance to frame a positive obligation on states to both marshal their own resources and to coordinate the actions of multiple other actors towards this goal, including non-state actors. While the latter do not hold the same level of accountability as states, the REBSP can still enable the recognition of obligations at a level of “soft law” responsibilities. PMID:27780997

  17. Multidrug resistance: an emerging crisis.

    PubMed

    Tanwar, Jyoti; Das, Shrayanee; Fatima, Zeeshan; Hameed, Saif

    2014-01-01

    The resistance among various microbial species (infectious agents) to different antimicrobial drugs has emerged as a cause of public health threat all over the world at a terrifying rate. Due to the pacing advent of new resistance mechanisms and decrease in efficiency of treating common infectious diseases, it results in failure of microbial response to standard treatment, leading to prolonged illness, higher expenditures for health care, and an immense risk of death. Almost all the capable infecting agents (e.g., bacteria, fungi, virus, and parasite) have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality; thus, they are referred to as "super bugs." Although the development of MDR is a natural phenomenon, the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, inappropriate food-handling, and poor infection prevention and control practices contribute to emergence of and encourage the further spread of MDR. Considering the significance of MDR, this paper, emphasizes the problems associated with MDR and the need to understand its significance and mechanisms to combat microbial infections. PMID:25140175

  18. Multidrug resistance: an emerging crisis.

    PubMed

    Tanwar, Jyoti; Das, Shrayanee; Fatima, Zeeshan; Hameed, Saif

    2014-01-01

    The resistance among various microbial species (infectious agents) to different antimicrobial drugs has emerged as a cause of public health threat all over the world at a terrifying rate. Due to the pacing advent of new resistance mechanisms and decrease in efficiency of treating common infectious diseases, it results in failure of microbial response to standard treatment, leading to prolonged illness, higher expenditures for health care, and an immense risk of death. Almost all the capable infecting agents (e.g., bacteria, fungi, virus, and parasite) have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality; thus, they are referred to as "super bugs." Although the development of MDR is a natural phenomenon, the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, inappropriate food-handling, and poor infection prevention and control practices contribute to emergence of and encourage the further spread of MDR. Considering the significance of MDR, this paper, emphasizes the problems associated with MDR and the need to understand its significance and mechanisms to combat microbial infections.

  19. Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily

    PubMed Central

    Kumar, Sanath; Mukherjee, Mun Mun; Varela, Manuel F.

    2013-01-01

    Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS. PMID:25750934

  20. Breaking the Spell: Combating Multidrug Resistant 'Superbugs'.

    PubMed

    Khan, Shahper N; Khan, Asad U

    2016-01-01

    Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to "escape" from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing.

  1. A randomized controlled trial of enhanced cleaning to reduce contamination of healthcare worker gowns and gloves with multidrug-resistant bacteria.

    PubMed

    Hess, Aaron S; Shardell, Michelle; Johnson, J Kristie; Thom, Kerri A; Roghmann, Mary-Claire; Netzer, Giora; Amr, Sania; Morgan, Daniel J; Harris, Anthony D

    2013-05-01

    OBJECTIVE. To determine whether enhanced daily cleaning would reduce contamination of healthcare worker (HCW) gowns and gloves with methicillin-resistant Staphylococcus aureus (MRSA) or multidrug-resistant Acinetobacter baumannii (MDRAB). DESIGN. A cluster-randomized controlled trial. SETTING. Four intensive care units (ICUs) in an urban tertiary care hospital. PARTICIPANTs. ICU rooms occupied by patients colonized with MRSA or MDRAB. INTERVENTION. Extra enhanced daily cleaning of ICU room surfaces frequently touched by HCWs. RESULTS. A total of 4,444 cultures were collected from 132 rooms over 10 months. Using fluorescent dot markers at 2,199 surfaces, we found that 26% of surfaces in control rooms were cleaned and that 100% of surfaces in experimental rooms were cleaned (P < .001). The mean proportion of contaminated HCW gowns and gloves following routine care provision and before leaving the rooms of patients with MDRAB was 16% among control rooms and 12% among experimental rooms (relative risk, 0.77 [95% confidence interval, 0.28-2.11]; P = .23). For MRSA, the mean proportions were 22% and 19%, respectively (relative risk, 0.89 [95% confidence interval, 0.50-1.53]; P = .16). DISCUSSION. Intense enhanced daily cleaning of ICU rooms occupied by patients colonized with MRSA or MDRAB was associated with a nonsignificant reduction in contamination of HCW gowns and gloves after routine patient care activities. Further research is needed to determine whether intense environmental cleaning will lead to significant reductions and fewer infections.

  2. Role of multidrug resistance in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Diddens, Heyke C.

    1992-06-01

    Multidrug resistance in cancer chemotherapy is a well established phenomenon. One of the most common phenotypical changes in acquired or intrinsic multidrug resistance in human tumor cells is the overexpression of the mdrl gene product P-glycoprotein, which acts as an active efflux pump. Increased levels of P-glycoprotein are associated with resistance to a variety of anticancer drugs commonly used in tumor chemotherapy like anthracyclins, vinca- alcaloids, epipodophyllotoxins or actinomycin D. We investigated the efficacy or photodynamic therapy in the treatment of tumor cells expressing the multidrug resistance phenotype. Our data show that multidrug resistant cells are highly cross resistant to the phototoxic stain rhodamine 123 but exhibit only low degrees of cross resistance (2 - 3 -folds) to the photosensitizers Photosan-3, Clorin-2, methylene blue and meso-tetra (4- sulfonatophenyl) porphine (TPPS4). Resistance is associated with a decrease in intracellular accumulation of the photosensitizer. Verapamil, a membrane active compound known to enhance drug sensitivity in multidrug resistant cells by inhibition of P-glycoprotein, also increases phototoxicity in multidrug resistant cells. Our results imply that tumors expressing the multidrug resistance phenotype might fail to respond to photochemotherapy with rhodamine 123. On the other hand, multidrug resistance may not play an important role in photodynamic therapy with Photosan-3, Chlorin-2, methylene blue or TPPS4.

  3. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants.

    PubMed

    Ziech, Rosangela Estel; Lampugnani, Camila; Perin, Ana Paula; Sereno, Mallu Jagnow; Sfaciotte, Ricardo Antônio Pilegi; Viana, Cibeli; Soares, Vanessa Mendonça; Pinto, José Paes de Almeida Nogueira; Bersot, Luciano dos Santos

    2016-01-01

    The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp.

  4. Diversity among multidrug-resistant enterococci.

    PubMed Central

    Murray, B. E.

    1998-01-01

    Enterococci are associated with both community- and hospital-acquired infections. Even though they do not cause severe systemic inflammatory responses, such as septic shock, enterococci present a therapeutic challenge because of their resistance to a vast array of antimicrobial drugs, including cell-wall active agents, all commercially available aminoglycosides, penicillin and ampicillin, and vancomycin. The combination of the latter two occurs disproportionately in strains resistant to many other antimicrobial drugs. The propensity of enterococci to acquire resistance may relate to their ability to participate in various forms of conjugation, which can result in the spread of genes as part of conjugative transposons, pheromone-responsive plasmids, or broad host-range plasmids. Enterococcal hardiness likely adds to resistance by facilitating survival in the environment (and thus enhancing potential spread from person to person) of a multidrug-resistant clone. The combination of these attributes within the genus Enterococcus suggests that these bacteria and their resistance to antimicrobial drugs will continue to pose a challenge. PMID:9452397

  5. In vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria.

    PubMed

    Amani, Jafar; Barjini, Kamal A; Moghaddam, Mehrdad M; Asadi, Asadollah

    2015-01-01

    During the last decades, increase of antibiotic resistance among pathogenic bacteria has been considered as a global concern. Therefore, it is important to find new antimicrobial agents and/or therapeutic strategies. In previous studies we investigated antibacterial activity of the CM11 peptide against multiple drug resistant clinical isolates of six bacteria species including Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. In this study, in order to reduce treatment costs and the cytotoxic effect of CM11 peptide, was analyzed its synergic interaction with selected antibiotics. In this reason, specific antibiotics for each bacterium were selected considering the guidelines of the "Clinical and Laboratory Standards Institute". Based on the results , using a checkerboard procedure through the broth microdilution method, MICs of antibiotic agents alone and in combination with the peptide were determined. In most cases, synergistic effects between CM11 peptide and selected antibiotics against six bacteria species were observed as partial synergy. However, for S. aureus and P. aeruginosaa synergic interaction between peptide and selective antibiotics was observed with penicillin and ceftazidime, respectively. For K. pneumoniae, synergic effect was observed when CM11 peptide was used in combination with norfloxacin and also the combination of peptide with norfloxacin showed synergic effect against A. baumannii. Combination between the CM11 peptide and ciprofloxacin showed synergic effect on E. coli while only partial synergy was observed for S. typhimurium in combination with cefotaxime and ceftazidime. These results suggest that when selected antibiotic used in combination with the CM11 peptide, the dose of some antibiotics, especially the dose independent antibiotics, may be reduced for eliminating drug resistant bacteria.

  6. Essential Oils and Non-volatile Compounds Derived from Chamaecyparis obtusa: Broad Spectrum Antimicrobial Activity against Infectious Bacteria and MDR(multidrug resistant) Strains.

    PubMed

    Bae, Min-Suk; Park, Dae-Hun; Choi, Chul-Yung; Kim, Gye-Yeop; Yoo, Jin-Cheol; Cho, Seung-Sik

    2016-05-01

    The aim of this study was to evaluate the antibacterial activity of essential oil from Chamaecyparis obtusa against general infectious microbes and drug resistant strains of clinical origin. The results indicate that both essential oil and non-volatile residue have broad inhibitory activity against test strains. Essential oil and non-volatile residues showed antimicrobial activity not only against general infectious bacteria, but also against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains. PMID:27319153

  7. Third generation cephalosporin resistant Enterobacteriaceae and multidrug resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis

    PubMed Central

    Moghnieh, Rima; Estaitieh, Nour; Mugharbil, Anas; Jisr, Tamima; Abdallah, Dania I.; Ziade, Fouad; Sinno, Loubna; Ibrahim, Ahmad

    2015-01-01

    Introduction: Bacteremia remains a major cause of life-threatening complications in patients receiving anticancer chemotherapy. The spectrum and susceptibility profiles of causative microorganisms differ with time and place. Data from Lebanon are scarce. We aim at evaluating the epidemiology of bacteremia in cancer patients in a university hospital in Lebanon, emphasizing antibiotic resistance and risk factors of multi-drug resistant organism (MDRO)-associated bacteremia. Materials and Methods: This is a retrospective study of 75 episodes of bacteremia occurring in febrile neutropenic patients admitted to the hematology-oncology unit at Makassed General Hospital, Lebanon, from October 2009-January 2012. It corresponds to epidemiological data on bacteremia episodes in febrile neutropenic cancer patients including antimicrobial resistance and identification of risk factors associated with third generation cephalosporin resistance (3GCR) and MDRO-associated bacteremia. Results: Out of 75 bacteremias, 42.7% were gram-positive (GP), and 57.3% were gram-negative (GN). GP bacteremias were mostly due to methicillin-resistant coagulase negative staphylococci (28% of total bacteremias and 66% of GP bacteremias). Among the GN bacteremias, Escherichia coli (22.7% of total, 39.5% of GN organisms) and Klebsiella pneumoniae(13.3% of total, 23.3% of GN organisms) were the most important causative agents. GN bacteremia due to 3GC sensitive (3GCS) bacteria represented 28% of total bacteremias, while 29% were due to 3GCR bacteria and 9% were due to carbapenem-resistant organisms. There was a significant correlation between bacteremia with MDRO and subsequent intubation, sepsis and mortality. Among potential risk factors, only broad spectrum antibiotic intake >4 days before bacteremia was found to be statistically significant for acquisition of 3GCR bacteria. Using carbapenems or piperacillin/tazobactam>4 days before bacteremia was significantly associated with the emergence of MDRO

  8. Retrospective observational study to assess the clinical management and outcomes of hospitalised patients with complicated urinary tract infection in countries with high prevalence of multidrug resistant Gram-negative bacteria (RESCUING)

    PubMed Central

    Shaw, Evelyn; Addy, Ibironke; Stoddart, Margaret; Vank, Christiane; Grier, Sally; Wiegand, Irith; Leibovici, Leonard; Eliakim-Raz, Noa; Vallejo-Torres, Laura; Morris, Stephen; MacGowan, Alasdair; Carratalà, Jordi; Pujol, Miquel

    2016-01-01

    Introduction The emergence of multidrug resistant (MDR) Gram-negative bacteria (GNB), including carbapenemase-producing strains, has become a major therapeutic challenge. These MDR isolates are often involved in complicated urinary tract infection (cUTI), and are associated with poor clinical outcomes. The study has been designed to gain insight into the epidemiology, clinical management, outcome and healthcare cost of patients with cUTI, especially in countries with high prevalence of MDR GNB. Methods and analysis This multinational and multicentre observational, retrospective study will identify cases from 1 January 2013 to 31 December 2014 in order to collect data on patients with cUTI as a cause of hospital admission, and patients who develop cUTI during their hospital stay. The primary end point will be treatment failure defined as the presence of any of the following criteria: (1) signs or symptoms of cUTI present at diagnosis that have not improved by days 5–7 with appropriate antibiotic therapy, (2) new cUTI-related symptoms that have developed within 30 days of diagnosis, (3) urine culture taken within 30 days of diagnosis, either during or after completion of therapy, that grows ≥104 colony-forming unit/mL of the original pathogen and (4) death irrespective of cause within 30 days of the cUTI diagnosis. Sample size 1000 patients afford a power of 0.83 (α=0.05) to detect an absolute difference of 10% in the treatment failure rate between MDR bacteria and other pathogens. This should allow for the introduction of about 20 independent risk factors (or their interaction) in a logistic regression model looking at risk factors for failure. Ethics and dissemination Approval will be sought from all relevant Research Ethics Committees. Publication of this study will be considered as a joint publication by the participating investigator leads, and will follow the recommendations of the International Committee of Medical Journal Editors (ICMJE). Trial

  9. Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water.

    PubMed

    Narciso-da-Rocha, Carlos; Manaia, Célia M

    2016-09-01

    The environment is the original and most ancient source of the antibiotic resistance determinants that threat the human health nowadays. In the environment, water is a privileged habitat and mode of dissemination of bacteria of different origins. Freshwater bodies that cross urban areas are supposed to hold a complex mixture of both human/animal origin and strictly environmental bacteria. In this study, we were interested in unveiling the bacterial diversity in urban river transects and, simultaneously, investigate the occurrence of antibiotic resistant bacteria, in particular the multidrug resistant (MDR). With this aim, water and sediments of two rivers were sampled from an urban transect and the bacterial diversity was assessed based on 16S rRNA gene-based community analysis and, simultaneously, total heterotrophic bacteria were isolated in the presence and in the absence of antibiotics. The three predominant phyla were Proteobacteria, Bacteroidetes and Actinobacteria, in water, or Acidobacteria, in sediments. MDR bacteria were observed to belong to the predominant phyla observed in water, mostly of the classes Gamma- and Betaproteobacteria (Proteobacteria) and Sphingobacteriia and Flavobacteriia (Bacteroidetes) and belonged to genera of ubiquitous (Pseudomonas, Acinetobacter, Stenotrophomonas) or mainly environmental (Chitinophaga, Chryseobacterium) bacteria. The observation that MDR bacteria are widespread in the environment and over distinct phylogenetic lineages has two relevant implications: i) the potential of environmental bacteria as source or facilitators for antibiotic resistance acquisition; ii) the need to complement culture-independent methods with culture-based approaches in order to identify major sources of MDR profiles.

  10. Multidrug resistance: Physiological principles and nanomedical solutions.

    PubMed

    Kunjachan, Sijumon; Rychlik, Błażej; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2013-11-01

    Multidrug resistance (MDR) is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies.

  11. Multidrug resistant Acinetobacter baumannii in veterinary medicine--emergence of an underestimated pathogen?

    PubMed

    Müller, Stefanie; Janssen, Traute; Wieler, Lothar H

    2014-01-01

    The proportion of multidrug resistant bacteria causing infections in animals has continuously been increasing. While the relevance of ESBL (extended spectrum beta-lactamase)-producing Enterobacteriaceae spp. and MRSA (methicillin resistant Staphylococcus aureus) is unquestionable, knowledge about multidrug resistant Acinetobacter baumannii in veterinary medicine is scarce. This is a worrisome situation, as A. baumannii are isolated from veterinary clinical specimens with rising frequency. The remarkable ability of A. baumannii to develop multidrug resistance and the high risk of transmission are known in human medicine for years. Despite this, data regarding A. baumannii isolates of animal origin are missing. Due to the changing role of companion animals with closer contact between animal and owner, veterinary intensive care medicine is steadily developing. It can be assumed that the number of "high risk" patients with an enhanced risk for hospital acquired infections will be rising simultaneously. Thus, development and spread of multidrug resistant pathogens is envisioned to rise. It is possible, that A. baumannii will evolve into a veterinary nosocomial pathogen similar to ESBL-producing Enterobacteriaceae and MRSA. The lack of attention paid to A. baumannii in veterinary medicine is even more worrying, as first reports indicate a transmission between humans and animals. Essential questions regarding the role of livestock, especially as a potential source of multidrug resistant isolates, remain unanswered. This review summarizes the current knowledge on A. baumannii in veterinary medicine for the first time. It underlines the utmost significance of further investigations of A. baumannii animal isolates, particularly concerning epidemiology and resistance mechanisms.

  12. Multidrug-resistant organisms, wounds and topical antimicrobial protection.

    PubMed

    Bowler, Philip G; Welsby, Sarah; Towers, Victoria; Booth, Rebecca; Hogarth, Andrea; Rowlands, Victoria; Joseph, Alexis; Jones, Samantha A

    2012-08-01

    Multidrug-resistant organisms (MDROs) are increasingly implicated in both acute and chronic wound infections. The limited therapeutic options are further compromised by the fact that wound bacteria often co-exist within a biofilm community which enhances bacterial tolerance to antibiotics. As a consequence, topical antiseptics may be an important consideration for minimising the opportunity for wound infections involving MDROs. The objective of this research was to investigate the antimicrobial activity of a silver-containing gelling fibre dressing against a variety of MDROs in free-living and biofilm states, using stringent in vitro models designed to simulate a variety of wound conditions. MDROs included Acinetobacter baumannii, community-associated methicillin-resistant Staphylococcus aureus, and extended-spectrum beta-lactamase-producing bacteria. Clostridium difficile was also included in the study because it carries many of the characteristics seen in MDROs and evidence of multidrug resistance is emerging. Sustained in vitro antimicrobial activity of the silver-containing dressing was shown against 10 MDROs in a simulated wound fluid over 7 days, and inhibitory and bactericidal effects against both free-living and biofilm phenotypes were also consistently shown in simulated colonised wound surface models. The in vitro data support consideration of the silver-containing gelling fibre dressing as part of a protocol of care in the management of wounds colonised or infected with MDROs.

  13. Engineered Cationic Antimicrobial Peptides To Overcome Multidrug Resistance by ESKAPE Pathogens

    PubMed Central

    Deslouches, Berthony; Steckbeck, Jonathan D.; Craigo, Jodi K.; Doi, Yohei; Burns, Jane L.

    2014-01-01

    Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings. PMID:25421473

  14. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  15. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents.

    PubMed

    Haisma, Elisabeth M; de Breij, Anna; Chan, Heelam; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2014-08-01

    Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria.

  16. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives.

    PubMed Central

    Rattan, A.; Kalia, A.; Ahmad, N.

    1998-01-01

    Multidrug-resistant strains of Mycobacterium tuberculosis seriously threaten tuberculosis (TB) control and prevention efforts. Molecular studies of the mechanism of action of antitubercular drugs have elucidated the genetic basis of drug resistance in M. tuberculosis. Drug resistance in M. tuberculosis is attributed primarily to the accumulation of mutations in the drug target genes; these mutations lead either to an altered target (e.g., RNA polymerase and catalase-peroxidase in rifampicin and isoniazid resistance, respectively) or to a change in titration of the drug (e.g., InhA in isoniazid resistance). Development of specific mechanism-based inhibitors and techniques to rapidly detect multidrug resistance will require further studies addressing the drug and drug-target interaction. PMID:9621190

  17. Multidrug Resistance Proteins (MRPs) and Cancer Therapy.

    PubMed

    Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Chen, Zhe-Sheng

    2015-07-01

    The ATP-binding cassette (ABC) transporters are members of a protein superfamily that are known to translocate various substrates across membranes, including metabolic products, lipids and sterols, and xenobiotic drugs. Multidrug resistance proteins (MRPs) belong to the subfamily C in the ABC transporter superfamily. MRPs have been implicated in mediating multidrug resistance by actively extruding chemotherapeutic substrates. Moreover, some MRPs are known to be essential in physiological excretory or regulatory pathways. The importance of MRPs in cancer therapy is also implied by their clinical insights. Modulating the function of MRPs to re-sensitize chemotherapeutic agents in cancer therapy shows great promise in cancer therapy; thus, multiple MRP inhibitors have been developed recently. This review article summarizes the structure, distribution, and physiological as well as pharmacological function of MRP1-MRP9 in cancer chemotherapy. Several novel modulators targeting MRPs in cancer therapy are also discussed. PMID:25840885

  18. Multidrug Resistance Proteins (MRPs) and Cancer Therapy.

    PubMed

    Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Chen, Zhe-Sheng

    2015-07-01

    The ATP-binding cassette (ABC) transporters are members of a protein superfamily that are known to translocate various substrates across membranes, including metabolic products, lipids and sterols, and xenobiotic drugs. Multidrug resistance proteins (MRPs) belong to the subfamily C in the ABC transporter superfamily. MRPs have been implicated in mediating multidrug resistance by actively extruding chemotherapeutic substrates. Moreover, some MRPs are known to be essential in physiological excretory or regulatory pathways. The importance of MRPs in cancer therapy is also implied by their clinical insights. Modulating the function of MRPs to re-sensitize chemotherapeutic agents in cancer therapy shows great promise in cancer therapy; thus, multiple MRP inhibitors have been developed recently. This review article summarizes the structure, distribution, and physiological as well as pharmacological function of MRP1-MRP9 in cancer chemotherapy. Several novel modulators targeting MRPs in cancer therapy are also discussed.

  19. Colonization of multidrug resistant pathogens in a hybrid pediatric cardiac surgery center

    PubMed Central

    Haponiuk, Ireneusz; Steffens, Mariusz; Arlukowicz, Elzbieta; Irga-Jaworska, Ninela; Chojnicki, Maciej; Kwasniak, Ewelina; Zielinski, Jacek

    2016-01-01

    Introduction The incidence of multidrug resistant microorganisms worldwide is increasing. The aim of the study was to present institutional experience with the multidrug resistant microorganism colonization patterns observed in children with congenital heart diseases hospitalized in a hybrid pediatric cardiac surgery center. Material and methods Microbiological samples were routinely collected in all children admitted to our department. All microbiological samples were analyzed with regard to multidrug resistant microorganisms: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), Gram-negative rods producing extended-spectrum beta-lactamases (ESBL), multidrug resistant Gram-negative rods (MDR-GNRs), carbapenemase-producing Klebsiella pneumoniae (KPC), carbapenem-resistant Acinetobacter baumannii (CRAB) and Pseudomonas aeruginosa (CRPA). Results In 30 (9%) swabs ‘alert’ pathogens from the above group of listed microorganisms were found. All positive swabs were isolated in 19 (16.1%) children. Multidrug resistant pathogen colonization was statistically significantly more often observed in children admitted from other medical facilities than in children admitted from home (38% vs. 10%, p = 0.0089). In the group of children younger than 6 months ‘alert’ pathogen were more often observed than in older children (34.1% vs. 5.4%, p < 0.001). Conclusions Preoperative multidrug resistant pathogen screening in children admitted and referred for congenital heart disease procedures may be of great importance since many of these patients are colonized with resistant bacteria. Knowledge of the patient's microbiome is important in local epidemiological control along with tailoring the most effective preoperative prophylactic antibiotic for each patient. The impact of preoperative screening on postoperative infections and other complications requires further analysis. PMID:27279859

  20. Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis

    PubMed Central

    Rezai, Mohammad Sadegh; Pourmousa, Rostam; Dadashzadeh, Roksana; Ahangarkani, Fatemeh

    2016-01-01

    Background: Treatment of chronic sinusitis is complicated due to increase of antibiotic-resistant bacteria. The aim of this study was to determine the multidrug resistance (MDR) pattern of the bacteria causing chronic sinusitis in north of Iran. Methods: This cross-sectional study was carried out on patients with chronic sinusitis. Bacterial susceptibility to antimicrobial agents was determined according to the CLSI 2013 standards. Double-disk synergy (DDS) test was performed for the detection of extended-spectrum beta-lactamase (ESBL) producing bacteria; also methicillin-resistant Staphylococcus (MRSA) strains were identified by MRSA screen agar. The MDR isolates were defined as resistant to 3 or more antibiotics. Data were analyzed using SPSS 17 software. Descriptive statistics was used to describe the features of the data in this study. Results: The rate of ESBL-producing bacteria was 28.75-37.03% among enterobacteriaceae and the rate of MRSA was 42.75%-60% among Staphylococcus strains. The most detectable rate of the MDR bacterial isolates was Gram-negative bacteria 39 (76.47%) and Enterobacter spp. 19(70.37%) was the most multidrug resistant isolate among Gram negative bacteria. Also 36 (73.46%) of the gram positive bacterial isolated were multidrug resistance and Staphylococcus aureus 9(90%) was the most MDR among Gram positive bacteria. Conclusion: Antimicrobial resistance is increasing in chronic bacterial sinusitis. The emergence of MRSA and ESBL bacteria causing chronic sinusitis is increasing. PMID:27386063

  1. Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma.

    PubMed

    Kim, Shin-Hee; Wei, Cheng-I; Tzou, Ywh-Min; An, Haejung

    2005-10-01

    Multidrug-resistant enteric bacteria were isolated from turkey, cattle, and chicken farms and retail meat products in Oklahoma. Among the isolated species, multidrug-resistant Klebsiella pneumoniae was prevalently isolated from most of the collected samples. Therefore, a total of 132 isolates of K. pneumoniae were characterized to understand their potential roles in the dissemination of antibiotic-resistance genes in the food chains. Multidrug-resistant K. pneumoniae was most frequently recovered from a turkey farm and ground turkey products among the tested samples. All isolates were resistant to ampicillin, tetracycline, streptomycin, gentamycin, and kanamycin. Class 1 integrons located in plasmids were identified as a common carrier of the aadA1 gene, encoding resistance to streptomycin and spectinomycin. Production of beta-lactamase in the K. pneumoniae isolates played a major role in the resistance to beta-lactam agents. Most isolates (96%) possessed bla(SHV1). Five strains were able to express both SHV-11 (pI 6.2) and TEM-1 (pI 5.2) beta-lactamase. Transfer of these antibiotic-resistance genes to Escherichia coli was demonstrated by transconjugation. The bacterial genomic DNA restriction patterns by pulsed-field gel electrophoresis showed that the same clones of multidrug-resistant K. pneumoniae remained in feathers, feed, feces, and drinking water in turkey environments, indicating the possible dissemination of antibiotic-resistance genes in the ecosystem and cross-contamination of antibiotic-resistant bacteria during processing and distribution of products.

  2. Fructose restores susceptibility of multidrug-resistant Edwardsiella tarda to kanamycin.

    PubMed

    Su, Yu-bin; Peng, Bo; Han, Yi; Li, Hui; Peng, Xuan-xian

    2015-03-01

    Edwardsiella tarda, the causative agent of Edwardsiellosis, imposes medical challenges in both the clinic and aquaculture. The emergence of multidrug resistant strains makes antibiotic treatment impractical. The identification of molecules that facilitate or promote antibiotic efficacy is in high demand. In the present study, we aimed to identify small molecules whose abundance is correlated with kanamycin resistance in E. tarda by gas chromatography-mass spectrometry. We found that the abundance of fructose was greatly suppressed in kanamycin-resistant strains. The incubation of kanamycin-resistant bacteria with exogenous fructose sensitized the bacteria to kanamycin. Moreover, the fructose also functioned in bacteria persisters and biofilm. The synergistic effects of fructose and kanamycin were validated in a mouse model. Furthermore, the mechanism relies on fructose in activating TCA cycle to produce NADH, which generates proton motive force to increase the uptake of the antibiotics. Therefore, we present a novel approach in fighting against multidrug resistant bacteria through exploration of antibiotic-suppressed molecules.

  3. Breaking the Spell: Combating Multidrug Resistant ‘Superbugs’

    PubMed Central

    Khan, Shahper N.; Khan, Asad U.

    2016-01-01

    Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to “escape” from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing. PMID:26925046

  4. Bacteriophages: biosensing tools for multi-drug resistant pathogens.

    PubMed

    Tawil, N; Sacher, E; Mandeville, R; Meunier, M

    2014-03-21

    Pathogen detection is of utmost importance in many sectors, such as in the food industry, environmental quality control, clinical diagnostics, bio-defence and counter-terrorism. Failure to appropriately, and specifically, detect pathogenic bacteria can lead to serious consequences, and may ultimately be lethal. Public safety, new legislation, recent outbreaks in food contamination, and the ever-increasing prevalence of multidrug-resistant infections have fostered a worldwide research effort targeting novel biosensing strategies. This review concerns phage-based analytical and biosensing methods targeted towards theranostic applications. We discuss and review phage-based assays, notably phage amplification, reporter phage, phage lysis, and bioluminescence assays for the detection of bacterial species, as well as phage-based biosensors, including optical (comprising SPR sensors and fiber optic assays), electrochemical (comprising amperometric, potentiometric, and impedimetric sensors), acoustic wave and magnetoelastic sensors.

  5. Multidrug resistance in pediatric urinary tract infections.

    PubMed

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ).

  6. Multidrug resistance in pediatric urinary tract infections.

    PubMed

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ). PMID:16922629

  7. Congenital Transmission of Multidrug-Resistant Tuberculosis

    PubMed Central

    Espiritu, Nora; Aguirre, Lino; Jave, Oswaldo; Sanchez, Luis; Kirwan, Daniela E.; Gilman, Robert H.

    2014-01-01

    This article presents a case of multidrug-resistant tuberculosis (TB) in a Peruvian infant. His mother was diagnosed with disseminated TB, and treatment commenced 11 days postpartum. The infant was diagnosed with TB after 40 days and died at 2 months and 2 days of age. Congenital transmission of TB to the infant was suspected, because direct postpartum transmission was considered unlikely; also, thorough screening of contacts for TB was negative. Spoligotyping confirmed that both mother and baby were infected with identical strains of the Beijing family (SIT1). PMID:24821847

  8. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants

    PubMed Central

    Ziech, Rosangela Estel; Lampugnani, Camila; Perin, Ana Paula; Sereno, Mallu Jagnow; Sfaciotte, Ricardo Antônio Pilegi; Viana, Cibeli; Soares, Vanessa Mendonça; de Almeida Nogueira Pinto, José Paes; dos Santos Bersot, Luciano

    2016-01-01

    The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp. PMID:26887244

  9. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants.

    PubMed

    Ziech, Rosangela Estel; Lampugnani, Camila; Perin, Ana Paula; Sereno, Mallu Jagnow; Sfaciotte, Ricardo Antônio Pilegi; Viana, Cibeli; Soares, Vanessa Mendonça; Pinto, José Paes de Almeida Nogueira; Bersot, Luciano dos Santos

    2016-01-01

    The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp. PMID:26887244

  10. Nanopreparations to overcome multidrug resistance in cancer.

    PubMed

    Patel, Niravkumar R; Pattni, Bhushan S; Abouzeid, Abraham H; Torchilin, Vladimir P

    2013-11-01

    Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing microtumor tissues in vitro are discussed in detail. PMID:23973912

  11. NANOPREPARATIONS TO OVERCOME MULTIDRUG RESISTANCE IN CANCER

    PubMed Central

    Patel, Niravkumar R.; Pattni, Bhushan S.; Abouzeid, Abraham H.; Torchilin, Vladimir P.

    2013-01-01

    Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing micro tumor tissues in vitro are discussed in detail. PMID:23973912

  12. Phosphorylation of the multidrug resistance associated glycoprotein

    SciTech Connect

    Mellado, W.; Horwitz, S.B.

    1987-11-03

    Drug-resistant cell lines derived from the mouse macrophage-like cell line J774.2 express the multidrug resistant phenotype which includes the overexpression of a membrane glycoprotein (130-140 kilodaltons). Phosphorylation of this resistant-specific glycoprotein (P-glycoprotein) in intact cells and in cell-free membrane fractions has been studied. The phosphorylated glycoprotein can be immunoprecipitated by a rabbit polyclonal antibody specific for the glycoprotein. Phosphorylation studies done with partially purified membrane fractions derived from colchicine-resistant cells indicated that (a) phosphorylation of the glycoprotein in 1 mM MgCl/sub 2/ was enhanced a minimum of 2-fold by 10 ..mu..M cAMP and (b) the purified catalytic subunit of the cAMP-dependent protein kinase (protein kinase A) phosphorylated partially purified glycoprotein that was not phosphorylated by (..gamma..-/sup 32/P)ATP alone, suggesting that autophosphorylation was not involved. These results indicate that the glycoprotein is a phosphoprotein and that at least one of the kinases responsible for its phosphorylation is a membrane-associated protein kinase A. The state of phosphorylation of the glycoprotein, which is a major component of the multidrug resistance phenotype, may be related to the role of the glycoprotein in maintaining drug resistance.

  13. Prolonged weightlessness affects promyelocytic multidrug resistance.

    PubMed

    Piepmeier, E H; Kalns, J E; McIntyre, K M; Lewis, M L

    1997-12-15

    An immortalized promyelocytic cell line was studied to detect how doxorubicin uptake is affected by microgravity. The purpose of this experiment was to identify the effect that microgravity may have on multidrug resistance in leukocytes. HL60 cells and HL60 cells resistant to anthracycline (HL60/AR) were grown in RPMI and 10% FBS. Upon reaching orbit in the Space Shuttle Endeavour, the cells were robotically mixed with doxorubicin. Three days after mixing, cells were fixed with paraformaldehyde/glutaraldehyde. Ground control experiments were conducted concurrently using a robot identical to the one used on the Shuttle. Fixed cells were analyzed within 2 weeks of launch. Confocal micrographs identified changes in cell structure (transmittance), drug distribution (fluorescence), and microtubule polymerization (fluorescence). Flight cells showed a lack of cytoskeletal polymerization resulting in an overall amorphic globular shape. Doxorubicin distribution in ground cells included a large numbers of vesicles relative to flight cells. There was a greater amount of doxorubicin present in flight cells (85% +/- 9.7) than in ground control cells (43% +/- 26) as determined by image analysis. Differences in microtubule formation between flight cells and ground cells could be partially responsible for the differences in drug distribution. Cytoskeletal interactions are critical to the function of P-glycoprotein as a drug efflux pump responsible for multidrug resistance.

  14. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains

    PubMed Central

    Gilmore, Michael S.; Rauch, Marcus; Ramsey, Matthew M.; Himes, Paul R.; Varahan, Sriram; Manson, Janet M.; Lebreton, Francois; Hancock, Lynn Ernest

    2015-01-01

    Multidrug-resistant Enterococcus faecalis possess numerous mobile elements that encode virulence and antibiotic resistance traits as well as new metabolic pathways, often constituting over one-quarter of the genome. It was of interest to determine how this large accretion of mobile elements affects competitive growth in the gastrointestinal (GI) tract consortium. We unexpectedly observed that the prototype clinical isolate strain V583 was actively killed by GI tract flora, whereas commensal enterococci flourished. It was found that killing of V583 resulted from lethal cross-talk between accumulated mobile elements and that this cross-talk was induced by a heptapeptide pheromone produced by native E. faecalis present in the fecal consortium. These results highlight two important aspects of the evolution of multidrug-resistant enterococci: (i) the accretion of mobile elements in E. faecalis V583 renders it incompatible with commensal strains, and (ii) because of this incompatibility, multidrug-resistant strains sharing features found in V583 cannot coexist with commensal strains. The accumulation of mobile elements in hospital isolates of enterococci can include those that are inherently incompatible with native flora, highlighting the importance of maintaining commensal populations as means of preventing colonization and subsequent infection by multidrug-resistant strains. PMID:26039987

  15. Gut colonization by multidrug-resistant and carbapenem-resistant Acinetobacter baumannii in neonates.

    PubMed

    Roy, S; Viswanathan, R; Singh, A; Das, P; Basu, S

    2010-12-01

    Infections caused by Acinetobacter baumannii are a threat to neonates because of its resistance to antimicrobials, including carbapenems. In 2007, A. baumannii emerged as an important aerobic Gram-negative bacillus (12.5%, 4/32) that caused sepsis in our unit. A. baumannii from the gut of the neonates was analyzed, as this could be indicative of the antibiotic resistance of the organisms. The study attempts to understand the gut colonization with multidrug-resistant A. baumannii among hospitalized neonates with special reference to carbapenem resistance. A. baumannii was found in the gut of 11% of babies. Interestingly, 60.7% (17/28) and 21.4% (6/28) of the isolates from the gut were multidrug-resistant and carbapenem-resistant, respectively. The number of multidrug-resistant and carbapenem-resistant isolates from blood cultures were 3/4 and 1/4, respectively. The study reports for the first time OXA-23 and OXA-58 carbapenemases in A. baumannii from India. Pulsed field gel electrophoresis (PFGE) patterns indicated that the strains were diverse and no epidemic clone existed. Though A. baumannii gut colonization could not be implicated as a risk factor for subsequent sepsis, the high rate of isolation of multidrug-resistant and carbapenem-resistant isolates indicates that these therapeutic options might be drastically reduced among neonates in the future.

  16. Nosocomial transmission of multidrug-resistant tuberculosis.

    PubMed

    Crudu, V; Merker, M; Lange, C; Noroc, E; Romancenco, E; Chesov, D; Günther, G; Niemann, S

    2015-12-01

    Nosocomial transmission of multidrug-resistant tuberculosis (MDR-TB) was ascertained by 24-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and spoligotyping at four hospitals in the Republic of Moldova, a high MDR-TB burden country. Overall, 5.1% of patients with pan-susceptible TB at baseline were identified with MDR-TB during in-patient treatment. In 75% of cases, the MDR-TB strain was genetically distinct from the non-MDR-TB strain at baseline, suggesting a high rate of nosocomial transmission of MDR-TB. The highest proportion (40.3%) of follow-up MDR-TB isolates was associated with the M. tuberculosis URAL 163-15 strain.

  17. Epidemiology and Treatment of Multidrug Resistant Tuberculosis

    PubMed Central

    Mitnick, Carole D.; Appleton, Sasha C.; Shin, Sonya S.

    2010-01-01

    Multidrug resistant tuberculosis is now thought to afflict between 1 and 2 million patients annually. Although significant regional variability in the distribution of disease has been recorded, surveillance data are limited by several factors. The true burden of disease is likely underestimated. Nevertheless, the estimated burden is substantial enough to warrant concerted action. A range of approaches is possible, but all appropriate interventions require scale-up of laboratories and early treatment with regimens containing a sufficient number of second-line drugs. Ambulatory treatment for most patients, and improved infection control, can facilitate scale-up with decreased risk of nosocomial transmission. Several obstacles have been considered to preclude worldwide scale-up of treatment, mostly attributable to inadequate human, drug, and financial resources. Further delays in scale-up, however, risk continued generation and transmission of resistant tuberculosis, as well as associated morbidity and mortality. PMID:18810684

  18. Nanomedicine to overcome cancer multidrug resistance.

    PubMed

    Yang, Xi; Yi, Cheng; Luo, Na; Gong, Changyang

    2014-01-01

    Cancer is still considered to be one of the most severe diseases so far. Multidrug resistance (MDR) is a major obstacle against curative cancer chemotherapy. The over-expression of drug efflux pumps in cellular membrane plays a critical role in preventing cancer cells from conventional chemotherapy. Nanotechnology is emerging as a class of therapeutics for MDR. This review mainly focuses on some pivotal strategies to combat MDR, including the enhanced permeability and retention (EPR) effect, stealth nanoparticles to prolong circulation time, endosomal escape, active drug delivery, stimuli sensitive drug release, and targeted co-delivery of different compounds. While convinced challenges need combatting, large numbers of preclinical studies strongly suggest that nanomedicine formations have potential application for improving the treatment of MDR. PMID:25255871

  19. [Advances in the research of treating multi-drug resistant bacterial infections].

    PubMed

    Peng, Y; Fu, Y X

    2016-09-20

    It is imperative to research the treatment strategy for infections caused by multi-drug resistant (MDR) bacteria, as there are increasing reports showing that more and more patients are decimated by the infections of MDR bacteria and the development of antimicrobial drugs is in downturn. Current researches mainly focus on the following three aspects: developing new antimicrobial agents with the aid of basic scientific achievements in finding new antibacterial targets, achieving antimicrobial purpose by specific lysis of host bacteria with phages of high specificity, and killing bacteria potently by destroying its cytomembrane using broad-spectrum antimicrobial peptides. PMID:27647070

  20. Diversity and evolution of the small multidrug resistance protein family

    PubMed Central

    Bay, Denice C; Turner, Raymond J

    2009-01-01

    Background Members of the small multidrug resistance (SMR) protein family are integral membrane proteins characterized by four α-helical transmembrane strands that confer resistance to a broad range of antiseptics and lipophilic quaternary ammonium compounds (QAC) in bacteria. Due to their short length and broad substrate profile, SMR proteins are suggested to be the progenitors for larger α-helical transporters such as the major facilitator superfamily (MFS) and drug/metabolite transporter (DMT) superfamily. To explore their evolutionary association with larger multidrug transporters, an extensive bioinformatics analysis of SMR sequences (> 300 Bacteria taxa) was performed to expand upon previous evolutionary studies of the SMR protein family and its origins. Results A thorough annotation of unidentified/putative SMR sequences was performed placing sequences into each of the three SMR protein subclass designations, namely small multidrug proteins (SMP), suppressor of groEL mutations (SUG), and paired small multidrug resistance (PSMR) using protein alignments and phylogenetic analysis. Examination of SMR subclass distribution within Bacteria and Archaea taxa identified specific Bacterial classes that uniquely encode for particular SMR subclass members. The extent of selective pressure acting upon each SMR subclass was determined by calculating the rate of synonymous to non-synonymous nucleotide substitutions using Syn-SCAN analysis. SUG and SMP subclasses are maintained under moderate selection pressure in comparison to integron and plasmid encoded SMR homologues. Conversely, PSMR sequences are maintained under lower levels of selection pressure, where one of the two PSMR pairs diverges in sequence more rapidly than the other. SMR genomic loci surveys identified potential SMR efflux substrates based on its gene association to putative operons that encode for genes regulating amino acid biogenesis and QAC-like metabolites. SMR subclass protein transmembrane domain

  1. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance.

    PubMed

    Jaspers, Janneke E; Sol, Wendy; Kersbergen, Ariena; Schlicker, Andreas; Guyader, Charlotte; Xu, Guotai; Wessels, Lodewyk; Borst, Piet; Jonkers, Jos; Rottenberg, Sven

    2015-02-15

    Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this.

  2. Differences in the motility phenotype of multidrug-resistant Salmonella enterica serovar Typhimurium exposed to various antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most prevalent foodborne-associated bacteria in humans and livestock, and over 35 per cent of these isolates are resistant to three or more antibiotics. This is a concern as multidrug-resistant (MDR) Salmonella has been associat...

  3. Place of Colistin-Rifampicin Association in the Treatment of Multidrug-Resistant Acinetobacter Baumannii Meningitis: A Case Study

    PubMed Central

    Souhail, Dahraoui; Bouchra, Belefquih; Belarj, Badia; Laila, Rar; Mohammed, Frikh; Nassirou, Oumarou Mamane; Azeddine, Ibrahimi; Haimeur, Charki; Lemnouer, Abdelhay; Elouennass, Mostafa

    2016-01-01

    Treatment of Acinetobacter baumannii meningitis is an important challenge due to the accumulation of resistance of this bacteria and low meningeal diffusion of several antimicrobial requiring use of an antimicrobial effective combination to eradicate these species. We report a case of Acinetobacter baumannii multidrug-resistant nosocomial meningitis which was successfully treated with intravenous and intrathecal colistin associated with rifampicin. PMID:27064923

  4. Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens

    PubMed Central

    Lee, Kyungwon; Yong, Dongeun; Jeong, Seok Hoon

    2011-01-01

    Pathogenic bacteria have increasingly been resisting to antimicrobial therapy. Recently, resistance problem has been relatively much worsened in Gram-negative bacilli. Acinetobacter spp. are typical nosocomial pathogens causing infections and high mortality, almost exclusively in compromised hospital patients. Acinetobacter spp. are intrinsically less susceptible to antibiotics than Enterobacteriaceae, and have propensity to acquire resistance. A surveillance study in Korea in 2009 showed that resistance rates of Acinetobacter spp. were very high: to fluoroquinolone 67%, to amikacin 48%, to ceftazidime 66% and to imipenem 51%. Carbapenem resistance was mostly due to OXA type carbapenemase production in A. baumannii isolates, whereas it was due to metallo-β-lactamase production in non-baumannii Acinetobacter isolates. Colistin-resistant isolates were rare but started to be isolated in Korea. Currently, the infection caused by multidrug-resistant A. baumannii is among the most difficult ones to treat. Analysis at tertiary care hospital in 2010 showed that among the 1,085 isolates of Acinetobacter spp., 14.9% and 41.8% were resistant to seven, and to all eight antimicrobial agents tested, respectively. It is known to be difficult to prevent Acinetobacter spp. infection in hospitalized patients, because the organisms are ubiquitous in hospital environment. Efforts to control resistant bacteria in Korea by hospitals, relevant scientific societies and government agencies have only partially been successful. We need concerted multidisciplinary efforts to preserve the efficacy of currently available antimicrobial agents, by following the principles of antimicrobial stewardship. PMID:22028150

  5. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  6. [Management of multidrug-resistant tuberculosis].

    PubMed

    Tritar, F; Daghfous, H; Ben Saad, S; Slim-Saidi, L

    2015-01-01

    The emergence of drug-resistant TB in many countries has become a major public health problem and an obstacle to effective tuberculosis control. Multidrug-resistant tuberculosis (MDR-TB), which is most often the result of poor adherence, is a particularly dangerous form of tuberculosis because it is caused by bacilli resistant to at least isoniazid and rifampicin, the two most effective anti-tuberculosis drugs. Techniques for rapid diagnosis of resistance have greatly improved the care of patients by allowing early treatment which remains complex and costly establishment, and requires skills and resources. The treatment is not standardized but it includes in all cases attack phase with five drugs (there must be an injectable agent and a fluoroquinolone that form the basis of the regimen) for eight months and a maintenance phase (without injectable agent) with a total duration of 20 months on average. Surgery may be beneficial as long as the lesions are localized and the patient has a good cardiorespiratory function. Evolution of MDR-TB treated is less favorable than tuberculosis with germ sensitive. The cure rate varies from 60 to 75% for MDR-TB, and drops to 30 to 40% for XDR-TB. Mortality remains high, ranging from 20 to 40% even up to 70-90% in people co-infected with HIV.

  7. Management of multidrug-resistant tuberculosis.

    PubMed

    Iseman, M D

    1999-01-01

    Drug-resistant tuberculosis (TB) originally is the product of inadequate therapy; this may entail noncompliance with treatment, interrupted drug supplies, or inappropriate prescription. Patients may sequentially acquire resistance to several drugs through repetition of this process. Loss of activity of the major drugs greatly compromises the treatment process; most problematic is resistance to both isoniazid and rifampicin, so-called 'multidrug-resistant tuberculosis' (MDR-TB). Recent evidence indicates that MDR-TB is being transmitted to others, and particularly to persons with HIV infection/AIDS. Other situations in which epidemic spread of MDR-TB occurs include hospitals and prisons. In several areas of the world, ominous levels of MDR-TB have been identified in a recent WHO survey. Treatment of MDR-TB entails the use of poorly tolerated, second-line medications that are often toxic, and the duration of treatment must be extended to the range of two years. Resectional surgery may be required to effect cures in patients with advanced disease in which most of the first-line agents have been lost to resistance.

  8. Mechanisms of multidrug resistance in cancer.

    PubMed

    Gillet, Jean-Pierre; Gottesman, Michael M

    2010-01-01

    The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Resistance exists against every effective anticancer drug and can develop by numerous mechanisms including decreased drug uptake, increased drug efflux, activation of detoxifying systems, activation of DNA repair mechanisms, evasion of drug-induced apoptosis, etc. In the first part of this chapter, we briefly summarize the current knowledge on individual cellular mechanisms responsible for MDR, with a special emphasis on ATP-binding cassette transporters, perhaps the main theme of this textbook. Although extensive work has been done to characterize MDR mechanisms in vitro, the translation of this knowledge to the clinic has not been crowned with success. Therefore, identifying genes and mechanisms critical to the development of MDR in vivo and establishing a reliable method for analyzing clinical samples could help to predict the development of resistance and lead to treatments designed to circumvent it. Our thoughts about translational research needed to achieve significant progress in the understanding of this complex phenomenon are therefore discussed in a third section. The pleotropic response of cancer cells to chemotherapy is summarized in a concluding diagram. PMID:19949920

  9. Resin glycosides from Ipomoea wolcottiana as modulators of the multidrug resistance phenotype in vitro.

    PubMed

    Corona-Castañeda, Berenice; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon; Aparicio-Cuevas, Manuel Alejandro; Fragoso-Serrano, Mabel; Figueroa-González, Gabriela; Pereda-Miranda, Rogelio

    2016-03-01

    Recycling liquid chromatography was used for the isolation and purification of resin glycosides from the CHCl3-soluble extracts prepared using flowers of Ipomoea wolcottiana Rose var. wolcottiana. Bioassay-guided fractionation, using modulation of both antibiotic activity against multidrug-resistant strains of Gram-negative bacteria and vinblastine susceptibility in breast carcinoma cells, was used to isolate the active glycolipids as modulators of the multidrug resistance phenotype. An ester-type dimer, wolcottine I, one tetra- and three pentasaccharides, wolcottinosides I-IV, in addition to the known intrapilosin VII, were characterized by NMR spectroscopy and mass spectrometry. In vitro assays established that none of these metabolites displayed antibacterial activity (MIC>512 μg/mL) against multidrug-resistant strains of Escherichia coli, and two nosocomial pathogens: Salmonella enterica serovar Typhi and Shigella flexneri; however, when tested (25 μg/mL) in combination with tetracycline, kanamycin or chloramphenicol, they exerted a potentiation effect of the antibiotic susceptibility up to eightfold (64 μg/mL from 512 μg/mL). It was also determined that these non-cytotoxic (CI50>8.68 μM) agents modulated vinblastine susceptibility at 25 μg/mL in MFC-7/Vin(+) cells with a reversal factor (RFMCF-7/Vin(+)) of 2-130 fold.

  10. Clinical management of infections caused by multidrug-resistant Enterobacteriaceae

    PubMed Central

    Delgado-Valverde, Mercedes; Sojo-Dorado, Jesús; Pascual, Álvaro

    2013-01-01

    Enterobacteriaceae showing resistance to cephalosporins due to extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC enzymes, and those producing carbapenemases have spread worldwide during the last decades. Many of these isolates are also resistant to other first-line agents such as fluoroquinolones or aminoglycosides, leaving few available options for therapy. Thus, older drugs such as colistin and fosfomycin are being increasingly used. Infections caused by these bacteria are associated with increased morbidity and mortality compared with those caused by their susceptible counterparts. Most of the evidence supporting the present recommendations is from in vitro data, animal studies, and observational studies. While carbapenems are considered the drugs of choice for ESBL and AmpC producers, recent data suggest that certain alternatives may be suitable for some types of infections. Combined therapy seems superior to monotherapy in the treatment of invasive infections caused by carbapenemase-producing Enterobacteriaceae. Optimization of dosage according to pharmacokinetics/pharmacodynamics data is important for the treatment of infections caused by isolates with borderline minimum inhibitory concentration due to low-level resistance mechanisms. The increasing frequency and the rapid spread of multidrug resistance among the Enterobacteriaceae is a true and complex public health problem. PMID:25165544

  11. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae

    PubMed Central

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6ˊ)-Ib, aac(6ˊ)-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings. PMID:26203651

  12. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae.

    PubMed

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6')-Ib, aac(6')-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.

  13. The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB▿ †

    PubMed Central

    Garvey, Mark I.; Piddock, Laura J. V.

    2008-01-01

    One way to combat multidrug-resistant microorganisms is the use of efflux pump inhibitors (EPIs). Spontaneous mutants resistant to the EPI reserpine selected from Streptococcus pneumoniae NCTC 7465 and R6 at a frequency suggestive of a single mutational event were also multidrug resistant. No mutations in pmrA (which encodes the efflux protein PmrA) were detected, and the expression of pmrA was unaltered in all mutants. In the reserpine-resistant multidrug-resistant mutants, the overexpression of both patA and patB, which encode ABC transporters, was associated with accumulation of low concentrations of antibiotics and dyes. The addition of sodium orthovanadate, an inhibitor of ABC efflux pumps, or the insertional inactivation of either gene restored wild-type antibiotic susceptibility and wild-type levels of accumulation. Only when patA was insertionally inactivated were both multidrug resistance and reserpine resistance lost. Strains in which patA was insertionally inactivated grew significantly more slowly than the wild type. These data indicate that the overexpression of both patA and patB confers multidrug resistance in S. pneumoniae but that only patA is involved in reserpine resistance. The selection of reserpine-resistant multidrug-resistant pneumococci has implications for analogous systems in other bacteria or in cancer. PMID:18362193

  14. Multidrug-resistant Gram-negative bacterial infections: the emerging threat and potential novel treatment options.

    PubMed

    Vergidis, Paschalis I; Falagas, Matthew E

    2008-02-01

    Gram-negative bacterial infections constitute an emerging threat because of the development of multidrug-resistant organisms. There is a relative shortage of new drugs in the antimicrobial development pipeline that have been tested in vitro and evaluated in clinical studies. Antibiotics that are in the pipeline for the treatment of serious Gram-negative bacterial infections include the cephalosporins, ceftobiprole, ceftarolin and FR-264205. Tigecycline is the first drug approved from a new class of antibiotics called glycylcyclines, and there has been renewed interest in this drug for the treatment of some multidrug-resistant Gram-negative organisms. Carbapenems in the pipeline include tomopenem, with the approved drugs doripenem and faropenem, an oral agent, under evaluation for activity against multidrug-resistant Gram-negative bacterial infections. Polymyxins are old antibiotics traditionally considered to be toxic, but which are being used because of their activity against resistant Gram-negative organisms. New pharmacokinetic and pharmacodynamic data are available regarding the use of these agents. Finally, antimicrobial peptides and efflux pump inhibitors are two new classes of agents under development. This review of investigational antibiotics shows that several new agents will become available in the coming years, even though the pace of antimicrobial research is far from ideal. PMID:18246520

  15. Functionalized Multiwalled Carbon Nanotubes as Carriers of Ruthenium Complexes to Antagonize Cancer Multidrug Resistance and Radioresistance.

    PubMed

    Wang, Ni; Feng, Yanxian; Zeng, Lilan; Zhao, Zhennan; Chen, Tianfeng

    2015-07-15

    Multidrug resistance and radioresistance are major obstacles for successful cancer therapy. Due to the unique characteristics of high surface area, improved cellular uptake, and the possibility to be easily bound with therapeutics, carbon nanotubes (CNTs) have attracted increasing attention as potential nanodrug delivery systems. In this study, a CNT-based radiosensitive nanodrug delivery system was rationally designed to antagonize the multidrug resistance in hepatocellular carcinoma. The nanosystem was loaded with a potent anticancer ruthenium polypyridyl complex (RuPOP) via π-π interaction and formation of a hydrogen bond. The functionalized nanosystem (RuPOP@MWCNTs) enhanced the cellular uptake of RuPOP in liver cancer cells, especially drug-resistant R-HepG2 cells, through endocytosis. Consistently, the selective cellular uptake endowed the nanosystem amplified anticancer efficacy against R-HepG2 cells but not in normal cells. Interestingly, RuPOP@MWCNTs significantly enhanced the anticancer efficacy of clinically used X-ray against R-HepG2 cells through induction of apoptosis and G0/G1 cell cycle arrest, with the involvement of ROS overproduction, which activated several downstream signaling pathways, including DNA damage-mediated p53 phosphorylation, activation of p38, and inactivation of AKT and ERK. Moreover, the nanosystem also effectively reduces the toxic side effects of loaded drugs and prolongs the blood circulation in vivo. Taken together, the results demonstrate the rational design of functionalized carbon nanotubes and their application as effective nanomedicine to overcome cancer multidrug resistance.

  16. Phorbol esters induce multidrug resistance in human breast cancer cells

    SciTech Connect

    Fine, R.L.; Patel, J.; Chabner, B.A.

    1988-01-01

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate (P(BtO)/sub 2/) led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)/sub 2/ further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)/sub 2/ induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation.

  17. Ventilator-Associated Pneumonia (VAP) with Multidrug-Resistant (MDR) Pathogens: Optimal Treatment?

    PubMed

    Bailey, Kristina L; Kalil, Andre C

    2015-08-01

    Ventilator-associated pneumonia (VAP) due to multidrug-resistant bacteria (MDR) is an emerging problem worldwide. Both gram-negative and gram-positive microorganisms are associated with VAP. We first describe the magnitude of the problem of MDR VAP followed by its clinical impact on survival outcomes, with the primary aim to review the optimal antibiotic choices to treat patients with MDR VAP. We discuss the challenges of intravenous and inhaled antibiotic treatments, as well as of monotherapy and combination antimicrobial therapies.

  18. The Widespread Presence of a Multidrug-Resistant Escherichia coli ST131 Clade among Community-Associated and Hospitalized Patients

    PubMed Central

    den Reijer, P. Martijn; van Burgh, Sebastian; Burggraaf, Arjan; Ossewaarde, Jacobus M.; van der Zee, Anneke

    2016-01-01

    Background & Aims The extent of entry of multidrug-resistant Escherichia coli from the community into the hospital and subsequent clonal spread amongst patients is unclear. To investigate the extent and direction of clonal spread of these bacteria within a large teaching hospital, we prospectively genotyped multidrug-resistant E. coli obtained from community- and hospital associated patient groups and compared the distribution of diverse genetic markers. Methods A total of 222 E. coli, classified as multi-drug resistant according to national guidelines, were retrieved from both screening (n = 184) and non-screening clinical cultures (n = 38) from outpatients and patients hospitalized for various periods. All isolates were routinely genotyped using an amplified fragment length polymorphism (AFLP) assay and real-time PCR for CTX-M genes. Multi-locus sequence typing was additionally performed to confirm clusters. Based on demographics, patients were categorized into two groups: patients that were not hospitalized or less than 72 hours at time of strain isolation (group I) and patients that were hospitalized for at least 72 hours (group II). Results Genotyping showed that most multi-drug resistant E. coli either had unique AFLP profiles or grouped in small clusters of maximally 8 isolates. We identified one large ST131 clade comprising 31% of all isolates, containing several AFLP clusters with similar profiles. Although different AFLP clusters were found in the two patient groups, overall genetic heterogeneity was similar (35% vs 28% of isolates containing unique AFLP profiles, respectively). In addition, similar distributions of CTX-M groups, including CTX-M 15 (40% and 44% of isolates in group I and II, respectively) and ST131 (32% and 30% of isolates, respectively) were found. Conclusion We conclude that multi-drug resistant E. coli from the CTX-M 15 associated lineage ST131 are widespread amongst both community- and hospital associated patient groups, with similar

  19. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii

    PubMed Central

    Weber, Brent S.; Ly, Pek Man; Irwin, Joshua N.; Pukatzki, Stefan; Feldman, Mario F.

    2015-01-01

    Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria. PMID:26170289

  20. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii.

    PubMed

    Weber, Brent S; Ly, Pek Man; Irwin, Joshua N; Pukatzki, Stefan; Feldman, Mario F

    2015-07-28

    Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.

  1. Characterization of a Multidrug-Resistant, Novel Bacteroides Genomospecies

    PubMed Central

    Salipante, Stephen J.; Kalapila, Aley; Pottinger, Paul S.; Hoogestraat, Daniel R.; Cummings, Lisa; Duchin, Jeffrey S.; Sengupta, Dhruba J.; Pergam, Steven A.; Cookson, Brad T.

    2015-01-01

    Metronidazole- and carbapenem-resistant Bacteroides fragilis are rare in the United States. We isolated a multidrug-resistant anaerobe from the bloodstream and intraabdominal abscesses of a patient who had traveled to India. Whole-genome sequencing identified the organism as a novel Bacteroides genomospecies. Physicians should be aware of the possibility for concomitant carbapenem- and metronidazole-resistant Bacteroides infections. PMID:25529016

  2. Multidrug-resistant tuberculosis, Somalia, 2010-2011.

    PubMed

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal; Zignol, Matteo

    2013-03-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia.

  3. Multidrug-Resistant Acinetobacter baumannii in Veterinary Clinics, Germany

    PubMed Central

    Prenger-Berninghoff, Ellen; Weiss, Reinhard; van der Reijden, Tanny; van den Broek, Peterhans; Baljer, Georg; Dijkshoorn, Lenie

    2011-01-01

    An increase in prevalence of multidrug-resistant Acinetobacter spp. in hospitalized animals was observed at the Justus-Liebig-University (Germany). Genotypic analysis of 56 isolates during 2000–2008 showed 3 clusters that corresponded to European clones I–III. Results indicate spread of genotypically related strains within and among veterinary clinics in Germany. PMID:21888812

  4. Epidemiology of Primary Multidrug-Resistant Tuberculosis, Vladimir Region, Russia.

    PubMed

    Ershova, Julia V; Volchenkov, Grigory V; Kaminski, Dorothy A; Somova, Tatiana R; Kuznetsova, Tatiana A; Kaunetis, Natalia V; Cegielski, J Peter; Kurbatova, Ekaterina V

    2015-11-01

    We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB. PMID:26488585

  5. Epidemiology of Primary Multidrug-Resistant Tuberculosis, Vladimir Region, Russia

    PubMed Central

    Volchenkov, Grigory V.; Kaminski, Dorothy A.; Somova, Tatiana R.; Kuznetsova, Tatiana A.; Kaunetis, Natalia V.; Cegielski, J. Peter; Kurbatova, Ekaterina V.

    2015-01-01

    We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB. PMID:26488585

  6. Epidemiology of Primary Multidrug-Resistant Tuberculosis, Vladimir Region, Russia.

    PubMed

    Ershova, Julia V; Volchenkov, Grigory V; Kaminski, Dorothy A; Somova, Tatiana R; Kuznetsova, Tatiana A; Kaunetis, Natalia V; Cegielski, J Peter; Kurbatova, Ekaterina V

    2015-11-01

    We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB.

  7. Tetrahydroindazole inhibitors of bacterial type II topoisomerases. Part 2: SAR development and potency against multidrug-resistant strains.

    PubMed

    Wiener, John J M; Gomez, Laurent; Venkatesan, Hariharan; Santillán, Alejandro; Allison, Brett D; Schwarz, Kimberly L; Shinde, Shirin; Tang, Liu; Hack, Michael D; Morrow, Brian J; Motley, S Timothy; Goldschmidt, Raul M; Shaw, Karen Joy; Jones, Todd K; Grice, Cheryl A

    2007-05-15

    We have previously reported a novel class of tetrahydroindazoles that display potency against a variety of Gram-positive and Gram-negative bacteria, potentially via interaction with type II bacterial topoisomerases. Herein are reported SAR investigations of this new series. Several compounds possessing broad-spectrum potency were prepared. Further, these compounds exhibit activity against multidrug-resistant Gram-positive microorganisms equivalent to that against susceptible strains.

  8. Multidrug-resistant organisms detected in refugee patients admitted to a University Hospital, Germany June‒December 2015.

    PubMed

    Reinheimer, Claudia; Kempf, Volkhard A J; Göttig, Stephan; Hogardt, Michael; Wichelhaus, Thomas A; O'Rourke, Fiona; Brandt, Christian

    2016-01-01

    Multidrug-resistant Gram-negative bacteria (MDR GNB) were found to colonise 60.8% (95% confidence interval: 52.3-68.9) of 143 refugee patients mainly from Syria (47), Afghanistan (29), and Somalia (14) admitted to the University Hospital Frankfurt, Germany, between June and December 2015. This percentage exceeds the prevalence of MDR GNB in resident patients four-fold. Healthcare personnel should be aware of this and the need to implement or adapt adequate infection control measures. PMID:26794850

  9. Multidrug-resistant organisms detected in refugee patients admitted to a University Hospital, Germany June‒December 2015.

    PubMed

    Reinheimer, Claudia; Kempf, Volkhard A J; Göttig, Stephan; Hogardt, Michael; Wichelhaus, Thomas A; O'Rourke, Fiona; Brandt, Christian

    2016-01-01

    Multidrug-resistant Gram-negative bacteria (MDR GNB) were found to colonise 60.8% (95% confidence interval: 52.3-68.9) of 143 refugee patients mainly from Syria (47), Afghanistan (29), and Somalia (14) admitted to the University Hospital Frankfurt, Germany, between June and December 2015. This percentage exceeds the prevalence of MDR GNB in resident patients four-fold. Healthcare personnel should be aware of this and the need to implement or adapt adequate infection control measures.

  10. Human multidrug-resistant Mycobacterium bovis infection in Mexico.

    PubMed

    Vazquez-Chacon, Carlos A; Martínez-Guarneros, Armando; Couvin, David; González-Y-Merchand, Jorge A; Rivera-Gutierrez, Sandra; Escobar-Gutierrez, Alejandro; De-la-Cruz López, Juan J; Gomez-Bustamante, Adriana; Gonzalez-Macal, Gabriela A; Gonçalves Rossi, Livia Maria; Muñiz-Salazar, Raquel; Rastogi, Nalin; Vaughan, Gilberto

    2015-12-01

    Here, we describe the molecular characterization of six human Mycobacterium bovis clinical isolates, including three multidrug resistant (MDR) strains, collected in Mexico through the National Survey on Tuberculosis Drug Resistance (ENTB-2008), a nationally representative survey conducted during 2008-2009 in nine states with a stratified cluster sampling design. The genetic background of bovine M. bovis strains identified in three different states of Mexico was studied in parallel to assess molecular relatedness of bovine and human strains. Additionally, resistance to first and second line anti-tuberculosis (TB) drugs and molecular identification of mutations conferring drug resistance was also performed. All strains were characterized by spoligotyping and 24-loci MIRU-VNTRs, and analyzed using the SITVIT2 (n = 112,000 strains) and SITVITBovis (n = 25,000 strains) proprietary databases of Institut Pasteur de la Guadeloupe. Furthermore, data from this study (n = 55 isolates), were also compared with genotypes recorded for M. bovis from USA (n = 203), Argentina (n = 726), as well as other isolates from Mexico (independent from the present study; n = 147), to determine any evidence for genetic relatedness between circulating M. bovis strains. The results showed that all human M. bovis cases were not genetically related between them or to any bovine strain. Interestingly, a high degree of genetic variability was observed among bovine strains. Several autochthonous and presumably imported strains were identified. The emergence of drug-resistant M. bovis is an important public health problem that jeopardizes the success of TB control programs in the region.

  11. Reversal of multidrug resistance by 7-O-benzoylpyripyropene A in multidrug-resistant tumor cells.

    PubMed

    Rho, M C; Hayashi, M; Fukami, A; Obata, R; Sunazuka, T; Tomoda, H; Komiyama, K; Omura, S

    2000-10-01

    7-O-Benzoylpyripyropene A (7-O-BzP), a semi-synthetic analog of pyripyropene, was investigated for its reversing effect on multidrug-resistant (MDR) tumor cells. 7-O-BzP (6.25 microg/ml) completely reversed resistance against vincristine and adriamycin in vincristine-resistant KB cells (VJ-300) and adriamycin-resistant P388 cells (P388/ADR), respectively. 7-O-BzP alone had no effect on the growth of drug sensitive and drug-resistant cells. 7-O-BzP (6.25 microg/ml) significantly enhanced accumulation of [3H]vincristine in VJ-300 cells and completely inhibited the binding of [3H]azidopine to the P-glycoprotein in VJ-300 cells and P388/ADR cells. The result suggests that 7-O-BzP effectively reverses P-glycoprotein-related MDR by interacting directly with P-glycoprotein in drug resistant VJ-300 and P388/ADR cells. PMID:11132967

  12. Genome Sequence of a Multidrug-Resistant Strain of Stenotrophomonas maltophilia with Carbapenem Resistance, Isolated from King Abdullah Medical City, Makkah, Saudi Arabia

    PubMed Central

    Abdel-Haleem, Alyaa M.; Rchiad, Zineb; Khan, Babar K.; Abdallah, Abdallah M.; Naeem, Raeece; Nikhat Sheerin, Shalam; Solovyev, Victor; Ahmed, Abdalla

    2015-01-01

    The emergence and spread of multidrug-resistant (MDR) bacteria have been regarded as major challenges among health care-associated infections worldwide. Here, we report the draft genome sequence of an MDR Stenotrophomonas maltophilia strain isolated in 2014 from King Abdulla Medical City, Makkah, Saudi Arabia. PMID:26472828

  13. Multidrug Resistance in Escherichia coli Strains Isolated from Infections in Dogs and Cats in Poland (2007–2013)

    PubMed Central

    Rzewuska, Magdalena; Czopowicz, Michał; Kizerwetter-Świda, Magdalena; Chrobak, Dorota; Błaszczak, Borys; Binek, Marian

    2015-01-01

    The antimicrobial susceptibility of Escherichia coli isolates associated with various types of infections in dogs and cats was determined. The studied isolates were most frequently susceptible to fluoroquinolones and the extended-spectrum cephalosporins (ESCs), antimicrobials commonly used in treatment of infections in companion animals. However, an increase in the percentage of strains resistant to β-lactam antibiotics including ESCs was noted between January 2007 and December 2013. The frequency of multidrug-resistant (MDR) E. coli isolation (66.8% of isolates) is alarming. Moreover, the statistically significant increase of the percentage of MDR isolates was observed during the study period. No difference in the prevalence of multidrug resistance was found between bacteria causing intestinal and extraintestinal infections and between canine and feline isolates. Nonhemolytic E. coli isolates were MDR more often than hemolytic ones. Our study showed the companion animals in Poland as an important reservoir of MDR bacteria. These results indicate that continuous monitoring of canine and feline E. coli antimicrobial susceptibility is required. Furthermore, introduction and application of recommendations for appropriate use of antimicrobials in small animal practice should be essential to minimize the emergence of multidrug resistance among E. coli in companion animals. PMID:25667937

  14. Multidrug resistance in Escherichia coli strains isolated from infections in dogs and cats in Poland (2007-2013).

    PubMed

    Rzewuska, Magdalena; Czopowicz, Michał; Kizerwetter-Świda, Magdalena; Chrobak, Dorota; Błaszczak, Borys; Binek, Marian

    2015-01-01

    The antimicrobial susceptibility of Escherichia coli isolates associated with various types of infections in dogs and cats was determined. The studied isolates were most frequently susceptible to fluoroquinolones and the extended-spectrum cephalosporins (ESCs), antimicrobials commonly used in treatment of infections in companion animals. However, an increase in the percentage of strains resistant to β-lactam antibiotics including ESCs was noted between January 2007 and December 2013. The frequency of multidrug-resistant (MDR) E. coli isolation (66.8% of isolates) is alarming. Moreover, the statistically significant increase of the percentage of MDR isolates was observed during the study period. No difference in the prevalence of multidrug resistance was found between bacteria causing intestinal and extraintestinal infections and between canine and feline isolates. Nonhemolytic E. coli isolates were MDR more often than hemolytic ones. Our study showed the companion animals in Poland as an important reservoir of MDR bacteria. These results indicate that continuous monitoring of canine and feline E. coli antimicrobial susceptibility is required. Furthermore, introduction and application of recommendations for appropriate use of antimicrobials in small animal practice should be essential to minimize the emergence of multidrug resistance among E. coli in companion animals.

  15. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates.

    PubMed

    Hou, Xiang-hua; Song, Xiu-yu; Ma, Xiao-bo; Zhang, Shi-yang; Zhang, Jia-qin

    2015-01-01

    Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR) K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs) at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL) producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38) and class II integrons (10/38). All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX' and aadA1 genes. β-lactam resistance was conferred through bla SHV (22/38), bla TEM (10/38), and bla CTX-M (7/38). The highly conserved bla KPC-2 (37/38) and bla OXA-23(1/38) alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38) and the plasmid-mediated qnrB gene (13/38) were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR) fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  16. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates

    PubMed Central

    Hou, Xiang-hua; Song, Xiu-yu; Ma, Xiao-bo; Zhang, Shi-yang; Zhang, Jia-qin

    2015-01-01

    Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR) K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs) at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL) producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38) and class II integrons (10/38). All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX’ and aadA1 genes. β-lactam resistance was conferred through bla SHV (22/38), bla TEM (10/38), and bla CTX-M (7/38). The highly conserved bla KPC-2 (37/38) and bla OXA-23(1/38) alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38) and the plasmid-mediated qnrB gene (13/38) were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR) fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  17. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates.

    PubMed

    Hou, Xiang-hua; Song, Xiu-yu; Ma, Xiao-bo; Zhang, Shi-yang; Zhang, Jia-qin

    2015-01-01

    Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR) K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs) at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL) producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38) and class II integrons (10/38). All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX' and aadA1 genes. β-lactam resistance was conferred through bla SHV (22/38), bla TEM (10/38), and bla CTX-M (7/38). The highly conserved bla KPC-2 (37/38) and bla OXA-23(1/38) alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38) and the plasmid-mediated qnrB gene (13/38) were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR) fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  18. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Toshi; Shimamoto, Tadashi

    2014-10-17

    Foodborne pathogens are a leading cause of illness and death, especially in developing countries. The problem is exacerbated if bacteria attain multidrug resistance. Little is currently known about the extent of antibiotic resistance in foodborne pathogens and the molecular mechanisms underlying this resistance in Africa. Therefore, the current study was carried out to characterize, at the molecular level, the mechanism of multidrug resistance in Salmonella enterica isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets and slaughterhouses in Egypt. Forty-seven out of 69 isolates (68.1%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The incidence of multidrug-resistant isolates was higher in meat products (37, 69.8%) than in dairy products (10, 62.5%). The multidrug-resistant serovars included, S. enterica serovar Typhimurium (24 isolates, 34.8%), S. enterica serovar Enteritidis, (15 isolates, 21.8%), S. enterica serovar Infantis (7 isolates, 10.1%) and S. enterica non-typable serovar (1 isolate, 1.4%). The highest resistance was to ampicillin (95.7%), then to kanamycin (93.6%), spectinomycin (93.6%), streptomycin (91.5%) and sulfamethoxazole/trimethoprim (91.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes and 39.1% and 8.7% of isolates were positive for class 1 and class 2 integrons, respectively. β-lactamase-encoding genes were identified in 75.4% of isolates and plasmid-mediated quinolone resistance genes were identified in 27.5% of isolates. Finally, the florphenicol resistance gene, floR, was identified in 18.8% of isolates. PCR screening identified S. enterica serovar Typhimurium DT104 in both meat and dairy products. This is the first study to report many of these resistance genes in dairy products. This study highlights the high incidence of multidrug-resistant S. enterica in

  19. Brazilian experience in the management of multidrug-resistance.

    PubMed

    de Melo, Fernando Augusto Fiuza

    2010-01-01

    In this article the author reviews the evolution of the approach to multidrug-resistant tuberculosis (MDR-TB) in Brazil following the introduction of rifampicin associated to isoniazid and pyrazinamide (RHZ). It shows Brazil was one of the world's first countries to use the RHZ regimen within a treatment system, with a first line regimen, another one specific for meningo-encephalic forms, for re-treatment of recurrences or of patients who returned with active tuberculosis after abandoning treatment, and a reserve regimen. The system was applied nationwide with guaranteed cost-free provision of medication, and self-administered. The author evaluates the growth of drug resistance, the emergence of multidrug-resistance and how management of this form of the disease has been organised.

  20. Multidrug-resistant Fusarium keratitis: diagnosis and treatment considerations.

    PubMed

    Sara, Sergio; Sharpe, Kendall; Morris, Sharon

    2016-01-01

    Mycotic keratitis is an ocular infective process derived from any fungal species capable of corneal invasion. Despite its rarity in developed countries, its challenging and elusive diagnosis may result in keratoplasty or enucleation following failed medical management. Filamentous fungi such as Fusarium are often implicated in mycotic keratitis. Bearing greater morbidity than its bacterial counterpart, mycotic keratitis requires early clinical suspicion and initiation of antifungal therapy to prevent devastating consequences. We describe a case of multidrug-resistant mycotic keratitis in a 46-year-old man who continued to decline despite maximal therapy and therapeutic keratoplasty. Finally, enucleation was performed as a means of source control preventing dissemination of a likely untreatable fungal infection into the orbit. Multidrug-resistant Fusarium is rare, and may progress to endophthalmitis. We discuss potential management options which may enhance diagnosis and outcome in this condition. PMID:27489066

  1. Multidrug-Resistant Salmonella Isolates from Swine in the Eastern Cape Province, South Africa.

    PubMed

    Iwu, Chinwe Juliana; Iweriebor, Benson Chuks; Obi, Larry Chikwelu; Basson, Albertus Kotze; Okoh, Anthony Ifeanyi

    2016-07-01

    The exposure of farm animals to antimicrobials for treatment, prophylaxis, or growth promotion can select for resistant bacteria that can be transmitted to humans, and Salmonella as an important zoonotic pathogen can act as a potential reservoir of antimicrobial resistance determinants. We assessed the antibiogram profiles of Salmonella species isolated from pig herds in two commercial farms in South Africa. Two hundred fifty-eight presumptive Salmonella isolates were recovered from the fecal samples of 500 adult pigs. Specific primers targeting Salmonella serogroups A, B, C1, C2, and D were used to determine the prevalence of different serogroups. Only serogroup A (n = 48) was detected, while others were not. Antimicrobial susceptibility of the confirmed Salmonella serogroup A isolates was performed by using the disk diffusion method against a panel of 18 antibiotics. All the 48 isolates were resistant to tetracycline and oxytetracycline, while 75% were resistant to ampicillin, sulphamethoxazole-trimethoprim, nalidixic acid, and streptomycin. All the isolates exhibited multidrug resistance, with the predominant phenotype being against 11 antibiotics, and multiple antibiotic resistance index ranged between 0.3 and 0.6. The incidence of genes encoding resistance against ampicillin (ampC), tetracycline (tetA), and streptomycin (strA) were 54, 61, and 44%, respectively. We conclude that healthy pigs are potential reservoirs of multidrug-resistant Salmonella that could be transmitted to humans through the food chain and, hence, a significant public health threat.

  2. A data-driven approach to modeling the tripartite structure of multidrug resistance efflux pumps.

    PubMed

    Phillips, Joshua L; Gnanakaran, S

    2015-01-01

    Many bacterial pathogens are becoming increasingly resistant to antibiotic treatments, and a detailed understanding of the molecular basis of antibiotic resistance is critical for the development of next-generation approaches for combating bacterial infections. Studies focusing on pathogens have revealed the profile of resistance in these organisms to be due primarily to the presence of multidrug resistance efflux pumps: tripartite protein complexes which span the periplasm bridging the inner and outer membranes of Gram-negative bacteria. An atomic-level resolution tripartite structure remains imperative to advancing our understanding of the molecular mechanisms of pump function using both theoretical and experimental approaches. We develop a fast and consistent method for constructing tripartite structures which leverages existing data-driven models and provide molecular modeling approaches for constructing tripartite structures of multidrug resistance efflux pumps. Our modeling studies reveal that conformational changes in the inner membrane component responsible for drug translocation have limited impact on the conformations of the other pump components, and that two distinct models derived from conflicting experimental data are both consistent with all currently available measurements. Additionally, we investigate putative drug translocation pathways via geometric simulations based on the available crystal structures of the inner membrane pump component, AcrB, bound to two drugs which occupy distinct binding sites: doxorubicin and linezolid. These simulations suggest that smaller drugs may enter the pump through a channel from the cytoplasmic leaflet of the inner membrane, while both smaller and larger drug molecules may enter through a vestibule accessible from the periplasm.

  3. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  4. Multidrug-Resistant Salmonella Isolates from Swine in the Eastern Cape Province, South Africa.

    PubMed

    Iwu, Chinwe Juliana; Iweriebor, Benson Chuks; Obi, Larry Chikwelu; Basson, Albertus Kotze; Okoh, Anthony Ifeanyi

    2016-07-01

    The exposure of farm animals to antimicrobials for treatment, prophylaxis, or growth promotion can select for resistant bacteria that can be transmitted to humans, and Salmonella as an important zoonotic pathogen can act as a potential reservoir of antimicrobial resistance determinants. We assessed the antibiogram profiles of Salmonella species isolated from pig herds in two commercial farms in South Africa. Two hundred fifty-eight presumptive Salmonella isolates were recovered from the fecal samples of 500 adult pigs. Specific primers targeting Salmonella serogroups A, B, C1, C2, and D were used to determine the prevalence of different serogroups. Only serogroup A (n = 48) was detected, while others were not. Antimicrobial susceptibility of the confirmed Salmonella serogroup A isolates was performed by using the disk diffusion method against a panel of 18 antibiotics. All the 48 isolates were resistant to tetracycline and oxytetracycline, while 75% were resistant to ampicillin, sulphamethoxazole-trimethoprim, nalidixic acid, and streptomycin. All the isolates exhibited multidrug resistance, with the predominant phenotype being against 11 antibiotics, and multiple antibiotic resistance index ranged between 0.3 and 0.6. The incidence of genes encoding resistance against ampicillin (ampC), tetracycline (tetA), and streptomycin (strA) were 54, 61, and 44%, respectively. We conclude that healthy pigs are potential reservoirs of multidrug-resistant Salmonella that could be transmitted to humans through the food chain and, hence, a significant public health threat. PMID:27357044

  5. Multidrug Resistant Shigella flexneri Infection Simulating Intestinal Intussusception.

    PubMed

    Sreenivasan, Srirangaraj; Kali, Arunava; Pradeep, Jothimani

    2016-01-01

    Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, which was effectively treated by ceftriaxone. PMID:27013815

  6. Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance.

    PubMed

    Boyanova, Lyudmila; Evstatiev, Ivailo; Gergova, Galina; Yaneva, Penka; Mitov, Ivan

    2015-12-01

    Only a few studies have evaluated Helicobacter pylori susceptibility to linezolid. The aim of the present study was to assess linezolid susceptibility in H. pylori, including strains with double/multidrug resistance. The susceptibility of 53 H. pylori strains was evaluated by Etest and a breakpoint susceptibility testing method. Helicobacter pylori resistance rates were as follows: amoxicillin, 1.9%; metronidazole, 37.7%; clarithromycin, 17.0%; tetracycline, 1.9%; levofloxacin, 24.5%; and linezolid (>4 mg/L), 39.6%. The linezolid MIC50 value was 31.2-fold higher than that of clarithromycin and 10.5-fold higher than that of levofloxacin; however, 4 of 11 strains with double/multidrug resistance were linezolid-susceptible. The MIC range of the oxazolidinone agent was larger (0.125-64 mg/L) compared with those in the previous two reports. The linezolid resistance rate was 2.2-fold higher in metronidazole-resistant strains and in strains resistant to at least one antibiotic compared with the remaining strains. Briefly, linezolid was less active against H. pylori compared with clarithromycin and levofloxacin, and linezolid resistance was linked to resistance to metronidazole as well as to resistance to at least one antibiotic. However, linezolid activity against some strains with double/multidrug resistance may render the agent appropriate to treat some associated H. pylori infections following in vitro susceptibility testing of the strains. Clinical trials are required to confirm this suggestion.

  7. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    PubMed

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-01-01

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics. PMID:27452236

  8. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals

    PubMed Central

    Gullberg, Erik; Albrecht, Lisa M.; Karlsson, Christoffer; Sandegren, Linus

    2014-01-01

    ABSTRACT How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. PMID:25293762

  9. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    NASA Astrophysics Data System (ADS)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  10. Persistence of Multi-Drug Resistance Plasmids in Sterile Water under Very Low Concentrations of Tetracycline

    PubMed Central

    Bien, Thi Lan Thanh; Sato-Takabe, Yuki; Ogo, Mitsuko; Usui, Masaru; Suzuki, Satoru

    2015-01-01

    The persistence of the multi-drug resistance plasmids pAQU1 and IncFIB was examined in bacterial populations under very low selective pressure. We herein demonstrated that these plasmids stably remained not only in the original host, but also in a transconjugant, even after being in a non-culturable state. In seawater microcosms containing Photobacterium damselae 04Ya311 possessing pAQU1, no significant loss of pAQU1 was observed during a 30-d starvation period. The copy numbers of pAQU1 and IncFIB in E. coli were constant. The results of the present study suggest that these plasmids have the ability to remain among various bacteria under oligotrophic conditions with low antibiotic selection pressure. PMID:26639579

  11. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Li, Jian; Nation, Roger L; Turnidge, John D; Milne, Robert W; Coulthard, Kingsley; Rayner, Craig R; Paterson, David L

    2006-09-01

    Increasing multidrug resistance in Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, presents a critical problem. Limited therapeutic options have forced infectious disease clinicians and microbiologists to reappraise the clinical application of colistin, a polymyxin antibiotic discovered more than 50 years ago. We summarise recent progress in understanding the complex chemistry, pharmacokinetics, and pharmacodynamics of colistin, the interplay between these three aspects, and their effect on the clinical use of this important antibiotic. Recent clinical findings are reviewed, focusing on evaluation of efficacy, emerging resistance, potential toxicities, and combination therapy. In the battle against rapidly emerging bacterial resistance we can no longer rely entirely on the discovery of new antibiotics; we must also pursue rational approaches to the use of older antibiotics such as colistin.

  12. Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin.

    PubMed

    Soto-Cerrato, Vanessa; Llagostera, Esther; Montaner, Beatriz; Scheffer, George L; Perez-Tomas, Ricardo

    2004-10-01

    Prodigiosin (PG) is a red pigment produced by Serratia marcescens with pro-apoptotic activity in haematopoietic and gastrointestinal cancer cell lines, but no marked toxicity in non-malignant cells. Breast cancer is the most frequent malignancy among women in the European Union and better therapies are needed, especially for metastatic tumors. Moreover, multidrug resistance is a common phenomenon that appears during chemotherapy, necessitating more aggressive treatment as prognosis worsens. In this work, we extend our experiments on PG-induced apoptosis to breast cancer cells. PG was potently cytotoxic in both estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines. Cytochrome c release, activation of caspases-9, -8 and -7 and cleavage of poly (ADP-ribose) polymerase protein typified the apoptotic event and caspase inhibition revealed that PG acts via the mitochondrial pathway. In a multidrug-resistant subline of MCF-7 cells that over-expresses the breast cancer resistance protein, the cytotoxic activity of PG was slightly reduced. However, flow-cytometry analysis of PG accumulation and efflux in MCF-7 sublines showed that PG is not a substrate for this resistance protein. These results suggest that PG is an interesting and potent new pro-apoptotic agent for the treatment of breast cancer even when multidrug resistance transporter molecules are present.

  13. Antimicrobial activity of some essential oils against oral multidrug-resistant Enterococcus faecalis in both planktonic and biofilm state

    PubMed Central

    Benbelaïd, Fethi; Khadir, Abdelmounaïm; Abdoune, Mohamed Amine; Bendahou, Mourad; Muselli, Alain; Costa, Jean

    2014-01-01

    Objective To evaluate some essential oils in treatment of intractable oral infections, principally caused by biofilm of multidrug-resistant Enterococcus faecalis (E. faecalis), such as persistent endodontic infections in which their treatment exhibits a real challenge for dentists. Methods Ten chemically analyzed essential oils by gas chromatography-mass spectrometry were evaluated for antimicrobial activity against sensitive and resistant clinical strains of E. faecalis in both planktonic and biofilm state using two methods, disk diffusion and broth micro-dilution. Results Studied essential oils showed a good antimicrobial activity and high ability in E. faecalis biofilm eradication, whether for sensitive or multidrug-resistant strains, especially those of Origanum glandulosum and Thymbra capitata with interesting minimum inhibitory concentration, biofilm inhibitory concentration, and biofilm eradication concentration values which doesn't exceed 0.063%, 0.75%, and 1.5%, respectively. Conclusions Findings of this study indicate that essential oils extracted from aromatic plants can be used in treatment of intractable oral infections, especially caused by biofilm of multidrug-resistant E. faecalis. PMID:25182948

  14. Environmental contamination by multidrug-resistant microorganisms after daily cleaning.

    PubMed

    Gavaldà, Laura; Pequeño, Sandra; Soriano, Ana; Dominguez, M Angeles

    2015-07-01

    We analyzed 91 samples of high-touch surfaces obtained within the first hour after daily cleaning in intensive care unit rooms occupied with patients with multidrug-resistant organisms (MDROs). We determined that 22% of high-touch surfaces in rooms with methicillin-resistant Staphylococcus aureus patients and 5% of high-touch surfaces in rooms with multiresistant Pseudomonas aeruginosa patients were colonized with the same strain as the patient. We postulated that textile cleaning wipes could be contaminated with MDROs and may contribute to its spreading within the room.

  15. Nanotechnology approaches for personalized treatment of multidrug resistant cancers.

    PubMed

    Minko, Tamara; Rodriguez-Rodriguez, Lorna; Pozharov, Vitaly

    2013-11-01

    The efficacy of chemotherapy is substantially limited by the resistance of cancer cells to anticancer drugs that fluctuates significantly in different patients. Under identical chemotherapeutic protocols, some patients may receive relatively ineffective doses of anticancer agents while other individuals obtain excessive amounts of drugs that induce severe adverse side effects on healthy tissues. The current review is focused on an individualized selection of drugs and targets to suppress multidrug resistance. Such selection is based on the molecular characteristics of a tumor from an individual patient that can potentially improve the treatment outcome and bring us closer to an era of personalized medicine. PMID:24120655

  16. Drug treatment for multidrug-resistant Acinetobacter baumannii infections.

    PubMed

    Bassetti, Matteo; Righi, Elda; Esposito, Silvano; Petrosillo, Nicola; Nicolini, Laura

    2008-12-01

    Acinetobacter baumannii has emerged in the last decades as a major cause of healthcare-associated infections and nosocomial outbreaks. Multidrug-resistant (MDR) A. baumannii is a rapidly emerging pathogen in healthcare settings, where it causes infections that include bacteremia, pneumonia, meningitis, and urinary tract and wound infections. Antimicrobial resistance poses great limits for therapeutic options in infected patients, especially if the isolates are resistant to the carbapenems. Other therapeutic options include sulbactam, aminoglycosides, polymixyns and tigecycline. The discovery of new therapies coupled with the development of controlled clinical trial antibiotic testing combinations and the prevention of transmission of MDR Acinetobacter infection are essential to face this important hospital problem.

  17. Chlorine Dioxide is a Better Disinfectant than Sodium Hypochlorite against Multi-Drug Resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii.

    PubMed

    Hinenoya, Atsushi; Awasthi, Sharda Prasad; Yasuda, Noritomo; Shima, Ayaka; Morino, Hirofumi; Koizumi, Tomoko; Fukuda, Toshiaki; Miura, Takanori; Shibata, Takashi; Yamasaki, Shinji

    2015-01-01

    In this study, we evaluated and compared the antibacterial activity of chlorine dioxide (ClO2) and sodium hypochlorite (NaClO) on various multidrug-resistant strains in the presence of bovine serum albumin and sheep erythrocytes to mimic the blood contamination that frequently occurs in the clinical setting. The 3 most important species that cause nosocomial infections, i.e., methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDRP), and multidrug-resistant Acinetobacter baumannii (MDRA), were evaluated, with three representative strains of each. At a 10-ppm concentration, ClO2 drastically reduced the number of bacteria of all MDRP and MDRA strains, and 2 out of 3 MRSA strains. However, 10 ppm of NaClO did not significantly kill any of the 9 strains tested in 60 seconds (s). In addition, 100 ppm of ClO2 completely killed all MRSA strains, whereas 100 ppm of NaClO failed to significantly lower the number of 2 MRSA strains and 1 MDRA strain. A time-course experiment demonstrated that, within 15 s, 100 ppm of ClO2, but not 100 ppm of NaClO, completely killed all tested strains. Taken together, these data suggest that ClO2 is more effective than NaClO against MRSA, MDRP, and MDRA, and 100 ppm is an effective concentration against these multidrug-resistant strains, which cause fatal nosocomial infections.

  18. Multidrug resistance protein gene expression in Trichoplusia ni caterpillars.

    PubMed

    Simmons, Jason; D'Souza, Olivia; Rheault, Mark; Donly, Cam

    2013-02-01

    Many insect species exhibit pesticide-resistant phenotypes. One of the mechanisms capable of contributing to resistance is the overexpression of multidrug resistance (MDR) transporter proteins. Here we describe the cloning of three genes encoding MDR proteins from Trichoplusia ni: trnMDR1, trnMDR2 and trnMDR3. Real-time quantitative PCR (qPCR) detected trnMDR mRNA in the whole nervous system, midgut and Malpighian tubules of final instar T. ni caterpillars. To test whether these genes are upregulated in response to chemical challenge in this insect, qPCR was used to compare trnMDR mRNA levels in unchallenged insects with those of insects fed the synthetic pyrethroid, deltamethrin. Only limited increases were detected in a single gene, trnMDR2, which is the most weakly expressed of the three MDR genes, suggesting that increased multidrug resistance of this type is not a significant part of the response to deltamethrin exposure.

  19. Treatment for patients with multidrug resistant Acinetobacter baumannii pulmonary infection

    PubMed Central

    PAN, TAO; LIU, XIAOYUN; XIANG, SHOUGUI; JI, WENLI

    2016-01-01

    Bacterial infections are common but have become increasingly resistant to drugs. The aim of the present study was to examine the combined treatment of traditional Chinese and Western medicine in 30 cases of pulmonary infection with multidrug resistant Acinetobacter baumannii. Patients were divided into groups A and B according to drug treatments. Cefoperazone or sulbactam and tanreqing were administered in group A, and cefoperazone or sulbactam in group B. The curative effect and prognosis of the two groups were recorded and the remaining treatments were performed routinely in the clinic. For the combined therapy group, which was administered sulperazone and tanreqing, 8 patients were recovered, 6 patients had significant effects, 3 patients exhibited some improvement and 1 patient had no response. One of the patients did not survive after 28 days. By contrast, there were 4 patients that were successfully treated, 3 patients with significant effects, 2 patients with some improvement and 2 patients had no response in the sulperazone group, and 4 patients did not survive after 28 days. In conclusion, the combined therapy of cefoperazone or sulbactam supplemented with tanreqing was identified to be more effective than cefoperazone or sulbactam as monotherapy, for treating multidrug resistant Acinetobacter baumannii. PMID:27073447

  20. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections

    PubMed Central

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N.

    2015-01-01

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections. PMID:26111644

  1. Characterization of a multidrug resistant C. difficile meat isolate.

    PubMed

    Mooyottu, Shankumar; Flock, Genevieve; Kollanoor-Johny, Anup; Upadhyaya, Indu; Jayarao, Bhushan; Venkitanarayanan, Kumar

    2015-01-01

    Clostridium difficile is a pathogen of significant public health concern causing a life-threatening, toxin-mediated enteric disease in humans. The incidence and severity of the disease associated with C. difficile have increased in the US with the emergence of hypervirulent strains and community associated outbreaks. The detection of genotypically similar and identical C. difficile strains implicated from human infections in foods and food animals indicates the potential role of food as a source of community associated C. difficile disease. One hundred samples each of ground beef, pork and chicken obtained from geographically distant grocery stores in Connecticut were tested for C. difficile. Positive isolates were characterized by ribotyping, antibiotic susceptibility, toxin production and whole genome sequencing. Of the 300 meat samples, only two pork samples tested positive for C. difficile indicating a very low prevalence of C. difficile in meat. The isolates were non toxigenic; however, genome characterization revealed the presence of several antibiotic resistance genes and mobile elements that can potentially contribute to generation of multidrug resistant toxigenic C. difficile by horizontal gene transfer. Further studies are warranted to investigate potential food-borne transmission of the meat isolates and development of multi-drug resistance in these strains.

  2. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.

    PubMed

    Gullberg, Erik; Albrecht, Lisa M; Karlsson, Christoffer; Sandegren, Linus; Andersson, Dan I

    2014-01-01

    How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to

  3. Draft Genome of the Multidrug-Resistant Acinetobacter baumannii Strain A155 Clinical Isolate

    PubMed Central

    Arivett, Brock A.; Fiester, Steven E.; Ream, David C.; Centrón, Daniela; Ramírez, Maria S.; Tolmasky, Marcelo E.

    2015-01-01

    Acinetobacter baumannii is a bacterial pathogen with serious implications on human health, due to increasing reports of multidrug-resistant strains isolated from patients. Total DNA from the multidrug-resistant A. baumannii strain A155 clinical isolate was sequenced to greater than 65× coverage, providing high-quality contig assemblies. PMID:25814610

  4. Draft Genome Sequence of Neisseria gonorrhoeae Sequence Type 1407, a Multidrug-Resistant Clinical Isolate

    PubMed Central

    Anselmo, A.; Ciammaruconi, A.; Carannante, A.; Neri, A.; Fazio, C.; Fortunato, A.; Palozzi, A. M.; Vacca, P.; Fillo, S.; Lista, F.

    2015-01-01

    Gonorrhea may become untreatable due to the spread of resistant or multidrug-resistant strains. Cefixime-resistant gonococci belonging to sequence type 1407 have been described worldwide. We report the genome sequence of Neisseria gonorrhoeae strain G2891, a multidrug-resistant isolate of sequence type 1407, collected in Italy in 2013. PMID:26272575

  5. Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014–2015

    PubMed Central

    Poramathikul, Kamonporn; Chiek, Sivhour; Oransathid, Wilawan; Ruekit, Sirigade; Nobthai, Panida; Lurchachaiwong, Woradee; Serichantalergs, Oralak; Lon, Chanthap; Swierczewski, Brett

    2016-01-01

    We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, β-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options. PMID:27532684

  6. Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014-2015.

    PubMed

    Poramathikul, Kamonporn; Bodhidatta, Ladaporn; Chiek, Sivhour; Oransathid, Wilawan; Ruekit, Sirigade; Nobthai, Panida; Lurchachaiwong, Woradee; Serichantalergs, Oralak; Lon, Chanthap; Swierczewski, Brett

    2016-09-01

    We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, β-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options. PMID:27532684

  7. Identifying more epidemic clones during a hospital outbreak of multidrug-resistant Acinetobacter baumannii.

    PubMed

    Domenech de Cellès, Matthieu; Salomon, Jérôme; Marinier, Anne; Lawrence, Christine; Gaillard, Jean-Louis; Herrmann, Jean-Louis; Guillemot, Didier

    2012-01-01

    Infections caused by multidrug-resistant bacteria are a major concern in hospitals. Current infection-control practices legitimately focus on hygiene and appropriate use of antibiotics. However, little is known about the intrinsic abilities of some bacterial strains to cause outbreaks. They can be measured at a population level by the pathogen's transmission rate, i.e. the rate at which the pathogen is transmitted from colonized hosts to susceptible hosts, or its reproduction number, counting the number of secondary cases per infected/colonized host. We collected data covering a 20-month surveillance period for carriage of multidrug-resistant Acinetobacter baumannii (MDRAB) in a surgery ward. All isolates were subjected to molecular fingerprinting, and a cluster analysis of profiles was performed to identify clonal groups. We then applied stochastic transmission models to infer transmission rates of MDRAB and each MDRAB clone. Molecular fingerprinting indicated that 3 clonal complexes spread in the ward. A first model, not accounting for different clones, quantified the level of in-ward cross-transmission, with an estimated transmission rate of 0.03/day (95% credible interval [0.012-0.049]) and a single-admission reproduction number of 0.61 [0.30-1.02]. The second model, accounting for different clones, suggested an enhanced transmissibility of clone 3 (transmission rate 0.047/day [0.018-0.091], with a single-admission reproduction number of 0.81 [0.30-1.56]). Clones 1 and 2 had comparable transmission rates (respectively, 0.016 [0.001-0.045], 0.014 [0.001-0.045]). The method used is broadly applicable to other nosocomial pathogens, as long as surveillance data and genotyping information are available. Building on these results, more epidemic clones could be identified, and could lead to follow-up studies dissecting the functional basis for variation in transmissibility of MDRAB lineages. PMID:23029226

  8. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Surapinit, Serm; Malilas, Waraporn; Moon, Jeong; Phuwapraisirisan, Preecha; Tip-Pyang, Santi; Johnston, Randal N; Koh, Sang Seok; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-04-01

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer. PMID:24535083

  9. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Surapinit, Serm; Malilas, Waraporn; Moon, Jeong; Phuwapraisirisan, Preecha; Tip-Pyang, Santi; Johnston, Randal N; Koh, Sang Seok; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-04-01

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer.

  10. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells.

    PubMed

    Ohi, Y; Kim, R; Toge, T

    2000-05-01

    Multidrug resistance associated protein (MRP) is one of drug transport membranes that confer multidrug resistance in cancer cells. Multidrug resistance has been known to be associated with resistance to apoptosis. In this study, using MRP overexpressing multidrug resistant nasopharyngeal cancer cells, we examined the expression of apoptosis related genes including p53, p21WAF1, bax and bcl-Xs between drug sensitive KB and its resistant KB/7D cells. We also examined whether the introduction of apoptosis related gene could increase the sensitivity to anticancer drugs in association with apoptotic cell death. The relative resistances to anticancer drugs in KB/7D cells evaluated by IC50 values were 3.6, 61.3, 10.4 and 10.5 to adriamycin (ADM), etoposide (VP-16), vincristine (VCR) and vindesine (VDS), respectively. The resistance to anticancer drugs in KB/7D cells was associated with the attenuation of internucleosomal DNA ladder formation in apoptosis. Of important, the mRNA expression of bcl-Xs gene in KB/7D cells was decreased in one-fourth as compared to that of KB cells among the apoptosis genes. The mRNA expression of bcl-Xs gene in a bcl-Xs transfected clone (KB/7Dbcl-Xs) was increased about 2-fold compared to that of KB/7Dneo cells, while the mRNA expression of MRP gene was not significantly different in KB/7bcl-Xs and KB/7Dneo cells. The sensitivities to anticancer drugs including ADM, VCR and VDS except VP-16 were increased in KB/7Dbcl-Xs cells, in turn, the relative resistance in KB/7Dbcl-Xs cells was decreased to 1.4, 4.0, and 3.0 in ADM, VCR and VDS, respectively, as compared to those of KB/7Dneo cells. Of interest, the studies on the accumulation of [3H]VCR showed that the decrease of [3H]VCR accumulation in KB/7Dbcl-Xs was not significantly different from that of KB/7Dneo cells. Collectively, these results indicated that the mechanism(s) of drug resistance in KB/7D cells could be explained at least by two factors: a) reduced drug accumulation mediated by

  11. Effects of highly purified anthraquinoid compounds from Aloe vera on sensitive and multidrug resistant leukemia cells.

    PubMed

    Grimaudo, S; Tolomeo, M; Gancitano, R; Dalessandro, N; Aiello, E

    1997-01-01

    Folk medicine has attributed antitumor properties to preparations from Aloe vera. We have studied the effects of five purified compounds from the plant on human K562 leukemia and on its multidrug resistant (MDR) variant, K562/R. The glycosides aloin A and B, aloesin and aloeresin were devoid of antitumor activity up to 200 mu M concentrations. Only the aglycone aloe emodin produced reproducible antitumor effects, which, interestingly, were more pronounced in the MDR, P-glycoprotein overexpressing, cell line. Its IC50 was in fact 29 mu M in K562 and 10.5 mu M in K562/R. Aloe emodine caused mainly cytostasis and accumulation of the cells in the S and G(2)-M phases of the cell cycle during the first 48 h of treatment. Thereafter, massive cell death ensued. Research on the antitumor activity of compounds extracted from Aloe vera probably deserves continuation.

  12. Human ABCG2: structure, function, and its role in multidrug resistance

    PubMed Central

    Mo, Wei; Zhang, Jian-Ting

    2012-01-01

    Human ABCG2 is a member of the ATP-binding cassette (ABC) transporter superfamily and is known to contribute to multidrug resistance (MDR) in cancer chemotherapy. Among ABC transporters that are known to cause MDR, ABCG2 is particularly interesting for its potential role in protecting cancer stem cells and its complex oligomeric structure. Recent studies have also revealed that the biogenesis of ABCG2 could be modulated by small molecule compounds. These modulators, upon binding to ABCG2, accelerate the endocytosis and trafficking to lysosome for degradation and effectively reduce the half-life of ABCG2. Hence, targeting ABCG2 stability could be a new venue for therapeutic discovery to sensitize drug resistant human cancers. In this report, we review recent progress on understanding the structure, function, biogenesis, as well as physiological and pathophysiological functions of ABCG2. PMID:22509477

  13. Combination therapy with polymyxin B and netropsin against clinical isolates of multidrug-resistant Acinetobacter baumannii.

    PubMed

    Chung, Joon-Hui; Bhat, Abhayprasad; Kim, Chang-Jin; Yong, Dongeun; Ryu, Choong-Min

    2016-01-01

    Polymyxins are last-resort antibiotics for treating infections of Gram-negative bacteria. The recent emergence of polymyxin-resistant bacteria, however, urgently demands clinical optimisation of polymyxin use to minimise further evolution of resistance. In this study we developed a novel combination therapy using minimal concentrations of polymyxin B. After large-scale screening of Streptomyces secondary metabolites, we identified a reliable polymixin synergist and confirmed as netropsin using high-pressure liquid chromatography, nuclear magnetic resonance, and mass spectrometry followed by in vitro assays using various Gram-negative pathogenic bacteria. To evaluate the effectiveness of combining polymixin B and netropsin in vivo, we performed survival analysis on greater wax moth Galleria mellonella infected with colistin-resistant clinical Acinetobacter baumannii isolates as well as Escherichia coli, Shigella flexineri, Salmonella typhimuruim, and Pseudomonas aeruginosa. The survival of infected G. mellonella was significantly higher when treated with polymyxin B and netropsin in combination than when treated with polymyxin B or netropsin alone. We propose a netropsin combination therapy that minimises the use of polymyxin B when treating infections with multidrug resistant Gram-negative bacteria. PMID:27306928

  14. Antibiotic Restriction Might Facilitate the Emergence of Multi-drug Resistance.

    PubMed

    Obolski, Uri; Stein, Gideon Y; Hadany, Lilach

    2015-06-01

    High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish overall resistance, and especially the occurrence of bacteria that are resistant to all antibiotics, certain drugs are deliberately scarcely used--mainly when other options are exhausted. We use a mathematical model to explore the efficiency of such antibiotic restrictions. We assume two commonly used drugs and one restricted drug. The model is examined for the mixing strategy of antibiotic prescription, in which one of the drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical center, Israel, is used to estimate realistic single and double antibiotic resistance frequencies in incoming patients. We find that broad usage of the hitherto restricted drug can reduce the number of incorrectly treated patients, and reduce the spread of bacteria resistant to both common antibiotics. Such double resistant infections are often eventually treated with the restricted drug, and therefore are prone to become resistant to all three antibiotics. Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-examining restriction of specific drugs, when multiple resistance to the relevant alternative drugs already exists.

  15. Evaluation of colistin susceptibility in multidrug-resistant clinical isolates from cystic fibrosis, France.

    PubMed

    Biswas, S; Dubus, J-C; Reynaud-Gaubert, M; Stremler, N; Rolain, J-M

    2013-11-01

    The emergence of multidrug-resistant (MDR) bacteria in cystic fibrosis (CF) patients has led to the use of colistin drug and the emergence of colistin-resistant Gram-negative bacteria. The aim of this study was to compare the disk diffusion and Etest methods for colistin susceptibility testing on MDR bacteria associated with CF from Marseille, France. Forty-nine MDR clinical isolates (27 Stenotrophomonas maltophilia, 22 Achromobacter xylosoxidans) were used in this study. Disk diffusion and Etest assays were used to assess the reliability of these two techniques. For S. maltophilia, 25 out of 27 isolates had low minimum inhibitory concentrations (MICs, 0.125-0.75 mg/L), whereas two isolates displayed high MICs (32 mg/L). Similarly, 19 out of 22 A. xylosoxidans isolates had low MICs (0.75-3.0 mg/L), whereas three isolates had high MICs (32-256 mg/L). The diameters of zone inhibition with a 50-μg colistin disk displayed a good correlation with the MICs obtained by the Etest. Susceptible and resistant strains were eventually separated using a disk diffusion assay at a cut-off of ≤ 12 mm for a 50-μg disk. Colistin displayed excellent activity against S. maltophilia and A. xylosoxidans and the disk diffusion assay could be confidently used to determine the susceptibility to colistin for MDR Gram-negative bacteria in the context of CF.

  16. Combination therapy with polymyxin B and netropsin against clinical isolates of multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Chung, Joon-hui; Bhat, Abhayprasad; Kim, Chang-Jin; Yong, Dongeun; Ryu, Choong-Min

    2016-01-01

    Polymyxins are last-resort antibiotics for treating infections of Gram-negative bacteria. The recent emergence of polymyxin-resistant bacteria, however, urgently demands clinical optimisation of polymyxin use to minimise further evolution of resistance. In this study we developed a novel combination therapy using minimal concentrations of polymyxin B. After large-scale screening of Streptomyces secondary metabolites, we identified a reliable polymixin synergist and confirmed as netropsin using high-pressure liquid chromatography, nuclear magnetic resonance, and mass spectrometry followed by in vitro assays using various Gram-negative pathogenic bacteria. To evaluate the effectiveness of combining polymixin B and netropsin in vivo, we performed survival analysis on greater wax moth Galleria mellonella infected with colistin-resistant clinical Acinetobacter baumannii isolates as well as Escherichia coli, Shigella flexineri, Salmonella typhimuruim, and Pseudomonas aeruginosa. The survival of infected G. mellonella was significantly higher when treated with polymyxin B and netropsin in combination than when treated with polymyxin B or netropsin alone. We propose a netropsin combination therapy that minimises the use of polymyxin B when treating infections with multidrug resistant Gram-negative bacteria. PMID:27306928

  17. Activity of Gallium Meso- and Protoporphyrin IX against Biofilms of Multidrug-Resistant Acinetobacter baumannii Isolates

    PubMed Central

    Chang, David; Garcia, Rebecca A.; Akers, Kevin S.; Mende, Katrin; Murray, Clinton K.; Wenke, Joseph C.; Sanchez, Carlos J.

    2016-01-01

    Acinetobacter baumannii is a challenging pathogen due to antimicrobial resistance and biofilm development. The role of iron in bacterial physiology has prompted the evaluation of iron-modulation as an antimicrobial strategy. The non-reducible iron analog gallium(III) nitrate, Ga(NO3)3, has been shown to inhibit A. baumannii planktonic growth; however, utilization of heme-iron by clinical isolates has been associated with development of tolerance. These observations prompted the evaluation of iron-heme sources on planktonic and biofilm growth, as well as antimicrobial activities of gallium meso- and protoporphyrin IX (Ga-MPIX and Ga-PPIX), metal heme derivatives against planktonic and biofilm bacteria of multidrug-resistant (MDR) clinical isolates of A. baumannii in vitro. Ga(NO3)3 was moderately effective at reducing planktonic bacteria (64 to 128 µM) with little activity against biofilms (≥512 µM). In contrast, Ga-MPIX and Ga-PPIX were highly active against planktonic bacteria (0.25 to 8 µM). Cytotoxic effects in human fibroblasts were observed following exposure to concentrations exceeding 128 µM of Ga-MPIX and Ga-PPIX. We observed that the gallium metal heme conjugates were more active against planktonic and biofilm bacteria, possibly due to utilization of heme-iron as demonstrated by the enhanced effects on bacterial growth and biofilm formation. PMID:26999163

  18. Cell biological mechanisms of multidrug resistance in tumors.

    PubMed

    Simon, S M; Schindler, M

    1994-04-26

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleiotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  19. Early Biomarkers and Regulatory Innovation in Multidrug-Resistant Tuberculosis.

    PubMed

    Wallis, Robert S; Peppard, Thomas

    2015-10-15

    Biomarkers play an essential role in accelerating drug development. Sputum culture conversion using solid medium is the best-characterized tuberculosis biomarker, having been examined at the patient and trial levels in studies with thousands of subjects, and having recently been validated using data from 3 unsuccessful phase 3 trials. We presently are poised at the threshold of regulatory innovation for antibacterials to treat drug-resistant infections, in which Special Medical Use authorization restricted to patients with limited options could be based on the results of small clinical trials. Patients worldwide would be well served by licensing of new regimens for multidrug-resistant tuberculosis based on biomarker evidence commensurate with the urgency of the current global crisis. PMID:26409278

  20. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing.

    PubMed

    Kalokhe, Ameeta S; Shafiq, Majid; Lee, James C; Ray, Susan M; Wang, Yun F; Metchock, Beverly; Anderson, Albert M; Nguyen, Minh Ly T

    2013-02-01

    Multidrug-resistant tuberculosis (MDR TB), defined by resistance to the 2 most effective first-line drugs, isoniazid and rifampin, is on the rise globally and is associated with significant morbidity and mortality. Despite the increasing availability of novel rapid diagnostic tools for Mycobacterium tuberculosis (Mtb) drug susceptibility testing, the clinical applicability of these methods is unsettled. In this study, the mechanisms of action and resistance of Mtb to isoniazid and rifampin, and the utility, advantages and limitations of the available Mtb drug susceptibility testing tools are reviewed, with particular emphasis on molecular methods with rapid turnaround including line probe assays, molecular beacon-based real-time polymerase chain reaction and pyrosequencing. The authors conclude that neither rapid molecular drug testing nor phenotypic methods are perfect in predicting Mtb drug susceptibility and therefore must be interpreted within the clinical context of each patient.

  1. Clonality of multidrug-resistant nontypeable strains of Haemophilus influenzae.

    PubMed Central

    Fusté, M C; Pineda, M A; Palomar, J; Viñas, M; Lorén, J G

    1996-01-01

    The genetic structure of a population of multidrug-resistant nontypeable (unencapsulated) Haemophilus influenzae strains isolated at a hospital in Barcelona, Spain, was investigated by using multilocus enzyme electrophoresis to determine the allelic variation in 15 structural loci. In our study we have also included some antimicrobial agent-susceptible strains isolated at the same hospital. All enzymes were polymorphic for two to eight electromorphs, and the analysis revealed 43 distinct electrophoretic types among the 44 isolates. The mean genetic diversity of the entire population was 0.55. Multilocus linkage disequilibrium analysis of the isolates revealed a strong association between alleles, suggesting little possibility of recombination. Furthermore, the dendrogram and the allele mismatch distribution are typical of a population with no extensive genetic mixing. PMID:8897179

  2. Cell Biological Mechanisms of Multidrug Resistance in Tumors

    NASA Astrophysics Data System (ADS)

    Simon, Sanford M.; Schindler, Melvin

    1994-04-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  3. Immunotherapy: A useful strategy to help combat multidrug resistance

    PubMed Central

    Curiel, Tyler J.

    2012-01-01

    Multidrug resistance (MDR) renders cancer cells relatively invulnerable to treatment with many standard cytotoxic anti-cancer agents. Cancer immunotherapy could be an important adjunct other strategies to treat MDR positive cancers, as resistance to immunotherapy generally is unrelated to mechanisms of resistance to cytotoxic agents. Immunotherapy to combat MDR positive tumors could use any of the following strategies: direct immune attack against MDR positive cells, using MDR as an immune target to deliver cytotoxic agents, capitalization on other immune properties of MDR positive cells, or conditional immunotoxins expressed under MDR control. Additional insights into the immunogenic potential of some cytotoxic agents can also be brought to bear on these strategies. This review will highlight key concepts in cancer immunotherapy and illustrate immune principles and strategies that have been or could be used to help destroy MDR positive tumor cells, either alone or in rational combinations. PMID:22483359

  4. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    PubMed Central

    Blair, Jessica M. A.

    2016-01-01

    ABSTRACT Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  5. Functional expression of murine multidrug resistance in Xenopus laevis oocytes

    SciTech Connect

    Castillo, G.; Vera, J.C.; Rosen, O.M. ); Yang, Chiaping Huang; Horwitz, S.B. )

    1990-06-01

    The development of multidrug resistance (MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here the authors report the functional expression of a member of the murine MDR family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of ({sup 3}H)vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.

  6. An outbreak of multidrug-resistant tuberculosis among a family.

    PubMed

    Iliaz, Sinem; Caglar, Emel; Koksalan, Orhan Kaya; Chousein, Efsun Gonca Ugur

    2016-04-01

    Tuberculosis is a major public health problem and it may be complicated by multidrug-resistant tuberculosis (MDR-TB). Wide transmission among immunocompetent contacts of the index case is possible. If you detect tuberculosis in two contacts of the index case, it is called an outbreak. The aim of our paper is to evaluate the characteristics of a MDR-TB outbreak affecting 7 people in a family treated during 2012-2014 in Istanbul Yedikule Training and Research Hospital for Chest Disease and Thoracic Surgery, Turkey. The cultures, spoligotyping, and DNA fingerprinting revealed the same Mycobacterium tuberculosis species as T1 genotype and ST53 subtype. All patients were negative for human immunodeficiency virus and free of other underlying diseases. PMID:27451825

  7. Prevalence of Multidrug Resistant Pulmonary Tuberculosis in North Bihar

    PubMed Central

    Kumar, Rajesh; Singh, Surya Deo

    2015-01-01

    Introduction Multidrug resistant tuberculosis (MDR-TB) is caused by Infection with Mycobacterium tuberculosis which is resistant to both isoniazid (INH) and rifampicin (RIF), with or without any other anti tubercular drug. It is caused by resistant mutant strains due to inadequate treatment and poor compliance. Due to time taking conventional diagnostic methods, drug resistant strains continue to spread. Therefore rapid diagnosis and treatment of MDR-TB strains are prerequisites for the worldwide fight against TB. Objective To determine the prevalence of MDR TB in North Bihar by molecular diagnostic method and to facilitate early diagnosis and treatment. Also, to find out the number of those diagnosed cases who were successfully initiated the treatment in MDR TB Centre of DMCH. Materials and Methods This six month observational study was carried out in IRL Darbhanga, Damien TB research Centre of the Darbhanga Medical College and Hospital, Bihar, India. During the period of February-July 2014, 256 sputum samples were collected from suspected cases of multidrug resistant tuberculosis, from 6 districts of North Bihar around Darbhanga. These samples were subjected to routine microscopy and culture to detect Mycobacterium tuberculosis. Positive cases were subjected to drug sensitivity test by a molecular diagnostic method, Using Genotype MTBDR plus kit. Result Out of 256 sputum samples from suspected cases of MDR TB, 122 cases were microscopy positive for tuberculosis. Among these 122 cases, tuberculosis was confirmed by PCR in 114 cases. Finally with the help of Line Probe Assay (LPA), 39(15%) samples were found to have resistance to both INH and Rifampicin. Male female ratio was 4:1. Conclusion The Prevalence of Multi drug resistant pulmonary tuberculosis in North Bihar is 15%. It needs early diagnosis by molecular diagnostic method and prompt treatment to reduce the spread of MDR TB cases. PMID:26674711

  8. Nanodrug delivery in reversing multidrug resistance in cancer cells

    PubMed Central

    Kapse-Mistry, Sonali; Govender, Thirumala; Srivastava, Rohit; Yergeri, Mayur

    2014-01-01

    Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance (MDR) which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp), multidrug resistance-associated proteins (MRP1, MRP2), and breast cancer resistance protein (BCRP). Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective, and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells, or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses, and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading, or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1α gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-κB. “Theragnostics” combining a cytotoxic agent, targeting moiety, chemosensitizing agent, and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  9. Evaluation of Aromatic Plants and Compounds Used to Fight Multidrug Resistant Infections

    PubMed Central

    Perumal Samy, Ramar; Manikandan, Jayapal; Al Qahtani, Mohammed

    2013-01-01

    Traditional medicine plays a vital role for primary health care in India, where it is widely practiced to treat various ailments. Among those obtained from the healers, 78 medicinal plants were scientifically evaluated for antibacterial activity. Methanol extract of plants (100 μg of residue) was tested against the multidrug resistant (MDR) Gram-negative and Gram-positive bacteria. Forty-seven plants showed strong activity against Burkholderia pseudomallei (strain TES and KHW) and Staphylococcus aureus, of which Tragia involucrata L., Citrus acida Roxb. Hook.f., and Aegle marmelos (L.) Correa ex Roxb. showed powerful inhibition of bacteria. Eighteen plants displayed only a moderate effect, while six plants failed to provide any evidence of inhibition against the tested bacteria. Purified compounds showed higher antimicrobial activity than crude extracts. The compounds showed less toxic effect to the human skin fibroblasts (HEPK) cells than their corresponding aromatic fractions. Phytochemical screening indicates that the presence of various secondary metabolites may be responsible for this activity. Most of the plant extracts contained high levels of phenolic or polyphenolic compounds and exhibited activity against MDR pathogens. In conclusion, plants are promising agents that deserve further exploration. Lead molecules available from such extracts may serve as potential antimicrobial agents for future drug development to combat diseases caused by the MDR bacterial strains as reported in this study. PMID:24223059

  10. The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies.

    PubMed

    Baker, Thomas M; Satlin, Michael J

    2016-10-01

    Prolonged neutropenia and chemotherapy-induced mucositis render patients with hematologic malignancies highly vulnerable to Gram-negative bacteremia. Unfortunately, multidrug-resistant (MDR) Gram-negative bacteria are increasingly encountered globally, and current guidelines for empirical antibiotic coverage in these patients may not adequately treat these bacteria. This expansion of resistance, coupled with traditional culturing techniques requiring 2-4 days for bacterial identification and antimicrobial susceptibility results, have grave implications for these immunocompromised hosts. This review characterizes the epidemiology, risk factors, resistance mechanisms, recommended treatments, and outcomes of the MDR Gram-negative bacteria that commonly cause infections in patients with hematologic malignancies. We also examine the infection prevention strategies in hematology patients, such as infection control practices, antimicrobial stewardship, and targeted decolonization. Finally, we assess the strategies to improve outcomes of the infected patients, including gastrointestinal screening to guide empirical antibiotic therapy, new rapid diagnostic tools for expeditious identification of MDR pathogens, and use of two new antimicrobial agents, ceftolozane/tazobactam and ceftazidime/avibactam. PMID:27339405

  11. Characterization of RarA, a Novel AraC Family Multidrug Resistance Regulator in Klebsiella pneumoniae

    PubMed Central

    Veleba, Mark; Higgins, Paul G.; Gonzalez, Gerardo; Seifert, Harald

    2012-01-01

    Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466–4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs. PMID:22644028

  12. Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges.

    PubMed

    Günther, Gunar

    2014-06-01

    Multidrug-resistant and extensively drug-resistant tuberculosis are recent global health issues, which makes tuberculosis - after the success of short course treatment during the second half of the last century - a major health challenge. Globalisation, health inequalities, competing economic interests and political instability contribute substantially to the spread of drug-resistant strains, which are associated with high rates of morbidity and mortality. Issues such as increasing transmission of drug-resistant strains, poor diagnostic coverage and a lengthy, toxic treatment need to be overcome by innovative approaches to tuberculosis control, prevention, diagnostics and treatment. This review addresses recent developments and future concepts.

  13. Multidrug-resistant organisms in refugees: prevalences and impact on infection control in hospitals

    PubMed Central

    Heudorf, Ursel; Albert-Braun, Sabine; Hunfeld, Klaus-Peter; Birne, Franz-Ulrich; Schulze, Jörg; Strobel, Klaus; Petscheleit, Knut; Kempf, Volkhard A. J.; Brandt, Christian

    2016-01-01

    Introduction: The refugee crisis is a great challenge to the social and healthcare system in European countries, especially in Germany. An abundance of data has been published on the refugees’ health problems (infections as well as physical diseases and psychiatric problems) and their prevention (i.e., sanitary and vaccination programs). However, data on prevalences of multidrug-resistant organisms (MDRO) in refugees are scarce, although it is known that most refugees are from or travelled through countries with high prevalences of MDRO. This paper presents current data on MDRO colonization of refugees admitted to hospitals, and the impact of screening upon admission and infection control in hospitals is discussed. Methods: Anonymous data obtained by screening upon hospital admission were reported by hospitals in the Rhine-Main region of Germany to the local public health department. Screening and microbiological analyses were performed from December 2015 to March 2016 according to standardized and validated methods. Results: 9.8% of the refugees screened (32/325) exhibited colonization with methicillin-resistant Staphylococcus aureus (MRSA), and 23.3% of the refugees (67/290) were colonized with Gram-negative bacteria with extended spectrum beta-lactamases, and/or enterobacteria with resistance against 3 or 4 groups of antibacterials, so-called 3MRGN (multidrug-resistant Gram-negative bacteria with resistance against penicillins, cephalosporins and quinolones) and 4MRGN (with additional resistance against carbapenems). Carbapenem-resistant Gram-negative bacteria (CRGN) were detected in 2.1% (6/290) of the refugees. Conclusion: The data confirms the studies published between 2014 and 2016, encompassing refugees tested in Germany, the Netherlands and Israel, with prevalences of MRSA and CRGN up to 13.5% and 5.6%. The MDRO prevalences are higher than those of “risk groups” for MRSA, such as hemodialysis patients and patients depending on outpatient home

  14. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain

    NASA Astrophysics Data System (ADS)

    Formosa, C.; Grare, M.; Jauvert, E.; Coutable, A.; Regnouf-de-Vains, J. B.; Mourer, M.; Duval, R. E.; Dague, E.

    2012-08-01

    Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results on artificial phospholipidic membranes and on the resistant strain.

  15. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain

    PubMed Central

    Formosa, C.; Grare, M.; Jauvert, E.; Coutable, A.; Regnouf-de-Vains, J. B.; Mourer, M.; Duval, R. E.; Dague, E.

    2012-01-01

    Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results on artificial phospholipidic membranes and on the resistant strain. PMID:22893853

  16. Draft genome sequence of Acinetobacter baumannii strain NCTC 13423, a multidrug-resistant clinical isolate.

    PubMed

    Michiels, Joran E; Van den Bergh, Bram; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    Acinetobacter baumannii is a pathogen that is becoming increasingly important and causes serious hospital-acquired infections. We sequenced the genome of A. baumannii NCTC 13423, a multidrug-resistant strain belonging to the international clone II group, isolated from a human infection in the United Kingdom in 2003. The 3,937,944 bp draft genome has a GC-content of 39.0 % and a total of 3672 predicted protein-coding sequences. The availability of genome sequences of multidrug-resistant A. baumannii isolates will fuel comparative genomic studies to help understand the worrying spread of multidrug resistance in this pathogen. PMID:27594976

  17. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  18. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  19. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    PubMed Central

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  20. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia.

    PubMed

    Moges, Feleke; Eshetie, Setegn; Endris, Mengistu; Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections.

  1. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia

    PubMed Central

    Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections. PMID:27340653

  2. Relationships between the Regulatory Systems of Quorum Sensing and Multidrug Resistance

    PubMed Central

    Xu, Gang-Ming

    2016-01-01

    Cell–cell communications, known as quorum sensing (QS) in bacteria, involve the signal molecules as chemical languages and the corresponding receptors as transcriptional regulators. In Gram-negative bacteria, orphan LuxR receptors recognize signals more than just acylhomoserine lactones, and modulate interspecies and interkingdom communications. Whereas, in the Gram-positive Streptomyces, pseudo gamma-butyrolactones (GBLs) receptors bind antibiotics other than GBL signals, and coordinate antibiotics biosynthesis. By interacting with structurally diverse molecules like antibiotics, the TetR family receptors regulate multidrug resistance (MDR) by controlling efflux pumps. Antibiotics at subinhibitory concentration may act as signal molecules; while QS signals also have antimicrobial activity at high concentration. Moreover, the QS and MDR systems may share the same exporters to transport molecules. Among these orphan LuxR, pseudo GBL receptors, and MDR regulators, although only with low sequence homology, they have some structure similarity and function correlation. Therefore, perhaps there might be evolutionary relationship and biological relevance between the regulatory systems of QS and MDR. Since the QS systems become new targets for antimicrobial strategy, it would expand our understanding about the evolutionary history of these regulatory systems. PMID:27379084

  3. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia.

    PubMed

    Moges, Feleke; Eshetie, Setegn; Endris, Mengistu; Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections. PMID:27340653

  4. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris.

    PubMed

    Shobrak, Mohammed Y; Abo-Amer, Aly E

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  5. Relationships between the Regulatory Systems of Quorum Sensing and Multidrug Resistance.

    PubMed

    Xu, Gang-Ming

    2016-01-01

    Cell-cell communications, known as quorum sensing (QS) in bacteria, involve the signal molecules as chemical languages and the corresponding receptors as transcriptional regulators. In Gram-negative bacteria, orphan LuxR receptors recognize signals more than just acylhomoserine lactones, and modulate interspecies and interkingdom communications. Whereas, in the Gram-positive Streptomyces, pseudo gamma-butyrolactones (GBLs) receptors bind antibiotics other than GBL signals, and coordinate antibiotics biosynthesis. By interacting with structurally diverse molecules like antibiotics, the TetR family receptors regulate multidrug resistance (MDR) by controlling efflux pumps. Antibiotics at subinhibitory concentration may act as signal molecules; while QS signals also have antimicrobial activity at high concentration. Moreover, the QS and MDR systems may share the same exporters to transport molecules. Among these orphan LuxR, pseudo GBL receptors, and MDR regulators, although only with low sequence homology, they have some structure similarity and function correlation. Therefore, perhaps there might be evolutionary relationship and biological relevance between the regulatory systems of QS and MDR. Since the QS systems become new targets for antimicrobial strategy, it would expand our understanding about the evolutionary history of these regulatory systems.

  6. Multidrug-resistant Enterobacteriaceae from indoor air of an urban wastewater treatment plant.

    PubMed

    Teixeira, Juliana V; Cecílio, Pedro; Gonçalves, Daniela; Vilar, Vítor J P; Pinto, Eugénia; Ferreira, Helena N

    2016-07-01

    Wastewater treatment plants (WWTPs) have been recognized as sources of bioaerosols that may act as vehicles for dissemination of pathogens and multidrug-resistant (MDR) bacteria. The occurrence of MDR Enterobacteriaceae in indoor air of an urban WWTP was investigated. A possible airborne contamination with extended-spectrum beta-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae was also explored. Fourteen of 39 Enterobacteriaceae isolates were MDR. These isolates were found at all sampling sites, mainly at the secondary sedimentation settings. The highest levels of resistance were detected in three different species: Enterobacter cloacae, Escherichia coli, and Citrobacter freundii. Furthermore, one of the airborne E. coli isolates was phenotypically characterized as an ESBL producer. Additionally, five isolates showed non-susceptibility to at least one carbapenem tested. The presence of genes encoding relevant beta-lactamase types in these ESBL-producing and carbapenem-resistant Enterobacteriaceae isolates was investigated by PCR. Results showed amplification for bla CTX-M and bla OXA. These findings are relevant both in terms of occupational/public health and of environmental dissemination of MDR bacteria.

  7. Audiological Evaluation of Patients Taking Kanamycin for Multidrug Resistant Tuberculosis

    PubMed Central

    Sharma, Vishal; Bhagat, Sanjeev; Verma, Bhimsain; Singh, Ravinder; Singh, Surinderpal

    2016-01-01

    Introduction: The incidence of multidrug resistant tuberculosis is increasing in developing countries. Aminoglycosides are an integral part of second-line drugs, however ototoxicity is a major limitation for their use. This study aims to determine the extent of hearing loss in patients taking one of the commonly prescribed drugs for Multidrug resistant tuberculosis (MDR-TB), Kanamycin, at a Government Medical College, Patiala, Punjab, India, which is a 1200 bed tertiary care hospital. Materials and Methods: A total of 100 patients (68 males and 32 females) with confirmed diagnosis of MDR-TB were included in this study conducted between January 2012 and February 2014. Subjects were between 15 to 60 years of age, with a mean age of 37.46 ± 10.1. Pure tone audiometry (PTA) was performed before the start of the therapy, as a baseline, and was repeated after 1 week and 6 weeks of Kanamycin use to assess hearing loss as an effect of therapy. Results: Of the 100 patients examined, ototoxicity was found in 18 subjects post therapy. Incidence of high frequency hearing loss was 2% at week 1, and 12% after 6 weeks of follow up. However, 4% of the cases developed flat loss at week 6. The hearing loss was bilateral in 13 patients and unilateral in 5 patients. Ototoxicity was more common in males (66.67%) compared to females (33.3%). Maximum cases were found in the age group of 36 to 45 years (36.8%), the majority being from a rural background (83.3%). The association with socioeconomic status (P=0.024) and co-morbid conditions like diabetes and hypertension (P=0.001) reached statistical significance. Conclusion: Lack of specific guidelines to monitor patients taking aminoglycosides makes ototoxicity a major adverse effect of their use in MDR-TB. More studies are mandated to study the risk factors associated with the development of ototoxicity and for the development of alternate drugs for the treatment of MDR-TB. PMID:27429949

  8. Pharmacokinetics of ertapenem in patients with multidrug-resistant tuberculosis.

    PubMed

    van Rijn, Sander P; van Altena, Richard; Akkerman, Onno W; van Soolingen, Dick; van der Laan, Tridia; de Lange, Wiel C M; Kosterink, Jos G W; van der Werf, Tjip S; Alffenaar, Jan-Willem C

    2016-04-01

    Treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) is becoming more challenging because of increased levels of drug resistance against second-line TB drugs. One promising group of antimicrobial drugs is carbapenems. Ertapenem is an attractive carbapenem for the treatment of MDR- and XDR-TB because its relatively long half-life enables once-daily dosing.A retrospective study was performed for all patients with suspected MDR-TB at the Tuberculosis Center Beatrixoord of the University Medical Center Groningen (Haren, the Netherlands) who received ertapenem as part of their treatment regimen between December 1, 2010 and March 1, 2013. Safety and pharmacokinetics were evaluated.18 patients were treated with 1000 mg ertapenem for a mean (range) of 77 (5-210) days. Sputum smear and culture were converted in all patients. Drug exposure was evaluated in 12 patients. The mean (range) area under the concentration-time curve up to 24 h was 544.9 (309-1130) h·mg·L(-1) The mean (range) maximum observed plasma concentration was 127.5 (73.9-277.9) mg·L(-1)In general, ertapenem treatment was well tolerated during MDR-TB treatment and showed a favourable pharmacokinetic/pharmacodynamic profile in MDR-TB patients. We conclude that ertapenem is a highly promising drug for the treatment of MDR-TB that warrants further investigation. PMID:26743484

  9. [Multidrug-resistant tuberculosis: challenges of a global emergence].

    PubMed

    Comolet, T

    2015-10-01

    Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected. PMID:26289547

  10. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages.

    PubMed

    Zarrilli, Raffaele; Pournaras, Spyros; Giannouli, Maria; Tsakris, Athanassios

    2013-01-01

    The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to carbapenems and most or all available antibiotics during the last decade is a worrying evolution. The apparent predominance of a few successful multidrug-resistant lineages worldwide underlines the importance of elucidating the mode of spread and the epidemiology of A. baumannii isolates in single hospitals, at a country-wide level and on a global scale. The evolutionary advantage of the dominant clonal lineages relies on the capability of the A. baumannii pangenome to incorporate resistance determinants. In particular, the simultaneous presence of divergent strains of the international clone II and their increasing prevalence in international hospitals further support the ongoing adaptation of this lineage to the hospital environment. Indeed, genomic and genetic studies have elucidated the role of mobile genetic elements in the transfer of antibiotic resistance genes and substantiate the rate of genetic alterations associated with acquisition in A. baumannii of various resistance genes, including OXA- and metallo-β-lactamase-type carbapenemase genes. The significance of single nucleotide polymorphisms and transposon mutagenesis in the evolution of A. baumannii has been also documented. Establishment of a network of reference laboratories in different countries would generate a more complete picture and a fuller understanding of the importance of high-risk A. baumannii clones in the international dissemination of antibiotic resistance. PMID:23127486

  11. Mutagenesis of SugE, a small multidrug resistance protein.

    PubMed

    Son, Mike S; Del Castilho, Colin; Duncalf, Karen A; Carney, Dominic; Weiner, Joel H; Turner, Raymond J

    2003-12-26

    The small multidrug resistance protein family has two subclasses. In this study we used a mutation approach to see what is necessary to convert a SUG subgroup member into a quaternary ammonium compound (QAC) transporter. We chose four key residues (H24, M39, I43, and A44) conserved within SUGs but conserved differently within the QAC transporters. Altogether, seven mutants were generated in Citrobacter freundii SugE. Surprisingly, the mutated SugE demonstrated an increased sensitivity to representative QACs. Additionally, ethidium uptake is found to be more prominent in the hypersensitive mutants. We conducted orientation studies using topology reporter gene fusions which indicated that SugE and the QAC transporter EmrE both have their N- and C-termini in the cytoplasm as predicted. The results imply that SugE can be converted to a QAC transporter with only a single mutation. However, because hypersensitivity was observed, the SugE mutant proteins are behaving as importers rather than as exporters. PMID:14651958

  12. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    PubMed Central

    Alegre, Kamela O.; Law, Christopher J.

    2015-01-01

    Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters. PMID:27025617

  13. Wallichinine reverses ABCB1-mediated cancer multidrug resistance.

    PubMed

    Lv, Min; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Huang, Jia-Rong; Wang, Kun; Wei, Meng-Ning; Cheng, Ke-Jun; Shi, Zhi

    2016-01-01

    Overexpression of ABCB1 in cancer cells is one of the main reasons of cancer multidrug resistance (MDR). Wallichinine is a compound isolated from piper wallichii and works as an antagonist of platelet activiating factor receptor to inhibit the gathering of blood platelet. In this study, we investigate the effect of wallichinine on cancer MDR mediated by ABCB1 transporter. Wallichinine significantly potentiates the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in ABCB1 overexpressing cancer cells. Furthermore, wallichinine do not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, wallichinine blocks the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. The predicted binding mode shows the hydrophobic interactions of wallichinine within the large drug binding cavity of ABCB1. At all, our study of the interaction of wallichinine with ABCB1 presented herein provides valuable clues for the development of novel MDR reversal reagents from natural products. PMID:27508017

  14. [Multidrug-resistant tuberculosis: challenges of a global emergence].

    PubMed

    Comolet, T

    2015-10-01

    Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected.

  15. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter

    PubMed Central

    Qiu, Jian-Ge; Zhang, Yao-Jun; Li, Yong; Zhao, Jin-Ming; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Shi, Zhi

    2015-01-01

    Overexpression of adenine triphosphate (ATP)-binding cassette (ABC) transporters is one of the main reasons of multidrug resistance (MDR) in cancer cells. Trametinib, a novel specific small-molecule mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor, is currently used for the treatment of melanoma in clinic. In this study, we investigated the effect of trametinib on MDR mediated by ABC transporters. Trametinib significantly potentiated the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in cancer cells overexpressed ABCB1, but not ABCC1 and ABCG2. Furthermore, trametinib did not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, trametinib potently blocked the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. Importantly, trametinib remarkably enhanced the effect of vincristine against the xenografts of ABCB1-overexpressing cancer cells in nude mice. The predicted binding mode showed the hydrophobic interactions of trametinib within the large drug binding cavity of ABCB1. Consequently, our findings may have important implications for use of trametinib in combination therapy for cancer treatment. PMID:25915534

  16. Emerging cephalosporin and multidrug-resistant gonorrhoea in Europe.

    PubMed

    Cole, M J; Spiteri, G; Chisholm, S A; Hoffmann, S; Ison, C A; Unemo, M; Van de Laar, M

    2014-11-13

    Neisseria gonorrhoeae has consistently developed resistance to antimicrobials used therapeutically for gonorrhoea and few antimicrobials remain for effective empiric first-line therapy. Since 2009 the European gonococcal antimicrobial surveillance programme (Euro-GASP) has been running as a sentinel surveillance system across Member States of the European Union (EU) and European Economic Area (EEA) to monitor antimicrobial susceptibility in N. gonorrhoeae. During 2011, N. gonorrhoeae isolates were collected from 21 participating countries, and 7.6% and 0.5% of the examined gonococcal isolates had in vitro resistance to cefixime and ceftriaxone, respectively. The rate of ciprofloxacin and azithromycin resistance was 48.7% and 5.3%, respectively. Two (0.1%) isolates displayed high-level resistance to azithromycin, i.e. a minimum inhibitory concentration (MIC) ≥256 mg/L. The current report further highlights the public health need to implement the European response plan, including further strengthening of Euro-GASP, to control and manage the threat of multidrug resistant N. gonorrhoeae.

  17. Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray

    PubMed Central

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G.; Chandler, Darrell P.

    2014-01-01

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice. PMID:24796567

  18. Intracellular pH and the Control of Multidrug Resistance

    NASA Astrophysics Data System (ADS)

    Simon, Sanford; Roy, Deborshi; Schindler, Melvin

    1994-02-01

    Many anticancer drugs are classified as either weak bases or molecules whose binding to cellular structures is pH dependent. Accumulation of these drugs within tumor cells should be affected by transmembrane pH gradients. Indeed, development of multidrug resistance (MDR) in tumor cells has been correlated with an alkaline shift of cytosolic pH. To examine the role of pH in drug partitioning, the distribution of two drugs, doxorubicin and daunomycin, was monitored in fibroblasts and myeloma cells. In both cell types the drugs rapidly accumulated within the cells. The highest concentrations were measured in the most acidic compartments-e.g., lysosomes. Modifying the cellular pH in drug-sensitive cells to mimic reported shifts in MDR caused an immediate change in the cellular drug concentration. Drug accumulation was enhanced by acidic shifts and reversed by alkaline shifts. All of these effects were rapid and reversible. These results demonstrate that the alkaline shift observed in MDR is sufficient to prevent the accumulation of chemotherapeutic drugs independent of active drug efflux.

  19. Demonstrating a multi-drug resistant Mycobacterium tuberculosis amplification microarray.

    PubMed

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G; Chandler, Darrell P

    2014-04-25

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.

  20. Endobronchial valve treatment of destructive multidrug-resistant tuberculosis

    PubMed Central

    Levin, A.; Felker, I.; Tceymach, E.; Krasnov, D.

    2016-01-01

    SUMMARY BACKGROUND: In accordance with the existing hypothesis, the application of an endobronchial valve (EbV) leads to selective curative atelectasis of the affected part of the lung, contributing to early closure of cavities. OBJECTIVE: To assess the effect of EbV treatment on the course of tuberculosis (TB). METHODS: We compared the efficacy of EbV treatment and complex second-line treatment in treating patients with destructive pulmonary multidrug-resistant TB (MDR-TB). Bacteriological conversion and closure of cavities were selected as criteria to assess the effectiveness of EbV application. A total of 102 patients with destructive MDR-TB were enrolled into the study and randomly divided into two groups: 49 patients had an EbV installed (intervention group) and 53 patients received complex second-line treatment (control group). Complex chemotherapy was administered to both groups throughout the study period. RESULTS: The cure rate in the short- and long-term follow-up periods in the intervention group was shown to be much higher, 95.9% by bacteriological conversion and 67.3% by cavity closure. On comparison with the control group, this was respectively 37.7% and 20.7% (P < 0.0001). CONCLUSIONS: The application of EbV treatment can significantly improve the effectiveness of second-line chemotherapy regimens in MDR-TB patients. PMID:27776598

  1. Gatifloxacin for short, effective treatment of multidrug-resistant tuberculosis.

    PubMed

    Chiang, C-Y; Van Deun, A; Rieder, H L

    2016-09-01

    The 9-month regimen for the treatment of multidrug-resistant tuberculosis (MDR-TB) piloted in Bangladesh and used, with modifications, in Cameroon and Niger, has achieved treatment success in a very large proportion of patients; gatifloxacin (GFX) is likely to have played a critical role in this success. Two months after the publication of a study reporting that GFX and not moxifloxacin (MFX) was associated with dysglycaemia, the manufacturer announced the withdrawal of GFX from the market. The findings of that study may have less significance for the majority of MDR-TB patients living in high-incidence countries who are much younger, have a lower risk of dysglycaemia and suffer from a highly fatal condition. The problem of dysglycaemia is not limited to GFX use and may occur with other fluoroquinolones; furthermore, GFX-associated dysglycemia was manageable among those MDR-TB patients in Bangladesh and Niger in whom it occurred. GFX has now become unavailable in Bangladesh, Cameroon, Niger and other countries piloting the shorter MDR-TB regimens, depriving resource-poor countries of an efficacious, effective and inexpensive drug with a demonstrated good safety profile for the given indication. There is little reason not to make GFX available for MDR-TB treatment as long as the superiority of non-GFX-based MDR-TB regimens is not demonstrated. PMID:27510237

  2. Wallichinine reverses ABCB1-mediated cancer multidrug resistance

    PubMed Central

    Lv, Min; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Huang, Jia-Rong; Wang, Kun; Wei, Meng-Ning; Cheng, Ke-Jun; Shi, Zhi

    2016-01-01

    Overexpression of ABCB1 in cancer cells is one of the main reasons of cancer multidrug resistance (MDR). Wallichinine is a compound isolated from piper wallichii and works as an antagonist of platelet activiating factor receptor to inhibit the gathering of blood platelet. In this study, we investigate the effect of wallichinine on cancer MDR mediated by ABCB1 transporter. Wallichinine significantly potentiates the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in ABCB1 overexpressing cancer cells. Furthermore, wallichinine do not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, wallichinine blocks the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. The predicted binding mode shows the hydrophobic interactions of wallichinine within the large drug binding cavity of ABCB1. At all, our study of the interaction of wallichinine with ABCB1 presented herein provides valuable clues for the development of novel MDR reversal reagents from natural products. PMID:27508017

  3. Emerging cephalosporin and multidrug-resistant gonorrhoea in Europe.

    PubMed

    Cole, M J; Spiteri, G; Chisholm, S A; Hoffmann, S; Ison, C A; Unemo, M; Van de Laar, M

    2014-01-01

    Neisseria gonorrhoeae has consistently developed resistance to antimicrobials used therapeutically for gonorrhoea and few antimicrobials remain for effective empiric first-line therapy. Since 2009 the European gonococcal antimicrobial surveillance programme (Euro-GASP) has been running as a sentinel surveillance system across Member States of the European Union (EU) and European Economic Area (EEA) to monitor antimicrobial susceptibility in N. gonorrhoeae. During 2011, N. gonorrhoeae isolates were collected from 21 participating countries, and 7.6% and 0.5% of the examined gonococcal isolates had in vitro resistance to cefixime and ceftriaxone, respectively. The rate of ciprofloxacin and azithromycin resistance was 48.7% and 5.3%, respectively. Two (0.1%) isolates displayed high-level resistance to azithromycin, i.e. a minimum inhibitory concentration (MIC) ≥256 mg/L. The current report further highlights the public health need to implement the European response plan, including further strengthening of Euro-GASP, to control and manage the threat of multidrug resistant N. gonorrhoeae. PMID:25411689

  4. Status of Serum Zinc in Multidrug Resistant Tuberculosis.

    PubMed

    Barman, N; Haque, M A; Uddin, M N; Ghosh, D; Rahman, M W; Islam, M T; Rahman, M Q; Rob, M A; Hossain, M A

    2016-01-01

    Zinc plays a vital role in the immune status. Its deficiency affects host defense by reducing the number of circulating T cells and phagocytosis activity of other cells which ultimately impair cell mediated immunity. The cell-mediated immunity plays a major role in the causation of pulmonary tuberculosis. The present study was carried out to estimate serum zinc level in newly detected multidrug resistant tuberculosis (MDR-TB) in adult population. In this study total fifty (50) MDR-TB patients were enrolled conveniently from the in-patients departments of National Institute of Diseases of the Chest Hospital (NIDCH), Bangladesh. Serum zinc was estimated by atomic absorption spectrophotometry method from early morning fasting blood sample. Serum zinc level was assessed according to normal cut-off value 70-120 μgm/dl and 76% studied population were found lower than this value. The mean±SD serum zinc level was observed 60.40±8.91 μgm/dl. No associations were found between serum zinc level with age (p=0.11) and with sex (p=0.085) of the study population respectively. The low level of serum zinc in MDR-TB patients suggested impaired immune status of our study population.

  5. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-01-01

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds. PMID:27399665

  6. Multidrug resistant citrobacter: an unusual cause of liver abscess.

    PubMed

    Kumar, Prabhat; Ghosh, Soumik; Rath, Deepak; Gadpayle, A K

    2013-01-01

    Liver abscesses are infectious, space occupying lesions in the liver, the two most common abscesses being pyogenic and amoebic. A pyogenic liver abscess (PLA) is a rare condition with a reported incidence of 20 per 100 000 hospital admissions in the western population. The right lobe of the liver is the most common site in both types of liver abscess. Clinical presentation is elusive with complaints of fever, right upper quadrant pain in the abdomen and hepatomegaly with or without jaundice. The aetiology of PLA has changed in the past few decades and may be of biliary, portal, arterial or traumatic origin, but many cases are still cryptogenic. The most common organisms causing PLA are Gram-negative aerobes, especially Escherichia coli and Klebsiella pneumoniae. Studies have shown a high degree of antimicrobial susceptibility of isolated organism resulting in an overall lower mortality in PLA. Here, we present a case of PLA caused by multidrug-resistant Citrobacter freundii, which is an unusual organism to be isolated.

  7. Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae.

    PubMed

    Hernández, A; Mellado, R P; Martínez, J L

    1998-11-01

    Contaminated soils from an oil refinery were screened for the presence of microorganisms capable of accumulating either nickel, vanadium, or both metals. Three strains of bacteria that belonged to the family Enterobacteriaceae were selected. Two of them were Escherichia hermannii strains, and outer membrane profile (OMP) analysis showed that they were similar to a strain of clinical origin; the other one was an Enterobacter cloacae strain that differed from clinical isolates. The selected bacteria accumulated both nickel and vanadium. Growth in the presence of vanadium induced multidrug resistance phenotypes in E. hermannii and E. cloacae. Incubation with this metal changed the OMP profile of E. hermannii but did not produce variations in the expression of the major OMPs of E. cloacae. PMID:9797283

  8. Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of Escherichia hermannii and Enterobacter cloacae

    PubMed Central

    Hernández, Alicia; Mellado, Rafael P.; Martínez, José L.

    1998-01-01

    Contaminated soils from an oil refinery were screened for the presence of microorganisms capable of accumulating either nickel, vanadium, or both metals. Three strains of bacteria that belonged to the family Enterobacteriaceae were selected. Two of them were Escherichia hermannii strains, and outer membrane profile (OMP) analysis showed that they were similar to a strain of clinical origin; the other one was an Enterobacter cloacae strain that differed from clinical isolates. The selected bacteria accumulated both nickel and vanadium. Growth in the presence of vanadium induced multidrug resistance phenotypes in E. hermannii and E. cloacae. Incubation with this metal changed the OMP profile of E. hermannii but did not produce variations in the expression of the major OMPs of E. cloacae. PMID:9797283

  9. Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria

    PubMed Central

    Ruppé, Etienne; Andremont, Antoine

    2013-01-01

    The intestinal microbiota is a complex environment that hosts 1013 to 1014 bacteria. Among these bacteria stand multidrug-resistant enterobacteria (MDRE), which intestinal densities can substantially vary, especially according to antibiotic exposure. The intestinal density of MDRE and their relative abundance (i.e., the proportion between the density of MDRE and the density of total enterobacteria) could play a major role in the infection process or patient-to-patient transmission. This review discusses the recent advances in understanding (i) what causes variations in the density or relative abundance of intestinal colonization, (ii) what are the clinical consequences of these variations, and (iii) what are the perspectives for maintaining these markers at low levels. PMID:23755045

  10. Infection Management and Multidrug-Resistant Organisms in Nursing Home Residents With Advanced Dementia

    PubMed Central

    Mitchell, Susan L.; Shaffer, Michele L.; Loeb, Mark B.; Givens, Jane L.; Habtemariam, Daniel; Kiely, Dan K.; D’Agata, Erika

    2014-01-01

    IMPORTANCE Infection management in advanced dementia has important implications for (1) providing high-quality care to patients near the end of life and (2) minimizing the public health threat posed by the emergence of multidrug-resistant organisms (MDROs). DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study of 362 residents with advanced dementia and their health care proxies in 35 Boston area nursing homes for up to 12 months. MAINOUTCOMESAND MEASURES Data were collected to characterize suspected infections, use of antimicrobial agents (antimicrobials), clinician counseling of proxies about antimicrobials, proxy preference for the goals of care, and colonization with MDROs (methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and multidrug-resistant gram-negative bacteria). Main outcomes were (1) proportion of suspected infections treated with antimicrobials that met minimum clinical criteria to initiate antimicrobial treatment based on consensus guidelines and (2) cumulative incidence of MDRO acquisition among noncolonized residents at baseline. RESULTS The cohort experienced 496 suspected infections; 72.4% were treated with antimicrobials, most commonly quinolones (39.8%) and third- or fourth-generation cephalosporins (20.6%). At baseline, 94.8% of proxies stated that comfort was the primary goal of care, and 37.8% received counseling from clinicians about antimicrobial use. Minimum clinical criteria supporting antimicrobial treatment initiation were present for 44.0% of treated episodes and were more likely when proxies were counseled about antimicrobial use (adjusted odds ratio, 1.42; 95% CI, 1.08–1.86) and when the infection source was not the urinary tract (referent). Among noncolonized residents at baseline, the cumulative incidence of MDRO acquisition at 1 year was 48%. Acquisition was associated with exposure (>1 day) to quinolones (adjusted hazard ratio [AHR], 1.89; 95% CI, 1.28–2.81) and third- or fourth

  11. National Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a Single Poultry Company

    PubMed Central

    Gieraltowski, Laura; Higa, Jeffrey; Peralta, Vi; Green, Alice; Schwensohn, Colin; Rosen, Hilary; Libby, Tanya; Kissler, Bonnie; Marsden-Haug, Nicola; Booth, Hillary; Kimura, Akiko; Grass, Julian; Bicknese, Amelia; Tolar, Beth; Defibaugh-Chávez, Stephanie; Williams, Ian; Wise, Matthew

    2016-01-01

    Importance This large outbreak of foodborne salmonellosis demonstrated the complexity of investigating outbreaks linked to poultry products. The outbreak also highlighted the importance of efforts to strengthen food safety policies related to Salmonella in chicken parts and has implications for future changes within the poultry industry. Objective To investigate a large multistate outbreak of multidrug resistant Salmonella Heidelberg infections. Design Epidemiologic and laboratory investigations of patients infected with the outbreak strains of Salmonella Heidelberg and traceback of possible food exposures. Setting United States. Outbreak period was March 1, 2013 through July 11, 2014 Patients A case was defined as illness in a person infected with a laboratory-confirmed Salmonella Heidelberg with 1 of 7 outbreak pulsed-field gel electrophoresis (PFGE) XbaI patterns with illness onset from March 1, 2013 through July 11, 2014. A total of 634 case-patients were identified through passive surveillance; 200/528 (38%) were hospitalized, none died. Results Interviews were conducted with 435 case-patients: 371 (85%) reported eating any chicken in the 7 days before becoming ill. Of 273 case-patients interviewed with a focused questionnaire, 201 (74%) reported eating chicken prepared at home. Among case-patients with available brand information, 152 (87%) of 175 patients reported consuming Company A brand chicken. Antimicrobial susceptibility testing was completed on 69 clinical isolates collected from case-patients; 67% were drug resistant, including 24 isolates (35%) that were multidrug resistant. The source of Company A brand chicken consumed by case-patients was traced back to 3 California production establishments from which 6 of 7 outbreak strains were isolated. Conclusions Epidemiologic, laboratory, traceback, and environmental investigations conducted by local, state, and federal public health and regulatory officials indicated that consumption of Company A chicken

  12. Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri.

    PubMed

    Olaitan, Abiola Olumuyiwa; Diene, Seydina M; Assous, Marc Victor; Rolain, Jean-Marc

    2016-03-01

    We performed a detailed whole-genome sequence analysis of Providencia rettgeri H1736, a multidrug-resistant clinical pathogen isolated in Israel in 2011. The objective was to describe the genomic flexibility of this bacterium that has greatly contributed to its pathogenicity. The genome has a chromosome size of 4,609,352 bp with 40.22% GC content. Five plasmids were predicted, as well as other mobile genetic elements (MGEs) including phages, genomic islands, and integrative and conjugative elements. The resistome consisted of a total of 27 different antibiotic resistance genes including blaNDM-1, mostly located on MGEs. Phenotypically, the bacteria displayed resistance to a total of ten different antimicrobial classes. Various features such as metabolic operons (including a novel carbapenem biosynthesis operon) and virulence genes were also borne on the MGEs, making P. rettgeri H1736 significantly different from other P. rettgeri isolates. A large quantity of the genetic diversity that exists in P. rettgeri H1736 was due to extensive horizontal gene transfer events, leading to an enormous presence of MGEs in its genome. Most of these changes contributed toward the pathogenic evolution of this bacterium. PMID:27386606

  13. Multidrug-resistant organisms in liver transplant: Mitigating risk and managing infections.

    PubMed

    Hand, Jonathan; Patel, Gopi

    2016-08-01

    Liver transplant (LT) recipients are vulnerable to infections with multidrug-resistant (MDR) pathogens. Risk factors for colonization and infection with resistant bacteria are ubiquitous and unavoidable in transplantation. During the past decade, progress in transplantation and infection prevention has contributed to the decreased incidence of infections with methicillin-resistant Staphylococcus aureus. However, even in the face of potentially effective antibiotics, vancomycin-resistant enterococci continue to plague LT. Gram-negative bacilli prove to be more problematic and are responsible for high rates of both morbidity and mortality. Despite the licensure of novel antibiotics, there is no universal agent available to safely and effectively treat infections with MDR gram-negative organisms. Currently, efforts dedicated toward prevention and treatment require involvement of multiple disciplines including transplant providers, specialists in infectious diseases and infection prevention, and researchers dedicated to the development of rapid diagnostics and safe and effective antibiotics with novel mechanisms of action. Liver Transplantation 22 1143-1153 2016 AASLD. PMID:27228555

  14. Novel β-lactamase inhibitors: a therapeutic hope against the scourge of multidrug resistance

    PubMed Central

    Watkins, Richard R.; Papp-Wallace, Krisztina M.; Drawz, Sarah M.; Bonomo, Robert A.

    2013-01-01

    The increasing incidence and prevalence of multi-drug resistance (MDR) among contemporary Gram-negative bacteria represents a significant threat to human health. Since their discovery, β-lactam antibiotics have been a major component of the armamentarium against these serious pathogens. Unfortunately, a wide range of β-lactamase enzymes have emerged that are capable of inactivating these powerful drugs. In the past 30 years, a major advancement in the battle against microbes has been the development of β-lactamase inhibitors, which restore the efficacy of β-lactam antibiotics (e.g., ampicillin/sulbactam, amoxicillin/clavulanate, ticarcillin/clavulanate, and piperacillin/tazobactam). Unfortunately, many newly discovered β-lactamases are not inactivated by currently available inhibitors. Is there hope? For the first time in many years, we can anticipate the development and introduction into clinical practice of novel inhibitors. Although these inhibitors may still not be effective for all β-lactamases, their introduction is still welcome. This review focuses on the novel β-lactamase inhibitors that are closest to being introduced in the clinic. PMID:24399995

  15. Prediction of multi-drug resistance transporters using a novel sequence analysis method

    PubMed Central

    McDermott, Jason E.; Bruillard, Paul; Overall, Christopher C.; Gosink, Luke; Lindemann, Stephen R.

    2015-01-01

    There are many examples of groups of proteins that have similar function, but the determinants of functional specificity may be hidden by lack of sequence similarity, or by large groups of similar sequences with different functions. Transporters are one such protein group in that the general function, transport, can be easily inferred from the sequence, but the substrate specificity can be impossible to predict from sequence with current methods. In this paper we describe a linguistic-based approach to identify functional patterns from groups of unaligned protein sequences and its application to predict multi-drug resistance transporters (MDRs) from bacteria. We first show that our method can recreate known patterns from PROSITE for several motifs from unaligned sequences. We then show that the method, MDRpred, can predict MDRs with greater accuracy and positive predictive value than a collection of currently available family-based models from the Pfam database. Finally, we apply MDRpred to a large collection of protein sequences from an environmental microbiome study to make novel predictions about drug resistance in a potential environmental reservoir. PMID:26913187

  16. Genitourinary and pulmonary multidrug resistant Mycobacterium tuberculosis infection in an Asian elephant (Elephas maximus).

    PubMed

    Dumonceaux, Genevieve A; St Leger, Judy; Olsen, John H; Burton, Michael S; Ashkin, David; Maslow, Joel N

    2011-12-01

    A female Asian elephant (Elephas maximus) developed vaginal and trunk discharge. Cultures were positive for pan-susceptible Mycobacterium tuberculosis. Isoniazid and pyrazinamide were given rectally and monitored by serum levels. After being trained at 10 mo to accept oral dosing, treatment was changed and rifampin was added. Oral medications were administered for another 10 mo. A year after completion of therapy, the vaginal discharge increased and cultures yielded M. tuberculosis, resistant to isoniazid and rifampin. Treatment with oral ethambutol, pyrazinamide, and enrofloxacin and intramuscular amikacin was initiated. Although followup cultures became negative, adverse reactions to medications precluded treatment completion. Due to public health concerns related to multidrug resistant M. tuberculosis (MDR-TB), the elephant was euthanized. Postmortem smears from the lung, peribronchial, and abdominal lymph nodes yielded acid-fast bacteria, although cultures were negative. This case highlights important considerations in the treatment of M. tuberculosis in animals and the need for a consistent approach to diagnosis, treatment, and follow-up. PMID:22204067

  17. Integron-mediated Multidrug Resistance in a Global Collection of Nontyphoidal Salmonella enterica Isolates

    PubMed Central

    Krauland, Mary G.; Marsh, Jane W.; Paterson, David L.

    2009-01-01

    Salmonella enterica bacteria have become increasingly resistant to antimicrobial agents, partly as a result of genes carried on integrons. Clonal expansion and horizontal gene transfer may contribute to the spread of antimicrobial drug–resistance integrons in these organisms. We investigated this resistance and integron carriage among 90 isolates with the ACSSuT phenotype (resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline) in a global collection of S. enterica isolates. Four integrons, dfrA12/orfF/aadA2, dfrA1/aadA1, dfrA7, and arr2/blaOXA30/cmlA5/aadA2, were found in genetically unrelated isolates from 8 countries on 4 continents, which supports a role for horizontal gene transfer in the global dissemination of S. enterica multidrug resistance. Serovar Typhimurium isolates containing identical integrons with the gene cassettes blaPSE1 and aadA2 were found in 4 countries on 3 continents, which supports the role of clonal expansion. This study demonstrates that clonal expansion and horizontal gene transfer contribute to the global dissemination of antimicrobial drug resistance in S. enterica. PMID:19239750

  18. Lethal neonatal meningoencephalitis caused by multi-drug resistant, highly virulent Escherichia coli.

    PubMed

    Iqbal, Junaid; Dufendach, Kevin R; Wellons, John C; Kuba, Maria G; Nickols, Hilary H; Gómez-Duarte, Oscar G; Wynn, James L

    2016-01-01

    Neonatal meningitis is a rare but devastating condition. Multi-drug resistant (MDR) bacteria represent a substantial global health risk. This study reports on an aggressive case of lethal neonatal meningitis due to a MDR Escherichia coli (serotype O75:H5:K1). Serotyping, MDR pattern and phylogenetic typing revealed that this strain is an emergent and highly virulent neonatal meningitis E. coli isolate. The isolate was resistant to both ampicillin and gentamicin; antibiotics currently used for empiric neonatal sepsis treatment. The strain was also positive for multiple virulence genes including K1 capsule, fimbrial adhesion fimH, siderophore receptors iroN, fyuA and iutA, secreted autotransporter toxin sat, membrane associated proteases ompA and ompT, type II polysaccharide synthesis genes (kpsMTII) and pathogenicity-associated island (PAI)-associated malX gene. The presence of highly-virulent MDR organisms isolated in neonates underscores the need to implement rapid drug resistance diagnostic methods and should prompt consideration of alternate empiric therapy in neonates with Gram negative meningitis. PMID:27030919

  19. Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri

    PubMed Central

    Olaitan, Abiola Olumuyiwa; Diene, Seydina M.; Assous, Marc Victor; Rolain, Jean-Marc

    2016-01-01

    We performed a detailed whole-genome sequence analysis of Providencia rettgeri H1736, a multidrug-resistant clinical pathogen isolated in Israel in 2011. The objective was to describe the genomic flexibility of this bacterium that has greatly contributed to its pathogenicity. The genome has a chromosome size of 4,609,352 bp with 40.22% GC content. Five plasmids were predicted, as well as other mobile genetic elements (MGEs) including phages, genomic islands, and integrative and conjugative elements. The resistome consisted of a total of 27 different antibiotic resistance genes including blaNDM-1, mostly located on MGEs. Phenotypically, the bacteria displayed resistance to a total of ten different antimicrobial classes. Various features such as metabolic operons (including a novel carbapenem biosynthesis operon) and virulence genes were also borne on the MGEs, making P. rettgeri H1736 significantly different from other P. rettgeri isolates. A large quantity of the genetic diversity that exists in P. rettgeri H1736 was due to extensive horizontal gene transfer events, leading to an enormous presence of MGEs in its genome. Most of these changes contributed toward the pathogenic evolution of this bacterium. PMID:27386606

  20. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements.

    PubMed

    Klima, Cassidy L; Zaheer, Rahat; Cook, Shaun R; Booker, Calvin W; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A

    2014-02-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.

  1. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country.

    PubMed

    Lim, Cherry; Takahashi, Emi; Hongsuwan, Maliwan; Wuthiekanun, Vanaporn; Thamlikitkul, Visanu; Hinjoy, Soawapak; Day, Nicholas Pj; Peacock, Sharon J; Limmathurotsakul, Direk

    2016-01-01

    Little is known about the excess mortality caused by multidrug-resistant (MDR) bacterial infection in low- and middle-income countries (LMICs). We retrospectively obtained microbiology laboratory and hospital databases of nine public hospitals in northeast Thailand from 2004 to 2010, and linked these with the national death registry to obtain the 30-day mortality outcome. The 30-day mortality in those with MDR community-acquired bacteraemia, healthcare-associated bacteraemia, and hospital-acquired bacteraemia were 35% (549/1555), 49% (247/500), and 53% (640/1198), respectively. We estimate that 19,122 of 45,209 (43%) deaths in patients with hospital-acquired infection due to MDR bacteria in Thailand in 2010 represented excess mortality caused by MDR. We demonstrate that national statistics on the epidemiology and burden of MDR in LMICs could be improved by integrating information from readily available databases. The prevalence and mortality attributable to MDR in Thailand are high. This is likely to reflect the situation in other LMICs. PMID:27599374

  2. Pathogens of Bovine Respiratory Disease in North American Feedlots Conferring Multidrug Resistance via Integrative Conjugative Elements

    PubMed Central

    Klima, Cassidy L.; Zaheer, Rahat; Cook, Shaun R.; Booker, Calvin W.; Hendrick, Steve

    2014-01-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD. PMID:24478472

  3. The Anticancer Agent Prodigiosin Is Not a Multidrug Resistance Protein Substrate

    PubMed Central

    Elahian, Fatemeh; Moghimi, Bahareh; Dinmohammadi, Farideh; Ghamghami, Mahsa; Hamidi, Mehrdad

    2013-01-01

    The brilliant red pigments prodiginines are natural secondary metabolites that are produced by select species of Gram-negative and Gram-positive bacteria. These molecules have received significant attention due to their reported antibacterial, antifungal, immunosuppressive, and anticancer activities. In this study, a Serratia marcescens SER1 strain was isolated and verified using 16s rDNA. The prodigiosin was purified using silica chromatography and was analyzed by 1H-NMR spectroscopy. The cell cytotoxic effects of the purified prodigiosin on multiple drug resistant cell lines that overexpress MDR1, BCRP, or MRP2 pumps were analyzed. Prodigiosin had nearly identical cytotoxic effects on the resistant cells in comparison to their parental lines. In agreement with the same prodigiosin cytotoxicity, FACS analysis of prodigiosin accumulation and efflux in MDR overexpressing cell lines also indicated that this pro-apoptotic agent operates independently of the presence of the MDR1, BCRP, or MRP transporter and may be a potential treatment for malignant cancer cells that overexpress multidrug resistance transporters. PMID:23373476

  4. A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug Resistant Mycobacterium tuberculosis

    PubMed Central

    Bertholet, Sylvie; Ireton, Gregory C.; Ordway, Diane J.; Windish, Hillarie Plessner; Pine, Samuel O.; Kahn, Maria; Phan, Tony; Orme, Ian M.; Vedvick, Thomas S.; Baldwin, Susan L.; Coler, Rhea N.; Reed, Steven G.

    2011-01-01

    Despite the widespread use of Mycobacterium bovis bacillus Calmette-Guerin (BCG) childhood vaccine, tuberculosis (TB) remains a serious global health problem. A successful vaccine against TB that replaces or boosts BCG will include antigens that induce or recall appropriate T cell responses. Four Mycobacterium tuberculosis (Mtb) antigens, including members of the virulence factor families PE/PPE and EsX, or antigens associated with latency were produced as a single recombinant fusion protein. When administered with the adjuvant GLA-SE, a stable oil-in-water nanoemulsion, the fusion protein ID93 was immunogenic in mice, guinea pigs, and cynomolgus monkeys. In mice, ID93/GLA-SE combination induced polyfunctional CD4 TH1-cell responses characterized by antigen-specific IFN-gamma, tumor necrosis factor and interleukin-2, as well as a reduction in the number of bacteria in the lungs of animals subsequently infected with virulent or multidrug resistant Mtb strains. Furthermore, boosting BCG-vaccinated guinea pigs with ID93/GLA-SE resulted in reduced pathology and fewer bacilli, and prevented the death of animals challenged with virulent Mtb. Finally, ID93 elicited polyfunctional effector CD4 and CD8 T-cell responses in BCG-vaccinated or Mtb-exposed human peripheral blood mononuclear cells. This study establishes that the protein subunit vaccine ID93/GLA-SE protects against TB and MDR-TB in animals, and is a candidate for boosting the protective efficacy of the childhood BCG vaccine. PMID:20944089

  5. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country

    PubMed Central

    Lim, Cherry; Takahashi, Emi; Hongsuwan, Maliwan; Wuthiekanun, Vanaporn; Thamlikitkul, Visanu; Hinjoy, Soawapak; Day, Nicholas PJ; Peacock, Sharon J; Limmathurotsakul, Direk

    2016-01-01

    Little is known about the excess mortality caused by multidrug-resistant (MDR) bacterial infection in low- and middle-income countries (LMICs). We retrospectively obtained microbiology laboratory and hospital databases of nine public hospitals in northeast Thailand from 2004 to 2010, and linked these with the national death registry to obtain the 30-day mortality outcome. The 30-day mortality in those with MDR community-acquired bacteraemia, healthcare-associated bacteraemia, and hospital-acquired bacteraemia were 35% (549/1555), 49% (247/500), and 53% (640/1198), respectively. We estimate that 19,122 of 45,209 (43%) deaths in patients with hospital-acquired infection due to MDR bacteria in Thailand in 2010 represented excess mortality caused by MDR. We demonstrate that national statistics on the epidemiology and burden of MDR in LMICs could be improved by integrating information from readily available databases. The prevalence and mortality attributable to MDR in Thailand are high. This is likely to reflect the situation in other LMICs. DOI: http://dx.doi.org/10.7554/eLife.18082.001 PMID:27599374

  6. The anticancer agent prodigiosin is not a multidrug resistance protein substrate.

    PubMed

    Elahian, Fatemeh; Moghimi, Bahareh; Dinmohammadi, Farideh; Ghamghami, Mahsa; Hamidi, Mehrdad; Mirzaei, Seyed Abbas

    2013-03-01

    The brilliant red pigments prodiginines are natural secondary metabolites that are produced by select species of Gram-negative and Gram-positive bacteria. These molecules have received significant attention due to their reported antibacterial, antifungal, immunosuppressive, and anticancer activities. In this study, a Serratia marcescens SER1 strain was isolated and verified using 16s rDNA. The prodigiosin was purified using silica chromatography and was analyzed by (1)H-NMR spectroscopy. The cell cytotoxic effects of the purified prodigiosin on multiple drug resistant cell lines that overexpress MDR1, BCRP, or MRP2 pumps were analyzed. Prodigiosin had nearly identical cytotoxic effects on the resistant cells in comparison to their parental lines. In agreement with the same prodigiosin cytotoxicity, FACS analysis of prodigiosin accumulation and efflux in MDR overexpressing cell lines also indicated that this pro-apoptotic agent operates independently of the presence of the MDR1, BCRP, or MRP transporter and may be a potential treatment for malignant cancer cells that overexpress multidrug resistance transporters.

  7. Global dissemination of a multidrug resistant Escherichia coli clone

    PubMed Central

    Petty, Nicola K.; Ben Zakour, Nouri L.; Stanton-Cook, Mitchell; Skippington, Elizabeth; Totsika, Makrina; Forde, Brian M.; Phan, Minh-Duy; Gomes Moriel, Danilo; Peters, Kate M.; Davies, Mark; Rogers, Benjamin A.; Dougan, Gordon; Rodriguez-Baño, Jesús; Pascual, Alvaro; Pitout, Johann D. D.; Upton, Mathew; Paterson, David L.; Walsh, Timothy R.; Schembri, Mark A.; Beatson, Scott A.

    2014-01-01

    Escherichia coli sequence type 131 (ST131) is a globally disseminated, multidrug resistant (MDR) clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with several factors, including resistance to fluoroquinolones, high virulence gene content, the possession of the type 1 fimbriae FimH30 allele, and the production of the CTX-M-15 extended spectrum β-lactamase (ESBL). Here, we used genome sequencing to examine the molecular epidemiology of a collection of E. coli ST131 strains isolated from six distinct geographical locations across the world spanning 2000–2011. The global phylogeny of E. coli ST131, determined from whole-genome sequence data, revealed a single lineage of E. coli ST131 distinct from other extraintestinal E. coli strains within the B2 phylogroup. Three closely related E. coli ST131 sublineages were identified, with little association to geographic origin. The majority of single-nucleotide variants associated with each of the sublineages were due to recombination in regions adjacent to mobile genetic elements (MGEs). The most prevalent sublineage of ST131 strains was characterized by fluoroquinolone resistance, and a distinct virulence factor and MGE profile. Four different variants of the CTX-M ESBL–resistance gene were identified in our ST131 strains, with acquisition of CTX-M-15 representing a defining feature of a discrete but geographically dispersed ST131 sublineage. This study confirms the global dispersal of a single E. coli ST131 clone and demonstrates the role of MGEs and recombination in the evolution of this important MDR pathogen. PMID:24706808

  8. Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates

    PubMed Central

    2014-01-01

    Background Klebsiella pneumoniae is a frequent nosocomial pathogen, with the multidrug-resistant (MDR) K. pneumoniae being a major public health concern, frequently causing difficult-to-treat infections worldwide. The aim of this study was to investigate the molecular characterization of clinical MDR Klebsiella pneumoniae isolates. Methods A total of 27 non-duplicate MDR K. pneumoniae isolates with a CTX-CIP-AK resistance pattern were investigated for the prevalence of antimicrobial resistance genes including extended spectrum β-lactamase genes (ESBLs), plasmid-mediated quinolone resistance (PMQR) genes, 16S rRNA methylase (16S-RMTase) genes, and integrons by polymerase chain reaction (PCR) amplification and DNA sequencing. Plasmid replicons were typed by PCR-based replicon typing (PBRT). Multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were carried out to characterize the strain relatedness. Results All the isolates co-harbored 3 or more resistance determinants. OqxAB, CTX-M-type ESBLs and RmtB were the most frequent determinants, distributed among19 (70.4%),18 (66.7%) and 8 (29.6%) strains. Fourteen isolates harbored class 1 integrons, with orfD-aacA4 being the most frequent gene cassette array. Class 3 integrons were less frequently identified and contained the gene cassette array of blaGES-1-blaOXA-10-aac(6′)-Ib. IncFII replicon was most commonly found in this collection. One cluster was observed with ≥80% similarity among profiles obtained by PFGE, and one sequence type (ST) by MLST, namely ST11, was observed in the cluster. Conclusion K. pneumoniae carbapenemase (KPC)–producing ST11 was the main clone detected. Of particular concern was the high prevalence of multiple resistance determinants, classs I integrons and IncFII plasmid replicon among these MDR strains, which provide advantages for the rapid development of MDR strains. PMID:24884610

  9. Multidrug-resistant nontuberculous mycobacteria isolated from cystic fibrosis patients.

    PubMed

    Cândido, Pedro Henrique Campanini; Nunes, Luciana de Souza; Marques, Elizabeth Andrade; Folescu, Tânia Wrobel; Coelho, Fábrice Santana; de Moura, Vinicius Calado Nogueira; da Silva, Marlei Gomes; Gomes, Karen Machado; Lourenço, Maria Cristina da Silva; Aguiar, Fábio Silva; Chitolina, Fernanda; Armstrong, Derek T; Leão, Sylvia Cardoso; Neves, Felipe Piedade Gonçalves; Mello, Fernanda Carvalho de Queiroz; Duarte, Rafael Silva

    2014-08-01

    Worldwide, nontuberculous mycobacteria (NTM) have become emergent pathogens of pulmonary infections in cystic fibrosis (CF) patients, with an estimated prevalence ranging from 5 to 20%. This work investigated the presence of NTM in sputum samples of 129 CF patients (2 to 18 years old) submitted to longitudinal clinical supervision at a regional reference center in Rio de Janeiro, Brazil. From June 2009 to March 2012, 36 NTM isolates recovered from 10 (7.75%) out of 129 children were obtained. Molecular identification of NTM was performed by using PCR restriction analysis targeting the hsp65 gene (PRA-hsp65) and sequencing of the rpoB gene, and susceptibility tests were performed that followed Clinical and Laboratory Standards Institute recommendations. For evaluating the genotypic diversity, pulsed-field gel electrophoresis (PFGE) and/or enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) was performed. The species identified were Mycobacterium abscessus subsp. bolletii (n = 24), M. abscessus subsp. abscessus (n = 6), Mycobacterium fortuitum (n = 3), Mycobacterium marseillense (n = 2), and Mycobacterium timonense (n = 1). Most of the isolates presented resistance to five or more of the antimicrobials tested. Typing profiles were mainly patient specific. The PFGE profiles indicated the presence of two clonal groups for M. abscessus subsp. abscessus and five clonal groups for M. abscesssus subsp. bolletii, with just one clone detected in two patients. Given the observed multidrug resistance patterns and the possibility of transmission between patients, we suggest the implementation of continuous and routine investigation of NTM infection or colonization in CF patients, including countries with a high burden of tuberculosis disease. PMID:24920766

  10. Multidrug-resistant tuberculosis” may be nontuberculous mycobacteria

    PubMed Central

    Shahraki, Abdolrazagh Hashemi; Heidarieh, Parvin; Bostanabad, Saeed Zaker; Khosravi, Azar Dokht; Hashemzadeh, Mohammad; Khandan, Solmaz; Biranvand, Maryam; Schraufnagel, Dean E.; Mirsaeidi, Mehdi

    2015-01-01

    Introduction Multidrug resistant tuberculosis (MDR-TB) presents a great challenge to public health, especially for developing countries. Some nontuberculous mycobacteria (NTM) cause the similar clinical and radiological characteristics with tuberculosis. We aimed to identify the frequency of NTM infections among subjects who were suspected to have MDR-TB due to lack of response to anti-TB treatment. Methods This retrospective study evaluated patients with suspected MDR-TB due to lack of sputum conversion after 2–3 months therapy with first line anti-TB treatment from 2009 through 2014. Cultures for mycobacteria were performed and identification was done to species level by phenotypic and molecular tests. The outcome of the patients with NTM disease and related risk factors for poor outcome were evaluated. Results Out of 117 consecutive strains isolated from suspected MDR-TB subjects, 35 (30%) strains were identified as NTM by using conventional and molecular approaches. Of these patients with positive NTM cultures, 32 (27%) patients met ATS/IDSA diagnostic criteria. Out of 32, 29 (90%) individuals with confirmed NTM diseases had underlying disorders including 8 subjects with malignancy, 5 with organ transplantations, and 4 with the human immunodeficiency virus. No known underlying disorder was found in 3 (9%) subjects. Treatment outcomes were available for 27 subjects, 17 (63%) of whom were cured and 10 (37%) had poor outcome including 6 (60%) who failed and 4 (40%) who died during treatment. Conclusion The high costs to the patient and society should lead health care providers to consider NTM in all patients suspected of having TB. PMID:25784643

  11. ATP7B expression confers multidrug resistance through drug sequestration.

    PubMed

    Moinuddin, F M; Shinsato, Yoshinari; Komatsu, Masaharu; Mitsuo, Ryoichi; Minami, Kentaro; Yamamoto, Masatatsu; Kawahara, Kohich; Hirano, Hirofumi; Arita, Kazunori; Furukawa, Tatsuhiko

    2016-04-19

    We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells.In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin.In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin.ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype.Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly.We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration. PMID:26988911

  12. Principles for designing future regimens for multidrug-resistant tuberculosis.

    PubMed

    Brigden, Grania; Nyang'wa, Bern-Thomas; du Cros, Philipp; Varaine, Francis; Hughes, Jennifer; Rich, Michael; Horsburgh, C Robert; Mitnick, Carole D; Nuermberger, Eric; McIlleron, Helen; Phillips, Patrick P J; Balasegaram, Manica

    2014-01-01

    Fewer than 20% of patients with multidrug-resistant (MDR) tuberculosis are receiving treatment and there is an urgent need to scale up treatment programmes. One of the biggest barriers to scale-up is the treatment regimen, which is lengthy, complex, ineffective, poorly tolerated and expensive. For the first time in over 50 years, new drugs have been developed specifically to treat tuberculosis, with bedaquiline and potentially delamanid expected to be available soon for treatment of MDR cases. However, if the new drugs are merely added to the current treatment regimen, the new regimen will be at least as lengthy, cumbersome and toxic as the existing one. There is an urgent need for strategy and evidence on how to maximize the potential of the new drugs to improve outcomes and shorten treatment. We devised eight key principles for designing future treatment regimens to ensure that, once they are proven safe in clinical trials, they will be clinically effective and programmatically practicable. Regimens should contain at least one new class of drug; be broadly applicable for use against MDR and extensively drug-resistant Mycobacterium tuberculosis complex strains; contain three to five effective drugs, each from a different drug class; be delivered orally; have a simple dosing schedule; have a good side-effect profile that allows limited monitoring; last a maximum of 6 months; and have minimal interaction with antiretrovirals. Following these principles will maximize the potential of new compounds and help to overcome the clinical and programmatic disadvantages and scale-up constraints that plague the current regimen.

  13. Heteroresistance to Colistin in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Li, Jian; Rayner, Craig R.; Nation, Roger L.; Owen, Roxanne J.; Spelman, Denis; Tan, Kar Eng; Liolios, Lisa

    2006-01-01

    Multidrug-resistant Acinetobacter baumannii has emerged as a significant clinical problem worldwide and colistin is being used increasingly as “salvage” therapy. MICs of colistin against A. baumannii indicate its significant activity. However, resistance to colistin in A. baumannii has been reported recently. Clonotypes of 16 clinical A. baumannii isolates and ATCC 19606 were determined by pulsed-field gel electrophoresis (PFGE), and colistin MICs were measured. The time-kill kinetics of colistin against A. baumannii ATCC 19606 and clinical isolate 6 were investigated, and population analysis profiles (PAPs) were conducted. Resistance development was investigated by serial passaging with or without exposure to colistin. Five different PFGE banding patterns were found in the clinical isolates. MICs of colistin against all isolates were within 0.25 to 2 μg/ml. Colistin showed early concentration-dependent killing, but bacterial regrowth was observed at 24 h. PAPs revealed that heteroresistance to colistin occurred in 15 of the 16 clinical isolates. Subpopulations (<0.1% from inocula of 108 to 109 CFU/ml) of ATCC 19606, and most clinical isolates grew in the presence of colistin 3 to 10 μg/ml. Four successive passages of ATCC 19606 in broth containing colistin (up to 200 μg/ml) substantially increased the proportion of the resistant subpopulations able to grow in the presence of colistin at 10 μg/ml from 0.000023 to 100%; even after 16 passages in colistin-free broth, the proportion only decreased to 2.1%. This represents the first demonstration of heterogeneous colistin-resistant A. baumannii in “colistin-susceptible” clinical isolates. Our findings give a strong warning that colistin-resistant A. baumannii may be observed more frequently due to potential suboptimal dosage regimens recommended in the product information of some products of colistin methanesulfonate. PMID:16940086

  14. Treatment of multidrug-resistant tuberculosis in China.

    PubMed

    Zhang, L X

    1996-01-01

    During the past decade the number and gravity of tuberculosis (TB) cases has continued to increase, both in developing and industrialized nations. Coupled with the recent emergence of multidrug-resistant tuberculosis (MDR-TB), the possibility that untreatable forms of the disease may become widespread has arisen. In China, the prevalence rate of smear-positive cases from three national surveys in 1979, 1984-1985 and 1990 was 187, 156 and 134/100,000, respectively, thus giving an annual average reduction rate of only 3.0%. This may be due to the accumulation of chronic cases, which is not surprising given that as many as 84.3% of new smear-positive cases received non-organized chemotherapy. To counteract this situation, a strategy was developed in Beijing to practice fully supervised chemotherapy for all new smear-positive cases. This is now 90% with a cure rate also of 90%. As a result, the prevalence rate of smear-positive cases has dropped, with an average annual reduction of 17%. Building upon this success, the World Bank Loan TB Control Project in China has been carried out in 12 provinces with 550 million people since 1992. The main objective of this project is to provide fully supervised, 6-month short-course chemotherapy for all newly detected smear-positive cases. The cure rate based on cohort analysis was 88% in 1993. Complete data are not available on resistance although the initial and acquired resistance rates were 28.1 and 41.1%, respectively. MDR-TB treated with ofloxacin has been increasing since 1992, with 317 cases reported during the period 1992-1995, of which 77% showed sputum conversion.

  15. ATP7B expression confers multidrug resistance through drug sequestration

    PubMed Central

    Moinuddin, F M; Shinsato, Yoshinari; Komatsu, Masaharu; Mitsuo, Ryoichi; Minami, Kentaro; Yamamoto, Masatatsu; Kawahara, Kohich; Hirano, Hirofumi; Arita, Kazunori; Furukawa, Tatsuhiko

    2016-01-01

    We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells. In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin. In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin. ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype. Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly. We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration. PMID:26988911

  16. 5-Episinuleptolide Decreases the Expression of the Extracellular Matrix in Early Biofilm Formation of Multi-Drug Resistant Acinetobacter baumannii

    PubMed Central

    Tseng, Sung-Pin; Hung, Wei-Chun; Huang, Chiung-Yao; Lin, Yin-Shiou; Chan, Min-Yu; Lu, Po-Liang; Lin, Lin; Sheu, Jyh-Horng

    2016-01-01

    Nosocomial infections and increasing multi-drug resistance caused by Acinetobacter baumannii have been recognized as emerging problems worldwide. Moreover, A. baumannii is able to colonize various abiotic materials and medical devices, making it difficult to eradicate and leading to ventilator-associated pneumonia, and bacteremia. Development of novel molecules that inhibit bacterial biofilm formation may be an alternative prophylactic option for the treatment of biofilm-associated A. baumannii infections. Marine environments, which are unlike their terrestrial counterparts, harbor an abundant biodiversity of marine organisms that produce novel bioactive natural products with pharmaceutical potential. In this study, we identified 5-episinuleptolide, which was isolated from Sinularia leptoclados, as an inhibitor of biofilm formation in ATCC 19606 and three multi-drug resistant A. baumannii strains. In addition, the anti-biofilm activities of 5-episinuleptolide were observed for Gram-negative bacteria but not for Gram-positive bacteria, indicating that the inhibition mechanism of 5-episinuleptolide is effective against only Gram-negative bacteria. The mechanism of biofilm inhibition was demonstrated to correlate to decreased gene expression from the pgaABCD locus, which encodes the extracellular polysaccharide poly-β-(1,6)-N-acetylglucosamine (PNAG). Scanning electron microscopy (SEM) indicated that extracellular matrix of the biofilm was dramatically decreased by treatment with 5-episinuleptolide. Our study showed potentially synergistic activity of combination therapy with 5-episinuleptolide and levofloxacin against biofilm formation and biofilm cells. These data indicate that inhibition of biofilm formation via 5-episinuleptolide may represent another prophylactic option for solving the persistent problem of biofilm-associated A. baumannii infections. PMID:27483290

  17. 5-Episinuleptolide Decreases the Expression of the Extracellular Matrix in Early Biofilm Formation of Multi-Drug Resistant Acinetobacter baumannii.

    PubMed

    Tseng, Sung-Pin; Hung, Wei-Chun; Huang, Chiung-Yao; Lin, Yin-Shiou; Chan, Min-Yu; Lu, Po-Liang; Lin, Lin; Sheu, Jyh-Horng

    2016-01-01

    Nosocomial infections and increasing multi-drug resistance caused by Acinetobacter baumannii have been recognized as emerging problems worldwide. Moreover, A. baumannii is able to colonize various abiotic materials and medical devices, making it difficult to eradicate and leading to ventilator-associated pneumonia, and bacteremia. Development of novel molecules that inhibit bacterial biofilm formation may be an alternative prophylactic option for the treatment of biofilm-associated A. baumannii infections. Marine environments, which are unlike their terrestrial counterparts, harbor an abundant biodiversity of marine organisms that produce novel bioactive natural products with pharmaceutical potential. In this study, we identified 5-episinuleptolide, which was isolated from Sinularia leptoclados, as an inhibitor of biofilm formation in ATCC 19606 and three multi-drug resistant A. baumannii strains. In addition, the anti-biofilm activities of 5-episinuleptolide were observed for Gram-negative bacteria but not for Gram-positive bacteria, indicating that the inhibition mechanism of 5-episinuleptolide is effective against only Gram-negative bacteria. The mechanism of biofilm inhibition was demonstrated to correlate to decreased gene expression from the pgaABCD locus, which encodes the extracellular polysaccharide poly-β-(1,6)-N-acetylglucosamine (PNAG). Scanning electron microscopy (SEM) indicated that extracellular matrix of the biofilm was dramatically decreased by treatment with 5-episinuleptolide. Our study showed potentially synergistic activity of combination therapy with 5-episinuleptolide and levofloxacin against biofilm formation and biofilm cells. These data indicate that inhibition of biofilm formation via 5-episinuleptolide may represent another prophylactic option for solving the persistent problem of biofilm-associated A. baumannii infections. PMID:27483290

  18. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era.

    PubMed

    Gilmore, Michael S; Lebreton, Francois; van Schaik, Willem

    2013-02-01

    The enterococci evolved over eons as highly adapted members of gastrointestinal consortia of a wide variety of hosts, but for reasons that are not entirely clear, emerged in the 1970s as leading causes of multidrug resistant hospital infection. Hospital-adapted pathogenic isolates are characterized by the presence of multiple mobile elements conferring antibiotic resistance, as well as pathogenicity islands, capsule loci and other variable traits. Enterococci may have been primed to emerge among the vanguard of antibiotic resistant strains because of their occurrence in the GI tracts of insects and simple organisms living and feeding on organic matter that is colonized by antibiotic resistant, antibiotic producing micro-organisms. In response to the opportunity to inhabit a new niche--the antibiotic treated hospital patient--the enterococcal genome is evolving in a pattern characteristic of other bacteria that have emerged as pathogens because of opportunities stemming from anthropogenic change.

  19. Essential Oil from Origanum vulgare Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens.

    PubMed

    Pesavento, Giovanna; Maggini, Valentina; Maida, Isabel; Lo Nostro, Antonella; Calonico, Carmela; Sassoli, Chiara; Perrin, Elena; Fondi, Marco; Mengoni, Alessio; Chiellini, Carolina; Vannacci, Alfredo; Gallo, Eugenia; Gori, Luigi; Bogani, Patrizia; Bilia, Anna Rita; Campana, Silvia; Ravenni, Novella; Dolce, Daniela; Firenzuoli, Fabio; Fani, Renato

    2016-06-01

    Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections. PMID:27534136

  20. Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana.

    PubMed

    Kolukisaoglu, H Uner; Bovet, Lucien; Klein, Markus; Eggmann, Thomas; Geisler, Markus; Wanke, Dierk; Martinoia, Enrico; Schulz, Burkhard

    2002-11-01

    Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein ( MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers. PMID:12430019

  1. A novel molecule with notable activity against multi-drug resistant tuberculosis.

    PubMed

    Nair, Vasu; Okello, Maurice O; Mangu, Naveen K; Seo, Byung I; Gund, Machhindra G

    2015-03-15

    Multi-drug resistant tuberculosis (MDR-TB) is emerging as a serious global health problem, which has been elevated through co-infection involving HIV and MDR-Mtb. The discovery of new compounds with anti-MDR TB efficacy and favorable metabolism profiles is an important scientific challenge. Using computational biology and ligand docking data, we have conceived a multifunctional molecule, 2, as a potential anti-MDR TB agent. This compound was produced through a multi-step synthesis. It exhibited significant in vitro activity against MDR-TB (MIC 1.56μg/mL) and its half-life (t1/2) in human liver microsomes was 14.4h. The metabolic profiles of compound 2 with respect to human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) isozymes were favorable. Compound 2 also had relatively low in vitro cytotoxicity in uninfected macrophages. It displayed synergistic behavior against MDR-TB in combination with PA-824. Interestingly, compound 2 also displayed in vitro anti-HIV activity. PMID:25677656

  2. Transcription factors that mediate epithelial–mesenchymal transition lead to multidrug resistance by upregulating ABC transporters

    PubMed Central

    Saxena, M; Stephens, M A; Pathak, H; Rangarajan, A

    2011-01-01

    Development of multidrug resistance (MDR) is a major deterrent in the effective treatment of metastatic cancers by chemotherapy. Even though MDR and cancer invasiveness have been correlated, the molecular basis of this link remains obscure. We show here that treatment with chemotherapeutic drugs increases the expression of several ATP binding cassette transporters (ABC transporters) associated with MDR, as well as epithelial–mesenchymal transition (EMT) markers, selectively in invasive breast cancer cells, but not in immortalized or non-invasive cells. Interestingly, the mere induction of an EMT in immortalized and non-invasive cell lines increased their expression of ABC transporters, migration, invasion, and drug resistance. Conversely, reversal of EMT in invasive cells by downregulating EMT-inducing transcription factors reduced their expression of ABC transporters, invasion, and rendered them more chemosensitive. Mechanistically, we demonstrate that the promoters of ABC transporters carry several binding sites for EMT-inducing transcription factors, and overexpression of Twist, Snail, and FOXC2 increases the promoter activity of ABC transporters. Furthermore, chromatin immunoprecipitation studies revealed that Twist binds directly to the E-box elements of ABC transporters. Thus, our study identifies EMT inducers as novel regulators of ABC transporters, thereby providing molecular insights into the long-standing association between invasiveness and MDR. Targeting EMT transcription factors could hence serve as novel strategies to curb both metastasis and the associated drug resistance. PMID:21734725

  3. Essential Oil from Origanum vulgare Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens.

    PubMed

    Pesavento, Giovanna; Maggini, Valentina; Maida, Isabel; Lo Nostro, Antonella; Calonico, Carmela; Sassoli, Chiara; Perrin, Elena; Fondi, Marco; Mengoni, Alessio; Chiellini, Carolina; Vannacci, Alfredo; Gallo, Eugenia; Gori, Luigi; Bogani, Patrizia; Bilia, Anna Rita; Campana, Silvia; Ravenni, Novella; Dolce, Daniela; Firenzuoli, Fabio; Fani, Renato

    2016-06-01

    Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.

  4. Nationwide outbreak of multidrug-resistant Salmonella Heidelberg infections associated with ground turkey: United States, 2011.

    PubMed

    Routh, J A; Pringle, J; Mohr, M; Bidol, S; Arends, K; Adams-Cameron, M; Hancock, W T; Kissler, B; Rickert, R; Folster, J; Tolar, B; Bosch, S; Barton Behravesh, C; Williams, I T; Gieraltowski, L

    2015-11-01

    On 23 May 2011, CDC identified a multistate cluster of Salmonella Heidelberg infections and two multidrug-resistant (MDR) isolates from ground turkey retail samples with indistinguishable pulsed-field gel electrophoresis patterns. We defined cases as isolation of outbreak strains in persons with illness onset between 27 February 2011 and 10 November 2011. Investigators collected hypothesis-generating questionnaires and shopper-card information. Food samples from homes and retail outlets were collected and cultured. We identified 136 cases of S. Heidelberg infection in 34 states. Shopper-card information, leftover ground turkey from a patient's home containing the outbreak strain and identical antimicrobial resistance profiles of clinical and retail samples pointed to plant A as the source. On 3 August, plant A recalled 36 million pounds of ground turkey. This outbreak increased consumer interest in MDR Salmonella infections acquired through United States-produced poultry and played a vital role in strengthening food safety policies related to Salmonella and raw ground poultry.

  5. Redox Regulation of Multidrug Resistance in Cancer Chemotherapy: Molecular Mechanisms and Therapeutic Opportunities

    PubMed Central

    2009-01-01

    Abstract The development of multidrug resistance to cancer chemotherapy is a major obstacle to the effective treatment of human malignancies. It has been established that membrane proteins, notably multidrug resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the development of multidrug resistance. Overexpression of these transporters has been observed frequently in many types of human malignancies and correlated with poor responses to chemotherapeutic agents. Evidence has accumulated showing that redox signals are activated in response to drug treatments that affect the expression and activity of these transporters by multiple mechanisms, including (a) conformational changes in the transporters, (b) regulation of the biosynthesis cofactors required for the transporter's function, (c) regulation of the expression of transporters at transcriptional, posttranscriptional, and epigenetic levels, and (d) amplification of the copy number of genes encoding these transporters. This review describes various specific factors and their relevant signaling pathways that are involved in the regulation. Finally, the roles of redox signaling in the maintenance and evolution of cancer stem cells and their implications in the development of intrinsic and acquired multidrug resistance in cancer chemotherapy are discussed. Antioxid. Redox Signal. 11, 99–133. PMID:18699730

  6. Virulence and Genomic Feature of Multidrug Resistant Campylobacter jejuni Isolated from Broiler Chicken

    PubMed Central

    Hao, Haihong; Ren, Ni; Han, Jing; Foley, Steven L.; Iqbal, Zahid; Cheng, Guyue; Kuang, Xiuhua; Liu, Jie; Liu, Zhenli; Dai, Menghong; Wang, Yulian; Yuan, Zonghui

    2016-01-01

    The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655). The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline, and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g., pTet) and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence. PMID:27790202

  7. A Novel Nitrobenzoate Microtubule Inhibitor that Overcomes Multidrug Resistance Exhibits Antitumor Activity.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Wu, Shu-Ying; Li, Yi; Xu, Xian-Dong; Shang, Bo-Yang; Zhou, Jin-Ming; Zhu, Zhi-Ling; Si, Shu-Yi; Zhen, Yong-Su

    2016-01-01

    Multidrug resistance is a major limitation for microtubule-binding agents in cancer treatment. Here we report a novel microtubule inhibitor (2-morpholin-4-yl-5-nitro-benzoic acid 4-methylsulfanyl-benzyl ester, IMB5046), its cytotoxicity against multidrug-resistant cell lines and its antitumor efficacy in animal models. IMB5046 disrupted microtubule structures in cells and inhibited purified tubulin polymerization in vitro. It bound to the colchicine pocket of tubulin. IMB5046 displayed potent cytotoxicity against multiple tumor cell lines with an IC50 range of 0.037-0.426 μM. Notably, several multidrug-resistant cell lines which were resistant to colchicine, vincristine and paclitaxel remained sensitive to IMB5046. IMB5046 was not a P-glycoprotein substrate. IMB5046 blocked cell cycle at G2/M phase and induced cell apoptosis. Microarray assay indicated that the differentially expressed genes after IMB5046 treatment were highly related to immune system, cell death and cancer. In a mouse xenograft model IMB5046 inhibited the growth of human lung tumor xenograft by 83% at a well-tolerated dose. It is concluded that IMB5046 is a tubulin polymerization inhibitor with novel chemical structure and can overcome multidrug resistance. It is a promising lead compound for cancer chemotherapy, especially for treatment of multidrug-resistant tumors. PMID:27510727

  8. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  9. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells

    SciTech Connect

    Horio, M.; Gottesman, M.M.; Pastan, I. )

    1988-05-01

    Resistance of human cancer cells to multiple cytotoxic hydrophobic agents (multidrug resistance) is due to overexpression of the MDR1 gene, whose product is the plasma membrane P-glycoprotein. Plasma membrane vesicles partially purified from multidrug-resistant human KB carcinoma cells, but not from drug-sensitive cells, accumulate ({sup 3}H)vinblastine in an ATP-dependent manner. This transport is osmotically sensitive, with an apparent K{sub m} of 38 {mu}M for ATP and of {approx} 2 {mu}M for vinblastine. The nonhydrolyzable analog adenosine 5{prime}-({beta},{gamma}-imido)triphosphate does not substitute for ATP but is a competitive inhibitor of ATP for the transport process. Vanadate, and ATPase inhibitor, is a potent noncompetitive inhibitor of transport. These results indicate that hydrolysis of ATP is probably required for active transport vinblastine. Several other drugs to which multidrug-resistant cell lines are resistant inhibit transport, with relative potencies as follows: vincristine > actinomycin D > daunomycin > colchicine = puromycin. Verapamil and quinidine, which reverse the multidrug-resistance phenotype, are good inhibitors of the transport process. These results confirm that multidrug-resistant cells express an energy-dependent plasma membrane transporter for hydrophobic drugs, and establish a system for the detailed biochemical analysis of this transport process.

  10. A Novel Nitrobenzoate Microtubule Inhibitor that Overcomes Multidrug Resistance Exhibits Antitumor Activity

    PubMed Central

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Wu, Shu-Ying; Li, Yi; Xu, Xian-Dong; Shang, Bo-Yang; Zhou, Jin-Ming; Zhu, Zhi-Ling; Si, Shu-Yi; Zhen, Yong-Su

    2016-01-01

    Multidrug resistance is a major limitation for microtubule-binding agents in cancer treatment. Here we report a novel microtubule inhibitor (2-morpholin-4-yl-5-nitro-benzoic acid 4-methylsulfanyl-benzyl ester, IMB5046), its cytotoxicity against multidrug-resistant cell lines and its antitumor efficacy in animal models. IMB5046 disrupted microtubule structures in cells and inhibited purified tubulin polymerization in vitro. It bound to the colchicine pocket of tubulin. IMB5046 displayed potent cytotoxicity against multiple tumor cell lines with an IC50 range of 0.037–0.426 μM. Notably, several multidrug-resistant cell lines which were resistant to colchicine, vincristine and paclitaxel remained sensitive to IMB5046. IMB5046 was not a P-glycoprotein substrate. IMB5046 blocked cell cycle at G2/M phase and induced cell apoptosis. Microarray assay indicated that the differentially expressed genes after IMB5046 treatment were highly related to immune system, cell death and cancer. In a mouse xenograft model IMB5046 inhibited the growth of human lung tumor xenograft by 83% at a well-tolerated dose. It is concluded that IMB5046 is a tubulin polymerization inhibitor with novel chemical structure and can overcome multidrug resistance. It is a promising lead compound for cancer chemotherapy, especially for treatment of multidrug-resistant tumors. PMID:27510727

  11. The TCA cycle is not required for selection or survival of multidrug-resistant Salmonella

    PubMed Central

    Ricci, Vito; Loman, Nick; Pallen, Mark; Ivens, Alasdair; Fookes, Maria; Langridge, Gemma C.; Wain, John; Piddock, Laura J. V.

    2012-01-01

    Objectives The initial aim of this study was to use a systems biology approach to analyse a ciprofloxacin-selected multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium, L664. Methods The whole genome sequence and transcriptome of L664 were analysed. Site-directed mutagenesis to recreate each mutation was carried out, followed by phenotypic characterization and mutation frequency analysis. As a mutation in the TCA cycle was detected we tested the controversial hypothesis regarding the bacterial response to bactericidal antibiotics, put forward by Kohanski et al. (Cell 2007; 130: 797–810 and Mol Cell 2010; 37: 311–20), that exposure of bacteria to agents such as ciprofloxacin produces reactive oxygen species (ROS), which transiently increase the mutation rate giving rise to MDR bacteria. Results L664 contained a mutation in ramR that conferred MDR. A mutation in tctA affected the TCA cycle and conferred the inability to grow on minimal agar. The virulence of L664 was not attenuated. Ciprofloxacin exposure produced ROS in L664 and SL1344 (tctA::aph), but it was reduced and occurred later. There were no significant differences in the rates of killing or mutations per generation to antibiotic resistance between the strains. Conclusions Whilst we confirm production of ROS in response to ciprofloxacin, we have no data to support the hypothesis that this leads to selection of MDR strains. Our results indicate that the mutations in tctA and glgA were random as they did not pre-exist in the parental strain, and that the mutation in tctA did not provide a survival advantage or disadvantage in the presence of antibiotic. PMID:22186876

  12. Crowdsourced Data Indicate Widespread Multidrug Resistance in Skin Flora of Healthy Young Adults.

    PubMed

    Freeman, Scott; Okoroafor, Nnadozie O; Gast, Christopher M; Koval, Mikhail; Nowowiejski, David; O'Connor, Eileen; Harrington, Robert D; Parks, John W; Fang, Ferric C

    2016-03-01

    In a laboratory exercise for undergraduate biology majors, students plated bacteria from swabs of their facial skin under conditions that selected for coagulase-negative Staphylococcus; added disks containing the antibiotics penicillin, oxacillin, tetracycline, and erythromycin; and measured zones of inhibition. Students also recorded demographic and lifestyle variables and merged this information with similar data collected from 9,000 other students who had contributed to the database from 2003 to 2011. Minimum inhibitory concentration (MIC) testing performed at the Harborview Medical Center Microbiology Laboratory (Seattle, WA) indicated a high degree of accuracy for student-generated data; species identification with a matrix-assisted laser desorption ionization (MALDI) Biotyper revealed that over 88% of the cells analyzed by students were S. epidermidis or S. capitus. The overall frequency of resistant cells was high, ranging from 13.2% of sampled bacteria resistant to oxacillin to 61.7% resistant to penicillin. Stepwise logistic regressions suggested that recent antibiotic use was strongly associated with resistance to three of the four antibiotics tested (p = 0.0003 for penicillin, p < 0.0001 for erythromycin and tetracycline), and that age, gender, use of acne medication, use of antibacterial soaps, or makeup use were associated with resistance to at least one of the four antibiotics. Furthermore, drug resistance to one antibiotic was closely linked to resistance to the other three antibiotics in every case (all p values < 0.0001), suggesting the involvement of multidrug-resistant strains. The data reported here suggest that citizen science could not only provide an important educational experience for undergraduates, but potentially play a role in efforts to expand antibiotic resistance (ABR) surveillance. PMID:27047615

  13. A pilot study on water pollution and characterization of multidrug-resistant superbugs from Byramangala tank, Ramanagara district, Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Lokesh, Priyanka; Rao, Reshma; Kumar, Arushi Umesh; Vasist, Kiran S; Narayanappa, Rajeswari

    2013-07-01

    Urbanization and industrialization has increased the strength and qualities of municipal sewage in Bangalore, India. The disposal of sewage into natural water bodies became a serious issue. Byramangala reservoir is one such habitat enormously polluted in South India. The water samples were collected from four hotspots of Byramangala tank in 3 months. The biochemical oxygen demand (BOD) and bacterial counts were determined. The fecal coliforms were identified by morphological, physiological, and biochemical studies. The antibiotics sensitivity profiling of isolated bacteria were further carried out. We have noticed that a high content of BOD in the tank in all the 3 months. The total and fecal counts were found to be varied from 1.6 × 10(6) to 8.2 × 10(6) colony forming unit/ml and >5,500/100 ml, respectively. The variations in BOD and total count were found to be statistically significant at p > 0.05. Many pathogenic bacteria were characterized and most of them were found to be multidrug resistant. Salmonella showed resistance to cefoperazone, cefotaxime, cefixime, moxifloxacin, piperacillin/tazobactam, co-trimoxazole, levofloxacin, trimethoprim, and ceftazidime. Escherichia coli showed resistance to chloramphenicol, trimethoprim, co-trimoxazole, rifampicin, and nitrofurantoin while Enterobacter showed resistant to ampicillin, cefepime, ceftazidime, cefoperazone, and cefotaxime. Klebsiella and Shigella exhibited multiple drug resistance to conventional antibiotics. Staphylococcus showed resistance to vancomycin, methicillin, oxacillin, and tetracycline. Furthermore, Salmonella and Klebsiella are on the verge of acquiring resistance to even the strongest carbapenems-imipenem and entrapenem. Present study revealed that Byramanagala tank has become a cesspool of multidrug-resistant "superbugs" and will be major health concern in South Bangalore, India.

  14. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA.

    PubMed

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-09-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters.

  15. Detection of Multi-drug Resistant Acinetobacter Lwoffii Isolated from Soil of Mink Farm.

    PubMed

    Sun, Na; Wen, Yong Jun; Zhang, Shu Qin; Zhu, Hong Wei; Guo, Li; Wang, Feng Xue; Chen, Qiang; Ma, Hong Xia; Cheng, Shi Peng

    2016-07-01

    There were 4 Acinetobacter lwoffii obtained from soil samples. The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method. Three isolates showed the multi-drug resistance. The presence of resistance genes and integrons was determined using PCR. The aadA1, aac(3')-IIc, aph(3')-VII, aac(6')-Ib, sul2, cat2, floR, and tet(K) genes were detected, respectively. Three class 1 integrons were obtained. The arr-3-aacA4 and blaPSE-1 gene cassette, which cause resistance to aminoglycoside and beta-lactamase antibiotics. Our results reported the detection of multi-drug resistant and carried resistant genes Acinetobacter lwoffii from soil. The findings suggested that we should pay close attention to the prevalence of multi-drug resistant bacterial species of environment. PMID:27554122

  16. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer

    PubMed Central

    HUANG, YINGHONG; COLE, SUSAN P.C.; CAI, TIANGE; CAI, YU

    2016-01-01

    Multidrug resistance (MDR) to chemotherapy presents a major obstacle in the treatment of cancer patients, which directly affects the clinical success rate of cancer therapy. Current research aims to improve the efficiency of chemotherapy, whilst reducing toxicity to prolong the lives of cancer patients. As with good biocompatibility, high stability and drug release targeting properties, nanodrug delivery systems alter the mechanism by which drugs function to reverse MDR, via passive or active targeting, increasing drug accumulation in the tumor tissue or reducing drug elimination. Given the potential role of nanodrug delivery systems used in multidrug resistance, the present study summarizes the current knowledge on the properties of liposomes, lipid nanoparticles, polymeric micelles and mesoporous silica nanoparticles, together with their underlying mechanisms. The current review aims to provide a reliable basis and useful information for the development of new treatment strategies of multidrug resistance reversal using nanodrug delivery systems. PMID:27347092

  17. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons

    PubMed Central

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L.; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L.; L’Abée-Lund, Trine M.; Rudi, Knut

    2015-01-01

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance. PMID:26507767

  18. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA

    PubMed Central

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-01-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters. PMID:26238402

  19. [Multidrug-resistant germs in neurological early rehabilitation (2004-2013)].

    PubMed

    Rollnik, J D; Samady, A-M; Grüter, L

    2014-10-01

    Multidrug-resistant germs are an increasing problem in neurological and neurosurgical early rehabilitation but reliable data is missing. The present study examined the prevalence of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and multidrug-resistant gram negative germs (MRGN) in a German neurological early rehabilitation facility (BDH Clinic Hessisch Oldendorf). Observation period was 2004-2013 (10 years). MRSA prevalence on admission was 11.4%, MRGN prevalence during rehabilitation 11.8%. A combination of different multidrug-resistant germs (MRSA plus MRGN) was observed in 3.8% of all cases. VRE were first detected in 2009, prevalence was as low as 0.1%. High prevalence of MRSA and MRGN raises major financial, medical, and ethical problems in early rehabilitation facilities. The authors encourage further multi-center studies and suggest a better recompense for this group of patients in the German DRG-system (Diagnosis Related Groups).

  20. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    PubMed Central

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  1. Multidrug resistance protein 1 (MRP1, ABCC1), a "multitasking" ATP-binding cassette (ABC) transporter.

    PubMed

    Cole, Susan P C

    2014-11-01

    The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases.

  2. Draft genome sequence of a multidrug-resistant Chryseobacterium indologenes isolate from Malaysia

    PubMed Central

    Yu, Choo Yee; Ang, Geik Yong; Cheng, Huey Jia; Cheong, Yuet Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-01-01

    Chryseobacterium indologenes is an emerging pathogen which poses a threat in clinical healthcare setting due to its multidrug-resistant phenotype and its common association with nosocomial infections. Here, we report the draft genome of a multidrug-resistant C. indologenes CI_885 isolated in 2014 from Malaysia. The 908,704-kb genome harbors a repertoire of putative antibiotic resistance determinants which may elucidate the molecular basis and underlying mechanisms of its resistant to various classes of antibiotics. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession number LJOD00000000. PMID:26981402

  3. [Relevance of animal models in the development of compounds targeting multidrug resistant cancer].

    PubMed

    Füredi, András; Tóth, Szilárd; Hámori, Lilla; Nagy, Veronika; Tóvári, József; Szakács, Gergely

    2015-12-01

    Anticancer compounds are typically identified in in vitro screens. Unfortunately, the in vitro drug sensitivity of cell lines does not reflect treatment efficiency in animal models, and neither show acceptable correlation to clinical results. While cell lines and laboratory animals can be readily "cured", the treatment of malignancies remains hampered by the multidrug resistance (MDR) of tumors. Genetically engineered mouse models (GEMMs) giving rise to spontaneous tumors offer a new possibility to characterize the evolution of drug resistance mechanisms and to target multidrug resistant cancer. PMID:26665195

  4. The emergence and outbreak of multidrug-resistant typhoid fever in China.

    PubMed

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-01-01

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes. PMID:27329848

  5. The emergence and outbreak of multidrug-resistant typhoid fever in China

    PubMed Central

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-01-01

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes. PMID:27329848

  6. Individualizing Risk of Multidrug-Resistant Pathogens in Community-Onset Pneumonia

    PubMed Central

    Falcone, Marco; Russo, Alessandro; Giannella, Maddalena; Cangemi, Roberto; Scarpellini, Maria Gabriella; Bertazzoni, Giuliano; Alarcón, José Martínez; Taliani, Gloria; Palange, Paolo; Farcomeni, Alessio; Vestri, Annarita; Bouza, Emilio; Violi, Francesco; Venditti, Mario

    2015-01-01

    Introduction The diffusion of multidrug-resistant (MDR) bacteria has created the need to identify risk factors for acquiring resistant pathogens in patients living in the community. Objective To analyze clinical features of patients with community-onset pneumonia due to MDR pathogens, to evaluate performance of existing scoring tools and to develop a bedside risk score for an early identification of these patients in the Emergency Department. Patients and Methods This was an open, observational, prospective study of consecutive patients with pneumonia, coming from the community, from January 2011 to January 2013. The new score was validated on an external cohort of 929 patients with pneumonia admitted in internal medicine departments participating at a multicenter prospective study in Spain. Results A total of 900 patients were included in the study. The final logistic regression model consisted of four variables: 1) one risk factor for HCAP, 2) bilateral pulmonary infiltration, 3) the presence of pleural effusion, and 4) the severity of respiratory impairment calculated by use of PaO2/FiO2 ratio. A new risk score, the ARUC score, was developed; compared to Aliberti, Shorr, and Shindo scores, this point score system has a good discrimination performance (AUC 0.76, 95% CI 0.71-0.82) and calibration (Hosmer-Lemeshow, χ2 = 7.64; p = 0.469). The new score outperformed HCAP definition in predicting etiology due to MDR organism. The performance of this bedside score was confirmed in the validation cohort (AUC 0.68, 95% CI 0.60-0.77). Conclusion Physicians working in ED should adopt simple risk scores, like ARUC score, to select the most appropriate antibiotic regimens. This individualized approach may help clinicians to identify those patients who need an empirical broad-spectrum antibiotic therapy. PMID:25860142

  7. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates

    PubMed Central

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3–13.6 mm) than Gram-positive (1.8–8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  8. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI.

    PubMed

    Kappell, Anthony D; DeNies, Maxwell S; Ahuja, Neha H; Ledeboer, Nathan A; Newton, Ryan J; Hristova, Krassimira R

    2015-01-01

    Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (bla OXA, bla SHV, and bla PSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and bla OXA than isolates from urban waterway. These results indicate that Milwaukee's urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance.

  9. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI

    PubMed Central

    Kappell, Anthony D.; DeNies, Maxwell S.; Ahuja, Neha H.; Ledeboer, Nathan A.; Newton, Ryan J.; Hristova, Krassimira R.

    2015-01-01

    Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (blaOXA, blaSHV, and blaPSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance. PMID:25972844

  10. Drug efflux by a small multidrug resistance protein is inhibited by a transmembrane peptide.

    PubMed

    Poulsen, Bradley E; Deber, Charles M

    2012-07-01

    Drug-resistant bacteria use several families of membrane-embedded transporters to remove antibiotics from the cell. One such family is the small multidrug resistance proteins (SMRs) that, because of their relatively small size (ca. 110 residues with four transmembrane [TM] helices), must form (at least) dimers to efflux drugs. Here, we use a Lys-tagged synthetic peptide with exactly the same sequence as TM4 of the full-length SMR Hsmr from Halobacterium salinarum [TM4 sequence: AcA(Sar)(3)-VAGVVGLALIVAGVVVLNVAS-KKK (Sar = N-methylglycine)] to compete with and disrupt the native TM4-TM4 interactions believed to constitute the locus of Hsmr dimerization. Using a cellular efflux assay of the fluorescent SMR substrate ethidium bromide, we determined that bacterial cells containing Hsmr are able to remove cellular ethidium via first-order exponential decay with a rate constant (k) of 10.1 × 10(-3) ± 0.7 × 10(-3) s(-1). Upon treatment of the cells with the TM4 peptide, we observed a saturable ~60% decrease in the efflux rate constant to 3.7 × 10(-3) ± 0.2 × 10(-3) s(-1). In corresponding experiments with control peptides, including scrambled sequences and a sequence with d-chirality, a decrease in ethidium efflux either was not observed or was marginal, likely from nonspecific effects. The designed peptides did not evoke bacterial lysis, indicating that they act via the α-helicity and membrane insertion propensities of the native TM4 helix. Our overall results suggest that this approach could conceivably be used to design hydrophobic peptides for disruption of key TM-TM interactions of membrane proteins and represent a valuable route to the discovery of new therapeutics.

  11. Phosphate-Containing Polyethylene Glycol Polymers Prevent Lethal Sepsis by Multidrug-Resistant Pathogens

    PubMed Central

    Zaborin, Alexander; Defazio, Jennifer R.; Kade, Matthew; Kaiser, Brooke L. Deatherage; Belogortseva, Natalia; Camp, David G.; Smith, Richard D.; Adkins, Joshua N.; Kim, Sangman M.; Alverdy, Alexandria; Goldfeld, David; Firestone, Millicent A.; Collier, Joel H.; Jabri, Bana; Tirrell, Matthew

    2014-01-01

    Antibiotic resistance among highly pathogenic strains of bacteria and fungi is a growing concern in the face of the ability to sustain life during critical illness with advancing medical interventions. The longer patients remain critically ill, the more likely they are to become colonized by multidrug-resistant (MDR) pathogens. The human gastrointestinal tract is the primary site of colonization of many MDR pathogens and is a major source of life-threatening infections due to these microorganisms. Eradication measures to sterilize the gut are difficult if not impossible and carry the risk of further antibiotic resistance. Here, we present a strategy to contain rather than eliminate MDR pathogens by using an agent that interferes with the ability of colonizing pathogens to express virulence in response to host-derived and local environmental factors. The antivirulence agent is a phosphorylated triblock high-molecular-weight polymer (here termed Pi-PEG 15–20) that exploits the known properties of phosphate (Pi) and polyethylene glycol 15-20 (PEG 15-20) to suppress microbial virulence and protect the integrity of the intestinal epithelium. The compound is nonmicrobiocidal and appears to be highly effective when tested both in vitro and in vivo. Structure functional analyses suggest that the hydrophobic bis-aromatic moiety at the polymer center is of particular importance to the biological function of Pi-PEG 15-20, beyond its phosphate content. Animal studies demonstrate that Pi-PEG prevents mortality in mice inoculated with multiple highly virulent pathogenic organisms from hospitalized patients in association with preservation of the core microbiome. PMID:24277029

  12. Fighting infections due to multidrug-resistant Gram-positive pathogens.

    PubMed

    Cornaglia, G

    2009-03-01

    Growing bacterial resistance in Gram-positive pathogens means that what were once effective and inexpensive treatments for infections caused by these bacteria are now being seriously questioned, including penicillin and macrolides for use against pneumococcal infections and-in hospitals-oxacillin for use against staphylococcal infections. As a whole, multidrug-resistant (MDR) Gram-positive pathogens are rapidly becoming an urgent and sometimes unmanageable clinical problem. Nevertheless, and despite decades of research into the effects of antibiotics, the actual risk posed to human health by antibiotic resistance has been poorly defined; the lack of reliable data concerning the outcomes resulting from antimicrobial resistance stems, in part, from problems with study designs and the methods used in resistence determination. Surprisingly little is known, too, about the actual effectiveness of the many types of intervention aimed at controlling antibiotic resistance. New antibiotics active against MDR Gram-positive pathogens have been recently introduced into clinical practice, and the antibiotic pipeline contains additional compounds at an advanced stage of development, including new glycopeptides, new anti-methicillin-resistant Staphylococcus aureus (MRSA) beta-lactams, and new diaminopyrimidines. Many novel antimicrobial agents are likely to be niche products, endowed with narrow antibacterial spectra and/or targeted at specific clinical problems. Therefore, an important educational goal will be to change the current, long-lasting attitudes of both physicians and customers towards broad-spectrum and multipurpose compounds. Scientific societies, such as the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), must play a leading role in this process.

  13. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates.

    PubMed

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3-13.6 mm) than Gram-positive (1.8-8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  14. Use of generalized ordered logistic regression for the analysis of multidrug resistance data.

    PubMed

    Agga, Getahun E; Scott, H Morgan

    2015-10-01

    Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated.

  15. [Investigation of extensive drug resistance in multidrug resistance tuberculosis isolates].

    PubMed

    Bektöre, Bayhan; Haznedaroğlu, Tunçer; Baylan, Orhan; Ozyurt, Mustafa; Ozkütük, Nuri; Satana, Dilek; Cavuşoğlu, Cengiz; Seber, Engin

    2013-01-01

    Increasing number of drug resistant tuberculosis (TB) cases, observed in recent years, is an important public health problem. Extensively drug resistant TB (XDR-TB) is the development of resistance against any fluoroquinolones and at least one of the injectable second line anti-TB drugs in addition to resistance against isoniazide and rifampicin which are the first line anti-TB drugs [definition of multidrug resistant TB (MDR-TB)]. Anti-TB therapy failed with first-line anti-TB drugs due to MDR-TB cases is being planned according to second-line anti-TB drug susceptibility test results if available and if not, standart treatment protocols are used. Although it is recommended that individual anti-TB therapy should be designed according to the isolate's susceptibility test results, standart therapeutic protocols are always needed since second-line anti-TB drug susceptibility testing generally could not be performed in developing countries like Turkey. For this reason, nationwide and regional surveillance studies to determine the resistance patterns are always needed to make decisions about the standard therapy algorithms. In this study, it was aimed to investigate the presence of extensive drug resistance among 81 MDR-TB isolates obtained from various health care facilities from Istanbul, Izmir and Manisa and to determine the XDR-TB incidence in Marmara and Aegean regions. Furthermore, we aimed to provide epidemiological data to clinicians to support their choice of second-line anti-TB drugs for MDR-TB infections. Susceptibility testing of isolates for the first and the second-line anti-TB drugs were performed by using modified Middlebrook 7H9 broth in fluorometric BACTEC MGIT 960 system (Becton Dickinson, USA). Eighty-one MDR-TB isolates included in this study were isolated from 43 (53.1%) patients residing in Istanbul, 26 (32.1%) in Izmir and 12 (14.8%) in Manisa provinces. We could not find any isolate consistent with XDR-TB definition in this study. Second

  16. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.

    PubMed

    Avner, Benjamin S; Fialho, Arsenio M; Chakrabarty, Ananda M

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens--including bacteria such as Pseudomonas aeruginosa, viruses, and parasites--and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of their

  17. Overcoming drug resistance in multi-drug resistant cancers and microorganisms

    PubMed Central

    Avner, Benjamin S.; Fialho, Arsenio M.; Chakrabarty, Ananda M.

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens—including bacteria such as Pseudomonas aeruginosa, viruses, and parasites—and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of

  18. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

    PubMed

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg; Ulrich, Anne S

    2015-09-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa. PMID:26077259

  19. Synergistic Effect of Membrane-Active Peptides Polymyxin B and Gramicidin S on Multidrug-Resistant Strains and Biofilms of Pseudomonas aeruginosa

    PubMed Central

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg

    2015-01-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa. PMID:26077259

  20. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

    PubMed

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg; Ulrich, Anne S

    2015-09-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa.

  1. Proteomic analysis of multidrug resistant Escherichia coli strains from scouring calves.

    PubMed

    Gautam, Ablesh; Vinson, Heather M; Gibbs, Penelope S; Olet, Susan; Barigye, Robert

    2011-08-01

    A number of researchers have used chemical inhibitors that target membrane efflux pumps as an experimental treatment strategy for multidrug resistant (MDR) bacterial infections. However, most of these compounds are toxic in vertebrate animals. The present research was therefore done to describe expression dynamics of drug resistance-associated Escherichia coli proteins that could serve as novel drug targets. Proteomes of MDR and antimicrobial susceptible (AS) E. coli were studied in two dimensional (2-D) polyacrylamide gels and liquid chromatography-mass spectrometry (LC-MS) was performed on proteins of interest. The number of recovered peptides per protein was used to elucidate the amounts of target proteins expressed in MDR and AS E. coli strains. Eight proteins that may be potentially involved in mechanisms of drug resistance were analyzed and identified by LC-MS. These were grouped into membrane porins (TolC, OmpA, OmpC, Nmpc Precursor), proteins involved in microbial protein synthesis (EF-Ts, EF-Tu, RpsA) and Dps, a protein of unknown location and function. Experimental data demonstrated variability in the expression patterns and quantities of the four porins (TolC, OmpA, OmpC, Nmpc precursor), the three microbial protein synthesis associated proteins (EF-Ts, EF-Tu and RpsA), and Dps which has been previously associated with drug resistance. While variability was seen in quantities and expression patterns of some of the proteins of interest, the present data falls short of determining the suitability of these proteins as novel drug targets. Further studies are required to explore how these proteins could be targeted for drug development. PMID:21530109

  2. Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes.

    PubMed

    Omosa, Leonidah K; Midiwo, Jacob O; Mbaveng, Armelle T; Tankeo, Simplice B; Seukep, Jackson A; Voukeng, Igor K; Dzotam, Joachim K; Isemeki, John; Derese, Solomon; Omolle, Ruth A; Efferth, Thomas; Kuete, Victor

    2016-01-01

    In the current study forty eight compounds belonging to anthraquinones, naphthoquinones, benzoquinones, flavonoids (chalcones and polymethoxylated flavones) and diterpenoids (clerodanes and kauranes) were explored for their antimicrobial potential against a panel of sensitive and multi-drug resistant Gram-negative and Gram-positive bacteria. The minimal inhibitory concentration (MIC) determinations on the tested bacteria were conducted using modified rapid INT colorimetric assay. To evaluate the role of efflux pumps in the susceptibility of Gram-negative bacteria to the most active compounds, they were tested in the presence of phenylalanine arginine β-naphthylamide (PAβN) (at 30 µg/mL) against selected multidrug resistance (MDR) bacteria. The anthraquinone, emodin, naphthaquinone, plumbagin and the benzoquinone, rapanone were active against methicillin resistant Staphylococcus aureus (MRSA) strains of bacteria with MIC values ranging from 2 to 128 μg/mL. The structure activity relationships of benzoquinones against the MDR Gram-negative phenotype showed antibacterial activities increasing with increase in side chain length. In the chalcone series the presence of a hydroxyl group at C3' together with a methoxy group and a second hydroxyl group in meta orientation in ring B of the chalcone skeleton appeared to be necessary for minimal activities against MRSA. In most cases, the optimal potential of the active compounds were not attained as they were extruded by bacterial efflux pumps. However, the presence of the PAβN significantly increased the antibacterial activities of emodin against Gram-negative MDR E. coli AG102, 100ATet; K. pneumoniae KP55 and KP63 by >4-64 g/mL. The antibacterial activities were substantially enhanced and were higher than those of the standard drug, chloramphenicol. These data clearly demonstrate that the active compounds, having the necessary pharmacophores for antibacterial activities, including some quinones and chalcones are

  3. Antibiotic sensitivity and sequence amplification patterns of genes in multidrug resistant enterobacteria isolates from processed foods in some West African countries.

    PubMed

    Owoseni, Abimbola Adetokunboh; Onilude, Abiodun Anthony

    2011-01-01

    Diarrhoea, dysentery and other diseases due to other enteric bacteria have reportedly been found to resist chemotherapeutic treatment in some West African communities with fatal consequences in some cases. This study was carried out to determine multidrug resistance patterns of Enterobacteria isolates from processed ready-to-eat foods. Indigenously processed food samples of different types were collected from two Francophone and two Anglophone countries in the West African sub-region during the wet and dry seasons of a sampling period of two years. Enterobacteria were isolated from the samples using standard techniques. Amplification of chromosomal DNA of the isolates using the Polymerase Chain Reaction was carried out. The results obtained were subjected to statistical analyses. All isolates showed resistance to cefuroxime (90.7%), nitrofurantoin (90.6%), augmentin (86.1%) and ampicillin (51.2%) while all were sensitive to gentamycin and ciprofloxacin. There was amplification indicating the presence of invA gene at a position of 240 bp. There was no amplification at all for the spvC gene in any of the isolates tested. Multidrug resistant enteric bacteria in these foods containing the invA gene could lead to infections with uncontrolled antibiotic use. The presence of enteric bacteria in the foods analyzed which provide undeniable evidence of the poor microbiological quality of these foods could form the basis of a useful databank in formulation of food-borne disease control and prevention strategies.

  4. Antibiotic exposure can induce various bacterial virulence phenotypes in multidrug-resistant Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is one of the most prevalent bacterial foodborne diseases in the United States and causes an estimated 1 million human cases every year. Multidrug-resistant (MDR) Salmonella has emerged as a public health issue as it has been associated with increased morbidity in humans and mortality in...

  5. Multidrug-Resistant Pseudomonas aeruginosa Infection in a Child with Cystic Fibrosis.

    PubMed

    Ang, Jocelyn Y; Abdel-Haq, Nahed; Zhu, Frank; Thabit, Abrar K; Nicolau, David P; Satlin, Michael J; van Duin, David

    2016-10-01

    We describe a pediatric cystic fibrosis patient who developed a pulmonary exacerbation due to two multidrug-resistant (MDR) Pseudomonas aeruginosa isolates. In addition to these MDR organisms, the case was further complicated by β-lactam allergy. Despite the MDR phenotype, both isolates were susceptible to an antimicrobial combination. PMID:27664282

  6. Draft Genome Sequence of a Multidrug-Resistant Acinetobacter baumannii Strain from Chile

    PubMed Central

    Lopes, Bruno S.; García, Patricia; Domínguez Yévenes, Mariana; Lima, Celia; Bello-Toledo, Helia; González-Rocha, Gerardo; Amyes, Sebastian G. B.

    2015-01-01

    Acinetobacter baumannii strain Ab5 was isolated in the year 2007 in Chile, being one of the first multidrug-resistant (MDR) cases reported in the country. Here, we present the very first draft genome sequence of an MDR Chilean strain, which shows the presence of diverse resistance and acquired virulence genes. PMID:26139713

  7. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    PubMed Central

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  8. Worldwide occurrence of integrative conjugative element encoding multidrug resistance determinants in epidemic Vibrio cholerae O1.

    PubMed

    Marin, Michel A; Fonseca, Erica L; Andrade, Bruno N; Cabral, Adriana C; Vicente, Ana Carolina P

    2014-01-01

    In the last decades, there has been an increase of cholera epidemics caused by multidrug resistant strains. Particularly, the integrative and conjugative element (ICE) seems to play a major role in the emergence of multidrug resistant Vibrio cholerae. This study fully characterized, by whole genome sequencing, new ICEs carried by multidrug resistant V. cholerae O1 strains from Nigeria (2010) (ICEVchNig1) and Nepal (1994) (ICEVchNep1). The gene content and gene order of these two ICEs are the same, and identical to ICEVchInd5, ICEVchBan5 and ICEVchHai1 previously identified in multidrug resistant V. cholerae O1. This ICE is characterized by dfrA1, sul2, strAB and floR antimicrobial resistance genes, and by unique gene content in HS4 and HS5 ICE regions. Screening for ICEs, in publicly available V. cholerae genomes, revealed the occurrence and widespread distribution of this ICE among V. cholerae O1. Metagenomic analysis found segments of this ICE in marine environments far from the direct influence of the cholera epidemic. Therefore, this study revealed the epidemiology of a spatio-temporal prevalent ICE in V. cholerae O1. Its occurrence and dispersion in V. cholerae O1 strains from different continents throughout more than two decades can be indicative of its role in the fitness of the current pandemic lineage.

  9. Fatal skin and soft tissue infection of multidrug resistant Acinetobacter baumannii: A case report

    PubMed Central

    Ali, Aqsa; Botha, John; Tiruvoipati, Ravindranath

    2014-01-01

    INTRODUCTION Acinetobacter baumannii is usually associated with respiratory tract, urinary tract and bloodstream infections. Recent reports suggest that it is increasingly causing skin and soft tissue infections. It is also evolving as a multidrug resistant organism that can be difficult to treat. We present a fatal case of multidrug resistant A. baumannii soft tissue infection and review of relevant literature. PRESENTATION OF CASE A 41 year old morbidly obese man, with history of alcoholic liver disease presented with left superficial pre-tibial abrasions and cellulitis caused by multidrug resistant (MDR) A. baumannii. In spite of early antibiotic administration he developed extensive myositis and fat necrosis requiring extensive and multiple surgical debridements. He deteriorated despite appropriate antibiotic therapy and multiple surgical interventions with development of multi-organ failure and died. DISCUSSION Managing Acinetobacter infections remains difficult due to the array of resistance and the pathogens ability to develop new and ongoing resistance. The early diagnosis of necrotizing soft tissue infection may be challenging, but the key to successful management of patients with necrotizing soft tissue infection are early recognition and complete surgical debridement. CONCLUSION A. baumannii is emerging as an important cause of severe, life-threatening soft tissue infections. Multidrug resistant A. baumannii soft tissue infections may carry a high mortality in spite of early and aggressive treatment. Clinicians need to consider appropriate early empirical antibiotic coverage or the use of combination therapy to include MDR A. baumannii as a cause of skin and soft tissue infections. PMID:25016080

  10. Emergence of Multidrug Resistance in Ubiquitous and Dominant Pseudomonas aeruginosa Serogroup O:11

    PubMed Central

    Tassios, Panayotis T.; Gennimata, Vassiliki; Maniatis, Anthony N.; Fock, Caroline; Legakis, Nicholas J.; Group, The Greek Pseudomonas aeruginosa Study

    1998-01-01

    The serotypes of 88 nonreplicate nosocomial Pseudomonas aeruginosa isolates from 11 Greek hospitals were studied in relation to their antibiotic susceptibilities. Rates of resistance to β-lactams, aminoglycosides, and quinolones ranged from 31 to 65%, except for those to ceftazidime (15%) and imipenem (21%). Four serotypes were dominant: O:12 (25% of isolates), O:1 (17%), O:11 (16%), and O:6 (10%). Multidrug resistance rates in the major serogroups O:12 (91%) and O:11 (79%) were higher than those in serogroups O:1 (40%) and O:6 (43%). Further typing with respect to pulsed-field gel electrophoresis patterns following XbaI digestion of genomic DNA discriminated the isolates into 74 types. Pulsed-field gel electrophoresis revealed that the ubiquitous O:12 group was genetically homogeneous, since 95% of strains belonged to two clusters of genotypic similarity, while the O:11 strains, present in 8 of the 11 hospitals, were distributed among five such clusters. Therefore, apart from the already reported O:12 multidrug-resistant European clone, an O:11 population, characterized by a serotype known to be dominant in the environment and the hospital in several parts of the world, but previously not associated with multidrug resistance to antibiotics, has progressed to a multidrug-resistant state. PMID:9542905

  11. Hospital-acquired infections due to multidrug-resistant organisms in Hungary, 2005-2010.

    PubMed

    Caini, S; Hajdu, A; Kurcz, A; Borocz, K

    2013-01-10

    Healthcare-associated infections caused by multidrug-resistant organisms are associated with prolonged medical care, worse outcome and costly therapies. In Hungary, hospital-acquired infections (HAIs) due to epidemiologically important multidrug-resistant organisms are notifiable by law since 2004. Overall, 6,845 case-patients (59.8% men; median age: 65 years) were notified in Hungary from 2005 to 2010. One third of case-patients died in hospital. The overall incidence of infections increased from 5.4 in 2005 to 14.7 per 100,000 patient-days in 2010. Meticillin-resistant Staphylococcus aureus (MRSA) was the most frequently reported pathogen (52.2%), but while its incidence seemed to stabilise after 2007, notifications of multidrug-resistant Gram-negative organisms have significantly increased from 2005 to 2010. Surgical wound and bloodstream were the most frequently reported sites of infection. Although MRSA incidence has seemingly reached a plateau in recent years, actions aiming at reducing the burden of HAIs with special focus on Gram-negative multidrug-resistant organisms are needed in Hungary. Continuing promotion of antimicrobial stewardship, infection control methodologies, reinforced HAI surveillance among healthcare and infection control practitioners, and engagement of stakeholders, hospital managers and public health authorities to facilitate the implementation of existing guidelines and protocols are essential.

  12. Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance.

    PubMed

    Su, Chia-Wei; Chen, San-Yuan; Liu, Dean-Mo

    2013-05-01

    A newly-designed drug carrier with enzyme-triggered release behavior and the ability to circumvent multidrug resistance was successfully developed. By optimizing the ratio of lecithin and polysaccharide in reverse micelles, encapsulation efficiency and encapsulation stability can be significantly improved.

  13. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    PubMed Central

    Macedo, Maíra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  14. Primary multidrug-resistant Mycobacterium tuberculosis in 2 regions, Eastern Siberia, Russian Federation.

    PubMed

    Zhdanova, Svetlana; Heysell, Scott K; Ogarkov, Oleg; Boyarinova, Galina; Alexeeva, Galina; Pholwat, Suporn; Zorkaltseva, Elena; Houpt, Eric R; Savilov, Eugeniy

    2013-10-01

    Of 235 Mycobacterium tuberculosis isolates from patients who had not received tuberculosis treatment in the Irkutsk oblast and the Sakha Republic (Yakutia), eastern Siberia, 61 (26%) were multidrug resistant. A novel strain, S 256, clustered among these isolates and carried eis-related kanamycin resistance, indicating a need for locally informed diagnosis and treatment strategies. PMID:24047678

  15. Pre-multidrug-resistant Mycobacterium tuberculosis Beijing strain associated with disseminated tuberculosis in a pet dog.

    PubMed

    Botelho, Ana; Perdigão, João; Canto, Ana; Albuquerque, Teresa; Leal, Nuno; Macedo, Rita; Portugal, Isabel; Cunha, Mónica V

    2014-01-01

    Resistance to isoniazid, ethambutol, and streptomycin was detected in a Mycobacterium tuberculosis strain, belonging to the Beijing family lineage, isolated from two nodule exudates of a Yorkshire terrier with generalized tuberculosis. This report alerts medical practitioners to the risk of dissemination of pre-multidrug-resistant tuberculosis (preMDR-TB) through exposure to M. tuberculosis-shedding pets.

  16. Comparative genomics of the IncA/C multidrug resistance plasmid family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we...

  17. Draft Genome Sequence of the Multidrug-Resistant Clinical Isolate Dermabacter hominis 1368

    PubMed Central

    Albersmeier, Andreas; Bomholt, Christina; Glaub, Alina; Rückert, Christian; Soriano, Francisco; Fernández-Natal, Isabel

    2014-01-01

    Dermabacter hominis is a common colonizer of the healthy human skin and is rarely detected as an opportunistic human pathogen. The genome sequence of the multidrug-resistant D. hominis strain 1368, isolated from blood cultures of a pyelonephritis patient, provides insights into the repertoire of antibiotic resistance genes. PMID:25059872

  18. Molecular typing of multidrug-resistant Salmonella Blockley outbreak isolates from Greece.

    PubMed Central

    Tassios, P. T.; Chadjichristodoulou, C.; Lambiri, M.; Kansouzidou-Kanakoudi, A.; Sarandopoulou, Z.; Kourea-Kremastinou, J.; Tzouvelekis, L. S.; Legakis, N. J.

    2000-01-01

    During 1998, a marked increase (35 cases) in human gastroenteritis due to Salmonella Blockley, a serotype rarely isolated from humans in the Western Hemisphere, was noted in Greece. The two dominant multidrug-resistance phenotypes (23 of the 29 isolates studied) were associated with two distinct DNA fingerprints, obtained by pulsed-field gel electrophoresis of genomic DNA. PMID:10653572

  19. ACSSuT Multi-Drug Resistance Among Salmonella Isolates of Animal Origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Multi-drug resistant (MDR) Salmonella Typhimurium DT104 (DT104) emerged in the mid-1990’s in humans and animals with infection resulting in increased morbidity and mortality. DT104 was characterized by resistance to Ampicillin, Chloramphenicol, Streptomycin, Sulfa, and Tetracycline (AC...

  20. Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells.

    PubMed

    Mapoung, Sariya; Pitchakarn, Pornsiri; Yodkeeree, Supachai; Ovatlarnporn, Chitchamai; Sakorn, Natee; Limtrakul, Pornngarm

    2016-01-25

    Curcumin analogs were synthesized and their multi-drug resistance (MDR) reversing properties were determined in human MDR leukemic (K562/Adr) cells. Four analogs, 1,7-bis-(3,4-dimethoxy-phenyl)-hepta-1,6-diene-3,5-dione (1J), 2,6-bis-(4-hydroxy-3-methoxy-benzylidene)-cyclohexanone (2A), 2,6-bis-(3,4-dihydroxy-benzylidene)-cyclohexanone (2F) and 2,6-bis-(3,4-dimethoxy-benzylidene)-cyclohexanone (2J) markedly increased the sensitivity of K562/Adr cells to paclitaxel (PTX) for 8-, 2-, 8- and 16- folds, respectively and vinblastine (Vin) for 5-, 3-, 12- and 30- folds, respectively. The accumulation of P-gp substrates, Calcein-AM, Rhodamine 123 and Doxorubicin, was significantly increased by 1J (up to 6-, 11- and 22- folds, respectively) and 2J (up to 7-, 12- and 17- folds, respectively). Besides 2A, 2F and 2J dramatically decreased P-gp expression in K562/Adr cells. These results could be summarized in the following way. Analog 1J inhibited only P-gp function, while 2A and 2F inhibited only P-gp expression. Interestingly, 2J exerts inhibition of both P-gp function and expression. The combination index (CI) of combination between 2J and PTX (0.09) or Vin (0.06) in K562/Adr cells indicated strong synergistic effects, which likely due to its MDR reversing activity. Moreover, these analogs showed less cytotoxicity to peripheral mononuclear cells (human) and red blood cells (human and rat) suggesting the safety of analogs for further animal and clinical studies. PMID:26689174

  1. Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARγ agonists

    PubMed Central

    To, Kenneth K W; Tomlinson, Brian

    2013-01-01

    Background and Purpose Multidrug resistance (MDR), usually mediated by overexpression of efflux transporters such as P-gp, ABCG2 and/or MRP1, remains a major obstacle hindering successful cancer chemotherapy. There has been great interest in the development of inhibitors towards these transporters to circumvent resistance. However, since the inhibition of transporter is not specific to cancer cells, a decrease in the cytotoxic drug dosing may be needed to prevent excess toxicity, thus undermining the potential benefit brought about by a drug efflux inhibitor. The design of potent MDR modulators specific towards resistant cancer cells and devoid of drug-drug interactions will be needed to effect MDR reversal. Experimental Approach Recent evidence suggests that the PTEN/PI3K/Akt pathway may be exploited to alter ABCG2 subcellular localization, thereby circumventing MDR. Three PPARγ agonists (telmisartan, pioglitazone and rosiglitazone) that have been used in the clinics were tested for their effect on the PTEN/PI3K/Akt pathway and possible reversal of ABCG2-mediated drug resistance. Key Results The PPARγ agonists were found to be weak ABCG2 inhibitors by drug efflux assay. They were also shown to elevate the reduced PTEN expression in a resistant and ABCG2-overexpressing cell model, which inhibit the PI3K-Akt pathway and lead to the relocalization of ABCG2 from the plasma membrane to the cytoplasma, thus apparently circumventing the ABCG2-mediated MDR. Conclusions and Implications Since this PPARγ/PTEN/PI3K/Akt pathway regulating ABCG2 is only functional in drug-resistant cancer cells with PTEN loss, the PPARγ agonists identified may represent promising agents targeting resistant cells for MDR reversal. PMID:24032744

  2. Multidrug Resistant CTX-M-Producing Escherichia coli: A Growing Threat among HIV Patients in India.

    PubMed

    Padmavathy, Kesavaram; Padma, Krishnan; Rajasekaran, Sikhamani

    2016-01-01

    Extended Spectrum β-Lactamases (ESBLs) confer resistance to third-generation cephalosporins and CTX-M types have emerged as the most prominent ESBLs worldwide. This study was designed to determine the prevalence of CTX-M positive ESBL-producing urinary E. coli isolates from HIV patients and to establish the association of multidrug resistance, phylogeny, and virulence profile with CTX-M production. A total of 57 ESBL producers identified among 76 E. coli strains isolated from HIV patients from South India were screened for bla CTX-M, AmpC production, multidrug resistance, and nine virulence associated genes (VAGs), fimH, pap, afa/dra, sfa/foc, iutA, fyuA, iroN, usp, and kpsMII. The majority (70.2%) of the ESBL producers harbored bla CTX-M and were AmpC coproducers. Among the CTX-M producers, 47.5% were found to be UPEC, 10% harbored as many as 7 VAGs, and 45% possessed kpsMII. Multidrug resistance (CIP(R)SXT(R)GEN(R)) was significantly more common among the CTX-M producers compared to the nonproducers (70% versus 41.2%). However, 71.4% of the multidrug resistant CTX-M producers exhibited susceptibility to nitrofurantoin thereby making it an effective alternative to cephalosporins/fluoroquinolones. The emergence of CTX-M-producing highly virulent, multidrug resistant uropathogenic E. coli is of significant public health concern in countries like India with a high burden of HIV/AIDS.

  3. In vivo uptake of carbon-14-colchicine for identification of tumor multidrug resistance

    SciTech Connect

    Mehta, B.M.; Rosa, E.; Biedler, J.L.

    1994-07-01

    A major limitation in the treatment of cancer with natural product chemotherapeutic agents is the development of multidrug resistance (MDR). Multidrug resistance is attributed to enhanced expression of the multidrug resistance gene MDR1. Colchicine (CHC) is known to be one of the MDR drugs. The authors have previously demonstrated that it is possible to distinguish multidrug resistant tumors from the multidrug-sensitive tumors in vivo on the basis of tritium ({sup 3}H) uptake following injection of {sup 3}H-CHC. The present studies were carried out in xenografted animals using {sup 14}C-CHC which may be more indicative of {sup 11}C-labeled CHC distribution with regard to circulating metabolites, since metabolic processes following injection of (ring C, methoxy-{sup 11}C)-CHC may produce significant amounts of circulating 1l-carbon fragments (i.e., methanol and/or formaldehyde). Experiments were carried out at a dose of 2 mg/kg. Activity concentration per injected dose was approximately twice as great in sensitive as in resistant tumors (p < 0.05) at 60 min following intravenous injection of {sup 14}C-CHC. About 75% of total activity was CHC in the sensitive tumors. The findings are further confirmed by the quantitative autoradiographic evaluation of resistant and sensitive tumors. These studies confirm our previous observations that it is possible to noninvasively distinguish multidrug-resistant tumors from sensitive tumors in vivo based on uptake of an injected MDR drug using a{sup 14}C-labeled CHC at the same position and of comparable specific activity to a {sup 11}C-CHC tracer used for PET imaging. 16 refs., 5 figs., 2 tabs.

  4. Prevalence of multidrug resistant Gram-positive cocci in a Chinese hospital over an 8-year period.

    PubMed

    Zhang, Ruiqin; Wang, Fengzhi; Kang, Jianbang; Wang, Xinchun; Yin, Donghong; Dang, Wen; Duan, Jinju

    2015-01-01

    Gram-positive cocci are common causes of bloodstream and nosocomial infections, and their multi-drug resistance is an increasingly serious problem. The present study aimed to assess the prevalence of multi-drug-resistant Gram-positive cocci in a Chinese population. In this retrospective study, data about Gram-positive cocci from in-patients (January 2006 and December 2013) at the Second Hospital of Shanxi Medical University, Taiyuan, China, were reviewed. Antimicrobial susceptibility profile of the isolated Gram-positive cocci was evaluated using the disk diffusion method. Antibiotic resistance was determined according to the Clinical and Laboratory Standards Institute 2009 guidelines. The prevalence of drug resistance was determined, as well as correlation coefficients for various drugs between the resistance rate and year of sample collection. A total of 7789 Gram-positive cocci isolates were found, including 2576 (33%) coagulase-negative Staphylococci, 1477 (19%) Staphylococci aureus, 1343 (17%) Enterococcus faecalis, and 1139 (15%) Enterococcus faecium. The proportions of methicillin-resistant Staphylococci aureus (MRSA) and methicillin-resistant Staphylococci (MRS) were 31.5% (465/1477) and 61.6% (1587/2576), respectively. Among all isolates, MRS had much higher drug resistance rate than methicillin-sensitive Staphylococci (P<0.05). E. faecalis had a higher multi-drug resistance rate than E. faecium (P<0.01). Interestingly, MRSA resistance rates declined over the years, showing a negative correlation coefficient for all drugs, with significance for levofloxacin, azithromycin, erythromycin, and clindamycin (P<0.05), but not sulphamethoxazole/trimethoprim (P=0.057) and gentamicin (P=0.186). These results indicated that Staphylococci were the predominant Gram-positive cocci isolated. There was a trend of decreasing MRSA in the population studied.

  5. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    PubMed Central

    2012-01-01

    Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR), and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC) of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN), a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY). Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria. PMID:22709668

  6. [Epidemiology of multi-drug resistant gramnegative bacilli].

    PubMed

    Ruiz-Garbajosa, P; Cantón, R

    2016-09-01

    Current antimicrobial resistance in Gram negative bacilli is particularly worrisome due to development of resistance to all available antimicrobial agents. This situation dramatically limits therapeutic options. The microorganisms acquire a multiresistance phenotype as a consequence of different complex processes in which the antimicrobials acts as selective driver of resistance. Dissemination of multiresistant bacteria is driven by the expansion of the high-risk clones. These clones can be selected in the presence of antimicrobials allowing their persistence over time. PMID:27608308

  7. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic E. coli and Enterotoxigenic E. coli, on Raw Nopalitos (Opuntia ficus-indica L.) and in Nopalitos Salads from Local Retail Markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Torres-Vitela, Mdel Refugio; Villarruel-López, Angelica; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-05-01

    The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico.

  8. Bundled strategies against infection after liver transplantation: Lessons from multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Sato, Asahi; Kaido, Toshimi; Iida, Taku; Yagi, Shintaro; Hata, Koichiro; Okajima, Hideaki; Takakura, Shunji; Ichiyama, Satoshi; Uemoto, Shinji

    2016-04-01

    Infection is a life-threatening complication after liver transplantation (LT). A recent outbreak of multidrug-resistant Pseudomonas aeruginosa triggered changes in our infection control measures. This study investigated the usefulness of our bundled interventions against postoperative infection after LT. This before-and-after analysis enrolled 130 patients who underwent living donor or deceased donor LT between January 2011 and October 2014. We initiated 3 measures after January 2013: (1) we required LT candidates to be able to walk independently; (2) we increased the hand hygiene compliance rate and contact precautions; and (3) we introduced procalcitonin (PCT) measurement for a more precise determination of empirical antimicrobial treatment. We compared factors affecting the emergence of drug-resistant microorganisms, such as the duration of antimicrobial and carbapenem therapy and hospital stay, and outcomes such as bacteremia and death from infection between before (n = 77) and after (n = 53) the LT suspension period. The utility of PCT measurement was also evaluated. Patients' backgrounds were not significantly different before and after the protocol revision. Incidence of bacteremia (44% versus 25%; P = 0.02), detection rate of multiple bacteria (18% versus 4%; P = 0.01), and deaths from infections (12% versus 2%; P =  0.04) significantly decreased after the protocol revision. Duration of antibiotic (42.3 versus 25.1 days; P =  0.002) and carbapenem administration (15.1 versus 5.2 days; P < 0.001) and the length of postoperative hospital stay (85.4 versus 63.5 days; P =  0.048) also decreased after the protocol revision. PCT mean values were significantly higher in the bacteremia group (10.10 ng/mL), compared with the uneventful group (0.65 ng/mL; P =  0.002) and rejection group (2.30 ng/mL; P =  0.02). One-year overall survival after LT significantly increased in the latter period (71% versus 94%; P =  0

  9. Bundled strategies against infection after liver transplantation: Lessons from multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Sato, Asahi; Kaido, Toshimi; Iida, Taku; Yagi, Shintaro; Hata, Koichiro; Okajima, Hideaki; Takakura, Shunji; Ichiyama, Satoshi; Uemoto, Shinji

    2016-04-01

    Infection is a life-threatening complication after liver transplantation (LT). A recent outbreak of multidrug-resistant Pseudomonas aeruginosa triggered changes in our infection control measures. This study investigated the usefulness of our bundled interventions against postoperative infection after LT. This before-and-after analysis enrolled 130 patients who underwent living donor or deceased donor LT between January 2011 and October 2014. We initiated 3 measures after January 2013: (1) we required LT candidates to be able to walk independently; (2) we increased the hand hygiene compliance rate and contact precautions; and (3) we introduced procalcitonin (PCT) measurement for a more precise determination of empirical antimicrobial treatment. We compared factors affecting the emergence of drug-resistant microorganisms, such as the duration of antimicrobial and carbapenem therapy and hospital stay, and outcomes such as bacteremia and death from infection between before (n = 77) and after (n = 53) the LT suspension period. The utility of PCT measurement was also evaluated. Patients' backgrounds were not significantly different before and after the protocol revision. Incidence of bacteremia (44% versus 25%; P = 0.02), detection rate of multiple bacteria (18% versus 4%; P = 0.01), and deaths from infections (12% versus 2%; P =  0.04) significantly decreased after the protocol revision. Duration of antibiotic (42.3 versus 25.1 days; P =  0.002) and carbapenem administration (15.1 versus 5.2 days; P < 0.001) and the length of postoperative hospital stay (85.4 versus 63.5 days; P =  0.048) also decreased after the protocol revision. PCT mean values were significantly higher in the bacteremia group (10.10 ng/mL), compared with the uneventful group (0.65 ng/mL; P =  0.002) and rejection group (2.30 ng/mL; P =  0.02). One-year overall survival after LT significantly increased in the latter period (71% versus 94%; P =  0

  10. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain.

    PubMed

    Eldholm, Vegard; Monteserin, Johana; Rieux, Adrien; Lopez, Beatriz; Sobkowiak, Benjamin; Ritacco, Viviana; Balloux, Francois

    2015-05-11

    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally.

  11. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain

    PubMed Central

    Eldholm, Vegard; Monteserin, Johana; Rieux, Adrien; Lopez, Beatriz; Sobkowiak, Benjamin; Ritacco, Viviana; Balloux, Francois

    2015-01-01

    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally. PMID:25960343

  12. Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1)

    SciTech Connect

    DeGorter, Marianne K.; Conseil, Gwenaelle; Deeley, Roger G.; Campbell, Robert L.; Cole, Susan P.C.

    2008-01-04

    Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr{sup 324} in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated.

  13. A Case of Disseminated Multidrug-Resistant Tuberculosis involving the Brain

    PubMed Central

    Chang, Ji Young; Lee, Yoon Pyo; Chung, Min Kyung; Seo, Eui Kyo; Koo, Hea Soo

    2016-01-01

    We report a case of a 23-year-old female immigrant from China who was diagnosed with multidrug-resistant tuberculosis affecting her lung and brain, resistant to the standard first-line therapeutics and streptomycin. She was treated with prothionamide, moxifloxacin, cycloserine, and kanamycin. However, her headache and brain lesion worsened. After the brain biopsy, the patient was confirmed with intracranial tuberculoma. Linezolid was added to intensify the treatment regimen, and steroid was added for the possibility of paradoxical response. Kanamycin was discontinued 6 months after initiation of the treatment; she was treated for 18 months with susceptible drugs and completely recovered. To our knowledge, this case is the first multidrug-resistant tuberculosis that disseminated to the brain in Korea. PMID:27104015

  14. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

    PubMed

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  15. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

    PubMed

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-06-20

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes.

  16. Multidrug resistant Kluyvera ascorbata septicemia in an adult patient: a case report

    PubMed Central

    2010-01-01

    Introduction Kluyvera ascorbata has become increasingly significant due to its potential to cause a wide range of infections, as well as its ability to transfer gene encoding for CTX-M- type extended spectrum B-lactamases (ESBLs) to other Enterobacteriaceae. Case presentation We report the case of a 64-year-old African-American male diagnosed with severe sepsis due to a multidrug resistant Kluyvera ascorbata, which was isolated from his blood. He was treated with meropenem and had a favorable outcome. Conclusion To the best of our knowledge, this is the first case report of a multidrug resistant Kluyvera ascorbata isolated from the blood in an adult patient with sepsis. PMID:20587055

  17. Effects of sarA inactivation on the intrinsic multidrug resistance mechanism of Staphylococcus aureus.

    PubMed

    O'Leary, Jessica O; Langevin, Mark J; Price, Christopher T D; Blevins, Jon S; Smeltzer, Mark S; Gustafson, John E

    2004-08-15

    The sarA locus of Staphylococccus aureus regulates the synthesis of over 100 genes on the S. aureus chromosome. We now report the effects of sarA inactivation on intrinsic multidrug resistance expression by S. aureus. In a strain-dependent fashion, sarA::kan mutants of three unrelated strains of S. aureus demonstrated significantly increased susceptibility to five or more of the following substances: the antibiotics ciprofloxacin, fusidic acid, and vancomycin; the DNA-intercalating agent ethidium; and four common household cleaner formulations. In addition, all three sarA::kan mutants demonstrated significantly increased accumulation of ciprofloxacin and one sarA::kan mutant demonstrated increased ethidium accumulation. Our data therefore indicate that sarA plays a role in the intrinsic multidrug resistance mechanism expressed by S. aureus, in part by regulating drug accumulation.

  18. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes

    PubMed Central

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  19. Multidrug-resistant Salmonella enterica serotype Typhi, Gulf of Guinea Region, Africa.

    PubMed

    Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine; Weill, François-Xavier

    2015-04-01

    We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid.

  20. Multidrug-resistant Salmonella enterica serotype Typhi, Gulf of Guinea Region, Africa.

    PubMed

    Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine; Weill, François-Xavier

    2015-04-01

    We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid. PMID:25811307

  1. Effect of honey on multidrug resistant organisms and its synergistic action with three common antibiotics.

    PubMed

    Karayil, S; Deshpande, S D; Koppikar, G V

    1998-01-01

    A total of 15 bacterial strains (7 Pseudomonas & 8 Klebsiella species) isolated from various samples which showed multi-drug resistance were studied to verify in vitro antibacterial action of honey on the principle of Minimum Inhibitory Concentration (MIC) & its synergism with 3 common antibiotics--Gentamicin, Amikacin & Ceftazidime. The MIC of honey with saline for both organisms was found to be 1:2. The synergistic action was seen in the case of Pseudomonas spp. and not with Klebsiella spp. PMID:10703581

  2. Multidrug resistance-reversal effects of resin glycosides from Dichondra repens.

    PubMed

    Song, Wei-Bin; Wang, Wen-Qiong; Zhang, Shu-Wei; Xuan, Li-Jiang

    2015-02-15

    Investigation of hydrophobic extract of Dichondra repens (Convolvulaceae) led to the isolation of three new resin glycosides dichondrins A-C (1-3), and three known resin glycosides cus-1, cus-2, and cuse 3. All the isolated resin glycosides with an acyclic core were evaluated for their multidrug resistance reversal activities, and the combined use of these compounds at a concentration of 25μM increased the cytotoxicity of vincristine by 1.03-1.78-fold.

  3. Household Risk Factors for Colonization with Multidrug-Resistant Staphylococcus aureus Isolates

    PubMed Central

    Davis, Meghan F.; Peterson, Amy E.; Julian, Kathleen G.; Greene, Wallace H.; Price, Lance B.; Nelson, Kenrad; Whitener, Cynthia J.; Silbergeld, Ellen K.

    2013-01-01

    Antimicrobial resistance, particularly in pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), limits treatment options and increases healthcare costs. To understand patient risk factors, including household and animal contact, potentially associated with colonization with multidrug-resistant MRSA isolates, we performed a prospective study of case patients colonized with MRSA on admission to a rural tertiary care hospital. Patients were interviewed and antimicrobial resistance patterns were tested among isolates from admitted patients colonized with MRSA in 2009–10. Prevalence of resistance was compared by case-patient risk factors and length-of-stay outcome among 88 MRSA case patients. Results were compared to NHANES 2003–04. Overall prevalence of multidrug resistance (non-susceptibility to ≥four antimicrobial classes) in MRSA nasal isolates was high (73%) and was associated with a 1.5-day increase in subsequent length of stay (p = 0.008). History of hospitalization within the past six months, but not antimicrobial use in the same time period, was associated with resistance patterns. Within a subset of working-age case patients without recent history of hospitalization, animal contact was potentially associated with multidrug resistance. History of hospitalization, older age, and small household size were associated with multidrug resistance in NHANES data. In conclusion, recent hospitalization of case patients was predictive of antimicrobial resistance in MRSA isolates, but novel risk factors associated with the household may be emerging in CA-MRSA case patients. Understanding drivers of antimicrobial resistance in MRSA isolates is important to hospital infection control efforts, relevant to patient outcomes and to indicators of the economic burden of antimicrobial resistance. PMID:23359808

  4. IMPACT OF SEPSIS CLASSIFICATION AND MULTIDRUG RESISTANCE STATUS ON OUTCOME AMONG PATIENTS TREATED WITH APPROPRIATE THERAPY

    PubMed Central

    Burnham, Jason P.; Lane, Michael A.; Kollef, Marin H.

    2015-01-01

    Objective To assess the impact of sepsis classification and multidrug resistance status on outcome in patients receiving appropriate initial antibiotic therapy. Design A retrospective cohort study. Setting Barnes-Jewish Hospital, a 1250-bed teaching hospital. Patients Individuals with Enterobacteriaceae sepsis, severe sepsis, and septic shock that received appropriate initial antimicrobial therapy between June 2009 and December 2013. Interventions Clinical outcomes were compared according to multidrug resistance status, sepsis classification, demographics, severity of illness, comorbidities, and antimicrobial treatment. Measurements and Main Results We identified 510 patients with Enterobacteriaceae bacteremia and sepsis, severe sepsis, or septic shock. Sixty-seven patients (13.1%) were non-survivors. Mortality increased significantly with increasing severity of sepsis (3.5%, 9.9%, and 28.6%, for sepsis, severe sepsis, and septic shock, respectively, p<0.05). Time to antimicrobial therapy was not significantly associated with outcome. APACHE II was more predictive of mortality than age-adjusted Charlson comorbidity index. Multidrug resistance status did not result in excess mortality. Length of intensive care unit and hospital stay increased with more severe sepsis. In multivariate logistic regression analysis, African-American race, sepsis severity, APACHE II score, solid organ cancer, cirrhosis, and transfer from an outside hospital were all predictors of mortality. Conclusions Our results support sepsis severity, but not multidrug resistance status as being an important predictor of death when all patients receive appropriate initial antibiotic therapy. Future sepsis trials should attempt to provide appropriate antimicrobial therapy and take sepsis severity into careful account when determining outcomes. PMID:25855900

  5. Complexation study and anticellular activity enhancement by doxorubicin-cyclodextrin complexes on a multidrug-resistant adenocarcinoma cell line.

    PubMed

    Al-Omar, A; Abdou, S; De Robertis, L; Marsura, A; Finance, C

    1999-04-19

    Ability of molecular complexes of [Doxorubicin (DX)-cyclodextrin (Cd)] to enhance the anticellular activity of antineoplastic drug Doxorubicin and to reverse its multidrug resistance has been investigated. A spectroscopic study of the alpha, beta, and gamma-[DX-Cds] complexes has been investigated in relation to their biological effects on a multidrug resistant (MDR) human rectal adenocarcinoma cell line (HRT-18). A ten fold enhancement of DX anticellular activity in presence of beta-cyclodextrin alone was detected. PMID:10328296

  6. Bisbenzylisoquinolines as modulators of chloroquine resistance in Plasmodium falciparum and multidrug resistance in tumor cells.

    PubMed

    Frappier, F; Jossang, A; Soudon, J; Calvo, F; Rasoanaivo, P; Ratsimamanga-Urverg, S; Saez, J; Schrevel, J; Grellier, P

    1996-06-01

    Ten naturally occurring bisbenzylisoquinolines (BBIQ) and two dihydro derivatives belonging to five BBIQ subgroups were evaluated in vitro for their ability to inhibit Plasmodium falciparum growth and, in drug combination, to reverse the resistance to chloroquine of strain FcB1. The same alkaloids were also assessed in vitro for their potentiating activity against vinblastine with the multidrug-resistant clone CCRF-CEM/VLB, established from lymphoblastic acute leukemia. Three of the BBIQ tested had 50% inhibitory concentrations of less than 1 microM. The most potent antimalarial agent was cocsoline (50% inhibitory concentration, 0.22 microM). Regarding the chloroquine-potentiating effect, fangchinoline exhibited the highest biological activity whereas the remaining compounds displayed either antagonistic or slight synergistic effects. Against the multidrug-resistant cancer cell line, fangchinoline was also by far the most active compound. Although there were clear differences between the activities of tested alkaloids, no relevant structure-activity relationship could be established. Nevertheless, fangchinoline appears to be a new biochemical tool able to help in the comprehension of the mechanism of both chloroquine resistance in P. falciparum and multidrug resistance in tumor cells. PMID:8726022

  7. Bisbenzylisoquinolines as modulators of chloroquine resistance in Plasmodium falciparum and multidrug resistance in tumor cells.

    PubMed Central

    Frappier, F; Jossang, A; Soudon, J; Calvo, F; Rasoanaivo, P; Ratsimamanga-Urverg, S; Saez, J; Schrevel, J; Grellier, P

    1996-01-01

    Ten naturally occurring bisbenzylisoquinolines (BBIQ) and two dihydro derivatives belonging to five BBIQ subgroups were evaluated in vitro for their ability to inhibit Plasmodium falciparum growth and, in drug combination, to reverse the resistance to chloroquine of strain FcB1. The same alkaloids were also assessed in vitro for their potentiating activity against vinblastine with the multidrug-resistant clone CCRF-CEM/VLB, established from lymphoblastic acute leukemia. Three of the BBIQ tested had 50% inhibitory concentrations of less than 1 microM. The most potent antimalarial agent was cocsoline (50% inhibitory concentration, 0.22 microM). Regarding the chloroquine-potentiating effect, fangchinoline exhibited the highest biological activity whereas the remaining compounds displayed either antagonistic or slight synergistic effects. Against the multidrug-resistant cancer cell line, fangchinoline was also by far the most active compound. Although there were clear differences between the activities of tested alkaloids, no relevant structure-activity relationship could be established. Nevertheless, fangchinoline appears to be a new biochemical tool able to help in the comprehension of the mechanism of both chloroquine resistance in P. falciparum and multidrug resistance in tumor cells. PMID:8726022

  8. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel-7402/5-fluorouracil cells

    PubMed Central

    LING, SUNBIN; TIAN, YU; ZHANG, HAIQUAN; JIA, KAIQI; FENG, TINGTING; SUN, DEGUANG; GAO, ZHENMING; XU, FEI; HOU, ZHAOYUAN; LI, YAN; WANG, LIMING

    2014-01-01

    Metformin exhibits anti-proliferative effects in tumor cells in vitro and in vivo. The present study investigated the ability of metformin to reverse multidrug resistance (MDR) in human hepatocellular carcinoma Bel-7402/5-fluorouracil (5-Fu; Bel/Fu) cells. The synergistic anti-proliferative effect of metformin combined with 5-Fu was evaluated using a Cell Counting kit-8 assay. The variation in apoptotic rates and cell cycle distribution were evaluated using a flow cytometric assay and variations in target gene and protein expression were monitored using reverse transcription-polymerase chain reaction and western blot analysis. The results demonstrated that metformin had a synergistic anti-proliferative effect with 5-Fu in the Bel/Fu cells. The variations in the number of apoptotic cells and distribution of the cell cycle were consistent with the variability in cell viability. Metformin targeted the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, suppressed the expression of hypoxia-inducible factor-1α (HIF-1α) and transcriptionally downregulated the expression of multidrug resistance protein 1/P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1). Collectively, these findings suggested that metformin may target the AMPK/mTOR/HIF-1α/P-gp and MRP1 pathways to reverse MDR in hepatocellular carcinoma. PMID:25310259

  9. Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy

    PubMed Central

    Kuss, Sabine; Polcari, David; Geissler, Matthias; Brassard, Daniel; Mauzeroll, Janine

    2013-01-01

    The emergence of resistance to multiple unrelated chemotherapeutic drugs impedes the treatment of several cancers. Although the involvement of ATP-binding cassette transporters has long been known, there is no in situ method capable of tracking this transporter-related resistance at the single-cell level without interfering with the cell’s environment or metabolism. Here, we demonstrate that scanning electrochemical microscopy (SECM) can quantitatively and noninvasively track multidrug resistance-related protein 1–dependent multidrug resistance in patterned adenocarcinoma cervical cancer cells. Nonresistant human cancer cells and their multidrug resistant variants are arranged in a side-by-side format using a stencil-based patterning scheme, allowing for precise positioning of target cells underneath the SECM sensor. SECM measurements of the patterned cells, performed with ferrocenemethanol and [Ru(NH3)6]3+ serving as electrochemical indicators, are used to establish a kinetic “map” of constant-height SECM scans, free of topography contributions. The concept underlying the work described herein may help evaluate the effectiveness of treatment administration strategies targeting reduced drug efflux. PMID:23686580

  10. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia

    PubMed Central

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  11. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2) Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells

    PubMed Central

    Fu, Rong-Jie; Lv, Ya-Ping; Jin, Wei; Meng, Chao; Chen, Guo-Qiang; Huang, Lei

    2016-01-01

    China accounts for almost half of the total number of liver cancer cases and deaths worldwide, and hepatocellular carcinoma (HCC) is the most primary liver cancer. Snail family transcriptional repressor 2 (SNAI2) is known as an epithelial to mesenchymal transition-inducing transcription factor that drives neoplastic epithelial cells into mesenchymal phenotype. However, the roles of endogenous SNAI2 remain controversial in different types of malignant tumors. Herein, we surprisingly identify that anchorage-independent growth, including the formation of tumor sphere and soft agar colony, is significantly increased when SNAI2 expression is inhibited by shRNAs in HCC cells. Suppression of SNAI2 suffices to up-regulate several cancer stem genes. Although unrelated to the metastatic ability, SNAI2 inhibition does increase the efflux of Hoechst 33342 and enhance multidrug resistance in vitro and in vivo. In agreement with this data, we demonstrate for the first time that decreasing SNAI2 level can transcriptionally upregulate several ATP binding cassette (ABC) transporter genes such as ABCB1. Moreover, ABC transporters’ inhibitor verapamil can rescue the multidrug resistance induced by SNAI2 inhibition. Our results implicate that SNAI2 behaves as a tumor suppressor by inhibiting multidrug resistance via suppressing ABC transporter genes in HCC cells. PMID:27760172

  12. Genomic structure, gene expression, and promoter analysis of human multidrug resistance-associated protein 7

    SciTech Connect

    Kao, Hsin-Hsin; Chang, Ming-Shi; Cheng, Jan-Fang; Huang, Jin-Ding

    2002-03-15

    The multidrug resistance-associated protein (MRP) subfamily transporters associated with anticancer drug efflux are attributed to the multidrug-resistance of cancer cells. The genomic organization of human multidrug resistance-associated protein 7 (MRP7) was identified. The human MRP7 gene, consisting of 22 exons and 21 introns, greatly differs from other members of the human MRP subfamily. A splicing variant of human MRP7, MRP7A, expressed in most human tissues, was also characterized. The 1.93-kb promoter region of MRP7 was isolated and shown to support luciferase activity at a level 4- to 5-fold greater than that of the SV40 promoter. Basal MRP7 gene expression was regulated by 2 regions in the 5-flanking region at 1,780 1,287 bp, and at 611 to 208 bp. In Madin-Darby canine kidney (MDCK) cells, MRP7 promoter activity was increased by 226 percent by genotoxic 2-acetylaminofluorene and 347 percent by the histone deacetylase inhibitor, trichostatin A. The protein was expressed in the membrane fraction of transfected MDCK cells.

  13. Directly observed treatment, short-course strategy and multidrug-resistant tuberculosis: are any modifications required?

    PubMed Central

    Bastian, I.; Rigouts, L.; Van Deun, A.; Portaels, F.

    2000-01-01

    Multidrug-resistant tuberculosis (MDRTB) should be defined as tuberculosis with resistance to at least isoniazid and rifampicin because these drugs are the cornerstone of short-course chemotherapy, and combined isoniazid and rifampicin resistance requires prolonged treatment with second-line agents. Short-course chemotherapy is a key ingredient in the tuberculosis control strategy known as directly observed treatment, short-course (DOTS). For populations in which multidrug-resistant tuberculosis is endemic, the outcome of the standard short-course chemotherapy regimen remains uncertain. Unacceptable failure rates have been reported and resistance to additional agents may be induced. As a consequence there have been calls for well-functioning DOTS programmes to provide additional services in areas with high rates of multidrug-resistant tuberculosis. These "DOTS-plus for MDRTB programmes" may need to modify all five elements of the DOTS strategy: the treatment may need to be individualized rather than standardized; laboratory services may need to provide facilities for on-site culture and antibiotic susceptibility testing; reliable supplies of a wide range of expensive second-line agents would have to be supplied; operational studies would be required to determine the indications for and format of the expanded programmes; financial and technical support from international organizations and Western governments would be needed in addition to that obtained from local governments. PMID:10743297

  14. Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy.

    PubMed

    Kuss, Sabine; Polcari, David; Geissler, Matthias; Brassard, Daniel; Mauzeroll, Janine

    2013-06-01

    The emergence of resistance to multiple unrelated chemotherapeutic drugs impedes the treatment of several cancers. Although the involvement of ATP-binding cassette transporters has long been known, there is no in situ method capable of tracking this transporter-related resistance at the single-cell level without interfering with the cell's environment or metabolism. Here, we demonstrate that scanning electrochemical microscopy (SECM) can quantitatively and noninvasively track multidrug resistance-related protein 1-dependent multidrug resistance in patterned adenocarcinoma cervical cancer cells. Nonresistant human cancer cells and their multidrug resistant variants are arranged in a side-by-side format using a stencil-based patterning scheme, allowing for precise positioning of target cells underneath the SECM sensor. SECM measurements of the patterned cells, performed with ferrocenemethanol and [Ru(NH3)6](3+) serving as electrochemical indicators, are used to establish a kinetic "map" of constant-height SECM scans, free of topography contributions. The concept underlying the work described herein may help evaluate the effectiveness of treatment administration strategies targeting reduced drug efflux. PMID:23686580

  15. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance.

    PubMed

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  16. Reducing the price of treatment for multidrug-resistant tuberculosis through the Global Drug Facility

    PubMed Central

    Cordier-Lassalle, Thierry; Keravec, Joel

    2015-01-01

    Abstract Problem Many countries have limited experience of securing the best prices for drugs and have little negotiating power. This is particularly true for the complex, lengthy and expensive regimens used to treat multidrug-resistant tuberculosis. Approach The Stop TB Partnership’s Global Drug Facility is dedicated to improving worldwide access to antituberculosis medicines and diagnostic techniques that meet international quality standards. Local setting The Global Drug Facility is able to secure price reductions through competitive tendering among prequalified drug manufacturers and by consolidating orders to achieve large purchase volumes. Consolidating the market in this way increases the incentives for suppliers of quality-assured medicines. Relevant changes In 2013 the Global Drug Facility reduced the price of the second-line drugs it supplies for multidrug-resistant tuberculosis: the overall cost of the longest and most expensive treatment regimen for a patient decreased by 26% – from 7890 United States dollars (US$) in 2011 to US$ 5822 in 2013. Lessons learnt The price of treatment for multidrug-resistant tuberculosis supplied by the Global Drug Facility was reduced by consolidating orders to achieve large purchase volumes, by international, competitive bidding and by the existence of donor-funded medicine stockpiles. The rise in the number of suppliers of internationally quality-assured drugs was also important. The savings achieved from lower drug costs could be used to increase the number of patients on high-quality treatment. PMID:26229192

  17. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    PubMed Central

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  18. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells.

    PubMed

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jéro Me; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-01-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  19. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia.

    PubMed

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  20. Overcoming multidrug resistance with mesoporous silica nanorods as nanocarrier of doxorubicin.

    PubMed

    Li, Linlin; Huang, Xinglu; Liu, Tianlong; Liu, Huiyu; Hao, Nanjing; Chen, Dong; Zhang, Yanqi; Li, Laifeng; Tang, Fangqiong

    2012-06-01

    Multidrug resistance (MDR) is a major obstacle to the effective chemotherapy in many human malignancies. Nanoparticulate drug delivery systems (NDDSs) have been reported to be able to bypass MDR, but the cancer therapeutic efficacy is still limited. In this study, we firstly designed the nonspherical mesoporous silica nanorods (MSNRs) with aspect ratio (AR) of 1.5 and 5 as drug delivery systems of doxorubicin to overcome multidrug resistance. For drug loading, the long-rod MSNRs (NLR, AR = 5) showed higher drug loading capacity of doxorubicin (DOX) than the short-rod MSNRs (NSR, AR = 1.5). NLR encapsulated DOX had increased intracellular DOX accumulation in drug-resistant Chinese hamster ovary (CHO) cells compared with free DOX by observablly increased cellular uptake and significantly prolonged intracellular drug retention. It further exhibited increased cytotoxicity compared with free DOX under different drug concentrations. These findings may provide a new perspective for designing high-performance nanoparticulate drug delivery systems for bypassing multidrug resistance of cancer therapy.

  1. Microbiological evaluation of the efficacy of two new biodetergents on multidrug-resistant nosocomial pathogens

    PubMed Central

    2009-01-01

    Background In the last few years, several outbreaks of nosocomial infections caused by multidrug-resistant pathogenic agents have been observed, and various biocides products were developed in order to control this phenomenon. We investigated the efficacy of two natural biodetergents composed of plants and kelps extracts, BATT1 and BATT2, against multidrug-resistant strains. Methods In-vitro antibacterial efficacy of BATT1 and BATT2 against nosocomial multidrug-resistant isolates was assessed using a suspension-inhibition test, with and without bovine serum albumin (BSA). The test was also carried out on glass surfaces with and without BSA. Results In vitro tests with both biocidal disinfectants at 25% concentration demonstrated an overall drop in bacterial, mould and yeast counts after 10 min of contact with or without organic substances. For Pseudomonas aeruginosa, it was necessary to use undiluted disinfectants with and without an organic substance. The same results were obtained in tests carried out on glass surfaces for all strains. Conclusions The natural products BATT1 and BATT2 behave like good biocides even in presence of organic substances. The use of both disinfectants may be beneficial for reducing hospital-acquired pathogens that are not susceptible to disinfectants. However, it has to be stressed that all these experiments were carried out in vitro and they still require validation from use in clinical practice. PMID:20015394

  2. Noma Neonatorum From Multidrug-Resistant Pseudomonas aeruginosa: An Underestimated Threat?

    PubMed

    Raimondi, Francesco; Veropalumbo, Claudio; Coppola, Clara; Maddaluno, Sergio; Ferrara, Teresa; Cangiano, Giancarlo; Capasso, Letizia

    2015-09-01

    We present the case of an extremely low birth weight infant with diffuse gingival noma, initially misdiagnosed as thrush. Multidrug-resistant Pseudomonas aeruginosa strain was cultured and treated with systemic and local colistin with complete healing. Noma neonatorum from multidrug-resistant pathogens may appear in neonatal intensive care units. Old antibiotics may help.Noma (cancrum oris) is a devastating gangrenous disease that leads to destruction of facial tissue with significant morbidity and mortality in children and young adults. Noma has virtually disappeared from Europe and North America, but it is still common among children and young adults in India, Africa, and South America. Noma is a polymicrobial opportunistic infection related to malnutrition and immune dysfunction. In the neonate, a similar but distinct condition, known as "noma neonatorum" was described in 1977, in which gangrenous lesions involve the mucocutaneous junctions of oral, nasal, and anal area, and, occasionally, the eyelids and the scrotum. The neonatal disease has been linked to Pseudomonas aeruginosa, prematurity, and low birth weight. There is no established treatment, and mortality is almost inevitable in the few reported cases. In this study, we present the first European case of noma neonatorum from a multidrug-resistant strain of P aeruginosa.

  3. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.

    PubMed

    Jones, P M; George, A M

    2005-04-30

    Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein. PMID:15826647

  4. [Antiviral therapy for patients with chronic hepatitis B with multi-drug resistance to nucleoside analogues].

    PubMed

    Ozeki, Itaru; Hige, Shuhei; Karino, Yoshiyasu; Kimura, Mutsuumi; Arakawa, Tomohiro; Nakajima, Tomoaki; Kuwata, Yasuaki; Ohmura, Takumi; Sato, Takahiro; Toyota, Joji

    2013-01-01

    In 18 of 547 patients who had received nucleoside analogue preparations for 1 year or more, multi-drug resistance was detected, after a median follow-up of 53 months. No patient showed liver failure related to multi-drug resistance acquisition. Multi-drug resistance was associated with entecavir (ETV) therapy in 7 lamivudine (LAM) -resistant patients, combination therapy with adefovir dipivoxil (ADV) in 8 LAM-resistant patients, LAM switching to ETV in 2 patients, and initial ETV administration in 1. For treatment, combination therapy with LAM and ADV was performed. In non-responders, combination therapy with ADV and ETV was employed. In all LAM- and ADV-resistant patients, and the HBV DNA level decreased to 3.0LC/ml or less. However, a similar decrease was noted in 7 (58.3%) of 12 LAM- and ETV-resistant patients. Of the 18 patients, 1 did not respond to combination therapy with ADV and ETV. Therapy with tenofovir disoproxil fumarate (TDF) was required.

  5. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jérôme; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-05-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  6. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer.

    PubMed

    Zheng, Nannan; Gao, Yanan; Ji, Hongyu; Wu, Linhua; Qi, Xuejing; Liu, Xiaona; Tang, Jingling

    2016-08-01

    The multidrug resistance (MDR), including intrinsic and acquired multidrug resistance, is a major problem in tumor chemotherapy. Here, we proposed a strategy for modulating intrinsic and/or acquired multidrug resistance by altering the levels of Bax and Bcl-2 expression and inhibiting the transport function of P-gp, increasing the intracellular concentration of its substrate anticancer drugs. Vitamin E derivative-based nanoemulsions containing paclitaxel (MNEs-PTX) were fabricated in this study, and in vitro anticancer efficacy of the nanoemulsion system was evaluated in the paclitaxel-resistant human ovarian carcinoma cell line A2780/Taxol. The MNEs-PTX exhibited a remarkably enhanced antiproliferation effect on A2780/Taxol cells than free paclitaxel (PTX) (p < 0.01). Compared with that in the Taxol group, MNEs-PTX further decreased mitochondrial potential. Vitamin E derivative-based multifunctional nanoemulsion (MNEs) obviously increased intracellular accumulation of rhodamine 123 (P-gp substrate). Overexpression of Bcl-2 is generally associated with tumor drug resistance, we found that MNEs could reduce Bcl-2 protein level and increase Bax protein level. Taken together, our findings suggest that anticancer drugs associated with MNEs could play a role in the development of MDR in cancers. PMID:26710274

  7. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    PubMed

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-01

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB. PMID:24307692

  8. [MOLECULAR CHARACTERISTICS OF THE MULTIDRUG-RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS IN THE NORTHWEST RUSSIA].

    PubMed

    Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V

    2016-01-01

    The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.

  9. Short communication: Multidrug-resistant Acinetobacter baumannii-calcoaceticus complex isolated from infant milk formula and utensils in a nursery in Rio de Janeiro, Brazil.

    PubMed

    Araújo, B C; Moraes, M S; Costa, L E O; Nascimento, J S

    2015-04-01

    Infant milk formulas are not sterile products, and pathogenic bacteria can survive and multiply in these products. This study was performed, initially, to detect the presence of Salmonella spp. in reconstituted infant milk formula and on utensils previously sanitized used in their preparation or distribution in a nursery of a public hospital in Rio de Janeiro. None of the samples tested carried Salmonellaspp. However, further identification of colonies growing on the selective media revealed the presence of several other gram-negative bacteria. Seventeen isolates were identified as belonging to Acinetobacter baumannii-calcoaceticus complex. Fourteen isolates presented a multidrug-resistance profile, by disc diffusion assays, and one of them--JE4--was also resistant to imipenem. The detection of Acinetobacter isolates in this work demonstrates inadequate hygiene practices in the preparation or distribution of infant milk formula.

  10. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog

    SciTech Connect

    Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M.

    1988-02-01

    Multidrug-resistant human KB carcinoma cells express a 170,000-dalton membrane glycoprotein (P-glycoprotein) that can be photoaffinity labeled with the vinblastine analog N-(p-azido-(3-/sup 125/I)salicyl)-N'-(beta-aminoethyl)vindesine. Several agents that suppress the multidrug-resistant phenotype, including N-solanesyl-N,N'-bis(3,4-dimethylbenzyl)ethylenediamine, cepharanthine, quinidine, and reserpine, were found to inhibit photolabeling of P-glycoprotein at doses comparable to those that reverse multidrug resistance. However, the phenothiazines chlorpromazine and trifluoperazine, which also effectively reverse multidrug resistance, were poor inhibitors of the photoaffinity labeling of P-glycoprotein. Chloroquine, propranolol, or atropine, which only partially reversed the drug resistance, also did not inhibit photolabeling. Naphthalene sulfonamide calmodulin inhibitors, W7 and W5, as well as many other drugs that did not circumvent multidrug resistance, did not inhibit photolabeling. These studies suggest that most, but not all, agents that phenotypically suppress multidrug resistance also inhibit drug binding to a site on P-glycoprotein with which a photoaffinity analog of vinblastine interacts.

  11. Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance

    SciTech Connect

    Cheng Jinping; Meziani, Mohammed J.; Sun Yaping; Cheng, Shuk Han

    2011-01-15

    The acquisition of multidrug resistance poses a serious problem in chemotherapy, and new types of transporters have been actively sought to overcome it. In the present study, poly(ethylene glycol)-conjugated (PEGylated) multi-walled carbon nanotubes (MWCNTs) were prepared and explored as drug carrier to overcome multidrug resistance. The prepared PEGylated MWCNTs penetrated into mammalian cells without damage plasma membrane, and its accumulation did not affect cell proliferation and cell cycle distribution. More importantly, PEGylated MWCNTs accumulated in the multidrug-resistant cancer cells as efficient as in the sensitive cancer cells. Intracellular translocation of PEGylated MWCNTs was visualized in both multidrug-resistant HepG2-DR cells and sensitive HepG2 cells, as judged by both fluorescent and transmission electron microscopy. PEGylated MWCNTs targeted cancer cells efficiently and multidrug-resistant cells failed to remove the intracellular MWCNTs. However, if used in combination with drugs without conjugation, PEGylated MWCNTs prompted drug efflux in MDR cells by stimulating the ATPase activity of P-glycoprotein. This study suggests that PEGylated MWCNTs can be developed as an efficient drug carrier to conjugate drugs for overcoming multidrug resistance in cancer chemotherapy.

  12. Nanobiotechnological Approaches Against Multidrug Resistant Bacterial Pathogens: An Update.

    PubMed

    Shaikh, Sibhghatulla; Shakil, Shazi; Abuzenadah, Adel M; Rizvi, Syed Mohd Danish; Roberts, Philip Michael; Mushtaq, Gohar; Kamal, Mohammad Amjad

    2015-01-01

    Multiple drug resistant bacteria remain the greatest challenge in public health care. Globally, infections produced by such resistant strains are on the rise. Recent advent of genetic tolerance to antibiotics in many pathogens such as multiple drug resistant Staphylococcus aureus is a matter of concern, prompting researchers and pharmaceutical companies to search for new molecules and unconventional antibacterial agents. Recent advances in nanotechnology offer new opportunities to develop formulations based on metallic nanoparticles with different shapes and sizes and variable antimicrobial properties. This article is an extensive literature review that covers the latest approaches in the development of new and unconventional antibacterial agents using nanobiotechnological approaches which will better equip scientists and clinicians to face the challenges in view of dwindling stocks of effective and potent antimicrobial agents and formulations. PMID:26419545

  13. Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes

    PubMed Central

    2011-01-01

    Background The emergence of multi-drug resistant (MDR) phenotypes is a major public health problem today in the treatment of bacterial infections. The present study was designed to evaluate the antibacterial activities of the methanol extracts of eleven Cameroonian spices on a panel of twenty nine Gram negative bacteria including MDR strains. Methods The phytochemical analysis of the extracts was carried out by standard tests meanwhile the liquid micro-broth dilution was used for all antimicrobial assays. Results Phytochemical analysis showed the presence of alkaloids, phenols and tannins in all plants extracts. The results of the antibacterial assays indicated that all tested extracts exert antibacterial activities, with the minimum inhibitory concentration (MIC) values varying from 32 to 1024 μg/ml. The extracts from Dichrostachys glomerata, Beilschmiedia cinnamomea, Aframomum citratum, Piper capense, Echinops giganteus, Fagara xanthoxyloïdes and Olax subscorpioïdea were the most active. In the presence of efflux pump inhibitor, PAßN, the activity of the extract from D. glomerata significantly increased on 69.2% of the tested MDR bacteria. At MIC/5, synergistic effects were noted with the extract of D. glomerata on 75% of the tested bacteria for chloramphenicol (CHL), tetracycline (TET) and norfloxacin (NOR). With B. cinnamomea synergy were observed on 62.5% of the studied MDR bacteria with CHL, cefepime (FEP), NOR and ciprofloxacin (CIP) and 75% with erythromycin (ERY). Conclusion The overall results provide information for the possible use of the studied extracts of the spices in the control of bacterial infections involving MDR phenotypes. PMID:22044718

  14. Sensitive, resistant and multi-drug resistant Acinetobacter baumanii at Saudi Arabia hospital eastern region.

    PubMed

    Ahmed, Mughis Uddin; Farooq, Reshma; Al-Hawashim, Nadia; Ahmed, Motasim; Yiannakou, Nearchos; Sayeed, Fatima; Sayed, Ali Rifat; Lutfullah, Sualiha

    2015-05-01

    Since the Physicians start use of antibiotics long ago with un-notice drug resistance. However actual problem was recognized about 85 years ago. Antibiotic resistant and Multi-drug resistant bacterial strains are at rise throughout the world. It is physicians and researchers to take scientific research based appropriate action to overcome this ever-spreading problem. This study is designed to find out sensitive (S), resistant (R) and multi-drug resistant (MDR) Acinetobacter baumanii strain along with other isolates in the resident patients of Eastern Region of Saudi Arabia. Pseudomonas aeruginosa is excluded from other gram-negative organisms isolated from different sites as it will be dealt separately. This study is based in was retrospective observations designed to collect data of different stains of Acinetobacter baumanii with reference to their Sensitivity (S), Resistance (R), Multi-Drug Resistance (MDR) along with other Gram negative isolated from different sites (from 1st January 2004 to 31st December 2011) at King Abdulaziz Hospital located Eastern Region of Kingdom of Saudi Arabia (KSA). All necessary techniques were used to culture and perform sensitivity of these isolates. There were 4532 isolates out of which 3018 (67%) were from patients. Out of Acinetobacter baumanii infected were 906 (20%) while other 3626 (80%) isolates were miscellaneous. Numbers of patients or cases were 480 (53%) out of 906 isolates and numbers of patients or cases in other organisms were 2538 (70%) out of 3626 isolates. Acinetobacter baumanii infected patients 221 (46%) were male and 259 (54%) were female and the male and female ratio of 1:1.2. In other organisms this male female ratio was almost same. There was steady rise in number of patients and the hence the isolates from 2004 to 2011. Majority of the bacterial strains were isolated as single organism but some were isolated as double or triple or quadruple or more organisms from different sites. Sensitive, Resistant and Multi-Drug Resistant Acinetobacter baumanii have been isolated from different sites. The other Gram negative isolates included Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Klebsiella oxytoca, Serratia marcescens and Stenotrophomonas maltophilia. A significant rise in R and MDR but there is rise in R and MDR Acinetobacter baumanii Strains has been interceded other isolates. It is important to adopt proper and sustainable policies and guideline regarding antibiotics prescription and used. We should also check our infection control practices in our hospital or healthcare settings. We should start antibiotics stewardship in our hospital in order to reducing or overcoming antibiotics Resistant (R) and Multi-Drug Resistant (MDR) strains prevalence.

  15. Art-175 Is a Highly Efficient Antibacterial against Multidrug-Resistant Strains and Persisters of Pseudomonas aeruginosa

    PubMed Central

    Briers, Yves; Walmagh, Maarten; Grymonprez, Barbara; Biebl, Manfred; Pirnay, Jean-Paul; Defraine, Valerie; Michiels, Jan; Cenens, William; Aertsen, Abram; Miller, Stefan

    2014-01-01

    Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections. PMID:24752267

  16. Prediction of multi-drug resistance transporters using a novel sequence analysis method [version 2; referees: 2 approved

    DOE PAGESBeta

    McDermott, Jason E.; Bruillard, Paul; Overall, Christopher C.; Gosink, Luke; Lindemann, Stephen R.

    2015-03-09

    There are many examples of groups of proteins that have similar function, but the determinants of functional specificity may be hidden by lack of sequencesimilarity, or by large groups of similar sequences with different functions. Transporters are one such protein group in that the general function, transport, can be easily inferred from the sequence, but the substrate specificity can be impossible to predict from sequence with current methods. In this paper we describe a linguistic-based approach to identify functional patterns from groups of unaligned protein sequences and its application to predict multi-drug resistance transporters (MDRs) from bacteria. We first showmore » that our method can recreate known patterns from PROSITE for several motifs from unaligned sequences. We then show that the method, MDRpred, can predict MDRs with greater accuracy and positive predictive value than a collection of currently available family-based models from the Pfam database. Finally, we apply MDRpred to a large collection of protein sequences from an environmental microbiome study to make novel predictions about drug resistance in a potential environmental reservoir.« less

  17. Prediction of multi-drug resistance transporters using a novel sequence analysis method [version 2; referees: 2 approved

    SciTech Connect

    McDermott, Jason E.; Bruillard, Paul; Overall, Christopher C.; Gosink, Luke; Lindemann, Stephen R.

    2015-03-09

    There are many examples of groups of proteins that have similar function, but the determinants of functional specificity may be hidden by lack of sequencesimilarity, or by large groups of similar sequences with different functions. Transporters are one such protein group in that the general function, transport, can be easily inferred from the sequence, but the substrate specificity can be impossible to predict from sequence with current methods. In this paper we describe a linguistic-based approach to identify functional patterns from groups of unaligned protein sequences and its application to predict multi-drug resistance transporters (MDRs) from bacteria. We first show that our method can recreate known patterns from PROSITE for several motifs from unaligned sequences. We then show that the method, MDRpred, can predict MDRs with greater accuracy and positive predictive value than a collection of currently available family-based models from the Pfam database. Finally, we apply MDRpred to a large collection of protein sequences from an environmental microbiome study to make novel predictions about drug resistance in a potential environmental reservoir.

  18. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches

    PubMed Central

    Karaiskos, Ilias; Giamarellou, Helen

    2014-01-01

    Introduction: In the era of multidrug-resistant, extensively drug-resistant (XDR) and even pandrug-resistant Gram-negative microorganisms, the medical community is facing the threat of untreatable infections particularly those caused by carbapenemase-producing bacteria, that is, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Therefore, all the presently available antibiotics, as well as for the near future compounds, are presented and discussed. Areas covered: Current knowledge concerning mechanisms of action, in vitro activity and interactions, pharmacokinetic/pharmacodynamics, clinical efficacy and toxicity issues for revived and novel antimicrobial agents overcoming current resistance mechanisms, including colistin, tigecycline, fosfomycin, temocillin, carbapenems, and antibiotics still under development for the near future such as plazomicin, eravacycline and carbapenemase inhibitors is discussed. Expert opinion: Colistin is active in vitro and effective in vivo against XDR carbapenemase-producing microorganisms in the critically ill host, whereas tigecycline, with the exception of P. aeruginosa, has a similar spectrum of activity. The efficacy of combination therapy in bacteremias and ventilator-associated pneumonia caused by K. pneumoniae carbapenemase producers seems to be obligatory, whereas in cases of P. aeruginosa and A. baumannii its efficacy is questionable. Fosfomycin, which is active against P. aeruginosa and K. pneumoniae, although promising, shares poor experience in XDR infections. The in vivo validity of the newer potent compounds still necessitates the evaluation of Phase III clinical trials particularly in XDR infections. PMID:24766095

  19. Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant staphylococci.

    PubMed

    Mohammad, Haroon; Mayhoub, Abdelrahman S; Cushman, Mark; Seleem, Mohamed N

    2015-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections are a leading cause of death among all fatalities caused by antibiotic-resistant bacteria. With the rise of increasing resistance to current antibiotics, new antimicrobials and treatment strategies are urgently needed. Thiazole compounds have been shown to possess potent antimicrobial activity. A lead thiazole 1 and a potent derivative 2 were synthesized and their activity in combination with glycopeptide antibiotics was determined against an array of MRSA and vancomycin-resistant S. aureus (VRSA) clinical isolates. In addition, the anti-biofilm activity of the novel thiazoles was investigated against S. epidermidis. Compound 2 behaved synergistically with vancomycin against MRSA and was able to resensitize VRSA to vancomycin, reducing its MIC by 512-fold in two strains. In addition, both thiazole compounds were superior to vancomycin in significantly reducing S. epidermidis biofilm mass. Collectively, the results obtained demonstrate that compounds 1 and 2 possess potent antimicrobial activity alone or in combination with vancomycin against multidrug-resistant staphylococci and show potential for use in disrupting staphylococcal biofilm. PMID:25315757

  20. Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France.

    PubMed

    Cimmino, T; Rolain, J-M

    2016-07-01

    We decipher the resistome of Chryseobacterium indologenes MARS15, an emerging multidrug-resistant clinical strain, using the whole genome sequencing strategy. The bacterium was isolated from the sputum of a hospitalized patient with cystic fibrosis in the Timone Hospital in Marseille, France. Genome sequencing was done with Illumina MiSeq using a paired-end strategy. The in silico analysis was done by RAST, the resistome by the ARG-ANNOT database and detection of polyketide synthase (PKS) by ANTISMAH. The genome size of C. indologenes MARS15 is 4 972 580 bp with 36.4% GC content. This multidrug-resistant bacterium was resistant to all β-lactams, including imipenem, and also to colistin. The resistome of C. indologenes MARS15 includes Ambler class A and B β-lactams encoding bla CIA and bla IND-2 genes and MBL (metallo-β-lactamase) genes, the CAT (chloramphenicol acetyltransferase) gene and the multidrug efflux pump AcrB. Specific features include the presence of an urease operon, an intact prophage and a carotenoid biosynthesis pathway. Interestingly, we report for the first time in C. indologenes a PKS cluster that might be responsible for secondary metabolite biosynthesis, similar to erythromycin. The whole genome sequence analysis provides insight into the resistome and the discovery of new details, such as the PKS cluster. PMID:27222716

  1. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm.

    PubMed

    Jamal, Muhsin; Hussain, Tahir; Das, Chythanya Rajanna; Andleeb, Saadia

    2015-04-01

    Biofilm has many serious consequences for public health and is a major virulence factor contributing to the chronicity of infections. The aim of the current study was to isolate and characterize a bacteriophage that inhibits multidrug-resistant Klebsiella pneumonia (M) in planktonic form as well as biofilm. This phage, designated bacteriophage Z, was isolated from wastewater. Its adsorption rate to its host bacterium was significantly enhanced by MgCl2 and CaCl2. It has a wide range of pH and heat stability. From its one-step growth, latent time and burst size were determined to be 24 min and about 320 virions per cell, respectively. As analysed by transmission electron microscopy, phage Z had an icosahedral head of width 76±10 nm, length 92±14 nm and icosahedron side 38 nm, and a non-contractile tail 200±15 nm long and 14-29 nm wide. It belongs to the family Siphoviridae in the order Caudovirales. Six structural proteins ranging from 18 to 65 kDa in size were revealed by SDS-PAGE. The genome was found to comprise double-stranded DNA with an approximate size of 36 kb. Bacteria were grown in suspension and as biofilms to compare the susceptibility of both phenotypes to the phage lytic action. Phage Z was effective in reducing biofilm biomass after 24 and 48 h, showing more than twofold and threefold reduction, respectively. Biofilm cells and stationary-phase planktonic bacteria were killed at a lower rate than exponential-phase planktonic bacteria.

  2. In Vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species

    PubMed Central

    2013-01-01

    Background The present study was designed to investigate the antibacterial activities of the methanol extracts of four Cameroonian edible plants, locally used to treat microbial infections, and their synergistic effects with antibiotics against a panel of twenty nine Gram-negative bacteria including Multi-drug resistant (MDR) phenotypes expressing active efflux pumps. Methods The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of the extracts [alone and in the presence of the efflux pumps inhibitor (EPI) Phenylalanine-Arginine β-Naphtylamide (PAβN)], and those of antibiotics in association with the two of the most active ones, Piper nigrum and Telfairia occidentalis. The preliminary phytochemical screening of the extracts was conducted according to the standard phytochemical methods. Results Phytochemical analysis showed the presence of alkaloids and flavonoids in all studied extracts. Other chemical classes of secondary metabolites were selectively present in the extracts. The results of the MIC determination indicated that the crude extracts from P. nigrum and V. amygdalina were able to inhibit the growth of all the twenty nine studied bacteria within a concentration range of 32 to 1024 μg/mL. At a similar concentration range (32 to 1024 μg/mL) the extract from T. occidentalis inhibited the growth of 93.1% of the tested microorganisms. At MIC/2 and MIC/5, synergistic effects were noted between the extracts from P. nigrum and T. occidentalis and seven of the tested antibiotics on more than 70% of the tested bacteria. Conclusion The overall results of the present study provide information for the possible use of the studied edible plants extracts in the control of bacterial infections including MDR phenotypes. PMID:23885762

  3. Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells.

    PubMed

    Sun, Yan Fang; Wink, Michael

    2014-01-01

    The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy. PMID:24856768

  4. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (P<0.05). DNA sequencing revealed that the promoter regions of devR, mtrA, regX3 and Rv3143 did not contain any mutations. Moreover, expression of the four genes could be induced by most of the four first-line antitubercular agents. In addition, either deletion or overexpression of devR in Mycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.

  5. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis†

    PubMed Central

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Cave, M. Donald; Ponce de León, Alfredo; Alland, David

    2006-01-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  6. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts

    PubMed Central

    Porse, Andreas; Schønning, Kristian; Munck, Christian; Sommer, Morten O.A.

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid–host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid–host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts. PMID:27501945

  7. Multidrug resistance in a human leukemic cell line selected for resistance to trimetrexate.

    PubMed

    Arkin, H; Ohnuma, T; Kamen, B A; Holland, J F; Vallabhajosula, S

    1989-12-01

    Trimetrexate (TMQ) is a lipophilic antifolate shown to have antitumor activity in humans. TMQ-resistant sublines of the MOLT-3 human acute lymphoblastic leukemia cell line were developed and were designated as MOLT-3/TMQ200, MOLT-3/TMQ800, and MOLT-3/TMQ2500 based on degrees of resistance to TMQ. The TMQ resistance was accompanied by 5- to 7-fold increases in dihydrofolate reductase activity and markedly reduced cellular TMQ accumulation. Methotrexate accumulation was not impaired in TMQ-resistant cells. TMQ retention (efflux) was unchanged in these TMQ-resistant cells. Verapamil enhanced the TMQ accumulation in the resistant cells to the level seen in the parent cells but had no effects on the TMQ retention. These sublines were cross-resistant not only to methotrexate but also to vincristine, doxorubicin, daunorubicin, and mitoxantrone. There was no cross-resistance to bleomycin or cisplatin. Resistance to vincristine, doxorubicin, daunorubicin, and mitoxantrone was reversed by verapamil. TMQ resistance was only minimally reversed by verapamil and methotrexate resistance not affected at all. Both cellular accumulation and retention of vincristine and daunorubicin in the TMQ-resistant cells were markedly decreased. Verapamil enhanced both accumulation and retention of the drug. Plasma membrane fractions of the TMQ-resistant cells analyzed by urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by staining with Coomassie Blue revealed the presence of a distinct band with a molecular weight of 170,000. Immunoblot analysis with 125I-labeled monoclonal antibody raised against P-glycoprotein of multidrug-resistant Chinese hamster ovary cells (C219) cross-reacted with the Mr 170,000 protein of the TMQ-resistant cells. These results show that the TMQ-resistant cells displayed not only decreased TMQ uptake and increased dihydrofolate reductase but also characteristics associated with a classical multidrug-resistant phenotype. Multidrug resistance

  8. TPGS/Phospholipids Mixed Micelles for Delivery of Icariside II to Multidrug-Resistant Breast Cancer.

    PubMed

    Song, Jie; Huang, Houcai; Xia, Zhi; Wei, Yingjie; Yao, Nan; Zhang, Li; Yan, Hongmei; Jia, Xiaobin; Zhang, Zhenhai

    2016-09-01

    The biggest challenge for the treatment of multidrug resistant cancer is to deliver a high concentration of anticancer drugs to cancer cells. Icariside II is a flavonoid from Epimedium koreanum Nakai with remarkable anticancer properties, but poor solubility and significant efflux from cancer cells limited its clinical use. In our previous study, a self-assembled mixture of micelles (TPGS-Icariside II-phospholipid complex) was successfully constructed, which could substantially increase the solubility of Icariside II and inhibit the efflux on Caco-2 cells. In this study, we evaluate the anticancer effect of the mixed micelles encapsulating Icariside II (Icar-MC) on MCF-7/ADR, a multidrug-resistant breast cancer cell line. The cellular uptake of the micelles was confirmed by fluorescent coumarin-6-loaded micelles. The IC50 of Icar-MC in MCF-7/ADR was 2-fold less than the free drug. The in vitro study showed Icar-MC induced more apoptosis and lactate dehydrogenase release. Intravenous injection of Icar-MC into nude mice bearing MCF-7/ADR xenograft resulted in a better antitumor efficacy compared with the administration of free drug, without causing significant body weight changes in mice. The antitumor effect was further verified by magnetic resonance imaging and immunohistochemical assays for Ki-67, a proliferative indicator. Moreover, Icar-MC treatment also elevated Bax/Bcl-2 ratio and the expressions of cleaved caspase-3, -8, -9 and AIFM1 in tumors. This study suggests that phospholipid/TPGS mixed micelles might be a suitable drug delivery system for Icariside II to treat multidrug resistant breast cancer. PMID:26293804

  9. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen.

    PubMed

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J; Gotoh, Naomasa; Thomson, Nicholas R; Ewbank, Jonathan J; Hayashi, Tetsuya

    2014-08-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents.

  10. Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen

    PubMed Central

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J.; Gotoh, Naomasa; Thomson, Nicholas R.; Ewbank, Jonathan J.; Hayashi, Tetsuya

    2014-01-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. PMID:25070509

  11. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D; Sifuentes-Osornio, José; Cave, M Donald; Ponce de León, Alfredo; Alland, David

    2006-08-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  12. InbR, a TetR family regulator, binds with isoniazid and influences multidrug resistance in Mycobacterium bovis BCG.

    PubMed

    Yang, Min; Gao, Chun-Hui; Hu, Jialing; Zhao, Lei; Huang, Qiaoyun; He, Zheng-Guo

    2015-01-01

    Isoniazid (INH), an anti-tuberculosis (TB) drug, has been widely used for nearly 60 years. However, the pathway through which Mycobacterium tuberculosis responds INH remain largely unclear. In this study, we characterized a novel transcriptional factor, InbR, which is encoded by Rv0275c and belongs to the TetR family, that is directly responsive to INH. Disrupting inbR made mycobacteria more sensitive to INH, whereas overexpressing inbR decreased bacterial susceptibility to the drug. InbR could bind specifically to the upstream region of its own operon at two inverted repeats and act as an auto-repressor. Furthermore, InbR directly bind with INH, and the binding reduced InbR's DNA-binding ability. Interestingly, susceptibilities were also changed by InbR for other anti-TB drugs, such as rifampin, implying that InbR may play a role in multi-drug resistance. Additionally, microarray analyses revealed a portion genes of the inbR regulon have similar expression patterns in inbR-overexpressing strain and INH-treated wild type strain, suggesting that these genes, for example iniBAC, may be responsible to the drug resistance of inbR-overexpressing strain. The regulation of these genes by InbR were further assessed by ChIP-seq assay. InbR may regulate multiple drug resistance of mycobacteria through the regulation of these genes.

  13. Cytotoxicity of the Sesquiterpene Lactones Neoambrosin and Damsin from Ambrosia maritima Against Multidrug-Resistant Cancer Cells

    PubMed Central

    Saeed, Mohamed; Jacob, Stefan; Sandjo, Louis P.; Sugimoto, Yoshikazu; Khalid, Hassan E.; Opatz, Till; Thines, Eckhard; Efferth, Thomas

    2015-01-01

    Multidrug resistance is a prevailing phenomenon leading to chemotherapy treatment failure in cancer patients. In the current study two known cytotoxic pseudoguaianolide sesquiterpene lactones; neoambrosin (1) and damsin (2) that circumvent MDR were identified. The two cytotoxic compounds were isolated using column chromatography, characterized using 1D and 2D NMR, MS, and compared with literature values. The isolated compounds were investigated for their cytotoxic potential using resazurin assays and thereafter confirmed with immunoblotting and in silico studies. MDR cells overexpressing ABC transporters (P-glycoprotein, BCRP, ABCB5) did not confer cross-resistance toward (1) and (2), indicating that these compounds are not appropriate substrates for any of the three ABC transporters analyzed. Resistance mechanisms investigated also included; the loss of the functions of the TP53 and the mutated EGFR. The HCT116 p53-/- cells were sensitive to 1 but resistant to 2. It was interesting to note that resistant cells transfected with oncogenic ΔEGFR exhibited hypersensitivity CS toward (1) and (2) (degrees of resistances were 0.18 and 0.15 for (1) and (2), respectively). Immunoblotting and in silico analyses revealed that 1 and 2 silenced c-Src kinase activity. It was hypothesized that inhibition of c-Src kinase activity may explain CS in EGFR-transfected cells. In conclusion, the significant cytotoxicity of 1 and 2 against different drug-resistant tumor cell lines indicate that they may be promising candidates to treat refractory tumors. PMID:26617519

  14. Multidrug resistance protein 4/ ATP binding cassette transporter 4: a new potential therapeutic target for acute myeloid leukemia

    PubMed Central

    Copsel, Sabrina; Bruzzone, Ariana; May, Maria; Beyrath, Julien; Wargon, Victoria; Cany, Jeannette; Frans, G.M. Russel; Shayo, Carina; Davio, Carlos

    2014-01-01

    Less than a third of adults patients with acute myeloid leukemia (AML) are cured by current treatments, emphasizing the need for new approaches to therapy. We previously demonstrated that besides playing a role in drug-resistant leukemia cell lines, multidrug resistance protein 4 (MRP4/ABCC4) regulates leukemia cell proliferation and differentiation through the endogenous MRP4/ABCC4 substrate, cAMP. Here, we studied the role of MRP4/ABCC4 in tumor progression in a mouse xenograft model and in leukemic stem cells (LSCs) differentiation. We found a decrease in the mitotic index and an increase in the apoptotic index associated with the inhibition of tumor growth when mice were treated with rolipram (PDE4 inhibitor) and/or probenecid (MRPs inhibitor). Genetic silencing and pharmacologic inhibition of MRP4 reduced tumor growth. Furthermore, MRP4 knockdown induced cell cycle arrest and apoptosis in vivo. Interestingly, when LSC population was isolated, we observed that increased cAMP levels and MRP4/ABCC4 blockade resulted in LSCs differentiation. Taken together, our findings show that MRP4/ABCC4 has a relevant role in tumor growth and apoptosis and in the eradication of LSCs, providing the basis for a novel promising target in AML therapy. PMID:25301721

  15. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes.

    PubMed

    Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L

    2010-10-01

    Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively.

  16. Cytotoxicity of the Sesquiterpene Lactones Neoambrosin and Damsin from Ambrosia maritima Against Multidrug-Resistant Cancer Cells.

    PubMed

    Saeed, Mohamed; Jacob, Stefan; Sandjo, Louis P; Sugimoto, Yoshikazu; Khalid, Hassan E; Opatz, Till; Thines, Eckhard; Efferth, Thomas

    2015-01-01

    Multidrug resistance is a prevailing phenomenon leading to chemotherapy treatment failure in cancer patients. In the current study two known cytotoxic pseudoguaianolide sesquiterpene lactones; neoambrosin (1) and damsin (2) that circumvent MDR were identified. The two cytotoxic compounds were isolated using column chromatography, characterized using 1D and 2D NMR, MS, and compared with literature values. The isolated compounds were investigated for their cytotoxic potential using resazurin assays and thereafter confirmed with immunoblotting and in silico studies. MDR cells overexpressing ABC transporters (P-glycoprotein, BCRP, ABCB5) did not confer cross-resistance toward (1) and (2), indicating that these compounds are not appropriate substrates for any of the three ABC transporters analyzed. Resistance mechanisms investigated also included; the loss of the functions of the TP53 and the mutated EGFR. The HCT116 p53(-/-) cells were sensitive to 1 but resistant to 2. It was interesting to note that resistant cells transfected with oncogenic ΔEGFR exhibited hypersensitivity CS toward (1) and (2) (degrees of resistances were 0.18 and 0.15 for (1) and (2), respectively). Immunoblotting and in silico analyses revealed that 1 and 2 silenced c-Src kinase activity. It was hypothesized that inhibition of c-Src kinase activity may explain CS in EGFR-transfected cells. In conclusion, the significant cytotoxicity of 1 and 2 against different drug-resistant tumor cell lines indicate that they may be promising candidates to treat refractory tumors. PMID:26617519

  17. Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance

    PubMed Central

    Yu, Xiwei; Yang, Guang; Shi, Yijie; Su, Chang; Liu, Ming; Feng, Bo; Zhao, Liang

    2015-01-01

    Nowadays, multidrug resistance and side effects of drugs limit the effectiveness of chemotherapies in clinics. P-glycoprotein (P-gp) (MDR1), as a member of the ATP-binding cassette family, acts on transporting drugs into cell plasma across the membrane of cancer cells and leads to the occurrence of multidrug resistance, thus resulting in the failure of chemotherapy in cancer. The main aims of this research were to design a nanodelivery system for accomplishing the effective co-delivery of gene and antitumor drug and overcoming multidrug resistance effect. In this study, shMDR1 and gefitinib-encapsulating chitosan nanoparticles with sustained release, small particle size, and high encapsulation efficiency were prepared. The serum stability, protection from nuclease, and transfection efficiency of gene in vitro were investigated. The effects of co-delivery of shMDR1 and gefitinib in nanoparticles on reversing multidrug resistance were also evaluated by investigating the cytotoxicity, cellular uptake mechanism, and cell apoptosis on established gefitinib-resistant cells. The results demonstrated that chitosan nanoparticles entrapping gefitinib and shMDR1 had the potential to overcome the multidrug resistance and improve cancer treatment efficacy, especially toward resistant cells. PMID:26648717

  18. Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance.

    PubMed

    Yu, Xiwei; Yang, Guang; Shi, Yijie; Su, Chang; Liu, Ming; Feng, Bo; Zhao, Liang

    2015-01-01

    Nowadays, multidrug resistance and side effects of drugs limit the effectiveness of chemotherapies in clinics. P-glycoprotein (P-gp) (MDR1), as a member of the ATP-binding cassette family, acts on transporting drugs into cell plasma across the membrane of cancer cells and leads to the occurrence of multidrug resistance, thus resulting in the failure of chemotherapy in cancer. The main aims of this research were to design a nanodelivery system for accomplishing the effective co-delivery of gene and antitumor drug and overcoming multidrug resistance effect. In this study, shMDR1 and gefitinib-encapsulating chitosan nanoparticles with sustained release, small particle size, and high encapsulation efficiency were prepared. The serum stability, protection from nuclease, and transfection efficiency of gene in vitro were investigated. The effects of co-delivery of shMDR1 and gefitinib in nanoparticles on reversing multidrug resistance were also evaluated by investigating the cytotoxicity, cellular uptake mechanism, and cell apoptosis on established gefitinib-resistant cells. The results demonstrated that chitosan nanoparticles entrapping gefitinib and shMDR1 had the potential to overcome the multidrug resistance and improve cancer treatment efficacy, especially toward resistant cells. PMID:26648717

  19. Partial synthesis and biological evaluation of bisbenzylisoquinoline alkaloids derivatives: potential modulators of multidrug resistance in cancer.

    PubMed

    He, Ping; Sun, Hua; Jian, Xi-Xian; Chen, Qiao-Hong; Chen, Dong-Lin; Liu, Geng-Tao; Wang, Feng-Peng

    2012-01-01

    A series of new bisbenzylisoquinoline alkaloids was partially synthesized from tetrandrine and fangchinoline and evaluated for their ability to reverse P-glycoprotein-mediated multidrug resistance (MDR) in cancer cells. All the test compounds increased the intracellular accumulation rate of rhodamine 123 in MDR cells (Bel7402 and HCT8), and most exhibited more potent MDR-reversing activity relative to the reference compound verapamil. Compounds 8, 10, 13, and 14 enhanced intracellular accumulation of doxorubicin in Bel7402 and HCT8 cells. PMID:22587798

  20. Diterpene Constituents of Euphorbia exigua L. and Multidrug Resistance Reversing Activity of the Isolated Diterpenes.

    PubMed

    Rédei, Dóra; Boros, Klára; Forgo, Peter; Molnár, Joseph; Kele, Zoltán; Pálinkó, István; Pinke, Gyula; Hohmann, Judit

    2015-08-01

    Phytochemical investigation of the MeOH extract obtained from the aerial parts of the annual weed Euphorbia exigua L. resulted in the isolation of two novel (1, 2) and one known (3) jatrophane diterpenes. Their structures were established by extensive 1D- and 2D-NMR spectroscopy and HR-ESI-MS. The isolated compounds were evaluated for multidrug resistance (MDR) reversing activity on human MDR gene-transfected L5178 mouse lymphoma cells; and all three compounds were found to modulate the intracellular drug accumulation.

  1. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain.

    PubMed

    Halim, Mohd Zakihalani A; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-03-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968.

  2. The Race Is On To Shorten the Turnaround Time for Diagnosis of Multidrug-Resistant Tuberculosis

    PubMed Central

    Somoskovi, Akos

    2015-01-01

    To realize the most benefit from multidrug-resistant tuberculosis (MDR-TB) screening, all nucleic acid amplification test (NAAT)-positive respiratory specimens should be universally tested. Once an MDR-TB diagnosis is established, additional testing is warranted to provide details about the detected mutations. The lab-on-chip technology described by A. M. Cabibbe et al. (J Clin Microbiol 53:3876–3880, 2015, http://dx.doi.org/10.1128/JCM.01824-15) potentially provides this much needed information. PMID:26378276

  3. Enterococcus faecalis as multidrug resistance strains in clinical isolates in Imam Reza Hospital in Kermanshah, Iran.

    PubMed

    Mohammadi, F; Ghafourian, S; Mohebi, R; Taherikalani, M; Pakzad, I; Valadbeigi, H; Hatami, V; Sadeghifard, N

    2015-01-01

    The current study aimed to investigate the prevalence of vancomycin-resistant Enterococcus in E. faecalis and E. faecium and antimicrobial susceptibility patterns, then dominant genes responsible for vancomycin resistance were determined. For this propose, 180 clinical isolates of Enterococcus were subjected for identification and antibiotic susceptibility assay. Then, the gene responsible vancomycin resistant strains were determined. The results demonstrated the E. faecalis as a dominant Enterococcus. Resistance to erythromycin was dominant and multidrug resistance strains observed in E. faecalis. vanA was responsible for vancomycin resistance. In conclusion, a high rate of resistance to antibiotics in Enterococcus is clearly problematic, and a novel strategy is needed to decrease resistance in Enterococcus.

  4. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    PubMed Central

    Choi, Cheol-Hee

    2005-01-01

    One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein. PMID:16202168

  5. The multidrug resistance (mdr1) gene product functions as an ATP channel.

    PubMed Central

    Abraham, E H; Prat, A G; Gerweck, L; Seneveratne, T; Arceci, R J; Kramer, R; Guidotti, G; Cantiello, H F

    1993-01-01

    The multidrug resistance (mdr1) gene product, P-glycoprotein, is responsible for the ATP-dependent extrusion of a variety of compounds, including chemotherapeutic drugs, from cells. The data presented here show that cells with increased levels of the P-glycoprotein release ATP to the medium in proportion to the concentration of the protein in their plasma membrane. Furthermore, measurements of whole-cell and single-channel currents with patch-clamp electrodes indicate that the P-glycoprotein serves as an ATP-conducting channel in the plasma membrane. These findings suggest an unusual role for the P-glycoprotein. PMID:7678345

  6. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation.

    PubMed

    Sharma, C; Kumar, N; Pandey, R; Meis, J F; Chowdhary, A

    2016-09-01

    Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris strains from four Indian hospitals were highly related, suggesting clonal transmission. Further, all C. auris isolates originated from cases of fungaemia and were resistant to fluconazole (MIC >64 mg/L).

  7. Vancomycin for multi-drug resistant Enterococcus faecium cholangiohepatitis in a cat.

    PubMed

    Pressel, Michelle A; Fox, Leslie E; Apley, Michael D; Simutis, Frank J

    2005-10-01

    A 12-year-old, neutered male domestic shorthair cat was evaluated with a life-long history of intermittent, predominantly small bowel diarrhea and a 3 day history of hematochezia. At presentation, the cat had increased liver enzyme activities and an inflammatory leukogram. Histopathology demonstrated inflammatory bowel disease (IBD), cholangiohepatitis and pancreatitis. The cholangiohepatitis was associated with a multi-drug resistant Enterococcus faecium. Gallbladder agenesis was also documented. Treatment with vancomycin was safely instituted for 10 days. Clinical signs resolved, however, cure of the bacterial cholangiohepatitis was not achieved. The risk of vancomycin resistant enterococci (VRE) in human and veterinary medicine is discussed. PMID:16182186

  8. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain

    PubMed Central

    Halim, Mohd Zakihalani A.; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-01-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. PMID:26981419

  9. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells.

    PubMed

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Wu, Minghuo; Yang, Ling; Zou, Hanfa

    2010-03-23

    Multidrug resistance (MDR), which is related to cancer chemotherapy, tumor stem cells, and tumor metastasis, is a huge obstacle for the effective cancer therapy. One of the underlying mechanisms of MDR is the increased efflux of anticancer drugs by overexpressed P-glycoprotein (P-gp) of multidrug resistant cells. In this work, the antibody of P-gp (anti-P-gp) functionalized water-soluble single-walled carbon nanotubes (Ap-SWNTs) loaded with doxorubicin (Dox), Dox/Ap-SWNTs, were synthesized for challenging the MDR of K562 human leukemia cells. The resulting Ap-SWNTs could not only specifically recognize the multidrug resistant human leukemia cells (K562R), but also demonstrate the effective loading and controllable release performance for Dox toward the target K562R cells by exposing to near-infrared radiation (NIR). The recognition capability of Ap-SWNTs toward the K562R cells was confirmed by flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The binding affinity of Ap-SWNTs toward drug-resistant K562R cells was ca. 23-fold higher than that toward drug-sensitive K562S cells. Additionally, CLSM indicated that Ap-SWNTs could specifically localize on the cell membrane of K562R cells and the fluorescence of Dox in K562R cells could be significantly enhanced after the employment of Ap-SWNTs as carrier. Moreover, the composite of Dox and Ap-SWNTs (Dox/Ap-SWNTs) expressed 2.4-fold higher cytotoxicity and showed the significant cell proliferation suppression toward K562R leukemia cells (p < 0.05) as compared with free Dox which is popularly employed in clinic trials. These results suggest that the Ap-SWNTs are the promising drug delivery vehicle for overcoming the MDR induced by the overexpression of P-gp on cell membrane. Ap-SWNTs loaded with drug molecules could be used to suppress the proliferation of multidrug resistant cells, destroy the tumor stem cells, and inhibit the metastasis of tumor.

  10. The effect of terminal cleaning on environmental contamination rates of multidrug-resistant Acinetobacter baumannii.

    PubMed

    Strassle, Paula; Thom, Kerri A; Johnson, J Kristie; Johnsonm, J Kristie; Leekha, Surbhi; Lissauer, Matthew; Zhu, Jingkun; Harris, Anthony D

    2012-12-01

    We evaluated the prevalence of multidrug-resistant Acinetobacter baumannii environmental contamination before and after discharge cleaning in rooms of infected/colonized patients. 46.9% of rooms and 15.3% of sites were found contaminated precleaning, and 25% of rooms and 5.5% of sites were found contaminated postcleaning. Cleaning significantly decreased environmental contamination of A baumannii; however, persistent contamination represents a significant risk factor for transmission. Further studies on this and more effective cleaning methods are needed.

  11. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance.

    PubMed

    Bottery, Michael J; Wood, A Jamie; Brockhurst, Michael A

    2016-04-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid inEscherichia colidepend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  12. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance

    PubMed Central

    Wood, A. Jamie; Brockhurst, Michael A.

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  13. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain.

    PubMed

    Halim, Mohd Zakihalani A; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-03-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. PMID:26981419

  14. First Two Cases of Fungal Infections Associated with Multi-drug Resistant Yeast, Fereydounia khargensis.

    PubMed

    Tap, Ratna Mohd; Ramli, Nur Yasmin; Sabaratnam, Parameswari; Hashim, Rohaidah; Bakri, Ahmed Rafezzan Ahmed; Bee, Lim Bee; Ginsapu, Stephanie Jane; Ahmad, Rahimah; Razak, Mohd Fuat Abd; Ahmad, Norazah

    2016-08-01

    The number of new fungal pathogens is increasing due to growing population of immunocompromised patients and advanced identification techniques. Fereydounia khargensis is a yeast and was first described in 2014 from environmental samples. As far as we know, this is the first report of human infections associated with F. khargensis. The yeasts were isolated from blood of a HIV-positive patient and pleural fluid of chronic renal failure patient. Amplification and sequencing of the internal transcribed spacer and the large subunit regions confirmed the identity of the isolates. Both isolates showed multi-drug resistance to antifungal agents tested. PMID:27010640

  15. Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran

    PubMed Central

    Moghadam, MN; Motamedifar, M; Sarvari, J; Sedigh, Ebrahim-Saraie H; Mousavi, Same M; Moghadam, FN

    2016-01-01

    Background: Metallo-beta-lactamase (MβL) enzymes production is one of the most important resistance mechanisms against carbapenems in some bacteria including Acinetobacter baumannii. Aims: This study was aimed to determine the antimicrobial susceptibility and the prevalence of MβL among carbapenem-resistant isolates of A. baumannii. Materials and Methods: In this cross-sectional study from October 2012 to April 2013, 98 isolates were identified as A. baumannii using Microgen™ kits and confirmed by molecular method. These isolates were tested for antimicrobial susceptibilities by disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. Carbapenem-resistant isolates were further detected phenotypically by MβL minimal inhibitory concentration (MIC)-test strips, and subsequently positive MβL isolates were confirmed by polymerase chain reaction (PCR). Results: Overall, 98% (96/98) of A. baumannii isolates were detected as carbapenem-resistant by MIC test. Highest sensitivity to the tested antibiotic with 42.9% (42/98) was observed to colistin. Of 96 carbapenem-resistant isolates, 43 were phenotypically positive for MβL; out of 43 isolates, 37 were confirmed for the presence of MβL genes by PCR. Conclusion: The frequency of drug resistance among the clinical samples of A. baumannii isolated in our study against most of the antibiotics was very high. Moreover, all MβL producing isolates were multidrug resistance. Therefore, systematic surveillance to detect MβL producing bacteria and rational prescription and use of carbapenems could be helpful to prevent the spread of carbapenem resistance. PMID:27398247

  16. Emergence of a Multidrug-Resistant Shiga Toxin-Producing Enterotoxigenic Escherichia coli Lineage in Diseased Swine in Japan.

    PubMed

    Kusumoto, Masahiro; Hikoda, Yuna; Fujii, Yuki; Murata, Misato; Miyoshi, Hirotsugu; Ogura, Yoshitoshi; Gotoh, Yasuhiro; Iwata, Taketoshi; Hayashi, Tetsuya; Akiba, Masato

    2016-04-01

    EnterotoxigenicEscherichia coli(ETEC) and Shiga toxin-producingE. coli(STEC) are important causes of diarrhea and edema disease in swine. The majority of swine-pathogenicE. colistrains belong to a limited range of O serogroups, including O8, O138, O139, O141, O147, O149, and O157, which are the most frequently reported strains worldwide. However, the circumstances of ETEC and STEC infections in Japan remain unknown; there have been few reports on the prevalence or characterization of swine-pathogenicE. coli In the present study, we determined the O serogroups of 967E. coliisolates collected between 1991 and 2014 from diseased swine in Japan, and we found that O139, O149, O116, and OSB9 (O serogroup ofShigella boydiitype 9) were the predominant serogroups. We further analyzed these four O serogroups using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and virulence factor profiling. Most of the O139 and O149 strains formed serogroup-specific PFGE clusters (clusters I and II, respectively), whereas the O116 and OSB9 strains were grouped together in the same cluster (cluster III). All of the cluster III strains belonged to a single sequence type (ST88) and carried genes encoding both enterotoxin and Shiga toxin. This PFGE cluster III/ST88 lineage exhibited a high level of multidrug resistance (to a median of 10 antimicrobials). Notably, these bacteria were resistant to fluoroquinolones. Thus, this lineage should be considered a significant risk to animal production due to the toxigenicity and antimicrobial resistance of these bacteria. PMID:26865687

  17. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted

  18. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  19. Genetic diversity of multidrug resistant Staphylococcus aureus isolated from clinical and non clinical samples in Egypt.

    PubMed

    Bendary, M M; Solyman, S M; Azab, M M; Mahmoud, N F; Hanora, A M

    2016-01-01

    In recent years, the increasing incidence of diseases caused by Staphylococcus aureus (S. aureus) has been noted in the university hospitals of El-Sharkia and Assuit governorates - Egypt. Therefore, we studied the genetic relatedness of multidrug resistant S. aureus isolates from different sources in the above mentioned governorates. One hundred and fifty six S. aureus isolates were divided into 5 different groups, 1 non clinical isolates from different food products and 4 different clinical isolates of human and animal sources in the 2 different governorates. Epidemiological characteristics of 156 S. aureus isolates were determined by phenotypic methods including quantitative antibiogram typing and biofilm production. Genetic typing of 35 multidrug resistant (MDR) isolates (7 from each group) based on 16S rRNA gene sequence, virulence and antimicrobial resistance gene profiles was done. The genetic relatedness of the highest virulent strain from each group was detected based on different single locus sequence typing and multi-locus sequence typing (MLST). S. aureus strains isolated from different sources and geographical areas showed high diversity. The genetic typing revealed different sequence types and different sequences of coa and spa genes. S. aureus isolates were found highly diverse in Egypt. PMID:27609475

  20. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups.

    PubMed

    Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique; Brisse, Sylvain

    2014-11-01

    Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resist