Science.gov

Sample records for multidrug-resistant bacteria interest

  1. [Travellers and multi-drug resistance bacteria].

    PubMed

    Takeshita, Nozomi

    2012-02-01

    The number of international travellers has increased. There is enormous diversity in medical backgrounds, purposes of travel, and travelling styles among travellers. Travellers are hospitalized abroad because of exotic and common diseases via medical tourism. This is one way of transporting and importing human bacteria between countries, including multi-drug resistant organisms. In developing countries, the antimicrobial resistance in Shigella sp. and Salmonella sp. have been a problem, because of this trend, the first choice of antibiotics has changed in some countries. Community acquired infections as well as hospital acquired infections with MRSA, multi-drug resistance (MDR) Pseudomonas aeruginosa, and ESBL have been a problem. This review will discuss the risk of MDR bacterial infectious diseases for travellers.

  2. [Multi-drug resistant bacteria, a complex mechanism].

    PubMed

    Hilaire, Jean-Christophe

    2013-01-01

    Bacteria are said to be multidrug resistant when they are only sensitive to a small number of antibiotics used as treatments. This problem of resistance appeared in hospitals soon after antibiotics were first used. In the 1960s, strains of staphylococcus became resistant to penicillin.

  3. Tackling Threats and Future Problems of Multidrug-Resistant Bacteria.

    PubMed

    Medina, Eva; Pieper, Dietmar Helmut

    2016-01-01

    With the advent of the antibiotic era, the overuse and inappropriate consumption and application of antibiotics have driven the rapid emergence of multidrug-resistant pathogens. Antimicrobial resistance increases the morbidity, mortality, length of hospitalization and healthcare costs. Among Gram-positive bacteria, Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Mycobacterium tuberculosis, and among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBLs)-producing bacteria have become a major global healthcare problem in the 21st century. The pressure to use antibiotics guarantees that the spread and prevalence of these as well as of future emerging multidrug-resistant pathogens will be a persistent phenomenon. The unfeasibility of reversing antimicrobial resistance back towards susceptibility and the critical need to treat bacterial infection in modern medicine have burdened researchers and pharmaceutical companies to develop new antimicrobials effective against these difficult-to-treat multidrug-resistant pathogens. However, it can be anticipated that antibiotic resistance will continue to develop more rapidly than new agents to treat these infections become available and a better understanding of the molecular, evolutionary and ecological mechanisms governing the spread of antibiotic resistance is needed. The only way to curb the current crisis of antimicrobial resistance will be to develop entirely novel strategies to fight these pathogens such as combining antimicrobial drugs with other agents that counteract and obstruct the antibiotic resistant mechanisms expressed by the pathogen. Furthermore, as many antibiotics are often inappropriately prescribed, a more personalized approach based on precise diagnosis tools will ensure that proper treatments can be promptly applied leading to more targeted and effective therapies. However, in more general terms, also the overall use and release of antibiotics in the environment needs to be

  4. Presence of Multidrug Resistant Enteric Bacteria in Dairy Farm Topsoil

    PubMed Central

    Burgos, J. M.; Ellington, B. A.; Varela, M. F.

    2008-01-01

    In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement and prophylaxis in food animals, leading to selection of drug and multidrug resistant bacteria. In order to help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, is it not fully understood how widespread antibiotic resistant bacteria are in agricultural settings. The lack of such surveillance data is especially evident in dairy farm environments, such as soil. It is also unknown to what extent various physiological modulators, such as salycilate, a component of aspirin and known model modulator of multiple antibiotic resistance (mar) genes, influence bacterial multidrug resistance. We isolated and identified enteric soil bacteria from local dairy farms within Roosevelt County, NM, determined the resistance profiles to antibiotics associated with mar, such as chloramphenicol, nalidixic acid, penicillin G and tetracycline. We then purified and characterized plasmid DNA and detected mar phenotypic activity. The minimal inhibitory concentrations (MICs) of antibiotics for the isolates ranged between 6 - >50 μg/mL for chloramphenicol, 2–8 μg/mL for nalidixic acid, 25- >300 μg/mL for penicillin G and 1- > 80 μg/mL for tetracycline. On the other hand, the many of the isolates had significantly enhanced MICs for the same antibiotics in the presence of 5 mM salycilate. Plasmid DNA extracted from 12 randomly chosen isolates ranged in size between 6 and 12.5kb and in several cases conferred resistances to chloramphenicol and penicillin G. It is concluded that enteric bacteria from dairy farm topsoil are multi-drug resistant and harbor antibiotic resistance plasmids. A role for dairy topsoil in zoonosis is suggested, thus implicating this environment as a reservoir for bacterial resistance development against clinically relevant

  5. Antimicrobial Organometallic Dendrimers with Tunable Activity against Multidrug-Resistant Bacteria.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola; Overy, David P; Lanteigne, Martin; McQuillan, Katherine; Kerr, Russell G

    2015-11-09

    Multidrug-resistant pathogens are an increasing threat to public health. In an effort to curb the virulence of these pathogens, new antimicrobial agents are sought. Here we report a new class of antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant Gram-positive bacteria that included methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Mechanistically, these redox-active, cationic organometallic dendrimers induced oxidative stress on bacteria and also disrupted the microbial cell membrane. The minimum inhibitory concentrations, which provide a quantitative measure of the antimicrobial activity of these dendrimers, were in the low micromolar range. AlamarBlue cell viability assay also confirms the antimicrobial activity of these dendrimers. Interestingly, these dendrimers were noncytotoxic to epidermal cell lines and to mammalian red blood cells, making them potential antimicrobial platforms for topical applications.

  6. Photoexcited quantum dots for killing multidrug-resistant bacteria.

    PubMed

    Courtney, Colleen M; Goodman, Samuel M; McDaniel, Jessica A; Madinger, Nancy E; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  7. Photoexcited quantum dots for killing multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  8. [Significance of efflux pumps in multidrug resistance of Gram-negative bacteria].

    PubMed

    Wiercińska, Olga; Chojecka, Agnieszka; Kanclerski, Krzysztof; Rőhm-Rodowald, Ewa; Jakimiak, Bożenna

    2015-01-01

    The phenomenon of multidrug. resistance of bacteria is a serious problem of modern medicine. This resistance largely is a consequence of abuse and improper use of antibacterial substances, especially antibiotics and chemotherapeutics in hospital settings. Multidrug resistance is caused by a number of interacting mechanisms of resistance. Recent studies have indicated that efflux pumps and systems of efflux pumps are an important determinant of this phenomenon. Contribute to this particular RND efflux systems of Gram-negative bacteria, which possess a wide range of substrates such as antibiotics, dyes, detergents, toxins and active substances of disinfectants and antiseptics. These transporters are usually encoded on bacterial chromosomes. Genes encoding efflux pumps' proteins may also be carried on plasmids and other mobile genetic elements. Such pumps are usually specific to a small group of substrates, but as an additional mechanism of resistance may contribute to the multidrug resistance.

  9. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Hien, Nguyen Quoc; An, Pham Ngoc; Loan, Truong Thi Kieu; Hoa, Phan Thi

    2016-04-01

    The silver nanoparticles (AgNPs)/peco fabrics were prepared by immobilization of AgNPs on fabrics in which AgNPs were synthesized by γ-irradiation of the 10 mM AgNO3 chitosan solution at the dose of 17.6 kGy. The AgNPs size has been estimated to be about 11 nm from TEM image. The AgNPs content onto peco fabrics was of 143±6 mg/kg at the initial AgNPs concentration of 100 ppm. The AgNPs colloidal solution was characterized by UV-vis spectroscopy and TEM image. The antibacterial activity of AgNPs/peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumoniae was found to be over 99%. Effects of AgNPs fabics on multidrug-resistant pathogens from the clinical specimens were also tested.

  10. [Caring for a patient carrying multi-drug resistant bacteria at home].

    PubMed

    Kereun, François

    2015-01-01

    Private practice health professionals play a role in the fight against healthcare-associated infections. The management of the home care of a patient carrying multi-drug resistant bacteria reveals the weaknesses in the community-hospital link. Providing care in complete safety for the caregiver as well as the patient is a major challenge. A private practice nurse shares his experience.

  11. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  12. High isolation rates of multidrug-resistant bacteria from water and carpets of mosques

    PubMed Central

    Mohamed Ali, Mostafa Mohamed; Alemary, Fuoad; Alrtail, Amna; Rzeg, Moftah M.; Albakush, Abdulla M.; Ghenghesh, Khalifa Sifaw

    2014-01-01

    Objective There is little information regarding the isolation of antimicrobial-resistant potentially pathogenic bacteria from water and carpets of mosques worldwide. The objective of the present investigation is to determine the bacteriological quality of water and carpets of mosques in Elkhomes city in Libya. Methods Potentially pathogenic bacteria were isolated from water samples (n=44) and dust samples from carpets (n=50) of 50 mosques in Elkhomes city, Libya, using standard bacteriological procedures. Susceptibility of isolated bacteria to antimicrobial agents was determined by the disc-diffusion method. Results Of the water samples examined, 12 (27.3%) were positive for Escherichia coli, 10 (22.7%) for Klebsiella spp., and 15 (34.1%) for other enteric bacteria. Of the dust samples of carpets examined, 6 (12%) were positive for E. coli, 33 (66%) for Klebsiella spp., and 30 (60%) for Staphylococcus spp. Multidrug resistance (MDR, resistance to three or more antimicrobial groups) was found among 48.7% (19/37) and 46.9% (30/64) of the examined enterobacteria from water and carpets, respectively, and among 66.7% (20/30) of Staphylococcus spp. from carpets. In addition, methicillin-resistant Staphylococcus aureus (MRSA) was isolated from a carpet of one mosque. Conclusion Presence of multidrug-resistant potentially pathogenic bacteria in examined water and carpets indicate that mosques as communal environments may play a role in the spread of multidrug-resistant bacteria in the community and pose a serious health risk to worshipers. PMID:25128691

  13. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    PubMed

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  14. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria.

    PubMed

    Zhang, Jiuyang; Chen, Yung Pin; Miller, Kristen P; Ganewatta, Mitra S; Bam, Marpe; Yan, Yi; Nagarkatti, Mitzi; Decho, Alan W; Tang, Chuanbing

    2014-04-02

    Bacteria are now becoming more resistant to most conventional antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings by deactivating conventional β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, through various mechanisms, resulting in increased mortality rates and hospitalization costs. Here we introduce a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of β-lactamase and effectively lysing bacterial cells. Various conventional β-lactam antibiotics, including penicillin-G, amoxicillin, ampicillin, and cefazolin, are protected from β-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties. These discoveries could provide a new pathway for designing macromolecular scaffolds to regenerate vitality of conventional antibiotics to kill multidrug-resistant bacteria and superbugs.

  15. [The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria].

    PubMed

    Hasdemir, Ufuk

    2007-04-01

    Multiple antibiotic resistance of clinically important bacteria are of major concern worldwide. Alterations of drug targets or enzymatic inactivation of antimicrobial agents are the well known mechanisms of antimicrobial drug resistance. Besides these well known mechanisms, recent studies have shown that a further resistance mechanism, active drug efflux, has become increasingly important in the current threat of multidrug resistance. It involves certain bacterial transport proteins which pump out toxic antimicrobial compounds from the cell. Drug efflux pump proteins in bacteria fall into five distinct protein super families [ATP binding cassette super family (ABC), Major facilitator super family (MFS), Small multidrug resistance super family (SMR), Multidrug and toxic compound extrusion (MATE) super family, Resistance-nodulation-cell division (RND) super family] and are mostly encoded by chromosomal genes. Among them, the members of RND protein super family are widely distrubuted in Gram negative bacteria and play siginificant role in both, intrinsic and acquired multidrug resistance of these bacteria with very wide substrate specificity. RND type multidrug efflux proteins usually function together with an outer membrane canal protein (OMP) and a membrane fusion protein (MFP) to pump out drugs. AcrAB-TolC of Escherichia coli and MexAB-OprM of Pseudomonas aeruginosa are the typical examples of these tripartite systems. They are constitutively expressed in wild type cells and play significant role in intrinsic resistance of these bacteria. However, multidrug resistance which is of major clinical significance, rises as a result of overexpression of these pump systems due to mutations and elevated levels of resistance are recorded to structurally unrelated antimicrobial drugs such as fluoroquinolones, beta-lactams, tetracyclines, chloramphenicol, trimethoprim, aminoglycosides and toxic compunds. Synthesis of RND type pump proteins are regulated by complex genetic

  16. Multidrug-resistant Gram-negative bacteria in solid organ transplant recipients with bacteremias.

    PubMed

    Wan, Q Q; Ye, Q F; Yuan, H

    2015-03-01

    Bloodstream infections (BSIs) remain as life-threatening complications and are associated with significant morbidity and mortality among solid organ transplant (SOT) recipients. Multidrug-resistant (MDR) Gram-negative bacteria can cause serious bacteremias in these recipients. Reviews have aimed to investigate MDR Gram-negative bacteremias; however, they were lacking in SOT recipients in the past. To better understand the characteristics of bacteremias due to MDR Gram-negative bacteria, optimize preventive and therapeutic strategies, and improve the outcomes of SOT recipients, this review summarize the epidemiology, clinical and laboratory characteristics, and explores the mechanisms, prevention, and treatment of MDR Gram-negative bacteria.

  17. Colonization of Libyan civil war casualties with multidrug-resistant bacteria.

    PubMed

    Koole, K; Ellerbroek, P M; Lagendijk, R; Leenen, L P H; Ekkelenkamp, M B

    2013-07-01

    In November 2011 51 Libyan war casualties were admitted to the Major Incident Hospital in Utrecht and from there were transferred to 26 other Dutch hospitals. Cultures and clinical data were collected to establish the prevalence of multidrug-resistant (MDR) bacteria in this patient group and to identify the associated risk factors. The prevalence of MDR bacteria was 59% (30/51 patients); extended spectrum β-lactamase-producing enterobacteriaceae were most common (26/51 patients: 51%). The major risk factor for carriage of MDR bacteria was the presence of open wounds at admission to the Major Incident Hospital.

  18. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    PubMed Central

    Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Pop, Teodora; Mosteanu, Ofelia; Agoston-Coldea, Lucia; Matea, Cristian T; Gonciar, Diana; Zdrehus, Claudiu; Iancu, Cornel

    2017-01-01

    The issue of multidrug resistance (MDR) has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. PMID:28356741

  19. Thermotolerance and multidrug resistance in bacteria isolated from equids and their environment.

    PubMed

    Singh, B R

    2009-06-13

    Sixty-nine vaginal swabs and 138 rectal swabs collected from 195 equids were analysed for the presence of thermotolerant bacteria, that is, bacteria surviving at 60+/-0.1 degrees C for one hour. Thermotolerant Escherichia coli, Enterobacter species, Klebsiella pneumoniae, Proteus species and Pseudomonas species were isolated from 41, 16, nine, three and three of the 138 rectal swabs, respectively; seven of the E coli and two of the Enterobacter species isolates survived pasteurisation at 63.8+/-0.1 degrees C for 30 minutes. All except three E coli, two Enterobacter species and one Proteus species isolate were resistant to three or more antimicrobial drugs, that is, they were multidrug resistant. Thermotolerant E coli, Enterobacter species and Proteus species were isolated from 11, two and two of the 69 vaginal swabs, respectively, but only one isolate of E coli survived pasteurisation at 63.8+/-0.1 degrees C for 30 minutes. All except two of the E coli isolates were multidrug resistant. None of the four thermotolerant isolates from nine soil samples collected on four of the farms where the equids were kept was pasteurisation resistant, but they were all multidrug resistant. Of the 10 pasteurisation-resistant isolates, nine were multidrug resistant but none was resistant to chloramphenicol, ciprofloxacin, cotrimazine, cotrimoxazole or streptomycin. All the isolates grew at 42+/-0.1 degrees C but none grew at 46+/-0.1 degrees C or above. The Enterobacter isolates were more tolerant to pasteurisation than the E coli isolates, particularly during the first few minutes of exposure.

  20. [Epidemiological features of multidrug resistant bacteria isolated from urine samples at the Mohammed V Military Teaching Hospital in Rabat, Morocco].

    PubMed

    Zohoun, A; Ngoh, E; Bajjou, T; Sekhsokh, Y; Elhamzaoui, S

    2010-08-01

    Hospital-acquired multidrug resistant bacteria infections are a serious public health issue causing increased morbidity, mortality and care cost. These risks underscore the need for health care institutions to maintain active panels to monitor, prevent, and manage hospital-acquired infections. The purpose of this study was to assess the epidemiology of urinary tract infection involving multidrug resistant bacteria at the Microbiology Laboratory of the Mohammed-V Military Teaching Hospital in Rabat. Study was carried out retrospectively on bacteria isolated from 10,243 urinary samples collected from January 1 to December 31, 2008. A total of 1,439 non-redundant bacteria (14.1%) meeting the criteria of urinary infection were identified. One hundred and three of the 1,439 bacteria isolated (7%) were multidrug resistant. Multidrug-resistant bacteria were more common in in-patients (63.1%). Mean patient age was 53.8 +/- 18.2 and the M/F sex ratio was 2.2. The most common multi-drug resistant bacteria were Enterobacteria producing extended spectrum bêta-lactamase (54.4% including 40.8% of Klebsiella pneumonia) and non-fermenting bacteria (45.6% including 26.2% of Pseudomonas aeruginosa. and 19.4% of Acinetobacter baumannii. These bacteria were resistant to the most commonly used antibiotics but remained highly sensitive to colistin, imipenem and amikacin.

  1. Difficulties in Demonstrating Superiority of an Antibiotic for Multidrug-Resistant Bacteria in Nonrandomized Studies

    PubMed Central

    Eliopoulos, George M.; Stafford, Kristen A.; Boutin, Mallory; Evans, Scott R.; Harris, Anthony D.

    2014-01-01

    The discovery and development of new antimicrobials is critically important, especially as multidrug-resistant bacteria continue to emerge. Little has been written about the epidemiological issues in nonrandomized trials aiming to evaluate the superiority of one antibiotic over another. In this manuscript, we outline some of the methodological difficulties in demonstrating superiority and discuss potential approaches to these problems. Many of the difficulties arise due to confounding by indication, which we define and explain. Epidemiological methods including restriction, matching, stratification, multivariable regression, propensity scores, and instrumental variables are discussed. PMID:24982037

  2. Tetracycline improved the efficiency of other antimicrobials against Gram-negative multidrug-resistant bacteria.

    PubMed

    Mawabo, Isabelle K; Noumedem, Jaurès A K; Kuiate, Jules R; Kuete, Victor

    2015-01-01

    Treatment of infectious diseases with antimicrobials constituted a great achievement in the history of medicine. Unfortunately, the emergence of resistant strains of bacteria to all classes of antimicrobials limited their efficacy. The present study was aimed at evaluating the effect of combinations of antibiotics on multi-drug resistant Gram-negative (MDRGN) bacteria. A liquid micro-broth dilution method was used to evaluate the antibacterial activity of 10 different classes of antimicrobials on 20 bacterial strains belonging to six different species. The antimicrobials were associated with phenylalanine β-naphthylamide (PAβN), an efflux pump inhibitor, and with other antimicrobials at their sub-inhibitory concentrations. The effectiveness of each combination was monitored using the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC). Most of the antimicrobials tested showed low antibacterial activity with a MIC value of 128 mg/L on a majority of the bacterial strains, justifying their multidrug-resistant (MDR) profile. Synergistic effects were mostly observed (FIC≤0.5) when ampicillin (AMP), cloxacillin (CLX), erythromycin (ERY), chloramphenicol (CHL), kanamycin (KAN) and streptomycin (STR) were combined with tetracycline (TET) at the sub-inhibitory concentration of MIC/5 or MIC/10. The results of the present work suggest that the association of several antimicrobials with TET could improve the fight against MDRGN bacterial species.

  3. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan.

    PubMed

    Sato, Maiko; Ahmed, Ashraf M; Noda, Ayako; Watanabe, Hitoshi; Fukumoto, Yukio; Shimamoto, Tadashi

    2009-11-24

    Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, beta-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another.

  4. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    PubMed

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use.

  5. Multidrug-resistant bacteria infection control: study of compliance with isolation precautions in a Paris university hospital.

    PubMed

    Vidal-Trecan, G M; Delamare, N; Tcherny-Lessenot, S; Lamory, J; Baudin, F; de Prittwitz, M; Salmon-Ceron, D

    2001-02-01

    Isolation practices in a university hospital were analyzed for 137 patients with multidrug-resistant bacteria. Isolation was ordered in writing by physicians for 40% and instituted by nurses for 60%; 74% were isolated. Compliance depended on physician ordering in writing (odds ratio, 36.3; 95% confidence interval, 4.8-274.9). Nurses complied best with hand washing.

  6. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    PubMed Central

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  7. Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics.

    PubMed

    Almeida, Joana; Tomé, João P C; Neves, Maria G P M S; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Ângela; Costa, Liliana; Faustino, Maria A F; Almeida, Adelaide

    2014-04-01

    One environmental concern related to hospital effluents is discharge of them without preliminary treatment. Antimicrobial photodynamic inactivation (PDI) may represent an alternative to the traditional expensive, unsafe and not always effective disinfection methods. The main goal of this work was to assess the efficiency of PDI on clinical multidrug-resistant (MDR) bacteria in hospital wastewaters in order to evaluate its potential use in treating hospital effluents. The efficiency of PDI was assessed using a cationic porphyrin as the photosensitizer (PS), four MDR bacteria either in phosphate buffered saline or in filtrated hospital wastewaters. The synergistic effect of PDI and antibiotics (ampicillin and chloramphenicol) was also evaluated, as well as the effect of the surfactant sodium dodecyl sulfate (SDS). The results show the efficient inactivation of MDR bacteria in PBS (reduction of 6-8 log after 270 min of irradiation at 40 W m(-2) with 5.0 μM of PS). In wastewater, the inactivation of the four MDR bacteria was again efficient and the decrease in bacterial survival starts even sooner. A faster decrease in bacterial survival occurred when PDI was combined with the addition of antibiotics, at sub-inhibitory and inhibitory concentrations, but the SDS did not affect the PDI efficiency. It can be concluded that PDI has potential to be an effective alternative for the inactivation of MDR bacteria in hospital wastewaters and that the presence of antibiotics may enhance its effectiveness.

  8. Multidrug resistant bacteria isolated from cockroaches in long-term care facilities and nursing homes.

    PubMed

    Pai, Hsiu-Hua

    2013-01-01

    Residents in long-term care facilities and nursing homes have a relative higher risk for infections. The nocturnal and filthy habits of cockroaches may be ideal disseminators of pathogenic microorganisms in these institutions. This study was designed to determine the infestation and vector potential of cockroaches under this institutional environment. Cockroaches were collected from 69 long-term care facilities and nursing homes in Kaohsiung City. Risk factors related to cockroach infestation were determined by questionnaire survey. In addition, bacteria were isolated and identified from the alimentary tract and external surface of these insects. Antibiotic resistances of these microorganisms were then determined. Cockroach infestation was found in 45 (65.2%) institutions and 558 cockroaches (119 Periplaneta americana and 439 Blattella germanica) were collected. A significant association was found between cockroach infestation and indoor environmental sanitation. From 250 adult cockroaches, 38 species of gram-negative bacteria, 20 species of glucose non-fermenter bacilli and 6 species of gram-positive bacteria were isolated. Moreover, antibiotic resistances were found among the bacteria isolated. These findings indicate that cockroaches have the potential in transmitting pathogenic bacteria with multidrug resistances in long-term care facilities and nursing homes.

  9. Incidence and Diversity of Antimicrobial Multidrug Resistance Profiles of Uropathogenic Bacteria

    PubMed Central

    Linhares, Inês; Raposo, Teresa; Rodrigues, António

    2015-01-01

    The aim of this study was to assess the most frequent multidrug resistant (MDR) profiles of the main bacteria implicated in community-acquired urinary tract infections (UTI). Only the MDR profiles observed in, at least, 5% of the MDR isolates were considered. A quarter of the bacteria were MDR and the most common MDR profile, including resistance to penicillins, quinolones, and sulfonamides (antibiotics with different mechanisms of action, all mainly recommended by the European Association of Urology for empirical therapy of uncomplicated UTI), was observed, alone or in association with resistance to other antimicrobial classes, in the main bacteria implicated in UTI. The penicillin class was included in all the frequent MDR profiles observed in the ten main bacteria and was the antibiotic with the highest prescription during the study period. The sulfonamides class, included in five of the six more frequent MDR profiles, was avoided between 2000 and 2009. The results suggest that the high MDR percentage and the high diversity of MDR profiles result from a high prescription of antibiotics but also from antibiotic-resistant genes transmitted with other resistance determinants on mobile genetic elements and that the UTI standard treatment guidelines must be adjusted for the community of Aveiro District. PMID:25834814

  10. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria

    PubMed Central

    2013-01-01

    Background In response to the propagation of bacteria resistant to many antibiotics also called multi-drug resistant (MDR) bacteria, the discovery of new and more efficient antibacterial agents is primordial. The present study was aimed at evaluating the antibacterial activities of seven Cameroonian dietary plants (Adansonia digitata, Aframomum alboviolaceum, Aframomum polyanthum, Anonidium. mannii, Hibiscus sabdarifa, Ocimum gratissimum and Tamarindus indica). Methods The phytochemical screening of the studied extracts was performed using described methods whilst the liquid broth micro dilution was used for all antimicrobial assays against 27 Gram-negative bacteria. Results The results of the phytochemical tests indicate that all tested extracts contained phenols and triterpenes, other classes of chemicals being selectively present. The studied extracts displayed various degrees of antibacterial activities. The extracts of A. digitata, H. sabdarifa, A. polyanthum, A. alboviolaceum and O. gratissimum showed the best spectra of activity, their inhibitory effects being recorded against 81.48%, 66.66%, 62.96%, 55.55%, and 55.55% of the 27 tested bacteria respectively. The extract of A. polyanthum was very active against E. aerogenes EA294 with the lowest recorded minimal inhibitory concentration (MIC) of 32 μg/ml. Conclusion The results of the present work provide useful baseline information for the potential use of the studied edible plants in the fight against both sensitive and MDR phenotypes. PMID:23837916

  11. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria.

    PubMed

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2012-03-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms.

  12. Intravenous immunoglobulin enhances the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria.

    PubMed

    Matsuo, Hidemasa; Itoh, Hiroshi; Kitamura, Naoko; Kamikubo, Yasuhiko; Higuchi, Takeshi; Shiga, Shuichi; Ichiyama, Satoshi; Kondo, Tadakazu; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-08-14

    Intravenous immunoglobulin (IVIG) is periodically administered to immunocompromised patients together with antimicrobial agents. The evidence that supports the effectiveness of IVIG is mostly based on data from randomized clinical trials; the underlying mechanisms are poorly understood. A recent study revealed that killing of multidrug-resistant bacteria and drug-sensitive strains by neutrophils isolated from healthy donors is enhanced by an IVIG preparation. However, the effectiveness of IVIG in immunocompromised patients remains unclear. The present study found that IVIG increased both killing activity and O2(-) release by neutrophils isolated from six patients receiving immune-suppressive drugs after hematopoietic stem cell transplantation (HSCT); these neutrophils killed both multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli (E. coli) and multidrug-resistant Pseudomonas aeruginosa (P. aeruginosa). Moreover, IVIG increased the autophagy of the neutrophils, which is known to play an important role in innate immunity. These results suggest that IVIG promotes both the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria.

  13. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  14. In vitro antibacterial potency of Butea monosperma Lam. against 12 clinically isolated multidrug resistant bacteria

    PubMed Central

    Sahu, Mahesh Chandra; Padhy, Rabindra Nath

    2013-01-01

    Objective To investigate the antibacterial activity, using cold and hot extraction procedures with five solvents, petroleum ether, acetone, ethanol, methanol and water to validate medicinal uses of Butea monosperma Lam (B. monosperma) in controlling infections; and to qualitatively estimate phytochemical constituents of leaf-extracts of the plant. Methods The antibacterial activity of leaf-extracts was evaluated by the agar-well diffusion method against clinically isolated 12 Gram-positive and -negative multidrug resistant (MDR) pathogenic bacteria in vitro. Values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of leaf-extracts against each bacterium were obtained in a 96-well micro-titre plate, by broth dilution micro-titre plate technique. Results The presence of tannins, flavonoids, starch, glycosides and carbohydrates in different leaf extracts was established. Pathogenic bacteria used were, Acinetobacter sp., Chromobacterium violaceum, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella sp., Enterococcus sp., Staphylococcus aureus (S. aureus), methicillin resistant S. aureus and vancomycin resistant S. aureus, along with standard bacterial strains. These MDR bacteria had been recorded to have significant inhibitions by leaf extracts, obtained by cold and hot extraction procedures with five solvents. In addition, the hot aqueous extract against Enterococcus sp. had the highest inhibition zone-size (21 mm). Ciprofloxacin 30 µg/disc was the positive/reference control and the diluting solvent, 10% dimethyl sulphoxide was the negative control. Recorded MIC values of different extracts ranged between 0.23 and 13.30 mg/mL, and MBC values were 0.52 to 30.00 mg/mL, for these bacteria. Conclusions Leaf-extracts with hot water and ethanol had shown significant antibacterial activity against all bacteria. B. monosperma leaf-extract could be used in treating infectious

  15. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains.

    PubMed

    Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-07-01

    Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O(2)(-) release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains.

  16. Isolation and molecular characterization of multidrug-resistant halophilic bacteria from shrimp farm effluents of Parangipettai coastal waters.

    PubMed

    Sundaramanickam, Arumugam; Kumar, Poominathan Suresh; Kumaresan, Saravanan; Balasubramanian, Thangavel

    2015-08-01

    Multidrug resistance of heterotrophic bacteria isolated from an aquaculture farm effluent in Parangipettai, at the southeastern coast of India, was investigated. In the initial screening, 27 antibiotic-resistant strains were isolated. All the strains were tested for antibiotic susceptibility against chloramphenicol with varying concentrations. From these, two highly resistant strains, i.e. S1 and S5, were isolated. The selected strains were identified by 16S ribosomal RNA (rRNA) sequencing techniques and confirmed as Bacillus pumilus and Bacillus flexus. Both the antibiotic-resistant strains were further utilized for multidrug susceptibility test by using various antibiotics. These two strains showed antibiotic resistance to 14 of 17 antibiotics tested. Both microdilution assay and well assay methods were used to determine the minimal inhibitory concentration (MIC) for the sensitive strains. Both the tests were shown to be almost similar. Our study highlights the occurrence of multidrug-resistant bacteria in the shrimp farm effluents.

  17. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens.

    PubMed

    Viertel, Tania Mareike; Ritter, Klaus; Horz, Hans-Peter

    2014-09-01

    Bacteriophage therapy (the application of phages to treat bacterial infections) has a tradition dating back almost a century, but interest in phage therapy slowed down in the West when antibiotics were discovered. With the emerging threat of infections caused by multidrug-resistant bacteria and scarce prospects of newly introduced antibiotics in the future, phages are currently being reconsidered as alternative therapeutics. Conventional phage therapy uses lytic bacteriophages for treatment and recent human clinical trials have revealed encouraging results. In addition, several other modern approaches to phages as therapeutics have been made in vitro and in animal models. Dual therapy with phages and antibiotics has resulted in significant reductions in the number of bacterial pathogens. Bioengineered phages have overcome many of the problems of conventional phage therapy, enabled targeted drug delivery or reversed the resistance of drug-resistant bacteria. The use of enzymes derived from phages, such as endolysin, as therapeutic agents has been efficient in the elimination of Gram-positive pathogens. This review presents novel strategies for phage-related therapies and describes our current knowledge of natural bacteriophages within the human microbiome. Our aim is to provide an overview of the high number of different methodological concepts, thereby encouraging further research on this topic, with the ultimate goal of using phages as therapeutic or preventative medicines in daily clinical practice.

  18. Eradication of Multi-drug Resistant Bacteria by Ni Doped ZnO Nanorods: Structural, Raman and optical characteristics

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mansoor, Qaisar; Mahmood, Arshad; Ahmad, Amaar

    2014-07-01

    In this paper, ZnO nanorods doped with varying amounts of Ni have been prepared by chemical co-precipitation technique. Structural investigations provide the evidence that Ni is successfully doped into ZnO host matrix without having any secondary phases. Scanning electron microscopy (SEM) images reveal the formation of rodlike structure of undoped ZnO with average length and diameter of 1 μm and 80 nm, respectively. Raman spectroscopy results show that the E1LO phonons mode band shifts to the higher values with Ni doping, which is attributed to large amount of crystal defects. Ni doping is also found to greatly influence the optical properties of ZnO nanorods. The influence of Ni doping on antibacterial characteristics of ZnO nanorods have been studied by measuring the growth curves of Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria in the presence of prepared nanorods. ZnO nanorods antibacterial potency is found to increase remarkably with Ni doping against S. aureus and P. aeruginosa microbials, which might possibly be due to the increase in reactive oxygen species (ROS) generation. Interestingly, it is observed that Ni doped ZnO nanorods completely eradicates these multi-drug resistant bacteria.

  19. Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria.

    PubMed

    Latz, Simone; Wahida, Adam; Arif, Assuda; Häfner, Helga; Hoß, Mareike; Ritter, Klaus; Horz, Hans-Peter

    2016-10-01

    Bacteriophages (phages) represent a potential alternative for combating multi-drug resistant bacteria. Because of their narrow host range and the ever emergence of novel pathogen variants the continued search for phages is a prerequisite for optimal treatment of bacterial infections. Here we performed an ad hoc survey in the surroundings of a University hospital for the presence of phages with therapeutic potential. To this end, 16 aquatic samples of different origins and locations were tested simultaneously for the presence of phages with lytic activity against five current, but distinct strains each from the ESKAPE-group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae). Phages could be isolated for 70% of strains, covering all bacterial species except S. aureus. Apart from samples from two lakes, freshwater samples were largely devoid of phages. By contrast, one liter of hospital effluent collected at a single time point already contained phages active against two-thirds of tested strains. In conclusion, phages with lytic activity against nosocomial pathogens are unevenly distributed across environments with the prime source being the immediate hospital vicinity.

  20. A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (MDR) gram-negative bacteria.

    PubMed

    Zhu, Chongyu; Schneider, Elena K; Wang, Jiping; Kempe, Kristian; Wilson, Paul; Velkov, Tony; Li, Jian; Davis, Thomas P; Whittaker, Michael R; Haddleton, David M

    2017-02-05

    Colistin methanesulfonate (CMS) is the only prodrug of colistin available for clinical use for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria. Owing to its slow and variable release, an alternative is urgently required to improve effectiveness. Herein we describe a PEGylated colistin prodrug whereby the PEG is attached via a cleavable linker (col-aaPEG) introducing an acetic acid terminated poly (ethylene glycol) methyl ether (aaPEG) onto the Thr residue of colistin. Due to the labile ester containing link, this prodrug is converted back into active colistin in vitro within 24h. Compared to CMS, it showed a similar or better antimicrobial performance against two MDR isolates of Pseudomonas aeruginosa and Acinetobacter baumannii through in vitro disk diffusion, broth dilution and time-kill studies. In a mouse infection model, col-aaPEG displayed acceptable bacterial killing against P. aeruginosa ATCC 27853 and no nephrotoxicity was found after systemic administration, suggesting it to be a potential alternative for CMS.

  1. Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria.

    PubMed

    Tian, Wen-Xiao; Yu, Shi; Ibrahim, Muhammad; Almonaofy, Abdul Wareth; He, Liu; Hui, Qiu; Bo, Zhu; Li, Bin; Xie, Guan-Lin

    2012-08-01

    Infections by Enterobacter species are common and are multidrug resistant. The use of bactericidal surface materials such as copper has lately gained attention as an effective antimicrobial agent due to its deadly effects on bacteria, yeast, and viruses. The aim of the current study was to assess the antibacterial activity of copper surfaces against Enterobacter species. The antibacterial activity of copper surfaces was tested by overlying 5×10(6) CFU/ml suspensions of representative Enterobacter strains and comparing bacterial survival counts on copper surfaces at room temperature. Iron, stainless steel, and polyvinylchloride (PVC) were used as controls. The mechanisms responsible for bacterial killing on copper surfaces were investigated by a mutagenicity assay of the D-cycloserin (cyclA gene), single cell gel electrophoresis, a staining technique, and inductively coupled plasma mass spectroscopy. Copper yielded a significant decrease in the viable bacterial counts at 2 h exposure and a highly significant decrease at 4 h. Loss of cell integrity and a significantly higher influx of copper into bacterial cells exposed to copper surfaces, as compared to those exposed to the controls, were documented. There was no increase in mutation rate and DNA damage indicating that copper contributes to bacterial killing by adversely affecting cellular structure without directly targeting the genomic DNA. These findings suggest that copper's antibacterial activity against Enterobacter species could be utilized in health care facilities and in food processing plants to reduce the bioburden, which would increase protection for susceptible members of the community.

  2. [Effectiveness and risks of isolation precautions in patients with MRSA and other multidrug-resistant bacteria].

    PubMed

    Dettenkofer, M; Utzolino, S; Luft, D; Lemmen, S

    2010-04-01

    The transmission of multidrug-resistant organisms (MRSA, VRE and ESBL producing bacteria) occurs predominantly if health-care workers are not compliant with hand hygiene procedures. The impact of single-room isolation in transmission prevention is often overestimated. As long as hand disinfection is not performed before and after patient contact and gloves are not removed, a single room will not prevent transmission by -itself. Understaffing is additionally worsening the situation. There is no consistent evidence sup-port-ing strict single-room isolation even though data show supportive tendencies. Social isolation is one of the risks that should be considered as well as the economic impact of using shared rooms as a single room. Up-to-date, evidence-based standard operating procedures and individual infection control recommendations should take these considerations into account. In general, contact precautions including isolation in a single room are performed in MRSA and VRE-positive patients. If a single room cannot be provided in a given case (a common problem in intensive care units), contact precautions can be performed in a shared room as an alternative. The problem of establishing an optimal compliance with standard precautions (especially hand hygiene) throughout all professional groups should be addressed. Additional precautions, including single-room isolation, should be implemented critically if indicated.

  3. Multidrug-resistant bacteria among patients with ventilatorassociated pneumonia in an emergency intensive care unit, Egypt.

    PubMed

    Azzab, Magda M; El-Sokkary, Rehab H; Tawfeek, Mohamed M; Gebriel, Manar G

    2017-02-01

    Ventilator-associated pneumonia (VAP) is the most common hospital-acquired infection among mechanically ventilated patients. Our objectives were to determine the incidence of VAP, isolate multidrug-resistant bacteria, identify the most prevalent resistant strains and identify their antibiotic susceptibility pattern. The VAP rate was calculated. The isolated microbes were identified and tested for antibiotic susceptibilities. The minimum inhibitory concentrations were determined of imipenem, meropenem and ertapenem for Klebsiella isolates. Klebsiella isolates resistant to carbapenems were tested for the presence of the blaKPC gene. The VAP incidence density rate was 48.8 incidences/1 000 ventilator days. The most common Gram-positive organism was Staphylococcus aureus, of which 86.6% of isolates were resistant to cefoxitin , but 100% were sensitive to teicoplanin, linezolid and tigecycline. The most common Gram-negative bacillus was Klebsiella, of which 94.6% of isolates were resistant to cefotaxime, 70.2% to imipenem, and 64.9% to ertapenem, but 100% were sensitive to colistin and 94.6% were sensitive to tigecycline. Of the carbapenem-resistant Klebsiella strains, 23.1% had the blaKPC gene. The high rates of VAP and the high rates of resistance among isolated organisms point to improper implementation of infection control programmes.

  4. Effective Targeted Photothermal Ablation of Multidrug Resistant Bacteria and Their Biofilms with NIR-Absorbing Gold Nanocrosses.

    PubMed

    Teng, Choon Peng; Zhou, Tielin; Ye, Enyi; Liu, Shuhua; Koh, Leng Duei; Low, Michelle; Loh, Xian Jun; Win, Khin Yin; Zhang, Lianhui; Han, Ming-Yong

    2016-08-01

    With the rapid evolution of antibiotic resistance in bacteria, antibiotic-resistant bacteria (in particular, multidrug-resistant bacteria) and their biofilms have been becoming more and more difficult to be effectively treated with conventional antibiotics. As such, there is a great demand to develop a nonantibiotic approach in efficiently eliminating such bacteria. Here, multibranched gold nanocrosses with strong near-infrared absorption falling in the biological window, which heat up quickly under near-infrared-light irradiation are presented. The gold nanocrosses are conjugated to secondary and primary antibodies for targeting PcrV, a type III secretion protein, which is uniquely expressed on the bacteria superbug, Pseudomonas aeruginosa. The conjugated gold nanocrosses are capable of completely destroying P. aeruginosa and its biofilms upon near-infrared-light irradiation for 5 min with an 800 nm laser at a low power density of ≈3.0 W cm(-2) . No bacterial activity is detected after 48 h postirradiation, which indicates that the heat generated from the irradiated plasmonic gold nanocrosses attached to bacteria is effective in eliminating and preventing the re-growth of the bacteria. Overall, the conjugated gold nanocrosses allow targeted and effective photothermal ablation of multidrug-resistant bacteria and their biofilms in the localized region with reduced nonspecific damage to normal tissue.

  5. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria

    PubMed Central

    Wu, Xiaozhe; Li, Zhan; Li, Xiaolu; Tian, Yaomei; Fan, Yingzi; Yu, Chaoheng; Zhou, Bailing; Liu, Yi; Xiang, Rong; Yang, Li

    2017-01-01

    Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs) and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT)-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001) and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin) on clinical bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli). The AZT-resistance genes (ermA, ermB, ermC, mefA, and msrA) were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L). When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7–AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus strain synergistically affected by DP7–AZT showed no noteworthy morphological changes, suggesting that a molecular-level mechanism plays an important role in the synergistic action of DP7–AZT. AMP DP7 plus the antibiotic AZT or VAN is more effective, especially against highly antibiotic-resistant strains. PMID:28356719

  6. Prevalence of Multidrug-Resistant Bacteria on Fresh Vegetables Collected from Farmers' Markets in Connecticut.

    PubMed

    Karumathil, Deepti Prasad; Yin, Hsin-Bai; Kollanoor-Johny, Anup; Venkitanarayanan, Kumar

    2016-08-01

    This study determined the prevalence of multidrug-resistant (MDR) Acinetobacter baumannii on fresh vegetables collected from farmers' markets in Connecticut. One hundred samples each of fresh carrots, potatoes, and lettuce were sampled and streaked on selective media, namely Leeds Acinetobacter and MDR Acinetobacter agars. All morphologically different colonies from MDR Acinetobacter agar were identified by using Gram staining, biochemical tests, and PCR. In addition, susceptibility of the isolates to 10 antibiotics commonly used in humans, namely imipenem, ceftriaxone, cefepime, minocycline, erythromycin, colistin-sulfate, streptomycin, neomycin, doxycycline, and rifampin was determined by using an antibiotic disk diffusion assay. The results revealed that only two samples of potato and one sample of lettuce yielded A. baumannii. In addition, all carrot samples were found to be negative for the organism. However, several other opportunistic, MDR human pathogens, such as Burkholderia cepacia (1% potatoes, 5% carrots, and none in lettuce), Stenotrophomonas maltophilia (6% potatoes, 2% lettuce, and none in carrots), and Pseudomonas luteola (9% potatoes, 3% carrots, and none in lettuce) were recovered from the vegetables. Antibiotic susceptibility screening of the isolates revealed high resistance rates for the following: ceftriaxone (6 of 6), colistin-sulfate (5 of 6), erythromycin (5 of 6), and streptomycin (4 of 6) in B. cepacia; colistin-sulfate (11 of 11) and imipenem (10 of 11) in P. luteola; colistin-sulfate (8 of 8), ceftriaxone (8 of 8), cefepime (7 of 8), erythromycin (5 of 8), and imipenem (4 of 8) in S. maltophilia; and imipenem (3 of 3), ceftriaxone (3 of 3), erythromycin (3 of 3), and streptomycin (3 of 3) in A. baumannii. The results revealed the presence of MDR bacteria, including human pathogens on fresh produce, thereby highlighting the potential health risk in consumers, especially those with a compromised immune system.

  7. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers

    PubMed Central

    Shahi, Shailesh K.; Kumar, Ashok

    2016-01-01

    Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely blaTEM, blaSHV, blaOXA, blaCTX−M−gp1, blaCTX−M−gp2, and blaCTX−M−gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for blaTEM (89.47%), blaOXA (52.63%), and blaCTX−M−gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria. PMID:26779134

  8. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers.

    PubMed

    Shahi, Shailesh K; Kumar, Ashok

    2015-01-01

    Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely bla TEM, bla SHV, bla OXA, bla CTX-M-gp1, bla CTX-M-gp2, and bla CTX-M-gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for bla TEM (89.47%), bla OXA (52.63%), and bla CTX-M-gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria.

  9. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria

    PubMed Central

    2014-01-01

    Introduction The high incidence of multidrug-resistant (MDR) bacteria among patients admitted to ICUs has determined an increase of tigecycline (TGC) use for the treatment of severe infections. Many concerns have been raised about the efficacy of this molecule and increased dosages have been proposed. Our purpose is to investigate TGC safety and efficacy at higher than standard doses. Methods We conducted a retrospective study of prospectively collected data in the ICU of a teaching hospital in Rome. Data from all patients treated with TGC for a microbiologically confirmed infection were analyzed. The safety profile and efficacy of high dosing regimen use were investigated. Results Over the study period, 54 patients (pts) received TGC at a standard dose (SD group: 50 mg every 12 hours) and 46 at a high dose (HD group: 100 mg every 12 hours). Carbapenem-resistant Acinetobacter.baumannii (blaOXA-58 and blaOXA-23 genes) and Klebsiella pneumoniae (blaKPC-3 gene) were the main isolated pathogens (n = 79). There were no patients requiring TGC discontinuation or dose reduction because of adverse events. In the ventilation-associated pneumonia population (VAP) subgroup (63 patients: 30 received SD and 33 HD), the only independent predictor of clinical cure was the use of high tigecycline dose (odds ratio (OR) 6.25; 95% confidence interval (CI) 1.59 to 24.57; P = 0.009) whilst initial inadequate antimicrobial treatment (IIAT) (OR 0.18; 95% CI 0.05 to 0.68; P = 0.01) and higher Sequential Organ Failure Assessment (SOFA) score (OR 0.66; 95% CI 0.51 to 0.87; P = 0.003) were independently associated with clinical failure. Conclusions TGC was well tolerated at a higher than standard dose in a cohort of critically ill patients with severe infections. In the VAP subgroup the high-dose regimen was associated with better outcomes than conventional administration due to Gram-negative MDR bacteria. PMID:24887101

  10. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now.

    PubMed

    Freire-Moran, Laura; Aronsson, Bo; Manz, Chris; Gyssens, Inge C; So, Anthony D; Monnet, Dominique L; Cars, Otto

    2011-04-01

    Two commercial databases (Pharmaprojects and Adis Insight R&D) were queried for antibacterial agents in clinical development. Particular attention was given to antibacterial agents for systemic administration. For each agent, reviewers were requested to indicate whether its spectrum of activity covered a set of selected multidrug-resistant bacteria, and whether it had a new mechanism of action or a new target. In addition, PubMed was searched for antibacterial agents in development that appeared in review articles. Out of 90 agents that were considered to fulfil the inclusion criteria for the analysis, 66 were new active substances. Fifteen of these could be systemically administered and were assessed as acting via a new or possibly new mechanism of action or on a new or possibly new target. Out of these, 12 agents were assessed as having documented in vitro activity against antibiotic-resistant Gram-positive bacteria and only four had documented in vitro activity against antibiotic-resistant Gram-negative bacteria. Of these four, two acted on new or possibly new targets and, crucially, none acted via new mechanisms of action. There is an urgent need to address the lack of effective treatments to meet the increasing public health burden caused by multidrug-resistant bacteria, in particular against Gram-negative bacteria.

  11. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen

    NASA Astrophysics Data System (ADS)

    Ardhanu Asagabaldan, Meezan; Ayuningrum, D.; Kristiana, R.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    The marine sponge Haliclona (Reniera) sp. was a potential source of natural bioactive compounds. This sponge widely distributed along the coast of Panjang Island, Jepara, Indonesia. The aims of this research were to isolate the associated bacteria with Haliclona (Reniera) sp. and to screen the antibacterial activity against Multi-Drug Resistant (MDR) bacteria. Amount five bacteria were isolated using media selective for bacteria. The antibacterial activities of bacteria were performed by overlay methods. The bacteria strain PSP. 39-04 had the best activity against Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Enterobacter cloaceae. Based on colony morphology and phylogenetic characterization using 16S rRNA gene sequencing, PSP 39-04 was closely related with Chromohalobacter salixigens strain DSM3043.

  12. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-drug Resistant Bacteria from Clinical Isolates.

    PubMed

    Dahiya, Praveen; Dahiya, P; Purkayastha, Sharmishtha

    2012-09-01

    The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus.

  13. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-drug Resistant Bacteria from Clinical Isolates

    PubMed Central

    Dahiya, Praveen; Purkayastha, Sharmishtha

    2012-01-01

    The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus. PMID:23716873

  14. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma.

    PubMed

    Park, Ji Hoon; Kumar, Naresh; Park, Dae Hoon; Yusupov, Maksudbek; Neyts, Erik C; Verlackt, Christof C W; Bogaerts, Annemie; Kang, Min Ho; Uhm, Han Sup; Choi, Eun Ha; Attri, Pankaj

    2015-09-09

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.

  15. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  16. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes.

    PubMed

    Fiorentino, Antonino; Ferro, Giovanna; Alferez, María Castro; Polo-López, Maria Inmaculada; Fernández-Ibañez, Pilar; Rizzo, Luigi

    2015-07-01

    Solar disinfection and solar-driven advanced oxidation processes (AOPs) (namely H2O2/sunlight, TiO2/sunlight, H2O2/TiO2/sunlight, solar photo-Fenton) were evaluated in the inactivation of indigenous antibiotic-resistant bacteria (ARB) in real urban wastewater. A multidrug resistant (MDR) Escherichia coli strain isolated from the effluent of the biological process of an urban wastewater treatment plant was the target ARB. The higher inactivation rates (residual density under detection limit, 2 CFUm L(-1)) were achieved with H2O2/TiO2/sunlight (cumulative energy per unit of volume (QUV) in the range 3-5 kJ L(-1), depending on H2O2/TiO2 ratio) and H2O2/sunlight (QUV of 8 kJ L(-1)) processes. All investigated processes did not affect antibiotic resistance of survived colonies. Moreover, H2O2/sunlight was compared with conventional chlorination process to evaluate bacterial regrowth potential and particularly the proportion of indigenous MDR E. coli with respect to total indigenous E. coli population. Chlorination (1.0 mg Cl2 L(-1)) was more effective than H2O2/sunlight (50 mg H2O2 L(-1)) to achieve total inactivation of MDR E. coli (15 min Vs 90 min) but less effective in controlling their regrowth (24 h Vs 48 h). Interestingly, the percentage of MDR E. coli in H2O2/sunlight treated samples decreased as incubation time increased; the opposite was observed for chlorinated samples.

  17. In vitro characterization of multivalent adhesion molecule 7-based inhibition of multidrug-resistant bacteria isolated from wounded military personnel.

    PubMed

    Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim

    2012-07-01

    Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens.

  18. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant.

    PubMed

    Vimaladevi, Mohan; Divya, Kurunchi Chellapathi; Girigoswami, Agnishwar

    2016-09-01

    The antimicrobial photodynamic therapy is an alternative method for killing bacterial cells in view of the rising problem of antibiotic resistance microorganisms. The present study examined the effect of a water soluble photosensitizer, Rhodamine 6G (R6G) in stealth liposomes on multidrug resistant Pseudomonas aeruginosa in the presence of visible light. Liposomes were prepared with cholesterol and phospholipids that extracted from hen eggs in a cost effective way and characterized by light microscopy, particle size analyzer, electron microscopy, steady state spectrophotometry and spectrofluorometry. The photoefficacies of R6G in polymer encapsulated liposomes and positively charged liposomes are much higher compared to the free R6G (R6G in water) in terms of singlet oxygen quantum yield. This high potential of producing more reactive oxygen species (ROS) by liposomal nanoformulated R6G leads to efficient photodynamic inactivation of multidrug resistant gram negative bacteria in waste water. Though the singlet oxygen quantum yield of polymer coated liposomal R6G was higher than the cationic liposomal formulation, a faster decrease in bacterial survival was observed for positively charged liposomal R6G treated bacteria due to electrostatic charge interactions. Therefore, it can be concluded that the positively charged liposomal nanoformulations of laser dyes are efficient for photodynamic inactivation of multiple drug resistant gram negative microorganisms.

  19. OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria.

    PubMed

    Livne, L; Epand, R F; Papahadjopoulos-Sternberg, B; Epand, R M; Mor, A

    2010-12-01

    Antibiotic resistance has become a worldwide medical problem. To find new ways of overcoming this phenomenon, we investigated the role of the membrane-active oligo-acyl-lysyl (OAK) sequence C(12)K-7α(8), in combination with essentially ineffective antibiotics. Determination of minimal inhibitory concentration (MIC) against gram-negative multidrug-resistant strains of Escherichia coli revealed combinations with sub-MIC OAK levels that acted synergistically with several antibiotics, thus lowering their MICs by several orders of magnitude. To shed light into the molecular basis for this synergism, we used both mutant strains and biochemical assays. Our results suggest that bacterial sensitization to antibiotics was derived mainly from the OAK's capacity to overcome the efflux-enhanced resistance mechanism, by promoting backdoor entry of otherwise excluded antibiotics. To facilitate simultaneous delivery of the pooled drugs to an infection site, we developed a novel OAK-based cochleate system with demonstrable stability in whole blood. To assess the potential therapeutic use of such cochleates, we performed preliminary experiments that imitate systemic treatment of neutropenic mice infected with lethal inoculums of multidrug resistance E. coli. Single-dose administration of erythromycin coencapsulated in OAK-based cochleates has decreased drug toxicity and increased therapeutic efficacy in a dose-dependent manner. Collectively, our findings suggest a potentially useful approach for fighting efflux-enhanced resistance mechanisms.

  20. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health.

  1. Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment.

    PubMed

    da Costa, Paulo Martins; Loureiro, Luís; Matos, Augusto J F

    2013-01-14

    The use of antimicrobial agents has been claimed to be the driving force for the emergence and spread of microbial resistance. However, several studies have reported the presence of multidrug-resistant bacteria in populations exposed to low levels of antimicrobial drugs or even never exposed. For many pathogens, especially those organisms for which asymptomatic colonization typically precedes infection (e.g., Enterococcus spp. and Escherichia coli), the selective effects of antimicrobial use can only be understood if we considerer all biological and environmental pathways which enable these bacteria, and the genes they carry, to spread between different biomes. This ecological framework provides an essential perspective for formulating antimicrobial use policies, precisely because it encompasses the root causes of these problems rather than merely their consequences.

  2. Transfer of Multidrug-Resistant Bacteria between Intermingled Ecological Niches: The Interface between Humans, Animals and the Environment

    PubMed Central

    da Costa, Paulo Martins; Loureiro, Luís; Matos, Augusto J. F.

    2013-01-01

    The use of antimicrobial agents has been claimed to be the driving force for the emergence and spread of microbial resistance. However, several studies have reported the presence of multidrug-resistant bacteria in populations exposed to low levels of antimicrobial drugs or even never exposed. For many pathogens, especially those organisms for which asymptomatic colonization typically precedes infection (e.g., Enterococcus spp. and Escherichia coli), the selective effects of antimicrobial use can only be understood if we considerer all biological and environmental pathways which enable these bacteria, and the genes they carry, to spread between different biomes. This ecological framework provides an essential perspective for formulating antimicrobial use policies, precisely because it encompasses the root causes of these problems rather than merely their consequences. PMID:23343983

  3. Morning glory resin glycosides as modulators of antibiotic activity in multidrug-resistant gram-negative bacteria.

    PubMed

    Corona-Castañeda, Berenice; Pereda-Miranda, Rogelio

    2012-01-01

    Twenty-six microbiologically inactive (MIC > 512 µg/mL) convolvulaceous resin glycosides ( 1- 26) were tested for resistance modulatory activity in vitro against Escherichia coli Rosetta-gami and two nosocomial pathogens, Salmonella typhi and Shigella flexneri. These compounds exerted a potentiation effect of the clinically useful antibiotics tetracycline, kanamycin, and chloramphenicol against the tested gram-negative bacteria by increasing antibiotic susceptibility up to 32-fold at concentrations of 25 µg/mL. Therefore, the oligosaccharides from the morning glory family (Convolvulaceae) represent metabolites that reverse microbial resistance mechanisms, favoring an increase in the strength and effectiveness of current antibiotics that are not effective in the treatment of refractive infections caused by multidrug-resistant strains.

  4. Which strategies follow from the surveillance of multidrug-resistant bacteria to strengthen the control of their spread? A French experience.

    PubMed

    Lepelletier, Didier; Perron, Stéphanie; Huguenin, Hélène; Picard, Monique; Bemer, Pascale; Caillon, Jocelyne; Juvin, Marie-Emmanuelle; Drugeon, Henri Bernard

    2004-02-01

    Efforts to enhance standard precautions and to isolate patients with positive routine clinical cultures during 3 years were insufficient to decrease multidrug-resistant bacteria infection rates. Routine screening for carriage in high-risk patients may be necessary to halt transmission and control the hospital reservoir.

  5. Insertion Sequence IS26 Reorganizes Plasmids in Clinically Isolated Multidrug-Resistant Bacteria by Replicative Transposition

    PubMed Central

    He, Susu; Hickman, Alison Burgess; Varani, Alessandro M.; Siguier, Patricia; Chandler, Michael; Dekker, John P.

    2015-01-01

    ABSTRACT Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve. PMID:26060276

  6. Antimicrobial Action of Water-Soluble β-Chitosan against Clinical Multi-Drug Resistant Bacteria

    PubMed Central

    Park, Seong-Cheol; Nam, Joung-Pyo; Kim, Jun-Ho; Kim, Young-Min; Nah, Jae-Woon; Jang, Mi-Kyeong

    2015-01-01

    Recently, the number of patients infected by drug-resistant pathogenic microbes has increased remarkably worldwide, and a number of studies have reported new antibiotics from natural sources. Among them, chitosan, with a high molecular weight and α-conformation, exhibits potent antimicrobial activity, but useful applications as an antibiotic are limited by its cytotoxicity and insolubility at physiological pH. In the present study, the antibacterial activity of low molecular weight water-soluble (LMWS) α-chitosan (α1k, α5k, and α10k with molecular masses of 1, 5, and 10 kDa, respectively) and β-chitosan (β1k, β5k, and β10k) was compared using a range of pathogenic bacteria containing drug-resistant bacteria isolated from patients at different pH. Interestingly, β5k and β10k exhibited potent antibacterial activity, even at pH 7.4, whereas only α10k was effective at pH 7.4. The active target of β-chitosan is the bacterial membrane, where the leakage of calcein is induced in artificial PE/PG vesicles, bacterial mimetic membrane. Moreover, scanning electron microscopy showed that they caused significant morphological changes on the bacterial surfaces. An in vivo study utilizing a bacteria-infected mouse model found that LMWS β-chitosan could be used as a candidate in anti-infective or wound healing therapeutic applications. PMID:25867474

  7. Variability of cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant bacteria in two Brazilian intensive care units

    PubMed Central

    Nicoli, Jacques R; Oliveira, Adriana

    2015-01-01

    Objective: To compare cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant organisms in two intensive care units. Methods: A prospective cohort study was performed in adult intensive care units of two hospitals in Belo Horizonte, Brazil (April 2012 to February 2013). Clinical and demographic data were first collected by reviewing patients’ charts. Then, samples collected with nasal, groin, and perineum swabs were cultivated in selective media for 48 h at 37°C. After isolation, determination of antimicrobial susceptibility and biochemical identification were performed. Results: A total of 53 cases of colonization were observed by the following bacteria in decreasing frequencies: imipenem-resistant Acinetobacter baumannii (50.9%), vancomycin-resistant Enterococcus faecalis (43.4%), extended-spectrum beta-lactamase–producing Klebsiella pneumoniae (37.7%), imipenem-resistant Pseudomonas aeruginosa (32.1%), oxacillin-resistant Staphylococcus aureus (7.5%), and imipenem-resistant Klebsiella pneumoniae (5.7%). Among these colonization cases, 26 (49.0%) were followed by infection with bacteria phenotypically similar to those of the colonization. A relation between high population levels of colonization by most of the multidrug-resistant organisms at anatomical sites and a subsequent infection was observed. After colonization/infection, bacterial population levels decreased progressively and spontaneously until disappearance by day 45 in all the anatomical sites and for all the multidrug-resistant organisms. Conclusion: There was a correlation between high population levels of colonization by multidrug-resistant organisms at anatomical sites and a subsequent infection. Reduction in multidrug-resistant organism populations after colonization at anatomical sites could be a preventive measure to reduce evolution to infection as well as transmission of these bacteria between patients in intensive care unit. PMID:26770762

  8. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico

    PubMed Central

    Delgado-Gardea, Ma. Carmen E.; Tamez-Guerra, Patricia; Gomez-Flores, Ricardo; Zavala-Díaz de la Serna, Francisco Javier; Eroza-de la Vega, Gilberto; Nevárez-Moorillón, Guadalupe Virginia; Pérez-Recoder, María Concepción; Sánchez-Ramírez, Blanca; González-Horta, María del Carmen; Infante-Ramírez, Rocío

    2016-01-01

    Bacterial pathogens are a leading cause of waterborne disease, and may result in gastrointestinal outbreaks worldwide. Inhabitants of the Bassaseachic Falls National Park in Chihuahua, Mexico show seasonal gastroenteritis problems. This aim of this study was to detect enteropathogenic microorganisms responsible for diarrheal outbreaks in this area. In 2013, 49 surface water samples from 13 selected sampling sites along the Basaseachi waterfall and its main rivers, were collected during the spring, summer, autumn, and winter seasons. Fecal and total coliform counts were determined using standard methods; the AutoScan-4 system was used for identification of isolates and the antibiotic resistance profile by challenging each organism using 21 antibiotics. Significant differences among seasons were detected, where autumn samples resulted in the highest total (p < 0.05) and fecal (p < 0.001) coliform counts, whereas the lowest total coliform counts were recorded in spring. Significant differences between sampling sites were observed, where samples from sites 6, 8, and 11 had the highest total coliform counts (p < 0.009), whereas samples from site 9 exhibited the lowest one. From the microbiological analysis, 33 bacterial isolates from 13 different sites and four sampling seasons were selected; 53% of isolates were resistant to at least one antibiotic, and 15% exhibited a multidrug resistance (MDB) phenotype. MDB were identified as Klebsiella oxytoca (two out of four identified isolates), Escherichia coli (2/7), and Enterobacter cloacae (1/3). In addition, some water-borne microorganisms exhibited resistance to cefazoline, cefuroxime, ampicillin, and ampicillin-sulbactam. The presence of these microorganisms near rural settlements suggests that wastewater is the contamination source, providing one possible transmission mechanism for diarrheal outbreaks. PMID:27322297

  9. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico.

    PubMed

    Delgado-Gardea, Ma Carmen E; Tamez-Guerra, Patricia; Gomez-Flores, Ricardo; Zavala-Díaz de la Serna, Francisco Javier; Eroza-de la Vega, Gilberto; Nevárez-Moorillón, Guadalupe Virginia; Pérez-Recoder, María Concepción; Sánchez-Ramírez, Blanca; González-Horta, María Del Carmen; Infante-Ramírez, Rocío

    2016-06-16

    Bacterial pathogens are a leading cause of waterborne disease, and may result in gastrointestinal outbreaks worldwide. Inhabitants of the Bassaseachic Falls National Park in Chihuahua, Mexico show seasonal gastroenteritis problems. This aim of this study was to detect enteropathogenic microorganisms responsible for diarrheal outbreaks in this area. In 2013, 49 surface water samples from 13 selected sampling sites along the Basaseachi waterfall and its main rivers, were collected during the spring, summer, autumn, and winter seasons. Fecal and total coliform counts were determined using standard methods; the AutoScan-4 system was used for identification of isolates and the antibiotic resistance profile by challenging each organism using 21 antibiotics. Significant differences among seasons were detected, where autumn samples resulted in the highest total (p < 0.05) and fecal (p < 0.001) coliform counts, whereas the lowest total coliform counts were recorded in spring. Significant differences between sampling sites were observed, where samples from sites 6, 8, and 11 had the highest total coliform counts (p < 0.009), whereas samples from site 9 exhibited the lowest one. From the microbiological analysis, 33 bacterial isolates from 13 different sites and four sampling seasons were selected; 53% of isolates were resistant to at least one antibiotic, and 15% exhibited a multidrug resistance (MDB) phenotype. MDB were identified as Klebsiella oxytoca (two out of four identified isolates), Escherichia coli (2/7), and Enterobacter cloacae (1/3). In addition, some water-borne microorganisms exhibited resistance to cefazoline, cefuroxime, ampicillin, and ampicillin-sulbactam. The presence of these microorganisms near rural settlements suggests that wastewater is the contamination source, providing one possible transmission mechanism for diarrheal outbreaks.

  10. Survival of multidrug-resistant bacteria in thermophilic and mesophilic anaerobic co-digestion of dairy manure and waste milk.

    PubMed

    Beneragama, Nilmini; Iwasaki, Masahiro; Lateef, Suraju A; Yamashiro, Takaki; Ihara, Ikko; Umetsu, Kazutaka

    2013-05-01

    Anaerobic digestion is considered as a promising method to manage animal waste with antibiotic-resistant bacteria. Current research was conducted to investigate the survival of multidrug-resistant bacteria (MDRB) resistant to three groups of antibiotics: (i) cefazolin, neomycin, vancomycin, kanamycin (group 1); (ii) penicillin, oxytetracycline, ampicillin, streptomycin (group 2); and (iii) cefazolin, neomycin, vancomycin, kanamycin, penicillin, oxytetracycline, ampicillin, streptomycin (group 3), in anaerobic digestion of dairy manure and co-digestion of dairy manure and waste milk at 37°C and 55°C for 22 days, respectively. The population densities of three groups of MDRB on peptone, tryptone, yeast and glucose agar plates incubated at 30°C for 7 days before and after digestion showed 100% destruction in both digestates at thermophilic temperature. Overall reduction of more than 90% of three groups of MDRB was observed in mesophilic digestion with no significant differences (P > 0.05) between manure and milk mixture. Co-digestion of dairy manure and waste milk always produced significantly (P < 0.05) higher total gas and methane gas than digestion of manure alone at both temperatures. Gas production in each case was significantly (P < 0.05) higher in thermophilic digestion than in mesophilic digestion. The results demonstrate that thermophilic co-digestion of dairy manure and waste milk offers more benefits in terms of the environment and economy.

  11. Novel ISCR1-linked resistance genes found in multidrug-resistant Gram-negative bacteria in southern China.

    PubMed

    Wang, Fengping; Wu, Kuihai; Sun, Jingjing; Wang, Qian; Chen, Qing; Yu, Shouyi; Rui, Yongyu

    2012-11-01

    Non-duplicate multidrug-resistant (MDR) Gram-negative bacteria (n=1329) isolated from southern China between January 2008 and December 2009 were investigated for the presence of ISCR1 as well as characterisation of ISCR1-linked resistance genes. Of 433 ISCR1-positive strains, 151 appeared to carry ISCR1-linked resistance genes. Seven different ISCR1-linked resistance gene arrays were identified by restriction fragment length polymorphism (RFLP) and DNA sequencing analysis. Many of these arrays are reported in some species for the first time. A total of 12 genes, including a novel ABC transporter (GenBank accession no. GU944725), qnrA1, qnrB2, qnrB6, bla(DHA-1), ampR, bla(CTX-M-9), bla(PER-1), insB, sapA-like peptide transport periplasmic protein, putative glutathione S-transferase and short-chain dehydrogenase/reductase, were detected. This study was the first to employ PCR-RFLP using HinfI and RsaI to analyse ISCR1-linked genes. ISCR1 was widely disseminated among MDR Gram-negative bacteria and was in close association with quinolone resistance and β-lactamase genes (class A and class C) in southern China.

  12. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps

    PubMed Central

    2014-01-01

    Background The continuous spread of multidrug-resistant (MDR) bacteria, partially due to efflux pumps drastically reduced the efficacy of the antibiotic armory, increasing the frequency of therapeutic failure. The search for new compounds to potentiate the efficacy of commonly used antibiotics is therefore important. The present study was designed to evaluate the ability of the methanol extracts of four Cameroonian dietary plants (Capsicum frutescens L. var. facilulatum, Brassica oleacera L. var. italica, Brassica oleacera L. var. butyris and Basilicum polystachyon (L.) Moench.) to improve the activity of commonly used antibiotics against MDR Gram-negative bacteria expressing active efflux pumps. Methods The qualitative phytochemical screening of the plant extracts was performed using standard methods whilst the antibacterial activity was performed by broth micro-dilution method. Results All the studied plant extracts revealed the presence of alkaloids, phenols, flavonoids, triterpenes and sterols. The minimal inhibitory concentrations (MIC) of the studied extracts ranged from 256-1024 μg/mL. Capsicum frutescens var. facilulatum extract displayed the largest spectrum of activity (73%) against the tested bacterial strains whilst the lower MIC value (256 μg/mL) was recorded with Basilicum polystachyon against E. aerogenes ATCC 13048 and P. stuartii ATCC 29916. In the presence of PAβN, the spectrum of activity of Brassica oleacera var. italica extract against bacteria strains increased (75%). The extracts from Brassica oleacera var. butyris, Brassica oleacera var. italica, Capsicum frutescens var. facilulatum and Basilicum polystachyon showed synergistic effects (FIC ≤ 0.5) against the studied bacteria, with an average of 75.3% of the tested antibiotics. Conclusion These results provide promising information for the potential use of the tested plants alone or in combination with some commonly used antibiotics in the fight against MDR Gram-negative bacteria

  13. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia*,**

    PubMed Central

    Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin

    2013-01-01

    OBJECTIVE: To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. METHODS: This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. RESULTS: Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). CONCLUSIONS: In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP. PMID:23857697

  14. A novel combination approach of human polyclonal IVIG and antibiotics against multidrug-resistant Gram-positive bacteria

    PubMed Central

    Sallam, Mariam Madkour; Abou-Aisha, Khaled; El-Azizi, Mohamed

    2016-01-01

    Background Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and enterococci, have shown a remarkable ability to develop resistance to antimicrobial agents. Objective We aimed to assess possible enhancement of the antimicrobial activity of vancomycin, amoxicillin, clarithromycin, and azithromycin by human polyclonal intravenous immunoglobulin G (IVIG) against 34 multidrug-resistant (MDR) bacterial isolates, including MRSA, Enterococcus faecium, and Enterococcus faecalis. Materials and methods Double combinations of the antibiotics with the IVIG were assessed by checkerboard assay, where the interaction was evaluated with respect to the minimum inhibitory concentration (MIC) of the antibiotics. The results of the checkerboard assay were verified in vitro using time-kill assay and in vivo using an invasive sepsis murine model. Results The checkerboard assay showed that IVIG enhanced the antimicrobial activity of amoxicillin and clarithromycin against isolates from the three groups of bacteria, which were resistant to the same antibiotics when tested in the absence of IVIG. The efficacy of vancomycin against 15% of the tested isolates was enhanced when it was combined with the antibodies. Antagonism was demonstrated in 47% of the E. faecalis isolates when clarithromycin was combined with the IVIG. Synergism was proved in the time-kill assay when amoxicillin was combined with the antibodies; meanwhile, antagonism was not demonstrated in all tested combinations, even in combinations that showed such response in checkerboard assay. Conclusion The suggested approach is promising and could be helpful to enhance the antimicrobial activity of not only effective antibiotics but also antibiotics that have been proven to be ineffective against MDR bacteria. To our knowledge, this combinatorial approach against MDR bacteria, such as MRSA and enterococci, has not been investigated before. PMID:27994476

  15. Carriage of Multidrug Resistant Bacteria on Frequently Contacted Surfaces and Hands of Health Care Workers

    PubMed Central

    Visalachy, Sowndarya; Kopula, Sridharan Sathyamoorthy; Sekar, Uma

    2016-01-01

    Introduction Maximal contact between the patients and Health Care Workers (HCWs) happens in the Intensive Care Units (ICU). Control of nosocomial infections requires compliance with hand hygiene and contamination free surfaces. Aim To determine the colonization of potential pathogens in the hands of HCWs and frequent contacted environmental surfaces. Materials and Methods A cross sectional study was conducted between September 2012 and May 2013 at Sri Ramachandra Medical College and Hospital. A total of 327 samples were collected using Glove juice technique from hands and swabs from frequently contacted surfaces. A sum of 157 samples were collected by glove juice technique from the hands of HCWs which included Consultants (20), Internees (3), Residents (10), Staff nurse (102) and support staff (22). A total of 170 samples were collected through swabbing which included frequently touched surfaces of apron and dress (140 which included 10 consultants, 3 internees, 9 Residents, 101 Staff nurse and 17 support staff), 9 door handle, 4 key board, 12 tap handles and 5 monitors. The samples were inoculated into Blood agar, Chocolate agar and Mac-Conkey agar plates and incubated at 370C aerobically. The plates showing growth were further processed to identify the organisms by Gram staining and biochemical reactions. Antibiotic susceptibility testing was done for the isolates by Kirby-baur disc diffusion method as per CLSI guidelines. Results Out of the 157 hand sampling done by glove juice method 67(42.7%) of them showed growth and 90(57.3%) showed no growth. The potential pathogens grown were 13 (8.3%), consisting of Methicillin Sensitive Staphylococcus aureus (MSSA) 6(3.8%), Methicillin Resistant Staphylococcus aureus (MRSA) 2(1.3%), Pseudomonas spp 4(2.6%) and Acenitobacter spp 1 (0.6%). The MRSA was seen in Consultant 1(5%; n=20) and Staff nurse 1(0.9%; n= 102). Among the 140 sampling from the dress of HCWs growth was observed in 69(49.3%) and growth was absent in 71(50.7%). The potential pathogens observed were 14(10%) and they are MSSA 5(3.6%), MRSA 1 (0.7%), Pseudomonas spp 2(1.4%), Acenitobacter spp 3(2.1%) Enterobacter spp 1(0.7%), Klebseilla pneumoniae 1(0.7%) and Candida spp 1(0.7%). One MRSA was isolated from staff nurse (0.9%; n=101). Similarly multi-drug resistant Klebsiella pneumoniae 1(0.9%; n=102). Out of the 30 environmental samples 16(53.3%) showed growth and in 14(56.7%) growth was absent. The potential pathogens isolated were 3(10%) which included MSSA 2(6.6%) and MRSA 1(3.4%) and were isolated from the monitor. Conclusion Adherence to infection control practices among all categories of HCWs is must for control of HAI. Glove juice method is a simple, easy and practical technique for determination of colonization of hands of HCWs and can be adapted as a methodology for screening the hands of HCWs. PMID:27437214

  16. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  17. Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. aureus

    PubMed Central

    Handzlik, Jadwiga; Matys, Anna; Kieć-Kononowicz, Katarzyna

    2013-01-01

    The paper focuses on recent achievements in the search for new chemical compounds able to inhibit multidrug resistance (MDR) mechanisms in Gram-positive pathogens. An analysis of the results of the search for new efflux pump inhibitors (EPIs) for Gram-positive bacteria, which have been performed over the last decade, indicates that almost all efforts are focused on the NorA (MFS) efflux pump in S. aureus. Considering the chemical structures of the NorA EPIs that have been identified, it can be observed that the most active agents belong to the families of compounds possessing conjugated double bonds, e.g., chalcones, piperine-like compounds, N-cinnamoylphenalkylamides or citral amide derivatives. Indole-, dihydronaphthyl-, 2-chloro-5-bromo-phenyl- or piperidine moieties seem to be profitable for the EPI properties, as well. These results, together with an increasing knowledge about a variety of efflux pumps that are involved in MDR of Gram-positive pathogens underline that further search for new EPIs should pay more attention to develop MDR efflux protein targets, including SMR, MATE, ABC or other members of the MFS family. PMID:27029290

  18. Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. aureus.

    PubMed

    Handzlik, Jadwiga; Matys, Anna; Kieć-Kononowicz, Katarzyna

    2013-02-05

    The paper focuses on recent achievements in the search for new chemical compounds able to inhibit multidrug resistance (MDR) mechanisms in Gram-positive pathogens. An analysis of the results of the search for new efflux pump inhibitors (EPIs) for Gram-positive bacteria, which have been performed over the last decade, indicates that almost all efforts are focused on the NorA (MFS) efflux pump in S. aureus. Considering the chemical structures of the NorA EPIs that have been identified, it can be observed that the most active agents belong to the families of compounds possessing conjugated double bonds, e.g., chalcones, piperine-like compounds, N-cinnamoylphenalkylamides or citral amide derivatives. Indole-, dihydronaphthyl-, 2-chloro-5-bromo-phenyl- or piperidine moieties seem to be profitable for the EPI properties, as well. These results, together with an increasing knowledge about a variety of efflux pumps that are involved in MDR of Gram-positive pathogens underline that further search for new EPIs should pay more attention to develop MDR efflux protein targets, including SMR, MATE, ABC or other members of the MFS family.

  19. An Antimicrobial Metabolite from Bacillus sp.: Significant Activity Against Pathogenic Bacteria Including Multidrug-Resistant Clinical Strains

    PubMed Central

    Chalasani, Ajay G.; Dhanarajan, Gunaseelan; Nema, Sushma; Sen, Ramkrishna; Roy, Utpal

    2015-01-01

    In this study, the cell free modified tryptone soya broth (pH 7.4 ± 0.2) of Bacillus subtilis URID 12.1 showed significant antimicrobial activity against multidrug-resistant strains of Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes and Enterococcus faecalis. The partially purified antimicrobial molecule was found to be resistant to extremes of pH and temperatures and also to higher concentrations of trypsin and proteinase K. The antimicrobial molecule was purified by a three-step method that included reversed-phase high performance liquid chromatography (RP-HPLC). The minimum inhibitory concentration (MIC) values were determined for 14 species of bacteria using a microbroth dilution technique. The HPLC-purified fraction showed the MICs ranging from 0.5 to 16 μg/ml for methicillin and vancomycin-resistant Staphylococcus aureus (MVRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) strains. The molecular mass of the antimicrobial compound was determined to be 842.37 Da. The same antimicrobial fraction showed negligible haemolytic activity against human red blood cells even at a concentration as high as 100 μg/ml. Because of its significant antimicrobial activity at low MIC values coupled with its non-haemolytic property, it may prove to be a novel antimicrobial lead molecule. PMID:26696963

  20. Finding Novel Antibiotic Substances from Medicinal Plants – Antimicrobial Properties of Nigella Sativa Directed against Multidrug-resistant Bacteria

    PubMed Central

    Bakal, Seher Nancy; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    The progressive rise in multidrug-resistant (MDR) bacterial strains poses serious problems in the treatment of infectious diseases. While the number of newly developed antimicrobial compounds has greatly fallen, the resistance of pathogens against commonly prescribed drugs is further increasing. This rise in resistance illustrates the need for developing novel therapeutic and preventive antimicrobial options. The medicinal herb Nigella sativa and its derivatives constitute promising candidates. In a comprehensive literature survey (using the PubMed data base), we searched for publications on the antimicrobial effects of N. sativa particularly directed against MDR bacterial strains. In vitro studies published between 2000 and 2015 revealed that N. sativa exerted potent antibacterial effects against both Gram-positive and Gram-negative species including resistant strains. For instance, N. sativa inhibited the growth of bacteria causing significant gastrointestinal morbidity such as Salmonella, Helicobacter pylori, and Escherichia coli. However, Listeria monocytogenes and Pseudomonas aeruginosa displayed resistance against black cumin seed extracts. In conclusion, our literature survey revealed potent antimicrobial properties of N. sativa against MDR strains in vitro that should be further investigated in order to develop novel therapeutic perspectives for combating infectious diseases particularly caused by MDR strains. PMID:28386474

  1. Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant.

    PubMed

    Vaz-Moreira, Ivone; Varela, Ana Rita; Pereira, Thamiris V; Fochat, Romário C; Manaia, Célia M

    2016-03-01

    This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.

  2. Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria.

    PubMed

    Stancu, Mihaela Marilena; Grifoll, Magdalena

    2011-01-01

    New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.

  3. Surveillance of multidrug resistant uropathogenic bacteria in hospitalized patients in Indian

    PubMed Central

    Mishra, Monali Priyadarsini; Debata, Nagen Kumar; Padhy, Rabindra Nath

    2013-01-01

    Objective To record surveillance, antibiotic resistance of uropathogens of hospitalized patients over a period of 18 months. Methods Urine samples from wards and cabins were used for isolating urinary tract infection (UTI)-causing bacteria that were cultured on suitable selective media and identified by biochemical tests; and their antibiograms were ascertained by Kirby-Bauer's disc diffusion method, in each 6-month interval of the study period, using 18 antibiotics of five different classes. Results From wards and cabins, 1 245 samples were collected, from which 996 strains of bacteria belonging to 11 species were isolated, during April 2011 to September 2012. Two Gram-positive, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and nine Gram-negative bacteria, Acinetobacter baumannii, Citrobacter sp., Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis, Proteus vulgaris and Pseudomonas aeruginosa were isolated. Both S. aureus and E. faecalis were vancomycin resistant, and resistant-strains of all pathogens increased in each 6-month period of study. Particularly, all Gram-negatives were resistant to nitrofurantoin and co-trimoxazole, the most preferred antibiotics of empiric therapy for UTI. Conclusions Antibiograms of 11 UTI-causing bacteria recorded in this study indicated moderately higher numbers of strains resistant to each antibiotic studied, generating the fear of precipitating fervent episodes in public health particularly with bacteria, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and S. aureus. Moreover, vancomycin resistance in strains of S. aureus and E. faecalis is a matter of concern. PMID:23620859

  4. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    PubMed Central

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2013-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670

  5. Multidrug resistant gram-negative bacteria in clinical isolates from Karachi.

    PubMed

    Saeed, Asma; Khatoon, Hajra; Ansari, Fasihuddin Ahmed

    2009-01-01

    A total of 54 gram-negative bacteria obtained from various pathological labs and hospitals of Karachi were screened for their resistance to ampicillin, chloramphenicol, gentamycin, kanamycin, neomycin, streptomycin and tetracycline antibiotics. Of the 54 bacteria, 50 were resistant to one or more antibiotics. Among the resistant bacteria, 13 out of 28 were found to transfer their resistances by conjugation. This indicates that at least 46% of clinical gram-negative bacteria in Karachi possess various types of transferable R plasmids, such as pAK5, pAK9, pAK10, pAK11, pAK12, pAK13, pAK14, pAK15, pAK16, pAK17, pAK18, pAK19, pAK20 and pAK21. The non-conjugative R plasmids included pMT14 and pZ26. Only pAK15 showed 26% segregation even after 20 consecutive transfers in plain broth (spontaneous segregation) whereas only pAK15 and pAK16 showed any significant loss of their markers in curing by acridine orange. The stability of R plasmids is more dangerous from clinical point of view.

  6. [The risk of infection with patients with multi-drug resistant bacteria in the operating room].

    PubMed

    Latroche, Marie-France; Roche, Géraldine; Velardo, Danielle

    2015-01-01

    The risk of infection in the operating theatre is constant and multifactorial. It can be contained through a prevention process. The organisation, implementation, monitoring and the results of the patient pathway are all sources for the analysis of practices, quality and professional progress in order to limit the risks of transmitting multi-drug or highly resistant bacteria.

  7. Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria

    PubMed Central

    2013-01-01

    Background Many edible plants are used in Cameroon since ancient time to control microbial infections. This study was designed at evaluating the antibacterial activities of the methanol extracts of ten Cameroonian vegetables against a panel of twenty nine Gram negative bacteria including multi-drug resistant (MDR) strains. Methods The broth microdilution method was used to determine the Minimal Inhibitory Concentrations (MIC) and the Minimal Bactericidal Concentrations (MBC) of the studied extracts. When chloramphenicol was used as a reference antibiotic, the MICs were also determined in the presence of Phenylalanine-Arginine β-Naphtylamide (PAβN), an efflux pumps inhibitor (EPI). The phytochemical screening of the extracts was performed using standard methods. Results All tested extracts exhibited antibacterial activities, with the MIC values varying from 128 to 1024 mg/L. The studied extracts showed large spectra of action, those from L. sativa, S. edule, C. pepo and S. nigrum being active on all the 29 bacterial strains tested meanwhile those from Amaranthus hybridus, Vernonia hymenolepsis, Lactuca.carpensis and Manihot esculenta were active on 96.55% of the strains used. The plant extracts were assessed for the presence of large classes of secondary metabolites: alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, steroids, tannins and triterpenes. Each studied plant extract was found to contain compounds belonging to at least two of the above mentioned classes. Conclusion These results confirm the traditional claims and provide promising baseline information for the potential use of the tested vegetables in the fight against bacterial infections involving MDR phenotypes. PMID:23368430

  8. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water.

    PubMed

    Osińska, Adriana; Harnisz, Monika; Korzeniewska, Ewa

    2016-06-01

    % of FQRB. The highest prevalence of multidrug-resistant (MDR) microorganisms was detected in TWW and DRW samples. It indicates that discharged TWW harbors multiresistant bacterial strains and that mobile PMQR and ARGs elements may have a selective pressure for species affiliated to bacteria in the river water.

  9. The emerging threat of multidrug-resistant Gram-negative bacteria in urology.

    PubMed

    Zowawi, Hosam M; Harris, Patrick N A; Roberts, Matthew J; Tambyah, Paul A; Schembri, Mark A; Pezzani, M Diletta; Williamson, Deborah A; Paterson, David L

    2015-10-01

    Antibiotic resistance in Gram-negative uropathogens is a major global concern. Worldwide, the prevalence of Enterobacteriaceae that produce extended-spectrum β-lactamase or carbapenemase enzymes continues to increase at alarming rates. Likewise, resistance to other antimicrobial agents including aminoglycosides, sulphonamides and fluoroquinolones is also escalating rapidly. Bacterial resistance has major implications for urological practice, particularly in relation to catheter-associated urinary tract infections (UTIs) and infectious complications following transrectal-ultrasonography-guided biopsy of the prostate or urological surgery. Although some new drugs with activity against Gram-negative bacteria with highly resistant phenotypes will become available in the near future, the existence of a single agent with activity against the great diversity of resistance is unlikely. Responding to the challenges of Gram-negative resistance will require a multifaceted approach including considered use of current antimicrobial agents, improved diagnostics (including the rapid detection of resistance) and surveillance, better adherence to basic measures of infection prevention, development of new antibiotics and research into non-antibiotic treatment and preventive strategies.

  10. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia.

    PubMed

    Molton, James S; Tambyah, Paul A; Ang, Brenda S P; Ling, Moi Lin; Fisher, Dale A

    2013-05-01

    Since antibiotics were first used, each new introduced class has been followed by a global wave of emergent resistance, largely originating in Europe and North America where they were first used. Methicillin-resistant Staphylococcus aureus spread from the United Kingdom and North America across Europe and then Asia over more than a decade. Vancomycin-resistant enterococci and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae followed a similar path some 20 years later. Recently however, metallo-β-lactamases have originated in Asia. New Delhi metallo-β-lactamase-1 was found in almost every continent within a year of its emergence in India. Metallo-β-lactamase enzymes are encoded on highly transmissible plasmids that spread rapidly between bacteria, rather than relying on clonal proliferation. Global air travel may have helped facilitate rapid dissemination. As the antibiotic pipeline offers little in the short term, our most important tools against the spread of antibiotic resistant organisms are intensified infection control, surveillance, and antimicrobial stewardship.

  11. Emergence of multidrug-resistant NDM-1-producing Gram-negative bacteria in Bangladesh.

    PubMed

    Islam, M A; Talukdar, P K; Hoque, A; Huq, M; Nabi, A; Ahmed, D; Talukder, K A; Pietroni, M A C; Hays, J P; Cravioto, A; Endtz, H P

    2012-10-01

    The main objective of this study was to investigate the prevalence of bla (NDM-1) in Gram-negative bacteria in Bangladesh. In October 2010 at the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B) laboratories, 1,816 consecutive clinical samples were tested for imipenem-resistant Gram-negative organisms. Imipenem-resistant isolates were tested for the bla (NDM-1) gene. Among 403 isolates, 14 (3.5 %) were positive for bla (NDM-1), and the predominant species were Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli. All bla (NDM-1)-positive isolates were resistant to multiple antibiotics. Among β-lactamase genes, bla (CTX-M-1-group) was detected in ten isolates (eight bla (CTX-M-15)), bla (OXA-1-group) in six, bla (TEM) in nine, bla (SHV) in seven, and bla (VIM) and bla (CMY) in two isolates each. The 16S rRNA methylase gene, armA, was detected in five K. pneumoniae isolates and in one E. coli isolate. rmtB and rmtC were detected in a Citrobacter freundii and two K. pneumoniae isolates, respectively. qnr genes were detected in two K. pneumoniae isolates (one qnrB and one qnrS) and in an E. coli isolate (qnrA). Transferable plasmids (60-100 MDa) carrying bla (NDM-1) were detected in 7 of the 11 plasmid-containing isolates. Pulsed-field gel electrophoresis (PFGE) analysis grouped K. pneumoniae isolates into three clusters, while E. coli isolates differed significantly from each other. This study reports that approximately 3.5 % of Gram-negative clinical isolates in Bangladesh are NDM-1-producing.

  12. Faecal Carriage of Gram-Negative Multidrug-Resistant Bacteria among Patients Hospitalized in Two Centres in Ulaanbaatar, Mongolia

    PubMed Central

    Baljin, Bayaraa; Baldan, Ganbaatar; Chimeddorj, Battogtokh; Tulgaa, Khosbayar; Gunchin, Batbaatar; Sandag, Tsogtsaikhan; Pfeffer, Klaus; MacKenzie, Colin R.; Wendel, Andreas F.

    2016-01-01

    Gram-negative multidrug-resistant organisms (GN-MDRO) producing β-lactamases (ESBL, plasmid-mediated AmpC β-lactamases and carbapenemases) are increasingly reported throughout Asia. The aim of this surveillance study was to determine the rate of bacterial colonization in patients from two hospitals in the Mongolian capital Ulaanbaatar. Rectal swabs were obtained from patients referred to the National Traumatology and Orthopaedics Research Centre (NTORC) or the Burn Treatment Centre (BTC) between July and September 2014, on admission and again after 14 days. Bacteria growing on selective chromogenic media (CHROMagar ESBL/KPC) were identified by MALDI-ToF MS. We performed susceptibility testing by disk diffusion and PCR (blaIMP-1, blaVIM, blaGES, blaNDM, blaKPC, blaOXA-48, blaGIM-1, blaOXA-23, blaOXA-24/40, blaOXA-51, blaOXA-58, blaOXA-143, blaOXA-235, blaCTX-M, blaSHV blaTEM and plasmid-mediated blaAmpC). Carbapenemase-producing isolates were additionally genotyped by PFGE and MLST. During the study period 985 patients in the NTORC and 65 patients in the BTC were screened on admission. The prevalence of GN-MDRO-carriage was 42.4% and 69.2% respectively (p<0.001). Due to the different medical specialities the two study populations differed significantly in age (p<0.029) and gender (p<0.001) with younger and more female patients in the burn centre (BTC). We did not observe a significant difference in colonization rate in the respective age groups in the total study population. In both centres most carriers were colonized with CTX-M-producing E. coli, followed by CTX-M-producing K. pneumoniae and CTX-M-producing E. cloacae. 158 patients from the NTORC were re-screened after 14 days of whom 99 had acquired a new GN-MDRO (p<0.001). Carbapenemases were detected in both centres in four OXA-58-producing A. baumannii isolates (ST642) and six VIM-2-producing P. aeruginosa isolates (ST235). This study shows a high overall prevalence of GN-MDRO in the study population and

  13. Epidemiology meets econometrics: using time-series analysis to observe the impact of bed occupancy rates on the spread of multidrug-resistant bacteria.

    PubMed

    Kaier, K; Meyer, E; Dettenkofer, M; Frank, U

    2010-10-01

    Two multivariate time-series analyses were carried out to identify the impact of bed occupancy rates, turnover intervals and the average length of hospital stay on the spread of multidrug-resistant bacteria in a teaching hospital. Epidemiological data on the incidences of meticillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing bacteria were collected. Time-series of bed occupancy rates, turnover intervals and the average length of stay were tested for inclusion in the models as independent variables. Incidence was defined as nosocomial cases per 1000 patient-days. This included all patients infected or colonised with MRSA/ESBL more than 48h after admission. Between January 2003 and July 2008, a mean incidence of 0.15 nosocomial MRSA cases was identified. ESBL was not included in the surveillance until January 2005. Between January 2005 and July 2008 the mean incidence of nosocomial ESBL was also 0.15 cases per 1000 patient-days. The two multivariate models demonstrate a temporal relationship between bed occupancy rates in general wards and the incidence of nosocomial MRSA and ESBL. Similarly, the temporal relationship between the monthly average length of stay in intensive care units (ICUs) and the incidence of nosocomial MRSA and ESBL was demonstrated. Overcrowding in general wards and long periods of ICU stay were identified as factors influencing the spread of multidrug-resistant bacteria in hospital settings.

  14. Battacin (Octapeptin B5), a New Cyclic Lipopeptide Antibiotic from Paenibacillus tianmuensis Active against Multidrug-Resistant Gram-Negative Bacteria

    PubMed Central

    Qian, Chao-Dong; Teng, Yi; Zhao, Wen-Peng; Li, Ou; Fang, Sheng-Guo; Huang, Zhao-Hui; Gao, Hai-Chun

    2012-01-01

    Hospital-acquired infections caused by drug-resistant bacteria are a significant challenge to patient safety. Numerous clinical isolates resistant to almost all commercially available antibiotics have emerged. Thus, novel antimicrobial agents, specifically those for multidrug-resistant Gram-negative bacteria, are urgently needed. In the current study, we report the isolation, structure elucidation, and preliminary biological characterization of a new cationic lipopeptide antibiotic, battacin or octapeptin B5, produced from a Paenibacillus tianmuensis soil isolate. Battacin kills bacteria in vitro and has potent activity against Gram-negative bacteria, including multidrug-resistant and extremely drug-resistant clinical isolates. Hospital strains of Escherichia coli and Pseudomonas aeruginosa are the pathogens most sensitive to battacin, with MICs of 2 to 4 μg/ml. The ability of battacin to disrupt the outer membrane of Gram-negative bacteria is comparable to that of polymyxin B, the last-line therapy for infections caused by antibiotic-resistant Gram-negative bacteria. However, the capacity of battacin to permeate bacterial plasma membranes is less extensive than that of polymyxin B. The bactericidal kinetics of battacin correlate with the depolarization of the cell membrane, suggesting that battacin kills bacteria by disrupting the cytoplasmic membrane. Other studies indicate that battacin is less acutely toxic than polymyxin B and has potent in vivo biological activity against E. coli. Based on the findings of the current study, battacin may be considered a potential therapeutic agent for the treatment of infections caused by antibiotic-resistant Gram-negative bacteria. PMID:22183171

  15. Bacteriophage: Time to Re-Evaluate the Potential of Phage Therapy as a Promising Agent to Control Multidrug-Resistant Bacteria

    PubMed Central

    Sabouri Ghannad, Masoud; Mohammadi, Avid

    2012-01-01

    Nowadays the most difficult problem in treatment of bacterial infections is the appearance of resistant bacteria to the antimicrobial agents so that the attention is being drawn to other potential targets. In view of the positive findings of phage therapy, many advantages have been mentioned which utilizes phage therapy over chemotherapy and it seems to be a promising agent to replace the antibiotics. This review focuses on an understanding of phages for the treatment of bacterial infectious diseases as a new alternative treatment of infections caused by multiple antibiotic resistant bacteria. Therefore, utilizing bacteriophage may be accounted as an alternative therapy. It is appropriate time to re-evaluate the potential of phage therapy as an effective bactericidal and a promising agent to control multidrug-resistant bacteria. PMID:23494063

  16. Multidrug Resistant Acinetobacter

    PubMed Central

    Manchanda, Vikas; Sanchaita, Sinha; Singh, NP

    2010-01-01

    Emergence and spread of Acinetobacter species, resistant to most of the available antimicrobial agents, is an area of great concern. It is now being frequently associated with healthcare associated infections. Literature was searched at PUBMED, Google Scholar, and Cochrane Library, using the terms ‘Acinetobacter Resistance, multidrug resistant (MDR), Antimicrobial Therapy, Outbreak, Colistin, Tigecycline, AmpC enzymes, and carbapenemases in various combinations. The terms such as MDR, Extensively Drug Resistant (XDR), and Pan Drug Resistant (PDR) have been used in published literature with varied definitions, leading to confusion in the correlation of data from various studies. In this review various mechanisms of resistance in the Acinetobacter species have been discussed. The review also probes upon the current therapeutic options, including combination therapies available to treat infections due to resistant Acinetobacter species in adults as well as children. There is an urgent need to enforce infection control measures and antimicrobial stewardship programs to prevent the further spread of these resistant Acinetobacter species and to delay the emergence of increased resistance in the bacteria. PMID:20927292

  17. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria.

    PubMed

    Yousefi, Mohammadreza; Dadashpour, Mehdi; Hejazi, Maryam; Hasanzadeh, Mohammad; Behnam, Behzad; de la Guardia, Miguel; Shadjou, Nasrin; Mokhtarzadeh, Ahad

    2017-05-01

    Antibiotic resistance in microbial pathogens has become a serious health problem in the world. The increasing spread of hospital acquired infections especially in immunocompromised and cancer patients caused by multidrug-resistant (MDR) microbial pathogens is restricting the choices for impressive antibiotic therapy. So many efforts have been made to develop new compounds with antimicrobial activity. In recent years, nanoparticles, particularly graphene oxide (GO) nanoparticles have found many applications in various fields, including antibacterial action, pathogens bio detection, cancer therapy, and drug and gene delivery. The use of graphene oxide as an antibacterial agent for the treatment of infections with multidrug resistance is growing due to the unique physicochemical properties as wide surface area, excellent electrical and thermal conductivity, and biocompatibility. To reduce toxicity and increase the efficiency of graphene oxide as an antimicrobial agent, different surface modification and functionalization with inorganic nanostructures, biomolecules and polymers were developed. In this review article, we give our overview of the progress made on the graphene oxide nanocomposites as a new generation of antimicrobial agents.

  18. Use of maggot therapy for treating a diabetic foot ulcer colonized by multidrug resistant bacteria in Brazil.

    PubMed

    Pinheiro, Marilia A R Q; Ferraz, Julianny B; Junior, Miguel A A; Moura, Andrew D; da Costa, Maria E S M; Costa, Fagner J M D; Neto, Valter F A; Neto, Renato M; Gama, Renata A

    2015-03-01

    This study reports the efficacy of maggot therapy in the treatment of diabetic foot ulcer infected with multidrug resistant microorganisms. A 74 year old female patient with diabetes for over 30 years, was treated with maggot therapy using larvae of Chrysomya megacephala. The microbiological samples were collected to evaluate aetiology of the infection. The therapy done for 43 days resulted in a reduction of necrosis and the ulcer's retraction of 0.7 cm [2] in area. Analysis of the bacteriological swabs revealed the presence of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Further studies need to be done to confirm the role of maggot therapy in wound healing using a large sample and a proper study design.

  19. Aerosolized colistin for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria in patients without cystic fibrosis

    PubMed Central

    Michalopoulos, Argyris; Kasiakou, Sofia K; Mastora, Zefi; Rellos, Kostas; Kapaskelis, Anastasios M; Falagas, Matthew E

    2005-01-01

    Introduction The clinical and economic consequences of the emergence of multidrug-resistant Gram-negative bacteria in the intensive care unit (ICU) setting, combined with the high mortality rate among patients with nosocomial pneumonia, have stimulated a search for alternative therapeutic options to treat such infections. The use of adjunctive therapy with aerosolized colistin represents one of these. There is extensive experience with use of aerosolized colistin by patients with cystic fibrosis, but there is a lack of data regarding the use of aerosolized colistin in patients without cystic fibrosis. Methods We conducted the present study to assess the safety and effectiveness of aerosolized colistin as an adjunct to intravenous antimicrobial therapy for treatment of Gram-negative nosocomial pneumonia. We retrospectively reviewed the medical records of patients hospitalized in a 450-bed tertiary care hospital during the period from October 2000 to January 2004, and who received aerosolized colistin as adjunctive therapy for multidrug-resistant pneumonia. Results Eight patients received aerosolized colistin. All patients had been admitted to the ICU, with mean Acute Physiological and Chronic Health Evaluation II scores on the day of ICU admission and on day 1 of aerosolized colistin administration of 14.6 and 17.1, respectively. Six of the eight patients had ventilator-associated pneumonia. The responsible pathogens were Acinetobacter baumannii (in seven out of eight cases) and Pseudomonas aeruginosa (in one out of eight cases) strains. Half of the isolated pathogens were sensitive only to colistin. The daily dose of aerosolized colistin ranged from 1.5 to 6 million IU (divided into three or four doses), and the mean duration of administration was 10.5 days. Seven out of eight patients received concomitant intravenous treatment with colistin or other antimicrobial agents. The pneumonia was observed to respond to treatment in seven out of eight patients (four were

  20. Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii.

    PubMed

    Xie, Junqiu; Gou, Yuanmei; Zhao, Qian; Wang, Kairong; Yang, Xiongli; Yan, Jiexi; Zhang, Wei; Zhang, Bangzhi; Ma, Chi; Wang, Rui

    2014-11-01

    Hospital-acquired infections caused by multidrug-resistant bacteria pose significant challenges for treatment, which necessitate the development of new antibiotics. Antimicrobial peptides are considered potential alternatives to conventional antibiotics. The skin of Anurans (frogs and toads) amphibians is an extraordinarily rich source of antimicrobial peptides. CPF-C1 is a typical cationic antimicrobial peptide that was originally isolated from the tetraploid frog Xenopus clivii. Our results showed that CPF-C1 has potent antimicrobial activity against both sensitive and multidrug-resistant bacteria. It disrupted the outer and inner membranes of bacterial cells. CPF-C1 induced both propidium iodide uptake into the bacterial cell and the leakage of calcein from large liposome vesicles, which suggests a mode of action that involves membrane disturbance. Scanning electron microscopy and transmission electron microscopy verified the morphologic changes of CPF-C1-treated bacterial cells and large liposome vesicles. The membrane-dependent mode of action signifies that the CPF-C1 peptide functions freely and without regard to conventional resistant mechanisms. Additionally, it is difficult for bacteria to develop resistance against CPF-C1 under this action mode. Other studies indicated that CPF-C1 had low cytotoxicity against mammalian cell. In conclusion, considering the increase in multidrug-resistant bacterial infections, CPF-C1 may offer a new strategy that can be considered a potential therapeutic agent for the treatment of diseases caused by multidrug-resistant bacteria.

  1. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.

  2. Intestinal carriage of multidrug-resistant gram-negative bacteria in preterm-infants during hospitalization in neonatal intensive care unit (NICU).

    PubMed

    Yap, Polly Soo Xi; Ahmad Kamar, Azanna; Chong, Chun Wie; Yap, Ivan Kok Seng; Thong, Kwai Lin; Choo, Yao Mun; Md Yusof, Mohd Yasim; Teh, Cindy Shuan Ju

    2016-09-01

    The prevalence and antibiotic susceptibility of intestinal carriage of Gram-negative bacteria among preterm infants admitted to the neonatal intensive care unit (NICU) in a tertiary teaching hospital in Malaysia were determined. A total of 34 stool specimens were obtained from preterm infants upon admission and once weekly up to two weeks during hospitalization. The presumptive colonies of Escherichia coli and Klebsiella pneumoniae were selected for identification, antibiotic susceptibility testing, and subtyping by using pulsed-field gel electrophoresis (PFGE). Out of 76 Gram-negative isolates, highest resistance was detected for amoxicillin/clavulanate (30.8%, n = 16), ceftriaxone (42.3%, n = 22), ceftazidime (28.8%, n = 15), cefoxitin (28.8%, n = 15), aztreonam (36.5%, n = 19), and polymyxin B (23.1%, n = 12). Three colistin resistant K. pneumoniae have also been detected based on E-test analysis. Thirty-nine isolates of K. pneumoniae and 20 isolates of E. coli were resistant to more than three antimicrobial classes and were categorized as multidrug resistant (MDR). PFGE analysis revealed a higher diversity in pulsotypes for K. pneumoniae (18 pulsotypes) in comparison to E. coli (four pulsotypes). In addition, a total of fifteen pulsotypes was observed from 39 MDR K. pneumoniae. The risk factors for antibiotic resistance were assessed using random forest analysis. Gender was found to be the most important predictor for colistin resistant while length, OFC, and delivery mode were showing greater predictive power in the polymyxin B resistance. This study revealed worrying prevalence rates of intestinal carriage of multidrug-resistant K. pneumoniae and E. coli of hospitalized preterm infants in Malaysia, particularly high resistance to polymyxins.

  3. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria

    PubMed Central

    Sun, Wei; Weingarten, Rebecca A; Xu, Miao; Southall, Noel; Dai, Sheng; Shinn, Paul; Sanderson, Philip E; Williamson, Peter R; Frank, Karen M; Zheng, Wei

    2016-01-01

    Current antimicrobial susceptibility testing has limited screening capability for identifying empirical antibiotic combinations to treat severe bacterial infections with multidrug-resistant (MDR) organisms. We developed a new antimicrobial susceptibility assay using automated ultra-high-throughput screen technology in combination with a simple bacterial growth assay. A rapid screening of 5170 approved drugs and other compounds identified 25 compounds with activities against MDR Klebsiella pneumoniae. To further improve the efficacy and reduce the effective drug concentrations, we applied a targeted drug combination approach that integrates drugs' clinical antimicrobial susceptibility breakpoints, achievable plasma concentrations, clinical toxicities and mechanisms of action to identify optimal drug combinations. Three sets of three-drug combinations were identified with broad-spectrum activities against 10 MDR clinical isolates including K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Citrobacter freundii, Enterobacter cloacae and Escherichia coli. Colistin–auranofin–ceftazidime and colistin–auranofin–rifabutin suppressed >80% growth of all 10 MDR strains; while rifabutin–colistin–imipenem inhibited >75% of these strains except two Acinetobacter baumannii isolates. The results demonstrate this new assay has potential as a real-time method to identify new drugs and effective drug combinations to combat severe clinical infections with MDR organisms. PMID:27826141

  4. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria.

    PubMed

    Sun, Wei; Weingarten, Rebecca A; Xu, Miao; Southall, Noel; Dai, Sheng; Shinn, Paul; Sanderson, Philip E; Williamson, Peter R; Frank, Karen M; Zheng, Wei

    2016-11-09

    Current antimicrobial susceptibility testing has limited screening capability for identifying empirical antibiotic combinations to treat severe bacterial infections with multidrug-resistant (MDR) organisms. We developed a new antimicrobial susceptibility assay using automated ultra-high-throughput screen technology in combination with a simple bacterial growth assay. A rapid screening of 5170 approved drugs and other compounds identified 25 compounds with activities against MDR Klebsiella pneumoniae. To further improve the efficacy and reduce the effective drug concentrations, we applied a targeted drug combination approach that integrates drugs' clinical antimicrobial susceptibility breakpoints, achievable plasma concentrations, clinical toxicities and mechanisms of action to identify optimal drug combinations. Three sets of three-drug combinations were identified with broad-spectrum activities against 10 MDR clinical isolates including K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Citrobacter freundii, Enterobacter cloacae and Escherichia coli. Colistin-auranofin-ceftazidime and colistin-auranofin-rifabutin suppressed >80% growth of all 10 MDR strains; while rifabutin-colistin-imipenem inhibited >75% of these strains except two Acinetobacter baumannii isolates. The results demonstrate this new assay has potential as a real-time method to identify new drugs and effective drug combinations to combat severe clinical infections with MDR organisms.

  5. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-07-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2 θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.

  6. Molecular identification of marine symbiont bacteria of gastropods from the waters of the Krakal coast Yogyakarta and its potential as a Multi-Drug Resistant (MDR) antibacterial agent

    NASA Astrophysics Data System (ADS)

    Bahry, Muhammad Syaifudien; Pringgenies, Delianis; Trianto, Agus

    2017-01-01

    The resistance of pathogenic bacteria may occur to many types of antibiotics, especially in cases of non-compliance use of antibiotics, which likely to allow the evolution of Multi-Drug Resistant (MDR) bacteria. Gastropods seas are marine invertebrates informed capable of production of secondary metabolites as antibacterial MDR. The purpose of the study was the isolation and identification of gastropod symbiont bacteria found in the waters of Krakal, Gunung Kidul, Yogyakarta, which has the ability to produce antibacterial compounds against MDR(Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, MRSA (methicillin-Resistant Staphylococcus aureus), Staphylococcus aureus, and Staphylococcus homunis) molecular. Stages of this research began with the isolation of bacteria, bacteria screening for anti-MDR compound, mass culture, and extraction, antibacterial activity test, DNA extraction, amplification by PCR 16S rDNA and sequencing. The results of the study showed that 19 isolates of bacteria were isolated from three species of gastropods namely Littorina scabra, Cypraea moneta and Conus ebraeus. Among them, 4 isolates showed activity against MDR test bacteria (E. coli, E. cloacae, K. pneumoniae, S. aureus and S. homunis). The highest activity was displayed by code LS.G1.8 isolate with the largest inhibition zone 15.47±0.45mm on S. humonis at 250 µg/disk concentration. Isolate CM.G2.1 showed largest inhibition zone, with 21.5±0.07mm on MRSA at 1000 µg/disk concentration and isolate the largest inhibition zone CM.G2.5 14.37±0.81mm on MRSA 14.37±0.81mm at concentrations 1000 µg/disk. The molecular identification of isolates LS.G1.8 has 99% homology with Bacillus subtilis and isolates CM.G2.1 has 99% homology with Bacillus pumillus.

  7. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    PubMed Central

    2013-01-01

    activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria. PMID:24119438

  8. A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria

    PubMed Central

    Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  9. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    PubMed

    Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  10. Antimicrobial Activity and Toxicity of the Major Lipopeptide Components of Polymyxin B and Colistin: Last-line Antibiotics against Multidrug-Resistant Gram-negative Bacteria

    PubMed Central

    Roberts, Kade D.; Azad, Mohammad A. K.; Wang, Jiping; Horne, Andrew S; Thompson, Philip E.; Nation, Roger L.; Velkov, Tony; Li, Jian

    2016-01-01

    Polymyxin B and colistin are currently used as a ‘last-line’ treatment for multidrug-resistant Gram-negative bacteria. However very little is known about the pharmacological differences between polymyxin B1, polymyxin B2, colistin A, colistin B, the major cyclic lipopeptides components present in polymyxin B and colistin products. Here, we report on the in vitro and in vivo antimicrobial activity and toxicity of these major lipopeptide components. All four lipopeptides had comparable MICs (<0.125–4 mg/L) against a panel of clinical Gram-negative isolates. They also had comparable in vivo antimicrobial activity (Δlog10 CFU/mL >-3) and nephrotoxicity (mild to moderate histological damage) in mouse models. However, polymyxin B1 and colistin A showed significantly higher (> 3-fold) in vitro apoptotic effect on human kidney proximal tubular HK-2 cells than polymyxin B2 and colistin B, respectively. Compared to the commercial polymyxin and colistin products, the individual lipopeptide components had slightly more in vivo antimicrobial activity. Our results highlight the need to re-assess pharmacopoeial standards for polymyxins B and colistin and to standardize the composition of the different commercial products of polymyxin antibiotics. PMID:27525307

  11. Class 1 and class 2 integrons in multidrug-resistant gram-negative bacteria isolated from the Salmon River, British Columbia.

    PubMed

    Xu, Hai; Broersma, Klaas; Miao, Vivian; Davies, Julian

    2011-06-01

    Using an enrichment protocol, we isolated 16 gram-negative, multidrug-resistant strains of known or opportunistic bacterial pathogens from the Salmon River in south-central British Columbia from 2005 to 2009, and investigated the genetic basis of their resistance to a variety of antibiotics. Of the 16 strains, 13 carried class 1 integrons and three carried class 2 integrons. Genes found in cassettes associated with the integrons included those for dihydrofolate reductases (dfrA1, dfrA12, dfrA17, and dfrB7), aminoglycoside adenyltransferases (aadA1, aadA2, aadA5, and aadB), streptothricin acetyltransferase (sat), and hypothetical proteins (orfF and orfC). A new gene cassette of unknown function, orf1, was discovered between dfrA1 and aadA5 in Escherichia sp. Other genes for resistance to tetracycline, chloramphenicol, streptomycin, and kanamycin (tetA, tetB, tetD; catA; strA-strB; and aphA1-Iab, respectively) were outside the integrons. Several of these resistance determinants were transferable by conjugation. The detection of organisms and resistance determinants normally associated with clinical settings attest to their widespread dispersal and suggest that regular monitoring of their presence in aquatic habitats should become a part of the overall effort to understand the epidemiology of antibiotic resistance genes in bacteria.

  12. Prevalence of multidrug resistant uropathogenic bacteria in pediatric patients of a tertiary care hospital in eastern India.

    PubMed

    Mishra, Monali P; Sarangi, Rachita; Padhy, Rabindra N

    2016-01-01

    Today, because systemic infections such as urinary tract infection (UTI) affect even pediatric patients, antibiotic resistant bacteria have become a constant clinical challenge. In the present study, a total of 1054 urine samples were collected from pediatric patients over 18 months. From these samples, 510 isolates of pathogenic bacteria were collected using HiCrome UTI agar. Antibiotic sensitivity tests of isolates were performed using the Kirby-Bauer method. Two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and 7 Gram-negative bacteria (Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella oxytoca, K. pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa) were isolated. Antibiograms of isolated bacteria were ascertained using antibiotics of 4 classes: aminoglycosides, β-lactams, fluoroquinolones and 2 stand-alones (co-trimoxazole and nitrofurantoin). Based on percent values of antibiotic resistance, isolated bacteria were (in decreasing order of number of isolated isolates): E. coli (109)>S. aureus (65)>E. faecalis (82)>E. aerogenes (64)>C. freundii (41)>P. aeruginosa (32)>K. pneumoniae (45)>K. oxytoca (50)>P. vulgaris (22). Surveillance results show that MDR isolates of 9 pathogenic bacteria were prevalent in the environment around the hospital. Thus, revisions to the antimicrobial stewardship program in this area of the country are required to increase clinician confidence in empiric therapy, which is often used for UTI cases.

  13. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria.

    PubMed

    Valle, Demetrio L; Puzon, Juliana Janet M; Cabrera, Esperanza C; Rivera, Windell L

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  14. Increased Costs Associated with Bloodstream Infections Caused by Multidrug-Resistant Gram-Negative Bacteria Are Due Primarily to Patients with Hospital-Acquired Infections.

    PubMed

    Thaden, Joshua T; Li, Yanhong; Ruffin, Felicia; Maskarinec, Stacey A; Hill-Rorie, Jonathan M; Wanda, Lisa C; Reed, Shelby D; Fowler, Vance G

    2017-03-01

    The clinical and economic impacts of bloodstream infections (BSI) due to multidrug-resistant (MDR) Gram-negative bacteria are incompletely understood. From 2009 to 2015, all adult inpatients with Gram-negative BSI at our institution were prospectively enrolled. MDR status was defined as resistance to ≥3 antibiotic classes. Clinical outcomes and inpatient costs associated with the MDR phenotype were identified. Among 891 unique patients with Gram-negative BSI, 292 (33%) were infected with MDR bacteria. In an adjusted analysis, only history of Gram-negative infection was associated with MDR BSI versus non-MDR BSI (odds ratio, 1.60; 95% confidence interval [CI], 1.19 to 2.16; P = 0.002). Patients with MDR BSI had increased BSI recurrence (1.7% [5/292] versus 0.2% [1/599]; P = 0.02) and longer hospital stay (median, 10.0 versus 8.0 days; P = 0.0005). Unadjusted rates of in-hospital mortality did not significantly differ between MDR (26.4% [77/292]) and non-MDR (21.7% [130/599]) groups (P = 0.12). Unadjusted mean costs were 1.62 times higher in MDR than in non-MDR BSI ($59,266 versus $36,452; P = 0.003). This finding persisted after adjustment for patient factors and appropriate empirical antibiotic therapy (means ratio, 1.18; 95% CI, 1.03 to 1.36; P = 0.01). Adjusted analysis of patient subpopulations revealed that the increased cost of MDR BSI occurred primarily among patients with hospital-acquired infections (MDR means ratio, 1.41; 95% CI, 1.10 to 1.82; P = 0.008). MDR Gram-negative BSI are associated with recurrent BSI, longer hospital stays, and increased mean inpatient costs. MDR BSI in patients with hospital-acquired infections primarily account for the increased cost.

  15. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria

    PubMed Central

    Valle, Demetrio L.; Puzon, Juliana Janet M.; Cabrera, Esperanza C.

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with Rf values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an Rf value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs. PMID:27478476

  16. Determination of microbial quality and plasmid-mediated multidrug resistant bacteria in fountain drinking water sources in Turkey.

    PubMed

    Akturk, Sayim; Dincer, Sadik; Toroglu, Sevil

    2012-11-01

    The bacterial contamination as the total aerobic bacteria, coliform and fecal coliform numbers were determined and analyzed for temperature, pH, conductivity and dissolved oxygen in seasonally collected water samples from fifteen different stations placed in Adana-Tufanbeyli road line during March 2008 - January 2009. In addition, antibiotic resistance profiles of isolates were examined against frequently used antibiotics, and analyzed plasmid DNAof multiple antibiotic resistant (MAR) isolates. Total aerobic bacteria in fountain water samples was determined as 3 x 10(3) CFU ml(-1) and total and fecal coliforms were determined 460 MPN/100 ml. Results obtained from biochemical analysis showed that 121 of the isolates were Proteus vulgaris, 69 Escherichia coli, 51 Pseudomonas aeruginosa and 28 Citrobacter spp. According to these results, the existence of Vibrio parahaemolyticus in stations 2 and 10, and Streptococcus faecalis in stations 11 and 15 respectively were confirmed. Clostridium perfringens was not detected in water samples. A total of 273 isolates were tested for antimicrobial susceptibility by agar disc diffusion methods. A total of sixteen antibiotics were used for determination of antibiotic resistance of isolates. Resistance to bacitracin, vancomycine, cephalothin and ampicillin was detected in 77, 77, 63 and 50%, respectively. Multiple antibiotic resistance (MAR) value > or = 0.25 was determined in 68.4% of identified 273 isolates and meaning of this percentage were resistant to four and more antibiotics. Plasmid DNA was isolated from 22 isolates with multiple antibiotic resistance index ranged from 0.3 to 0.6 taken randomly by agarose-gel electrophoresis, some of them contain a high-molecular weight plasmid DNA. Highlight of our study that the appearance of potential antibiotic resistances in fountain drinking water requires increased surveillance for risk assessment and prevention strategies to protect public health.

  17. Preparation of Thermosensitive Gel for Controlled Release of Levofloxacin and Their Application in the Treatment of Multidrug-Resistant Bacteria

    PubMed Central

    Alves, Danilo Antonini; Machado, Daisy; Pereira, Rafaella Fabiana Carneiro; de Hollanda, Luciana Maria; Araújo, Daniele Ribeiro

    2016-01-01

    Levofloxacin is a synthetic broad-spectrum antibacterial agent for oral or intravenous administration. Chemically, levofloxacin is the levorotatory isomer (L-isomer) of racemate ofloxacin, a fluoroquinolone antibacterial agent. Quinolone derivatives rapidly and specifically inhibit the synthesis of bacterial DNA. Levofloxacin has in vitro activity against a broad range of aerobic and anaerobic Gram-positive and Gram-negative bacteria. However, formulation of combined poloxamers thermoregulated (as Pluronic® F127) and levofloxacin for use in multiresistant bacterial treatment were poorly described in the current literature. Thus, the aim of the present work is to characterize poloxamers for levofloxacin controlled release and their use in the treatment of multidrug bacterial resistance. Micelles were produced in colloidal dispersions, with a diameter between 5 and 100 nm, which form spontaneously from amphiphilic molecules under certain conditions as concentration and temperature. Encapsulation of levofloxacin into nanospheres showed efficiency and enhancement of antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae when compared with only levofloxacin. Furthermore, all formulations were not cytotoxic for NIH/3T3 cell lineage. In conclusion, poloxamers combined with levofloxacin have shown promising results, better than alone, decreasing the minimal inhibitory concentration of the studied bacterial multiresistance strains. In the future, this new formulation will be used after being tested in animal models in patients with resistant bacterial strains. PMID:27689094

  18. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    PubMed

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains.

  19. MDRO - Multidrug-Resistant Organisms

    MedlinePlus

    ... Hazards (Lack of) PPE Slips/Trips/Falls Stress Tuberculosis Universal Precautions Workplace Violence Use of Medical Lasers ... PRSP - Penicillin-resistant Streptococcus pneumoniae Multi-drug resistant Tuberculosis (MDR) TB is covered in HealthCare Wide Hazards ...

  20. In Vitro Antibacterial Efficacy of 21 Indian Timber-Yielding Plants Against Multidrug-Resistant Bacteria Causing Urinary Tract Infection

    PubMed Central

    Mishra, Monali P.; Padhy, Rabindra N.

    2013-01-01

    Objectives To screen methanolic leaf extracts of 21 timber-yielding plants for antibacterial activity against nine species of uropathogenic bacteria isolated from clinical samples of a hospital (Enterococcus faecalis, Staphylococcus aureus, Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa). Methods Bacterial strains were subjected to antibiotic sensitivity tests by the Kirby–Bauer's disc diffusion method. The antibacterial potentiality of leaf extracts was monitored by the agar-well diffusion method with multidrug-resistant (MDR) strains of nine uropathogens. Results Two Gram-positive isolates, E. faecalis and S. aureus, were resistant to 14 of the 18 antibiotics used. Gram-negative isolates A. baumannii, C. freundii, E. aerogenes, E. coli, K. pneumoniae, P. mirabilis, and P. aeruginosa were resistant to 10, 12, 9, 11, 11, 10, and 11 antibiotics, respectively, of the 14 antibiotics used. Methanolic leaf extracts of Anogeissus acuminata had the maximum zone of inhibition size—29 mm against S. aureus and 28 mm against E. faecalis and P. aeruginosa. Cassia tora had 29 mm as the zone of inhibition size for E. faecalis, E. aerogenes, and P. aeruginosa. Based on the minimum inhibitory concentration and minimum bactericidal concentration values, the most effective 10 plants against uropathogens could be arranged in decreasing order as follows: C. tora > A. acuminata > Schleichera oleosa > Pterocarpus santalinus > Eugenia jambolana > Bridelia retusa > Mimusops elengi > Stereospermum kunthianum > Tectona grandis > Anthocephalus cadamba. The following eight plants had moderate control capacity: Artocarpus heterophyllus, Azadirachta indica, Dalbergia latifolia, Eucalyptus citriodora, Gmelina arborea, Pongamia pinnata, Pterocarpus marsupium, and Shorea robusta. E. coli, followed by A. baumannii, C. freundii, E. aerogenes, P. mirabilis, and P

  1. Multidrug-Resistant TB

    PubMed Central

    Cox, Helen; Coomans, Fons

    2016-01-01

    Abstract The right to enjoy the benefits of scientific progress (REBSP) is a little-known but potentially valuable right that can contribute to rights-based approaches to addressing multidrug-resistant TB (MDR-TB). We argue that better understanding of the REBSP may help to advance legal and civil society action for health rights. While the REBSP does not provide an individual entitlement to have a new drug developed for MDR-TB, it sets up entitlements to expect a state to establish a legislative and policy framework aimed at developing scientific capacity to address the most important health issues and at disseminating the outcomes of scientific research. By making scientific findings available and accessible, people can be enabled to claim the use of science for social benefits. Inasmuch as the market fails to address neglected diseases such as MDR-TB, the REBSP provides a potential counterbalance to frame a positive obligation on states to both marshal their own resources and to coordinate the actions of multiple other actors towards this goal, including non-state actors. While the latter do not hold the same level of accountability as states, the REBSP can still enable the recognition of obligations at a level of “soft law” responsibilities. PMID:27780997

  2. Multidrug resistance: an emerging crisis.

    PubMed

    Tanwar, Jyoti; Das, Shrayanee; Fatima, Zeeshan; Hameed, Saif

    2014-01-01

    The resistance among various microbial species (infectious agents) to different antimicrobial drugs has emerged as a cause of public health threat all over the world at a terrifying rate. Due to the pacing advent of new resistance mechanisms and decrease in efficiency of treating common infectious diseases, it results in failure of microbial response to standard treatment, leading to prolonged illness, higher expenditures for health care, and an immense risk of death. Almost all the capable infecting agents (e.g., bacteria, fungi, virus, and parasite) have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality; thus, they are referred to as "super bugs." Although the development of MDR is a natural phenomenon, the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, inappropriate food-handling, and poor infection prevention and control practices contribute to emergence of and encourage the further spread of MDR. Considering the significance of MDR, this paper, emphasizes the problems associated with MDR and the need to understand its significance and mechanisms to combat microbial infections.

  3. Natural History of Multi-Drug Resistant Organisms in a New Military Medical Facility

    DTIC Science & Technology

    2013-12-01

    Staphylococcus saprophyticus 14 (3) Enterococcus (faecium and faecalis) 11 (2) The remaining 11 species each comprised less than 2% of total 169 (32...environment plays in the transmission of multidrug-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MDRO) is increasingly...Pseudomonas aeruginosa, methicillin- resistant Staphylococcus aureus (MRSA); Klebsiella pneumoniea; and Clostridium difficile. Multidrug- resistance (MDR

  4. Isolation, Characterisation and Antagonistic Activity of Bacteria Symbionts Hardcoral Pavona sp. Isolated from Panjang Island, Jepara Against Infectious Multi-drug Resistant (MDR) Bacteria

    NASA Astrophysics Data System (ADS)

    Ayuningrum, D.; Kristiana, R.; Asagabaldan, M. A.; Sabdono, A.; Radjasa, O. K.; Nuryadi, H.; Trianto, A.

    2017-02-01

    Pavona sp. is highly spread over Indonesian waters including Panjang Island. Several studies showed that bacteria symbionts hardcoral were the big source of antibiotic product, but there was limited research of the bacteria symbionts with hardcoral Pavona sp. In this research bacteria symbionts from hardcoral Pavona sp. had been collected from Panjang Island, Jepara. Marine bacteria symbionts were isolated by serial dillution method, while antibacterial activity was performed by using overlay and agar block method. The total of 2 from 5 isolates were active to MDR bacteria such as Enterobacter aerogenes and Acinetobacter baumanii, the code were PHC 44/04 and PHC 44/05. Then both of them were identified by morphological and molecular DNA characterization using 16 S rRNA gene sequence. The result of 16 S rRNA identification shows PHC 44/04 has 99% similarities with Virgibacillus salarius strain sa-Vb 1, while PHC 44/05 shows 99% similarities with Pseudoalteromonas flavipulchra strain NCIMB 2033.

  5. Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily

    PubMed Central

    Kumar, Sanath; Mukherjee, Mun Mun; Varela, Manuel F.

    2013-01-01

    Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS. PMID:25750934

  6. Breaking the Spell: Combating Multidrug Resistant 'Superbugs'.

    PubMed

    Khan, Shahper N; Khan, Asad U

    2016-01-01

    Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to "escape" from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing.

  7. Chloramphenicol – A Potent Armament Against Multi-Drug Resistant (MDR) Gram Negative Bacilli?

    PubMed Central

    2016-01-01

    Introduction Multidrug-resistant gram-negative bacteria cause infections which are hard to treat and cause high morbidity and mortality. Due to limited therapeutic options there is a renewed interest upon older antimicrobials which had fallen into disuse as a result of toxic side effects. One such antibiotic is chloramphenicol which was sidelined due to reports linking its use with the development of aplastic anaemia. Aim A study was conducted to evaluate the susceptibility of chloramphenicol in light of the emerging problem of multi-drug resistant gram negative bacteria (MDR GNB). Materials and Methods A total of 483 MDR GNB of the 650 consecutive Gram Negative Bacteria isolated from various clinical samples of patients admitted at a tertiary care hospital in Jaipur between January-June 2014 were screened for chloramphenicol susceptibility by the disc diffusion method as per CLSI guidelines. Results The MDR GNB isolates were obtained from 217 (45%) urine, 163 (34%) from respiratory samples, 52(11%) from pus, 42 (9%) from blood and 9 (2%) from body fluids. A 68% of the MDR GNB isolates were found to be sensitive to chloramphenicol. Conclusion Clinicians should always check for the local susceptibility of Gram-negative bacteria to chloramphenicol. This antibiotic has a potential to play a role in the therapeutic management of infections due to MDR GNB pathogens. PMID:27042458

  8. Role of multidrug resistance in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Diddens, Heyke C.

    1992-06-01

    Multidrug resistance in cancer chemotherapy is a well established phenomenon. One of the most common phenotypical changes in acquired or intrinsic multidrug resistance in human tumor cells is the overexpression of the mdrl gene product P-glycoprotein, which acts as an active efflux pump. Increased levels of P-glycoprotein are associated with resistance to a variety of anticancer drugs commonly used in tumor chemotherapy like anthracyclins, vinca- alcaloids, epipodophyllotoxins or actinomycin D. We investigated the efficacy or photodynamic therapy in the treatment of tumor cells expressing the multidrug resistance phenotype. Our data show that multidrug resistant cells are highly cross resistant to the phototoxic stain rhodamine 123 but exhibit only low degrees of cross resistance (2 - 3 -folds) to the photosensitizers Photosan-3, Clorin-2, methylene blue and meso-tetra (4- sulfonatophenyl) porphine (TPPS4). Resistance is associated with a decrease in intracellular accumulation of the photosensitizer. Verapamil, a membrane active compound known to enhance drug sensitivity in multidrug resistant cells by inhibition of P-glycoprotein, also increases phototoxicity in multidrug resistant cells. Our results imply that tumors expressing the multidrug resistance phenotype might fail to respond to photochemotherapy with rhodamine 123. On the other hand, multidrug resistance may not play an important role in photodynamic therapy with Photosan-3, Chlorin-2, methylene blue or TPPS4.

  9. Safety and effectiveness of home intravenous antibiotic therapy for multidrug-resistant bacterial infections.

    PubMed

    Mujal, A; Sola, J; Hernandez, M; Villarino, M-A; Machado, M-L; Baylina, M; Tajan, J; Oristrell, J

    2015-06-01

    Home intravenous antibiotic therapy is an alternative to hospital admission for moderately severe infections. However, few studies have analyzed its safety and effectiveness in the treatment of infections caused by multidrug-resistant bacteria. The purpose of this study is to analyze the safety and effectiveness of home intravenous antibiotic therapy in multidrug-resistant bacterial infections. We analyzed prospectively all patients admitted to our service who underwent home intravenous antibiotic therapy during the period 2008-2012. All the treatments were administered by caretakers or self-administered by patients, through elastomeric infusion devices. Effectiveness was evaluated by analyzing the readmission rate for poor infection control. Safety was evaluated by analyzing adverse events, catheter-related complications, and readmissions not related to poor infection control. There were 433 admissions (in 355 patients) for home intravenous antibiotic therapy during the study period. There were 226 (52.2 %) admissions due to multidrug-resistant bacterial infections and 207 (47.8 %) due to non-multidrug-resistant infections. Hospital readmissions in patients with multidrug-resistant infections were uncommon. Multidrug-resistant enterococcal infections, healthcare-associated infections, and carbapenem therapy were independent variables associated with increased readmissions due to poor infection control. Readmissions not related to poor infection control, adverse events, and catheter-related complications were similar in multidrug-resistant compared to non-multidrug-resistant bacterial infections. Home intravenous therapy, administered by patients or their caretakers using elastomeric infusion pumps, was safe and effective for the treatment of most multidrug-resistant bacterial infections.

  10. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants.

    PubMed

    Ziech, Rosangela Estel; Lampugnani, Camila; Perin, Ana Paula; Sereno, Mallu Jagnow; Sfaciotte, Ricardo Antônio Pilegi; Viana, Cibeli; Soares, Vanessa Mendonça; Pinto, José Paes de Almeida Nogueira; Bersot, Luciano dos Santos

    2016-01-01

    The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp.

  11. Emergence of multidrug resistance in bacteria and impact on antibiotic expenditure at a major army medical center caring for soldiers wounded in Iraq and Afghanistan.

    PubMed

    Zapor, Michael J; Erwin, Daniel; Erowele, Goldina; Wortmann, Glenn

    2008-07-01

    Since the invasions of Iraq and Afghanistan, the epidemiologic traits of clinical isolates at Walter Reed Army Medical Center have shifted toward drug-resistant strains of microorganisms, particularly among the gram-negative bacteria. Moreover, antibiotic prescribing patterns during this period have changed remarkably and mirror the emergence of these organisms at our institution.

  12. Diversity among multidrug-resistant enterococci.

    PubMed Central

    Murray, B. E.

    1998-01-01

    Enterococci are associated with both community- and hospital-acquired infections. Even though they do not cause severe systemic inflammatory responses, such as septic shock, enterococci present a therapeutic challenge because of their resistance to a vast array of antimicrobial drugs, including cell-wall active agents, all commercially available aminoglycosides, penicillin and ampicillin, and vancomycin. The combination of the latter two occurs disproportionately in strains resistant to many other antimicrobial drugs. The propensity of enterococci to acquire resistance may relate to their ability to participate in various forms of conjugation, which can result in the spread of genes as part of conjugative transposons, pheromone-responsive plasmids, or broad host-range plasmids. Enterococcal hardiness likely adds to resistance by facilitating survival in the environment (and thus enhancing potential spread from person to person) of a multidrug-resistant clone. The combination of these attributes within the genus Enterococcus suggests that these bacteria and their resistance to antimicrobial drugs will continue to pose a challenge. PMID:9452397

  13. In vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria.

    PubMed

    Amani, Jafar; Barjini, Kamal A; Moghaddam, Mehrdad M; Asadi, Asadollah

    2015-01-01

    During the last decades, increase of antibiotic resistance among pathogenic bacteria has been considered as a global concern. Therefore, it is important to find new antimicrobial agents and/or therapeutic strategies. In previous studies we investigated antibacterial activity of the CM11 peptide against multiple drug resistant clinical isolates of six bacteria species including Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. In this study, in order to reduce treatment costs and the cytotoxic effect of CM11 peptide, was analyzed its synergic interaction with selected antibiotics. In this reason, specific antibiotics for each bacterium were selected considering the guidelines of the "Clinical and Laboratory Standards Institute". Based on the results , using a checkerboard procedure through the broth microdilution method, MICs of antibiotic agents alone and in combination with the peptide were determined. In most cases, synergistic effects between CM11 peptide and selected antibiotics against six bacteria species were observed as partial synergy. However, for S. aureus and P. aeruginosaa synergic interaction between peptide and selective antibiotics was observed with penicillin and ceftazidime, respectively. For K. pneumoniae, synergic effect was observed when CM11 peptide was used in combination with norfloxacin and also the combination of peptide with norfloxacin showed synergic effect against A. baumannii. Combination between the CM11 peptide and ciprofloxacin showed synergic effect on E. coli while only partial synergy was observed for S. typhimurium in combination with cefotaxime and ceftazidime. These results suggest that when selected antibiotic used in combination with the CM11 peptide, the dose of some antibiotics, especially the dose independent antibiotics, may be reduced for eliminating drug resistant bacteria.

  14. Essential Oils and Non-volatile Compounds Derived from Chamaecyparis obtusa: Broad Spectrum Antimicrobial Activity against Infectious Bacteria and MDR(multidrug resistant) Strains.

    PubMed

    Bae, Min-Suk; Park, Dae-Hun; Choi, Chul-Yung; Kim, Gye-Yeop; Yoo, Jin-Cheol; Cho, Seung-Sik

    2016-05-01

    The aim of this study was to evaluate the antibacterial activity of essential oil from Chamaecyparis obtusa against general infectious microbes and drug resistant strains of clinical origin. The results indicate that both essential oil and non-volatile residue have broad inhibitory activity against test strains. Essential oil and non-volatile residues showed antimicrobial activity not only against general infectious bacteria, but also against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains.

  15. Prevalence of Multidrug-Resistant Bacteria from U.S.-Grown and Imported Fresh Produce Retailed in Chain Supermarkets and Ethnic Stores of Davidson County, Tennessee.

    PubMed

    Liu, Siqin; Kilonzo-Nthenge, Agnes

    2017-03-01

    The aim of this study was to determine whether U.S.-grown and imported fresh produce retailed in ethnic stores and chain supermarkets was a reservoir of antibiotic-resistant bacteria. A total of 360 (129 imported and 231 U.S.-grown) samples of fresh produce were purchased from retail stores and analyzed for Enterobacteriaceae , including three pathogenic bacteria ( Escherichia coli O157:H7, Shigella , and Salmonella ), using standard methods. Presumptive pathogenic isolates were confirmed using PCR. The mean Enterobacteriaceae counts for imported produce were 6.87 ± 0.15 log CFU/g and 7.16 ± 0.11 log CFU/g in ethnic stores and chain supermarkets, respectively. For U.S.-grown produce, the contamination levels were at 8.35 ± 0.17 log CFU/g and 7.52 ± 0.13 log CFU/g in ethnic stores and chain supermarkets, respectively. Salmonella (0 and 0.3%), Shigella (1.7 and 0.6%), E. coli (3.1 and 1.4%), Enterobacter (9.4 and 8.6%), Klebsiella (6.7 and 0.6%), and Serratia (5.8 and 1.4%) were detected in produce from ethnic stores and chain supermarkets, respectively. None of the samples were positive for E. coli O157:H7. Regarding distribution by produce type, leafy vegetables had a significantly (P < 0.05) higher prevalence of Enterobacteriaceae (19.2%) than the other types, followed by root vegetables (6.4%), tomatoes (5.6%), and fruits (3.9%). Antibiotic-resistant Salmonella , Shigella , E. coli , Enterobacter , Klebsiella , and Erwinia bacteria were also isolated from fresh produce. The frequencies of vancomycin resistance (98.1 and 100%) were significantly higher (P < 0.05) than the frequencies of ampicillin resistance (42.3 and 72.9%) for imported and U.S.-grown produce, respectively. Despite the increased attention to the role of imported produce as a source of antimicrobial resistance, this study indicates that U.S.-grown produce is also contaminated with antibiotic-resistant bacteria. Good agricultural practices on the farms and washing of fresh produce before

  16. Retrospective observational study to assess the clinical management and outcomes of hospitalised patients with complicated urinary tract infection in countries with high prevalence of multidrug resistant Gram-negative bacteria (RESCUING)

    PubMed Central

    Shaw, Evelyn; Addy, Ibironke; Stoddart, Margaret; Vank, Christiane; Grier, Sally; Wiegand, Irith; Leibovici, Leonard; Eliakim-Raz, Noa; Vallejo-Torres, Laura; Morris, Stephen; MacGowan, Alasdair; Carratalà, Jordi; Pujol, Miquel

    2016-01-01

    Introduction The emergence of multidrug resistant (MDR) Gram-negative bacteria (GNB), including carbapenemase-producing strains, has become a major therapeutic challenge. These MDR isolates are often involved in complicated urinary tract infection (cUTI), and are associated with poor clinical outcomes. The study has been designed to gain insight into the epidemiology, clinical management, outcome and healthcare cost of patients with cUTI, especially in countries with high prevalence of MDR GNB. Methods and analysis This multinational and multicentre observational, retrospective study will identify cases from 1 January 2013 to 31 December 2014 in order to collect data on patients with cUTI as a cause of hospital admission, and patients who develop cUTI during their hospital stay. The primary end point will be treatment failure defined as the presence of any of the following criteria: (1) signs or symptoms of cUTI present at diagnosis that have not improved by days 5–7 with appropriate antibiotic therapy, (2) new cUTI-related symptoms that have developed within 30 days of diagnosis, (3) urine culture taken within 30 days of diagnosis, either during or after completion of therapy, that grows ≥104 colony-forming unit/mL of the original pathogen and (4) death irrespective of cause within 30 days of the cUTI diagnosis. Sample size 1000 patients afford a power of 0.83 (α=0.05) to detect an absolute difference of 10% in the treatment failure rate between MDR bacteria and other pathogens. This should allow for the introduction of about 20 independent risk factors (or their interaction) in a logistic regression model looking at risk factors for failure. Ethics and dissemination Approval will be sought from all relevant Research Ethics Committees. Publication of this study will be considered as a joint publication by the participating investigator leads, and will follow the recommendations of the International Committee of Medical Journal Editors (ICMJE). Trial

  17. Ceramide glycosylation potentiates cellular multidrug resistance.

    PubMed

    Liu, Y Y; Han, T Y; Giuliano, A E; Cabot, M C

    2001-03-01

    Ceramide glycosylation, through glucosylceramide synthase (GCS), allows cellular escape from ceramide-induced programmed cell death. This glycosylation event confers cancer cell resistance to cytotoxic anticancer agents [Liu, Y. Y., Han, T. Y., Giuliano, A. E., and M. C. Cabot. (1999) J. Biol. Chem. 274, 1140-1146]. We previously found that glucosylceramide, the glycosylated form of ceramide, accumulates in adriamycin-resistant breast carcinoma cells, in vinblastine-resistant epithelioid carcinoma cells, and in tumor specimens from patients showing poor response to chemotherapy. Here we show that multidrug resistance can be increased over baseline and then totally reversed in human breast cancer cells by GCS gene targeting. In adriamycin-resistant MCF-7-AdrR cells, transfection of GCS upgraded multidrug resistance, whereas transfection of GCS antisense markedly restored cellular sensitivity to anthracyclines, Vinca alkaloids, taxanes, and other anticancer drugs. Sensitivity to the various drugs by GCS antisense transfection increased 7- to 240-fold and was consistent with the resumption of ceramide-caspase-apoptotic signaling. GCS targeting had little influence on cellular sensitivity to either 5-FU or cisplatin, nor did it modify P-glycoprotein expression or rhodamine-123 efflux. GCS antisense transfection did enhance rhodamine-123 uptake compared with parent MCF-7-AdrR cells. This study reveals that GCS is a novel mechanism of multidrug resistance and positions GCS antisense as an innovative force to overcome multidrug resistance in cancer chemotherapy.

  18. Multidrug resistant Acinetobacter baumannii in veterinary medicine--emergence of an underestimated pathogen?

    PubMed

    Müller, Stefanie; Janssen, Traute; Wieler, Lothar H

    2014-01-01

    The proportion of multidrug resistant bacteria causing infections in animals has continuously been increasing. While the relevance of ESBL (extended spectrum beta-lactamase)-producing Enterobacteriaceae spp. and MRSA (methicillin resistant Staphylococcus aureus) is unquestionable, knowledge about multidrug resistant Acinetobacter baumannii in veterinary medicine is scarce. This is a worrisome situation, as A. baumannii are isolated from veterinary clinical specimens with rising frequency. The remarkable ability of A. baumannii to develop multidrug resistance and the high risk of transmission are known in human medicine for years. Despite this, data regarding A. baumannii isolates of animal origin are missing. Due to the changing role of companion animals with closer contact between animal and owner, veterinary intensive care medicine is steadily developing. It can be assumed that the number of "high risk" patients with an enhanced risk for hospital acquired infections will be rising simultaneously. Thus, development and spread of multidrug resistant pathogens is envisioned to rise. It is possible, that A. baumannii will evolve into a veterinary nosocomial pathogen similar to ESBL-producing Enterobacteriaceae and MRSA. The lack of attention paid to A. baumannii in veterinary medicine is even more worrying, as first reports indicate a transmission between humans and animals. Essential questions regarding the role of livestock, especially as a potential source of multidrug resistant isolates, remain unanswered. This review summarizes the current knowledge on A. baumannii in veterinary medicine for the first time. It underlines the utmost significance of further investigations of A. baumannii animal isolates, particularly concerning epidemiology and resistance mechanisms.

  19. Multidrug resistance in fungi: regulation of transporter-encoding gene expression

    PubMed Central

    Paul, Sanjoy; Moye-Rowley, W. Scott

    2014-01-01

    A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought. PMID:24795641

  20. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  1. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents.

    PubMed

    Haisma, Elisabeth M; de Breij, Anna; Chan, Heelam; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2014-08-01

    Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria.

  2. The secondary resistome of multidrug-resistant Klebsiella pneumoniae

    PubMed Central

    Jana, Bimal; Cain, Amy K.; Doerrler, William T.; Boinett, Christine J.; Fookes, Maria C.; Parkhill, Julian; Guardabassi, Luca

    2017-01-01

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the “secondary resistome”. As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial “helper” drugs that restore the efficacy of existing antimicrobials. PMID:28198411

  3. The secondary resistome of multidrug-resistant Klebsiella pneumoniae.

    PubMed

    Jana, Bimal; Cain, Amy K; Doerrler, William T; Boinett, Christine J; Fookes, Maria C; Parkhill, Julian; Guardabassi, Luca

    2017-02-15

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.

  4. Multidrug-resistant Acinetobacter meningitis in children

    PubMed Central

    Shah, Ira; Kapdi, Muznah

    2016-01-01

    Acinetobacter species have emerged as one of the most troublesome pathogens for healthcare institutions globally. In more recent times, nosocomial infections involving the central nervous system, skin and soft tissue, and bone have emerged as highly problematic. Acinetobacter species infection is common in intensive care units; however, Acinetobacter baumannii meningitis is rarely reported. Here, we report two cases of Acinetobacter baumannii meningitis which was multidrug resistance and ultimately required the carbapenem group of drugs for the treatment.

  5. Multidrug Resistance: Physiological Principles and Nanomedical Solutions

    PubMed Central

    Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2014-01-01

    Multidrug (MDR) resistance is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies. PMID:24120954

  6. Multidrug resistance: a transport system of antitumor agents and xenobiotics.

    PubMed

    Tsuruo, T

    1990-01-01

    Resistance of tumors to a variety of chemotherapeutic agents presents a major problem in cancer treatment. Resistance to such agents as doxorubicin, Vinca alkaloids, and actinomycin D can be acquired by tumor cells after treatment with a single drug. The gene responsible for multidrug resistance, termed mdr1, encodes a membrane glycoprotein (P-glycoprotein) that acts as a pump to transport various cytotoxic agents including various xenobiotics out of the cell. The amount of P-glycoprotein expression has been measured in tumor samples and was found to be elevated in intrinsically drug-resistant cancers of the colon, kidney, and adrenal as well as in some tumors that acquired drug resistance after chemotherapy. The protein was also found to be elevated in cells treated with xenobiotics. P-glycoprotein has been shown to bind anticancer drugs and several resistance-reversing agents including calcium channel blockers, and to be an ATPase. We recently reconstituted the purified P-glycoprotein into artificial liposomes. Reconstituted P-glycoprotein showed ATPase activity, ATP-dependent drug-transport activity, and calcium channel blocker-binding activity. This model provides many advantages for studies of the biochemical functions of P-glycoprotein. In addition to these basic interests, the protein is of considerable interest as a target for cancer chemotherapy because it appears to be involved in both acquired multidrug resistance and intrinsic drug resistance in human cancer. The selective killing of tumor cells expressing P-glycoprotein could be very important in future cancer therapy.

  7. Bacillus subtilis from Soybean Food Shows Antimicrobial Activity for Multidrug-Resistant Acinetobacter baumannii by Affecting the adeS Gene.

    PubMed

    Wang, Tieshan; Su, Jianrong

    2016-12-28

    Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii. Nineteen multidrug-resistant A. baumannii strains were clinifcally isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii. The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis. Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.

  8. Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis

    PubMed Central

    Rezai, Mohammad Sadegh; Pourmousa, Rostam; Dadashzadeh, Roksana; Ahangarkani, Fatemeh

    2016-01-01

    Background: Treatment of chronic sinusitis is complicated due to increase of antibiotic-resistant bacteria. The aim of this study was to determine the multidrug resistance (MDR) pattern of the bacteria causing chronic sinusitis in north of Iran. Methods: This cross-sectional study was carried out on patients with chronic sinusitis. Bacterial susceptibility to antimicrobial agents was determined according to the CLSI 2013 standards. Double-disk synergy (DDS) test was performed for the detection of extended-spectrum beta-lactamase (ESBL) producing bacteria; also methicillin-resistant Staphylococcus (MRSA) strains were identified by MRSA screen agar. The MDR isolates were defined as resistant to 3 or more antibiotics. Data were analyzed using SPSS 17 software. Descriptive statistics was used to describe the features of the data in this study. Results: The rate of ESBL-producing bacteria was 28.75-37.03% among enterobacteriaceae and the rate of MRSA was 42.75%-60% among Staphylococcus strains. The most detectable rate of the MDR bacterial isolates was Gram-negative bacteria 39 (76.47%) and Enterobacter spp. 19(70.37%) was the most multidrug resistant isolate among Gram negative bacteria. Also 36 (73.46%) of the gram positive bacterial isolated were multidrug resistance and Staphylococcus aureus 9(90%) was the most MDR among Gram positive bacteria. Conclusion: Antimicrobial resistance is increasing in chronic bacterial sinusitis. The emergence of MRSA and ESBL bacteria causing chronic sinusitis is increasing. PMID:27386063

  9. Fructose restores susceptibility of multidrug-resistant Edwardsiella tarda to kanamycin.

    PubMed

    Su, Yu-bin; Peng, Bo; Han, Yi; Li, Hui; Peng, Xuan-xian

    2015-03-06

    Edwardsiella tarda, the causative agent of Edwardsiellosis, imposes medical challenges in both the clinic and aquaculture. The emergence of multidrug resistant strains makes antibiotic treatment impractical. The identification of molecules that facilitate or promote antibiotic efficacy is in high demand. In the present study, we aimed to identify small molecules whose abundance is correlated with kanamycin resistance in E. tarda by gas chromatography-mass spectrometry. We found that the abundance of fructose was greatly suppressed in kanamycin-resistant strains. The incubation of kanamycin-resistant bacteria with exogenous fructose sensitized the bacteria to kanamycin. Moreover, the fructose also functioned in bacteria persisters and biofilm. The synergistic effects of fructose and kanamycin were validated in a mouse model. Furthermore, the mechanism relies on fructose in activating TCA cycle to produce NADH, which generates proton motive force to increase the uptake of the antibiotics. Therefore, we present a novel approach in fighting against multidrug resistant bacteria through exploration of antibiotic-suppressed molecules.

  10. Inhibition of the Carpobrotus edulis methanol extract on the growth of phagocytosed multidrug-resistant Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus.

    PubMed

    Martins, Marta; Ordway, Diane; Kristiansen, Malthe; Viveiros, Miguel; Leandro, Clara; Molnar, Joseph; Amaral, Leonard

    2005-01-01

    The Carpobrotus edulis methanol extract, inactive against the methicillin-resistant Staphylococcus aureus or the multidrug-resistant Mycobacterium tuberculosis, does inhibit the growth of these two bacteria once they are phagocytosed by monocyte derived human macrophages.

  11. Bacteriophages: biosensing tools for multi-drug resistant pathogens.

    PubMed

    Tawil, N; Sacher, E; Mandeville, R; Meunier, M

    2014-03-21

    Pathogen detection is of utmost importance in many sectors, such as in the food industry, environmental quality control, clinical diagnostics, bio-defence and counter-terrorism. Failure to appropriately, and specifically, detect pathogenic bacteria can lead to serious consequences, and may ultimately be lethal. Public safety, new legislation, recent outbreaks in food contamination, and the ever-increasing prevalence of multidrug-resistant infections have fostered a worldwide research effort targeting novel biosensing strategies. This review concerns phage-based analytical and biosensing methods targeted towards theranostic applications. We discuss and review phage-based assays, notably phage amplification, reporter phage, phage lysis, and bioluminescence assays for the detection of bacterial species, as well as phage-based biosensors, including optical (comprising SPR sensors and fiber optic assays), electrochemical (comprising amperometric, potentiometric, and impedimetric sensors), acoustic wave and magnetoelastic sensors.

  12. Breaking the Spell: Combating Multidrug Resistant ‘Superbugs’

    PubMed Central

    Khan, Shahper N.; Khan, Asad U.

    2016-01-01

    Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to “escape” from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing. PMID:26925046

  13. Multidrug resistance in pediatric urinary tract infections.

    PubMed

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ).

  14. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants

    PubMed Central

    Ziech, Rosangela Estel; Lampugnani, Camila; Perin, Ana Paula; Sereno, Mallu Jagnow; Sfaciotte, Ricardo Antônio Pilegi; Viana, Cibeli; Soares, Vanessa Mendonça; de Almeida Nogueira Pinto, José Paes; dos Santos Bersot, Luciano

    2016-01-01

    The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp. PMID:26887244

  15. Multidrug-resistant tuberculosis in central Asia.

    PubMed

    Cox, Helen Suzanne; Orozco, Juan Daniel; Male, Roy; Ruesch-Gerdes, Sabine; Falzon, Dennis; Small, Ian; Doshetov, Darebay; Kebede, Yared; Aziz, Mohammed

    2004-05-01

    Multidrug-resistant tuberculosis (MDR-TB) has emerged as a major threat to TB control, particularly in the former Soviet Union. To determine levels of drug resistance within a directly observed treatment strategy (DOTS) program supported by Médecins Sans Frontières in two regions in Uzbekistan and Turkmenistan, Central Asia, we conducted a cross-sectional survey of smear-positive TB patients in selected districts of Karakalpakstan (Uzbekistan) and Dashoguz (Turkmenistan). High levels of MDR-TB were found in both regions. In Karakalpakstan, 14 (13%) of 106 new patients were infected with MDR-TB; 43 (40%) of 107 previously treated patients were similarly infected. The proportions for Dashoguz were 4% (4/105 patients) and 18% (18/98 patients), respectively. Overall, 27% of patients with positive smear results whose infections were treated through the DOTS program in Karakalpakstan and 11% of similar patients in Dashoguz were infected with multidrug-resistant strains of TB on admission. These results show the need for concerted action by the international community to contain transmission and reduce the effects of MDR-TB.

  16. Multidrug-resistant Tuberculosis in Central Asia

    PubMed Central

    Orozco, Juan Daniel; Male, Roy; Ruesch-Gerdes, Sabine; Falzon, Dennis; Small, Ian; Doshetov, Darebay; Kebede, Yared; Aziz, Mohammed

    2004-01-01

    Multidrug-resistant tuberculosis (MDR-TB) has emerged as a major threat to TB control, particularly in the former Soviet Union. To determine levels of drug resistance within a directly observed treatment strategy (DOTS) program supported by Médecins Sans Frontières in two regions in Uzbekistan and Turkmenistan, Central Asia, we conducted a cross-sectional survey of smear-positive TB patients in selected districts of Karakalpakstan (Uzbekistan) and Dashoguz (Turkmenistan). High levels of MDR-TB were found in both regions. In Karakalpakstan, 14 (13%) of 106 new patients were infected with MDR-TB; 43 (40%) of 107 previously treated patients were similarly infected. The proportions for Dashoguz were 4% (4/105 patients) and 18% (18/98 patients), respectively. Overall, 27% of patients with positive smear results whose infections were treated through the DOTS program in Karakalpakstan and 11% of similar patients in Dashoguz were infected with multidrug-resistant strains of TB on admission. These results show the need for concerted action by the international community to contain transmission and reduce the effects of MDR-TB. PMID:15200821

  17. NANOPREPARATIONS TO OVERCOME MULTIDRUG RESISTANCE IN CANCER

    PubMed Central

    Patel, Niravkumar R.; Pattni, Bhushan S.; Abouzeid, Abraham H.; Torchilin, Vladimir P.

    2013-01-01

    Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing micro tumor tissues in vitro are discussed in detail. PMID:23973912

  18. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains

    PubMed Central

    Gilmore, Michael S.; Rauch, Marcus; Ramsey, Matthew M.; Himes, Paul R.; Varahan, Sriram; Manson, Janet M.; Lebreton, Francois; Hancock, Lynn Ernest

    2015-01-01

    Multidrug-resistant Enterococcus faecalis possess numerous mobile elements that encode virulence and antibiotic resistance traits as well as new metabolic pathways, often constituting over one-quarter of the genome. It was of interest to determine how this large accretion of mobile elements affects competitive growth in the gastrointestinal (GI) tract consortium. We unexpectedly observed that the prototype clinical isolate strain V583 was actively killed by GI tract flora, whereas commensal enterococci flourished. It was found that killing of V583 resulted from lethal cross-talk between accumulated mobile elements and that this cross-talk was induced by a heptapeptide pheromone produced by native E. faecalis present in the fecal consortium. These results highlight two important aspects of the evolution of multidrug-resistant enterococci: (i) the accretion of mobile elements in E. faecalis V583 renders it incompatible with commensal strains, and (ii) because of this incompatibility, multidrug-resistant strains sharing features found in V583 cannot coexist with commensal strains. The accumulation of mobile elements in hospital isolates of enterococci can include those that are inherently incompatible with native flora, highlighting the importance of maintaining commensal populations as means of preventing colonization and subsequent infection by multidrug-resistant strains. PMID:26039987

  19. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains.

    PubMed

    Gilmore, Michael S; Rauch, Marcus; Ramsey, Matthew M; Himes, Paul R; Varahan, Sriram; Manson, Janet M; Lebreton, Francois; Hancock, Lynn Ernest

    2015-06-09

    Multidrug-resistant Enterococcus faecalis possess numerous mobile elements that encode virulence and antibiotic resistance traits as well as new metabolic pathways, often constituting over one-quarter of the genome. It was of interest to determine how this large accretion of mobile elements affects competitive growth in the gastrointestinal (GI) tract consortium. We unexpectedly observed that the prototype clinical isolate strain V583 was actively killed by GI tract flora, whereas commensal enterococci flourished. It was found that killing of V583 resulted from lethal cross-talk between accumulated mobile elements and that this cross-talk was induced by a heptapeptide pheromone produced by native E. faecalis present in the fecal consortium. These results highlight two important aspects of the evolution of multidrug-resistant enterococci: (i) the accretion of mobile elements in E. faecalis V583 renders it incompatible with commensal strains, and (ii) because of this incompatibility, multidrug-resistant strains sharing features found in V583 cannot coexist with commensal strains. The accumulation of mobile elements in hospital isolates of enterococci can include those that are inherently incompatible with native flora, highlighting the importance of maintaining commensal populations as means of preventing colonization and subsequent infection by multidrug-resistant strains.

  20. Studies on pyrrolopyrimidines as selective inhibitors of multidrug-resistance-associated protein in multidrug resistance.

    PubMed

    Wang, Shouming; Folkes, Adrian; Chuckowree, Irina; Cockcroft, Xiaoling; Sohal, Sukhjit; Miller, Warren; Milton, John; Wren, Stephen P; Vicker, Nigel; Depledge, Paul; Scott, John; Smith, Lyndsay; Jones, Hazel; Mistry, Prakash; Faint, Richard; Thompson, Deanne; Cocks, Simon

    2004-03-11

    Multidrug resistance mediated by P-glycoprotein (Pgp) or multidrug-resistance-associated protein (MRP) remains a major obstacle for successful treatment of cancer. Inhibition of Pgp and MRP transport is important for high efficacy of anticancer drugs. While several Pgp inhibitors have entered clinical trials, the development of specific MRP1 inhibitors is still in its infancy. In our screening program, we have identified a pyrrolopyrimidine (4) as a novel and selective MRP1 inhibitor. Subsequent SAR work on the 4-position of the template revealed the phenethylpiperazine side chain as a potent replacement of the benzylthio group of the lead molecule. Introduction of groups at the 2-position seems to have no detrimental effect on activity. Modifications to the nitrile group at the 7-position resulted in the identification of analogues with groups, such as amides, with superior pharmacokinetic profiles. In vivo efficacy has been demonstrated by xenograft studies on selected compounds.

  1. Phenotypic and genetic characterization of multidrug-resistant Staphylococcus aureus in the tropics of Southeast Asia.

    PubMed

    Zulkeflle, Siti Norayuni Mohd; Yusaimi, Yus Amira; Sugiura, Norio; Iwamoto, Koji; Goto, Masafumi; Utsumi, Motoo; Othman, Nor'azizi Bin; Zakaria, Zuriati; Hara, Hirofumi

    2016-12-01

    Antibiotic resistance has become a major public health problem throughout the world. The presence of antibiotic-resistant bacteria such as Staphylococcus aureus and antibiotic resistance genes (ARGs) in hospital wastewater is a cause for great concern today. In this study, 276 Staph. aureus isolates were recovered from hospital wastewater samples in Malaysia. All of the isolates were screened for susceptibility to nine different classes of antibiotics: ampicillin, ciprofloxacin, gentamicin, kanamycin, erythromycin, vancomycin, trimethoprim and sulfamethoxazole, chloramphenicol, tetracycline and nalidixic acid. Screening tests showed that 100 % of Staph.aureus isolates exhibited resistance against kanamycin, vancomycin, trimethoprim and sulfamethoxazole and nalidixic acid. Additionally, 91, 87, 50, 43, 11 and 8.7 % of isolates showed resistance against erythromycin, gentamicin, ciprofloxacin, ampicillin, chloramphenicol and tetracycline, respectively. Based on these results, 100 % of isolates demonstrated multidrug-resistant (MDR) characteristics, displaying resistance against more than three classes of antibiotics. Of 276 isolates, nine exhibited resistance to more than nine classes of tested antibiotics; these were selected for antibiotic susceptibility testing and examined for the presence of conserved ARGs. Interestingly, a high percentage of the selected MDR Staph.aureus isolates did not contain conserved ARGs. These results indicate that non-conserved MDR gene elements may have already spread into the environment in the tropics of Southeast Asia, and unique resistance mechanisms against several antibiotics may have evolved due to stable, moderate temperatures that support growth of bacteria throughout the year.

  2. Epidemiology and Treatment of Multidrug Resistant Tuberculosis

    PubMed Central

    Mitnick, Carole D.; Appleton, Sasha C.; Shin, Sonya S.

    2010-01-01

    Multidrug resistant tuberculosis is now thought to afflict between 1 and 2 million patients annually. Although significant regional variability in the distribution of disease has been recorded, surveillance data are limited by several factors. The true burden of disease is likely underestimated. Nevertheless, the estimated burden is substantial enough to warrant concerted action. A range of approaches is possible, but all appropriate interventions require scale-up of laboratories and early treatment with regimens containing a sufficient number of second-line drugs. Ambulatory treatment for most patients, and improved infection control, can facilitate scale-up with decreased risk of nosocomial transmission. Several obstacles have been considered to preclude worldwide scale-up of treatment, mostly attributable to inadequate human, drug, and financial resources. Further delays in scale-up, however, risk continued generation and transmission of resistant tuberculosis, as well as associated morbidity and mortality. PMID:18810684

  3. Multidrug-resistant pathogens in the food supply.

    PubMed

    Doyle, Marjorie E

    2015-04-01

    Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in

  4. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance.

    PubMed

    Jaspers, Janneke E; Sol, Wendy; Kersbergen, Ariena; Schlicker, Andreas; Guyader, Charlotte; Xu, Guotai; Wessels, Lodewyk; Borst, Piet; Jonkers, Jos; Rottenberg, Sven

    2015-02-15

    Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this.

  5. Differences in the motility phenotype of multidrug-resistant Salmonella enterica serovar Typhimurium exposed to various antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most prevalent foodborne-associated bacteria in humans and livestock, and over 35 per cent of these isolates are resistant to three or more antibiotics. This is a concern as multidrug-resistant (MDR) Salmonella has been associat...

  6. Multidrug resistant Enterobacteriaceae in New Zealand: a current perspective.

    PubMed

    Toombs-Ruane, L J; Benschop, J; Burgess, S; Priest, P; Murdoch, D R; French, N P

    2017-03-01

    In this article we review mechanisms and potential transmission pathways of multidrug resistance in Enterobacteriaceae, with an emphasis on extended-spectrum β-lactamase (ESBL)-production. This provides background to better understand challenges presented by this important group of antimicrobial resistant bacteria, and inform measures aimed at prevention and control of antimicrobial resistance in general. Humans and animals interact at various levels; household pets cohabit with humans, and other animals interact with people through direct contact, as well as through the food chain and the environment. These interactions offer opportunity for bacteria such as ESBL-producers to be shared and transmitted between species and, in turn, increase the risk of zoonotic and reverse-zoonotic disease transmission. A key step in curtailing antimicrobial resistance is improved stewardship of antimicrobials, including surveillance of their use, better infection-control and prevention, and a better understanding of prescribing practice in both veterinary and medical professions in New Zealand. This will also require prospective observational studies to examine risk factors for antimicrobial resistance. Due to the interconnectedness of humans, animals and the environment actions to effect the changes required should be undertaken using a One Health approach.

  7. Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens

    PubMed Central

    Lee, Kyungwon; Yong, Dongeun; Jeong, Seok Hoon

    2011-01-01

    Pathogenic bacteria have increasingly been resisting to antimicrobial therapy. Recently, resistance problem has been relatively much worsened in Gram-negative bacilli. Acinetobacter spp. are typical nosocomial pathogens causing infections and high mortality, almost exclusively in compromised hospital patients. Acinetobacter spp. are intrinsically less susceptible to antibiotics than Enterobacteriaceae, and have propensity to acquire resistance. A surveillance study in Korea in 2009 showed that resistance rates of Acinetobacter spp. were very high: to fluoroquinolone 67%, to amikacin 48%, to ceftazidime 66% and to imipenem 51%. Carbapenem resistance was mostly due to OXA type carbapenemase production in A. baumannii isolates, whereas it was due to metallo-β-lactamase production in non-baumannii Acinetobacter isolates. Colistin-resistant isolates were rare but started to be isolated in Korea. Currently, the infection caused by multidrug-resistant A. baumannii is among the most difficult ones to treat. Analysis at tertiary care hospital in 2010 showed that among the 1,085 isolates of Acinetobacter spp., 14.9% and 41.8% were resistant to seven, and to all eight antimicrobial agents tested, respectively. It is known to be difficult to prevent Acinetobacter spp. infection in hospitalized patients, because the organisms are ubiquitous in hospital environment. Efforts to control resistant bacteria in Korea by hospitals, relevant scientific societies and government agencies have only partially been successful. We need concerted multidisciplinary efforts to preserve the efficacy of currently available antimicrobial agents, by following the principles of antimicrobial stewardship. PMID:22028150

  8. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  9. Management of multidrug resistant bacterial endemic.

    PubMed

    Zahar, J-R; Lesprit, P

    2014-09-01

    The fight against multi-drug resistant Gram-negative bacilli (MDRGNB), especially extended-spectrum β-lactamase producing Enterobacteriaceae, is about to be lost in our country. The emergence of new resistance mechanisms to carbapenems in these Enterobacteriaceae exposes patients to a risk of treatment failure without any other therapeutic options. This dramatic situation is paradoxical because we are well aware of the 2 major factors responsible for this situation: 1) MDRO cross-transmission, associated with a low compliance to standard precautions, especially hand hygiene, and 2) overexposure of patients to antibiotics. The implementation of a "search and isolate" policy, which was justified to control the spread of some MDRO that remained rare in the country, was not associated with a better adherence to standard precautions. The antibiotic policy and the measures implemented to control antibiotic consumptions have rarely been enforced and have shown inconsistent results. Notably, no significant decrease of antibiotic consumption has been observed. There is no excuse for these poor results, because some authors evaluating the effectiveness of programs for the control of MDRO have reported their positive effects on antimicrobial resistance without any detrimental effects. It is now urgent to deal with the 2 major factors by establishing an educational and persuasive program with quantified and opposable objectives. Firstly, we have to improve the observance of hand hygiene above 70%. Secondly, we have to define and reach a target for the reduction of antibiotic consumption both in community and in hospital settings.

  10. Mechanisms of multidrug resistance in cancer.

    PubMed

    Gillet, Jean-Pierre; Gottesman, Michael M

    2010-01-01

    The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Resistance exists against every effective anticancer drug and can develop by numerous mechanisms including decreased drug uptake, increased drug efflux, activation of detoxifying systems, activation of DNA repair mechanisms, evasion of drug-induced apoptosis, etc. In the first part of this chapter, we briefly summarize the current knowledge on individual cellular mechanisms responsible for MDR, with a special emphasis on ATP-binding cassette transporters, perhaps the main theme of this textbook. Although extensive work has been done to characterize MDR mechanisms in vitro, the translation of this knowledge to the clinic has not been crowned with success. Therefore, identifying genes and mechanisms critical to the development of MDR in vivo and establishing a reliable method for analyzing clinical samples could help to predict the development of resistance and lead to treatments designed to circumvent it. Our thoughts about translational research needed to achieve significant progress in the understanding of this complex phenomenon are therefore discussed in a third section. The pleotropic response of cancer cells to chemotherapy is summarized in a concluding diagram.

  11. [Management of multidrug-resistant tuberculosis].

    PubMed

    Tritar, F; Daghfous, H; Ben Saad, S; Slim-Saidi, L

    2015-01-01

    The emergence of drug-resistant TB in many countries has become a major public health problem and an obstacle to effective tuberculosis control. Multidrug-resistant tuberculosis (MDR-TB), which is most often the result of poor adherence, is a particularly dangerous form of tuberculosis because it is caused by bacilli resistant to at least isoniazid and rifampicin, the two most effective anti-tuberculosis drugs. Techniques for rapid diagnosis of resistance have greatly improved the care of patients by allowing early treatment which remains complex and costly establishment, and requires skills and resources. The treatment is not standardized but it includes in all cases attack phase with five drugs (there must be an injectable agent and a fluoroquinolone that form the basis of the regimen) for eight months and a maintenance phase (without injectable agent) with a total duration of 20 months on average. Surgery may be beneficial as long as the lesions are localized and the patient has a good cardiorespiratory function. Evolution of MDR-TB treated is less favorable than tuberculosis with germ sensitive. The cure rate varies from 60 to 75% for MDR-TB, and drops to 30 to 40% for XDR-TB. Mortality remains high, ranging from 20 to 40% even up to 70-90% in people co-infected with HIV.

  12. Clinical management of infections caused by multidrug-resistant Enterobacteriaceae

    PubMed Central

    Delgado-Valverde, Mercedes; Sojo-Dorado, Jesús; Pascual, Álvaro

    2013-01-01

    Enterobacteriaceae showing resistance to cephalosporins due to extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC enzymes, and those producing carbapenemases have spread worldwide during the last decades. Many of these isolates are also resistant to other first-line agents such as fluoroquinolones or aminoglycosides, leaving few available options for therapy. Thus, older drugs such as colistin and fosfomycin are being increasingly used. Infections caused by these bacteria are associated with increased morbidity and mortality compared with those caused by their susceptible counterparts. Most of the evidence supporting the present recommendations is from in vitro data, animal studies, and observational studies. While carbapenems are considered the drugs of choice for ESBL and AmpC producers, recent data suggest that certain alternatives may be suitable for some types of infections. Combined therapy seems superior to monotherapy in the treatment of invasive infections caused by carbapenemase-producing Enterobacteriaceae. Optimization of dosage according to pharmacokinetics/pharmacodynamics data is important for the treatment of infections caused by isolates with borderline minimum inhibitory concentration due to low-level resistance mechanisms. The increasing frequency and the rapid spread of multidrug resistance among the Enterobacteriaceae is a true and complex public health problem. PMID:25165544

  13. Resin glycosides from Ipomoea wolcottiana as modulators of the multidrug resistance phenotype in vitro.

    PubMed

    Corona-Castañeda, Berenice; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon; Aparicio-Cuevas, Manuel Alejandro; Fragoso-Serrano, Mabel; Figueroa-González, Gabriela; Pereda-Miranda, Rogelio

    2016-03-01

    Recycling liquid chromatography was used for the isolation and purification of resin glycosides from the CHCl3-soluble extracts prepared using flowers of Ipomoea wolcottiana Rose var. wolcottiana. Bioassay-guided fractionation, using modulation of both antibiotic activity against multidrug-resistant strains of Gram-negative bacteria and vinblastine susceptibility in breast carcinoma cells, was used to isolate the active glycolipids as modulators of the multidrug resistance phenotype. An ester-type dimer, wolcottine I, one tetra- and three pentasaccharides, wolcottinosides I-IV, in addition to the known intrapilosin VII, were characterized by NMR spectroscopy and mass spectrometry. In vitro assays established that none of these metabolites displayed antibacterial activity (MIC>512 μg/mL) against multidrug-resistant strains of Escherichia coli, and two nosocomial pathogens: Salmonella enterica serovar Typhi and Shigella flexneri; however, when tested (25 μg/mL) in combination with tetracycline, kanamycin or chloramphenicol, they exerted a potentiation effect of the antibiotic susceptibility up to eightfold (64 μg/mL from 512 μg/mL). It was also determined that these non-cytotoxic (CI50>8.68 μM) agents modulated vinblastine susceptibility at 25 μg/mL in MFC-7/Vin(+) cells with a reversal factor (RFMCF-7/Vin(+)) of 2-130 fold.

  14. The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB▿ †

    PubMed Central

    Garvey, Mark I.; Piddock, Laura J. V.

    2008-01-01

    One way to combat multidrug-resistant microorganisms is the use of efflux pump inhibitors (EPIs). Spontaneous mutants resistant to the EPI reserpine selected from Streptococcus pneumoniae NCTC 7465 and R6 at a frequency suggestive of a single mutational event were also multidrug resistant. No mutations in pmrA (which encodes the efflux protein PmrA) were detected, and the expression of pmrA was unaltered in all mutants. In the reserpine-resistant multidrug-resistant mutants, the overexpression of both patA and patB, which encode ABC transporters, was associated with accumulation of low concentrations of antibiotics and dyes. The addition of sodium orthovanadate, an inhibitor of ABC efflux pumps, or the insertional inactivation of either gene restored wild-type antibiotic susceptibility and wild-type levels of accumulation. Only when patA was insertionally inactivated were both multidrug resistance and reserpine resistance lost. Strains in which patA was insertionally inactivated grew significantly more slowly than the wild type. These data indicate that the overexpression of both patA and patB confers multidrug resistance in S. pneumoniae but that only patA is involved in reserpine resistance. The selection of reserpine-resistant multidrug-resistant pneumococci has implications for analogous systems in other bacteria or in cancer. PMID:18362193

  15. Salvage therapy for multidrug-resistant tuberculosis.

    PubMed

    Seung, K J; Becerra, M C; Atwood, S S; Alcántara, F; Bonilla, C A; Mitnick, C D

    2014-05-01

    Treatment of multidrug-resistant tuberculosis (MDR-TB), defined as Mycobacterium tuberculosis resistant to both isoniazid and rifampicin, is challenging under the best of circumstances, and particularly in resource-limited settings. For patients who remain persistently sputum-culture-positive despite therapy with second-line TB drugs, treatment options are limited, especially if disease is too advanced for resective surgery. Salvage therapy refers to the design of a regimen combining new and previously used drugs in a final effort to attain sputum conversion before declaring treatment to have failed. We retrospectively evaluated the outcomes of salvage therapy in 213 Peruvian patients. Salvage regimens included a median of two new drugs (range 1-6) and nine (range 5-13) total (new plus previously used) drugs. The most frequently used new drug was moxifloxacin, followed by capreomycin, amoxicillin-clavulanate, kanamycin and clarithromycin. Culture conversion occurred in 65 (30.5%) patients. Salvage regimens that included moxifloxacin were significantly more likely to be followed by culture conversion (OR 2.2; p 0.02). Later-generation fluoroquinolones such as moxifloxacin should be used in salvage therapy but also in the initial treatment of MDR-TB, if the best clinical strategy is to use the most effective drugs when the patient has the best chance for cure. New TB drugs are most likely to be initially used in salvage patients, in conditions similar to those described here. Close bacteriological monitoring of these patients will be essential, as useful information about the best way to use these new drugs can be gained from analysis of salvage therapy cohorts.

  16. Genetic Drivers of Multidrug Resistance in Candida glabrata

    PubMed Central

    Healey, Kelley R.; Jimenez Ortigosa, Cristina; Shor, Erika; Perlin, David S.

    2016-01-01

    Both the incidence of invasive fungal infections and rates of multidrug resistance associated with fungal pathogen Candida glabrata have increased in recent years. In this perspective, we will discuss the mechanisms underlying the capacity of C. glabrata to rapidly develop resistance to multiple drug classes, including triazoles and echinocandins. We will focus on the extensive genetic diversity among clinical isolates of C. glabrata, which likely enables this yeast to survive multiple stressors, such as immune pressure and antifungal exposure. In particular, over half of C. glabrata clinical strains collected from U.S. and non-U.S. sites have mutations in the DNA mismatch repair gene MSH2, leading to a mutator phenotype and increased frequencies of drug-resistant mutants in vitro. Furthermore, recent studies and data presented here document extensive chromosomal rearrangements among C. glabrata strains, resulting in a large number of distinct karyotypes within a single species. By analyzing clonal, serial isolates derived from individual patients treated with antifungal drugs, we were able to document chromosomal changes occurring in C. glabrata in vivo during the course of antifungal treatment. Interestingly, we also show that both MSH2 genotypes and chromosomal patterns cluster consistently into specific strain types, indicating that C. glabrata has a complex population structure where genomic variants arise, perhaps during the process of adaptation to environmental changes, and persist over time. PMID:28018323

  17. Phorbol esters induce multidrug resistance in human breast cancer cells

    SciTech Connect

    Fine, R.L.; Patel, J.; Chabner, B.A.

    1988-01-01

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate (P(BtO)/sub 2/) led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)/sub 2/ further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)/sub 2/ induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation.

  18. Bedaquiline: a novel antitubercular drug for multidrug-resistant tuberculosis.

    PubMed

    Nagabushan, H; Roopadevi, H S

    2014-01-01

    Multidrug-resistant and extensively drug-resistant tuberculosis (TB) are emerging global health threats. Bedaquiline is a new antituberculous drug belonging to the diarylquinoline class that efficiently inhibits the adenosine triphosphate synthase enzyme of Mycobacterium tuberculosis. It is a bactericidal and long-acting drug. It inhibits both dormant as well as replicating bacterial sub-populations and thus shortens the duration of TB treatment. This drug has been approved by the Food and Drug Administration in December 2012 for the management of multidrug resistant-TB. The drug marks the introduction of a new addition to the TB armamentarium after four decades.

  19. Multidrug resistant tuberculosis diagnosed by synovial fluid analysis.

    PubMed

    van Zeller, M; Monteiro, R; Ramalho, J; Almeida, I; Duarte, R

    2012-01-01

    Tuberculosis remains a major public health problem worldwide. HIV co-infection is contributing to an increased incidence of the disease, particularly that caused by multidrug resistant strains of Mycobacterium tuberculosis (MT). We describe an HIV-infected patient with pleural and lymph node tuberculosis diagnosed by pleural effusion characteristics and biopsy specimens, without MT identification, that further presented with knee-joint involvement. Arthrocentesis allowed MT isolation and drug susceptibility testing, resulting in a diagnosis of multidrug-resistant tuberculosis and an appropriate treatment regimen. MT identification and drug susceptibility tests are very important, especially for HIV co-infected patients.

  20. Antibiotic Trends Amid Multidrug-Resistant Gram-Negative Infections in Intensive Care Units.

    PubMed

    Fowler, Leanne H; Lee, Susan

    2017-03-01

    Isolates from ICUs most commonly find multidrug-resistant (MDR) gram-negative bacteria. The purpose of this article is to discuss the significant impact MDR gram-negative infections are having on ICUs, the threat on health and mortality, and effective and new approaches aimed to combat MDR gram-negative infections in critically ill populations. Inappropriate antibiotic therapies for suspected or documented infections are the leading cause of the emergence of bacterial resistance. A variety of strategies are aimed at combatting this international burden via antibiotic stewardship programs. Studies are demonstrating promise against the virulence MDR gram-negative infections have posed.

  1. Ventilator-Associated Pneumonia (VAP) with Multidrug-Resistant (MDR) Pathogens: Optimal Treatment?

    PubMed

    Bailey, Kristina L; Kalil, Andre C

    2015-08-01

    Ventilator-associated pneumonia (VAP) due to multidrug-resistant bacteria (MDR) is an emerging problem worldwide. Both gram-negative and gram-positive microorganisms are associated with VAP. We first describe the magnitude of the problem of MDR VAP followed by its clinical impact on survival outcomes, with the primary aim to review the optimal antibiotic choices to treat patients with MDR VAP. We discuss the challenges of intravenous and inhaled antibiotic treatments, as well as of monotherapy and combination antimicrobial therapies.

  2. The Widespread Presence of a Multidrug-Resistant Escherichia coli ST131 Clade among Community-Associated and Hospitalized Patients

    PubMed Central

    den Reijer, P. Martijn; van Burgh, Sebastian; Burggraaf, Arjan; Ossewaarde, Jacobus M.; van der Zee, Anneke

    2016-01-01

    Background & Aims The extent of entry of multidrug-resistant Escherichia coli from the community into the hospital and subsequent clonal spread amongst patients is unclear. To investigate the extent and direction of clonal spread of these bacteria within a large teaching hospital, we prospectively genotyped multidrug-resistant E. coli obtained from community- and hospital associated patient groups and compared the distribution of diverse genetic markers. Methods A total of 222 E. coli, classified as multi-drug resistant according to national guidelines, were retrieved from both screening (n = 184) and non-screening clinical cultures (n = 38) from outpatients and patients hospitalized for various periods. All isolates were routinely genotyped using an amplified fragment length polymorphism (AFLP) assay and real-time PCR for CTX-M genes. Multi-locus sequence typing was additionally performed to confirm clusters. Based on demographics, patients were categorized into two groups: patients that were not hospitalized or less than 72 hours at time of strain isolation (group I) and patients that were hospitalized for at least 72 hours (group II). Results Genotyping showed that most multi-drug resistant E. coli either had unique AFLP profiles or grouped in small clusters of maximally 8 isolates. We identified one large ST131 clade comprising 31% of all isolates, containing several AFLP clusters with similar profiles. Although different AFLP clusters were found in the two patient groups, overall genetic heterogeneity was similar (35% vs 28% of isolates containing unique AFLP profiles, respectively). In addition, similar distributions of CTX-M groups, including CTX-M 15 (40% and 44% of isolates in group I and II, respectively) and ST131 (32% and 30% of isolates, respectively) were found. Conclusion We conclude that multi-drug resistant E. coli from the CTX-M 15 associated lineage ST131 are widespread amongst both community- and hospital associated patient groups, with similar

  3. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii

    PubMed Central

    Weber, Brent S.; Ly, Pek Man; Irwin, Joshua N.; Pukatzki, Stefan; Feldman, Mario F.

    2015-01-01

    Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria. PMID:26170289

  4. Epidemiology of Primary Multidrug-Resistant Tuberculosis, Vladimir Region, Russia.

    PubMed

    Ershova, Julia V; Volchenkov, Grigory V; Kaminski, Dorothy A; Somova, Tatiana R; Kuznetsova, Tatiana A; Kaunetis, Natalia V; Cegielski, J Peter; Kurbatova, Ekaterina V

    2015-11-01

    We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB.

  5. Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry

    PubMed Central

    Waters, Andrew E.; Contente-Cuomo, Tania; Buchhagen, Jordan; Liu, Cindy M.; Watson, Lindsey; Pearce, Kimberly; Foster, Jeffrey T.; Bowers, Jolene; Driebe, Elizabeth M.; Engelthaler, David M.; Keim, Paul S.

    2011-01-01

    We characterized the prevalence, antibiotic susceptibility profiles, and genotypes of Staphylococcus aureus among US meat and poultry samples (n = 136). S. aureus contaminated 47% of samples, and multidrug resistance was common among isolates (52%). S. aureus genotypes and resistance profiles differed significantly among sample types, suggesting food animal–specific contamination. PMID:21498385

  6. Multidrug-Resistant Pathogens in Hospitalized Syrian Children

    PubMed Central

    Kassem, Diana Faour; Hoffmann, Yoav; Shahar, Naama; Ocampo, Smadar; Salomon, Liora; Zonis, Zeev

    2017-01-01

    Since 2013, wounded and ill children from Syria have received treatment in Israel. Screening cultures indicated that multidrug-resistant (MDR) pathogens colonized 89 (83%) of 107 children. For 58% of MDR infections, the pathogen was similar to that identified during screening. MDR screening of these children is valuable for purposes of isolation and treatment. PMID:27618479

  7. Invasive Infections with Multidrug-Resistant Yeast Candida auris, Colombia

    PubMed Central

    Morales-López, Soraya E.; Parra-Giraldo, Claudia M.; Ceballos-Garzón, Andrés; Martínez, Heidys P.; Rodríguez, Gerson J.; Álvarez-Moreno, Carlos A.

    2017-01-01

    Candida auris is an emerging multidrug-resistant fungus that causes a wide range of symptoms. We report finding 17 cases of C. auris infection that were originally misclassified but correctly identified 27.5 days later on average. Patients with a delayed diagnosis of C. auris had a 30-day mortality rate of 35.2%. PMID:27983941

  8. Multidrug-resistant tuberculosis, Somalia, 2010-2011.

    PubMed

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal; Zignol, Matteo

    2013-03-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia.

  9. Human multidrug-resistant Mycobacterium bovis infection in Mexico.

    PubMed

    Vazquez-Chacon, Carlos A; Martínez-Guarneros, Armando; Couvin, David; González-Y-Merchand, Jorge A; Rivera-Gutierrez, Sandra; Escobar-Gutierrez, Alejandro; De-la-Cruz López, Juan J; Gomez-Bustamante, Adriana; Gonzalez-Macal, Gabriela A; Gonçalves Rossi, Livia Maria; Muñiz-Salazar, Raquel; Rastogi, Nalin; Vaughan, Gilberto

    2015-12-01

    Here, we describe the molecular characterization of six human Mycobacterium bovis clinical isolates, including three multidrug resistant (MDR) strains, collected in Mexico through the National Survey on Tuberculosis Drug Resistance (ENTB-2008), a nationally representative survey conducted during 2008-2009 in nine states with a stratified cluster sampling design. The genetic background of bovine M. bovis strains identified in three different states of Mexico was studied in parallel to assess molecular relatedness of bovine and human strains. Additionally, resistance to first and second line anti-tuberculosis (TB) drugs and molecular identification of mutations conferring drug resistance was also performed. All strains were characterized by spoligotyping and 24-loci MIRU-VNTRs, and analyzed using the SITVIT2 (n = 112,000 strains) and SITVITBovis (n = 25,000 strains) proprietary databases of Institut Pasteur de la Guadeloupe. Furthermore, data from this study (n = 55 isolates), were also compared with genotypes recorded for M. bovis from USA (n = 203), Argentina (n = 726), as well as other isolates from Mexico (independent from the present study; n = 147), to determine any evidence for genetic relatedness between circulating M. bovis strains. The results showed that all human M. bovis cases were not genetically related between them or to any bovine strain. Interestingly, a high degree of genetic variability was observed among bovine strains. Several autochthonous and presumably imported strains were identified. The emergence of drug-resistant M. bovis is an important public health problem that jeopardizes the success of TB control programs in the region.

  10. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi.

    PubMed

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar; Haque, Abdul; De Zorzi, Rita; Mirza, Osman; Walz, Thomas; Rahman, Moazur

    2015-05-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874 conferred resistance to at least ten of the tested antimicrobials: ciprofloxacin, norfloxacin, levofloxacin, kanamycin, streptomycin, gentamycin, nalidixic acid, chloramphenicol, ethidium bromide, and acriflavine, including fluoroquinolone antibiotics, which were drugs of choice to treat S. Typhi infections. Cell-based functional studies using ethidium bromide and acriflavine showed that STY4874 functions as a H(+)-dependent exporter. These results suggest that STY4874 may be an important drug target, which can now be tested by studying the susceptibility of a STY4874-deficient S. Typhi strain to antimicrobials.

  11. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    PubMed

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  12. Genome Sequence of a Multidrug-Resistant Strain of Stenotrophomonas maltophilia with Carbapenem Resistance, Isolated from King Abdullah Medical City, Makkah, Saudi Arabia

    PubMed Central

    Abdel-Haleem, Alyaa M.; Rchiad, Zineb; Khan, Babar K.; Abdallah, Abdallah M.; Naeem, Raeece; Nikhat Sheerin, Shalam; Solovyev, Victor; Ahmed, Abdalla

    2015-01-01

    The emergence and spread of multidrug-resistant (MDR) bacteria have been regarded as major challenges among health care-associated infections worldwide. Here, we report the draft genome sequence of an MDR Stenotrophomonas maltophilia strain isolated in 2014 from King Abdulla Medical City, Makkah, Saudi Arabia. PMID:26472828

  13. Multidrug-Resistant Bacterial Colonization of Combat-Injured Personnel at Admission to Medical Centers After Evacuation from Afghanistan and Iraq

    DTIC Science & Technology

    2011-07-01

    mul-tidrug-resistant [MDR] bacteria) infections, including those secondary to Acinetobacter baumannii -calcoaceticus complex, extended spectrum...REFERENCES 1. Scott P, Deye G, Srinivasan A, et al. An outbreak of multidrug-resistant Acinetobacter baumannii -calcoaceticus complex infection in the US...Hospenthal DR, Wortmann GW, Murray CK. Factors associated with recovery of Acinetobacter baumannii in a combat support hospital. Infect Control Hosp

  14. Multidrug Resistance in Escherichia coli Strains Isolated from Infections in Dogs and Cats in Poland (2007–2013)

    PubMed Central

    Rzewuska, Magdalena; Czopowicz, Michał; Kizerwetter-Świda, Magdalena; Chrobak, Dorota; Błaszczak, Borys; Binek, Marian

    2015-01-01

    The antimicrobial susceptibility of Escherichia coli isolates associated with various types of infections in dogs and cats was determined. The studied isolates were most frequently susceptible to fluoroquinolones and the extended-spectrum cephalosporins (ESCs), antimicrobials commonly used in treatment of infections in companion animals. However, an increase in the percentage of strains resistant to β-lactam antibiotics including ESCs was noted between January 2007 and December 2013. The frequency of multidrug-resistant (MDR) E. coli isolation (66.8% of isolates) is alarming. Moreover, the statistically significant increase of the percentage of MDR isolates was observed during the study period. No difference in the prevalence of multidrug resistance was found between bacteria causing intestinal and extraintestinal infections and between canine and feline isolates. Nonhemolytic E. coli isolates were MDR more often than hemolytic ones. Our study showed the companion animals in Poland as an important reservoir of MDR bacteria. These results indicate that continuous monitoring of canine and feline E. coli antimicrobial susceptibility is required. Furthermore, introduction and application of recommendations for appropriate use of antimicrobials in small animal practice should be essential to minimize the emergence of multidrug resistance among E. coli in companion animals. PMID:25667937

  15. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates.

    PubMed

    Hou, Xiang-hua; Song, Xiu-yu; Ma, Xiao-bo; Zhang, Shi-yang; Zhang, Jia-qin

    2015-01-01

    Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR) K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs) at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL) producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38) and class II integrons (10/38). All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX' and aadA1 genes. β-lactam resistance was conferred through bla SHV (22/38), bla TEM (10/38), and bla CTX-M (7/38). The highly conserved bla KPC-2 (37/38) and bla OXA-23(1/38) alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38) and the plasmid-mediated qnrB gene (13/38) were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR) fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  16. Successful Treatment of Multiple Multidrug Resistant Intracranial Tuberculomata

    PubMed Central

    Goldberg, Hazel F.; Mellick, Ross S.; Post, Jeffrey J.

    2016-01-01

    A 21-year-old Bangladesh-born man presented with a month history of evolving neurological symptoms in the context of a six-month history of fever, night sweats, and axillary lymphadenopathy. He was subsequently diagnosed with multiple multidrug resistant intracranial tuberculomata and was successfully treated over two years. Intracranial multidrug resistant tuberculosis has a high mortality and successful treatment is rarely reported. Management is complex and requires consideration of the penetration and likely effect of antituberculous agents within the central nervous system. We discuss the role of various antituberculous agents, the duration of therapy, the utility of corticosteroids, the value of intrathecal and systemic therapy, and the need for rapid diagnosis. PMID:28127479

  17. Molecular fingerprinting of multidrug-resistant Salmonella enterica serotype Typhi.

    PubMed Central

    Hampton, M. D.; Ward, L. R.; Rowe, B.; Threlfall, E. J.

    1998-01-01

    For epidemiologic investigations, the primary subdivision of Salmonella Typhi is vi-phage typing; 106 Vi-phage types are defined. For multidrug-resistant strains the most common types have been M1 (Pakistan) and E1 (India, Pakistan, Bangladesh, and the Arabian Gulf); a strain untypable with the Vi phages has been responsible for a major epidemic in Tajikistan. Most often, isolates from the Indian subcontinent have been resistant to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracyclines, and trimethoprim; but in the 1997 Tajikistan outbreak, the epidemic strain was also resistant to ciprofloxacin. For multidrug-resistant strains, subdivision within phage type can be achieved by plasmid profile typing and pulsed-field gel electrophoresis. PMID:9621206

  18. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Toshi; Shimamoto, Tadashi

    2014-10-17

    Foodborne pathogens are a leading cause of illness and death, especially in developing countries. The problem is exacerbated if bacteria attain multidrug resistance. Little is currently known about the extent of antibiotic resistance in foodborne pathogens and the molecular mechanisms underlying this resistance in Africa. Therefore, the current study was carried out to characterize, at the molecular level, the mechanism of multidrug resistance in Salmonella enterica isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets and slaughterhouses in Egypt. Forty-seven out of 69 isolates (68.1%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The incidence of multidrug-resistant isolates was higher in meat products (37, 69.8%) than in dairy products (10, 62.5%). The multidrug-resistant serovars included, S. enterica serovar Typhimurium (24 isolates, 34.8%), S. enterica serovar Enteritidis, (15 isolates, 21.8%), S. enterica serovar Infantis (7 isolates, 10.1%) and S. enterica non-typable serovar (1 isolate, 1.4%). The highest resistance was to ampicillin (95.7%), then to kanamycin (93.6%), spectinomycin (93.6%), streptomycin (91.5%) and sulfamethoxazole/trimethoprim (91.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes and 39.1% and 8.7% of isolates were positive for class 1 and class 2 integrons, respectively. β-lactamase-encoding genes were identified in 75.4% of isolates and plasmid-mediated quinolone resistance genes were identified in 27.5% of isolates. Finally, the florphenicol resistance gene, floR, was identified in 18.8% of isolates. PCR screening identified S. enterica serovar Typhimurium DT104 in both meat and dairy products. This is the first study to report many of these resistance genes in dairy products. This study highlights the high incidence of multidrug-resistant S. enterica in

  19. Intravesical colistin irrigation to treat multidrug-resistant Acinetobacter baumannii urinary tract infection: a case report

    PubMed Central

    2012-01-01

    Introduction Acinetobacter baumannii is a Gram-negative bacteria and a significant nosocomial pathogen in hospitals. Multidrug-resistant A. baumannii have emerged as a cause of nosocomial infections in critically ill patients. This microorganism has the ability to produce biofilms on different surfaces, which could explain their ability to persist in clinical environments and their role in device-related infections. Case presentation We present the case of a 33-year-old Hispanic man with local invasive retroperitoneal leiomyosarcoma and right kidney exclusion along with femoral venous thrombosis, who was admitted for tumor resection. He had been receiving multiple nephrotoxic antibiotics for a long time (including tigecycline and colistimethate sodium) and had a persistent urinary infection related to multidrug-resistant A. baumannii (with susceptibility to colistimethate). Colistimethate was administered through a three-lumen urinary device for continuous urinary irrigation over seven days. Our patient did not refer to any adverse effects. A urine culture control taken at the end of the irrigation and another taken 10 days later were negative. Conclusion Colistimethate sodium and other antimicrobials infused by urinary irrigation can be a good option in patients in whom parenteral administration could be toxic. PMID:23273314

  20. Targeting bacterial adherence inhibits multidrug-resistant Pseudomonas aeruginosa infection following burn injury

    PubMed Central

    Huebinger, Ryan M.; Stones, Daniel H.; de Souza Santos, Marcela; Carlson, Deborah L.; Song, Juquan; Vaz, Diana Pereira; Keen, Emma; Wolf, Steven E.; Orth, Kim; Krachler, Anne Marie

    2016-01-01

    Classical antimicrobial drugs target proliferation and therefore place microbes under extreme selective pressure to evolve resistance. Alternative drugs that target bacterial virulence without impacting survival directly offer an attractive solution to this problem, but to date few such molecules have been discovered. We previously discovered a widespread group of bacterial adhesins, termed Multivalent Adhesion Molecules (MAMs) that are essential for initial binding of bacteria to host tissues and virulence. Thus, targeting MAM-based adherence is a promising strategy for displacing pathogens from host tissues and inhibiting infection. Here, we show that topical application of polymeric microbeads functionalized with the adhesin MAM7 to a burn infected with multidrug-resistant Pseudomonas aeruginosa substantially decreased bacterial loads in the wound and prevented the spread of the infection into adjacent tissues. As a consequence, the application of this adhesion inhibitor allowed for vascularization and wound healing, and maintained local and systemic inflammatory responses to the burn. We propose that MAM7-functionalized microbeads can be used as a topical treatment, to reduce bacterial attachment and hence prevent bacterial colonization and infection of wounds. As adhesion is not required for microbial survival, this anti-infective strategy has the potential to treat multidrug-resistant infections and limit the emergence of drug-resistant pathogens. PMID:27996032

  1. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  2. Structural basis and dynamics of multidrug recognition in a minimal bacterial multidrug resistance system

    PubMed Central

    Habazettl, Judith; Allan, Martin; Jensen, Pernille Rose; Sass, Hans-Jürgen; Thompson, Charles J.; Grzesiek, Stephan

    2014-01-01

    TipA is a transcriptional regulator found in diverse bacteria. It constitutes a minimal autoregulated multidrug resistance system against numerous thiopeptide antibiotics. Here we report the structures of its drug-binding domain TipAS in complexes with promothiocin A and nosiheptide, and a model of the thiostrepton complex. Drug binding induces a large transition from a partially unfolded to a globin-like structure. The structures rationalize the mechanism of promiscuous, yet specific, drug recognition: (i) a four-ring motif present in all known TipA-inducing antibiotics is recognized specifically by conserved TipAS amino acids; and (ii) the variable part of the antibiotic is accommodated within a flexible cleft that rigidifies upon drug binding. Remarkably, the identified four-ring motif is also the major interacting part of the antibiotic with the ribosome. Hence the TipA multidrug resistance mechanism is directed against the same chemical motif that inhibits protein synthesis. The observed identity of chemical motifs responsible for antibiotic function and resistance may be a general principle and could help to better define new leads for antibiotics. PMID:25489067

  3. Multidrug Resistant Shigella flexneri Infection Simulating Intestinal Intussusception

    PubMed Central

    Sreenivasan, Srirangaraj; Kali, Arunava; Pradeep, Jothimani

    2016-01-01

    Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, which was effectively treated by ceftriaxone. PMID:27013815

  4. Isolation of multidrug-resistant Salmonella in Singapore

    PubMed Central

    Phoon, Yee Wei; Chan, Yuen Yue Candice; Koh, Tze Hsien

    2015-01-01

    Multidrug-resistant Salmonella is a well-recognised problem worldwide, especially in developing countries such as India, where non-typhoidal Salmonella infections and enteric fever are endemic. Antimicrobial resistance, particularly to fluoroquinolones, is common and leads to the frequent use of alternative agents, such as azithromycin. We herein describe the first reported case of azithromycin-resistant Salmonella gastroenteritis in a Singaporean patient. PMID:26311915

  5. Imipenem: a potent inducer of multidrug resistance in Acinetobacter baumannii.

    PubMed

    Kuo, Han-Yueh; Chang, Kai-Chih; Kuo, Jai-Wei; Yueh, Hui-Wen; Liou, Ming-Li

    2012-01-01

    This study investigated the progression of multidrug resistance upon exposure to imipenem in Acinetobacter baumannii. Eighteen A. baumannii strains, including two reference strains (ATCC 19606 and ATCC 17978), four clinical strains (AB56, AB242, AB273 and AB279) and 12 antibiotic-selected mutant strains, were used in this study. Imipenem-selected mutants were generated from imipenem-susceptible strains (ATCC 19606, ATCC 17978 and AB242) by multistep selection resistance. Amikacin-, ciprofloxacin-, colistin-, meropenem- and ceftazidime-selected mutants were also generated from the two reference strains and were used for comparison. Antibiotic susceptibilities in the absence and presence of the efflux pump inhibitors carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 1-(1-naphthylmethyl)-piperazine (NMP) were examined in the three imipenem-selected mutants and the three clinical multidrug-resistant (MDR) isolates. Expression profiles of the antimicrobial resistance genes in the imipenem-selected mutants and their parental strains were also determined. The results showed that imipenem was more likely, compared with the other antibiotics, to induce a MDR phenotype in the two reference strains. Differences in OXA-51-like carbapenemase, efflux pumps or/and AmpC β-lactamase expression were observed in the three imipenem-selected mutants. Moreover, a reduction in imipenem or amikacin resistance was observed when the imipenem-selected mutants and clinical isolates were exposed to NMP and CCCP. This study concluded that imipenem might be a potent inducer of multidrug resistance in A. baumannii strains. OXA-51-like carbapenemase combined with other resistance mechanisms may contribute to the development of multidrug resistance in A. baumannii. Monitoring the use of carbapenems is required to reduce the spread of MDR A. baumannii in hospitals.

  6. Multidrug Resistant Shigella flexneri Infection Simulating Intestinal Intussusception.

    PubMed

    Sreenivasan, Srirangaraj; Kali, Arunava; Pradeep, Jothimani

    2016-01-01

    Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, which was effectively treated by ceftriaxone.

  7. Thanatin activity on multidrug resistant clinical isolates of Enterobacter aerogenes and Klebsiella pneumoniae.

    PubMed

    Pagès, Jean-Marie; Dimarcq, Jean-Luc; Quenin, Solange; Hetru, Charles

    2003-09-01

    Efflux pumps protect bacterial cells by ejecting intracellular toxic molecules such as antibiotics, detergents and defensins that have penetrated the cell envelope. Some of these efflux pumps recognise structurally unrelated compounds (mdr pump) and account for the resistance of some organisms to two or more agents. It would be of interest to identify molecules that are able to circumvent the problems created by multidrug resistance phenotypes during antibiotic therapy. We have studied the activity of thanatin, a 21-residue cationic antimicrobial peptide produced by an insect, against three bacterial species. The antibacterial effect depended on the size of lipopolysaccharide side chains. In clinically resistant isolates of Enterobacter aerogenes and Klebsiella pneumoniae, the biological activity of thanatin is independent of the membrane permeability, possibly controlled by one or more porins, and/or the expression of drug efflux pumps, two mechanisms which confer high level antibiotic resistance. In addition, thanatin was able to improve the activity of structurally unrelated antibiotics (norfloxacin, chloramphenicol, tetracycline) on a multidrug- resistant E. aerogenes clinical isolate.

  8. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals

    PubMed Central

    Gullberg, Erik; Albrecht, Lisa M.; Karlsson, Christoffer; Sandegren, Linus

    2014-01-01

    ABSTRACT How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. PMID:25293762

  9. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    NASA Astrophysics Data System (ADS)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  10. Persistence of Multi-Drug Resistance Plasmids in Sterile Water under Very Low Concentrations of Tetracycline

    PubMed Central

    Bien, Thi Lan Thanh; Sato-Takabe, Yuki; Ogo, Mitsuko; Usui, Masaru; Suzuki, Satoru

    2015-01-01

    The persistence of the multi-drug resistance plasmids pAQU1 and IncFIB was examined in bacterial populations under very low selective pressure. We herein demonstrated that these plasmids stably remained not only in the original host, but also in a transconjugant, even after being in a non-culturable state. In seawater microcosms containing Photobacterium damselae 04Ya311 possessing pAQU1, no significant loss of pAQU1 was observed during a 30-d starvation period. The copy numbers of pAQU1 and IncFIB in E. coli were constant. The results of the present study suggest that these plasmids have the ability to remain among various bacteria under oligotrophic conditions with low antibiotic selection pressure. PMID:26639579

  11. Supramolecular Cationic Assemblies against Multidrug-Resistant Microorganisms: Activity and Mechanism of Action

    PubMed Central

    de Melo Carrasco, Letícia Dias; Sampaio, Jorge Luiz Mello; Carmona-Ribeiro, Ana Maria

    2015-01-01

    The growing challenge of antimicrobial resistance to antibiotics requires novel synthetic drugs or new formulations for old drugs. Here, cationic nanostructured particles (NPs) self-assembled from cationic bilayer fragments and polyelectrolytes are tested against four multidrug-resistant (MDR) strains of clinical importance. The non-hemolytic poly(diallyldimethylammonium) chloride (PDDA) polymer as the outer NP layer shows a remarkable activity against these organisms. The mechanism of cell death involves bacterial membrane lysis as determined from the leakage of inner phosphorylated compounds and possibly disassembly of the NP with the appearance of multilayered fibers made of the NP components and the biopolymers withdrawn from the cell wall. The NPs display broad-spectrum activity against MDR microorganisms, including Gram-negative and Gram-positive bacteria and yeast. PMID:25809608

  12. Successful Management of Multidrug-Resistant Pseudomonas aeruginosa Pneumonia after Kidney Transplantation in a Dog

    PubMed Central

    PARK, Kyung-Mee; NAM, Hyun-Suk; WOO, Heung-Myong

    2013-01-01

    ABSTRACT An 8-year-old male mongrel dog that had undergone renal transplantation was presented 25 days later with an acute cough, anorexia and exercise intolerance. During the investigation, neutrophilic leukocytosis was noted, and thoracic radiographs revealed caudal lung lobe infiltration. While being treated with two broad-spectrum antibiotics, clinical signs worsened. Pneumonia due to infection with multidrug-resistant (MDR) Pseudomonas (P.) aeruginosa, sensitive only to imipenem and amikacin, was confirmed by bacteria isolation. After treatment with imipenem-cilastatin without reducing the immunosuppressant dose, clinical signs completely resolved. During the 2-year follow-up period, no recurrence was observed. To the best of authors’ knowledge, this is the first report of pneumonia caused by MDR P. aeruginosa in a renal recipient dog and successful management of this disease. PMID:23842146

  13. Antimicrobial activity of some essential oils against oral multidrug-resistant Enterococcus faecalis in both planktonic and biofilm state

    PubMed Central

    Benbelaïd, Fethi; Khadir, Abdelmounaïm; Abdoune, Mohamed Amine; Bendahou, Mourad; Muselli, Alain; Costa, Jean

    2014-01-01

    Objective To evaluate some essential oils in treatment of intractable oral infections, principally caused by biofilm of multidrug-resistant Enterococcus faecalis (E. faecalis), such as persistent endodontic infections in which their treatment exhibits a real challenge for dentists. Methods Ten chemically analyzed essential oils by gas chromatography-mass spectrometry were evaluated for antimicrobial activity against sensitive and resistant clinical strains of E. faecalis in both planktonic and biofilm state using two methods, disk diffusion and broth micro-dilution. Results Studied essential oils showed a good antimicrobial activity and high ability in E. faecalis biofilm eradication, whether for sensitive or multidrug-resistant strains, especially those of Origanum glandulosum and Thymbra capitata with interesting minimum inhibitory concentration, biofilm inhibitory concentration, and biofilm eradication concentration values which doesn't exceed 0.063%, 0.75%, and 1.5%, respectively. Conclusions Findings of this study indicate that essential oils extracted from aromatic plants can be used in treatment of intractable oral infections, especially caused by biofilm of multidrug-resistant E. faecalis. PMID:25182948

  14. Clinical implications of the global multidrug-resistant tuberculosis epidemic.

    PubMed

    Kumar, Kartik; Abubakar, Ibrahim

    2015-12-01

    Multidrug-resistant tuberculosis (MDR TB) is a significant threat to global health estimated to account for nearly half a million new cases and over 200,000 deaths in 2013. The number of MDR TB cases in the UK has risen over the last 15 years, with ever more complex clinical cases and associated challenging public health and societal implications. In this review, we provide an overview of the epidemiology of MDR TB globally and in the UK, outline the clinical management of MDR TB and summarise recent advances in diagnostics and prospects for new treatment.

  15. Reversers of the multidrug resistance transporter P-glycoprotein.

    PubMed

    Stein, Wilfred D

    2002-05-01

    Multidrug resistance can arise from the presence of the membrane-bound pump, P-glycoprotein, in a tumor. Major efforts have been made to develop inhibitors of this pump, and a number of promising blockers have reached late stages of clinical trials. The kinetics of the inhibition of P-glycoprotein is complex, with binding sites that can interact synergistically. Reversers of increased affinity and specificity could, in principle, be developed on the basis of these synergies, and offer some promise in cancer therapeutics.

  16. Clonal distribution of multidrug-resistant Enterobacter cloacae.

    PubMed

    Girlich, Delphine; Poirel, Laurent; Nordmann, Patrice

    2015-04-01

    A multilocus sequence typing (MLST) scheme including 7 housekeeping genes was used to evaluate whether the current spread of multidrug-resistant Enterobacter cloacae isolates worldwide might be associated to specific successful clones. Fifty E. cloacae clinical isolates of worldwide origin, with various β-lactamase content, and recovered at different periods of time were studied. Forty-four sequence types were identified, highlighting a high clonal diversity with 3 main lineages. This study revealed that a precise identification of the isolates by sequencing of the chromosomal ampC gene of E. cloacae would provide a significant added value to improve the reliability of the MLST scheme.

  17. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Shrivastava, Richa; Upreti, R K; Jain, S R; Prasad, K N; Seth, P K; Chaturvedi, U C

    2004-06-01

    The present study was undertaken to investigate the spectrum of bacteria present in the River Gomti water before and after chlorination for drinking purposes. We observed that the strains of Pseudomonas aeruginosa that survived chlorination on three out of seven occasions were resistant to almost all the antibiotics tested. The chlorine-resistant bacteria had mucoid colonies and grew better at 24 degrees C. All attempts to isolate the plasmid responsible for chlorine resistance were unsuccessful. Laboratory experiments using different strains of the P. aeruginosa in distilled water showed that only the resistant strain survived chlorine treatment at a dose of < or =500 microg/L. Similar results were obtained when water collected from seven different sites on the River Gomti was treated with graded doses of chlorine. At the higher dose of chlorine, all the bacteria died in 30 min, whereas with lower doses all the bacteria survived. The present study underscores the importance of measuring water chlorine concentrations to assure they are sufficiently high to remove pathogenic bacteria from drinking water. To our knowledge, this is the first report in the literature of the selection of multidrug-resistant bacteria by suboptimal chlorine treatment of water.

  18. Chlorine Dioxide is a Better Disinfectant than Sodium Hypochlorite against Multi-Drug Resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii.

    PubMed

    Hinenoya, Atsushi; Awasthi, Sharda Prasad; Yasuda, Noritomo; Shima, Ayaka; Morino, Hirofumi; Koizumi, Tomoko; Fukuda, Toshiaki; Miura, Takanori; Shibata, Takashi; Yamasaki, Shinji

    2015-01-01

    In this study, we evaluated and compared the antibacterial activity of chlorine dioxide (ClO2) and sodium hypochlorite (NaClO) on various multidrug-resistant strains in the presence of bovine serum albumin and sheep erythrocytes to mimic the blood contamination that frequently occurs in the clinical setting. The 3 most important species that cause nosocomial infections, i.e., methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDRP), and multidrug-resistant Acinetobacter baumannii (MDRA), were evaluated, with three representative strains of each. At a 10-ppm concentration, ClO2 drastically reduced the number of bacteria of all MDRP and MDRA strains, and 2 out of 3 MRSA strains. However, 10 ppm of NaClO did not significantly kill any of the 9 strains tested in 60 seconds (s). In addition, 100 ppm of ClO2 completely killed all MRSA strains, whereas 100 ppm of NaClO failed to significantly lower the number of 2 MRSA strains and 1 MDRA strain. A time-course experiment demonstrated that, within 15 s, 100 ppm of ClO2, but not 100 ppm of NaClO, completely killed all tested strains. Taken together, these data suggest that ClO2 is more effective than NaClO against MRSA, MDRP, and MDRA, and 100 ppm is an effective concentration against these multidrug-resistant strains, which cause fatal nosocomial infections.

  19. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections

    PubMed Central

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N.

    2015-01-01

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections. PMID:26111644

  20. Multidrug resistance protein gene expression in Trichoplusia ni caterpillars.

    PubMed

    Simmons, Jason; D'Souza, Olivia; Rheault, Mark; Donly, Cam

    2013-02-01

    Many insect species exhibit pesticide-resistant phenotypes. One of the mechanisms capable of contributing to resistance is the overexpression of multidrug resistance (MDR) transporter proteins. Here we describe the cloning of three genes encoding MDR proteins from Trichoplusia ni: trnMDR1, trnMDR2 and trnMDR3. Real-time quantitative PCR (qPCR) detected trnMDR mRNA in the whole nervous system, midgut and Malpighian tubules of final instar T. ni caterpillars. To test whether these genes are upregulated in response to chemical challenge in this insect, qPCR was used to compare trnMDR mRNA levels in unchallenged insects with those of insects fed the synthetic pyrethroid, deltamethrin. Only limited increases were detected in a single gene, trnMDR2, which is the most weakly expressed of the three MDR genes, suggesting that increased multidrug resistance of this type is not a significant part of the response to deltamethrin exposure.

  1. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.

    PubMed

    Gullberg, Erik; Albrecht, Lisa M; Karlsson, Christoffer; Sandegren, Linus; Andersson, Dan I

    2014-10-07

    How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to

  2. Worldwide Endemicity of a Multidrug-Resistant Staphylococcus capitis Clone Involved in Neonatal Sepsis

    PubMed Central

    Martins-Simões, Patricia; Rasigade, Jean-Philippe; Picaud, Jean-Charles; Laurent, Frédéric

    2017-01-01

    A multidrug-resistant Staphylococcus capitis clone, NRCS-A, has been isolated from neonatal intensive care units in 17 countries throughout the world. S. capitis NRCS-A prevalence is high in some neonatal intensive care units in France. These data highlight the worldwide endemicity and epidemiologic relevance of this multidrug-resistant, coagulase-negative staphylococci clone. PMID:28221122

  3. Human Multidrug-Resistant Salmonella Newport Infections, Wisconsin, 2003–2005

    PubMed Central

    Archer, John R.; Sotir, Mark J.; Monson, Timothy A.; Kazmierczak, James J.

    2007-01-01

    We conducted a retrospective study of Salmonella Newport infections among Wisconsin residents during 2003–2005. Multidrug resistance prevalence was substantially greater in Wisconsin than elsewhere in the United States. Persons with multidrug-resistant infections were more likely than persons with susceptible infections to report exposure to cattle, farms, and unpasteurized milk. PMID:18217570

  4. Thio and Seleno Rhodamine Derivatives as Reversal Agents of Multidrug Resistance in Breast Cancer

    DTIC Science & Technology

    2005-09-01

    rhodamine-induced photosensitized inhibition of Pgp results in greater chemo- sensitivity and/or enhanced phototoxicity . The completed work demonstrates...that substituent effects among the various rhodamine analogues impact their phototoxicity towards either chemosensitive AUXB1 cells or multidrug...for the photosensitizers in the multidrug-resistant CRIR12 cells. 15. SUBJECT TERMS Photodynamic therapy , photosensitizers, multidrug resistance, P

  5. Undetected multidrug-resistant tuberculosis amplified by first-line therapy in mixed infection.

    PubMed

    Hingley-Wilson, Suzanne M; Casey, Rosalyn; Connell, David; Bremang, Samuel; Evans, Jason T; Hawkey, Peter M; Smith, Grace E; Jepson, Annette; Philip, Stuart; Kon, Onn Min; Lalvani, Ajit

    2013-07-01

    Infections with >1 Mycobacterium tuberculosis strain(s) are underrecognized. We show, in vitro and in vivo, how first-line treatment conferred a competitive growth advantage to amplify a multidrug-resistant M. tuberculosis strain in a patient with mixed infection. Diagnostic techniques that identify mixed tubercle bacilli populations are needed to curb the spread of multidrug resistance.

  6. Use of Spatial Information to Predict Multidrug Resistance in Tuberculosis Patients, Peru

    PubMed Central

    Lin, Hsien-Ho; Shin, Sonya S.; Contreras, Carmen; Asencios, Luis; Paciorek, Christopher J.

    2012-01-01

    To determine whether spatiotemporal information could help predict multidrug resistance at the time of tuberculosis diagnosis, we investigated tuberculosis patients who underwent drug susceptibility testing in Lima, Peru, during 2005–2007. We found that crude representation of spatial location at the level of the health center improved prediction of multidrug resistance. PMID:22516236

  7. Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin

    2015-01-01

    The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991

  8. Human ABCG2: structure, function, and its role in multidrug resistance

    PubMed Central

    Mo, Wei; Zhang, Jian-Ting

    2012-01-01

    Human ABCG2 is a member of the ATP-binding cassette (ABC) transporter superfamily and is known to contribute to multidrug resistance (MDR) in cancer chemotherapy. Among ABC transporters that are known to cause MDR, ABCG2 is particularly interesting for its potential role in protecting cancer stem cells and its complex oligomeric structure. Recent studies have also revealed that the biogenesis of ABCG2 could be modulated by small molecule compounds. These modulators, upon binding to ABCG2, accelerate the endocytosis and trafficking to lysosome for degradation and effectively reduce the half-life of ABCG2. Hence, targeting ABCG2 stability could be a new venue for therapeutic discovery to sensitize drug resistant human cancers. In this report, we review recent progress on understanding the structure, function, biogenesis, as well as physiological and pathophysiological functions of ABCG2. PMID:22509477

  9. Scale-up of multidrug-resistant tuberculosis laboratory services, Peru.

    PubMed

    Shin, Sonya S; Yagui, Martin; Ascencios, Luis; Yale, Gloria; Suarez, Carmen; Quispe, Neyda; Bonilla, Cesar; Blaya, Joaquin; Taylor, Allison; Contreras, Carmen; Cegielski, Peter

    2008-05-01

    Over the past 10 years, the Peruvian National Tuberculosis (TB) Program, the National Reference Laboratory (NRL), Socios en Salud, and US partners have worked to strengthen the national TB laboratory network to support treatment of multidrug-resistant TB. We review key lessons of this experience. The preparation phase involved establishing criteria for drug susceptibility testing (DST), selecting appropriate DST methods, projecting the quantity of DST and culture to ensure adequate supplies, creating biosafe laboratory facilities for DST, training laboratory personnel on methods, and validating DST methods at the NRL. Implementation involved training providers on DST indications, validating conventional and rapid first-line DST methods at district laboratories, and eliminating additional delays in specimen transport and result reporting. Monitoring included ongoing quality control and quality assurance procedures. Hurdles included logistics, coordinating with policy, competing interests, changing personnel, communications, and evaluation. Operational research guided laboratory scale-up and identified barriers to effective capacity building.

  10. Scale-up of Multidrug-Resistant Tuberculosis Laboratory Services, Peru

    PubMed Central

    Yagui, Martin; Ascencios, Luis; Yale, Gloria; Suarez, Carmen; Quispe, Neyda; Bonilla, Cesar; Blaya, Joaquin; Taylor, Allison; Contreras, Carmen; Cegielski, Peter

    2008-01-01

    Over the past 10 years, the Peruvian National Tuberculosis (TB) Program, the National Reference Laboratory (NRL), Socios en Salud, and US partners have worked to strengthen the national TB laboratory network to support treatment of multidrug-resistant TB. We review key lessons of this experience. The preparation phase involved establishing criteria for drug susceptibility testing (DST), selecting appropriate DST methods, projecting the quantity of DST and culture to ensure adequate supplies, creating biosafe laboratory facilities for DST, training laboratory personnel on methods, and validating DST methods at the NRL. Implementation involved training providers on DST indications, validating conventional and rapid first-line DST methods at district laboratories, and eliminating additional delays in specimen transport and result reporting. Monitoring included ongoing quality control and quality assurance procedures. Hurdles included logistics, coordinating with policy, competing interests, changing personnel, communications, and evaluation. Operational research guided laboratory scale-up and identified barriers to effective capacity building. PMID:18439349

  11. Effect of multidrug resistance 1/P-glycoprotein on the hypoxia-induced multidrug resistance of human laryngeal cancer cells.

    PubMed

    Li, Dawei; Zhou, Liang; Huang, Jiameng; Xiao, Xiyan

    2016-08-01

    In a previous study, it was demonstrated that hypoxia upregulated the multidrug resistance (MDR) of laryngeal cancer cells to chemotherapeutic drugs, with multidrug resistance 1 (MDR1)/P-glycoprotein (P-gp) expression also being upregulated. The present study aimed to investigate the role and mechanism of MDR1/P-gp on hypoxia-induced MDR in human laryngeal carcinoma cells. The sensitivity of laryngeal cancer cells to multiple drugs and cisplatin-induced apoptosis was determined by CCK-8 assay and Annexin-V/propidium iodide staining analysis, respectively. The accumulation of rhodamine 123 (Rh123) in the cells served as an estimate of drug accumulation and was evaluated by flow cytometry (FCM). MDR1/P-gp expression was inhibited using interference RNA, and the expression of the MDR1 gene was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. As a result, the sensitivity to multiple chemotherapeutic agents and the apoptosis rate of the hypoxic laryngeal carcinoma cells increased following a decrease in MDR1/P-gp expression (P<0.05). Additionally, FCM analysis of fluorescence intensity indicated that the downregulated expression of MDR1/P-gp markedly increased intracellular Rh123 accumulation (P<0.05). Such results suggest that MDR1/P-gp serves an important role in regulating hypoxia-induced MDR in human laryngeal carcinoma cells through a decrease in intracellular drug accumulation.

  12. Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii.

    PubMed

    Li, Shuai; Li, Haitao; Qi, Tianjie; Yan, Xixin; Wang, Boli; Guan, Jitao; Li, Yu

    2017-01-01

    Multidrug-resistant (MDR) Acinetobacter baumannii is an important bacterial pathogen commonly associated with hospital acquired infections. A. baumannii can remain viable and hence virulent in the environment for a long period of time due primarily to its ability to form biofilms. A total of 459 cases of MDR A. baumannii our hospital collected from March 2014 to March 2015 were examined in this study, and a representative isolate selected for high-throughput mRNA sequencing and comparison of gene expression profiles under the biofilm and exponential growth conditions. Our study found that the same bacteria indeed exhibited differential mRNA expression under different conditions. Compared to the rapidly growing bacteria, biofilm bacteria had 106 genes upregulated and 92 genes downregulated. Bioinformatics analyses suggested that many of these genes are involved in the formation and maintenance of biofilms, whose expression also depends on the environment and specific signaling pathways and transcription factors that are absent in the log phase bacteria. These differentially expressed mRNAs might contribute to A. baumannii's unique pathogenicity and ability to inflict chronic and recurrent infections.

  13. Evaluation of colistin susceptibility in multidrug-resistant clinical isolates from cystic fibrosis, France.

    PubMed

    Biswas, S; Dubus, J-C; Reynaud-Gaubert, M; Stremler, N; Rolain, J-M

    2013-11-01

    The emergence of multidrug-resistant (MDR) bacteria in cystic fibrosis (CF) patients has led to the use of colistin drug and the emergence of colistin-resistant Gram-negative bacteria. The aim of this study was to compare the disk diffusion and Etest methods for colistin susceptibility testing on MDR bacteria associated with CF from Marseille, France. Forty-nine MDR clinical isolates (27 Stenotrophomonas maltophilia, 22 Achromobacter xylosoxidans) were used in this study. Disk diffusion and Etest assays were used to assess the reliability of these two techniques. For S. maltophilia, 25 out of 27 isolates had low minimum inhibitory concentrations (MICs, 0.125-0.75 mg/L), whereas two isolates displayed high MICs (32 mg/L). Similarly, 19 out of 22 A. xylosoxidans isolates had low MICs (0.75-3.0 mg/L), whereas three isolates had high MICs (32-256 mg/L). The diameters of zone inhibition with a 50-μg colistin disk displayed a good correlation with the MICs obtained by the Etest. Susceptible and resistant strains were eventually separated using a disk diffusion assay at a cut-off of ≤ 12 mm for a 50-μg disk. Colistin displayed excellent activity against S. maltophilia and A. xylosoxidans and the disk diffusion assay could be confidently used to determine the susceptibility to colistin for MDR Gram-negative bacteria in the context of CF.

  14. Antibiotic Restriction Might Facilitate the Emergence of Multi-drug Resistance.

    PubMed

    Obolski, Uri; Stein, Gideon Y; Hadany, Lilach

    2015-06-01

    High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish overall resistance, and especially the occurrence of bacteria that are resistant to all antibiotics, certain drugs are deliberately scarcely used--mainly when other options are exhausted. We use a mathematical model to explore the efficiency of such antibiotic restrictions. We assume two commonly used drugs and one restricted drug. The model is examined for the mixing strategy of antibiotic prescription, in which one of the drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical center, Israel, is used to estimate realistic single and double antibiotic resistance frequencies in incoming patients. We find that broad usage of the hitherto restricted drug can reduce the number of incorrectly treated patients, and reduce the spread of bacteria resistant to both common antibiotics. Such double resistant infections are often eventually treated with the restricted drug, and therefore are prone to become resistant to all three antibiotics. Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-examining restriction of specific drugs, when multiple resistance to the relevant alternative drugs already exists.

  15. Activity of Gallium Meso- and Protoporphyrin IX against Biofilms of Multidrug-Resistant Acinetobacter baumannii Isolates

    PubMed Central

    Chang, David; Garcia, Rebecca A.; Akers, Kevin S.; Mende, Katrin; Murray, Clinton K.; Wenke, Joseph C.; Sanchez, Carlos J.

    2016-01-01

    Acinetobacter baumannii is a challenging pathogen due to antimicrobial resistance and biofilm development. The role of iron in bacterial physiology has prompted the evaluation of iron-modulation as an antimicrobial strategy. The non-reducible iron analog gallium(III) nitrate, Ga(NO3)3, has been shown to inhibit A. baumannii planktonic growth; however, utilization of heme-iron by clinical isolates has been associated with development of tolerance. These observations prompted the evaluation of iron-heme sources on planktonic and biofilm growth, as well as antimicrobial activities of gallium meso- and protoporphyrin IX (Ga-MPIX and Ga-PPIX), metal heme derivatives against planktonic and biofilm bacteria of multidrug-resistant (MDR) clinical isolates of A. baumannii in vitro. Ga(NO3)3 was moderately effective at reducing planktonic bacteria (64 to 128 µM) with little activity against biofilms (≥512 µM). In contrast, Ga-MPIX and Ga-PPIX were highly active against planktonic bacteria (0.25 to 8 µM). Cytotoxic effects in human fibroblasts were observed following exposure to concentrations exceeding 128 µM of Ga-MPIX and Ga-PPIX. We observed that the gallium metal heme conjugates were more active against planktonic and biofilm bacteria, possibly due to utilization of heme-iron as demonstrated by the enhanced effects on bacterial growth and biofilm formation. PMID:26999163

  16. Combination therapy with polymyxin B and netropsin against clinical isolates of multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Chung, Joon-hui; Bhat, Abhayprasad; Kim, Chang-Jin; Yong, Dongeun; Ryu, Choong-Min

    2016-01-01

    Polymyxins are last-resort antibiotics for treating infections of Gram-negative bacteria. The recent emergence of polymyxin-resistant bacteria, however, urgently demands clinical optimisation of polymyxin use to minimise further evolution of resistance. In this study we developed a novel combination therapy using minimal concentrations of polymyxin B. After large-scale screening of Streptomyces secondary metabolites, we identified a reliable polymixin synergist and confirmed as netropsin using high-pressure liquid chromatography, nuclear magnetic resonance, and mass spectrometry followed by in vitro assays using various Gram-negative pathogenic bacteria. To evaluate the effectiveness of combining polymixin B and netropsin in vivo, we performed survival analysis on greater wax moth Galleria mellonella infected with colistin-resistant clinical Acinetobacter baumannii isolates as well as Escherichia coli, Shigella flexineri, Salmonella typhimuruim, and Pseudomonas aeruginosa. The survival of infected G. mellonella was significantly higher when treated with polymyxin B and netropsin in combination than when treated with polymyxin B or netropsin alone. We propose a netropsin combination therapy that minimises the use of polymyxin B when treating infections with multidrug resistant Gram-negative bacteria. PMID:27306928

  17. Arbekacin: another novel agent for treating infections due to methicillin-resistant Staphylococcus aureus and multidrug-resistant Gram-negative pathogens

    PubMed Central

    Matsumoto, Tetsuya

    2014-01-01

    Arbekacin sulfate (ABK), an aminoglycoside antibiotic, was discovered in 1972 and was derived from dibekacin to stabilize many common aminoglycoside modifying enzymes. ABK shows broad antimicrobial activities against not only Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) but also Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. ABK has been approved as an injectable formulation in Japan since 1990, under the trade name Habekacin, for the treatment of patients with pneumonia and sepsis caused by MRSA. The drug has been used in more than 250,000 patients, and its clinical benefit and safety have been proven over two decades. ABK currently shows promise for the application for the treatment of multidrug-resistant Gram-negative bacterial infections such as multidrug-resistant strains of P. aeruginosa and Acinetobacter baumannii because of its synergistic effect in combination with beta-lactams. PMID:25298740

  18. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    PubMed Central

    Blair, Jessica M. A.

    2016-01-01

    ABSTRACT Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  19. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress

    PubMed Central

    Dong, Xiaowei; Mumper, Russell J

    2010-01-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. P-glycoprotein is an important and the best-known membrane transporter involved in MDR. Several strategies have been used to address MDR, especially P-glycoprotein-mediated drug resistance in tumors. However, clinical success has been limited, largely due to issues regarding lack of efficacy and/or safety. Nanoparticles have shown the ability to target tumors based on their unique physical and biological properties. To date, nanoparticles have been investigated primarily to address P-glycoprotein and the observed improved anticancer efficacy suggests that nanomedicinal strategies provide a new opportunity to overcome MDR. This article focuses on nanotechnology-based formulations and current nanomedicine approaches to address MDR in tumors and discusses the proposed mechanisms of action. PMID:20528455

  20. Cell biological mechanisms of multidrug resistance in tumors.

    PubMed Central

    Simon, S M; Schindler, M

    1994-01-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleiotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs. PMID:7909602

  1. [ABC transporter proteins in multidrug resistance of microorganisms].

    PubMed

    Balková, K; Gbelská, Y

    2007-08-01

    The ABC (ATP binding cassette) transporter family includes membrane proteins that can transport a wide variety of substrates across biological membranes. These proteins play an essential role in the protection of cells from toxic compounds/metabolites. Their overexpression which leads to the development of multidrug resistance (MDR) in pathogens and enables cancer cells to survive chemotherapy is of major concern for human health. Mutations in ABC transporters are implicated in a number of Mendelian disorders such as cystic fibrosis, adrenoleukodystrophy and cholesterol and bile transport defects. In microbial cells, several homologues of human ABC transporters were identified. Their further molecular biological study can contribute to better understanding and treatment of MDR or diseases caused by dysfunction of ABC transporter proteins. A review is presented of the state of the art in ABC transporter proteins in both prokaryotic and eucaryotic cells. The role of microbial ABC transporters in the development of drug resistance is analyzed.

  2. [Multidrug-resistant tuberculosis. Epidemiology, treatment, prevention and diagnostic research].

    PubMed

    Perronne, C; de Truchis, P

    1995-01-01

    The recent augmentation of the prevalence of multidrug resistant (MDR) tuberculosis is related to the high incidence of tuberculosis in HIV infected people, especially in those with low social status and no medical care; several nosocomial epidemics of MDR tuberculosis were observed in American and European institutions where HIV-infected persons were hospitalized; these MDR tuberculosis were associated with a high mortality-rate and frequent nosocomial transmission to immunocompromised contacts and care workers. The rapid institution of an adequate treatment with ancient antituberculosis agents (cycloserin, capreomycin, aminoglycosides) and/or new drugs (rifabutine, ofloxacin, sparfloxacin, etc) is necessary to avoid mortality and to diminish transmission. Prevention of MDR tuberculosis transmission is very important: patient isolation, adequate and prolonged therapy, better detection of resistance with gene-amplification methods (PCR) which are under investigation.

  3. Lacidipine and josamycin: two new multidrug resistance modulators.

    PubMed

    Crosta, L; Candiloro, V; Meli, M; Tolomeo, M; Rausa, L; Dusonchet, L

    1994-01-01

    In this paper we report the results obtained treating a multidrug resistant (MDR) murine erythroleukemia cell line with daunomycin (DNM) in association with two new modulators characterized by a favourable therapeutic index, lacidipine (LCD), a dihydropyridine calcium antagonist, and josamycin (JSM), a macrolide antibiotic. LCD and JSM exhibited a greater MDR reversal activity than verapamil (VRP) and erythromycin (ERY) respectively. The accumulation of DNM in the DRTL cells exposed to modulators was similar to that of the parental cell line FLC. In the case of LCD, it was possible to ascertain that at a very low concentration this molecule can circumvent MDR without modifying DNM accumulation, suggesting that multiple different determinants may be responsible for MDR other than P-170 in this cell line.

  4. Clusters of Multidrug-Resistant Mycobacterium tuberculosis Cases, Europe

    PubMed Central

    Kremer, Kristin; Heersma, Herre; Van Soolingen, Dick

    2009-01-01

    Molecular surveillance of multidrug-resistant tuberculosis (MDR TB) was implemented in Europe as case reporting in 2005. For all new MDR TB cases detected from January 2003 through June 2007, countries reported case-based epidemiologic data and DNA fingerprint patterns of MDR TB strains when available. International clusters were detected and analyzed. From 2003 through mid-2007 in Europe, 2,494 cases of MDR TB were reported from 24 European countries. Epidemiologic and molecular data were linked for 593 (39%) cases, and 672 insertion sequence 6110 DNA fingerprint patterns were reported from 19 countries. Of these patterns, 288 (43%) belonged to 18 European clusters; 7 clusters (242/288 cases, 84%) were characterized by strains of the Beijing genotype family, including the largest cluster (175/288 cases, 61%). Both clustering and the Beijing genotype were associated with strains originating in eastern European countries. Molecular cluster detection contributes to identification of transmission profile, risk factors, and control measures. PMID:19624920

  5. Nanodrug delivery in reversing multidrug resistance in cancer cells

    PubMed Central

    Kapse-Mistry, Sonali; Govender, Thirumala; Srivastava, Rohit; Yergeri, Mayur

    2014-01-01

    Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance (MDR) which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp), multidrug resistance-associated proteins (MRP1, MRP2), and breast cancer resistance protein (BCRP). Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective, and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells, or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses, and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading, or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1α gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-κB. “Theragnostics” combining a cytotoxic agent, targeting moiety, chemosensitizing agent, and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  6. Evaluation of Aromatic Plants and Compounds Used to Fight Multidrug Resistant Infections

    PubMed Central

    Perumal Samy, Ramar; Manikandan, Jayapal; Al Qahtani, Mohammed

    2013-01-01

    Traditional medicine plays a vital role for primary health care in India, where it is widely practiced to treat various ailments. Among those obtained from the healers, 78 medicinal plants were scientifically evaluated for antibacterial activity. Methanol extract of plants (100 μg of residue) was tested against the multidrug resistant (MDR) Gram-negative and Gram-positive bacteria. Forty-seven plants showed strong activity against Burkholderia pseudomallei (strain TES and KHW) and Staphylococcus aureus, of which Tragia involucrata L., Citrus acida Roxb. Hook.f., and Aegle marmelos (L.) Correa ex Roxb. showed powerful inhibition of bacteria. Eighteen plants displayed only a moderate effect, while six plants failed to provide any evidence of inhibition against the tested bacteria. Purified compounds showed higher antimicrobial activity than crude extracts. The compounds showed less toxic effect to the human skin fibroblasts (HEPK) cells than their corresponding aromatic fractions. Phytochemical screening indicates that the presence of various secondary metabolites may be responsible for this activity. Most of the plant extracts contained high levels of phenolic or polyphenolic compounds and exhibited activity against MDR pathogens. In conclusion, plants are promising agents that deserve further exploration. Lead molecules available from such extracts may serve as potential antimicrobial agents for future drug development to combat diseases caused by the MDR bacterial strains as reported in this study. PMID:24223059

  7. Multidrug-resistant organisms in refugees: prevalences and impact on infection control in hospitals

    PubMed Central

    Heudorf, Ursel; Albert-Braun, Sabine; Hunfeld, Klaus-Peter; Birne, Franz-Ulrich; Schulze, Jörg; Strobel, Klaus; Petscheleit, Knut; Kempf, Volkhard A. J.; Brandt, Christian

    2016-01-01

    Introduction: The refugee crisis is a great challenge to the social and healthcare system in European countries, especially in Germany. An abundance of data has been published on the refugees’ health problems (infections as well as physical diseases and psychiatric problems) and their prevention (i.e., sanitary and vaccination programs). However, data on prevalences of multidrug-resistant organisms (MDRO) in refugees are scarce, although it is known that most refugees are from or travelled through countries with high prevalences of MDRO. This paper presents current data on MDRO colonization of refugees admitted to hospitals, and the impact of screening upon admission and infection control in hospitals is discussed. Methods: Anonymous data obtained by screening upon hospital admission were reported by hospitals in the Rhine-Main region of Germany to the local public health department. Screening and microbiological analyses were performed from December 2015 to March 2016 according to standardized and validated methods. Results: 9.8% of the refugees screened (32/325) exhibited colonization with methicillin-resistant Staphylococcus aureus (MRSA), and 23.3% of the refugees (67/290) were colonized with Gram-negative bacteria with extended spectrum beta-lactamases, and/or enterobacteria with resistance against 3 or 4 groups of antibacterials, so-called 3MRGN (multidrug-resistant Gram-negative bacteria with resistance against penicillins, cephalosporins and quinolones) and 4MRGN (with additional resistance against carbapenems). Carbapenem-resistant Gram-negative bacteria (CRGN) were detected in 2.1% (6/290) of the refugees. Conclusion: The data confirms the studies published between 2014 and 2016, encompassing refugees tested in Germany, the Netherlands and Israel, with prevalences of MRSA and CRGN up to 13.5% and 5.6%. The MDRO prevalences are higher than those of “risk groups” for MRSA, such as hemodialysis patients and patients depending on outpatient home

  8. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain

    NASA Astrophysics Data System (ADS)

    Formosa, C.; Grare, M.; Jauvert, E.; Coutable, A.; Regnouf-de-Vains, J. B.; Mourer, M.; Duval, R. E.; Dague, E.

    2012-08-01

    Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results on artificial phospholipidic membranes and on the resistant strain.

  9. Susceptibility of Multidrug-Resistant Gram-Negative Urine Isolates to Oral Antibiotics

    PubMed Central

    Zucchi, Paola C.; Chen, Alice; Raux, Brian R.; Kirby, James E.; McCoy, Christopher; Eliopoulos, George M.

    2016-01-01

    Increasing resistance among Gram-negative uropathogens limits treatment options, and susceptibility data for multidrug-resistant isolates are limited. We assessed the activity of five oral agents against 91 multidrug-resistant Gram-negative urine isolates that were collected from emergency department/hospitalized patients. Fosfomycin and nitrofurantoin were most active (>75% susceptibility). Susceptibilities to sulfamethoxazole-trimethoprim, ciprofloxacin, and ampicillin were ≤40%; empirical use of these agents likely provides inadequate coverage in areas with a high prevalence of multidrug-resistant uropathogens. PMID:26883704

  10. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  11. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris.

    PubMed

    Shobrak, Mohammed Y; Abo-Amer, Aly E

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  12. Relationships between the Regulatory Systems of Quorum Sensing and Multidrug Resistance

    PubMed Central

    Xu, Gang-Ming

    2016-01-01

    Cell–cell communications, known as quorum sensing (QS) in bacteria, involve the signal molecules as chemical languages and the corresponding receptors as transcriptional regulators. In Gram-negative bacteria, orphan LuxR receptors recognize signals more than just acylhomoserine lactones, and modulate interspecies and interkingdom communications. Whereas, in the Gram-positive Streptomyces, pseudo gamma-butyrolactones (GBLs) receptors bind antibiotics other than GBL signals, and coordinate antibiotics biosynthesis. By interacting with structurally diverse molecules like antibiotics, the TetR family receptors regulate multidrug resistance (MDR) by controlling efflux pumps. Antibiotics at subinhibitory concentration may act as signal molecules; while QS signals also have antimicrobial activity at high concentration. Moreover, the QS and MDR systems may share the same exporters to transport molecules. Among these orphan LuxR, pseudo GBL receptors, and MDR regulators, although only with low sequence homology, they have some structure similarity and function correlation. Therefore, perhaps there might be evolutionary relationship and biological relevance between the regulatory systems of QS and MDR. Since the QS systems become new targets for antimicrobial strategy, it would expand our understanding about the evolutionary history of these regulatory systems. PMID:27379084

  13. Multidrug-resistant Enterobacteriaceae from indoor air of an urban wastewater treatment plant.

    PubMed

    Teixeira, Juliana V; Cecílio, Pedro; Gonçalves, Daniela; Vilar, Vítor J P; Pinto, Eugénia; Ferreira, Helena N

    2016-07-01

    Wastewater treatment plants (WWTPs) have been recognized as sources of bioaerosols that may act as vehicles for dissemination of pathogens and multidrug-resistant (MDR) bacteria. The occurrence of MDR Enterobacteriaceae in indoor air of an urban WWTP was investigated. A possible airborne contamination with extended-spectrum beta-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae was also explored. Fourteen of 39 Enterobacteriaceae isolates were MDR. These isolates were found at all sampling sites, mainly at the secondary sedimentation settings. The highest levels of resistance were detected in three different species: Enterobacter cloacae, Escherichia coli, and Citrobacter freundii. Furthermore, one of the airborne E. coli isolates was phenotypically characterized as an ESBL producer. Additionally, five isolates showed non-susceptibility to at least one carbapenem tested. The presence of genes encoding relevant beta-lactamase types in these ESBL-producing and carbapenem-resistant Enterobacteriaceae isolates was investigated by PCR. Results showed amplification for bla CTX-M and bla OXA. These findings are relevant both in terms of occupational/public health and of environmental dissemination of MDR bacteria.

  14. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia

    PubMed Central

    Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections. PMID:27340653

  15. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia.

    PubMed

    Moges, Feleke; Eshetie, Setegn; Endris, Mengistu; Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections.

  16. Current review of antimicrobial treatment of nosocomial pneumonia caused by multidrug-resistant pathogens.

    PubMed

    Jean, Shio-Shin; Hsueh, Po-Ren

    2011-10-01

    Nosocomial pneumonia (including ventilator-associated pneumonia; VAP), a consistently difficult-to-treat entity, is frequently caused by multidrug-resistant (MDR) or pandrug-resistant (PDR) bacteria. Given the high mortality rates caused by drug-resistant bacteria and the difficulty of developing new potent antibiotics to target the problematic pathogens, combination regimens are under ardent evaluation as new strategies to overcome increasing drug resistance. Adjustment of the administration method of certain β-lactams (meropenem, or imipenem/cilastatin), or combination of tigecycline with some agents, may show promise with regard to successful management of MDR or PDR Acinetobacter baumannii pneumonia. Additionally, vancomycin plus rifampicin is an effective regimen against nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) responding poorly to vancomycin monotherapy. The clinical appropriateness of parenteral colistin against pneumonia caused by MDR A. baumannii has been established in a clinical trial. Facing the decline of clinical vancomycin efficacy after initial use, linezolid might be the drug of choice with regard to the treatment of MRSA-VAP. The role of tigecycline monotherapy for the management of nosocomial pneumonia caused by MRSA and extended-spectrum β-lactamase-producing Enterobacteriaceae needs to be cautiously evaluated.

  17. Exogenous l-Valine Promotes Phagocytosis to Kill Multidrug-Resistant Bacterial Pathogens

    PubMed Central

    Chen, Xin-hai; Liu, Shi-rao; Peng, Bo; Li, Dan; Cheng, Zhi-xue; Zhu, Jia-xin; Zhang, Song; Peng, Yu-ming; Li, Hui; Zhang, Tian-tuo; Peng, Xuan-xian

    2017-01-01

    The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics. To explore metabolite candidates, we applied a metabolomics approach to investigate the metabolic profiles of mice after Klebsiella pneumoniae infection. Compared with the mice that died from K. pneumoniae infection, mice that survived the infection displayed elevated levels of l-valine. Our analysis showed that l-valine increased macrophage phagocytosis, thereby reducing the load of pathogens; this effect was not only limited to K. pneumoniae but also included Escherichia coli clinical isolates in infected tissues. Two mechanisms are involved in this process: l-valine activating the PI3K/Akt1 pathway and promoting NO production through the inhibition of arginase activity. The NO precursor l-arginine is necessary for l-valine-stimulated macrophage phagocytosis. The valine-arginine combination therapy effectively killed K. pneumoniae and exerted similar effects in other Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our study extends the role of metabolism in innate immunity and develops the possibility of employing the metabolic modulator-mediated innate immunity as a therapy for bacterial infections. PMID:28321214

  18. Audiological Evaluation of Patients Taking Kanamycin for Multidrug Resistant Tuberculosis

    PubMed Central

    Sharma, Vishal; Bhagat, Sanjeev; Verma, Bhimsain; Singh, Ravinder; Singh, Surinderpal

    2016-01-01

    Introduction: The incidence of multidrug resistant tuberculosis is increasing in developing countries. Aminoglycosides are an integral part of second-line drugs, however ototoxicity is a major limitation for their use. This study aims to determine the extent of hearing loss in patients taking one of the commonly prescribed drugs for Multidrug resistant tuberculosis (MDR-TB), Kanamycin, at a Government Medical College, Patiala, Punjab, India, which is a 1200 bed tertiary care hospital. Materials and Methods: A total of 100 patients (68 males and 32 females) with confirmed diagnosis of MDR-TB were included in this study conducted between January 2012 and February 2014. Subjects were between 15 to 60 years of age, with a mean age of 37.46 ± 10.1. Pure tone audiometry (PTA) was performed before the start of the therapy, as a baseline, and was repeated after 1 week and 6 weeks of Kanamycin use to assess hearing loss as an effect of therapy. Results: Of the 100 patients examined, ototoxicity was found in 18 subjects post therapy. Incidence of high frequency hearing loss was 2% at week 1, and 12% after 6 weeks of follow up. However, 4% of the cases developed flat loss at week 6. The hearing loss was bilateral in 13 patients and unilateral in 5 patients. Ototoxicity was more common in males (66.67%) compared to females (33.3%). Maximum cases were found in the age group of 36 to 45 years (36.8%), the majority being from a rural background (83.3%). The association with socioeconomic status (P=0.024) and co-morbid conditions like diabetes and hypertension (P=0.001) reached statistical significance. Conclusion: Lack of specific guidelines to monitor patients taking aminoglycosides makes ototoxicity a major adverse effect of their use in MDR-TB. More studies are mandated to study the risk factors associated with the development of ototoxicity and for the development of alternate drugs for the treatment of MDR-TB. PMID:27429949

  19. Antibacterial activities of Beilschmiedia obscura and six other Cameroonian medicinal plants against multi-drug resistant Gram-negative phenotypes

    PubMed Central

    2014-01-01

    Background The rapid spread of bacteria expressing multi-drug resistance propels the search for new antibacterial agents. The present study was designed to evaluate the antibacterial activities of the methanol extracts from Beilschmiedia obscura and six other Cameroonian plants against a panel of twenty nine Gram-negative bacteria including Multi-drug resistant (MDR) phenotypes. Methods The phytochemical investigations of the extracts were carried out according to the standard methods and the liquid micro-dilution assay was used for all antibacterial assays. Results Phytochemical analysis showed the presence of alkaloids in all studied extracts. Other chemical classes of secondary metabolites such as anthocyanines, anthraquinones flavonoids, saponins, tannins, sterols and triterpenes were selectively detected in the extracts. The extract from the fruits of Beilschmiedia obscura, Pachypodanthium staudtii leaves and Peperomia fernandopoiana (whole plant) displayed the best spectrum of activity with MIC values ranging from 16 to 1024 μg/mL against at least 65% and above of the tested bacteria. The extract from Beilschmiedia obscura was the most active with MIC values below 100 μg/mL against ten of the tested bacteria. This extract also showed MBC values below 1024 μg/mL against 55.17% of the studied microorganisms. Phenylalanine arginine β-naphthylamide (PAβN) significantly modulated the activities of extracts from the leaves and fruits of Pachypodanthium staudtii and Beilschmiedia obscura respectively, by increasing their inhibitory activity against Klebsiella pneumoniae KP55 strain at least four fold. Conclusion The overall results of the present investigation provide information for the possible use of the methanol extracts of the studied plant species, especially B. obscura to fight infectious diseases caused by Gram-negative bacteria including MDR phenotypes. PMID:25023038

  20. Bactericidal Activity of Methanol Extracts of Crabapple Mangrove Tree (Sonneratia caseolaris Linn.) Against Multi-Drug Resistant Pathogens.

    PubMed

    Yompakdee, C; Thunyaharn, S; Phaechamud, T

    2012-05-01

    The crabapple mangrove tree, Sonneratia caseolaris Linn. (Family: Sonneratiaceae), is one of the foreshore plants found in estuarine and tidal creek areas and mangrove forests. Bark and fruit extracts from this plant have previously been shown to have an anti-oxidative or cytotoxic effect, whereas flower extracts of this plant exhibited an antimicrobial activity against some bacteria. According to the traditional folklore, it is medicinally used as an astringent and antiseptic. Hence, this investigation was carried out on the extract of the leaves, pneumatophore and different parts of the flower or fruit (stamen, calyx, meat of fruit, persistent calyx of fruit and seeds) for antibacterial activity using the broth microdilution method. The antibacterial activity was evaluated against five antibiotic-sensitive species (three Gram-positive and two Gram-negative bacteria) and six drug-resistant species (Gram-positive i.e. Methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium and Gram-negative i.e. Extended-spectrum beta-lactamase-Escherichia coli, multidrug-resistant-Pseudomonas aeruginosa and Acenetobacter baumannii). The methanol extracts from all tested parts of the crabapple mangrove tree exhibited antibacterial activity against both Gram-positive and Gram-negative bacteria, but was mainly a bactericidal against the Gram-negative bacteria, including the multidrug-resistant strains, when compared with only bacteriostatic on the Gram-positive bacteria. Using Soxhlet apparatus, the extracts obtained by sequential extraction with hexane, dichloromethane and ethyl acetate revealed no discernable antibacterial activity and only slightly, if at all, reduced the antibacterial activity of the subsequently obtained methanol extract. Therefore, the active antibacterial compounds of the crabapple mangrove tree should have a rather polar structure.

  1. Ontogeny, aging, and gender-related changes in hepatic multidrug resistant protein genes in rats.

    PubMed

    Zhu, Qiong-Ni; Hou, Wei-Yu; Xu, Shang-Fu; Lu, Yuan-Fu; Liu, Jie

    2017-02-01

    Multidrug resistance proteins (Mrps) are efflux transporters playing important roles in endogenous substances and xenobiotics transport out of the liver. Children, elderly, gender and physio-pathological conditions could influence their expression and result in changes in drug disposition.

  2. Sinomenine reverses multidrug resistance in bladder cancer cells via P-glycoprotein-dependent and independent manners.

    PubMed

    Chen, Yule; Zhang, Linlin; Lu, Xinlan; Wu, Kaijie; Zeng, Jin; Gao, Yang; Shi, Qi; Wang, Xinyang; Chang, Luke S; He, Dalin

    2014-01-01

    P-Glycoprotein-mediated multidrug resistance is a frequent event during chemotherapy and a key obstacle for bladder cancer therapy. Search for strategies to reverse multidrug resistance is a promising approach to improve the management of bladder cancer. In the present study, we reported a novel P-glycoprotein-mediated multidrug resistant cell model 253J/DOX, which was generated from human bladder cancer 253J cell line. Furthermore, we found that the multidrug resistant phenotype of 253J/DOX cells could be overcome by sinomenine, an alkaloid derived from the stem of Sinomenium acutum. Mechanistically, the chemosensitive effect by sinomenine was mediated by down-regulating P-glycoprotein expression, as well as triggering apoptotic pathways. The chemosensitive effect of sinomenine may make it a prime candidate agent to target bladder cancer.

  3. Dihydropyridines and multidrug resistance: previous attempts, present state, and future trends.

    PubMed

    Zarrin, Abdolhossein; Mehdipour, Ahmad R; Miri, Ramin

    2010-11-01

    Multidrug resistance is defined as the resistance of a tumor cell to the cytotoxic action of divergent drugs used in chemotherapy. Dihydropyridines are a class of calcium channel antagonists that were discovered to have a multidrug resistance reversing effect and prompted investigations resulting in the synthesis of hundreds of new derivatives. Most of the investigators tried to achieve two goals: a decrease in Ca²(+) channel-blocking activity and an increase in the multidrug resistance reversing effect. Most of the synthesized compounds failed in the later stages of studies especially in clinical trials because of pharmacokinetic or pharmacodynamic limitations. Therefore, it will be necessary to include new methods, such as combinatorial synthesis, and, more importantly, to apply computational methods based on global structure-activity relationship models that consider all problems. Moreover, some compounds should be synthesized that are effective on several multidrug resistance targets.

  4. Incidence of Multidrug-Resistant Pseudomonas Spp. in ICU Patients with Special Reference to ESBL, AMPC, MBL and Biofilm Production

    PubMed Central

    Gupta, Richa; Malik, Abida; Rizvi, Meher; Ahmed, S. Moied

    2016-01-01

    Background: Multidrug-resistant (MDR) Pseudomonas spp. have been reported to be the important cause of ICU infections. The appearance of ESBL, AmpC and MBL genes and their spread among bacterial pathogens is a matter of great concern. Biofilm production also attributes to antimicrobial resistance due to close cell to cell contact that permits bacteria to more effectively transfer plasmids to one another. This study aimed at determining the incidence of ESBL, AmpC, MBL and biofilm producing Pseudomonas spp. in ICU patients. Material and Methods: The clinical specimens were collected aseptically from 150 ICU patients from February 2012 to October 2013. Identification and antimicrobial susceptibility was performed according to Clinical and Laboratory Standards Institute (CLSI) guidelines. ESBLs and AmpC were detected phenotypically and genotypically. MBL was detected by modified Hodge and imipenem-EDTA double-disk synergy test. Results: Pseudomonas spp. 35(28%) were the most prevalent pathogen in ICU infections. Multidrug resistance and biofilm production was observed in 80.1% and 60.4% isolates, respectively. Prevalence of ESBL, AmpC and MBL was 22.9%, 42.8% and 14.4%, respectively. The average hospital stay was 25 days and was associated with 20% mortality. Conclusions: A regular surveillance is required to detect ESBL, AmpC and MBL producers especially in ICU patients. Carbapenems should be judiciously used to prevent their spread. The effective antibiotics, such as fluoroquinolones and piperacillin-tazobactum should be used after sensitivity testing. PMID:27013841

  5. Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance.

    PubMed

    Sarig, Hadar; Ohana, Dafna; Epand, Raquel F; Mor, Amram; Epand, Richard M

    2011-10-01

    The cationic antimicrobial oligo-acyl-lysyls (OAKs) interact with lipid mixtures mimicking the composition of bacterial cytoplasmic membranes. We have reported the ability of one such OAK, C(12)K-7α(8), to cluster anionic lipids and to promote a structural change with lipid bilayers to form rolled cylindrical structures or cochleates, without requiring divalent cations for their assembly. These assemblies can be exploited for drug delivery, permitting their synergistic use with antibiotics in systemic therapy to increase efficacy and reduce toxicity. Our previous studies of the biophysical properties of these systems led us to select mixtures with the goal of optimizing their potential for enhancing effectiveness in combating bacterial multidrug resistance. Here, we further investigate the properties of such mixtures that result in enhanced in vivo activity. The role of erythromycin in the assembly of cochleates with OAK in the gel and the liquid crystalline states were assessed, as well as the encapsulation efficiency of the systems chosen. In addition, we found that erythromycin did not undermine the ability of OAKs to induce fusion of vesicles, fusion being an essential component of cochleate formation. The in vivo activity of the new assemblies tested resulted in higher survival rates of animals infected with multidrug resistant bacteria.

  6. Outcomes of Multidrug-Resistant Tuberculosis among Binational Cases in El Paso, Texas

    PubMed Central

    Ferrer, Gustavo; Acuna-Villaorduna, Carlos; Escobedo, Miguel; Vlasich, Esteban; Rivera, Manuel

    2010-01-01

    In the United States, multidrug-resistant tuberculosis (MDR-TB) is more commonly seen among foreign-born patients. We report outcomes for 46 patients with MDR-TB who were born in Mexico and treated along the United States–Mexico border. According to our definition, 30 were cured, 3 showed treatment failure, 3 died, and 10 abandoned treatment. Multidrug-resistant tuberculosis can be successfully treated on an ambulatory basis. PMID:21036837

  7. Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections

    DTIC Science & Technology

    2014-10-01

    Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections PRINCIPAL INVESTIGATOR: Andrew M. Gulick, PhD...Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0218 5c... infections . Recently, community-acquired infections , infections in wounded U.S. service members, and infections in residents of long-term care facilities

  8. ▼Bedaquiline for multidrug-resistant tuberculosis.

    PubMed

    2014-11-01

    Resistance to drugs used to treat tuberculosis (TB) is a major public health problem that threatens progress made in TB management and control worldwide. It may result from improper use of antibiotics, including prescription of non-standard treatment regimens and poor adherence to drug therapy. Multidrug-resistant TB (MDR-TB) is defined as resistance to isoniazid and rifampicin, with or without resistance to other first-line drugs. Extensively drug-resistant TB (XDR-TB) refers to resistance to at least isoniazid and rifampicin, and to any fluoroquinolone, and to any of the three second-line injectables  (amikacin, capreomycin and kanamycin). In 2012, DTB discussed the investigation, management and treatment of patients with MDR- and XDR-TB. Earlier this year, ▼bedaquiline (Sirturo) and ▼delamanid (Deltyba) were authorised by the European Medicines Agency (EMA) under its 'conditional market authorisation' scheme for use as part of an appropriate combination regimen for pulmonary MDR-TB in adult patients "when an effective treatment regimen cannot otherwise be composed for reasons of resistance or tolerability." In this article, we review the evidence for bedaquiline in the management of MDR-TB.

  9. Endobronchial valve treatment of destructive multidrug-resistant tuberculosis

    PubMed Central

    Levin, A.; Felker, I.; Tceymach, E.; Krasnov, D.

    2016-01-01

    SUMMARY BACKGROUND: In accordance with the existing hypothesis, the application of an endobronchial valve (EbV) leads to selective curative atelectasis of the affected part of the lung, contributing to early closure of cavities. OBJECTIVE: To assess the effect of EbV treatment on the course of tuberculosis (TB). METHODS: We compared the efficacy of EbV treatment and complex second-line treatment in treating patients with destructive pulmonary multidrug-resistant TB (MDR-TB). Bacteriological conversion and closure of cavities were selected as criteria to assess the effectiveness of EbV application. A total of 102 patients with destructive MDR-TB were enrolled into the study and randomly divided into two groups: 49 patients had an EbV installed (intervention group) and 53 patients received complex second-line treatment (control group). Complex chemotherapy was administered to both groups throughout the study period. RESULTS: The cure rate in the short- and long-term follow-up periods in the intervention group was shown to be much higher, 95.9% by bacteriological conversion and 67.3% by cavity closure. On comparison with the control group, this was respectively 37.7% and 20.7% (P < 0.0001). CONCLUSIONS: The application of EbV treatment can significantly improve the effectiveness of second-line chemotherapy regimens in MDR-TB patients. PMID:27776598

  10. [Multidrug-resistant tuberculosis: challenges of a global emergence].

    PubMed

    Comolet, T

    2015-10-01

    Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected.

  11. Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray

    PubMed Central

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G.; Chandler, Darrell P.

    2014-01-01

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice. PMID:24796567

  12. Intracellular pH and the Control of Multidrug Resistance

    NASA Astrophysics Data System (ADS)

    Simon, Sanford; Roy, Deborshi; Schindler, Melvin

    1994-02-01

    Many anticancer drugs are classified as either weak bases or molecules whose binding to cellular structures is pH dependent. Accumulation of these drugs within tumor cells should be affected by transmembrane pH gradients. Indeed, development of multidrug resistance (MDR) in tumor cells has been correlated with an alkaline shift of cytosolic pH. To examine the role of pH in drug partitioning, the distribution of two drugs, doxorubicin and daunomycin, was monitored in fibroblasts and myeloma cells. In both cell types the drugs rapidly accumulated within the cells. The highest concentrations were measured in the most acidic compartments-e.g., lysosomes. Modifying the cellular pH in drug-sensitive cells to mimic reported shifts in MDR caused an immediate change in the cellular drug concentration. Drug accumulation was enhanced by acidic shifts and reversed by alkaline shifts. All of these effects were rapid and reversible. These results demonstrate that the alkaline shift observed in MDR is sufficient to prevent the accumulation of chemotherapeutic drugs independent of active drug efflux.

  13. Multidrug resistant citrobacter: an unusual cause of liver abscess.

    PubMed

    Kumar, Prabhat; Ghosh, Soumik; Rath, Deepak; Gadpayle, A K

    2013-04-22

    Liver abscesses are infectious, space occupying lesions in the liver, the two most common abscesses being pyogenic and amoebic. A pyogenic liver abscess (PLA) is a rare condition with a reported incidence of 20 per 100 000 hospital admissions in the western population. The right lobe of the liver is the most common site in both types of liver abscess. Clinical presentation is elusive with complaints of fever, right upper quadrant pain in the abdomen and hepatomegaly with or without jaundice. The aetiology of PLA has changed in the past few decades and may be of biliary, portal, arterial or traumatic origin, but many cases are still cryptogenic. The most common organisms causing PLA are Gram-negative aerobes, especially Escherichia coli and Klebsiella pneumoniae. Studies have shown a high degree of antimicrobial susceptibility of isolated organism resulting in an overall lower mortality in PLA. Here, we present a case of PLA caused by multidrug-resistant Citrobacter freundii, which is an unusual organism to be isolated.

  14. Intracellular pH and the control of multidrug resistance.

    PubMed Central

    Simon, S; Roy, D; Schindler, M

    1994-01-01

    Many anticancer drugs are classified as either weak bases or molecules whose binding to cellular structures is pH dependent. Accumulation of these drugs within tumor cells should be affected by transmembrane pH gradients. Indeed, development of multidrug resistance (MDR) in tumor cells has been correlated with an alkaline shift of cytosolic pH. To examine the role of pH in drug partitioning, the distribution of two drugs, doxorubicin and daunomycin, was monitored in fibroblasts and myeloma cells. In both cell types the drugs rapidly accumulated within the cells. The highest concentrations were measured in the most acidic compartments--e.g., lysosomes. Modifying the cellular pH in drug-sensitive cells to mimic reported shifts in MDR caused an immediate change in the cellular drug concentration. Drug accumulation was enhanced by acidic shifts and reversed by alkaline shifts. All of these effects were rapid and reversible. These results demonstrate that the alkaline shift observed in MDR is sufficient to prevent the accumulation of chemotherapeutic drugs independent of active drug efflux. Images PMID:8302842

  15. Vitamin E Reverses Multidrug Resistance In Vitro and In Vivo

    PubMed Central

    Tang, Jingling; Fu, Qiang; Wang, Yongjun; Racette, Kelly; Wang, Dun; Liu, Feng

    2013-01-01

    Multidrug resistance (MDR) is a major obstacle to successful and effective chemotherapeutic treatments of cancers. This study explored the reversal effects of vitamin E on MDR tumor cells in vitro and in vivo, elucidating the potential mechanism of this reversal. VE at a concentration of 50 μM exhibited a significant reversal of the MDR effect (compared to only PTX in DMSO, p < 0.05) in two human MDR cell lines (H460/taxR and KB-8-5). The MDR cell xenograft model was established to investigate the effect of VE on reversing MDR in vivo. Mice intravenously injected with Taxol (10 mg/kg) with VE (500 mg/kg, IP) showed an ability to overcome the MDR. VE and its derivatives can significantly increase intracellular accumulation of rhodamine 123 and doxorubicin (P-gp substrate), but not alter the levels of P-gp expression. These treatments also did not decrease the levels of intracellular ATP, but were still able to inhibit the verapamil-induced ATPase activity of P-gp. The new application of VE as an MDR sensitizer will be attractive due to the safety of this treatment. PMID:23624302

  16. Inorganic Nanocarriers Overcoming Multidrug Resistance for Cancer Theranostics

    PubMed Central

    Lin, Gan; Mi, Peng; Chu, Chengchao; Zhang, Jun

    2016-01-01

    Cancer multidrug resistance (MDR) could lead to therapeutic failure of chemotherapy and radiotherapy, and has become one of the main obstacles to successful cancer treatment. Some advanced drug delivery platforms, such as inorganic nanocarriers, demonstrate a high potential for cancer theranostic to overcome the cancer‐specific limitation of conventional low‐molecular‐weight anticancer agents and imaging probes. Specifically, it could achieve synergetic therapeutic effects, demonstrating stronger killing effects to MDR cancer cells by combining the inorganic nanocarriers with other treatment manners, such as RNA interference and thermal therapy. Moreover, the inorganic nanocarriers could provide imaging functions to help monitor treatment responses, e.g., drug resistance and therapeutic effects, as well as analyze the mechanism of MDR by molecular imaging modalities. In this review, the mechanisms involved in cancer MDR and recent advances of applying inorganic nanocarriers for MDR cancer imaging and therapy are summarized. The inorganic nanocarriers may circumvent cancer MDR for effective therapy and provide a way to track the therapeutic processes for real‐time molecular imaging, demonstrating high performance in studying the interaction of nanocarriers and MDR cancer cells/tissues in laboratory study and further shedding light on elaborate design of nanocarriers that could overcome MDR for clinical translation. PMID:27980988

  17. Targeting Protein Kinases to Reverse Multidrug Resistance in Sarcoma

    PubMed Central

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J.; Duan, Zhenfeng

    2015-01-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. PMID:26827688

  18. Emerging cephalosporin and multidrug-resistant gonorrhoea in Europe.

    PubMed

    Cole, M J; Spiteri, G; Chisholm, S A; Hoffmann, S; Ison, C A; Unemo, M; Van de Laar, M

    2014-11-13

    Neisseria gonorrhoeae has consistently developed resistance to antimicrobials used therapeutically for gonorrhoea and few antimicrobials remain for effective empiric first-line therapy. Since 2009 the European gonococcal antimicrobial surveillance programme (Euro-GASP) has been running as a sentinel surveillance system across Member States of the European Union (EU) and European Economic Area (EEA) to monitor antimicrobial susceptibility in N. gonorrhoeae. During 2011, N. gonorrhoeae isolates were collected from 21 participating countries, and 7.6% and 0.5% of the examined gonococcal isolates had in vitro resistance to cefixime and ceftriaxone, respectively. The rate of ciprofloxacin and azithromycin resistance was 48.7% and 5.3%, respectively. Two (0.1%) isolates displayed high-level resistance to azithromycin, i.e. a minimum inhibitory concentration (MIC) ≥256 mg/L. The current report further highlights the public health need to implement the European response plan, including further strengthening of Euro-GASP, to control and manage the threat of multidrug resistant N. gonorrhoeae.

  19. Demonstrating a multi-drug resistant Mycobacterium tuberculosis amplification microarray.

    PubMed

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G; Chandler, Darrell P

    2014-04-25

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.

  20. Starvation, detoxification, and multidrug resistance in cancer therapy

    PubMed Central

    Lee, Changhan; Raffaghello, Lizzia; Longo, Valter D.

    2013-01-01

    The selection of chemotherapy drugs is based on the cytotoxicity to specific tumor cell types and the relatively low toxicity to normal cells and tissues. However, the toxicity to normal cells poses a major clinical challenge, particularly when malignant cells have acquired resistance to chemotherapy. This drug resistance of cancer cells results from multiple factors including individual variation, genetic heterogeneity within a tumor, and cellular evolution. Much progress in the understanding of tumor cell resistance has been made in the past 35 years, owing to milestone discoveries such as the identification and characterization of ABC transporters. Nonetheless, the complexity of the genetic and epigenetic rewiring of cancer cells makes drug resistance an equally complex phenomenon that is difficult to overcome. In this review, we discuss how the remarkable changes in the levels of glucose, IGF-I, IGFBP-1 and in other proteins caused by fasting have the potential to improve the efficacy of chemotherapy against tumors by protecting normal cells and tissues and possibly by diminishing multidrug resistance in malignant cells. PMID:22391012

  1. What's new in multidrug-resistant pathogens in the ICU?

    PubMed

    Zilahi, Gabor; Artigas, Antonio; Martin-Loeches, Ignacio

    2016-12-01

    Over the last several decades, antibacterial drug use has become widespread with their misuse being an ever-increasing phenomenon. Consequently, antibacterial drugs have become less effective or even ineffective, resulting in a global health security emergency. The prevalence of multidrug-resistant organisms (MDROs) varies widely among regions and countries. The primary aim of antibiotic stewardship programs is to supervise the three most influential factors contributing to the development and transmission of MDROs, namely: (1) appropriate antibiotic prescribing; (2) early detection and prevention of cross-colonization of MDROs; and (3) elimination of reservoirs. In the future, it is expected that a number of countries will experience a rise in MDROs. These infections will be associated with a high consumption of healthcare resources manifested by a prolonged hospital stay and high mortality. As a counteractive strategy, minimization of broad-spectrum antibiotic use and prompt antibiotic administration will aid in reduction of antibiotic resistance. Innovative management approaches include development and implementation of rapid diagnostic tests that will help in both shortening the duration of therapy and allowing early targeted therapy. The institution of more accessible therapeutic drug monitoring will help to optimize drug administration and support a patient-specific approach. Areas where further research is required are investigation into the heterogeneity of critically ill patients and the need for new antibacterial drug development.

  2. Multiwavelength videomicrofluorometry for multiparametric investigations of multidrug resistance

    NASA Astrophysics Data System (ADS)

    Rocchi, Emmanuelle; Salmon, Jean-Marie; Vigo, Jean; Viallet, Pierre M.

    1996-05-01

    A major problem in the cancer chemotherapy is the development of resistance to a whole range of drugs not only similar to the drugs used for resistance induction but also to some functionally and structurally unrelated. It's one of the multifactorial causes of failure of chemotherapy. Thus it appears essential to evaluate the multi-drug resistance (MDR) in living cells populations to: detect the MDR phenotype, to discriminate between resistant and sensitive cells, to identify mechanisms which are involved in the induction or the reversion of resistance and to study the cytotoxic process. Such a challenge implies the use of multiparametric approach that has been possible using a protocol involving microfluorometry connected to numerical image analysis on single living cells. This protocol relays on the correlation existing between the decreased intracellular accumulation of some fluorescent probes such as Hoechst 33342 (Ho342) and Rhodamine 123 (R123) in resistant cells. The simultaneous estimation of the fluorescence intensities of these probes has required the use of a third probe, the Nile Red, for cell contour delineation. The analysis of parameters related to Ho342 and R123 allows the discrimination of sensitive and resistant cells. So the multiparametric approach using multi-wavelength image analysis, which appears to be a powerful technique, has allowed us to show on human lymphoblastoid CCRF-CEM cells lines that the cytotoxic effects could be different depending on the cell resistance or on the cytotoxic drug used: Adriamycine, Vinblastine and the different cell behavior could be used for cell differentiation.

  3. [Multidrug-resistant tuberculosis: epidemiology and risk factors].

    PubMed

    Smaoui Fourati, S; Mzid, H; Marouane, C; Kammoun, S; Messadi-Akrout, F

    2015-08-01

    Despite the availability of potent drugs and the availability of vaccine, tuberculosis remains until today one of the most worrying infectious diseases because of both its morbidity and mortality. This serious health problem is further complicated by the emergence of multidrug-resistant (MDR) or extensively drug-resistant strains (XDR). The number of MDR and XDR strains has continued to increase in recent years. Therefore, it is necessary to determine the risk factors leading to the emergence of MDR-TB strains to improve its overall management. Most studies indicate that the irregular previous treatment of tuberculosis with poor adherence is the main risk factor found. Other risk factors such as digestive issues, age, sex, and immunosuppression have been reported by several studies. In Tunisia, MDR-TB prevalence remains low with 0.8% among new cases and 12% among the restatements but control of this disease is necessary and remains essentially preventive. It is based on real preventive strategies planned according to local and updated regional data.

  4. Multidrug-resistant tuberculosis: epidemiology, risk factors and case finding.

    PubMed

    Caminero, J A

    2010-04-01

    Although the multidrug-resistant tuberculosis (MDR-TB) epidemic is a very recent problem, many studies have attempted to understand it. We now have good estimates of the current burden (approximately 500 000 MDR-TB cases worldwide), and following the introduction of potential MDR-TB control strategies projections of these figures are being estimated. The projected trends in tuberculosis (TB) and MDR-TB incidence vary. Risk factors for resistance can be divided into two categories: 1) those facilitating the selection of resistance in the community and 2) the specific conditions that appear to increase some patients' vulnerability to resistance. The epidemiological situation varies greatly across countries, principally due to poor treatment practices and poor implementation of control programmes in the past-and even today, to a lesser degree-and recent data have suggested that national TB programmes that use existing drugs efficiently can postpone and even reverse the MDR-TB epidemic. Other factors that have also contributed to this epidemic situation are analysed in this article. The recognition of factors leading to the epidemic in some regions and the identification of populations at risk will assist in focusing case-finding efforts. From an individual perspective, treatment failures with first-line rifampicin-containing regimens and contacts of MDR-TB cases have the highest rates of resistance. Patients previously treated for TB and the other risk factors analysed in this article should be prioritised in case finding.

  5. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-07-08

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.

  6. Common errors in multidrug-resistant tuberculosis management.

    PubMed

    Monedero, Ignacio; Caminero, Jose A

    2014-02-01

    Multidrug-resistant tuberculosis (MDR-TB), defined as being resistant to at least rifampicin and isoniazid, has an increasing burden and threatens TB control. Diagnosis is limited and usually delayed while treatment is long lasting, toxic and poorly effective. MDR-TB management in scarce-resource settings is demanding however it is feasible and extremely necessary. In these settings, cure rates do not usually exceed 60-70% and MDR-TB management is novel for many TB programs. In this challenging scenario, both clinical and programmatic errors are likely to occur. The majority of these errors may be prevented or alleviated with appropriate and timely training in addition to uninterrupted procurement of high-quality drugs, updated national guidelines and laws and an overall improvement in management capacities. While new tools for diagnosis and shorter and less toxic treatment are not available in developing countries, MDR-TB management will remain complex in scarce resource settings. Focusing special attention on the common errors in diagnosis, regimen design and especially treatment delivery may benefit patients and programs with current outdated tools. The present article is a compilation of typical errors repeatedly observed by the authors in a wide range of countries during technical assistant missions and trainings.

  7. Effects of mefloquine use on Plasmodium vivax multidrug resistance.

    PubMed

    Khim, Nimol; Andrianaranjaka, Voahangy; Popovici, Jean; Kim, Saorin; Ratsimbasoa, Arsene; Benedet, Christophe; Barnadas, Celine; Durand, Remy; Thellier, Marc; Legrand, Eric; Musset, Lise; Menegon, Michela; Severini, Carlo; Nour, Bakri Y M; Tichit, Magali; Bouchier, Christiane; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-10-01

    Numerous studies have indicated a strong association between amplification of the multidrug resistance-1 gene and in vivo and in vitro mefloquine resistance of Plasmodium falciparum. Although falciparum infection usually is not treated with mefloquine, incorrect diagnosis, high frequency of undetected mixed infections, or relapses of P. vivax infection triggered by P. falciparum infections expose non-P. falciparum parasites to mefloquine. To assess the consequences of such unintentional treatments on P. vivax, we studied variations in number of Pvmdr-1 (PlasmoDB accession no. PVX_080100, NCBI reference sequence NC_009915.1) copies worldwide in 607 samples collected in areas with different histories of mefloquine use from residents and from travelers returning to France. Number of Pvmdr-1 copies correlated with drug use history. Treatment against P. falciparum exerts substantial collateral pressure against sympatric P. vivax, jeopardizing future use of mefloquine against P. vivax. A drug policy is needed that takes into consideration all co-endemic species of malaria parasites.

  8. Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of Escherichia hermannii and Enterobacter cloacae

    PubMed Central

    Hernández, Alicia; Mellado, Rafael P.; Martínez, José L.

    1998-01-01

    Contaminated soils from an oil refinery were screened for the presence of microorganisms capable of accumulating either nickel, vanadium, or both metals. Three strains of bacteria that belonged to the family Enterobacteriaceae were selected. Two of them were Escherichia hermannii strains, and outer membrane profile (OMP) analysis showed that they were similar to a strain of clinical origin; the other one was an Enterobacter cloacae strain that differed from clinical isolates. The selected bacteria accumulated both nickel and vanadium. Growth in the presence of vanadium induced multidrug resistance phenotypes in E. hermannii and E. cloacae. Incubation with this metal changed the OMP profile of E. hermannii but did not produce variations in the expression of the major OMPs of E. cloacae. PMID:9797283

  9. Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells.

    PubMed

    Lavie, Y; Harel-Orbital, T; Gaffield, W; Liscovitch, M

    2001-01-01

    Intrinsic or acquired resistance of tumor cells to multiple cytotoxic drugs (multidrug resistance MDR) is a major cause of failure of cancer chemotherapy. MDR is often caused by elevated expression of drug transporters such as P-glycoprotein (P-gp) or multidrug resistance protein (MRP). A number of compounds, termed chemosensitizers, have little or no cytotoxic action of their own, but inhibit (P-gp) or MRP-mediated drug export and are capable of sensitizing MDR cells to the cytotoxic effects of chemotherapeutic drugs. Here we examined the ability of steroidal alkaloids of plant origin, namely the Veratrum sp. alkaloid cyclopamine and the Lycopersicon sp. alkaloid tomatidine, to act as potent and effective chemosensitizers in multidrug resistant tumor cells. Drug uptake was determined by measuring accumulation of tetramethylrosamine in multidrug resistant NCI AdrR human adenocarcinoma cells. Resistance to adriamycin and vinblastine was determined by utilizing the MTT cell survival assay. Cyclopamine and tomatidine elevate tetramethylrosamine uptake by NCI AdrR cells and sensitize the cells to the cytotoxic action of adriamycin and vinblastine. In both cases these agents are comparable in patency and efficacy to verapamil, a reversal agent commonly used in MDR research. It is concluded that steroidal alkaloids of plant origin act as inhibitors of P-gp-mediated drug transport and multidrug resistance and therefore may serve as chemosensitizers in combination chemotherapy with conventional cytotoxic drugs for treating multidrug resistant cancer.

  10. Role of uL3 in Multidrug Resistance in p53-Mutated Lung Cancer Cells

    PubMed Central

    Russo, Annapina; Saide, Assunta; Smaldone, Silvia; Faraonio, Raffaella; Russo, Giulia

    2017-01-01

    Cancer is one of the most common causes of death among adults. Chemotherapy is crucial in determining patient survival and quality of life. However, the development of multidrug resistance (MDR) continues to pose a significant challenge in the management of cancer. In this study, we analyzed the role of human ribosomal protein uL3 (formerly rpL3) in multidrug resistance. Our studies revealed that uL3 is a key determinant of multidrug resistance in p53-mutated lung cancer cells by controlling the cell redox status. We established and characterized a multidrug resistant Calu-6 cell line. We found that uL3 down-regulation correlates positively with multidrug resistance. Restoration of the uL3 protein level re-sensitized the resistant cells to the drug by regulating the reactive oxygen species (ROS) levels, glutathione content, glutamate release, and cystine uptake. Chromatin immunoprecipitation experiments and luciferase assays demonstrated that uL3 coordinated the expression of stress-response genes acting as transcriptional repressors of solute carrier family 7 member 11 (xCT) and glutathione S-transferase α1 (GST-α1), independently of Nuclear factor erythroid 2-related factor 2 (Nrf2). Altogether our results describe a new function of uL3 as a regulator of oxidative stress response genes and advance our understanding of the molecular mechanisms underlying multidrug resistance in cancers. PMID:28273808

  11. Multidrug-Resistant Organism Infections in Patients with Left Ventricular Assist Devices.

    PubMed

    Donahey, Elisabeth E; Polly, Derek M; Vega, J David; Lyon, Marshall; Butler, Javed; Nguyen, Duc; Pekarek, Ann; Wittersheim, Kristin; Kilgo, Patrick; Paciullo, Christopher A

    2015-12-01

    Left ventricular assist devices improve survival prospects in patients with end-stage heart failure; however, infection complicates up to 59% of implantation cases. How many of these infections are caused by multidrug-resistant organisms is unknown. We sought to identify the incidence, risk factors, and outcomes of multidrug-resistant organism infection in patients who have left ventricular assist devices. We retrospectively evaluated the incidence of multidrug-resistant organisms and the independent risk factors associated with them in 57 patients who had permanent left ventricular assist devices implanted at our institution from May 2007 through October 2011. Outcomes included death, transplantation, device explantation, number of subsequent hospital admissions, and number of subsequent admissions related to infection. Infections were categorized in accordance with criteria from the Infectious Diseases Council of the International Society for Heart and Lung Transplantation. Multidrug-resistant organism infections developed in 18 of 57 patients (31.6%)-a high incidence. We found 3 independent risk factors: therapeutic goal (destination therapy vs bridging), P=0.01; body mass index, P=0.04; and exposed velour at driveline exit sites, P=0.004. We found no significant differences in mortality, transplantation, or device explantation rates; however, there was a statistically significant increase in postimplantation hospital admissions in patients with multidrug-resistant organism infection. To our knowledge, this is the first report in the medical literature concerning multidrug-resistant organism infection in patients who have permanent left ventricular assist devices.

  12. Efflux pump gene hefA of Helicobacter pylori plays an important role in multidrug resistance

    PubMed Central

    Liu, Zhi-Qiang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2008-01-01

    AIM: To determine whether efflux systems contribute to multidrug resistance of H pylori. METHODS: A chloramphenicol-induced multidrug resistance model of six susceptible H pylori strains (5 isolates and H pylori NCTC11637) was developed. Multidrug-resistant (MDR) strains were selected and the minimal inhibitory concentration (MIC) of erythromycin, metronidazole, penicillin G, tetracycline, and ciprofloxacin in multidrug resistant strains and their parent strains was determined by agar dilution tests. The level of mRNA expression of hefA was assessed by fluorescence real-time quantitative PCR. A H pylori LZ1026 knockout mutant (ΔH pylori LZ1026) for (putative) efflux protein was constructed by inserting the kanamycin resistance cassette from pEGFP-N2 into hefA, and its susceptibility profiles to 10 antibiotics were evaluated. RESULTS: The MIC of six multidrug-resistant strains (including 5 clinical isolates and H pylori NCTC11637) increased significantly (≥ 4-fold) compared with their parent strains. The expression level of hefA gene was significantly higher in the MDR strains than in their parent strains (P = 0.033). A H pylori LZ1026 mutant was successfully constructed and the ΔH pylori LZ1026 was more susceptible to four of the 10 antibiotics. All the 20 strains displayed transcripts for hefA that confirmed the in vitro expression of these genes. CONCLUSION: The efflux pump gene hefA plays an important role in multidrug resistance of H pylori. PMID:18777600

  13. National Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a Single Poultry Company

    PubMed Central

    Gieraltowski, Laura; Higa, Jeffrey; Peralta, Vi; Green, Alice; Schwensohn, Colin; Rosen, Hilary; Libby, Tanya; Kissler, Bonnie; Marsden-Haug, Nicola; Booth, Hillary; Kimura, Akiko; Grass, Julian; Bicknese, Amelia; Tolar, Beth; Defibaugh-Chávez, Stephanie; Williams, Ian; Wise, Matthew

    2016-01-01

    Importance This large outbreak of foodborne salmonellosis demonstrated the complexity of investigating outbreaks linked to poultry products. The outbreak also highlighted the importance of efforts to strengthen food safety policies related to Salmonella in chicken parts and has implications for future changes within the poultry industry. Objective To investigate a large multistate outbreak of multidrug resistant Salmonella Heidelberg infections. Design Epidemiologic and laboratory investigations of patients infected with the outbreak strains of Salmonella Heidelberg and traceback of possible food exposures. Setting United States. Outbreak period was March 1, 2013 through July 11, 2014 Patients A case was defined as illness in a person infected with a laboratory-confirmed Salmonella Heidelberg with 1 of 7 outbreak pulsed-field gel electrophoresis (PFGE) XbaI patterns with illness onset from March 1, 2013 through July 11, 2014. A total of 634 case-patients were identified through passive surveillance; 200/528 (38%) were hospitalized, none died. Results Interviews were conducted with 435 case-patients: 371 (85%) reported eating any chicken in the 7 days before becoming ill. Of 273 case-patients interviewed with a focused questionnaire, 201 (74%) reported eating chicken prepared at home. Among case-patients with available brand information, 152 (87%) of 175 patients reported consuming Company A brand chicken. Antimicrobial susceptibility testing was completed on 69 clinical isolates collected from case-patients; 67% were drug resistant, including 24 isolates (35%) that were multidrug resistant. The source of Company A brand chicken consumed by case-patients was traced back to 3 California production establishments from which 6 of 7 outbreak strains were isolated. Conclusions Epidemiologic, laboratory, traceback, and environmental investigations conducted by local, state, and federal public health and regulatory officials indicated that consumption of Company A chicken

  14. Identifying More Epidemic Clones during a Hospital Outbreak of Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Domenech de Cellès, Matthieu; Salomon, Jérôme; Marinier, Anne; Lawrence, Christine; Gaillard, Jean-Louis; Herrmann, Jean-Louis; Guillemot, Didier

    2012-01-01

    Infections caused by multidrug-resistant bacteria are a major concern in hospitals. Current infection-control practices legitimately focus on hygiene and appropriate use of antibiotics. However, little is known about the intrinsic abilities of some bacterial strains to cause outbreaks. They can be measured at a population level by the pathogen’s transmission rate, i.e. the rate at which the pathogen is transmitted from colonized hosts to susceptible hosts, or its reproduction number, counting the number of secondary cases per infected/colonized host. We collected data covering a 20-month surveillance period for carriage of multidrug-resistant Acinetobacter baumannii (MDRAB) in a surgery ward. All isolates were subjected to molecular fingerprinting, and a cluster analysis of profiles was performed to identify clonal groups. We then applied stochastic transmission models to infer transmission rates of MDRAB and each MDRAB clone. Molecular fingerprinting indicated that 3 clonal complexes spread in the ward. A first model, not accounting for different clones, quantified the level of in-ward cross-transmission, with an estimated transmission rate of 0.03/day (95% credible interval [0.012–0.049]) and a single-admission reproduction number of 0.61 [0.30–1.02]. The second model, accounting for different clones, suggested an enhanced transmissibility of clone 3 (transmission rate 0.047/day [0.018–0.091], with a single-admission reproduction number of 0.81 [0.30–1.56]). Clones 1 and 2 had comparable transmission rates (respectively, 0.016 [0.001–0.045], 0.014 [0.001–0.045]). The method used is broadly applicable to other nosocomial pathogens, as long as surveillance data and genotyping information are available. Building on these results, more epidemic clones could be identified, and could lead to follow-up studies dissecting the functional basis for variation in transmissibility of MDRAB lineages. PMID:23029226

  15. Pathogens of Bovine Respiratory Disease in North American Feedlots Conferring Multidrug Resistance via Integrative Conjugative Elements

    PubMed Central

    Klima, Cassidy L.; Zaheer, Rahat; Cook, Shaun R.; Booker, Calvin W.; Hendrick, Steve

    2014-01-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD. PMID:24478472

  16. Genitourinary and pulmonary multidrug resistant Mycobacterium tuberculosis infection in an Asian elephant (Elephas maximus).

    PubMed

    Dumonceaux, Genevieve A; St Leger, Judy; Olsen, John H; Burton, Michael S; Ashkin, David; Maslow, Joel N

    2011-12-01

    A female Asian elephant (Elephas maximus) developed vaginal and trunk discharge. Cultures were positive for pan-susceptible Mycobacterium tuberculosis. Isoniazid and pyrazinamide were given rectally and monitored by serum levels. After being trained at 10 mo to accept oral dosing, treatment was changed and rifampin was added. Oral medications were administered for another 10 mo. A year after completion of therapy, the vaginal discharge increased and cultures yielded M. tuberculosis, resistant to isoniazid and rifampin. Treatment with oral ethambutol, pyrazinamide, and enrofloxacin and intramuscular amikacin was initiated. Although followup cultures became negative, adverse reactions to medications precluded treatment completion. Due to public health concerns related to multidrug resistant M. tuberculosis (MDR-TB), the elephant was euthanized. Postmortem smears from the lung, peribronchial, and abdominal lymph nodes yielded acid-fast bacteria, although cultures were negative. This case highlights important considerations in the treatment of M. tuberculosis in animals and the need for a consistent approach to diagnosis, treatment, and follow-up.

  17. Coarse-grained Simulations of Conformational Changes in Multidrug Resistance Transporters

    NASA Astrophysics Data System (ADS)

    Jewel, S. M. Yead; Dutta, Prashanta; Liu, Jin

    2016-11-01

    The overexpression of multidrug resistance (MDR) systems on the gram negative bacteria causes serious problems for treatment of bacterial infectious diseases. The system effectively pumps the antibiotic drugs out of the bacterial cells. During the pumping process one of the MDR components, AcrB undergoes a series of large-scale conformational changes which are responsible for drug recognition, binding and expelling. All-atom simulations are unable to capture those conformational changes because of computational cost. Here, we implement a hybrid coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid, to investigate the proton-dependent conformational changes of AcrB. The simulation results in early stage ( 100 ns) of proton-dependent conformational changes agree with all-atom simulations, validating the coarse-grained model. The coarse-grained force field allows us to explore the process in microsecond simulations. Starting from the crystal structures of Access(A)/Binding(B)/Extrusion(E) monomers in AcrB, we find that deprotonation of Asp407 and Asp408 in monomer E causes a series of large-scale conformational changes from ABE to AAA in absence of drug molecules, which is consistent with experimental findings. This work is supported by NIH Grant: 1R01GM122081-01.

  18. Novel β-lactamase inhibitors: a therapeutic hope against the scourge of multidrug resistance

    PubMed Central

    Watkins, Richard R.; Papp-Wallace, Krisztina M.; Drawz, Sarah M.; Bonomo, Robert A.

    2013-01-01

    The increasing incidence and prevalence of multi-drug resistance (MDR) among contemporary Gram-negative bacteria represents a significant threat to human health. Since their discovery, β-lactam antibiotics have been a major component of the armamentarium against these serious pathogens. Unfortunately, a wide range of β-lactamase enzymes have emerged that are capable of inactivating these powerful drugs. In the past 30 years, a major advancement in the battle against microbes has been the development of β-lactamase inhibitors, which restore the efficacy of β-lactam antibiotics (e.g., ampicillin/sulbactam, amoxicillin/clavulanate, ticarcillin/clavulanate, and piperacillin/tazobactam). Unfortunately, many newly discovered β-lactamases are not inactivated by currently available inhibitors. Is there hope? For the first time in many years, we can anticipate the development and introduction into clinical practice of novel inhibitors. Although these inhibitors may still not be effective for all β-lactamases, their introduction is still welcome. This review focuses on the novel β-lactamase inhibitors that are closest to being introduced in the clinic. PMID:24399995

  19. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system.

    PubMed

    Sarkadi, Balázs; Homolya, László; Szakács, Gergely; Váradi, András

    2006-10-01

    In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.

  20. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements.

    PubMed

    Klima, Cassidy L; Zaheer, Rahat; Cook, Shaun R; Booker, Calvin W; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A

    2014-02-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.

  1. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country

    PubMed Central

    Lim, Cherry; Takahashi, Emi; Hongsuwan, Maliwan; Wuthiekanun, Vanaporn; Thamlikitkul, Visanu; Hinjoy, Soawapak; Day, Nicholas PJ; Peacock, Sharon J; Limmathurotsakul, Direk

    2016-01-01

    Little is known about the excess mortality caused by multidrug-resistant (MDR) bacterial infection in low- and middle-income countries (LMICs). We retrospectively obtained microbiology laboratory and hospital databases of nine public hospitals in northeast Thailand from 2004 to 2010, and linked these with the national death registry to obtain the 30-day mortality outcome. The 30-day mortality in those with MDR community-acquired bacteraemia, healthcare-associated bacteraemia, and hospital-acquired bacteraemia were 35% (549/1555), 49% (247/500), and 53% (640/1198), respectively. We estimate that 19,122 of 45,209 (43%) deaths in patients with hospital-acquired infection due to MDR bacteria in Thailand in 2010 represented excess mortality caused by MDR. We demonstrate that national statistics on the epidemiology and burden of MDR in LMICs could be improved by integrating information from readily available databases. The prevalence and mortality attributable to MDR in Thailand are high. This is likely to reflect the situation in other LMICs. DOI: http://dx.doi.org/10.7554/eLife.18082.001 PMID:27599374

  2. Expression and purification of an active cecropin-like recombinant protein against multidrug resistance Escherichia coli.

    PubMed

    Téllez, Germán Alberto; Castaño-Osorio, Jhon Carlos

    2014-08-01

    Lucilin is a 36 residue cecropin antimicrobial peptide identified as a partial genetic sequence in Lucilia sericata maggots. The antimicrobial spectrum and toxicity profile of Lucilin is unknown. We first report the expression of Lucilin as an active recombinant fusion protein with a cysteine protease domain (CPD) tag. The fusion protein, GWLK-Lucilin-CPD-His8, showed maximum overexpression in Escherichia coli BL21 cells after 12h induction with 0.5mM IPTG (isopropyl beta-d-thiogalactoside) and growth conditions were 37 °C and 150 rpm shaking. The fusion protein was expressed as a soluble form and was purified by Ni-IMAC. The purified protein was active against E. coli ATCC 35218 with a MIC of 0.68 μM, and a clinical isolate of E. coli with extended spectrum beta-lactamase (ESBL) with a MIC of 0.8 μM. The recombinant GWLK-Lucilin-CPD-His8 was not toxic against human erythrocytes or Vero cells with a therapeutic index >63. The results suggest that GWLK-Lucilin-CPD-His8 represents a potential candidate for therapy against multidrug resistant Gram-negative bacteria.

  3. Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri.

    PubMed

    Olaitan, Abiola Olumuyiwa; Diene, Seydina M; Assous, Marc Victor; Rolain, Jean-Marc

    2016-03-01

    We performed a detailed whole-genome sequence analysis of Providencia rettgeri H1736, a multidrug-resistant clinical pathogen isolated in Israel in 2011. The objective was to describe the genomic flexibility of this bacterium that has greatly contributed to its pathogenicity. The genome has a chromosome size of 4,609,352 bp with 40.22% GC content. Five plasmids were predicted, as well as other mobile genetic elements (MGEs) including phages, genomic islands, and integrative and conjugative elements. The resistome consisted of a total of 27 different antibiotic resistance genes including blaNDM-1, mostly located on MGEs. Phenotypically, the bacteria displayed resistance to a total of ten different antimicrobial classes. Various features such as metabolic operons (including a novel carbapenem biosynthesis operon) and virulence genes were also borne on the MGEs, making P. rettgeri H1736 significantly different from other P. rettgeri isolates. A large quantity of the genetic diversity that exists in P. rettgeri H1736 was due to extensive horizontal gene transfer events, leading to an enormous presence of MGEs in its genome. Most of these changes contributed toward the pathogenic evolution of this bacterium.

  4. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates.

    PubMed

    Dey, Diganta; Ray, Ratnamala; Hazra, Banasri

    2014-07-01

    Multi-drug resistant Mycobacterium tuberculosis and other bacterial pathogens represent a major threat to human health. In view of the critical need to augment the current drug regime, we have investigated therapeutic potential of five quinonoids, viz. emodin, diospyrin, plumbagin, menadione and thymoquinone, derived from natural products. The antimicrobial activity of quinonoids was evaluated against a broad panel of multi-drug and extensively drug-resistant tuberculosis (M/XDR-TB) strains, rapid growing mycobacteria and other bacterial isolates, some of which were producers of β-lactamase, Extended-spectrum β-lactamase (ESBL), AmpC β-lactamase, metallo-beta-lactamase (MBL) enzymes, as well as their drug-sensitive ATCC counterparts. All the tested quinones exhibited antimycobacterial and broad spectrum antibacterial activity, particularly against M. tuberculosis (lowest MIC 0.25 µg/mL) and Gram-positive bacteria (lowest MIC <4 µg/mL) of clinical origin. The order of antitubercular activity of the tested quinonoids was plumbagin > emodin ~ menadione ~ thymoquinone > diospyrin, whereas their antibacterial efficacy was plumbagin > menadione ~ thymoquinone > diospyrin > emodin. Furthermore, this is the first evaluation performed on these quinonoids against a broad panel of drug-resistant and drug-sensitive clinical isolates, to the best of our knowledge.

  5. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections.

    PubMed

    Zhang, Yunsong; Zhu, Yingbo; Gupta, Asheesh; Huang, Yingying; Murray, Clinton K; Vrahas, Mark S; Sherwood, Margaret E; Baer, David G; Hamblin, Michael R; Dai, Tianhong

    2014-06-15

    In this study, we investigated the utility of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model. A bioluminescent clinical isolate of multidrug-resistant A. baumannii was obtained. The susceptibility of A. baumannii to blue light (415 nm)-inactivation was compared in vitro to that of human keratinocytes. Repeated cycles of sublethal inactivation of bacterial by blue light were performed to investigate the potential resistance development of A. baumannii to blue light. A mouse model of third degree burn infected with A. baumannii was developed. A single exposure of blue light was initiated 30 minutes after bacterial inoculation to inactivate A. baumannii in mouse burns. It was found that the multidrug-resistant A. baumannii strain was significantly more susceptible than keratinocytes to blue light inactivation. Transmission electron microscopy revealed blue light-induced ultrastructural damage in A. baumannii cells. Fluorescence spectroscopy suggested that endogenous porphyrins exist in A. baumannii cells. Blue light at an exposure of 55.8 J/cm(2) significantly reduced the bacterial burden in mouse burns. No resistance development to blue light inactivation was observed in A. baumannii after 10 cycles of sublethal inactivation of bacteria. No significant DNA damage was detected in mouse skin by means of a skin TUNEL assay after a blue light exposure of 195 J/cm(2).

  6. A multifaceted analysis of HIV-1 protease multidrug resistance phenotypes

    PubMed Central

    2011-01-01

    Background Great strides have been made in the effective treatment of HIV-1 with the development of second-generation protease inhibitors (PIs) that are effective against historically multi-PI-resistant HIV-1 variants. Nevertheless, mutation patterns that confer decreasing susceptibility to available PIs continue to arise within the population. Understanding the phenotypic and genotypic patterns responsible for multi-PI resistance is necessary for developing PIs that are active against clinically-relevant PI-resistant HIV-1 variants. Results In this work, we use globally optimal integer programming-based clustering techniques to elucidate multi-PI phenotypic resistance patterns using a data set of 398 HIV-1 protease sequences that have each been phenotyped for susceptibility toward the nine clinically-approved HIV-1 PIs. We validate the information content of the clusters by evaluating their ability to predict the level of decreased susceptibility to each of the available PIs using a cross validation procedure. We demonstrate the finding that as a result of phenotypic cross resistance, the considered clinical HIV-1 protease isolates are confined to ~6% or less of the clinically-relevant phenotypic space. Clustering and feature selection methods are used to find representative sequences and mutations for major resistance phenotypes to elucidate their genotypic signatures. We show that phenotypic similarity does not imply genotypic similarity, that different PI-resistance mutation patterns can give rise to HIV-1 isolates with similar phenotypic profiles. Conclusion Rather than characterizing HIV-1 susceptibility toward each PI individually, our study offers a unique perspective on the phenomenon of PI class resistance by uncovering major multidrug-resistant phenotypic patterns and their often diverse genotypic determinants, providing a methodology that can be applied to understand clinically-relevant phenotypic patterns to aid in the design of novel inhibitors that

  7. Principles for designing future regimens for multidrug-resistant tuberculosis.

    PubMed

    Brigden, Grania; Nyang'wa, Bern-Thomas; du Cros, Philipp; Varaine, Francis; Hughes, Jennifer; Rich, Michael; Horsburgh, C Robert; Mitnick, Carole D; Nuermberger, Eric; McIlleron, Helen; Phillips, Patrick P J; Balasegaram, Manica

    2014-01-01

    Fewer than 20% of patients with multidrug-resistant (MDR) tuberculosis are receiving treatment and there is an urgent need to scale up treatment programmes. One of the biggest barriers to scale-up is the treatment regimen, which is lengthy, complex, ineffective, poorly tolerated and expensive. For the first time in over 50 years, new drugs have been developed specifically to treat tuberculosis, with bedaquiline and potentially delamanid expected to be available soon for treatment of MDR cases. However, if the new drugs are merely added to the current treatment regimen, the new regimen will be at least as lengthy, cumbersome and toxic as the existing one. There is an urgent need for strategy and evidence on how to maximize the potential of the new drugs to improve outcomes and shorten treatment. We devised eight key principles for designing future treatment regimens to ensure that, once they are proven safe in clinical trials, they will be clinically effective and programmatically practicable. Regimens should contain at least one new class of drug; be broadly applicable for use against MDR and extensively drug-resistant Mycobacterium tuberculosis complex strains; contain three to five effective drugs, each from a different drug class; be delivered orally; have a simple dosing schedule; have a good side-effect profile that allows limited monitoring; last a maximum of 6 months; and have minimal interaction with antiretrovirals. Following these principles will maximize the potential of new compounds and help to overcome the clinical and programmatic disadvantages and scale-up constraints that plague the current regimen.

  8. Multidrug-resistant tuberculosis and migration to Europe.

    PubMed

    Hargreaves, S; Lönnroth, K; Nellums, L B; Olaru, I D; Nathavitharana, R R; Norredam, M; Friedland, J S

    2017-03-01

    Multidrug-resistant tuberculosis (MDR-TB) in low-incidence countries in Europe is more prevalent among migrants than the native population. The impact of the recent increase in migration to EU and EEA countries with a low incidence of TB (<20 cases per 100 000) on MDR-TB epidemiology is unclear. This narrative review synthesizes evidence on MDR-TB and migration identified through an expert panel and database search. A significant proportion of MDR-TB cases in migrants result from reactivation of latent infection. Refugees and asylum seekers may have a heightened risk of MDR-TB infection and worse outcomes. Although concerns have been raised around 'health tourists' migrating for MDR-TB treatment, numbers are probably small and data are lacking. Migrants experience significant barriers to testing and treatment for MDR-TB, exacerbated by increasingly restrictive health systems. Screening for latent MDR-TB is highly problematic because current tests cannot distinguish drug-resistant latent infection, and evidence-based guidance for treatment of latent infection in contacts of MDR patients is lacking. Although there is evidence that transmission of TB from migrants to the general population is low-it predominantly occurs within migrant communities-there is a human rights obligation to improve the diagnosis, treatment and prevention of MDR-TB in migrants. Further research is needed into MDR-TB and migration, the impact of screening on detection or prevention, and the potential consequences of failing to treat and prevent MDR-TB among migrants in Europe. An evidence-base is urgently needed to inform guidelines for effective approaches for MDR-TB management in migrant populations in Europe.

  9. Multidrug-resistant nontuberculous mycobacteria isolated from cystic fibrosis patients.

    PubMed

    Cândido, Pedro Henrique Campanini; Nunes, Luciana de Souza; Marques, Elizabeth Andrade; Folescu, Tânia Wrobel; Coelho, Fábrice Santana; de Moura, Vinicius Calado Nogueira; da Silva, Marlei Gomes; Gomes, Karen Machado; Lourenço, Maria Cristina da Silva; Aguiar, Fábio Silva; Chitolina, Fernanda; Armstrong, Derek T; Leão, Sylvia Cardoso; Neves, Felipe Piedade Gonçalves; Mello, Fernanda Carvalho de Queiroz; Duarte, Rafael Silva

    2014-08-01

    Worldwide, nontuberculous mycobacteria (NTM) have become emergent pathogens of pulmonary infections in cystic fibrosis (CF) patients, with an estimated prevalence ranging from 5 to 20%. This work investigated the presence of NTM in sputum samples of 129 CF patients (2 to 18 years old) submitted to longitudinal clinical supervision at a regional reference center in Rio de Janeiro, Brazil. From June 2009 to March 2012, 36 NTM isolates recovered from 10 (7.75%) out of 129 children were obtained. Molecular identification of NTM was performed by using PCR restriction analysis targeting the hsp65 gene (PRA-hsp65) and sequencing of the rpoB gene, and susceptibility tests were performed that followed Clinical and Laboratory Standards Institute recommendations. For evaluating the genotypic diversity, pulsed-field gel electrophoresis (PFGE) and/or enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) was performed. The species identified were Mycobacterium abscessus subsp. bolletii (n = 24), M. abscessus subsp. abscessus (n = 6), Mycobacterium fortuitum (n = 3), Mycobacterium marseillense (n = 2), and Mycobacterium timonense (n = 1). Most of the isolates presented resistance to five or more of the antimicrobials tested. Typing profiles were mainly patient specific. The PFGE profiles indicated the presence of two clonal groups for M. abscessus subsp. abscessus and five clonal groups for M. abscesssus subsp. bolletii, with just one clone detected in two patients. Given the observed multidrug resistance patterns and the possibility of transmission between patients, we suggest the implementation of continuous and routine investigation of NTM infection or colonization in CF patients, including countries with a high burden of tuberculosis disease.

  10. The Assembly Motif of a Bacterial Small Multidrug Resistance Protein*

    PubMed Central

    Poulsen, Bradley E.; Rath, Arianna; Deber, Charles M.

    2009-01-01

    Multidrug transporters such as the small multidrug resistance (SMR) family of bacterial integral membrane proteins are capable of conferring clinically significant resistance to a variety of common therapeutics. As antiporter proteins of ∼100 amino acids, SMRs must self-assemble into homo-oligomeric structures for efflux of drug molecules. Oligomerization centered at transmembrane helix four (TM4) has been implicated in SMR assembly, but the full complement of residues required to mediate its self-interaction remains to be characterized. Here, we use Hsmr, the 110-residue SMR family member of the archaebacterium Halobacterium salinarum, to determine the TM4 residue motif required to mediate drug resistance and SMR self-association. Twelve single point mutants that scan the central portion of the TM4 helix (residues 85–104) were constructed and were tested for their ability to confer resistance to the cytotoxic compound ethidium bromide. Six residues were found to be individually essential for drug resistance activity (Gly90, Leu91, Leu93, Ile94, Gly97, and Val98), defining a minimum activity motif of 90GLXLIXXGV98 within TM4. When the propensity of these mutants to dimerize on SDS-PAGE was examined, replacements of all but Ile resulted in ∼2-fold reduction of dimerization versus the wild-type antiporter. Our work defines a minimum activity motif of 90GLXLIXXGV98 within TM4 and suggests that this sequence mediates TM4-based SMR dimerization along a single helix surface, stabilized by a small residue heptad repeat sequence. These TM4-TM4 interactions likely constitute the highest affinity locus for disruption of SMR function by directly targeting its self-assembly mechanism. PMID:19224913

  11. Ethnomedicinal Cichorium intybus Seed Extracts: An Impending Preparation against Multidrug Resistant Bacterial Pathogens

    PubMed Central

    Rahman, Hazir; Khan, Usman Ali; Qasim, Muhammad; Muhammad, Noor; Khan, Muhammad Daud; Asif, Muhammad; Azizullah, Azizullah; Adnan, Muhammad; Murad, Waheed

    2016-01-01

    Background The present study was undertaken to analyze the phytochemical content and biological activity of Cichorium intybus seeds traditionally used in Charsadda, Pakistan against multidrug resistant (MDR) bacterial pathogens. Objectives This study explored the qualitative and quantitative antibacterial potential of C. intybus. Further qualitative analysis of phytochemical content was performed. Methods Cichorium intybus seed extracts were prepared in aqueous, chloroform, ethanol, and hexane separately. Results All the extracts of C. intybus seeds were screened for antibacterial activity and phytochemical content. Cichorium intybus seed extract showed considerable activity against MDR pathogenic bacteria. In the well diffusion method, aqueous extracts showed a higher zone of inhibition against Pseudomonas aeruginosa (16 mm ± 0.7 mm) and Acinetobacter baumannii (13 mm ± 0.5 mm), whereas chloroform, ethanol, and hexane extracts showed activity against P. aeruginosa (11 mm ± 0.3 mm, 12 mm ± 0.5 mm, and 11 mm ± 0 mm, respectively) as compared to Imipenem, a broad spectrum antibiotic. Minimum inhibitory concentration and minimum bactericidal concentration values for aqueous and ethanol extracts indicate that they were more effective against MDR bacteria. Phytochemical analysis revealed that aqueous and ethanol extracts were rich in alkaloids, carbohydrates, gallotannins, and triterpenoids, whereas chloroform and hexane extracts were more concentrated with phenolics, pseudotannins, saponins, and tannins. Cichorium intybus seed extract demonstrated potential activity against MDR human pathogenic bacteria. Conclusions The undertaken study has for the first time reported the effects of C. intybus seed extracts against MDR bacterial pathogens. Findings of the current study will be helpful for further elucidation of bioactive molecules for therapeutic use against MDR bacterial pathogens. PMID:28138372

  12. 5-Episinuleptolide Decreases the Expression of the Extracellular Matrix in Early Biofilm Formation of Multi-Drug Resistant Acinetobacter baumannii

    PubMed Central

    Tseng, Sung-Pin; Hung, Wei-Chun; Huang, Chiung-Yao; Lin, Yin-Shiou; Chan, Min-Yu; Lu, Po-Liang; Lin, Lin; Sheu, Jyh-Horng

    2016-01-01

    Nosocomial infections and increasing multi-drug resistance caused by Acinetobacter baumannii have been recognized as emerging problems worldwide. Moreover, A. baumannii is able to colonize various abiotic materials and medical devices, making it difficult to eradicate and leading to ventilator-associated pneumonia, and bacteremia. Development of novel molecules that inhibit bacterial biofilm formation may be an alternative prophylactic option for the treatment of biofilm-associated A. baumannii infections. Marine environments, which are unlike their terrestrial counterparts, harbor an abundant biodiversity of marine organisms that produce novel bioactive natural products with pharmaceutical potential. In this study, we identified 5-episinuleptolide, which was isolated from Sinularia leptoclados, as an inhibitor of biofilm formation in ATCC 19606 and three multi-drug resistant A. baumannii strains. In addition, the anti-biofilm activities of 5-episinuleptolide were observed for Gram-negative bacteria but not for Gram-positive bacteria, indicating that the inhibition mechanism of 5-episinuleptolide is effective against only Gram-negative bacteria. The mechanism of biofilm inhibition was demonstrated to correlate to decreased gene expression from the pgaABCD locus, which encodes the extracellular polysaccharide poly-β-(1,6)-N-acetylglucosamine (PNAG). Scanning electron microscopy (SEM) indicated that extracellular matrix of the biofilm was dramatically decreased by treatment with 5-episinuleptolide. Our study showed potentially synergistic activity of combination therapy with 5-episinuleptolide and levofloxacin against biofilm formation and biofilm cells. These data indicate that inhibition of biofilm formation via 5-episinuleptolide may represent another prophylactic option for solving the persistent problem of biofilm-associated A. baumannii infections. PMID:27483290

  13. Clinically relevant multidrug resistant Salmonella enterica in swine and meat handlers at the abattoir.

    PubMed

    Gomes-Neves, Eduarda; Antunes, Patrícia; Manageiro, Vera; Gärtner, Fátima; Caniça, Manuela; da Costa, José Manuel Correia; Peixe, Luísa

    2014-01-10

    The presence of multidrug resistant (MDR) Salmonella serotypes in slaughtered swine, carcasses, meat and meat handlers is scarcely evaluated. Recently we demonstrated that diverse Salmonella serotypes are frequently present in swine, pork meat and carcasses, and meat handlers at Portuguese abattoirs. Here we have characterized their antibiotic resistance phenotypes and genotypes, helping elucidate the flow of MDR Salmonella in the food chain. Testing 60 Salmonella isolates from different serotypes, the highest frequencies of resistance were observed for tetracycline (T) [70% (n=42/60), tet(A)/tet(B)/tet(G)], streptomycin (S) [63% (n=38/60), aadA2/strA/strB], sulfamethoxazole (Sul) [62% (n=37/60), sul1/sul2/sul3] and ampicillin (A) [57% (n=34/60), blaPSE-1/blaTEM]. Thirty-seven percent (n=22/60) carried class 1 integrons and multidrug resistance was frequently observed (63% n=38/60), including those serotypes common to human infections [S. Typhimurium 78% n=25/32; S. 4,[5],12:i:- 67% n=2/3; S. Rissen 75% (n=3/4); S. London 67% n=2/3; S. Derby 55%; n=6/11)]. The emergent S. 4,[5],12:i:- isolates were mostly characterized by ASSuT phenotype [blaTEM/strA-strB/sul2/tet(B)], typical of the European clone, while for the first time the ST phenotype [strA-strB-tet(A)-tet(B)] was also observed. Moreover, we report a first finding of a MDR phenotype in S. London [ANSSuT; blaTEM-strA-strB-sul2-tet(A)]. Our findings suggest that the abattoir environment and the slaughter operations seem not only to harbor MDR serotypes that originated in the pig reservoir, but also propagate them through cross-contamination processes, involving meat handlers. The present study suggests a probable relationship between swine and human salmonellosis throughout the food chain, which is of interest for epidemiological, animal health and public health purposes.

  14. Detection of Quorum Sensing Activity in the Multidrug-Resistant Clinical Isolate Pseudomonas aeruginosa Strain GB11

    PubMed Central

    Cheng, Huey Jia; Ee, Robson; Cheong, Yuet Meng; Tan, Wen-Si; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    A multidrug-resistant clinical bacteria strain GB11 was isolated from a wound swab on the leg of a patient. Identity of stain GB11 as Pseudomonas aeruginosa was validated by using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Detection of the production of signaling molecules, N-acylhomoserine lactones (AHLs), was conducted using three different bacterial biosensors. A total of four different AHLs were found to be produced by strain GB11, namely N-butyryl homoserine lactone (C4-HSL), N-hexanoylhomoserine lactone (C6-HSL), N-octanoyl homoserine lactone (C8-HSL) and N-3-oxo-dodecanoylhomoserine lactone (3-oxo-C12-HSL) using high resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). Of these detected AHLs, 3-oxo-C12-HSL was found to be the most abundant AHL produced by P. aeruginosa GB11. PMID:25019635

  15. Nationwide outbreak of multidrug-resistant Salmonella Heidelberg infections associated with ground turkey: United States, 2011.

    PubMed

    Routh, J A; Pringle, J; Mohr, M; Bidol, S; Arends, K; Adams-Cameron, M; Hancock, W T; Kissler, B; Rickert, R; Folster, J; Tolar, B; Bosch, S; Barton Behravesh, C; Williams, I T; Gieraltowski, L

    2015-11-01

    On 23 May 2011, CDC identified a multistate cluster of Salmonella Heidelberg infections and two multidrug-resistant (MDR) isolates from ground turkey retail samples with indistinguishable pulsed-field gel electrophoresis patterns. We defined cases as isolation of outbreak strains in persons with illness onset between 27 February 2011 and 10 November 2011. Investigators collected hypothesis-generating questionnaires and shopper-card information. Food samples from homes and retail outlets were collected and cultured. We identified 136 cases of S. Heidelberg infection in 34 states. Shopper-card information, leftover ground turkey from a patient's home containing the outbreak strain and identical antimicrobial resistance profiles of clinical and retail samples pointed to plant A as the source. On 3 August, plant A recalled 36 million pounds of ground turkey. This outbreak increased consumer interest in MDR Salmonella infections acquired through United States-produced poultry and played a vital role in strengthening food safety policies related to Salmonella and raw ground poultry.

  16. Virulence and Genomic Feature of Multidrug Resistant Campylobacter jejuni Isolated from Broiler Chicken

    PubMed Central

    Hao, Haihong; Ren, Ni; Han, Jing; Foley, Steven L.; Iqbal, Zahid; Cheng, Guyue; Kuang, Xiuhua; Liu, Jie; Liu, Zhenli; Dai, Menghong; Wang, Yulian; Yuan, Zonghui

    2016-01-01

    The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655). The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline, and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g., pTet) and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence. PMID:27790202

  17. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  18. In vivo challenging of polymyxins and levofloxacin eye drop against multidrug-resistant Pseudomonas aeruginosa keratitis.

    PubMed

    Tajima, Kazuki; Miyake, Taku; Koike, Naohito; Hattori, Takaaki; Kumakura, Shigeto; Yamaguchi, Tetsuo; Matsumoto, Tetsuya; Fujita, Koji; Kuroda, Masahiko; Ito, Norihiko; Goto, Hiroshi

    2014-06-01

    The purposes of this study were to establish a rabbit multidrug-resistant Pseudomonas aeruginosa (MDRP) keratitis model, and test the efficacy of levofloxacin, colistin methanesulfate (CL-M), colistin sulfate (CL-S) and polymyxin B (PL-B) against MDRP infection. In a rabbit eye, making a 2-mm circular corneal excision, and MDRP strain #601 or representative P. aeruginosa strain IID1210 were instilled into the corneal concavity. IID1210 was used to confirm this model developed P. aeruginosa keratitis. After MDRP keratitis developed, we treated the eyes with levofloxacin, CL-M, CL-S or PL-B eye drops. The infected eyes were evaluated by clinical score, histopathological examination and viable bacterial count (CFU). Rabbits developed MDRP keratitis reproducibly after instilled the bacteria into the corneal lesion. MDRP produced severe keratitis similarly with IID1210, as shown by slit lamp examination and clinical score. In MDRP keratitis models, clinical scores and viable bacterial counts were significantly lower in levofloxacin- and CL-M-treated groups compared with PBS-treated group, but the magnitudes of reduction were not remarkable. However, clinical scores were dramatically lowered in CL-S- and PL-B-treated groups compared with PBS-treated group. CL-S- and PL-B-treated group were kept corneal translucency and little influx of polymorphonuclear neutrophils in histopathological examination. In addition, both CL-S- and PL-B-treated groups were not detected viable bacteria in infected cornea. Using our MDRP keratitis model, we showed that topical levofloxacin and CL-M are not adequately effective, while CL-S and PL-B are efficacious in controlling MDRP keratitis. Especially, PL-B, which is commercially available eye drop, might be most effective against MDRP.

  19. A pilot study on water pollution and characterization of multidrug-resistant superbugs from Byramangala tank, Ramanagara district, Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Lokesh, Priyanka; Rao, Reshma; Kumar, Arushi Umesh; Vasist, Kiran S; Narayanappa, Rajeswari

    2013-07-01

    Urbanization and industrialization has increased the strength and qualities of municipal sewage in Bangalore, India. The disposal of sewage into natural water bodies became a serious issue. Byramangala reservoir is one such habitat enormously polluted in South India. The water samples were collected from four hotspots of Byramangala tank in 3 months. The biochemical oxygen demand (BOD) and bacterial counts were determined. The fecal coliforms were identified by morphological, physiological, and biochemical studies. The antibiotics sensitivity profiling of isolated bacteria were further carried out. We have noticed that a high content of BOD in the tank in all the 3 months. The total and fecal counts were found to be varied from 1.6 × 10(6) to 8.2 × 10(6) colony forming unit/ml and >5,500/100 ml, respectively. The variations in BOD and total count were found to be statistically significant at p > 0.05. Many pathogenic bacteria were characterized and most of them were found to be multidrug resistant. Salmonella showed resistance to cefoperazone, cefotaxime, cefixime, moxifloxacin, piperacillin/tazobactam, co-trimoxazole, levofloxacin, trimethoprim, and ceftazidime. Escherichia coli showed resistance to chloramphenicol, trimethoprim, co-trimoxazole, rifampicin, and nitrofurantoin while Enterobacter showed resistant to ampicillin, cefepime, ceftazidime, cefoperazone, and cefotaxime. Klebsiella and Shigella exhibited multiple drug resistance to conventional antibiotics. Staphylococcus showed resistance to vancomycin, methicillin, oxacillin, and tetracycline. Furthermore, Salmonella and Klebsiella are on the verge of acquiring resistance to even the strongest carbapenems-imipenem and entrapenem. Present study revealed that Byramanagala tank has become a cesspool of multidrug-resistant "superbugs" and will be major health concern in South Bangalore, India.

  20. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA

    PubMed Central

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-01-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters. PMID:26238402

  1. Treatment of multidrug-resistant pseudomonas aeruginosa using extended-infusion antimicrobial regimens.

    PubMed

    Heil, Emily L; Lowery, Ashleigh V; Thom, Kerri A; Nicolau, David P

    2015-01-01

    In the management of multidrug-resistant infections in critically ill patients with multiorgan dysfunction, consideration must be given to the pharmacokinetics and pharmacodynamics of an antimicrobial agent to optimize dosing. We describe a 25-year-old woman who was undergoing thrice-weekly hemodialysis and developed multidrug-resistant Pseudomonas aeruginosa bacteremia secondary to infected left and right ventricular assist devices. After multiple courses of antibiotics, her blood cultures revealed that the infecting organism was becoming progressively more resistant to antibiotic options. Cefepime 2 g administered over 3 hours/day (in combination with colistimethate) provided adequate drug levels for multidrug-resistant, cefepime-intermediate P. aeruginosa bacteremia in this patient. We present the clinical case of this patient, followed by a discussion of possible therapeutic approaches to be considered, including illustration of the principles of using extended-infusion antimicrobial regimens, and present the patient's resulting clinical course.

  2. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia.

    PubMed

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry.

  3. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer

    PubMed Central

    HUANG, YINGHONG; COLE, SUSAN P.C.; CAI, TIANGE; CAI, YU

    2016-01-01

    Multidrug resistance (MDR) to chemotherapy presents a major obstacle in the treatment of cancer patients, which directly affects the clinical success rate of cancer therapy. Current research aims to improve the efficiency of chemotherapy, whilst reducing toxicity to prolong the lives of cancer patients. As with good biocompatibility, high stability and drug release targeting properties, nanodrug delivery systems alter the mechanism by which drugs function to reverse MDR, via passive or active targeting, increasing drug accumulation in the tumor tissue or reducing drug elimination. Given the potential role of nanodrug delivery systems used in multidrug resistance, the present study summarizes the current knowledge on the properties of liposomes, lipid nanoparticles, polymeric micelles and mesoporous silica nanoparticles, together with their underlying mechanisms. The current review aims to provide a reliable basis and useful information for the development of new treatment strategies of multidrug resistance reversal using nanodrug delivery systems. PMID:27347092

  4. The emergence and outbreak of multidrug-resistant typhoid fever in China.

    PubMed

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-06-22

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes.

  5. Outbreak of mastitis in sheep caused by multi-drug resistant Enterococcus faecalis in Sardinia, Italy.

    PubMed

    Sanciu, G; Marogna, G; Paglietti, B; Cappuccinelli, P; Leori, G; Rappelli, P

    2013-03-01

    An outbreak of infective mastitis due to Enterococcus faecalis occurred in an intensive sheep farm in north Sardinia (Italy). E. faecalis, which is only rarely isolated from sheep milk, was unexpectedly found in 22·3% of positive samples at microbiological examination. Forty-five out of the 48 E. faecalis isolates showed the same multi-drug resistance pattern (cloxacillin, streptomycin, kanamycin, clindamycin, oxytetracycline). E. faecalis isolates were analysed by pulsed-field gel electrophoresis, and all 45 multi-drug resistant strains showed an indistinguishable macrorestiction profile, indicating their clonal origin. To our knowledge, this is the first report of an outbreak of mastitis in sheep caused by E. faecalis.

  6. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates.

    PubMed

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3-13.6 mm) than Gram-positive (1.8-8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens.

  7. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates

    PubMed Central

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3–13.6 mm) than Gram-positive (1.8–8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  8. Phosphate-Containing Polyethylene Glycol Polymers Prevent Lethal Sepsis by Multidrug-Resistant Pathogens

    PubMed Central

    Zaborin, Alexander; Defazio, Jennifer R.; Kade, Matthew; Kaiser, Brooke L. Deatherage; Belogortseva, Natalia; Camp, David G.; Smith, Richard D.; Adkins, Joshua N.; Kim, Sangman M.; Alverdy, Alexandria; Goldfeld, David; Firestone, Millicent A.; Collier, Joel H.; Jabri, Bana; Tirrell, Matthew

    2014-01-01

    Antibiotic resistance among highly pathogenic strains of bacteria and fungi is a growing concern in the face of the ability to sustain life during critical illness with advancing medical interventions. The longer patients remain critically ill, the more likely they are to become colonized by multidrug-resistant (MDR) pathogens. The human gastrointestinal tract is the primary site of colonization of many MDR pathogens and is a major source of life-threatening infections due to these microorganisms. Eradication measures to sterilize the gut are difficult if not impossible and carry the risk of further antibiotic resistance. Here, we present a strategy to contain rather than eliminate MDR pathogens by using an agent that interferes with the ability of colonizing pathogens to express virulence in response to host-derived and local environmental factors. The antivirulence agent is a phosphorylated triblock high-molecular-weight polymer (here termed Pi-PEG 15–20) that exploits the known properties of phosphate (Pi) and polyethylene glycol 15-20 (PEG 15-20) to suppress microbial virulence and protect the integrity of the intestinal epithelium. The compound is nonmicrobiocidal and appears to be highly effective when tested both in vitro and in vivo. Structure functional analyses suggest that the hydrophobic bis-aromatic moiety at the polymer center is of particular importance to the biological function of Pi-PEG 15-20, beyond its phosphate content. Animal studies demonstrate that Pi-PEG prevents mortality in mice inoculated with multiple highly virulent pathogenic organisms from hospitalized patients in association with preservation of the core microbiome. PMID:24277029

  9. Assessment of the Overall and Multidrug-Resistant Organism Bioburden on Environmental Surfaces in Healthcare Facilities.

    PubMed

    Shams, Alicia M; Rose, Laura J; Edwards, Jonathan R; Cali, Salvatore; Harris, Anthony D; Jacob, Jesse T; LaFae, Anna; Pineles, Lisa L; Thom, Kerri A; McDonald, L Clifford; Arduino, Matthew J; Noble-Wang, Judith A

    2016-12-01

    OBJECTIVE To determine the typical microbial bioburden (overall bacterial and multidrug-resistant organisms [MDROs]) on high-touch healthcare environmental surfaces after routine or terminal cleaning. DESIGN Prospective 2.5-year microbiological survey of large surface areas (>1,000 cm2). SETTING MDRO contact-precaution rooms from 9 acute-care hospitals and 2 long-term care facilities in 4 states. PARTICIPANTS Samples from 166 rooms (113 routine cleaned and 53 terminal cleaned rooms). METHODS Using a standard sponge-wipe sampling protocol, 2 composite samples were collected from each room; a third sample was collected from each Clostridium difficile room. Composite 1 included the TV remote, telephone, call button, and bed rails. Composite 2 included the room door handle, IV pole, and overbed table. Composite 3 included toileting surfaces. Total bacteria and MDROs (ie, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci [VRE], Acinetobacter baumannii, Klebsiella pneumoniae, and C. difficile) were quantified, confirmed, and tested for drug resistance. RESULTS The mean microbial bioburden and range from routine cleaned room composites were higher (2,700 colony-forming units [CFU]/100 cm2; ≤1-130,000 CFU/100 cm2) than from terminal cleaned room composites (353 CFU/100 cm2; ≤1-4,300 CFU/100 cm2). MDROs were recovered from 34% of routine cleaned room composites (range ≤1-13,000 CFU/100 cm2) and 17% of terminal cleaned room composites (≤1-524 CFU/100 cm2). MDROs were recovered from 40% of rooms; VRE was the most common (19%). CONCLUSIONS This multicenter bioburden summary provides a first step to determining microbial bioburden on healthcare surfaces, which may help provide a basis for developing standards to evaluate cleaning and disinfection as well as a framework for studies using an evidentiary hierarchy for environmental infection control. Infect Control Hosp Epidemiol 2016;1426-1432.

  10. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella.

    PubMed

    Bearson, Bradley L; Brunelle, Brian W

    2015-08-01

    Fluoroquinolones are broad-spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase activity, which can cause DNA damage and result in bacterial cell death. In response to DNA damage, bacteria induce an SOS response to stimulate DNA repair. However, the SOS response may also induce prophage with production of infectious virions. Salmonella strains typically contain multiple prophages, and certain strains including phage types DT120 and DT104 contain prophage that upon induction are capable of generalised transduction. In this study, strains of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium DT120 and DT104 were exposed to fluoroquinolones important for use in human and veterinary disease therapy to determine whether prophage(s) are induced that could facilitate phage-mediated gene transfer. Cultures of MDR S. Typhimurium DT120 and DT104 containing a kanamycin resistance plasmid were lysed after exposure to fluoroquinolones (ciprofloxacin, enrofloxacin and danofloxacin). Bacterial cell lysates were able to transfer the plasmid to a recipient kanamycin-susceptible Salmonella strain by generalised transduction. In addition, exposure of DT120 to ciprofloxacin induced the recA gene of the bacterial SOS response and genes encoded in a P22-like generalised transducing prophage. This research indicates that fluoroquinolone exposure of MDR Salmonella can facilitate horizontal gene transfer, suggesting that fluoroquinolone usage in human and veterinary medicine may have unintended consequences, including the induction of phage-mediated gene transfer from MDR Salmonella. Stimulation of gene transfer following bacterial exposure to fluoroquinolones should be considered an adverse effect, and clinical decisions regarding antibiotic selection for infectious disease therapy should include this potential risk.

  11. Individualizing Risk of Multidrug-Resistant Pathogens in Community-Onset Pneumonia

    PubMed Central

    Falcone, Marco; Russo, Alessandro; Giannella, Maddalena; Cangemi, Roberto; Scarpellini, Maria Gabriella; Bertazzoni, Giuliano; Alarcón, José Martínez; Taliani, Gloria; Palange, Paolo; Farcomeni, Alessio; Vestri, Annarita; Bouza, Emilio; Violi, Francesco; Venditti, Mario

    2015-01-01

    Introduction The diffusion of multidrug-resistant (MDR) bacteria has created the need to identify risk factors for acquiring resistant pathogens in patients living in the community. Objective To analyze clinical features of patients with community-onset pneumonia due to MDR pathogens, to evaluate performance of existing scoring tools and to develop a bedside risk score for an early identification of these patients in the Emergency Department. Patients and Methods This was an open, observational, prospective study of consecutive patients with pneumonia, coming from the community, from January 2011 to January 2013. The new score was validated on an external cohort of 929 patients with pneumonia admitted in internal medicine departments participating at a multicenter prospective study in Spain. Results A total of 900 patients were included in the study. The final logistic regression model consisted of four variables: 1) one risk factor for HCAP, 2) bilateral pulmonary infiltration, 3) the presence of pleural effusion, and 4) the severity of respiratory impairment calculated by use of PaO2/FiO2 ratio. A new risk score, the ARUC score, was developed; compared to Aliberti, Shorr, and Shindo scores, this point score system has a good discrimination performance (AUC 0.76, 95% CI 0.71-0.82) and calibration (Hosmer-Lemeshow, χ2 = 7.64; p = 0.469). The new score outperformed HCAP definition in predicting etiology due to MDR organism. The performance of this bedside score was confirmed in the validation cohort (AUC 0.68, 95% CI 0.60-0.77). Conclusion Physicians working in ED should adopt simple risk scores, like ARUC score, to select the most appropriate antibiotic regimens. This individualized approach may help clinicians to identify those patients who need an empirical broad-spectrum antibiotic therapy. PMID:25860142

  12. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI

    PubMed Central

    Kappell, Anthony D.; DeNies, Maxwell S.; Ahuja, Neha H.; Ledeboer, Nathan A.; Newton, Ryan J.; Hristova, Krassimira R.

    2015-01-01

    Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (blaOXA, blaSHV, and blaPSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance. PMID:25972844

  13. Global Assessment of the Activity of Tigecycline against Multidrug-Resistant Gram-Negative Pathogens between 2004 and 2014 as Part of the Tigecycline Evaluation and Surveillance Trial.

    PubMed

    Giammanco, Anna; Calà, Cinzia; Fasciana, Teresa; Dowzicky, Michael J

    2017-01-01

    , infections caused by multidrug-resistant (MDR) Gram-negative bacteria can cause increased mortality, longer hospital stays, and higher treatments costs. The aim of the Tigecycline Evaluation and Surveillance Trial (TEST) is to assess the in vitro antimicrobial activities of tigecycline and other contemporary agents against clinically relevant pathogens. This paper presents antimicrobial activity data from the TEST study between 2004 and 2014 and examines global rates of MDR Gram-negative isolates, including Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacteriaceae, during this time. Our results show that tigecycline retained in vitro activity against many MDR Gram-negative pathogens over the study period, while rates of MDR A. baumannii increased globally. Using these findings, we hope to highlight the current status of multidrug resistance in medical facilities worldwide.

  14. Global Assessment of the Activity of Tigecycline against Multidrug-Resistant Gram-Negative Pathogens between 2004 and 2014 as Part of the Tigecycline Evaluation and Surveillance Trial

    PubMed Central

    Calà, Cinzia; Fasciana, Teresa; Dowzicky, Michael J.

    2017-01-01

    , infections caused by multidrug-resistant (MDR) Gram-negative bacteria can cause increased mortality, longer hospital stays, and higher treatments costs. The aim of the Tigecycline Evaluation and Surveillance Trial (TEST) is to assess the in vitro antimicrobial activities of tigecycline and other contemporary agents against clinically relevant pathogens. This paper presents antimicrobial activity data from the TEST study between 2004 and 2014 and examines global rates of MDR Gram-negative isolates, including Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacteriaceae, during this time. Our results show that tigecycline retained in vitro activity against many MDR Gram-negative pathogens over the study period, while rates of MDR A. baumannii increased globally. Using these findings, we hope to highlight the current status of multidrug resistance in medical facilities worldwide. PMID:28124025

  15. Prevalence of Multidrug-Resistant Organisms in Hospitalized Pediatric Refugees in an University Children's Hospital in Germany 2015-2016.

    PubMed

    Tenenbaum, Tobias; Becker, Klaus-Peter; Lange, Bettina; Martin, Anka; Schäfer, Peter; Weichert, Stefan; Schroten, Horst

    2016-11-01

    OBJECTIVE To determine the prevalence of multidrug-resistant organisms (MDROs) colonizing in pediatric refugees admitted to a University Children Hospital in Germany. DESIGN Retrospective observational study. SETTING General pediatric and pediatric surgery units. PATIENTS In Germany, recommendations for MDRO screening of pediatric refugees were recently published. According to these and institutional recommendations, all hospitalized pediatric refugees were screened for MDROs between October 2015 and March 2016. METHODS Using electronic surveillance data, we performed a chart review to identify the prevalence of MDROs among and the clinical diagnoses of pediatric refugees. RESULTS Among 325 patients hospitalized for various causes, most frequently gastroenteritis (30.9%), MDROs were detected in 33.8%. Most of these patients were colonized with multidrug-resistant Gram-negative (MRGN) bacteria (113 isolates), mostly 2MRGN/ESBL (87 isolates); some patients were colonized with methicillin-resistant Staphylococcus aureus (MRSA, 22 isolates); and 1 patient was colonized with vancomycin-resistant enterococci (VRE). Among 110 refugee patients, we detected single colonization with an MDRO in 84 patients (76.4%), co-colonization with 2 pathogens in 23 patients (20.9%), and triple colonization in 3 patients (2.7%). However, infections with MDROs occurred in only 3.6% of pediatric refugees. The peak of positive MDRO screening results in 2015 correlated with an increased hospitalization rate. CONCLUSION Implementation of infection control measures among pediatric refugees is challenging. Due to the high frequency of MDROs in these patients, current screening, isolation, and treatment strategies may have to be adapted. Infect Control Hosp Epidemiol 2016;1-5.

  16. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.

    PubMed

    Avner, Benjamin S; Fialho, Arsenio M; Chakrabarty, Ananda M

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens--including bacteria such as Pseudomonas aeruginosa, viruses, and parasites--and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of their

  17. Modified live Edwardsiella ictaluri vaccine, AQUAVAC-ESC, lacks multidrug resistance plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmid mediated antibiotic resistance was first discovered in Edwardsiella ictaluri in the early 1990’s, and in 2007 an E. ictaluri isolate harboring an IncA/C plasmid was recovered from a moribund channel catfish infected with the bacterium. Due to the identification of multidrug resistance plasm...

  18. Increased Risk for Multidrug-Resistant Tuberculosis in Migratory Workers, Armenia

    PubMed Central

    Crape, Byron; Grigoryan, Ruzanna; Martirosyan, Hripsime; Petrosyan, Varduhi

    2015-01-01

    To understand use of tuberculosis (TB) services for migrant workers, we conducted a cross-sectional census of 95 migrant workers with TB from Armenia by using medical record reviews and face-to-face interviews. Prolonged time between diagnosis and treatment, treatment interruption, and treatment defaults caused by migrant work might increase the risk for multidrug-resistant TB. PMID:25695488

  19. Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida auris

    PubMed Central

    Sherry, Leighann; Ramage, Gordon; Kean, Ryan; Borman, Andrew; Johnson, Elizabeth M.; Richardson, Malcolm D.

    2017-01-01

    The emerging multidrug-resistant yeast pathogen Candida auris has attracted considerable attention as a source of healthcare–associated infections. We report that this highly virulent yeast has the capacity to form antifungal resistant biofilms sensitive to the disinfectant chlorhexidine in vitro. PMID:28098553

  20. Draft Genome Sequence of a Multidrug-Resistant Acinetobacter baumannii Strain from Chile.

    PubMed

    Opazo, Andrés; Lopes, Bruno S; García, Patricia; Domínguez Yévenes, Mariana; Lima, Celia; Bello-Toledo, Helia; González-Rocha, Gerardo; Amyes, Sebastian G B

    2015-07-02

    Acinetobacter baumannii strain Ab5 was isolated in the year 2007 in Chile, being one of the first multidrug-resistant (MDR) cases reported in the country. Here, we present the very first draft genome sequence of an MDR Chilean strain, which shows the presence of diverse resistance and acquired virulence genes.

  1. Draft Genome Sequence of a Multidrug-Resistant Acinetobacter baumannii Strain from Chile

    PubMed Central

    Lopes, Bruno S.; García, Patricia; Domínguez Yévenes, Mariana; Lima, Celia; Bello-Toledo, Helia; González-Rocha, Gerardo; Amyes, Sebastian G. B.

    2015-01-01

    Acinetobacter baumannii strain Ab5 was isolated in the year 2007 in Chile, being one of the first multidrug-resistant (MDR) cases reported in the country. Here, we present the very first draft genome sequence of an MDR Chilean strain, which shows the presence of diverse resistance and acquired virulence genes. PMID:26139713

  2. Worldwide Occurrence of Integrative Conjugative Element Encoding Multidrug Resistance Determinants in Epidemic Vibrio cholerae O1

    PubMed Central

    Marin, Michel A.; Fonseca, Erica L.; Andrade, Bruno N.; Cabral, Adriana C.; Vicente, Ana Carolina P.

    2014-01-01

    In the last decades, there has been an increase of cholera epidemics caused by multidrug resistant strains. Particularly, the integrative and conjugative element (ICE) seems to play a major role in the emergence of multidrug resistant Vibrio cholerae. This study fully characterized, by whole genome sequencing, new ICEs carried by multidrug resistant V. cholerae O1 strains from Nigeria (2010) (ICEVchNig1) and Nepal (1994) (ICEVchNep1). The gene content and gene order of these two ICEs are the same, and identical to ICEVchInd5, ICEVchBan5 and ICEVchHai1 previously identified in multidrug resistant V. cholerae O1. This ICE is characterized by dfrA1, sul2, strAB and floR antimicrobial resistance genes, and by unique gene content in HS4 and HS5 ICE regions. Screening for ICEs, in publicly available V. cholerae genomes, revealed the occurrence and widespread distribution of this ICE among V. cholerae O1. Metagenomic analysis found segments of this ICE in marine environments far from the direct influence of the cholera epidemic. Therefore, this study revealed the epidemiology of a spatio-temporal prevalent ICE in V. cholerae O1. Its occurrence and dispersion in V. cholerae O1 strains from different continents throughout more than two decades can be indicative of its role in the fitness of the current pandemic lineage. PMID:25265418

  3. Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance.

    PubMed

    Su, Chia-Wei; Chen, San-Yuan; Liu, Dean-Mo

    2013-05-08

    A newly-designed drug carrier with enzyme-triggered release behavior and the ability to circumvent multidrug resistance was successfully developed. By optimizing the ratio of lecithin and polysaccharide in reverse micelles, encapsulation efficiency and encapsulation stability can be significantly improved.

  4. First Genome Sequence of a Mexican Multidrug-Resistant Acinetobacter baumannii Isolate

    PubMed Central

    Graña-Miraglia, Lucía; Lozano, Luis; Castro-Jaimes, Semiramis; Cevallos, Miguel A.; Volkow, Patricia

    2016-01-01

    Acinetobacter baumannii has emerged as an important nosocomial pathogen worldwide. Here, we present the draft genome of the first multidrug-resistant A. baumannii isolate, sampled from a tertiary hospital in Mexico City. This genome will provide a starting point for studying the genomic diversity of this species in Mexico. PMID:27013043

  5. Antibiotic exposure can induce various bacterial virulence phenotypes in multidrug-resistant Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is one of the most prevalent bacterial foodborne diseases in the United States and causes an estimated 1 million human cases every year. Multidrug-resistant (MDR) Salmonella has emerged as a public health issue as it has been associated with increased morbidity in humans and mortality in...

  6. The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance.

    PubMed

    Gekeler, V; Ise, W; Sanders, K H; Ulrich, W R; Beck, J

    1995-03-08

    The multidrug resistant cell lines HL60/AR and GLC4/ADR show high overexpression of the gene encoding the multidrug resistance associated protein MRP compared to their drug sensitive parental counterparts. This and the virtual absence of mdr1/P-glycoprotein gene expression was proven by a complementary DNA polymerase chain reaction (cDNA-PCR) approach. Applying a 72-hour tetrazolium based colorimetric MTT-assay we demonstrate on both MDR sublines a dose-dependent modulation of drug resistances by the leukotriene LTD4 receptor antagonist MK571. A complete reversal of vincristine resistances was achieved at final MK571 concentrations of 30 microM (HL60/AR) or 50 microM (GLC4/ADR) which by itself did not disturb cellular proliferation. The drug resistance of a mdr1/P-gp overexpressing multidrug-resistant HL60 subline, in contrast, was not significantly affected by MK571. Similar effects were seen using the glutathione (GSH) synthesis inhibitor buthionine sulfoximine (BSO). Our results point to a relationship between MRP and a conjugate transporter and identify MK571 as a new tool structure for developing modulators specific for a MRP associated multidrug resistance.

  7. Fecal Microbiota Transplantation and Successful Resolution of Multidrug-Resistant-Organism Colonization

    PubMed Central

    Sullivan, Eva; Ballon-Landa, Gonzalo

    2015-01-01

    We report a case in which fecal microbiota transplantation (FMT) utilized for relapsing Clostridium difficile colitis successfully eradicated colonization with several multidrug-resistant organisms (MDROs). FMT may have an additive benefit of reducing MDRO carriage and should be further investigated as a potential measure to eradicate additional potentially virulent organisms beyond C. difficile. PMID:25878340

  8. Colistin methanesulfonate against multidrug-resistant Acinetobacter baumannii in an in vitro pharmacodynamic model.

    PubMed

    Kroeger, Lisa A; Hovde, Laurie B; Mitropoulos, Isaac F; Schafer, Jeremy; Rotschafer, John C

    2007-09-01

    Using an in vitro pharmacodynamic model, a multidrug-resistant strain of Acinetobacter baumannii was exposed to colistin methanesulfonate alone and in combination with ceftazidime. Pre- and postexposure colistin sulfate MICs were determined. A single daily dose of colistin methanesulfonate combined with continuous-infusion ceftazidime prevented regrowth and postexposure MIC increases.

  9. Isolation and Characterization of Antimicrobial Compounds in Plant Extracts against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Miyasaki, Yoko; Rabenstein, John D.; Rhea, Joshua; Crouch, Marie-Laure; Mocek, Ulla M.; Kittell, Patricia Emmett; Morgan, Margie A.; Nichols, Wesley Stephen; Van Benschoten, M. M.; Hardy, William David; Liu, George Y.

    2013-01-01

    The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii. PMID:23630600

  10. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    PubMed Central

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  11. [Perspectives of inhibition of multidrug resistance during cancer chemotherapy, in vitro and in vivo experiments].

    PubMed

    Engi, Helga

    2009-03-29

    The development of pharmacological agents able to counteract the mechanisms of multidrug resistance in oncology has remained a major goal for the past ten years. Our purpose was to find multidrug resistance reversal agents less toxic than verapamil among various synthetic compounds: cinnamylidene ketones; 1,4-dihydropyridines; phenothiazines; heat shock 90 inhibitor peptides; betti base derivative of tylosin and among some naturally occurring plant derived jatrophane and lathyrane-type diterpenes. The first part of this thesis presents the inhibition of multidrug resistance through inhibition of the P-glycoprotein efflux pump in various cell lines. In general, the newly identified multidrug resistance modifiers were able to enhance the antiproliferative activity of selected anticancer drugs in a synergistic or additive way in in vitro experiments. The in vitro activity of betti base derivative of tylosin was confirmed by further in vivo efficacy studies in DBA/2 mice. As an alternative way of antitumor effect, apoptosis inductions of resistance modifiers were studied. The substituted dihydropyridine 13 was the most promising apoptosis inducer on mouse lymphoma cells. Human cytomegalovirus was used in a modified in vitro model for characterizing lathyrane compounds with antipromotion effect on human lung cancer cells. All the six macrocyclic lathyrane-type diterpenoids reduced the promotion in vitro , except latilagascene D, decreased IE-antigen expression of cytomegalovirus to prevent progression of tumor malignancy.

  12. Novel Levofloxacin-Resistant Multidrug-Resistant Streptococcus pneumoniae Serotype 11A Isolates, South Korea

    PubMed Central

    Park, Miey; Kim, Hyun Soo; Kim, Han-Sung; Park, Ji Young; Song, Wonkeun; Cho, Hyoun Chan

    2016-01-01

    Of 608 Streptococcus pneumoniae clinical strains isolated at a hospital in South Korea during 2009–2014, sixteen (2.6%) were identified as levofloxacin resistant. The predominant serotype was 11A (9 isolates). Two novel sequence types of multidrug-resistant S. pneumoniae with serotype 11A were identified, indicating continuous diversification of resistant strains. PMID:27767906

  13. Intestinal Decontamination of Multidrug-resistant Klebsiella pneumoniae After Recurrent Infections in an Immunocompromised Host

    PubMed Central

    Kronman, Matthew P.; Zerr, Danielle M.; Qin, Xuan; Englund, Janet; Cornell, Cathy; Sanders, Jean E.; Myers, Jeffrey; Rayar, Jaipreet; Berry, Jessica E.; Adler, Amanda L.; Weissman, Scott J.

    2014-01-01

    Multidrug-resistant (MDR) Enterobacteriaceae infections are associated with increased morbidity. We describe a 20-year-old hematopoietic cell transplantation recipient with recurrent MDR Klebsiella pneumoniae infection, prolonged intestinal colonization, and subsequent intestinal decontamination. Further study should evaluate stool surveillance, molecular typing, and fecal microbiota transplantation for patients with intestinal MDR Enterobacteriaceae carriage. PMID:25041704

  14. Pre-Multidrug-Resistant Mycobacterium tuberculosis Beijing Strain Associated with Disseminated Tuberculosis in a Pet Dog

    PubMed Central

    Perdigão, João; Canto, Ana; Albuquerque, Teresa; Leal, Nuno; Macedo, Rita; Portugal, Isabel; Cunha, Mónica V.

    2014-01-01

    Resistance to isoniazid, ethambutol, and streptomycin was detected in a Mycobacterium tuberculosis strain, belonging to the Beijing family lineage, isolated from two nodule exudates of a Yorkshire terrier with generalized tuberculosis. This report alerts medical practitioners to the risk of dissemination of pre-multidrug-resistant tuberculosis (preMDR-TB) through exposure to M. tuberculosis-shedding pets. PMID:24153119

  15. Draft Genome Sequences of Multidrug-Resistant Acinetobacter sp. Strains from Colombian Hospitals

    PubMed Central

    Falquet, Laurent; Reguero, María T.; Mantilla, José R.; Valenzuela, Emilia M.; González, Elsa; Cepeda, Alexandra; Escalante, Andrea

    2013-01-01

    The draft genome sequences of the strains Acinetobacter baumannii 107m, Acinetobacter nosocomialis 28F, and Acinetobacter pittii 42F, isolated from Colombian hospitals, are reported here. These isolates are causative of nosocomial infections and are classified as multidrug resistant, as they showed resistance to four different antibiotic groups. PMID:24285656

  16. Multidrug resistant Acinetobacter baumannii reaches a new frontier: prosthetic hip joint infection.

    PubMed

    Hischebeth, G T R; Wimmer, M D; Molitor, E; Seifert, H; Gravius, S; Bekeredjian-Ding, I

    2015-02-01

    Acinetobacter baumannii is an emerging nosocomial pathogen primarily in countries with a high prevalence of multidrug resistance. Here we report the detection of a bla OXA23 carbapenemase-producing A. baumannii strain in a German patient with prosthetic hip joint infection following several hip joint surgeries but no history of foreign travel.

  17. Comparative genomics of the IncA/C multidrug resistance plasmid family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we...

  18. 4-Isoxazolyl-1,4-dihydropyridines exhibit binding at the multidrug-resistance transporter.

    PubMed

    Hulubei, Victoria; Meikrantz, Scott B; Quincy, David A; Houle, Tina; McKenna, John I; Rogers, Mark E; Steiger, Scott; Natale, N R

    2012-11-15

    The 4-isoxazolyl-dihydropyridines (IDHPs) exhibit inhibition of the multidrug-resistance transporter (MDR-1), and exhibit an SAR distinct from their activity at voltage gated calcium channels (VGCC). Among the four most active IDHPs, three were branched at C-5 of the isoxazole, including the most active analog, 1k.

  19. Genome Resequencing of the Virulent and Multidrug-Resistant Reference Strain Clostridium difficile 630

    PubMed Central

    Bunk, Boyke; Thürmer, Andrea; Spröer, Cathrin; Brzuszkiewicz, Elzbieta; Abt, Birte; Gronow, Sabine; Liesegang, Heiko; Daniel, Rolf; Overmann, Jörg

    2015-01-01

    We resequenced the complete genome of the virulent and multidrug-resistant pathogen Clostridium difficile strain 630. A combination of single-molecule real-time and Illumina sequencing technology revealed the presence of an additional rRNA gene cluster, additional tRNAs, and the absence of a transposon in comparison to the published and reannotated genome sequence. PMID:25858846

  20. Multidrug-resistance proteins are weak tumor associated antigens for colorectal carcinoma

    PubMed Central

    2011-01-01

    Background Multidrug resistance (MDR) is a clinically, highly relevant phenomenon. Under chemotherapy many tumors show an increasing resistance towards the applied substance(s) and to a certain extent also towards other agents. An important molecular cause of this phenomenon is an increased expression of transporter proteins. The functional relationship between high expression levels and chemotherapy resistance makes these MDR and MRP (MDR related protein) proteins to interesting therapeutic targets. We here wanted to systematically analyze, whether these proteins are tumor specific antigens which could be targeted immunologically. Results Using the reverse immunology approach, 30 HLA-A2.1 restricted MDR and MRP derived peptides (MDP) were selected. Stimulated T cell lines grew well and mainly contained activated CD8+ cells. Peptide specificity and HLA-A2.1 restriction were proven in IFN-γ-ELISpot analyses and in cytotoxicity tests against MDP loaded target cells for a total of twelve peptides derived from MDR-1, MDR-3, MRP-1, MRP-2, MRP-3 and MRP-5. Of note, two of these epitopes are shared between MDR-1 and MDR-3 as well as MRP-2 and MRP-3. However, comparably weak cytotoxic activities were additionally observed against HLA-A2.1+ tumor cells even after upregulation of MDR protein expression by in vitro chemotherapy. Conclusions Taken together, these data demonstrate that human T cells can be sensitised towards MDPs and hence, there is no absolute immunological tolerance. However, our data also hint towards rather low endogenous tumor cell processing and presentation of MDPs in the context of HLA-A2.1 molecules. Consequently, we conclude that MDR and MRP proteins must be considered as weak tumor specific antigens-at least for colorectal carcinoma. Their direct contribution to therapy-failure implies however, that it is worth to further pursue this approach. PMID:21740599

  1. Intrinsic Conformational Plasticity of Native EmrE Provides a Pathway for Multidrug Resistance

    PubMed Central

    2015-01-01

    EmrE is a multidrug resistance efflux pump with specificity to a wide range of antibiotics and antiseptics. To obtain atomic-scale insight into the attributes of the native state that encodes the broad specificity, we used a hybrid of solution and solid-state NMR methods in lipid bilayers and bicelles. Our results indicate that the native EmrE dimer oscillates between inward and outward facing structural conformations at an exchange rate (kex) of ∼300 s–1 at 37 °C (millisecond motions), which is ∼50-fold faster relative to the tetraphenylphosphonium (TPP+) substrate-bound form of the protein. These observables provide quantitative evidence that the rate-limiting step in the TPP+ transport cycle is not the outward–inward conformational change in the absence of drug. In addition, using differential scanning calorimetry, we found that the width of the gel-to-liquid crystalline phase transition was 2 °C broader in the absence of the TPP+ substrate versus its presence, which suggested that changes in transporter dynamics can impact the phase properties of the membrane. Interestingly, experiments with cross-linked EmrE showed that the millisecond inward-open to outward-open dynamics was not the culprit of the broadening. Instead, the calorimetry and NMR data supported the conclusion that faster time scale structural dynamics (nanosecond–microsecond) were the source and therefore impart the conformationally plastic character of native EmrE capable of binding structurally diverse substrates. These findings provide a clear example how differences in membrane protein transporter structural dynamics between drug-free and bound states can have a direct impact on the physical properties of the lipid bilayer in an allosteric fashion. PMID:24856154

  2. Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance.

    PubMed

    Cho, Min-Kyu; Gayen, Anindita; Banigan, James R; Leninger, Maureen; Traaseth, Nathaniel J

    2014-06-04

    EmrE is a multidrug resistance efflux pump with specificity to a wide range of antibiotics and antiseptics. To obtain atomic-scale insight into the attributes of the native state that encodes the broad specificity, we used a hybrid of solution and solid-state NMR methods in lipid bilayers and bicelles. Our results indicate that the native EmrE dimer oscillates between inward and outward facing structural conformations at an exchange rate (k(ex)) of ~300 s(-1) at 37 °C (millisecond motions), which is ~50-fold faster relative to the tetraphenylphosphonium (TPP(+)) substrate-bound form of the protein. These observables provide quantitative evidence that the rate-limiting step in the TPP(+) transport cycle is not the outward-inward conformational change in the absence of drug. In addition, using differential scanning calorimetry, we found that the width of the gel-to-liquid crystalline phase transition was 2 °C broader in the absence of the TPP(+) substrate versus its presence, which suggested that changes in transporter dynamics can impact the phase properties of the membrane. Interestingly, experiments with cross-linked EmrE showed that the millisecond inward-open to outward-open dynamics was not the culprit of the broadening. Instead, the calorimetry and NMR data supported the conclusion that faster time scale structural dynamics (nanosecond-microsecond) were the source and therefore impart the conformationally plastic character of native EmrE capable of binding structurally diverse substrates. These findings provide a clear example how differences in membrane protein transporter structural dynamics between drug-free and bound states can have a direct impact on the physical properties of the lipid bilayer in an allosteric fashion.

  3. Prevalence of multidrug resistant Gram-positive cocci in a Chinese hospital over an 8-year period

    PubMed Central

    Zhang, Ruiqin; Wang, Fengzhi; Kang, Jianbang; Wang, Xinchun; Yin, Donghong; Dang, Wen; Duan, Jinju

    2015-01-01

    Gram-positive cocci are common causes of bloodstream and nosocomial infections, and their multi-drug resistance is an increasingly serious problem. The present study aimed to assess the prevalence of multi-drug-resistant Gram-positive cocci in a Chinese population. In this retrospective study, data about Gram-positive cocci from in-patients (January 2006 and December 2013) at the Second Hospital of Shanxi Medical University, Taiyuan, China, were reviewed. Antimicrobial susceptibility profile of the isolated Gram-positive cocci was evaluated using the disk diffusion method. Antibiotic resistance was determined according to the Clinical and Laboratory Standards Institute 2009 guidelines. The prevalence of drug resistance was determined, as well as correlation coefficients for various drugs between the resistance rate and year of sample collection. A total of 7789 Gram-positive cocci isolates were found, including 2576 (33%) coagulase-negative Staphylococci, 1477 (19%) Staphylococci aureus, 1343 (17%) Enterococcus faecalis, and 1139 (15%) Enterococcus faecium. The proportions of methicillin-resistant Staphylococci aureus (MRSA) and methicillin-resistant Staphylococci (MRS) were 31.5% (465/1477) and 61.6% (1587/2576), respectively. Among all isolates, MRS had much higher drug resistance rate than methicillin-sensitive Staphylococci (P<0.05). E. faecalis had a higher multi-drug resistance rate than E. faecium (P<0.01). Interestingly, MRSA resistance rates declined over the years, showing a negative correlation coefficient for all drugs, with significance for levofloxacin, azithromycin, erythromycin, and clindamycin (P<0.05), but not sulphamethoxazole/trimethoprim (P=0.057) and gentamicin (P=0.186). These results indicated that Staphylococci were the predominant Gram-positive cocci isolated. There was a trend of decreasing MRSA in the population studied. PMID:26309609

  4. An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells

    PubMed Central

    Campia, Ivana; Buondonno, Ilaria; Castella, Barbara; Rolando, Barbara; Kopecka, Joanna; Gazzano, Elena; Ghigo, Dario; Riganti, Chiara

    2015-01-01

    Background Multidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anticancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recognized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet been investigated whether multidrug resistant cells have a different ability to induce immunosuppression than chemosensitive ones. We addressed this issue in human and murine chemosensitive and multidrug resistant cancer cells. Results We found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine, was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-inducers cytokines IL-6, IL-4, IL-1β, IL-13, TNF-α and CD40L, was increased. The disruption of the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes in STAT-silenced chemoresistant cells. Conclusions Our work shows that multidrug resistant cells have a stronger immunosuppressive attitude than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis, thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve the efficacy of chemo-immunotherapy protocols against resistant tumors. PMID:25955018

  5. Multidrug Resistant CTX-M-Producing Escherichia coli: A Growing Threat among HIV Patients in India

    PubMed Central

    Padmavathy, Kesavaram; Padma, Krishnan; Rajasekaran, Sikhamani

    2016-01-01

    Extended Spectrum β-Lactamases (ESBLs) confer resistance to third-generation cephalosporins and CTX-M types have emerged as the most prominent ESBLs worldwide. This study was designed to determine the prevalence of CTX-M positive ESBL-producing urinary E. coli isolates from HIV patients and to establish the association of multidrug resistance, phylogeny, and virulence profile with CTX-M production. A total of 57 ESBL producers identified among 76 E. coli strains isolated from HIV patients from South India were screened for blaCTX-M, AmpC production, multidrug resistance, and nine virulence associated genes (VAGs), fimH, pap, afa/dra, sfa/foc, iutA, fyuA, iroN, usp, and kpsMII. The majority (70.2%) of the ESBL producers harbored blaCTX-M and were AmpC coproducers. Among the CTX-M producers, 47.5% were found to be UPEC, 10% harbored as many as 7 VAGs, and 45% possessed kpsMII. Multidrug resistance (CIPRSXTRGENR) was significantly more common among the CTX-M producers compared to the nonproducers (70% versus 41.2%). However, 71.4% of the multidrug resistant CTX-M producers exhibited susceptibility to nitrofurantoin thereby making it an effective alternative to cephalosporins/fluoroquinolones. The emergence of CTX-M-producing highly virulent, multidrug resistant uropathogenic E. coli is of significant public health concern in countries like India with a high burden of HIV/AIDS. PMID:27123344

  6. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    PubMed Central

    2012-01-01

    Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR), and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC) of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN), a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY). Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria. PMID:22709668

  7. An oligonucleotide microarray to characterize multidrug resistant plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic drug resistance. Many of the Enterobacteriaceae carry multiple drug resistance (MDR) genes on large plasmids of replic...

  8. Short Synthetic β-Sheet Antimicrobial Peptides for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Burn Wound Infections.

    PubMed

    Zhong, Guansheng; Cheng, Junchi; Liang, Zhen Chang; Xu, Liang; Lou, Weiyang; Bao, Chang; Ong, Zhan Yuin; Dong, Huihui; Yang, Yi Yan; Fan, Weimin

    2017-04-01

    Pseudomonas aeruginosa is often implicated in burn wound infections; its inherent drug resistance often renders these infections extremely challenging to treat. This is further compounded by the problem of emerging drug resistance and the dearth of novel antimicrobial drug discovery in recent years. In the perennial search for effective antimicrobial compounds, the authors identify short synthetic β-sheet folding peptides, IRIKIRIK (IK8L), IRIkIrIK (IK8-2D), and irikirik (IK8D) as prime candidates owing to their high potency against Gram-negative bacteria. In this study, the peptides are first assayed against 20 clinically isolated multidrug-resistant P. aeruginosa strains in comparison with the conventional antibiotics imipenem and ceftazidime, and IK8L is demonstrated to be the most effective. IK8L also exhibits superior antibacterial killing kinetics compared to imipenem and ceftazidime. From transmission electron microscopy, confocal microscopy, and protein release analyses, IK8L shows membrane-lytic antimicrobial mechanism. Repeated use of IK8L does not induce drug resistance, while the bacteria develop resistance against the antibiotics after several times of treatment at sublethal doses. Analysis of mouse blood serum chemistry reveals that peptide does not induce systemic toxicity. The potential utility of IK8L in the in vivo treatment of P. aeruginosa-infected burn wounds is further demonstrated in a mouse model.

  9. Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles.

    PubMed

    Das, Sourav; Sinha, Sayantan; Das, Bhaskar; Jayabalan, R; Suar, Mrutyunjay; Mishra, Amrita; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia; Tripathy, Suraj K

    2017-12-01

    Spread of antibiotic resistant bacteria through water, is a threat to global public health. Here, we report Fe-doped ZnO nanoparticles (Fe/ZnO NPs) based solar-photocatalytic disinfection (PCD) of multidrug resistant Escherichia coli (MDR E. coli). Fe/ZnO NPs were synthesized by chemical precipitation technique, and when used as photocatalyst for disinfection, proved to be more effective (time for complete disinfection = 90 min) than ZnO (150 min) and TiO2 (180 min). Lipid peroxidation and potassium (K(+)) ion leakage studies indicated compromisation of bacterial cell membrane and electron microscopy and live-dead staining confirmed the detrimental effects on membrane integrity. Investigations indicated that H2O2 was the key species involved in solar-PCD of MDR E. coli by Fe/ZnO NPs. X-ray diffraction and atomic absorption spectroscopy studies showed that the Fe/ZnO NPs system remained stable during the photocatalytic process. The Fe/ZnO NPs based solar-PCD process proved successful in the disinfection of MDR E. coli in real water samples collected from river, pond and municipal tap. The Fe/ZnO NPs catalyst made from low cost materials and with high efficacy under solar light may have potential for real world applications, to help reduce the spread of resistant bacteria.

  10. Identification and characterization of a Streptomyces sp. isolate exhibiting activity against multidrug-resistant coagulase-negative Staphylococci.

    PubMed

    Sadigh-Eteghad, Saeed; Dehnad, Alireza; Shanebandi, Dariush; Khalili, Iraj; Razmarayii, Nasser; Namvaran, Ali

    2011-12-01

    The resistance of 220 coagulase-negative Staphylococci (CNS) (associated with animal disease) to 13 antibiotics were determined using the disk diffusion method. 35.9% of multidrug-resistant coagulase-negative Staphylococci (MR-CNS) exhibited resistance to five or more than five antibiotics; all of these bacteria were resistant to methicillin too. The new Streptomyces sp. ABRIINW111 was isolated from the Zagros Mountains Hamadan, Iran. The 16S rDNA sequence of the isolate indicated that it has 98% similarity to S. levis, but some mutations in the alpha and gamma regions of the 16S rDNA sequence emphasize the probability of the existence of a new species. Preliminary and secondary antibacterial screenings revealed that the isolate is active against gram negative and positive bacteria. The diethyl ether extracted metabolite of the Streptomyces sp. ABRIINW111 showed an effective antibacterial activity against MR-CNS. So the diethyl ether extract of the new Streptomyces sp. strain ABRIINW111 can inhibit the MR-CNS in vitro, and it can offer a new approach to treat MR-CNS infectious patients.

  11. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?

    PubMed

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    2017-02-13

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting.

  12. Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections.

    PubMed

    Cardile, Anthony P; Woodbury, Ronald L; Sanchez, Carlos J; Becerra, Sandra C; Garcia, Rebecca A; Mende, Katrin; Wenke, Joseph C; Akers, Kevin S

    2016-11-19

    Biofilm formation is a major virulence factor for numerous pathogenic bacteria and is cited as a central event in the pathogenesis of chronic human infections, which is in large part due to excessive extracellular matrix secretion and metabolic changes that occur within the biofilm rendering them highly tolerant to antimicrobial treatments. Polyamines, including norspermidine, play central roles in bacterial biofilm development, but have also recently been shown to inhibit biofilm formation in select strains of various pathogenic bacteria. The aim of this study was to evaluate in vitro the biofilm dispersive and inhibitory activities of norspermidine against multidrug-resistant clinical isolates of Acinetobacter baumannii(n = 4), Klebsiella pneumoniae (n = 3), Pseudomonas aeruginosa (n = 5) and Staphylococcus aureus (n = 4) associated with chronic extremity wound infections using the semi-quantitative 96-well plate method and confocal laser microscopy. In addition to the antibiofilm activity, biocompatibility of norspermidine was also evaluated by measuring toxicity in vitro to human cell lines and whole porcine tissue explants using MTT viability assay and histological analysis. Norspermidine (5-20 mM) had variable dispersive and inhibitory activity on biofilms which was dependent on both the strain and species. Of the clinical bacterial species evaluated herein, A. baumannii isolates were the most sensitive to the effect of norspermidine, which was in part due to the inhibitory effects of norspermidine on bacterial motility and expression of genes involved in the production of homoserine lactones and quorum sensing molecules both essential for biofilm formation. Importantly, exposure of cell lines and whole tissues to norspermidine for prolonged periods of time (≥24 h) was observed to reduce viability and alter tissue histology in a time and concentration dependent manner, with 20 mM exposure having the greatest negative effects on both

  13. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic E. coli and Enterotoxigenic E. coli, on Raw Nopalitos (Opuntia ficus-indica L.) and in Nopalitos Salads from Local Retail Markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Torres-Vitela, Mdel Refugio; Villarruel-López, Angelica; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-05-01

    The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico.

  14. Bactericidal Activity of Methanol Extracts of Crabapple Mangrove Tree (Sonneratia caseolaris Linn.) Against Multi-Drug Resistant Pathogens

    PubMed Central

    Yompakdee, C.; Thunyaharn, S.; Phaechamud, T.

    2012-01-01

    The crabapple mangrove tree, Sonneratia caseolaris Linn. (Family: Sonneratiaceae), is one of the foreshore plants found in estuarine and tidal creek areas and mangrove forests. Bark and fruit extracts from this plant have previously been shown to have an anti-oxidative or cytotoxic effect, whereas flower extracts of this plant exhibited an antimicrobial activity against some bacteria. According to the traditional folklore, it is medicinally used as an astringent and antiseptic. Hence, this investigation was carried out on the extract of the leaves, pneumatophore and different parts of the flower or fruit (stamen, calyx, meat of fruit, persistent calyx of fruit and seeds) for antibacterial activity using the broth microdilution method. The antibacterial activity was evaluated against five antibiotic-sensitive species (three Gram-positive and two Gram-negative bacteria) and six drug-resistant species (Gram-positive i.e. Methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium and Gram-negative i.e. Extended-spectrum beta-lactamase-Escherichia coli, multidrug-resistant–Pseudomonas aeruginosa and Acenetobacter baumannii). The methanol extracts from all tested parts of the crabapple mangrove tree exhibited antibacterial activity against both Gram-positive and Gram-negative bacteria, but was mainly a bactericidal against the Gram-negative bacteria, including the multidrug-resistant strains, when compared with only bacteriostatic on the Gram-positive bacteria. Using Soxhlet apparatus, the extracts obtained by sequential extraction with hexane, dichloromethane and ethyl acetate revealed no discernable antibacterial activity and only slightly, if at all, reduced the antibacterial activity of the subsequently obtained methanol extract. Therefore, the active antibacterial compounds of the crabapple mangrove tree should have a rather polar structure. PMID:23441048

  15. Antibiotic resistance determinants of a group of multidrug-resistant Acinetobacter baumannii in China.

    PubMed

    Xiao-Min, Xu; You-Fen, Fan; Wei-Yun, Feng; Zu-Huang, Mi; Xing-Bei, Weng

    2014-06-01

    A group of Acinetobacter baumannii confers multidrug resistance, but the molecular epidemiology and multidrug resistance mechanisms are poorly understood. Nineteen isolates were identified, and the antimicrobial susceptibility profile was determined using the disc diffusion method. Then, PCR of 78 kinds of resistance-associated genes were performed. A novel variant of blaADC gene: blaADC-67 gene (Genbank accession No. JX169789) was prevalent in all 19 isolates. Moreover, ISAba1 could also provide strong promoter to upregulate the expression of blaADC67 to confer resistance to beta-lactam. This is the first report of emergence of blaADC-67 in A. baumannii worldwide, which might confer resistance to beta-lactam.

  16. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

    PubMed

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-06-20

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes.

  17. Molecular mechanism of ATP-dependent solute transport by multidrug resistance-associated protein 1.

    PubMed

    Chang, Xiu-bao

    2010-01-01

    Millions of new cancer patients are diagnosed each year and over half of these patients die from this devastating disease. Thus, cancer causes a major public health problem worldwide. Chemotherapy remains the principal mode to treat many metastatic cancers. However, occurrence of cellular multidrug resistance (MDR) prevents efficient killing of cancer cells, leading to chemotherapeutic treatment failure. Over-expression of ATP-binding cassette transporters, such as P-glycoprotein, breast cancer resistance protein and/or multidrug resistance-associated protein 1 (MRP1), confers an acquired MDR due to their capabilities of transporting a broad range of chemically diverse anticancer drugs across the cell membrane barrier. In this review, the molecular mechanism of ATP-dependent solute transport by MRP1 will be addressed.

  18. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: Evaluation of current strategies

    PubMed Central

    Wu, Chung-Pu; Calcagno, Anna Maria; Ambudkar, Suresh V.

    2008-01-01

    Overexpression of ATP-binding cassette (ABC) drug transporters that actively efflux a variety of amphipathic compounds can cause multidrug resistance (MDR) in cancer cells, which is a major obstacle in the success of cancer chemotherapy. The development of synthetic small molecule compounds or the identification of natural products that block ABC transporter-mediated efflux has been the conventional approach used to combat MDR. The strategy of using chemosensitizers, however, has not been successful in clinical cancer chemotherapy. Therefore, alternative approaches to identify or to synthesize compounds that can induce selective toxicity in cancer cells overexpressing one or more ABC transporters have been undertaken. This review summarizes the recent advances in identifying strategies to restore sensitivity to chemotherapeutics in multidrug resistant cancer cells. PMID:19079736

  19. The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland.

    PubMed

    Moradigaravand, Danesh; Reuter, Sandra; Martin, Veronique; Peacock, Sharon J; Parkhill, Julian

    2016-09-26

    Enterobacter cloacae is a clinically important Gram-negative member of the Enterobacteriaceae, which has increasingly been recognized as a major pathogen in nosocomial infections. Despite this, knowledge about the population structure and the distribution of virulence factors and antibiotic-resistance determinants of this species is scarce. In this study, we analysed a systematic collection of multidrug-resistant E. cloacae isolated between 2001 and 2011 from bloodstream infections across hospitals in the UK and Ireland. We found that the population is characterized by the presence of multiple clones formed at widely different time periods in the past. The clones exhibit a high degree of geographical heterogeneity, which indicates extensive dissemination of these E. cloacae clones across the UK and Ireland. These findings suggest that a diverse, community-based, commensal population underlies multidrug-resistant E. cloacae infections within hospitals.

  20. Severe infection with multidrug-resistant Salmonella choleraesuis in a young patient with primary sclerosing cholangitis

    PubMed Central

    Ferstl, Philip G; Reinheimer, Claudia; Jozsa, Katalin; Zeuzem, Stefan; Kempf, Volkhard AJ; Waidmann, Oliver; Grammatikos, Georgios

    2017-01-01

    Massive global spread of multidrug-resistant (MDR) Salmonella spp. expressing extended-spectrum beta-lactamase (ESBL) and additional resistance to fluoroquinolones has often been attributed to high international mobility as well as excessive use of oral antibiotics in livestock farming. However, MDR Salmonella spp. have not been mentioned as a widespread pathogen in clinical settings so far. We demonstrate the case of a 25-year-old male with primary sclerosing cholangitis who tested positive for MDR Salmonella enterica serotype Choleraesuis expressing ESBL and fluoroquinolone resistance. The pathogen was supposedly acquired during a trip to Thailand, causing severe fever, cholangitis and pancreatitis. To our knowledge, this is the first report of Salmonella enterica serotype Choleraesuis in Europe expressing such a multidrug resistance pattern. ESBL resistance of Salmonella enterica spp. should be considered in patients with obstructive biliary tract pathology and travel history in endemic countries. PMID:28373776

  1. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes

    PubMed Central

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  2. Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1)

    SciTech Connect

    DeGorter, Marianne K.; Conseil, Gwenaelle; Deeley, Roger G.; Campbell, Robert L.; Cole, Susan P.C.

    2008-01-04

    Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr{sup 324} in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated.

  3. Characterization of multidrug-resistant Escherichia coli by antimicrobial resistance profiles, plasmid replicon typing, and pulsed-field gel electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: Plasmid characterization has particular clinical importance because genes encoding significant traits including antimicrobial resistance are frequently carried on plasmids. The objective of this study was to examine the distribution of multidrug resistance (MDR) in Escherichia coli in relation ...

  4. Role of OmpA in the Multidrug Resistance Phenotype of Acinetobacter baumannii

    PubMed Central

    Fàbrega, Anna; Roca, Ignasi; Sánchez-Encinales, Viviana; Vila, Jordi; Pachón, Jerónimo

    2014-01-01

    Acinetobacter baumannii has emerged as a nosocomial pathogen with an increased prevalence of multidrug-resistant strains. The role of the outer membrane protein A (OmpA) in antimicrobial resistance remains poorly understood. In this report, disruption of the ompA gene led to decreased MICs of chloramphenicol, aztreonam, and nalidixic acid. We have characterized, for the first time, the contribution of OmpA in the antimicrobial resistance phenotype of A. baumannii. PMID:24379205

  5. IMPACT OF SEPSIS CLASSIFICATION AND MULTIDRUG RESISTANCE STATUS ON OUTCOME AMONG PATIENTS TREATED WITH APPROPRIATE THERAPY

    PubMed Central

    Burnham, Jason P.; Lane, Michael A.; Kollef, Marin H.

    2015-01-01

    Objective To assess the impact of sepsis classification and multidrug resistance status on outcome in patients receiving appropriate initial antibiotic therapy. Design A retrospective cohort study. Setting Barnes-Jewish Hospital, a 1250-bed teaching hospital. Patients Individuals with Enterobacteriaceae sepsis, severe sepsis, and septic shock that received appropriate initial antimicrobial therapy between June 2009 and December 2013. Interventions Clinical outcomes were compared according to multidrug resistance status, sepsis classification, demographics, severity of illness, comorbidities, and antimicrobial treatment. Measurements and Main Results We identified 510 patients with Enterobacteriaceae bacteremia and sepsis, severe sepsis, or septic shock. Sixty-seven patients (13.1%) were non-survivors. Mortality increased significantly with increasing severity of sepsis (3.5%, 9.9%, and 28.6%, for sepsis, severe sepsis, and septic shock, respectively, p<0.05). Time to antimicrobial therapy was not significantly associated with outcome. APACHE II was more predictive of mortality than age-adjusted Charlson comorbidity index. Multidrug resistance status did not result in excess mortality. Length of intensive care unit and hospital stay increased with more severe sepsis. In multivariate logistic regression analysis, African-American race, sepsis severity, APACHE II score, solid organ cancer, cirrhosis, and transfer from an outside hospital were all predictors of mortality. Conclusions Our results support sepsis severity, but not multidrug resistance status as being an important predictor of death when all patients receive appropriate initial antibiotic therapy. Future sepsis trials should attempt to provide appropriate antimicrobial therapy and take sepsis severity into careful account when determining outcomes. PMID:25855900

  6. Molecular characterization of multidrug-resistant Shigella spp. of food origin.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Tadashi

    2015-02-02

    Shigella spp. are the causative agents of food-borne shigellosis, an acute enteric infection. The emergence of multidrug-resistant clinical isolates of Shigella presents an increasing challenge for clinicians in the treatment of shigellosis. Several studies worldwide have characterized the molecular basis of antibiotic resistance in clinical Shigella isolates of human origin, however, to date, no such characterization has been reported for Shigella spp. of food origin. In this study, we characterized the genetic basis of multidrug resistance in Shigella spp. isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets, and slaughterhouses in Egypt. Twenty-four out of 27 Shigella isolates (88.9%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The multidrug-resistant Shigella spp. were as follows: Shigella flexneri (66.7%), Shigella sonnei (18.5%), and Shigella dysenteriae (3.7%). The highest resistance was to streptomycin (100.0%), then to kanamycin (95.8%), nalidixic acid (95.8%), tetracycline (95.8%), spectinomycin (93.6%), ampicillin (87.5%), and sulfamethoxazole/trimethoprim (87.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes. Our results indicated that 11.1% and 74.1% of isolates were positive for class 1 and class 2 integrons, respectively. Beta-lactamase-encoding genes were identified in 77.8% of isolates, and plasmid-mediated quinolone resistance genes were identified in 44.4% of isolates. These data provide useful information to better understand the molecular basis of antimicrobial resistance in Shigella spp. To the best of our knowledge, this is the first report of the molecular characterization of antibiotic resistance in Shigella spp. isolated from food.

  7. A case of acute postoperative keratitis after deep anterior lamellar keratoplasty by multidrug resistant Klebsiella

    PubMed Central

    Bajracharya, Leena; Sharma, Binita; Gurung, Reeta

    2015-01-01

    A healthy lady of 42 years underwent deep anterior lamellar keratoplasty for granular dystrophy. The very next day, it was complicated by development of infectious keratitis. The organism was identified as multidrug resistant Klebsiella pneumoniae. Donor corneal button may be implicated in the transmission of infection in an otherwise uneventful surgery and follow-up. Nosocomial infections are usually severe, rapidly progressive and difficult to treat. Finally, the lady had to undergo therapeutic penetrating keratoplasty for complete resolution of infection. PMID:26044477

  8. Novel Bis-Indole Agents Active Against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Jacobs, Michael R.; Bajaksouzian, Saralee; Good, Caryn E.; Butler, Michelle M.; Williams, John D.; Peet, Norton P.; Bowlin, Terry L.; Endimiani, Andrea; Bonomo, Robert A

    2013-01-01

    The in vitro activity of five novel Microbiotix bis-indole agents (MBXs) against 30 multidrug-resistant (MDR) A. baumannii (including 18 resistant to carbapenems) was evaluated. Overall, MIC90s ranged from 1-8 μg/ml, whereas those for imipenem were > 64 μg/ml. MBX 1196 was the most potent (MIC90 1 μg/ml). MBXs are compounds that are highly effective against MDR A. baumannii. PMID:21146724

  9. Multidrug-resistant Achromobacter animicus causing wound infection in a street child in Mwanza, Tanzania.

    PubMed

    Moremi, Nyambura; Claus, Heike; Hingi, Marko; Vogel, Ulrich; Mshana, Stephen E

    2017-02-10

    Achromobacter animicus (A. animicus) is an aerobic, motile, gram-negative, non-fermenting small bacillus that can also grow anaerobically with potassium nitrate. It has been isolated from sputum of humans suffering from respiratory infections. Literature regarding the role of A. animicus in wound infections is limited. We report a first case of a chronic post-traumatic wound infection caused by a multidrug-resistant A. animicus in a street child from Africa and accompanied diagnostic challenges.

  10. Multiple Clones within Multidrug-Resistant Salmonella enterica Serotype Typhimurium Phage Type DT104

    PubMed Central

    Markogiannakis, Antonis; Tassios, Panayotis T.; Lambiri, Maria; Ward, Linda R.; Kourea-Kremastinou, Jenny; Legakis, Nicholas J.; Vatopoulos, Alkiviadis C.

    2000-01-01

    Six distinct clones were present among Greek multidrug-resistant Salmonella enterica serotype Typhimurium phage type DT104, since isolates belonging to resistance phenotypes including the ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline) core could be distinguished with respect to their pulsed-field gel electrophoresis patterns, int1 integron structures, and presence or absence of antibiotic resistance genes ant(3")-Ia, pse-1, and tem-1. PMID:10699039

  11. Increasing Incidence of Multidrug Resistance Among Cystic Fibrosis Respiratory Bacterial Isolates.

    PubMed

    Rutter, W Cliff; Burgess, Donna R; Burgess, David S

    2017-01-01

    Pseudomonas aeruginosa and Staphylococcus aureus are common pathogens in cystic fibrosis (CF) patients with increasing multidrug resistance (MDR). This study characterized antimicrobial susceptibility trends among organisms isolated from the respiratory tract of CF patients. Microbiological culture and sensitivity results for all CF patients were collected from January 2010 through December 2014. Minimum inhibitory concentrations were obtained using Phoenix(®) and Etest(®) methods. Clinical and Laboratory Standards Institute guidelines were used to remove duplicate isolates and develop antimicrobial susceptibility reports. MDR was defined as resistance to one agent in three or more antibiotic classes or oxacillin resistance in S. aureus. Overall, 542 bacterial isolates from 376 cultures were analyzed for trends. P. aeruginosa (41%), S. aureus (40%), and Stenotrophomonas maltophilia (8%) were the most commonly isolated organisms. Multidrug-resistant organism isolation increased from 39% to 49% (r = 0.76, p = 0.13), while representing 47.6% of all isolates. Multidrug-resistant P. aeruginosa incidence increased each year from 26% to 43% (r = 0.89, p = 0.046), while P. aeruginosa isolation decreased from 47% to 38% over the study period (r = -0.93, p = 0.02). MRSA accounted for 62.6% of all S. aureus isolated, while overall multidrug-resistant S. aureus incidence was 73.1% in all cultures. MDR among common pathogens in CF continues to increase. Empiric therapy for CF exacerbations should be targeted to previous antimicrobial susceptibility, and P. aeruginosa and S. aureus should be empirically covered.

  12. Directly observed treatment, short-course strategy and multidrug-resistant tuberculosis: are any modifications required?

    PubMed Central

    Bastian, I.; Rigouts, L.; Van Deun, A.; Portaels, F.

    2000-01-01

    Multidrug-resistant tuberculosis (MDRTB) should be defined as tuberculosis with resistance to at least isoniazid and rifampicin because these drugs are the cornerstone of short-course chemotherapy, and combined isoniazid and rifampicin resistance requires prolonged treatment with second-line agents. Short-course chemotherapy is a key ingredient in the tuberculosis control strategy known as directly observed treatment, short-course (DOTS). For populations in which multidrug-resistant tuberculosis is endemic, the outcome of the standard short-course chemotherapy regimen remains uncertain. Unacceptable failure rates have been reported and resistance to additional agents may be induced. As a consequence there have been calls for well-functioning DOTS programmes to provide additional services in areas with high rates of multidrug-resistant tuberculosis. These "DOTS-plus for MDRTB programmes" may need to modify all five elements of the DOTS strategy: the treatment may need to be individualized rather than standardized; laboratory services may need to provide facilities for on-site culture and antibiotic susceptibility testing; reliable supplies of a wide range of expensive second-line agents would have to be supplied; operational studies would be required to determine the indications for and format of the expanded programmes; financial and technical support from international organizations and Western governments would be needed in addition to that obtained from local governments. PMID:10743297

  13. Reducing the price of treatment for multidrug-resistant tuberculosis through the Global Drug Facility

    PubMed Central

    Cordier-Lassalle, Thierry; Keravec, Joel

    2015-01-01

    Abstract Problem Many countries have limited experience of securing the best prices for drugs and have little negotiating power. This is particularly true for the complex, lengthy and expensive regimens used to treat multidrug-resistant tuberculosis. Approach The Stop TB Partnership’s Global Drug Facility is dedicated to improving worldwide access to antituberculosis medicines and diagnostic techniques that meet international quality standards. Local setting The Global Drug Facility is able to secure price reductions through competitive tendering among prequalified drug manufacturers and by consolidating orders to achieve large purchase volumes. Consolidating the market in this way increases the incentives for suppliers of quality-assured medicines. Relevant changes In 2013 the Global Drug Facility reduced the price of the second-line drugs it supplies for multidrug-resistant tuberculosis: the overall cost of the longest and most expensive treatment regimen for a patient decreased by 26% – from 7890 United States dollars (US$) in 2011 to US$ 5822 in 2013. Lessons learnt The price of treatment for multidrug-resistant tuberculosis supplied by the Global Drug Facility was reduced by consolidating orders to achieve large purchase volumes, by international, competitive bidding and by the existence of donor-funded medicine stockpiles. The rise in the number of suppliers of internationally quality-assured drugs was also important. The savings achieved from lower drug costs could be used to increase the number of patients on high-quality treatment. PMID:26229192

  14. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2) Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells

    PubMed Central

    Fu, Rong-Jie; Lv, Ya-Ping; Jin, Wei; Meng, Chao; Chen, Guo-Qiang; Huang, Lei

    2016-01-01

    China accounts for almost half of the total number of liver cancer cases and deaths worldwide, and hepatocellular carcinoma (HCC) is the most primary liver cancer. Snail family transcriptional repressor 2 (SNAI2) is known as an epithelial to mesenchymal transition-inducing transcription factor that drives neoplastic epithelial cells into mesenchymal phenotype. However, the roles of endogenous SNAI2 remain controversial in different types of malignant tumors. Herein, we surprisingly identify that anchorage-independent growth, including the formation of tumor sphere and soft agar colony, is significantly increased when SNAI2 expression is inhibited by shRNAs in HCC cells. Suppression of SNAI2 suffices to up-regulate several cancer stem genes. Although unrelated to the metastatic ability, SNAI2 inhibition does increase the efflux of Hoechst 33342 and enhance multidrug resistance in vitro and in vivo. In agreement with this data, we demonstrate for the first time that decreasing SNAI2 level can transcriptionally upregulate several ATP binding cassette (ABC) transporter genes such as ABCB1. Moreover, ABC transporters’ inhibitor verapamil can rescue the multidrug resistance induced by SNAI2 inhibition. Our results implicate that SNAI2 behaves as a tumor suppressor by inhibiting multidrug resistance via suppressing ABC transporter genes in HCC cells. PMID:27760172

  15. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia

    PubMed Central

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  16. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jérôme; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-05-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  17. Inhibition of multidrug resistant Listeria monocytogenes by peptides isolated from combinatorial phage display libraries.

    PubMed

    Flachbartova, Z; Pulzova, L; Bencurova, E; Potocnakova, L; Comor, L; Bednarikova, Z; Bhide, M

    2016-01-01

    The aim of the study was to isolate and characterize novel antimicrobial peptides from peptide phage library with antimicrobial activity against multidrug resistant Listeria monocytogenes. Combinatorial phage-display library was used to affinity select peptides binding to the cell surface of multidrug resistant L. monocytogenes. After several rounds of affinity selection followed by sequencing, three peptides were revealed as the most promising candidates. Peptide L2 exhibited features common to antimicrobial peptides (AMPs), and was rich in Asp, His and Lys residues. Peptide L3 (NSWIQAPDTKSI), like peptide L2, inhibited bacterial growth in vitro, without any hemolytic or cytotoxic effects on eukaryotic cells. L1 peptide showed no inhibitory effect on Listeria. Structurally, peptides L2 and L3 formed random coils composed of α-helix and β-sheet units. Peptides L2 and L3 exhibited antimicrobial activity against multidrug resistant isolates of L. monocytogenes with no haemolytic or toxic effects. Both peptides identified in this study have the potential to be beneficial in human and veterinary medicine.

  18. Microbiological evaluation of the efficacy of two new biodetergents on multidrug-resistant nosocomial pathogens

    PubMed Central

    2009-01-01

    Background In the last few years, several outbreaks of nosocomial infections caused by multidrug-resistant pathogenic agents have been observed, and various biocides products were developed in order to control this phenomenon. We investigated the efficacy of two natural biodetergents composed of plants and kelps extracts, BATT1 and BATT2, against multidrug-resistant strains. Methods In-vitro antibacterial efficacy of BATT1 and BATT2 against nosocomial multidrug-resistant isolates was assessed using a suspension-inhibition test, with and without bovine serum albumin (BSA). The test was also carried out on glass surfaces with and without BSA. Results In vitro tests with both biocidal disinfectants at 25% concentration demonstrated an overall drop in bacterial, mould and yeast counts after 10 min of contact with or without organic substances. For Pseudomonas aeruginosa, it was necessary to use undiluted disinfectants with and without an organic substance. The same results were obtained in tests carried out on glass surfaces for all strains. Conclusions The natural products BATT1 and BATT2 behave like good biocides even in presence of organic substances. The use of both disinfectants may be beneficial for reducing hospital-acquired pathogens that are not susceptible to disinfectants. However, it has to be stressed that all these experiments were carried out in vitro and they still require validation from use in clinical practice. PMID:20015394

  19. Unaltered expression of multidrug resistance transporters in polycyclic aromatic hydrocarbon-resistant rat liver cells.

    PubMed

    Payen, L; Courtois, A; Langouët, S; Guillouzo, A; Fardel, O

    2001-01-02

    Rat liver epithelial cells resistant to the chemical carcinogen 3MC, termed F258/3MC cells and generated by long-term exposure of parental F258 cells to the PAH, were characterized, especially with respect to expression of multidrug resistance transporters such as P-glycoprotein, MRP1 and MRP2. F258/3MC cells were found to be cross-resistant to other PAHs such as BP and dimethylbenz(a)anthracene but remained sensitive to known substrates of multidrug resistance efflux pumps such as doxorubicin and vincristine. They did not display either decreased cellular PAH accumulation or increased PAH efflux. In addition, P-glycoprotein and MRP2 mRNA levels were not, or only barely detected, in F258/3MC cells and in their parental counterparts whereas these PAH-resistant and sensitive cells showed closed levels of MRP1 mRNAs and activity. Moreover, P-gp- and MRP1-overexpressing cells were shown to display similar accumulation and efflux of BP than those found in P-gp- and MRP1-negative control cells. These data therefore suggest that multidrug resistance transporters do not contribute to PAH resistance in PAH-selected liver cells.

  20. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer.

    PubMed

    Zheng, Nannan; Gao, Yanan; Ji, Hongyu; Wu, Linhua; Qi, Xuejing; Liu, Xiaona; Tang, Jingling

    2016-08-01

    The multidrug resistance (MDR), including intrinsic and acquired multidrug resistance, is a major problem in tumor chemotherapy. Here, we proposed a strategy for modulating intrinsic and/or acquired multidrug resistance by altering the levels of Bax and Bcl-2 expression and inhibiting the transport function of P-gp, increasing the intracellular concentration of its substrate anticancer drugs. Vitamin E derivative-based nanoemulsions containing paclitaxel (MNEs-PTX) were fabricated in this study, and in vitro anticancer efficacy of the nanoemulsion system was evaluated in the paclitaxel-resistant human ovarian carcinoma cell line A2780/Taxol. The MNEs-PTX exhibited a remarkably enhanced antiproliferation effect on A2780/Taxol cells than free paclitaxel (PTX) (p < 0.01). Compared with that in the Taxol group, MNEs-PTX further decreased mitochondrial potential. Vitamin E derivative-based multifunctional nanoemulsion (MNEs) obviously increased intracellular accumulation of rhodamine 123 (P-gp substrate). Overexpression of Bcl-2 is generally associated with tumor drug resistance, we found that MNEs could reduce Bcl-2 protein level and increase Bax protein level. Taken together, our findings suggest that anticancer drugs associated with MNEs could play a role in the development of MDR in cancers.

  1. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel-7402/5-fluorouracil cells

    PubMed Central

    LING, SUNBIN; TIAN, YU; ZHANG, HAIQUAN; JIA, KAIQI; FENG, TINGTING; SUN, DEGUANG; GAO, ZHENMING; XU, FEI; HOU, ZHAOYUAN; LI, YAN; WANG, LIMING

    2014-01-01

    Metformin exhibits anti-proliferative effects in tumor cells in vitro and in vivo. The present study investigated the ability of metformin to reverse multidrug resistance (MDR) in human hepatocellular carcinoma Bel-7402/5-fluorouracil (5-Fu; Bel/Fu) cells. The synergistic anti-proliferative effect of metformin combined with 5-Fu was evaluated using a Cell Counting kit-8 assay. The variation in apoptotic rates and cell cycle distribution were evaluated using a flow cytometric assay and variations in target gene and protein expression were monitored using reverse transcription-polymerase chain reaction and western blot analysis. The results demonstrated that metformin had a synergistic anti-proliferative effect with 5-Fu in the Bel/Fu cells. The variations in the number of apoptotic cells and distribution of the cell cycle were consistent with the variability in cell viability. Metformin targeted the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, suppressed the expression of hypoxia-inducible factor-1α (HIF-1α) and transcriptionally downregulated the expression of multidrug resistance protein 1/P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1). Collectively, these findings suggested that metformin may target the AMPK/mTOR/HIF-1α/P-gp and MRP1 pathways to reverse MDR in hepatocellular carcinoma. PMID:25310259

  2. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    PubMed Central

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  3. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog

    SciTech Connect

    Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M.

    1988-02-01

    Multidrug-resistant human KB carcinoma cells express a 170,000-dalton membrane glycoprotein (P-glycoprotein) that can be photoaffinity labeled with the vinblastine analog N-(p-azido-(3-/sup 125/I)salicyl)-N'-(beta-aminoethyl)vindesine. Several agents that suppress the multidrug-resistant phenotype, including N-solanesyl-N,N'-bis(3,4-dimethylbenzyl)ethylenediamine, cepharanthine, quinidine, and reserpine, were found to inhibit photolabeling of P-glycoprotein at doses comparable to those that reverse multidrug resistance. However, the phenothiazines chlorpromazine and trifluoperazine, which also effectively reverse multidrug resistance, were poor inhibitors of the photoaffinity labeling of P-glycoprotein. Chloroquine, propranolol, or atropine, which only partially reversed the drug resistance, also did not inhibit photolabeling. Naphthalene sulfonamide calmodulin inhibitors, W7 and W5, as well as many other drugs that did not circumvent multidrug resistance, did not inhibit photolabeling. These studies suggest that most, but not all, agents that phenotypically suppress multidrug resistance also inhibit drug binding to a site on P-glycoprotein with which a photoaffinity analog of vinblastine interacts.

  4. Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes

    PubMed Central

    2011-01-01

    Background The emergence of multi-drug resistant (MDR) phenotypes is a major public health problem today in the treatment of bacterial infections. The present study was designed to evaluate the antibacterial activities of the methanol extracts of eleven Cameroonian spices on a panel of twenty nine Gram negative bacteria including MDR strains. Methods The phytochemical analysis of the extracts was carried out by standard tests meanwhile the liquid micro-broth dilution was used for all antimicrobial assays. Results Phytochemical analysis showed the presence of alkaloids, phenols and tannins in all plants extracts. The results of the antibacterial assays indicated that all tested extracts exert antibacterial activities, with the minimum inhibitory concentration (MIC) values varying from 32 to 1024 μg/ml. The extracts from Dichrostachys glomerata, Beilschmiedia cinnamomea, Aframomum citratum, Piper capense, Echinops giganteus, Fagara xanthoxyloïdes and Olax subscorpioïdea were the most active. In the presence of efflux pump inhibitor, PAßN, the activity of the extract from D. glomerata significantly increased on 69.2% of the tested MDR bacteria. At MIC/5, synergistic effects were noted with the extract of D. glomerata on 75% of the tested bacteria for chloramphenicol (CHL), tetracycline (TET) and norfloxacin (NOR). With B. cinnamomea synergy were observed on 62.5% of the studied MDR bacteria with CHL, cefepime (FEP), NOR and ciprofloxacin (CIP) and 75% with erythromycin (ERY). Conclusion The overall results provide information for the possible use of the studied extracts of the spices in the control of bacterial infections involving MDR phenotypes. PMID:22044718

  5. Prediction of multi-drug resistance transporters using a novel sequence analysis method [version 2; referees: 2 approved

    DOE PAGES

    McDermott, Jason E.; Bruillard, Paul; Overall, Christopher C.; ...

    2015-03-09

    There are many examples of groups of proteins that have similar function, but the determinants of functional specificity may be hidden by lack of sequencesimilarity, or by large groups of similar sequences with different functions. Transporters are one such protein group in that the general function, transport, can be easily inferred from the sequence, but the substrate specificity can be impossible to predict from sequence with current methods. In this paper we describe a linguistic-based approach to identify functional patterns from groups of unaligned protein sequences and its application to predict multi-drug resistance transporters (MDRs) from bacteria. We first showmore » that our method can recreate known patterns from PROSITE for several motifs from unaligned sequences. We then show that the method, MDRpred, can predict MDRs with greater accuracy and positive predictive value than a collection of currently available family-based models from the Pfam database. Finally, we apply MDRpred to a large collection of protein sequences from an environmental microbiome study to make novel predictions about drug resistance in a potential environmental reservoir.« less

  6. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa.

    PubMed

    Briers, Yves; Walmagh, Maarten; Grymonprez, Barbara; Biebl, Manfred; Pirnay, Jean-Paul; Defraine, Valerie; Michiels, Jan; Cenens, William; Aertsen, Abram; Miller, Stefan; Lavigne, Rob

    2014-07-01

    Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼ 5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.

  7. Prediction of multi-drug resistance transporters using a novel sequence analysis method [version 2; referees: 2 approved

    SciTech Connect

    McDermott, Jason E.; Bruillard, Paul; Overall, Christopher C.; Gosink, Luke; Lindemann, Stephen R.

    2015-03-09

    There are many examples of groups of proteins that have similar function, but the determinants of functional specificity may be hidden by lack of sequencesimilarity, or by large groups of similar sequences with different functions. Transporters are one such protein group in that the general function, transport, can be easily inferred from the sequence, but the substrate specificity can be impossible to predict from sequence with current methods. In this paper we describe a linguistic-based approach to identify functional patterns from groups of unaligned protein sequences and its application to predict multi-drug resistance transporters (MDRs) from bacteria. We first show that our method can recreate known patterns from PROSITE for several motifs from unaligned sequences. We then show that the method, MDRpred, can predict MDRs with greater accuracy and positive predictive value than a collection of currently available family-based models from the Pfam database. Finally, we apply MDRpred to a large collection of protein sequences from an environmental microbiome study to make novel predictions about drug resistance in a potential environmental reservoir.

  8. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches

    PubMed Central

    Karaiskos, Ilias; Giamarellou, Helen

    2014-01-01

    Introduction: In the era of multidrug-resistant, extensively drug-resistant (XDR) and even pandrug-resistant Gram-negative microorganisms, the medical community is facing the threat of untreatable infections particularly those caused by carbapenemase-producing bacteria, that is, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Therefore, all the presently available antibiotics, as well as for the near future compounds, are presented and discussed. Areas covered: Current knowledge concerning mechanisms of action, in vitro activity and interactions, pharmacokinetic/pharmacodynamics, clinical efficacy and toxicity issues for revived and novel antimicrobial agents overcoming current resistance mechanisms, including colistin, tigecycline, fosfomycin, temocillin, carbapenems, and antibiotics still under development for the near future such as plazomicin, eravacycline and carbapenemase inhibitors is discussed. Expert opinion: Colistin is active in vitro and effective in vivo against XDR carbapenemase-producing microorganisms in the critically ill host, whereas tigecycline, with the exception of P. aeruginosa, has a similar spectrum of activity. The efficacy of combination therapy in bacteremias and ventilator-associated pneumonia caused by K. pneumoniae carbapenemase producers seems to be obligatory, whereas in cases of P. aeruginosa and A. baumannii its efficacy is questionable. Fosfomycin, which is active against P. aeruginosa and K. pneumoniae, although promising, shares poor experience in XDR infections. The in vivo validity of the newer potent compounds still necessitates the evaluation of Phase III clinical trials particularly in XDR infections. PMID:24766095

  9. Time-kill effect of levofloxacin on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: synergism with imipenem and colistin.

    PubMed

    Safarika, A; Galani, I; Pistiki, A; Giamarellos-Bourboulis, E J

    2015-02-01

    In the present study, we challenged the concept that levofloxacin should not be used for the management of ventilator-associated pneumonia (VAP) when minimum inhibitory concentrations (MICs) exceed 2 μg/ml. Multidrug-resistant (MDR) and genetically distinct isolates of Pseudomonas aeruginosa (n = 49) and Acinetobacter baumannii (n = 29) from patients with VAP were exposed over time to levofloxacin, imipenem, colistin and their combinations. Synergy between levofloxacin and imipenem was found in 55.3 % and between levofloxacin and colistin in 90.9 % of isolates of P. aeruginosa within the first 4 h of growth. Synergy with imipenem but not with colistin was dependent of the MIC. Synergy between levofloxacin and imipenem was found in 58.6 % of isolates of A. baumannii after 24 h of growth. Considerable synergy was found between levofloxacin and colistin, reaching 84.8 % of isolates of A.baumannii after 6 h of growth. Synergy was independent from the MIC. These results create hopes that levofloxacin can be used as combination therapy for infections by MDR bacteria.

  10. Isolation, Identification And Screening Antibacterial Activity from Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli

    NASA Astrophysics Data System (ADS)

    Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus

    2017-02-01

    Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.

  11. Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant staphylococci

    PubMed Central

    Mohammad, Haroon; Mayhoub, Abdelrahman S.; Cushman, Mark; Seleem, Mohamed N.

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections are a leading cause of death among all fatalities caused by antibiotic-resistant bacteria. With the rise of increasing resistance to current antibiotics, new antimicrobials and treatment strategies are urgently needed. Thiazole compounds have been shown to possess potent antimicrobial activity. A lead thiazole 1 and a potent derivative 2 were synthesized and their activity in combination with glycopeptide antibiotics was determined against an array of MRSA and vancomycin-resistant Staphylococcus aureus (VRSA) clinical isolates. Additionally, the anti-biofilm activity of the novel thiazoles was investigated against Staphylococcus epidermidis. Compound 2 behaved synergistically with vancomycin against MRSA and was able to re-sensitize VRSA to vancomycin, reducing its minimum inhibitory concentration (MIC) by 512-fold in two strains. Additionally, both thiazole compounds were superior to vancomycin in significantly reducing S. epidermidis biofilm mass. Collectively the results obtained demonstrate compounds 1 and 2 possess potent antimicrobial activity alone or in combination with vancomycin against multidrug-resistant staphylococci and show potential for use in disrupting staphylococcal biofilm. PMID:25315757

  12. A New Combination of a Pleuromutilin Derivative and Doxycycline for Treatment of Multidrug-Resistant Acinetobacter baumannii.

    PubMed

    Siricilla, Shajila; Mitachi, Katsuhiko; Yang, Junshu; Eslamimehr, Shakiba; Lemieux, Maddie R; Meibohm, Bernd; Ji, Yinduo; Kurosu, Michio

    2017-03-22

    Multidrug-resistant (MDR) Acinetobacter baumannii is one of the most difficult Gram-negative bacteria to treat and eradicate. In a cell-based screening of pleuromutilin derivatives against a drug sensitive A. baumannii strain, new molecules (2-4) exhibit bacteriostatic activity with 3.13 μg/mL concentration and 1 shows bactericidal activity with an MBC of 6.25 μg/mL. The pleuromutilin derivative 1 displays strong synergistic effects with doxycycline in a wide range of concentrations. A 35/1 ratio of 1 and doxycycline (1-Dox 35/1) kills drug susceptible A. baumannii with the MBC of 2.0 μg/mL and an MDR A. baumannii with the MBC of 3.13 μg/mL. In vitro anti-Acinetobacter activity of 1-Dox 35/1 is superior to that of clinical drugs such as tobramycin, tigecycline, and colistin. The efficacy of 1-Dox 35/1 is evaluated in a mouse septicemia model; treatment of the infected C57BL/6 mice with 1-Dox 35/1 protects from lethal infection of A. baumannii with an ED50 value of <2.0 mg/kg.

  13. Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens.

    PubMed

    Ballo, Myriam K S; Rtimi, Sami; Mancini, Stefano; Kiwi, John; Pulgarin, César; Entenza, José M; Bizzini, Alain

    2016-07-01

    Using direct current magnetron sputtering (DCMS), we generated flexible copper polyester surfaces (Cu-PES) and investigated their antimicrobial activity against a range of multidrug-resistant (MDR) pathogens including eight Gram-positive isolates (three methicillin-resistant Staphylococcus aureus [MRSA], four vancomycin-resistant enterococci, one methicillin-resistant Staphylococcus epidermidis) and four Gram-negative strains (one extended-spectrum β-lactamase-producing [ESBL] Escherichia coli, one ESBL Klebsiella pneumoniae, one imipenem-resistant Pseudomonas aeruginosa, and one ciprofloxacin-resistant Acinetobacter baumannii). Bactericidal activity (≥3 log10 CFU reduction of the starting inoculum) was reached within 15-30 min exposure to Cu-PES. Antimicrobial activity of Cu-PES persisted in the absence of oxygen and against both Gram-positive and Gram-negative bacteria containing elevated levels of catalases, indicating that reactive oxygen species (ROS) do not play a primary role in the killing process. The decrease in cell viability of MRSA ATCC 43300 and Enterococcus faecalis V583 correlated with the progressive loss of cytoplasmic membrane integrity both under aerobic and anaerobic conditions, suggesting that Cu-PES mediated killing is primarily induced by disruption of the cytoplasmic membrane function. Overall, we here present novel antimicrobial copper surfaces with improved stability and sustainability and provide further insights into their mechanism of killing.

  14. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy

    DTIC Science & Technology

    2014-06-11

    20% hydrogen peroxide in volume) and rinsed with deionized water . The substrates were then dried with a stream of nitrogen before being loaded into...Infections are commonly associated with methicillin-resistant Staphylococcus aureus (MRSAJ and gram-negative bacteria , specifically the multidrug resistant...infections associated with extended-spectrum 13-lactamase-producing bacteria , including Escherichia coli, Klebsiella pneumoniae, and multidrug resistant

  15. N-alkanol-N-cyclohexanol amine aryl esters: Multidrug resistance (MDR) reversing agents with high potency and efficacy.

    PubMed

    Teodori, Elisabetta; Dei, Silvia; Coronnello, Marcella; Floriddia, Elisa; Bartolucci, Gianluca; Manetti, Dina; Romanelli, Maria Novella; Santo Domingo Porqueras, Diego; Salerno, Milena

    2017-02-15

    In a continuing search for potent P-gp-dependent multidrug-resistant (MDR) reversers we synthesized and studied a new series of N-alkanol-N-cyclohexanol amine aryl esters characterized by the presence of two linkers with different flexibility: a polymethylene chain of variable length and a cyclohexylic scaffold, that gave origin to two geometrical isomers (cis and trans). The reversal activity of the new compounds was evaluated on the K562/DOX cell line by three tests: pirarubicin uptake modulation, doxorubicin cytotoxicity enhancement (reversal fold, RF) and inhibition of P-gp-mediated rhodamine-123 (Rhd 123) efflux tests. The chemical stability of their ester function was evaluated in the experimental conditions utilized (phosphate buffer solution (PBS), bovine serum and in the presence of K562/DOX cells) and in human plasma. The new series of molecules showed very interesting MDR reversing properties; in particular compound 5b (ELF26B), characterized by trans stereochemistry and a 5-methylene chain, presented the best pharmacological profile and is stable in each tested medium. Compound 5b could be an interesting lead for the development of new potent and efficacious P-gp-dependent MDR modulators.

  16. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm.

    PubMed

    Jamal, Muhsin; Hussain, Tahir; Das, Chythanya Rajanna; Andleeb, Saadia

    2015-04-01

    Biofilm has many serious consequences for public health and is a major virulence factor contributing to the chronicity of infections. The aim of the current study was to isolate and characterize a bacteriophage that inhibits multidrug-resistant Klebsiella pneumonia (M) in planktonic form as well as biofilm. This phage, designated bacteriophage Z, was isolated from wastewater. Its adsorption rate to its host bacterium was significantly enhanced by MgCl2 and CaCl2. It has a wide range of pH and heat stability. From its one-step growth, latent time and burst size were determined to be 24 min and about 320 virions per cell, respectively. As analysed by transmission electron microscopy, phage Z had an icosahedral head of width 76±10 nm, length 92±14 nm and icosahedron side 38 nm, and a non-contractile tail 200±15 nm long and 14-29 nm wide. It belongs to the family Siphoviridae in the order Caudovirales. Six structural proteins ranging from 18 to 65 kDa in size were revealed by SDS-PAGE. The genome was found to comprise double-stranded DNA with an approximate size of 36 kb. Bacteria were grown in suspension and as biofilms to compare the susceptibility of both phenotypes to the phage lytic action. Phage Z was effective in reducing biofilm biomass after 24 and 48 h, showing more than twofold and threefold reduction, respectively. Biofilm cells and stationary-phase planktonic bacteria were killed at a lower rate than exponential-phase planktonic bacteria.

  17. Risk Factors for Multi-Drug Resistant Pathogens and Failure of Empiric First-Line Therapy in Acute Cholangitis

    PubMed Central

    Reuken, Philipp A.; Torres, Dorian; Baier, Michael; Löffler, Bettina; Lübbert, Christoph; Lippmann, Norman; Stallmach, Andreas; Bruns, Tony

    2017-01-01

    Background Acute cholangitis (AC) requires the immediate initiation of antibiotic therapy in addition to treatment for biliary obstruction. Against a background of an increasing prevalence of multi-drug resistant (MDR) bacteria, the risk factors for the failure of empiric therapy must be defined. Methods Using a pathogen-based approach, 1764 isolates from positive bile duct cultures were retrospectively analyzed to characterize the respective pathogen spectra in two German tertiary centers. Using a patient-based approach, the clinical and laboratory data for 83 patients with AC were assessed to identify risk factors for AC with pathogens resistant to the applied empiric therapy. Results Bile cultures were predominantly polymicrobial, and empiric antibiotic therapies did not cover the full biliary pathogen spectrum in 78% of cases. MDR bacteria were isolated from the bile of 24/83 (29%) patients. The univariate risk factors for biliary MDR bacteria were male sex, nosocomial AC, prior antibiotic exposure and prior biliary stenting, of which biliary stenting was the only independent risk factor according to multivariate analysis (OR = 3.8; 95% CI 1.3–11.0, P = 0.013). Although there were no significant differences in survival or hospital stay in AC patients with and without detected biliary MDR pathogens, the former more often had a concomitant bloodstream infection (58% vs. 24%; P = 0.019), including those involving MDR pathogens or fungi (21% vs. 2%; P = 0.007). Conclusion Patients with biliary stents who develop AC should receive empiric therapy covering enterococci and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. These patients are at an increased risk for bloodstream infections by MDR pathogens or fungi. PMID:28076388

  18. Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1

    PubMed Central

    van Gorkom, B A P; Timmer-Bosscha, H; de Jong, S; van der Kolk, D M; Kleibeuker, J H; de Vries, E G E

    2002-01-01

    Anthranoid laxatives, belonging to the anthraquinones as do anthracyclines, possibly increase colorectal cancer risk. Anthracyclines interfere with topoisomerase II, intercalate DNA and are substrates for P-glycoprotein and multidrug resistance-associated protein 1. P-glycoprotein and multidrug resistance-associated protein 1 protect colonic epithelial cells against xenobiotics. The aim of this study was to analyse the interference of anthranoids with these natural defence mechanisms and the direct cytotoxicity of anthranoids in cancer cell lines expressing these mechanisms in varying combinations. A cytotoxicity profile of rhein, aloe emodin and danthron was established in related cell lines exhibiting different levels of topoisomerases, multidrug resistance-associated protein 1 and P-glycoprotein. Interaction of rhein with multidrug resistance-associated protein 1 was studied by carboxy fluorescein efflux and direct cytotoxicity by apoptosis induction. Rhein was less cytotoxic in the multidrug resistance-associated protein 1 overexpressing GLC4/ADR cell line compared to GLC4. Multidrug resistance-associated protein 1 inhibition with MK571 increased rhein cytotoxicity. Carboxy fluorescein efflux was blocked by rhein. No P-glycoprotein dependent rhein efflux was observed, nor was topoisomerase II responsible for reduced toxicity. Rhein induced apoptosis but did not intercalate DNA. Aloe emodin and danthron were no substrates for MDR mechanisms. Rhein is a substrate for multidrug resistance-associated protein 1 and induces apoptosis. It could therefore render the colonic epithelium sensitive to cytotoxic agents, apart from being toxic in itself. British Journal of Cancer (2002) 86, 1494–1500. DOI: 10.1038/sj/bjc/6600255 www.bjcancer.com © 2002 Cancer Research UK PMID:11986786

  19. Targeted Antibiotic Delivery: Selective Siderophore Conjugation with Daptomycin Confers Potent Activity Against Multi-Drug Resistant Acinetobacter baumannii Both in vitro and in vivo.

    PubMed

    Ghosh, Manuka; Miller, Patricia A; Möllmann, Ute; Claypool, William D; Schroeder, Valerie A; Wolter, William R; Suckow, Mark; Yu, Honglin; Li, Shuang; Huang, Weiqiang; Zajicek, Jaroslav; Miller, Marvin J

    2017-03-13

    In order to address the dire need for new antibiotics to treat specific strains of drug resistant Gram-negative bacterial infections, a mixed ligand analog of the natural Acinetobacter baumannii selective siderophore, fimsbactin, was coupled to daptomycin, a Gram-positive only antibiotic. The resulting conjugate, 11, has potent activity against multi-drug resistant strains of A. baumannii, both in vitro and in vivo. The study also indicates that conjugation of siderophores to "drugs" that are much larger than the siderophore (iron transport agent) itself facilitates active uptake that circumvents the normal permeability problems in Gram-negative bacteria. The results demonstrate the ability to extend activity of a normally Gram-positive only antibiotic to create a potent and targeted Gram-negative antibiotic using a bacterial iron transport based sideromycin Trojan Horse strategy.

  20. Expression, detergent solubilization, and purification of a membrane transporter, the MexB multidrug resistance protein.

    PubMed

    Bhatt, Forum H; Jeffery, Constance J

    2010-12-03

    Multidrug resistance (MDR), the ability of a cancer cell or pathogen to be resistant to a wide range of structurally and functionally unrelated anti-cancer drugs or antibiotics, is a current serious problem in public health. This multidrug resistance is largely due to energy-dependent drug efflux pumps. The pumps expel anti-cancer drugs or antibiotics into the external medium, lowering their intracellular concentration below a toxic threshold. We are studying multidrug resistance in Pseudomonas aeruginosa, an opportunistic bacterial pathogen that causes infections in patients with many types of injuries or illness, for example, burns or cystic fibrosis, and also in immuno-compromised cancer, dialysis, and transplantation patients. The major MDR efflux pumps in P. aeruginosa are tripartite complexes comprised of an inner membrane proton-drug antiporter (RND), an outer membrane channel (OMF), and a periplasmic linker protein (MFP). The RND and OMF proteins are transmembrane proteins. Transmembrane proteins make up more than 30% of all proteins and are 65% of current drug targets. The hydrophobic transmembrane domains make the proteins insoluble in aqueous buffer. Before a transmembrane protein can be purified, it is necessary to find buffer conditions containing a mild detergent that enable the protein to be solubilized as a protein detergent complex (PDC). In this example, we use an RND protein, the P. aeruginosa MexB transmembrane transporter, to demonstrate how to express a recombinant form of a transmembrane protein, solubilize it using detergents, and then purify the protein detergent complexes. This general method can be applied to the expression, purification, and solubilization of many other recombinantly expressed membrane proteins. The protein detergent complexes can later be used for biochemical or biophysical characterization including X-ray crystal structure determination or crosslinking studies.

  1. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (P<0.05). DNA sequencing revealed that the promoter regions of devR, mtrA, regX3 and Rv3143 did not contain any mutations. Moreover, expression of the four genes could be induced by most of the four first-line antitubercular agents. In addition, either deletion or overexpression of devR in Mycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.

  2. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis†

    PubMed Central

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Cave, M. Donald; Ponce de León, Alfredo; Alland, David

    2006-01-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  3. Reversal effect of Tween-20 on multidrug resistance in tumor cells in vitro.

    PubMed

    Yang, Shouhui; Liu, Jinjuan; Chen, Yongqiang; Jiang, Jihong

    2012-04-01

    Multidrug resistance (MDR) is a major barrier for chemotherapy of many cancers. Non-ionic surfactants have great potential to reverse the MDR by preventing onset or delay progression of the carcinogenic process. However, the role of Tween-20 in the development of MDR remains unknown. The aim of this study was to explore the reversal effect and potential mechanism of Tween-20 on tumor cells in vitro. Alamar Blue assay was used to examine the reversal index of Tween-20 to vincristine (VCR), doxorubicin (DOX) and 5-fluorouracil (5-FU) in KBv200, HepG2/R and Bel-7402/5-FU, respectively. Morphological change was determined by Gimsa and Hoechst 33258 staining. The acumulation of DOX was confirmed by spectrofluorimetric assay. Cell cycle analysis was performed using flow cytometry. The mRNA and protein expression levels of MDR were assessed by semiquantitative RT-PCR and dot blot, respectively. The results showed that Tween-20 at concentrations of 0.0025%, 0.005%, 0.01% had little cytotoxicity. When combined with the cancer drugs, it significantly promoted the sensitivity of MDR cells. Fluorescence staining confirmed that the percentage of apoptotic cell increased when combined with Tween-20. This notion was further supported by the observation that Tween-20 treatment potentiated VIN-induced G2/M arrest of the cell cycle. Furthermore, Tween-20 treatment increased significantly intracellular accumulation of DOX. RT-PCR and dot blot revealed that Tween-20 could downregulate the expression of MDR and P-glycoprotein. Low concentrations of Tween-20 can efficiently reverse the multidrug resistance phenotype by enhancing accumulation of the anticancer drugs. The potential mechanism may be via inhibiting the multidrug-resistant gene expression.

  4. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt

    PubMed Central

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-01-01

    Background Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. Objectives The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. Methods A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Results Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Conclusions Multidrug resistance was significantly associated with MBL production in P. aeruginosa. Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates. PMID:28138370

  5. Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients

    PubMed Central

    Modongo, Chawangwa; Pasipanodya, Jotam G.; Zetola, Nicola M.; Williams, Scott M.; Sirugo, Giorgio

    2015-01-01

    Aminoglycosides, such as amikacin, are used to treat multidrug-resistant tuberculosis. However, ototoxicity is a common problem and is monitored using peak and trough amikacin concentrations based on World Health Organization recommendations. Our objective was to identify clinical factors predictive of ototoxicity using an agnostic machine learning method. We used classification and regression tree (CART) analyses to identify clinical factors, including amikacin concentration thresholds that predicted audiometry-confirmed ototoxicity among 28 multidrug-resistant pulmonary tuberculosis patients in Botswana. Amikacin concentrations were measured for all patients. The quantitative relationship between predictive factors and the probability of ototoxicity were then identified using probit analyses. The primary predictors of ototoxicity on CART analyses were cumulative days of therapy, followed by cumulative area under the concentration-time curve (AUC), which improved on the primary predictor by 87%. The area under the receiver operating curve was 0.97 on the test set. Peak and trough were not predictors in any tree. When algorithms were forced to pick peak and trough as primary predictors, the area under the receiver operating curve fell to 0.46. Probit analysis revealed that the probability of ototoxicity increased sharply starting after 6 months of therapy to near maximum at 9 months. A 10% probability of ototoxicity occurred with a threshold cumulative AUC of 87,232 days · mg · h/liter, while that of 20% occurred at 120,000 days · mg · h/liter. Thus, cumulative amikacin AUC and duration of therapy, and not peak and trough concentrations, should be used as the primary decision-making parameters to minimize the likelihood of ototoxicity in multidrug-resistant tuberculosis. PMID:26248372

  6. Drug Repurposing of the Anthelmintic Niclosamide to Treat Multidrug-Resistant Leukemia

    PubMed Central

    Hamdoun, Sami; Jung, Philipp; Efferth, Thomas

    2017-01-01

    Multidrug resistance, a major problem that leads to failure of anticancer chemotherapy, requires the development of new drugs. Repurposing of established drugs is a promising approach for overcoming this problem. An example of such drugs is niclosamide, a known anthelmintic that is now known to be cytotoxic and cytostatic against cancer cells. In this study, niclosamide showed varying activity against different cancer cell lines. It revealed better activity against hematological cancer cell lines CCRF-CEM, CEM/ADR5000, and RPMI-8226 compared to the solid tumor cell lines MDA-MB-231, A549, and HT-29. The multidrug resistant CEM/ADR5000 cells were similar sensitive as their sensitive counterpart CCRF-CEM (resistance ration: 1.24). Furthermore, niclosamide caused elevations in reactive oxygen species and glutathione (GSH) levels in leukemia cells. GSH synthetase (GS) was predicted as a target of niclosamide. Molecular docking showed that niclosamide probably binds to the ATP-binding site of GS with a binding energy of -9.40 kcal/mol. Using microscale thermophoresis, the binding affinity between niclosamide and recombinant human GS was measured (binding constant: 5.64 μM). COMPARE analyses of the NCI microarray database for 60 cell lines showed that several genes, including those involved in lipid metabolism, correlated with cellular responsiveness to niclosamide. Hierarchical cluster analysis showed five major branches with significant differences between sensitive and resistant cell lines (p = 8.66 × 105). Niclosamide significantly decreased nuclear factor of activated T-cells (NFAT) activity as predicted by promoter binding motif analysis. In conclusion, niclosamide was more active against hematological malignancies compared to solid tumors. The drug was particularly active against the multidrug-resistant CEM/ADR5000 leukemia cells. Inhibition of GSH synthesis and NFAT signaling were identified as relevant mechanisms for the anticancer activity of niclosamide

  7. Glutathione and multidrug resistance protein transporter mediate a self-propelled disposal of bismuth in human cells.

    PubMed

    Hong, Yifan; Lai, Yau-Tsz; Chan, Godfrey Chi-Fung; Sun, Hongzhe

    2015-03-17

    Glutathione and multidrug resistance protein (MRP) play an important role on the metabolism of a variety of drugs. Bismuth drugs have been used to treat gastrointestinal disorder and Helicobacter pylori infection for decades without exerting acute toxicity. They were found to interact with a wide variety of biomolecules, but the major metabolic pathway remains unknown. For the first time (to our knowledge), we systematically and quantitatively studied the metabolism of bismuth in human cells. Our data demonstrated that over 90% of bismuth was passively absorbed, conjugated to glutathione, and transported into vesicles by MRP transporter. Mathematical modeling of the system reveals an interesting phenomenon. Passively absorbed bismuth consumes intracellular glutathione, which therefore activates de novo biosynthesis of glutathione. Reciprocally, sequestration by glutathione facilitates the passive uptake of bismuth and thus completes a self-sustaining positive feedback circle. This mechanism robustly removes bismuth from both intra- and extracellular space, protecting critical systems of human body from acute toxicity. It elucidates the selectivity of bismuth drugs between human and pathogens that lack of glutathione, such as Helicobacter pylori, opening new horizons for further drug development.

  8. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes.

    PubMed

    Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L

    2010-10-01

    Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively.

  9. Glutathione and multidrug resistance protein transporter mediate a self-propelled disposal of bismuth in human cells

    PubMed Central

    Hong, Yifan; Lai, Yau-Tsz; Chan, Godfrey Chi-Fung; Sun, Hongzhe

    2015-01-01

    Glutathione and multidrug resistance protein (MRP) play an important role on the metabolism of a variety of drugs. Bismuth drugs have been used to treat gastrointestinal disorder and Helicobacter pylori infection for decades without exerting acute toxicity. They were found to interact with a wide variety of biomolecules, but the major metabolic pathway remains unknown. For the first time (to our knowledge), we systematically and quantitatively studied the metabolism of bismuth in human cells. Our data demonstrated that over 90% of bismuth was passively absorbed, conjugated to glutathione, and transported into vesicles by MRP transporter. Mathematical modeling of the system reveals an interesting phenomenon. Passively absorbed bismuth consumes intracellular glutathione, which therefore activates de novo biosynthesis of glutathione. Reciprocally, sequestration by glutathione facilitates the passive uptake of bismuth and thus completes a self-sustaining positive feedback circle. This mechanism robustly removes bismuth from both intra- and extracellular space, protecting critical systems of human body from acute toxicity. It elucidates the selectivity of bismuth drugs between human and pathogens that lack of glutathione, such as Helicobacter pylori, opening new horizons for further drug development. PMID:25737551

  10. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    PubMed

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  11. Honeydew honey as a potent antibacterial agent in eradication of multi-drug resistant Stenotrophomonas maltophilia isolates from cancer patients.

    PubMed

    Majtan, Juraj; Majtanova, Lubica; Bohova, Jana; Majtan, Viktor

    2011-04-01

    Multi-drug resistance in nosocomial pathogens is a continually evolving and alarming problem in health care units. Since ancient times, honey has been used successfully for the treatment of a broad spectrum of infections with no risk of resistance development. This study investigated the antibacterial activity of two natural honeys, namely honeydew and manuka, against 20 nosocomial multi-drug resistant Stenotrophomonas maltophilia (S. maltophilia) isolates from cancer patients. An antibiotic susceptibility test was carried out using the disk diffusion method with 20 antibiotic disks. The antibacterial activity of honey was determined using a broth dilution method. The concentration of honey used in the study was within the range of 3.75% to 25% (w/v). All 20 clinical isolates were multi-drug resistant against 11 to 19 antibiotics. The MICs for honeydew honey ranged from 6.25% to 17.5%, while those for active manuka honey ranged from 7.5% to 22.5%. Honeydew honey had lower MICs than manuka honey against 16 of the tested isolates. This study showed that Slovak honeydew honey has exceptional antibacterial activity against multi-drug resistant S. maltophilia isolates and was more efficient than manuka honey (UMF 15+). Honeydew honey with strong antibacterial activity could be used as a potential agent to eradicate multi-drug resistant clinical isolates.

  12. Multidrug-resistant Combined Infections in a Liver Transplanted Patient: Case Report.

    PubMed

    Carraro, Amedeo; Montin, Umberto; Violi, Paola; Soldani, Fabio; Mazzi, Romualdo; Merighi, Mara; Kanani, Faheem; Concia, Ercole; Tedeschi, Umberto

    2016-04-07

    We report a case of successfully treated multiple liver abscesses in a liver-transplanted patient, sustained by combined multidrug-resistant infections. Two months after a liver transplant, a computed tomography scan revealed the presence of multiple abscesses in the liver graft. Blood cultures and abscessual liver fluid were both positive for acquired colistin- and carbapenem- resistant Klebsiella pneumoniae and an extended-spectrum of beta-lactamases-producing Enterobacter aerogenes. The treatment strategy consisted of different prolonged antimicrobial combinations and draining of the abscesses with complete recovery of the liver lesions.

  13. Fatal Pulmonary Infection Due to Multidrug-Resistant Mycobacterium abscessus in a Patient with Cystic Fibrosis

    PubMed Central

    Sanguinetti, Maurizio; Ardito, Fausta; Fiscarelli, Ersilia; La Sorda, Marilena; D'Argenio, Patrizia; Ricciotti, Gabriella; Fadda, Giovanni

    2001-01-01

    We report a case of fatal pulmonary infection caused by Mycobacterium abscessus in a young patient with cystic fibrosis, who underwent bipulmonary transplantation after a 1-year history of severe lung disease. Fifteen days after surgery he developed septic fever with progressive deterioration in lung function. M. abscessus, initially isolated from a pleural fluid specimen, was then recovered from repeated blood samples, suggesting a disseminated nature of the mycobacterial disease. Drug susceptibility testing assay, performed on two sequential isolates of the microorganism, showed a pattern of multidrug resistance. Despite aggressive therapy with several antimycobacterial drugs, including clarithromycin, the infection persisted, and the patient died. PMID:11158161

  14. Pneumocephalus as a complication of multidrug-resistant Klebsiella pneumoniae meningitis.

    PubMed

    Sreejith, P; Vishad, V; Pappachan, Joseph M; Laly, D C; Jayaprakash, R; Ranjith, V T

    2008-03-01

    Pneumocephalus implies air inside the cranial vault, which usually results from cranio-facial trauma. Occasionally, meningitis caused by gas-forming organisms can result in pneumocephalus. Klebsiella pneumoniae meningitis can, on rare occasions, cause pneumocephalus as a complication. The drug of choice for K. pneumoniae meningitis is a third-generation cephalosporin, and resistance to these drugs is unusual. We report a case of multidrug-resistant K. pneumoniae meningitis resulting from chronic suppurative otitis media, which was later complicated by pneumocephalus. The patient was successfully managed with meropenam and amikacin, the only antibiotics to which these bacilli showed no resistance.

  15. First report of an OXA-48-producing multidrug-resistant Proteus mirabilis strain from Gaza, Palestine.

    PubMed

    Chen, Liang; Al Laham, Nahed; Chavda, Kalyan D; Mediavilla, Jose R; Jacobs, Michael R; Bonomo, Robert A; Kreiswirth, Barry N

    2015-07-01

    We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the bla(OXA-48)-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene bla(OXA-48), extended spectrum β-lactamase gene bla(CTX-M-14), and aminoglycoside resistance genes strA, strB, and aph(3')-VIb.

  16. The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors

    PubMed Central

    Greene, James; Lavi, Orit; Gottesman, Michael M.; Levy, Doron

    2016-01-01

    In this paper we develop a mathematical framework for describing multidrug resistance in cancer. To reflect the complexity of the underlying interplay between cancer cells and the therapeutic agent, we assume that the resistance level is a continuous parameter. Our model is written as a system of integro-differential equations that are parametrized by the resistance level. This model incorporates the cell-density and mutation dependence. Analysis and simulations of the model demonstrate how the dynamics evolves to a selection of one or more traits corresponding to different levels of resistance. The emerging limit distribution with nonzero variance is the desirable modeling outcome as it represents tumor heterogeneity. PMID:24553772

  17. Characterization of an IncA/C Multidrug Resistance Plasmid in Vibrio alginolyticus.

    PubMed

    Ye, Lianwei; Li, Ruichao; Lin, Dachuan; Zhou, Yuanjie; Fu, Aisi; Ding, Qiong; Chan, Edward Wai Chi; Yao, Wen; Chen, Sheng

    2016-05-01

    Cephalosporin-resistant Vibrio alginolyticus was first isolated from food products, with β-lactamases encoded by blaPER-1, blaVEB-1, and blaCMY-2 being the major mechanisms mediating their cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from members of the family Enterobacteriaceae, suggesting its possible origin in Enterobacteriaceae.

  18. Multi-drug resistant tuberculosis in Chuuk State Federated States of Micronesia, 2008-2009.

    PubMed

    Fred, D; Desai, M; Song, R; Bamrah, S; Pavlin, B I; Heetderks, A; Ekiek, M J

    2010-04-01

    Multi-drug resistant tuberculosis (MDR TB) is a growing public health concern, particularly for the Pacific, where rates of tuberculosis infection are extremely high. In May 2008, a cluster of patients with MDR TB were identified in Chuuk State, Federated States of Micronesia. A multi-agency investigation led to the eventual discovery of 21 cases, and over 100 latent TB infections. Incomplete implementation of Directly Observed Therapy (DOT) and contact investigation were major contributors to the outbreak. The problem of MDR TB in Chuuk was controlled only after a concerted effort on the part of multiple agencies coupled with the highest level of political commitment.

  19. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    PubMed Central

    Choi, Cheol-Hee

    2005-01-01

    One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein. PMID:16202168

  20. The effect of terminal cleaning on environmental contamination rates of multidrug-resistant Acinetobacter baumannii.

    PubMed

    Strassle, Paula; Thom, Kerri A; Johnson, J Kristie; Johnsonm, J Kristie; Leekha, Surbhi; Lissauer, Matthew; Zhu, Jingkun; Harris, Anthony D

    2012-12-01

    We evaluated the prevalence of multidrug-resistant Acinetobacter baumannii environmental contamination before and after discharge cleaning in rooms of infected/colonized patients. 46.9% of rooms and 15.3% of sites were found contaminated precleaning, and 25% of rooms and 5.5% of sites were found contaminated postcleaning. Cleaning significantly decreased environmental contamination of A baumannii; however, persistent contamination represents a significant risk factor for transmission. Further studies on this and more effective cleaning methods are needed.

  1. A case of intravascular lymphoma complicated with Fournier's syndrome due to multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Kaya, Hiroyasu; Yoshida, Takashi

    2011-01-01

    Fournier's syndrome is the fulminant necrotizing fasciitis of the external genitalia. The occurrence of Fournier's syndrome in patients with hematologic malignancies has been reported. Here we report a case of an intravascular lymphoma complicated with Fournier's syndrome due to multidrug-resistant Pseudomonas aeruginosa (MDRP). A 71-year-old Japanese man received intensive chemotherapy for recurring intravascular lymphoma. Blood culture revealed MDRP, and physical examination led to the diagnosis of Fournier's syndrome. Aggressive treatment that comprised granulocyte transfusion, granulocyte stimulating factor, endotoxin filtration, appropriate antibiotic coverage, and aggressive surgical therapy was administered, and this lead to the successful recovery from sepsis and Fournier's syndrome.

  2. Enterococcus faecalis as multidrug resistance strains in clinical isolates in Imam Reza Hospital in Kermanshah, Iran.

    PubMed

    Mohammadi, F; Ghafourian, S; Mohebi, R; Taherikalani, M; Pakzad, I; Valadbeigi, H; Hatami, V; Sadeghifard, N

    2015-01-01

    The current study aimed to investigate the prevalence of vancomycin-resistant Enterococcus in E. faecalis and E. faecium and antimicrobial susceptibility patterns, then dominant genes responsible for vancomycin resistance were determined. For this propose, 180 clinical isolates of Enterococcus were subjected for identification and antibiotic susceptibility assay. Then, the gene responsible vancomycin resistant strains were determined. The results demonstrated the E. faecalis as a dominant Enterococcus. Resistance to erythromycin was dominant and multidrug resistance strains observed in E. faecalis. vanA was responsible for vancomycin resistance. In conclusion, a high rate of resistance to antibiotics in Enterococcus is clearly problematic, and a novel strategy is needed to decrease resistance in Enterococcus.

  3. Rapid diagnosis of tuberculosis and multidrug resistance with the microscopic observation drug susceptibility assay in Ecuador.

    PubMed

    Giacomazzi, C G; Cespedes-Alvarado, C G; Losada-Cabruja, E A; McDermott, J L; Rojas-Andrade, C A; Varnier, O E

    2010-06-01

    A collaborative project was established between the Alli Causai Foundation in Ambato, Ecuador, and the University of Genoa, Italy, to introduce the microscopic observation drug susceptibility (MODS) assay for the rapid identification of Mycobacterium tuberculosis in Ecuador. A total of 507 samples were evaluated during a 10-month period, and DNA was extracted from each isolate and sent to Genoa for confirmatory molecular analysis. M. tuberculosis was identified in 45 samples by MODS, and drug resistance was observed in approximately 21% of the isolates, with four multidrug-resistant strains detected in two patients.

  4. Multidrug-resistant tuberculosis in transplant recipients: Case report and review of the literature.

    PubMed

    Huaman, Moises A; Brawley, Robert; Ashkin, David

    2017-04-01

    Transplant recipients are at increased risk of tuberculosis (TB). We describe a case of pulmonary and vertebral multidrug-resistant TB (MDR-TB) in a kidney transplant patient who required neurosurgical intervention and unfortunately developed fatal nosocomial complications. Thirteen transplant recipients with MDR-TB were previously reported in the literature (one hematopoietic cell transplant, one heart transplant, one lung transplant, one heart-lung transplant, and nine kidney transplant recipients). Extrapulmonary disease, severe treatment complications, and deaths were observed in patients who developed MDR-TB after transplantation.

  5. Intrathecal/Intraventricular Linezolid in Multidrug-Resistant Enterococcus faecalis Ventriculitis

    PubMed Central

    Lich, Brian F.; Conner, Andrew K.; Burks, Joshua D.; Glenn, Chad A.; Sughrue, Michael E.

    2016-01-01

    Background The use of intrathecal antibiotic therapy for the treatment of ventriculitis and/or meningitis has demonstrated efficacy especially when sterilization of the cerebrospinal fluid is not possible with intravenous antibiotics alone. Case Description We describe the successful treatment of Enterococcus faecalis ventriculitis utilizing intrathecal linezolid in a 32-year-old female patient with severe allergy to vancomycin, prohibitive bacterial susceptibilities, and failure of previous attempts to sterilize the cerebrospinal fluid despite multimodal treatment. Conclusion Intrathecal linezolid is a useful treatment in the setting of multidrug-resistant bacterial ventriculitis. We present a useful dosing regimen for the administration of intrathecal linezolid. PMID:27867829

  6. Genome-wide re-sequencing of multidrug-resistant Mycobacterium leprae Airaku-3.

    PubMed

    Singh, P; Benjak, A; Carat, S; Kai, M; Busso, P; Avanzi, C; Paniz-Mondolfi, A; Peter, C; Harshman, K; Rougemont, J; Matsuoka, M; Cole, S T

    2014-10-01

    Genotyping and molecular characterization of drug resistance mechanisms in Mycobacterium leprae enables disease transmission and drug resistance trends to be monitored. In the present study, we performed genome-wide analysis of Airaku-3, a multidrug-resistant strain with an unknown mechanism of resistance to rifampicin. We identified 12 unique non-synonymous single-nucleotide polymorphisms (SNPs) including two in the transporter-encoding ctpC and ctpI genes. In addition, two SNPs were found that improve the resolution of SNP-based genotyping, particularly for Venezuelan and South East Asian strains of M. leprae.

  7. Draft Genomic Analysis of an Avian Multidrug Resistant Morganella morganii Isolate Carrying qnrD1

    PubMed Central

    Jones-Dias, Daniela; Clemente, Lurdes; Moura, Inês B.; Sampaio, Daniel A.; Albuquerque, Teresa; Vieira, Luís; Manageiro, Vera; Caniça, Manuela

    2016-01-01

    Morganella morganii is a commensal bacterium and opportunistic pathogen often present in the gut of humans and animals. We report the 4.3 Mbp draft genome sequence of a M. morganii isolated in association with an Escherichia coli from broilers in Portugal that showed macroscopic lesions consistent with colisepticemia. The analysis of the genome matched the multidrug resistance phenotype and enabled the identification of several clinically important and potentially mobile acquired antibiotic resistance genes, including the plasmid-mediated quinolone resistance determinant qnrD1. Mobile genetic elements, prophages, and pathogenicity factors were also detected, improving our understanding toward this human and animal opportunistic pathogen. PMID:27826290

  8. Management of emerging multidrug-resistant tuberculosis in a low-prevalence setting.

    PubMed

    Catho, G; Couraud, S; Grard, S; Bouaziz, A; Sénéchal, A; Valour, F; Perpoint, T; Braun, E; Biron, F; Ferry, T; Chidiac, C; Freymond, N; Perrot, E; Souquet, P-J; Maury, J-M; Tronc, F; Veziris, N; Lina, G; Dumitrescu, O; Ader, F

    2015-05-01

    Multidrug-resistant (MDR) tuberculosis (TB) is an emerging concern in communities with a low TB prevalence and a high standard of public health. Twenty-three consecutive adult MDR TB patients who were treated at our institution between 2007 and 2013 were reviewed for demographic characteristics and anti-TB treatment management, which included surgical procedures and long-term patient follow-up. This report of our experience emphasizes the need for an individualized approach as MDR TB brings mycobacterial disease management to a higher level of expertise, and for a balance to be found between international current guidelines and patient-tailored treatment strategies.

  9. A review of intravenous minocycline for treatment of multidrug-resistant Acinetobacter infections.

    PubMed

    Ritchie, David J; Garavaglia-Wilson, Alexandria

    2014-12-01

    Options for treatment of multidrug-resistant (MDR) Acinetobacter baumannii infections are extremely limited. Minocycline intravenous is active against many MDR strains of Acinetobacter, and Clinical and Laboratory Standards Institute breakpoints exist to guide interpretation of minocycline susceptibility results with Acinetobacter. In addition, minocycline intravenous holds a US Food and Drug Administration indication for treatment of infections caused by Acinetobacter. There is an accumulating amount of literature reporting successful use of minocycline intravenous for treatment of serious MDR Acinetobacter infections, particularly for nosocomial pneumonia. These results, coupled with the generally favorable tolerability of minocycline intravenous, support its use as a viable therapeutic option for treatment of MDR Acinetobacter infections.

  10. Multidrug-resistant Candida auris: 'new kid on the block' in hospital-associated infections?

    PubMed

    Chowdhary, A; Voss, A; Meis, J F

    2016-11-01

    Since being first reported in an ear swab in 2009, and in blood cultures in 2011, invasive infections with Candida auris have been reported in many countries across several continents. We review current knowledge of the epidemiology of this emerging multidrug-resistant pathogen. The importance of species identification and the inadequacies of many widely used identification systems are considered. We recommend that hospitals develop their own policies for the prevention and control of infections with this pathogen. Elements of such policies and the limitations of the existing knowledge base are discussed.

  11. The impact of multidrug resistance on outcomes in ventilator-associated pneumonia.

    PubMed

    Tedja, Rudy; Nowacki, Amy; Fraser, Thomas; Fatica, Cynthia; Griffiths, Lori; Gordon, Steven; Isada, Carlos; van Duin, David

    2014-05-01

    Multidrug-resistant (MDR) organisms in ventilator-associated pneumonia were found in 49 of 107 patients and were associated with home antibiotics, pre-ventilator-associated pneumonia hospital stay, and health care exposure. Overall, MDR organisms were associated with increased mortality (P = .006). On multivariate analysis, MDR status was modulated by organism class. In nonfermenting gram-negative rods, no association between MDR and mortality was found, but, in all other organisms, MDR was associated with increased mortality risk (hazard ratio, 6.15; 95% confidence interval: 1.80-21.05, P = .004).

  12. Emergence of a Multidrug-Resistant Shiga Toxin-Producing Enterotoxigenic Escherichia coli Lineage in Diseased Swine in Japan

    PubMed Central

    Hikoda, Yuna; Fujii, Yuki; Murata, Misato; Miyoshi, Hirotsugu; Ogura, Yoshitoshi; Gotoh, Yasuhiro; Iwata, Taketoshi; Hayashi, Tetsuya; Akiba, Masato

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) and Shiga toxin-producing E. coli (STEC) are important causes of diarrhea and edema disease in swine. The majority of swine-pathogenic E. coli strains belong to a limited range of O serogroups, including O8, O138, O139, O141, O147, O149, and O157, which are the most frequently reported strains worldwide. However, the circumstances of ETEC and STEC infections in Japan remain unknown; there have been few reports on the prevalence or characterization of swine-pathogenic E. coli. In the present study, we determined the O serogroups of 967 E. coli isolates collected between 1991 and 2014 from diseased swine in Japan, and we found that O139, O149, O116, and OSB9 (O serogroup of Shigella boydii type 9) were the predominant serogroups. We further analyzed these four O serogroups using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and virulence factor profiling. Most of the O139 and O149 strains formed serogroup-specific PFGE clusters (clusters I and II, respectively), whereas the O116 and OSB9 strains were grouped together in the same cluster (cluster III). All of the cluster III strains belonged to a single sequence type (ST88) and carried genes encoding both enterotoxin and Shiga toxin. This PFGE cluster III/ST88 lineage exhibited a high level of multidrug resistance (to a median of 10 antimicrobials). Notably, these bacteria were resistant to fluoroquinolones. Thus, this lineage should be considered a significant risk to animal production due to the toxigenicity and antimicrobial resistance of these bacteria. PMID:26865687

  13. Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran

    PubMed Central

    Moghadam, MN; Motamedifar, M; Sarvari, J; Sedigh, Ebrahim-Saraie H; Mousavi, Same M; Moghadam, FN

    2016-01-01

    Background: Metallo-beta-lactamase (MβL) enzymes production is one of the most important resistance mechanisms against carbapenems in some bacteria including Acinetobacter baumannii. Aims: This study was aimed to determine the antimicrobial susceptibility and the prevalence of MβL among carbapenem-resistant isolates of A. baumannii. Materials and Methods: In this cross-sectional study from October 2012 to April 2013, 98 isolates were identified as A. baumannii using Microgen™ kits and confirmed by molecular method. These isolates were tested for antimicrobial susceptibilities by disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. Carbapenem-resistant isolates were further detected phenotypically by MβL minimal inhibitory concentration (MIC)-test strips, and subsequently positive MβL isolates were confirmed by polymerase chain reaction (PCR). Results: Overall, 98% (96/98) of A. baumannii isolates were detected as carbapenem-resistant by MIC test. Highest sensitivity to the tested antibiotic with 42.9% (42/98) was observed to colistin. Of 96 carbapenem-resistant isolates, 43 were phenotypically positive for MβL; out of 43 isolates, 37 were confirmed for the presence of MβL genes by PCR. Conclusion: The frequency of drug resistance among the clinical samples of A. baumannii isolated in our study against most of the antibiotics was very high. Moreover, all MβL producing isolates were multidrug resistance. Therefore, systematic surveillance to detect MβL producing bacteria and rational prescription and use of carbapenems could be helpful to prevent the spread of carbapenem resistance. PMID:27398247

  14. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted

  15. Multivalent Aptamer-RNA Conjugates for Simple and Efficient Delivery of Doxorubicin/siRNA into Multidrug-Resistant Cells.

    PubMed

    Jeong, Hyosook; Lee, Soo Hyeon; Hwang, Yeonju; Yoo, Hyundong; Jung, Heesun; Kim, Sun Hwa; Mok, Hyejung

    2017-04-01

    Multivalent aptamer-siRNA conjugates containing multiple mucin-1 aptamers and BCL2-specific siRNA are synthesized, and doxorubicin, an anthracycline anticancer drug, is loaded into these conjugates through intercalation with nucleic acids. These doxorubicin-incorporated multivalent aptamer-siRNA conjugates are transfected to mucin-1 overexpressing MCF-7 breast cancer cells and their multidrug-resistant cell lines. Doxorubicin-incorporated multivalent aptamer-siRNA conjugates exert promising anticancer effects, such as activation of caspase-3/7 and decrease of cell viability, on multidrug-resistant cancer cells because of their high intracellular uptake efficiency. Thus, this delivery system is an efficient tool for combination oncotherapy with chemotherapeutics and nucleic acid drugs to overcome multidrug resistance.

  16. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  17. Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital.

    PubMed

    Borges, C A; Beraldo, L G; Maluta, R P; Cardozo, M V; Barboza, K B; Guastalli, E A L; Kariyawasam, S; DebRoy, C; Ávila, F A

    2017-02-01

    Wild birds are carriers of Escherichia coli. However, little is known about their role as reservoirs for extra-intestinal pathogenic E. coli (ExPEC). In this work we investigated E. coli strains carrying virulence genes related to human and animal ExPEC isolated from free-living wild birds treated in a veterinary hospital. Multidrug resistance was found in 47.4% of the strains, but none of them were extended-spectrum beta-lactamase producers. Not only the virulence genes, but also the serogroups (e.g. O1 and O2) detected in the isolates of E. coli have already been implicated in human and bird diseases. The sequence types detected were also found in wild, companion and food animals, environmental and human clinical isolates in different countries. Furthermore, from the 19 isolates, 17 (89.5%) showed a degree of pathogenicity on an in vivo infection model. The isolates showed high heterogeneity by pulsed-field gel electrophoresis indicating that E. coli from these birds are clonally diverse. Overall, the results showed that wild birds can be reservoirs and/or vectors of highly pathogenic and multidrug-resistant E. coli that have the potential to cause disease in humans and poultry.

  18. Genetic diversity of multidrug resistant Staphylococcus aureus isolated from clinical and non clinical samples in Egypt.

    PubMed

    Bendary, M M; Solyman, S M; Azab, M M; Mahmoud, N F; Hanora, A M

    2016-08-31

    In recent years, the increasing incidence of diseases caused by Staphylococcus aureus (S. aureus) has been noted in the university hospitals of El-Sharkia and Assuit governorates - Egypt. Therefore, we studied the genetic relatedness of multidrug resistant S. aureus isolates from different sources in the above mentioned governorates. One hundred and fifty six S. aureus isolates were divided into 5 different groups, 1 non clinical isolates from different food products and 4 different clinical isolates of human and animal sources in the 2 different governorates. Epidemiological characteristics of 156 S. aureus isolates were determined by phenotypic methods including quantitative antibiogram typing and biofilm production. Genetic typing of 35 multidrug resistant (MDR) isolates (7 from each group) based on 16S rRNA gene sequence, virulence and antimicrobial resistance gene profiles was done. The genetic relatedness of the highest virulent strain from each group was detected based on different single locus sequence typing and multi-locus sequence typing (MLST). S. aureus strains isolated from different sources and geographical areas showed high diversity. The genetic typing revealed different sequence types and different sequences of coa and spa genes. S. aureus isolates were found highly diverse in Egypt.

  19. Bedaquiline for the treatment of pulmonary, multidrug-resistant tuberculosis in adults.

    PubMed

    Gras, J

    2013-06-01

    After AIDS, tuberculosis (TB) is the leading killer worldwide due to a single infectious agent. Recently, drug-resistant strains of Mycobacterium tuberculosis elicited even more severe versions of TB. Bedaquiline inhibits mycobacterial ATP synthase. It shows potent and selective activity in vitro against M. tuberculosis, and in vivo against murine models of TB. Bedaquiline can be combined with antituberculosis and antiretroviral agents. The product displays good oral absorption, has a long terminal half-life and is metabolized mainly by cytochrome P450 3A4. In a phase II clinical trial in patients with multidrug-resistant TB, bedaquiline (combined with the standard five-drug, second-line TB regimen), showed a time to 50% culture negative conversion of 78 days, with 81.0% and 52.4% efficacy at weeks 24 and 104, respectively. Bedaquiline was generally safe and well tolerated. At the end of 2012, the U.S. Food and Drug Administration approved bedaquiline (Sirturo®) as part of a combination therapy to treat adults with multidrug-resistant TB.

  20. Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania

    PubMed Central

    Moreira, W; Leprohon, P; Ouellette, M

    2011-01-01

    The control of the protozoan parasite Leishmania relies on few drugs with unknown cellular targets and unclear mode of action. Several antileishmanials, however, were shown to induce apoptosis in Leishmania and this death mechanism was further studied in drug-sensitive and drug-resistant Leishmania infantum. In sensitive parasites, antimonials (SbIII), miltefosine (MF) and amphotericin B (AMB), but not paromomycin (PARO), triggered apoptotic cell death associated with reactive oxygen species (ROS). In contrast, Leishmania mutants resistant to SbIII, MF or AMB not only failed to undergo apoptosis following exposure to their respective drugs, but also were more tolerant towards apoptosis induced by other antileishmanials, provided that these killed Leishmania via ROS production. Such tolerance favored the rapid acquisition of multidrug resistance. PARO killed Leishmania in a non-apoptotic manner and failed to produce ROS. PARO resistance neither protected against drug-induced apoptosis nor provided an increased rate of acquisition of resistance to other antileishmanials. However, the PARO-resistant mutant, but not SbIII-, MF- or AMB-resistant mutants, became rapidly cross-resistant to methotrexate, a model drug also not producing ROS. Our results therefore link the mode of killing of drugs to tolerance to cell death and to a facilitated emergence of multidrug resistance. These findings may have fundamental implications in the field of chemotherapeutic interventions. PMID:21881603

  1. Long-term molecular surveillance of multidrug-resistant tuberculosis in Spain.

    PubMed

    Gavín, Patricia; Iglesias, María José; Jiménez, María Soledad; Rodríguez-Valín, Elena; Ibarz, Daniel; Lezcano, María Antonia; Revillo, María José; Martín, Carlos; Samper, Sofía

    2012-06-01

    The data presented here span 11 years (1998-2008) of monitoring of multidrug-resistant tuberculosis (MDR-TB) clustering through molecular typing techniques in Spain. The molecular and epidemiological data of 480 multidrug-resistant Mycobacterium tuberculosis complex isolates were analyzed. Thirty-one clusters involving 157 (32.7%) patients were identified. The proportion of immigrants increased substantially over the study period reaching 65% in 2008; however, the clustering rate remained stable indicating that local transmission was little influenced by imported MDR-TB. The three major clusters respond to the persistence of two autochthonous strains throughout the study period and an extensively drug-resistant (XDR) Mycobacterium bovis outbreak with only two cases was reported since 2002. Molecular and epidemiological evidence for the importation of new strains and their spread within the community was found. Immigrant-only clusters most often grouped patients infected abroad with strains belonging to rare spoligotypes. Conversely, widespread spoligotypes of the Latin-American and Mediterranean (LAM) and Haarlem families were responsible for the majority of the MDR-TB local transmission. The demonstration of clusters spanning several Spanish regions that have been ongoing throughout the study period makes it advisable to maintain a continuous molecular surveillance in order to monitor the spread of MDR-TB.

  2. Identification and Characterization of Multidrug-Resistant Salmonella enterica Serotype Albert Isolates in the United States

    PubMed Central

    Campbell, Davina; Grass, Julian; Brown, Allison C.; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A.; Plumblee, Jodie R.; Walker, Carrie; Fedorka-Cray, Paula J.; Whichard, Jean M.

    2015-01-01

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease. PMID:25733501

  3. The Role of Cell Density and Intratumoral Heterogeneity in Multidrug Resistance

    PubMed Central

    Lavi, Orit; Greene, James M.; Levy, Doron; Gottesman, Michael M.

    2016-01-01

    Recent data have demonstrated that cancer drug resistance reflects complex biological factors including tumor heterogeneity, varying growth, differentiation, apoptosis pathways, and cell density. As a result, there is a need to find new ways to incorporate these complexities in the mathematical modeling of multidrug resistance. Here, we derive a novel structured population model that describes the behavior of cancer cells under selection with cytotoxic drugs. Our model is designed to estimate intratumoral heterogeneity as a function of the resistance level and time. This updated model of the multidrug resistance problem integrates both genetic and epigenetic changes, density-dependence, and intratumoral heterogeneity. Our results suggest that treatment acts as a selection process, while genetic/epigenetic alterations rates act as a diffusion process. Application of our model to cancer treatment suggests that reducing alteration rates as a first step in treatment causes a reduction in tumor heterogeneity, and may improve targeted therapy. The new insight provided by this model could help to dramatically change the ability of clinical oncologists to design new treatment protocols and analyze the response of patients to therapy. Major Findings We suggest that chemotherapeutic treatment acts as a selection process in the effective drug concentrations range, while genetic/epigenetic alterations act as a diffusion process that results in trait spread based on different stress signals. Application of our model to cancer treatment suggests that reducing the alteration rate as a first step in treatment causes a reduction in tumor heterogeneity, and may improve targeted therapy. PMID:24163380

  4. Spread of Streptococcus pneumoniae Serotype 8-ST63 Multidrug-Resistant Recombinant Clone, Spain

    PubMed Central

    de la Campa, Adela G.; García, Ernesto; Fenoll, Asunción; Calatayud, Laura; Cercenado, Emilia; Pérez-Trallero, Emilio; Bouza, Emilio; Liñares, Josefina

    2014-01-01

    Since 2004, a total of 131 isolates of Streptococcus pneumoniae multidrug-resistant invasive serotype 8 have been detected in Spain. These isolates showed resistance to erythromycin, clindamycin, tetracycline, and ciprofloxacin. All isolates were obtained from adult patients and shared a common genotype (sequence type [ST]63; penicillin-binding protein 1a [pbp1a], pbp2b, and pbp2x gene profiles; ermB and tetM genes; and a ParC-S79F change). Sixty-eight isolates that required a ciprofloxacin MIC ≥16 μg/mL had additional gyrA gene changes. Serotype 8-ST63 pbp2x sequences were identical with those of antimicrobial drug–susceptible serotype 8-ST53 isolates. Serotype 8-ST63 pbp2b sequences were identical with those of the multidrug-resistant Sweden 15A-ST63 clone. Recombination between the capsular locus and flanking regions of an ST53 isolate (donor) and an ST63 pneumococcus (recipient) generated the novel 15A-ST63 clone. One recombination point was upstream of pbp2x and another was within pbp1a. A serotype 8-ST63 clone was identified as a cause of invasive disease in Spain. PMID:25340616

  5. Expression of a multidrug-resistance gene in human tumors and tissues

    SciTech Connect

    Fojo, A.T.; Ueda, K.; Slamon, D.J.; Poplack, D.G.; Gottesman, M.M.; Pastan, I.

    1987-01-01

    The identification and cloning of a segment of a human multidrug resistance gene (mdr1) was reported recently. To examine, the molecular basis of one type of multidrug resistance, the authors have prepared RNA from human tumors and normal tissues and measured their content of mdr1 RNA. They find that the mdr1 gene is expressed at a very high level in the adrenal gland; at a high level in the kidney; at intermediate levels in the lung, liver, lower jejunum, colon, and rectum; and at low levels in many other tissues. The mdr1 gene is also expressed in several human tumors, including many but not all tumors derived from the adrenal gland and the colon. In addition, increased expression was detected in a few tumors at the time of relapse following initial chemotherapy. Although controlled clinical studies will be required, the results suggest that measurement of mdr1 RNA may prove to be a valuable tool in the design of chemotherapy protocols.

  6. Interferon-Gamma Improves Macrophages Function against M. tuberculosis in Multidrug-Resistant Tuberculosis Patients

    PubMed Central

    Mazhar, Humaira; Muhammad, Niaz; Abbas, Muhammad Nasser

    2016-01-01

    Background. Mycobacterium tuberculosis (M. tuberculosis) that causes tuberculosis (TB) kills millions of infected people annually especially multidrug-resistant tuberculosis (MDR-TB). On infection, macrophages recognize the mycobacteria by toll-like receptor (TLR) followed by phagocytosis and control of mycobacteria. In addition, macrophages also secrete IL-12 to induce IFN-γ production by T, which, in turn, increases the phagocytosis and oxidative burst. Individuals with defects in innate or adaptive immunity exhibit increased susceptibility to M. tuberculosis. Understanding these immunologic mechanisms will help in TB control. We aimed to investigate the immunopathologic mechanisms in MDR-TB and role of recombinant human interferon-gamma (rhIFN-γ). Study Design and Methods. Monocyte-derived macrophages (MDMs) were generated from peripheral blood mononuclear cells of MDR-TB patients and healthy subjects and were investigated for immunologic response by ELISA and flow cytometry. Results. Different functional and molecular anomalies were observed in macrophages. In addition, a defective immune response to M. tuberculosis from the patient's MDMs was characterized, which in turn improved by pretreatment with rhIFN-γ. Conclusion. This work highlights the fact that rhIFN-γ improves macrophages function against M. tuberculosis and treatment of patients with poor responsiveness to TB therapy may be needed in future to include IFN-γ as adjuvant therapy after the full characterization of pathological and molecular mechanisms in these and in other more multidrug-resistant TB patients. PMID:27478636

  7. Characterization of IS26-composite transposons and multidrug resistance in conjugative plasmids from Enterobacter cloacae.

    PubMed

    Chen, Chih-Ming; Yu, Wen-Liang; Huang, Mei; Liu, Jau-Jin; Chen, I-Chien; Chen, Huei-Fen; Wu, Lii-Tzu

    2015-09-01

    SHV-12 is the most widespread resistance determinant of Enterobacter cloacae in Taiwan; however, blaSHV-12 has rarely been mobilized. Six multidrug-resistant E. cloacae isolates were collected. After conjugal transfer, plasmid profiling and analysis of incompatibility groups was performed to characterize the genetic context of blaSHV-12 -containing fragments. The presence of mobile genetic elements was demonstrated by PCR, cloning, sequencing and bioinformatics analyses. Four different β-lactamase genes (blaTEM-1 , blaSHV-12 , blaCTX-M-3 and/or blaCTX-M-14 ) were observed in the conjugative plasmids belonging to the IncHI2 (n = 4), IncI1 or IncP incompatibility groups. The IS26-blaSHV-12 -IS26 locus was located in five different genetic environments. A novel structural organization of a class 1 integron with the aac(6')-IIc cassette truncated by IS26 was identified in one isolate. Thus, blaSHV-12 was obtained from different plasmids through IS26-mediated homologous recombination. IS26 plays a vital role in the distribution of mobile resistance elements between different plasmids found in multidrug-resistant E. cloacae isolates.

  8. Diffusion and persistence of multidrug resistant Salmonella Typhimurium strains phage type DT120 in southern Italy.

    PubMed

    De Vito, Danila; Monno, Rosa; Nuccio, Federica; Legretto, Marilisa; Oliva, Marta; Coscia, Maria Franca; Dionisi, Anna Maria; Calia, Carla; Capolongo, Carmen; Pazzani, Carlo

    2015-01-01

    Sixty-two multidrug resistant Salmonella enterica serovar Typhimurium strains isolated from 255 clinical strains collected in Southern Italy in 2006-2008 were characterised for antimicrobial resistance genes, pulsotype, and phage type. Most strains (83.9%) were resistant to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT) encoded in 88.5% by the Salmonella genomic island (SGI1) and in 11.5% by the InH-like integron (bla OXA-30-aadA1) and catA1, sul1, and tet(B) genes. STYMXB.0061 (75%) and DT120 (84.6%) were the prevalent pulsotype and phage type identified in these strains, respectively. Five other resistance patterns were found either in single or in a low number of isolates. The pandemic clone DT104 (ACSSuT encoded by SGI1) has been identified in Italy since 1992, while strains DT120 (ACSSuT encoded by SGI1) have never been previously reported in Italy. In Europe, clinical strains DT120 have been reported from sporadic outbreaks linked to the consumption of pork products. However, none of these strains were STYMXB.0061 and SGI1 positive. The prevalent identification and persistence of DT120 isolates would suggest, in Southern Italy, a phage type shifting of the pandemic DT104 clone pulsotype STYMXB.0061. Additionally, these findings raise epidemiological concern about the potential diffusion of these emerging multidrug resistant (SGI linked) DT120 strains.

  9. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil

    PubMed Central

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; de Morais, Marcia Maria Camargo; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-01-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed. PMID:26676375

  10. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil.

    PubMed

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; Morais, Marcia Maria Camargo de; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-12-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosa isolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosa isolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.

  11. Proteome analysis of multidrug-resistant, breast cancer–derived microparticles

    PubMed Central

    Pokharel, Deep; Padula, Matthew P.; Lu, Jamie F.; Tacchi, Jessica L.; Luk, Frederick; Djordjevic, Steven P.; Bebawy, Mary

    2014-01-01

    Cancer multidrug resistance (MDR) occurs when cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs) and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer–derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp), transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer–derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography–tandem mass spectrometry (LC/MS/MS), in which we identify 120 unique proteins found only in drug-resistant, breast cancer–derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM); and cytoskeleton motor proteins within the MP cargo. PMID:25206959

  12. Multidrug-Resistant Streptococcus pneumoniae Isolates from Healthy Ghanaian Preschool Children.

    PubMed

    Dayie, Nicholas T K D; Arhin, Reuben E; Newman, Mercy J; Dalsgaard, Anders; Bisgaard, Magne; Frimodt-Møller, Niels; Slotved, Hans-Christian

    2015-12-01

    Streptococcus pneumoniae is the cause of high mortality among children worldwide. Antimicrobial treatment and vaccination are used to control pneumococcal infections. In Ghana, data on antimicrobial resistance and the prevalence of multidrug-resistant pneumococcal clones are scarce; hence, the aim of this study was to determine the antibiogram of S. pneumoniae recovered from Ghanaian children younger than six years of age and to what extent resistances were due to the spread of certain sero- and multilocus sequence typing (MLST) types. The susceptibility of 115 pneumococcal isolates, recovered in a previous study, to six antimicrobials was determined by disk diffusion test. Overall, 90.4% of isolates were intermediate penicillin resistant, 99.1% were trimethoprim resistant, 73.0% were tetracycline resistant, and 33.9% were sulfamethoxazole resistant. Low resistance was recorded for erythromycin (2.6%) and cefotaxime (5.2%). Overall, 72.2% of isolates were resistant to penicillin (I or R) and at least two other antimicrobials. MLST of 20 isolates showing resistance to at least four antimicrobials revealed a high diversity documented by 16 different clones, none of which had previously been associated with multidrug resistance. The resistances found may have emerged due to nonprudent antimicrobial use practices and there is a need to monitor and promote prudent antimicrobial usage in Ghana.

  13. Phenotypic and molecular characterization of multidrug resistant Klebsiella pneumoniae isolated from a university teaching hospital, China.

    PubMed

    Du, Jikun; Li, Peipei; Liu, Helu; Lü, Dongyue; Liang, Hong; Dou, Yuhong

    2014-01-01

    The multidrug-resistant rate of Klebsiella pneumoniae has risen rapidly worldwide. To better understand the multidrug resistance situation and molecular characterization of Klebsiella pneumoniae, a total of 153 Klebsiella pneumoniae isolates were collected, and drug susceptibility test was performed to detect its susceptibility patterns to 13 kinds of antibiotics. Phenotypic tests for carbapenemases ESBLs and AmpC enzyme-producing strains were performed to detect the resistance phenotype of the isolates. Then PCR amplification and sequencing analysis were performed for the drug resistance determinants. The results showed that 63 strains harbored bla CTX-M gene, and 14 strains harbored bla DHA gene. Moreover, there were 5 strains carrying bla KPC gene, among which 4 strains carried bla CTX-M, bla DHA and bla KPC genes, and these 4 strains were also resistant to imipenem. Our data indicated that drug-resistant Klebsiella pneumoniae were highly prevalent in the hospital. Thus it is warranted that surveillance of epidemiology of those resistant isolates should be a cause for concern, and appropriate drugs should be chosen.

  14. Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation.

    PubMed

    Currie, Erin; King, Brian; Lawrenson, Andrea L; Schroeder, Lena K; Kershner, Aaron M; Hermann, Greg J

    2007-11-01

    Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.

  15. Multidrug-resistant phenotype in retinoblastoma correlates with P-glycoprotein expression.

    PubMed

    Chan, H S; Thorner, P S; Haddad, G; Gallie, B L

    1991-09-01

    Chemotherapy plays an important role in therapy for patients with extraocular and metastatic retinoblastoma. The authors used chemotherapy for management of selected patients with uncontrolled intraocular tumors or tumors larger and more posteriorly located than those conventionally treated with local cryotherapy or photocoagulation. Rapid regrowth of some tumors after an initial excellent chemotherapy response led us to investigate the hypothesis that failure of treatment is caused by P-glycoprotein-related multidrug resistance. By using a sensitive immunoperoxidase method, increased P-glycoprotein was detected in five multidrug-resistant and two selectively plant alkaloid-resistant retinoblastoma cell lines and in the intraocular and metastatic tumors from which they were derived. In four chemotherapy-treated cases, increased P-glycoprotein in the tumor samples correlated with clinically relevant drug resistance. None of the four chemosensitive tumor cell lines had increased P-glycoprotein expression. Continuous surveillance of P-glycoprotein levels in metastatic retinoblastoma may be a useful guide to drug therapy.

  16. Induction of apoptotic cell death by betulin in multidrug-resistant human renal carcinoma cells.

    PubMed

    Yim, Nam-Hui; Jung, Young Pil; Kim, Aeyung; Kim, Taesoo; Ma, Jin Yeul

    2015-08-01

    Betulin, a triterpene from the bark of various species of birch tree, has various biological effects, including antiviral, antifungal and anticancer activities. The aim of the present study was to elucidate the mechanisms underlying the apoptotic effect of betulin in RCC4 multidrug-resistant human renal carcinoma cells. To evaluate anticancer activity, we performed cell viability and caspase activity assays, a proteome profiler array and western blot analysis in RCC4 cells. Betulin significantly decreased RCC4 cell viability in a time- and concentration-dependent manner. Betulin activated caspase family proteins, including caspase-3, -7, -8 and -9, and increased the expression of apoptosis-related proteins, including PARP and Bcl-2 family members. In an apoptosis array, betulin activated the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors TRAIL R1/DR4 and R2/DR5, and tumour necrosis factor receptor 1 (TNFR1), suggesting that betulin treatment leads to induction of apoptosis through both intrinsic and extrinsic apoptosis pathways in RCC4 cells. Notably, betulin significantly enhanced cytotoxicity and PARP cleavage in etoposide-treated RCC4 cells, and downregulated the expression of multidrug resistance protein 1 (MDR1). Taken together, our findings suggest that the anticancer effects of betulin involve induction of apoptosis and sensitisation of RCC4 cells, providing potentially useful information applicable to the use of betulin in renal cancer treatment.

  17. Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States.

    PubMed

    Folster, Jason P; Campbell, Davina; Grass, Julian; Brown, Allison C; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A; Plumblee, Jodie R; Walker, Carrie; Fedorka-Cray, Paula J; Whichard, Jean M

    2015-05-01

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease.

  18. Phenotypic and Molecular Characterization of Multidrug Resistant Klebsiella pneumoniae Isolated from a University Teaching Hospital, China

    PubMed Central

    Liu, Helu; Lü, Dongyue; Liang, Hong; Dou, Yuhong

    2014-01-01

    The multidrug-resistant rate of Klebsiella pneumoniae has risen rapidly worldwide. To better understand the multidrug resistance situation and molecular characterization of Klebsiella pneumoniae, a total of 153 Klebsiella pneumoniae isolates were collected, and drug susceptibility test was performed to detect its susceptibility patterns to 13 kinds of antibiotics. Phenotypic tests for carbapenemases ESBLs and AmpC enzyme-producing strains were performed to detect the resistance phenotype of the isolates. Then PCR amplification and sequencing analysis were performed for the drug resistance determinants. The results showed that 63 strains harbored blaCTX-M gene, and 14 strains harbored blaDHA gene. Moreover, there were 5 strains carrying blaKPC gene, among which 4 strains carried blaCTX-M, blaDHA and blaKPC genes, and these 4 strains were also resistant to imipenem. Our data indicated that drug-resistant Klebsiella pneumoniae were highly prevalent in the hospital. Thus it is warranted that surveillance of epidemiology of those resistant isolates should be a cause for concern, and appropriate drugs should be chosen. PMID:24740167

  19. Discovering Natural Product Modulators to Overcome Multidrug Resistance in Cancer Chemotherapy

    PubMed Central

    Wu, Chung-Pu; Ohnuma, Shinobu; Ambudkar, Suresh V.

    2012-01-01

    Multidrug resistance caused by the overexpression of ABC drug transporters is a major obstacle in clinical cancer chemotherapy. For several years, it appeared that direct inhibition of ABC transporters would be the cheapest and most efficient way to combat this problem. Unfortunately, progress in finding a potent, selective inhibitor to modulate ABC transporters and restore drug sensitivity in multidrug-resistant cancer cells has been slow and challenging. Candidate drugs should ideally be selective, potent and relatively non-toxic. Many researchers in recent years have turned their attention to utilizing natural products as the building blocks for the development of the next generation of inhibitors, especially after the disappointing results obtained from inhibitors of the first three generations at the clinical trial stage. The first step is to discover natural substances (distinct from the first three generation inhibitors) that are potent, selective and relatively non-toxic in order to be used clinically. Here, we present a brief overview of the prospect of using natural products to modulate the function of ABC drug transporters clinically and their impact on human physiology and pharmacology. PMID:21118092

  20. A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Poovaiah, B. W.

    1996-01-01

    A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.

  1. A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer

    PubMed Central

    Guo, Shengrong; Lv, Li; Shen, Yuanyuan; Hu, Zhongliang; He, Qianjun; Chen, Xiaoyuan

    2016-01-01