Sample records for multifactor complex mfc

  1. Relation Between the Molopo Farms and Bushveld Complexes: An Analysis of Pyroxene Exsolution Lamellae

    NASA Astrophysics Data System (ADS)

    Moore, I.; Feineman, M. D.; Nyblade, A.

    2017-12-01

    The Molopo Farms Complex (MFC) is a layered igneous intrusion in Botswana, considered to be related to the nearby South African Bushveld Complex (BC) due to their similarities. The BC has been researched in depth for its economic deposits of platinum group elements (PGEs), while the under-researched MFC has no PGEs and is under 200 m of sediment. This study aims to increase knowledge about the MFC regarding the theory that the BC and MFC come from the same parental magma body by showing similar cooling history in the exsolution of pyroxenes. Using optical microscopy and scanning electron microscopy (SEM) paired with an energy-dispersive detector (EDS), thin sections of pyroxenes with exsolution lamellae from both complexes were observed in terms of chemical composition and microtextures. MFC pyroxenes were then compared to literature data of BC pyroxenes. The pyroxenes are closely related, indicating that the MFC and the BC cooled at a similar rate and come from the same parental magma body. Further research can expand on these findings to prove that the MFC and BC are from the same magma.

  2. Self-potential and Complex Conductivity Monitoring of In Situ Hydrocarbon Remediation in Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Revil, A.; Ren, Z.; Karaoulis, M.; Mendonca, C. A.

    2013-12-01

    Petroleum hydrocarbon contamination of soil and groundwater in both non-aqueous phase liquid and dissolved forms generated from spills and leaks is a wide spread environmental issue. Traditional cleanup of hydrocarbon contamination in soils and ground water using physical, chemical, and biological remedial techniques is often expensive and ineffective. Recent studies show that the microbial fuel cell (MFC) can simultaneously enhance biodegradation of hydrocarbons in soil and groundwater and yield electricity. Non-invasive geophysical techniques such as self-potential (SP) and complex conductivity (induced polarization) have shown the potential to detect and characterize the nature of electron transport mechanism of in situ bioremediation of organic contamination plumes. In this study, we deployed both SP and complex conductivity in lab scale MFCs to monitor time-laps geophysical response of degradation of hydrocarbons by MFC. Two different sizes of MFC reactors were used in this study (DI=15 cm cylinder reactor and 94.5cm x 43.5 cm rectangle reactor), and the initial hydrocarbon concentration is 15 g diesel/kg soil. SP and complex conductivity measurements were measured using non-polarizing Ag/AgCl electrodes. Sensitivity study was also performed using COMSOL Multiphysics to test different electrode configurations. The SP measurements showed stronger anomalies adjacent to the MFC than locations afar, and both real and imaginary parts of complex conductivity are greater in areas close to MFC than areas further away and control samples without MFC. The joint use of SP and complex conductivity could in situ evaluate the dynamic changes of electrochemical parameters during this bioremediation process at spatiotemporal scales unachievable with traditional sampling methods. The joint inversion of these two methods to evaluate the efficiency of MFC enhanced hydrocarbon remediation in the subsurface.

  3. The microorganisms used for working in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Konovalova, E. Yu.; Stom, D. I.; Zhdanova, G. O.; Yuriev, D. A.; Li, Youming; Barbora, Lepakshi; Goswami, Pranab

    2018-04-01

    Investigated the use as biological object in microbial fuel cells (MFC) of various microorganisms performing the transport of electrons in the processing of various substrates. Most MFC, uses complex substrates. Such MFC filled with associations of microorganisms. The article deals with certain types of microorganisms for use in the MFC, shows the characteristics of molecular electron transfer mechanisms microorganisms into the environment.

  4. End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-10-01

    The Materials and Fuels Complex (MFC) facilities MFC-799, “Sodium Processing Facility” (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, “Caustic Storage Area;” and MFC-770C, “Nuclear Calibration Laboratory,” have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, “Transition Implementation Guide,” formore » buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.« less

  5. Electricity generation from palm oil tree empty fruit bunch (EFB) using dual chamber microbial fuel cell (MFC)

    NASA Astrophysics Data System (ADS)

    Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.

    2017-06-01

    Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper

  6. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  7. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.

    PubMed

    Uria, Naroa; Ferrera, Isabel; Mas, Jordi

    2017-10-18

    Microbial fuel cells (MFCs) operating with complex microbial communities have been extensively reported in the past, and are commonly used in applications such as wastewater treatment, bioremediation or in-situ powering of environmental sensors. However, our knowledge on how the composition of the microbial community and the different types of electron transfer to the anode affect the performance of these bioelectrochemical systems is far from complete. To fill this gap of knowledge, we designed a set of three MFCs with different constrains limiting direct and mediated electron transfer to the anode. The results obtained indicate that MFCs with a naked anode on which a biofilm was allowed unrestricted development (MFC-A) had the most diverse archaeal and bacterial community, and offered the best performance. In this MFC both, direct and mediated electron transfer, occurred simultaneously, but direct electron transfer was the predominant mechanism. Microbial fuel cells in which the anode was enclosed in a dialysis membrane and biofilm was not allowed to develop (MFC-D), had a much lower power output (about 60% lower), and a prevalence of dissolved redox species that acted as putative electron shuttles. In the anolyte of this MFC, Arcobacter and Methanosaeta were the prevalent bacteria and archaea respectively. In the third MFC, in which the anode had been covered by a cation selective nafion membrane (MFC-N), power output decreased a further 5% (95% less than MFC-A). In this MFC, conventional organic electron shuttles could not operate and the low power output obtained was presumably attributed to fermentation end-products produced by some of the organisms present in the anolyte, probably Pseudomonas or Methanosaeta. Electron transfer mechanisms have an impact on the development of different microbial communities and in turn on MFC performance. Although a stable current was achieved in all cases, direct electron transfer MFC showed the best performance concluding that biofilms are the major contributors to current production in MFCs. Characterization of the complex microbial assemblages in these systems may help us to unveil new electrogenic microorganisms and improve our understanding on their role to the functioning of MFCs.

  8. Multiple Sulfur Isotopes In The Molopo Farms Complex May Shed Light On Mechanisms Of Mineralization In The Bushveld Igneous Complex

    NASA Astrophysics Data System (ADS)

    Magalhaes, N.; Feineman, M. D.; Bybee, G. M.; Penniston-Dorland, S.; Farquhar, J.; Draper, C.; Escobar, E.; Gates, M.; Renusch, J.

    2016-12-01

    The 2.056 Ga Bushveld Igneous Complex (BIC) is host to the world's largest layered mafic-ultramafic intrusion, the Rustenburg Layered Suite (RLS), which has >80% of the world's known platinum group elements (PGEs) reserves. The BIC results from large-volume melt extraction from the mantle and may provide insight into the formation and compositional evolution of continental crust. Despite its scientific and economic importance, the total magma volume is poorly known. This is in part because the relationship between the BIC and nearby intrusive bodies of similar age remains uncertain. In this study, we present major element, trace element, and multiple sulfur isotope data for a suite of samples spanning the stratigraphy of the Molopo Farms Complex (MFC), a layered mafic intrusion located 200 km west of the Far Western Limb of the RLS. Similar to the RLS, the MFC contains an ultramafic lower zone, a mafic main zone, and an incompatible element enriched granophyric unit near the contact with the roof rocks. However, it has no Critical Zone, and an insignificant concentration of PGEs. Since the PGEs in the RLS are primarily hosted in sulfides, it has been inferred that the mineralization is closely linked to the source and behavior of sulfur. The RLS displays mass independent fractionation of sulfur (S-MIF; denoted by Δ33S), which suggests incorporation of surface-derived materials into the magma prior to or during emplacement. Multiple sulfur isotopes of MFC samples also show non-zero mean Δ33S (0.04±0.02‰, 1sd), although it is lower than the mean for the RLS (0.11±0.02‰, 1sd). Similarities in trace element ratios between the MFC mafic zone and RLS marginal zone suggest the same parental magma contributed to both intrusions. Taken together, these results suggest that both the RLS and the MFC started with similar magmatic compositions, and while both assimilated sulfur with an Archean surface-derived component, the RLS received more of this component in proportion to its volume. The lack of PGE mineralization in the MFC may reflect the lesser addition of Archean sedimentary sulfur.

  9. Research on treatment of wastewater containing heavy metal by microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Zixuan; Lu, Xun; Yin, Ruixia; Luo, Yunyi; Mai, Hanjian; Zhang, Nan; Xiong, Jingfang; Zhang, Hongguo; Tang, Jinfeng; Luo, Dinggui

    2018-02-01

    With rapid development of social economy, serious problem has been caused by wastewater containing heavy metals, which was difficult to be treated by many kinds of traditional treatment methods, such as complex processes, high cost or easy to cause secondary pollution. As a novel biological treatment technology, microbial fuel cells (MFC) can generate electric energy while dealing with wastewater, which was proposed and extensively studied. This paper introduced the working principle of MFC, the classification of cathode, and the research progress on the treatment of wastewater containing Cr(VI), Cu(II), Ag(I), Mn(II) and Cd(II) by MFC. The study found that different cathode, different heavy metals anddifferent hybrid systems would affect the performance of the system and removal effect for heavy metal in MFC. MFC was a highly potential pollution control technology. Until now, the research was still in the laboratory stage. Its industrial application for recovery of heavy metal ion, improving the energy recovery rate and improvement or innovation of system were worthy of further research.

  10. Microbial fuel cells: recent developments in design and materials

    NASA Astrophysics Data System (ADS)

    Bhargavi, G.; Venu, V.; Renganathan, S.

    2018-03-01

    Microbial Fuel Cells (MFCs) are the promising devices which can produce electricity by anaerobic fermentation of organic / inorganic matter from easily metabolized biomass to complex wastewater using microbes as biocatalysts. MFC technology has been found as a potential technology for electricity generation and concomitant wastewater treatment. However, the high cost of the components and low efficiency are barricading the commercialization of MFC when compared with other energy generating systems. The performance of an MFC is largely relying on the reactor design and electrode materials. On the way to improve the efficiency of an MFC, tremendous exercises have been carried out to explore new electrode materials and reactor designs in recent decades. The current review is excogitated to amass the progress in design and electrode materials, which could bolster further investigations on MFCs to improve their performance, mitigate the cost and successful implementation of technology in field applications as well.

  11. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2008-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points, the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  12. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2008-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  13. A Unique Computational Algorithm to Simulate Probabilistic Multi-Factor Interaction Model Complex Material Point Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2010-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points--the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  14. Is there a genetic solution to bovine respiratory disease complex?

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory disease complex (BRDC) is a complex multi-factor disease, which increases costs and reduces revenue from feedlot cattle. Multiple stressors and pathogens (viral and bacterial) have been implicated in the etiology of BRDC, therefore multiple approaches will be needed to evaluate a...

  15. Controlled release of chlorhexidine digluconate using β-cyclodextrin and microfibrillated cellulose.

    PubMed

    Lavoine, Nathalie; Tabary, Nicolas; Desloges, Isabelle; Martel, Bernard; Bras, Julien

    2014-09-01

    This study aims to develop a high-performance delivery system using microfibrillated cellulose (MFC)-coated papers as a controlled release system combined with the well-known drug delivery agent, β-cyclodextrin (βCD). Chlorhexidine digluconate (CHX), an antibacterial molecule, was mixed with a suspension of MFC or a βCD solution or mixed with both the substances, before coating onto a cellulosic substrate. The intermittent diffusion of CHX (i.e., diffusion interrupted by the renewal of the release medium periodically) was conducted in an aqueous medium, and the release mechanism of CHX was elucidated by field emission gun-scanning electron microscopy, SEM, NMR, and Fourier transform infrared analyses. According to the literature, both βCD and MFC are efficient controlled delivery systems. This study indicated that βCD releases CHX more gradually and over a longer period of time compared to MFC, which is mainly due to the ability of βCD to form an inclusion complex with CHX. Furthermore from the release study, a complementary action when the two compounds were combined was deduced. MFC mainly affected the burst effect, while βCD primarily controlled the amount of CHX released over time. In this paper, two different types of controlled release systems are proposed and compared. Depending on the final application, the use of βCD alone would release low amounts of active molecules over time (slow delivery), whereas the combination of β-cyclodextrin and MFC would be more suitable for the release of higher amounts of active molecules over time (rapid delivery). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH.

    PubMed

    Behera, Manaswini; Jana, Partha S; More, Tanaji T; Ghangrekar, M M

    2010-10-01

    Performance of microbial fuel cells (MFCs), fabricated using an earthen pot (MFC-1) and a proton exchange membrane (MFC-2), was evaluated while treating rice mill wastewater at feed pH of 8.0, 7.0 and 6.0. A third MFC (MFC-3), fabricated using a proton exchange membrane (PEM), was operated as control without pH adjustment of the acidic raw wastewater. Maximum chemical oxygen demand (COD) removal efficiencies of 96.5% and 92.6% were obtained in MFC-1 and MFC-2, respectively, at feed pH of 8.0. MFC-3 showed maximum COD removal of 87%. The lignin removal was 84%, 79%, and 77% and the phenol removal was 81%, 77%, and 76% in MFC-1, MFC-2, and MFC-3, respectively. Maximum sustainable volumetric power was obtained at feed pH of 8.0, and it was 2.3 W/m(3) and 0.53 W/m(3), with 100 ohm external resistance, in MFC-1 and MFC-2, respectively. The power was lower at lower feed pH. MFC-3 generated lowest volumetric power (0.27 W/m(3)) as compared to MFC-1 and MFC-2. More effective treatment of rice mill wastewater and higher energy recovery was demonstrated by earthen pot MFC as compared to MFC incorporated with PEM. 2010 Elsevier B.V. All rights reserved.

  17. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system.

    PubMed

    Xie, Shan; Liang, Peng; Chen, Yang; Xia, Xue; Huang, Xia

    2011-01-01

    A coupled microbial fuel cell (MFC) system comprising of an oxic-biocathode MFC (O-MFC) and an anoxic-biocathode MFC (A-MFC) was implemented for simultaneous removal of carbon and nitrogen from a synthetic wastewater. The chemical oxygen demand (COD) of the influent was mainly reduced at the anodes of the two MFCs; ammonium was oxidized to nitrate in the O-MFC's cathode, and nitrate was electrochemically denitrified in the A-MFC's cathode. The coupled MFC system reached power densities of 14 W/m(3) net cathodic compartment (NCC) and 7.2 W/m(3) NCC for the O-MFC and the A-MFC, respectively. In addition, the MFC system obtained a maximum COD, NH(4)(+)-N and TN removal rate of 98.8%, 97.4% and 97.3%, respectively, at an A-MFC external resistance of 5 Ω, a recirculation ratio (recirculated flow to total influent flow) of 2:1, and an influent flow ratio (O-MFC anode flow to A-MFC anode flow) of 1:1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. C-H···O Hydrogen Bonding. The Prototypical Methane-Formaldehyde System: A Critical Assessment.

    PubMed

    Moore, Kevin B; Sadeghian, Keyarash; Sherrill, C David; Ochsenfeld, Christian; Schaefer, Henry F

    2017-11-14

    Distinguishing the functionality of C-H···O hydrogen bonds (HBs) remains challenging, because their properties are difficult to quantify reliably. Herein, we present a study of the model methane-formaldehyde complex (MFC). Six stationary points on the MFC potential energy surface (PES) were obtained at the CCSD(T)/ANO2 level. The CCSDT(Q)/CBS interaction energies of the conformers range from only -1.12 kcal mol -1 to -0.33 kcal mol -1 , denoting a very flat PES. Notably, only the lowest energy stationary point (MFC1) corresponds to a genuine minimum, whereas all other stationary points-including the previously studied ideal case of a e (C-H···O) = 180°-exhibit some degree of freedom that leads to MFC1. Despite the flat PES, we clearly see that the HB properties of MFC1 align with those of the prototypical water dimer O-H···O HB. Each HB property generally becomes less prominent in the higher-energy conformers. Only the MFC1 conformer prominently exhibits (1) elongated C-H donor bonds, (2) attractive C-H···O═C interactions, (3) n(O) → σ*(C-H) hyperconjugation, (4) critical points in the electron density from Bader's method and from the noncovalent interactions method, (5) positively charged donor hydrogen, and (6) downfield NMR chemical shifts and nonzero 2 J(C M -H M ···O F ) coupling constants. Based on this research, some issues merit further study. The flat PES hinders reliable determinations of the HB-induced shifts of the C-H stretches; a similarly difficult challenge is observed for the experiment. The role of charge transfer in HBs remains an intriguing open question, although our BLW and NBO computations suggest that it is relevant to the C-H···O HB geometries. These issues notwithstanding, the prominence of the HB properties in MFC1 serves as clear evidence that the MFC is predominantly bound by a C-H···O HB.

  19. Distant and Regional Atmospheric Circulation Influences Governing Integrated Water Vapor Transport and the Occurrence of Extreme Precipitation Events

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.

    2017-12-01

    This presentation will show how the evolution of the large-scale and regional-scale atmospheric circulation contributes to the occurrence of extreme precipitation events (EPEs). An EPE requires that tropospheric moisture flux convergence (MFC) and the associated removal of hydrometeors be balanced by moisture replenishment via integrated (water) vapor transport (IVT) to continuously replenish condensed moisture. Moisture source regions may be distant or regional. Distant moisture sources may require the interaction of lower- and upper-level jet streams with a pre-existing mobile atmospheric disturbance to produce sufficient lift to condense moisture. Pre-existing regional moisture sources may require frontal lifting the presence of MFC to condense moisture. In cases of long-range IVT, such as moisture from a western North Pacific typhoon being drawn poleward along an atmospheric river (AR) toward the west coast of North America, moisture may be transported 1000s of kilometers along a low-level jet before a combination of dynamic and orographic lift results in an EPE. Alternatively, in the case of a typical summer warm and humid air mass over the continental United States, unused moisture may exist for several days in this air mass before sufficient MFC associated with a thermally direct mesoscale frontal circulation can concentrate and condense the moisture. In this case, there may be no long-range IVT via ARs. Instead, the atmospheric circulations may evolve to produce sustained MFC associated with mesoscale frontal circulations, especially in the presence of complex terrain, to produce an EPE. During this presentation, examples of EPEs associated with long-range IVT and distant MFC versus EPEs associated with regional MFC and mesoscale frontal circulations will be illustrated.

  20. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Guillen-Alonso, Yvonne; Morales-Morales, Cornelio; García-Sánchez, Liliana; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Loyola-Morales, Félix

    2017-07-01

    Two different air-cathode stacked microbial fuel cell (MFC) configurations were evaluated under continuous flow during the treatment of municipal wastewater and electricity production at a hydraulic retention time (HRT) of 3, 1, and 0.5 d. Stacked MFC 1 was formed by 20 individual air-cathode MFC units. The second stacked MFC (stacked MFC 2) consisted of 40 air-cathode MFC units placed in a shared reactor. The maximum voltages produced at closed circuit (1,000 Ω) were 170 mV for stacked MFC 1 and 94 mV for stacked MFC 2. Different power densities in each MFC unit were obtained due to a potential drop phenomenon and to a change in chemical oxygen demand (COD) concentrations inside reactors. The maximum power densities from individual MFC units were up to 1,107 mW/m 2 for stacked MFC 1 and up to 472 mW/m 2 for stacked MFC 2. The maximum power densities in stacked MFC 1 and MFC 2 connected in series were 79 mW/m 2 and 4 mW/m 2 , respectively. Electricity generation and COD removal efficiencies were reduced when the HRT was decreased. High removal efficiencies of 84% of COD, 47% of total nitrogen, and 30% of total phosphorus were obtained during municipal wastewater treatment.

  1. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less

  2. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes.

    PubMed

    Chen, Chih-Yu; Chen, Tzu-Yu; Chung, Ying-Chien

    2014-01-01

    Microbial fuel cells (MFCs) can, besides running on wastewater, also derive energy directly from certain aquatic plants. However, few studies have focussed on electricity generation using aerobic anodes. This study presents a comparison of the MFC performances of an anaerobic-anode MFC (ana-MFC) and an aerobic-anode MFC (aa-MFC), and shows their individual conditions for optimal operation. Results show that the maximum power density of 7.07 +/- 0.45 mW/m2 for the ana-MFC occurred at 500 omega, whereas the aa-MFC had a maximum power density of 2.34 +/- 0.16 mW/m2 at 2200 omega. The ana-MFC generally achieved high electricity generation, and the aa-MFC achieved relatively high electricity generation when fed with a diluted substrate. In the ana-MFC, the optimal substrate for electricity generation was glucose (fermentable substrate); however, glucose and acetic acid (non-fermentable substrate) were both suitable substrates for the aa-MFC. The optimal gas retention times of the ana-MFC and the aa-MFC were 9 and 120 s, respectively. This retention time is an important limiting factor of electricity generation for the ana-MFC. The aa-MFCs fed with different substrates exhibited non-significant differences between bacterial communities. We observed the relative diversities of bacterial communities in the ana-MFC fed with various substrates. The results of denaturing gradient gel electrophoresis analysis suggest that Ochrobactrum intermedium, Delftia acidovorans, and Citrobacterfreundii may be potential electrogenic bacteria. To our knowledge, this is the first study comparing the MFC performances of anaerobic and aerobic anodes.

  3. Multi-factor evaluation indicator method for the risk assessment of atmospheric and oceanic hazard group due to the attack of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Qi, Peng; Du, Mei

    2018-06-01

    China's southeast coastal areas frequently suffer from storm surge due to the attack of tropical cyclones (TCs) every year. Hazards induced by TCs are complex, such as strong wind, huge waves, storm surge, heavy rain, floods, and so on. The atmospheric and oceanic hazards cause serious disasters and substantial economic losses. This paper, from the perspective of hazard group, sets up a multi-factor evaluation method for the risk assessment of TC hazards using historical extreme data of concerned atmospheric and oceanic elements. Based on the natural hazard dynamic process, the multi-factor indicator system is composed of nine natural hazard factors representing intensity and frequency, respectively. Contributing to the indicator system, in order of importance, are maximum wind speed by TCs, attack frequency of TCs, maximum surge height, maximum wave height, frequency of gusts ≥ Scale 8, rainstorm intensity, maximum tidal range, rainstorm frequency, then sea-level rising rate. The first four factors are the most important, whose weights exceed 10% in the indicator system. With normalization processing, all the single-hazard factors are superposed by multiplying their weights to generate a superposed TC hazard. The multi-factor evaluation indicator method was applied to the risk assessment of typhoon-induced atmospheric and oceanic hazard group in typhoon-prone southeast coastal cities of China.

  4. Evaluating the metagenome of two sampling locations in the nasal cavity of cattle with bovine respiratory disease complex

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory disease complex (BRDC) is a multi-factor disease, and disease incidence may be associated with an animal’s commensal microbiota (metagenome). Evaluation of the animal’s resident microbiota in the nasal cavity may help us to understand the impact of the metagenome on incidence of ...

  5. Evaluating the microbiome of two sampling locations in the nasal cavity of cattle with bovine respiratory disease complex (BRDC)

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory disease complex (BRDC) is a multi-factor disease, and disease incidence may be associated with an animal’s commensal microbiota (metagenome). Evaluation of the animal’s resident microbiota in the nasal cavity may help us to understand the impact of the metagenome on incidence of ...

  6. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.

    PubMed

    Yang, Jiawei; Cheng, Shaoan; Sun, Yi; Li, Chaochao

    2017-10-01

    To increase the power generation of microbial fuel cells (MFCs), anode modification with carbon materials (activated carbon, carbon nanotubes, and carbon nanohorns) was investigated. Maximum power densities of a stainless-steel anode MFC with a non-modified electrode (SS-MFC), an activated carbon-modified electrode (AC-MFC), a carbon nanotube-modified electrode (CNT-MFC) and a carbon nanohorn-modified electrode (CNH-MFC) were 72, 244, 261 and 327 mW m -2 , respectively. The total polarization resistance measured by electrochemical impedance spectroscopy were 3610 Ω for SS-MFC, 283 Ω for AC-MFC, 231 Ω for CNTs-MFC, and 136 Ω for CNHs-MFC, consistent with the anode resistances obtained by fitting the anode polarization curves. Single-wall carbon nanohorns are better than activated carbon and carbon nanotubes as a new anode modification material for improving anode performance.

  7. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Name, No

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in themore » initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.« less

  8. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells.

    PubMed

    Suzuki, Kei; Kato, Yutaka; Yui, Arashi; Yamamoto, Shuji; Ando, Syota; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2018-05-01

    We investigated how bacterial communities adapted to external resistances and exhibited the performance of electricity production in microbial fuel cells (MFCs) with external resistance of 10 Ω (LR-MFC) and 1000 Ω (HR-MFC). The HR-MFC exhibited better performance than the LR-MFC. The power densities of the LR-MFC and the HR-MFC were 5.2 ± 1.6 mW m -2 and 28 ± 9.6 mW m -2 after day 197, respectively. Low-scan cyclic voltammetry analyses indicated that the onset potential of the HR-MFC was more negative than that of the LR-MFC, suggesting that the higher external resistance led to enrichment of the highly current producing bacteria on the anode surface. All clones of Geobacter retrieved from the LR-MFC and the HR-MFC were members of the Geobacter metallireducens clade. Although the population density of Geobacter decreased from days 366-427 in the HR-MFC, the current density was almost maintained. Multidimensional scaling analyses based on denaturing gradient gel electrophoresis profiles indicated that the dynamics of the biofilm and anolytic communities changed synchronously in the two MFCs, but the dynamics of the bacterial communities in the LR-MFC and the HR-MFC were different from each other, reflecting different processes in adaptation to the different external resistances. The results suggest that the microbial community structure was formed by adapting to higher external resistance, exhibiting more negative onset potential and higher performance of the HR-MFC through collaborating with anode-respiring bacteria and fermenters. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Electricity generation by Rhodopseudomonas palustris DX-1.

    PubMed

    Xing, Defeng; Zuo, Yi; Cheng, Shaoan; Regan, John M; Logan, Bruce E

    2008-06-01

    Bacteria able to generate electricity in microbial fuel cells (MFCs) are of great interest, but there are few strains capable of high power production in these systems. Here we report that the phototrophic purple nonsulfur bacterium Rhodopseudomonas palustris DX-1, isolated from an MFC, produced electricity at higher power densities (2720 +/- 60 mW/m2) than mixed cultures in the same device. While Rhodopseudomonas species are known for their ability to generate hydrogen, they have not previously been shown to generate power in an MFC, and current was generated without the need for light or hydrogen production. Strain DX-1 utilizes a wide variety of substrates (volatile acids, yeast extract, and thiosulfate) for power production in different metabolic modes, making it highly useful for studying power generation in MFCs and generating power from a range of simple and complex sources of organic matter. These results demonstrate that a phototrophic purple nonsulfur bacterium can efficiently generate electricity by direct electron transfer in MFCs, providing another model microorganism for MFC investigations.

  10. A low complexity wireless microbial fuel cell monitor using piezoresistive sensors and impulse-radio ultra-wide-band

    NASA Astrophysics Data System (ADS)

    Crepaldi, M.; Chiolerio, A.; Tommasi, T.; Hidalgo, D.; Canavese, G.; Stassi, S.; Demarchi, D.; Pirri, F. C.

    2013-05-01

    Microbial Fuel Cells (MFCs) are energy sources which generate electrical charge thanks to bacteria metabolism. Although functionally similar to chemical fuel cells (both including reactants and two electrodes, and anode and cathode), they have substantial advantages, e.g. 1) operation at ambient temperature and pressure; 2) use of neutral electrolytes and avoidance of expensive catalysts (e.g. platinum); 3) operation using organic wastes. An MFC can be effectively used in environments where ubiquitous networking requires the wireless monitoring of energy sources. We then report on a simple monitoring system for MFC comprising an ultra-low-power Impulse-Radio Ultra-Wide-Band Transmitter (TX) operating in the low 0-960MHz band and a nanostructured piezoresistive pressure sensor connected to a discrete component digital read-out circuit. The sensor comprises an insulating matrix of polydimethylsiloxane and nanostructured multi-branched copper microparticles as conductive filler. Applied mechanical stress induces a sample deformation that modulates the mean distance between particles, i.e. the current flow. The read-out circuit encodes pressure as a pulse rate variation, with an absolute sensitivity to the generated MFC voltage. Pulses with variable repetition frequency can encode battery health: the pressure sensor can be directly connected to the cells membrane to read excessive pressure. A prototype system comprises two MFCs connected in series to power both the UWB transmitter which consumes 40μW and the read-out circuit. The two MFC generate an open circuit voltage of 1.0+/-0.1V. Each MFC prototype has a total volume of 0.34L and is formed by two circular Poly(methyl methacrylate) (PMMA) chambers (anode and cathode) separated by a cation exchange membrane. The paper reports on the prototype and measurements towards a final solution which embeds all functionalities within a MFC cell. Our solution is conceived to provide energy sources integrating energy management and health monitoring capabilities to sensor nodes which are not connected to the energy grid.

  11. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    PubMed

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mg O2 L -1 , which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Microbial fuel cell characterisation and evaluation of Lysinibacillus macroides MFC02 electrigenic capability.

    PubMed

    Uma Vanitha, Murugan; Natarajan, Muthusamy; Sridhar, Harikrishnamoorthy; Umamaheswari, Sankaran

    2017-05-01

    Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standardized H shaped anode and cathode compartment as well as U shaped anode and cathode compartments, respectively. In order to lower the cost for MFC construction, Pencil graphite lead was used as electrode and salt agar as Proton exchange membrane. Results inferred that newly constructed UT-MFC showed high electron production when compared to the HT-MFC. UT-MFC displayed an output of about 377 ± 18.85 mV (millivolts); whereas HT-MFC rendered only 237 ± 11.85 mV (millivolts) of power generation, which might be due to the low internal resistance. By increasing the number of cathode in UT-MFC, power production was increased upto 313 ± 15.65 mV in Open circuit voltage (OCV). Electrogenic bacteria namely, Lysinibacillus macroides (Acc. No. KX011879) rendered enriched power generation. The attachment of bacteria as a biofilm on pencil graphite lead was analyzed using fluorescent microscope and Scanning Electron Microscope (SEM). Based on our findings, it was observed that UT-MFC has a tendency to produce high electron generation using pencil graphite lead as the electrode material.

  13. A Simple and Computationally Efficient Sampling Approach to Covariate Adjustment for Multifactor Dimensionality Reduction Analysis of Epistasis

    PubMed Central

    Gui, Jiang; Andrew, Angeline S.; Andrews, Peter; Nelson, Heather M.; Kelsey, Karl T.; Karagas, Margaret R.; Moore, Jason H.

    2010-01-01

    Epistasis or gene-gene interaction is a fundamental component of the genetic architecture of complex traits such as disease susceptibility. Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free method to detect epistasis when there are no significant marginal genetic effects. However, in many studies of complex disease, other covariates like age of onset and smoking status could have a strong main effect and may potentially interfere with MDR's ability to achieve its goal. In this paper, we present a simple and computationally efficient sampling method to adjust for covariate effects in MDR. We use simulation to show that after adjustment, MDR has sufficient power to detect true gene-gene interactions. We also compare our method with the state-of-art technique in covariate adjustment. The results suggest that our proposed method performs similarly, but is more computationally efficient. We then apply this new method to an analysis of a population-based bladder cancer study in New Hampshire. PMID:20924193

  14. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view

    NASA Astrophysics Data System (ADS)

    Chinga-Carrasco, Gary

    2011-06-01

    During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC). In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

  15. Open external circuit for microbial fuel cell sensor to monitor the nitrate in aquatic environment.

    PubMed

    Wang, Donglin; Liang, Peng; Jiang, Yong; Liu, Panpan; Miao, Bo; Hao, Wen; Huang, Xia

    2018-07-15

    This study employed an open external circuit, rather than a closed circuit applied in previous studies, to operate an microbial fuel cell (MFC) sensor for real-time nitrate monitoring, and achieved surprisingly greater sensitivity (4.42 ± 0.3-6.66 ± 0.4 mV/(mg/L)) when the nitrate was at a concentration of 10-40 mg/L, compared to that of the MFC sensor with a closed circuit (0.8 ± 0.05-1.6 ± 0.1 mV/(mg/L)). The MFC sensor operated in open circuit (O-MFC sensor) delivered much more stable performance than that operated in closed circuit (C-MFC sensor) when affected by organic matter (NaAc). The sensitivity of O-MFC sensor was twice that of C-MFC sensor at a low background concentration of organic matter. When organic matter reached a high concentration, the sensitivity of O-MFC sensor remained at an acceptable level, while that of C-MFC sensor dropped to almost zero. Challenged by a combined shock of organic matter and nitrate, O-MFC sensor delivered evident electrical signals for nitrate warning, while C-MFC failed. Another novel feature of this study lies in a new mathematical model to examine the bioanode process of nitrate monitoring. It revealed that lower capacitance of the bioanode in O-MFC was the major contributor to the improved sensitivity of the device. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Active control of structures using macro-fiber composite (MFC)

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Barkanov, E.; Gluhihs, S.

    2007-12-01

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  17. Estimation and analysis of multifactor productivity in truck transportation : 1987 - 2003

    DOT National Transportation Integrated Search

    2009-02-01

    The analysis has three objectives: 1) to estimate multifactor : productivity (MFP) in truck transportation during : 1987-2003; 2) to examine changes in multifactor productivity : in U.S. truck transportation, over time, and : to compare these changes...

  18. Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane

    NASA Astrophysics Data System (ADS)

    Chinga-Carrasco, Gary; Kuznetsova, Nina; Garaeva, Milyausha; Leirset, Ingebjørg; Galiullina, Guzaliya; Kostochko, Anatoly; Syverud, Kristin

    2012-12-01

    This study explores the production and surface modification of microfibrillated cellulose (MFC), based on unbleached and bleached Pinus radiata pulp fibres. Unbleached Pinus radiata pulp fibres tend to fibrillate easier by homogenisation without pre-treatment, compared to the corresponding bleached MFC. The resulting unbleached MFC films have higher barrier against oxygen, lower water wettability and higher tensile strength than the corresponding bleached MFC qualities. In addition, it is demonstrated that carboxymethylation can also be applied for production of highly fibrillated unbleached MFC. The nanofibril size distribution of the carboxymethylated MFC is narrow with diameters less than 20 nm, as quantified on high-resolution field-emission scanning electron microscopy images. The carboxymetylation had a larger fibrillation effect on the bleached pulp fibres than on the unbleached one. Importantly, the suitability of hexamethyldisilazane (HMDS) as a new alternative for rendering MFC films hydrophobic was demonstrated. The HMDS-modified films made of carboxymethylated MFC had oxygen permeability levels better than 0.06 mL mm m-2 day-1 atm-1, which is a good property for some packaging applications.

  19. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic properties. Th...

  20. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic solid properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic propertie...

  1. Novel microbial fuel cell design to operate with different wastewaters simultaneously.

    PubMed

    Mathuriya, Abhilasha Singh

    2016-04-01

    A novel single cathode chamber and multiple anode chamber microbial fuel cell design (MAC-MFC) was developed by incorporating multiple anode chambers into a single unit and its performance was checked. During 60 days of operation, performance of MAC-MFC was assessed and compared with standard single anode/cathode chamber microbial fuel cell (SC-MFC). The tests showed that MAC-MFC generated stable and higher power outputs compared with SC-MFC and each anode chamber contributed efficiently. Further, MAC-MFCs were incorporated with different wastewaters in different anode chambers and their behavior in MFC performance was observed. MAC-MFC efficiently treated multiple wastewaters simultaneously at low cost and small space, which claims its candidature for future possible scale-up applications. Copyright © 2015. Published by Elsevier B.V.

  2. Retail Survey of Brazilian Milk and Minas Frescal Cheese and a Contaminated Dairy Plant To Establish Prevalence, Relatedness, and Sources of Listeria monocytogenes Isolates▿

    PubMed Central

    Brito, J. Renaldi F.; Santos, Emilia M. P.; Arcuri, Edna F.; Lange, Carla C.; Brito, Maria A. V. P.; Souza, Guilherme N.; Cerqueira, Mônica M. P. O.; Beltran, J. Marcela Soto; Call, Jeffrey E.; Liu, Yanhong; Porto-Fett, Anna C. S.; Luchansky, John B.

    2008-01-01

    A study was designed to recover Listeria monocytogenes from pasteurized milk and Minas frescal cheese (MFC) sampled at retail establishments (REs) and to identify the contamination source(s) of these products in the corresponding dairy processing plant. Fifty milk samples (9 brands) and 55 MFC samples (10 brands) were tested from REs located in Juiz de Fora, Minas Gerais, Brazil. All milk samples and 45 samples from 9 of 10 MFC brands tested negative for L. monocytogenes; however, “brand F” of MFC obtained from REs 119 and 159 tested positive. Thus, the farm/plant that produced brand F MFC was sampled; all samples from the milking parlor tested negative for L. monocytogenes, whereas several sites within the processing plant and the MFC samples tested positive. All 344 isolates recovered from retail MFC, plant F MFC, and plant F environmental samples were serotype 1/2a and displayed the same AscI or ApaI fingerprints. Since these results established that the storage coolers served as the contamination source of the MFC, plant F was closed so that corrective renovations could be made. Following renovation, samples from sites that previously tested positive for the pathogen were collected from the processing environment and from MFC on multiple visits; all tested negative for L. monocytogenes. In addition, on subsequent visits to REs 159 and 119, all MFC samples tested negative for the pathogen. Studies are ongoing to quantify the prevalence, levels, and types of L. monocytogenes in MFC and associated processing plants to lessen the likelihood of listeriosis in Brazil. PMID:18502929

  3. Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper.

    PubMed

    Djafari Petroudy, Seyed Rahman; Syverud, Kristin; Chinga-Carrasco, Gary; Ghasemain, Ali; Resalati, Hossein

    2014-01-01

    This study explores the benefits of using bagasse microfibrillated cellulose (MFC) in bagasse paper. Two different types of MFC were produced from DED bleached soda bagasse pulp. The MFC was added to soda bagasse pulp furnishes in different amounts. Cationic polyacrylamide (C-PAM) was selected as retention aid. The results show that addition of MFC increased the strength of paper as expected. Interestingly, 1% MFC in combination with 0.1% C-PAM yielded similar drainage time as the reference pulp, which did not contain MFC. In addition, the samples containing 1% MFC and 0.1% C-PAM yielded (i) a significant increment of the tensile index, (ii) a minor decrease of opacity and (iii) preserved Gurley porosity. Hence, this study proves that small fractions of MFC in combination with adequate retention aids can have positive effects with respect to paper properties, which is most interesting from an industrial point of view. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring.

    PubMed

    Xu, Lei; Zhao, Yaqian; Fan, Chuang; Fan, Zhiren; Zhao, Fangchao

    2017-11-01

    Chemical oxygen demand (COD) is one of the major targets to remove in constructed wetlands (CWs) system. Traditional method for COD measurement is a complex, time-consuming and highly toxic reagents participated procedure. In this study, microbial fuel cell (MFC) was successfully integrated into CW for indicating COD concentration. Results showed that there are two linear correlations between bioelectrical signals (output voltage from MFC) and COD concentration (acetate), which are COD from 0 to 500mg/L (101.99±7.42 to 631.74±7.41mV, R 2 =0.9710) and then from 500 to 1000mg/L (631.74±7.41 to 668.46±0.01mV, R 2 =0.9245). Furthermore, results also revealed the specificity of the system in terms of different types of carbon source. Overall, this work presented the feasibility of using CW-MFC for in-situ sensing COD during the wastewater treatment process, which will be a promising technique for water quality monitoring within CWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Guide to the Multifactored Evaluation (MFE).

    ERIC Educational Resources Information Center

    Ohio Coalition for the Education of Children with Disabilities, Marion.

    This guide provides Ohio parents of children with disabilities with information on multifactored evaluations. It begins by discussing the Intervention Assistance Team and what occurs at the assistance team meeting. It also explains that to begin the multifactored evaluation process, the parent must complete a "Request for Parent Consent for…

  6. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.

    PubMed

    Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-Ding; Liao, Qiang; Regan, John M

    2015-03-01

    Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems.

    PubMed

    Srivastava, Pratiksha; Dwivedi, Saurabh; Kumar, Naresh; Abbassi, Rouzbeh; Garaniya, Vikram; Yadav, Asheesh Kumar

    2017-11-01

    The present study explores low-cost cathode development possibility using radial oxygen loss (ROL) of Canna indica plants and intermittent aeration (IA) for wastewater treatment and electricity generation in constructed wetland-microbial fuel cell (CW-MFC) system. Two CW-MFC microcosms were developed. Amongst them, one microcosm was planted with Canna indica plants for evaluating the ROL dependent cathode reaction (CW-MFC dependent on ROL) and another microcosm was equipped with intermittent aeration for evaluating the intermittent aeration dependent cathode reaction (CW-MFC with additional IA). The CW-MFC with additional IA has achieved 78.71% and 53.23%, and CW-MFC dependent on ROL has achieved 72.17% and 46.77% COD removal from synthetic wastewater containing glucose loads of 0.7gL -1 and 2.0gL -1 , respectively. The maximum power density of 31.04mWm -3 and 19.60mWm -3 was achieved in CW-MFC with additional IA and CW-MFC dependent on ROL, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Simulation of Flow Through Porous Anode in Mfc at Higher Power Density

    NASA Astrophysics Data System (ADS)

    Su, W. W.; Xu, Y. S.; Yan, W. W.; Liu, Y.

    Microbial fuel cell (MFC) is a new environmental friendly energy device which has received greatly attention due to its technology for producing electricity directly from organic or inorganic matter using bacteria as catalyst. To date, many studies have been carried out on advective flow through porous anode in a continuous flow MFC. However, the precise mechanical mechanism of flow through porous anode and the quantified relationship between porous media and MFC performance are not yet clearly understood. It has been found experimentally the power density can be increased apparently at certain spacing configuration. Based on these available experimental data, we studied the effect of spacing between electrodes and the Darcy number of porous anode on the power generation performance of MFC using lattice Boltzmann method. The simulation results indicated that the spacing between electrodes significantly influence the flow velocity profile and residence time in the MFC. Moreover, it was found that the Darcy number of porous anode could regulate the output efficiency of MFC. Our results would be helpful to optimize MFC design.

  9. An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell.

    PubMed

    Yong, Xiao-Yu; Yan, Zhi-Ying; Shen, Hai-Bo; Zhou, Jun; Wu, Xia-Yuan; Zhang, Li-Juan; Zheng, Tao; Jiang, Min; Wei, Ping; Jia, Hong-Hua; Yong, Yang-Chun

    2017-10-01

    Microbial fuel cell (MFC) is a promising device for energy generation and organic waste treatment simultaneously by electrochemically active bacteria (EAB). In this study, an integrated aerobic-anaerobic strategy was developed to improve the performance of P. aeruginosa-inoculated MFC. With an aerobic start-up and following an anaerobic discharge process, the current density of MFC reached a maximum of 99.80µA/cm 2 , which was 91.6% higher than the MFC with conventional constant-anaerobic operation. Cyclic voltammetry and HPLC analysis showed that aerobic start-up significantly increased electron shuttle (pyocyanin) production (76% higher than the constant-anaerobic MFC). Additionally, enhanced anode biofilm formation was also observed in the integrated aerobic-anaerobic MFC. The increased pyocyanin production and biofilm formation promoted extracellular electron transfer from EAB to the anode and were the underlying mechanism for the MFC performance enhancement. This work demonstrated the integrated aerobic-anaerobic strategy would be a practical strategy to enhance the electricity generation of MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The development of performance-monitoring function in the posterior medial frontal cortex

    PubMed Central

    Fitzgerald, Kate Dimond; Perkins, Suzanne C.; Angstadt, Mike; Johnson, Timothy; Stern, Emily R.; Welsh, Robert C.; Taylor, Stephan F.

    2009-01-01

    Background Despite its critical role in performance-monitoring, the development of posterior medial prefrontal cortex (pMFC) in goal-directed behaviors remains poorly understood. Performance monitoring depends on distinct, but related functions that may differentially activate the pMFC, such as monitoring response conflict and detecting errors. Developmental differences in conflict- and error-related activations, coupled with age-related changes in behavioral performance, may confound attempts to map the maturation of pMFC functions. To characterize the development of pMFC-based performance monitoring functions, we segregated interference and error-processing, while statistically controlling for performance. Methods Twenty-one adults and 23 youth performed an event-related version of the Multi-Source Interference Task during functional magnetic resonance imaging (fMRI). Linear modeling of interference and error contrast estimates derived from the pMFC were regressed on age, while covarying for performance. Results Interference- and error-processing were associated with robust activation of the pMFC in both youth and adults. Among youth, interference- and error-related activation of the pMFC increased with age, independent of performance. Greater accuracy associated with greater pMFC activity during error commission in both groups. Discussion Increasing pMFC response to interference and errors occurs with age, likely contributing to the improvement of performance monitoring capacity during development. PMID:19913101

  11. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness.

    PubMed

    Behera, M; Ghangrekar, M M

    2011-01-01

    Performance of four microbial fuel cells (MFC-1, MFC-2, MFC-3 and MFC-4) made up of earthen pots with wall thicknesses of 3, 5, 7 and 8.5 mm, respectively, was evaluated. The MFCs were operated in fed batch mode with synthetic wastewater having sucrose as the carbon source. The power generation decreased with increase in the thickness of the earthen pot which was used to make the anode chamber. MFC-1 generated highest sustainable power density of 24.32 mW/m(2) and volumetric power of 1.04 W/m(3) (1.91 mA, 0.191 V) at 100 Ω external resistance. The maximum Coulombic efficiencies obtained in MFC-1, MFC-2, MFC-3 and MFC-4 were 7.7, 7.1, 6.8 and 6.1%, respectively. The oxygen mass transfer and oxygen diffusion coefficients measured for earthen plate of 3 mm thickness were 1.79 × 10(-5) and 5.38 × 10(-6) cm(2)/s, respectively, which implies that earthen plate is permeable to oxygen as other polymeric membranes. The internal resistance increased with increase in thickness of the earthen pot MFCs. The thickness of the earthen material affected the overall performance of MFCs.

  12. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the reroutingmore » and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.« less

  13. Mixed cellulose ester filter as a separator for air-diffusion cathode microbial fuel cells.

    PubMed

    Wang, Zejie; Lim, Bongsu

    2017-04-01

    Separator is important to prevent bio-contamination of the catalyst layer of air-diffusion cathode microbial fuel cells (MFCs). Mixed cellulose ester filter (MCEF) was examined as a separator for an air-cathode MFC in the present study. The MCEF-MFC produced a maximum power density of 780.7 ± 18.7 mW/m 2 , which was comparable to 770.9 ± 35.9 mW/m 2 of MFC with Nafion membrane (NFM) as a separator. Long-term examination demonstrated a more stable performance of the MCEF-MFC than NFM-MFC. After 25 cycles, the maximum voltage of the MCEF-MFC decreased by only 1.3% from 425.1 ± 4.3 mV (initial 5 cycles) to 419.5 ± 2.3 mV (last 5 cycles). However, it was decreased by 9.1% from 424.8 ± 5.7 to 386 ± 2.5 mV for the NFM-MFC. The coulombic efficiency (CE) of the MCEF-MFC did not change (from 3.11 ± 0.09% to 3.13 ± 0.02%), while it decreased by 9.12% from 3.18 ± 0.04% to 2.89 ± 0.02% for the NFM-MFC. The MCEF separator was with less biofouling than the NFM separator over 60 days' operation, which might be the reason for the more table long-term performance of the MCEF-MFC. The results demonstrated that MCEF was feasible as a separator to set up good-performing and cost-effective air-diffusion cathode MFC.

  14. Effects of Furnished Cage Type on Behavior and Welfare of Laying Hens.

    PubMed

    Li, Xiang; Chen, Donghua; Li, Jianhong; Bao, Jun

    2016-06-01

    This study was conducted to compare the effects of layout of furniture (a perch, nest, and sandbox) in cages on behavior and welfare of hens. Two hundred and sixteen Hyline Brown laying hens were divided into five groups (treatments) with four replicates per group: small furnished cages (SFC), medium furnished cages type I (MFC-I), medium furnished cages type II (MFC-II), and medium furnished cages type III (MFC-III) and conventional cages (CC). The experiment started at 18 week of age and finished at 52 week of age. Hens' behaviors were filmed during the following periods: 8:00 to 10:00; 13:00 to 14:00; 16:00 to 17:00 on three separate days and two hens from each cage were measured for welfare parameters at 50 wk of age. The results showed that feeding and laying of all hens showed no effect by cage type (p>0.05), and the hens in the furnished cages had significantly lower standing and higher walking than CC hens (p<0.05). The birds in MFC-III had significant higher preening, scratching and feather-pecking behavior than in the other cages (p<0.05). No difference in nesting behavior was found in the hens between the furnished cages (p>0.05). The hens in MFC-I, -II, and -III showed a significant higher socializing behavior than SFC and CC (p<0.05). The lowest perching was for the hens in SFC and the highest perching found for the hens in MFC-III. Overall, the hens in CC showed poorer welfare conditions than the furnished cages, in which the feather condition score, gait score and tonic immobility duration of the hens in CC was significantly higher than SFC, MFC-I, MFC-II, and MFC-III (p<0.05). In conclusion, the furnished cage design affected both behavior and welfare states of hens. Overall, MFC-III cage design was better than SFC, MFC-I, and MFC-II cage designs.

  15. Effects of Furnished Cage Type on Behavior and Welfare of Laying Hens

    PubMed Central

    Li, Xiang; Chen, Donghua; Li, Jianhong; Bao, Jun

    2016-01-01

    This study was conducted to compare the effects of layout of furniture (a perch, nest, and sandbox) in cages on behavior and welfare of hens. Two hundred and sixteen Hyline Brown laying hens were divided into five groups (treatments) with four replicates per group: small furnished cages (SFC), medium furnished cages type I (MFC-I), medium furnished cages type II (MFC-II), and medium furnished cages type III (MFC-III) and conventional cages (CC). The experiment started at 18 week of age and finished at 52 week of age. Hens’ behaviors were filmed during the following periods: 8:00 to 10:00; 13:00 to 14:00; 16:00 to 17:00 on three separate days and two hens from each cage were measured for welfare parameters at 50 wk of age. The results showed that feeding and laying of all hens showed no effect by cage type (p>0.05), and the hens in the furnished cages had significantly lower standing and higher walking than CC hens (p<0.05). The birds in MFC-III had significant higher preening, scratching and feather-pecking behavior than in the other cages (p<0.05). No difference in nesting behavior was found in the hens between the furnished cages (p>0.05). The hens in MFC-I, −II, and −III showed a significant higher socializing behavior than SFC and CC (p<0.05). The lowest perching was for the hens in SFC and the highest perching found for the hens in MFC-III. Overall, the hens in CC showed poorer welfare conditions than the furnished cages, in which the feather condition score, gait score and tonic immobility duration of the hens in CC was significantly higher than SFC, MFC-I, MFC-II, and MFC-III (p<0.05). In conclusion, the furnished cage design affected both behavior and welfare states of hens. Overall, MFC-III cage design was better than SFC, MFC-I, and MFC-II cage designs. PMID:26954171

  16. Estimating multi-factor cumulative watershed effects on fish populations with an individual-based model

    Treesearch

    Bret C. Harvey; Steven F. Railsback

    2007-01-01

    While the concept of cumulative effects is prominent in legislation governing environmental management, the ability to estimate cumulative effects remains limited. One reason for this limitation is that important natural resources such as fish populations may exhibit complex responses to changes in environmental conditions, particularly to alteration of multiple...

  17. External Resistances Applied to MFC Affect Core Microbiome and Swine Manure Treatment Efficiencies

    PubMed Central

    Vilajeliu-Pons, Anna; Bañeras, Lluis; Puig, Sebastià; Molognoni, Daniele; Vilà-Rovira, Albert; Hernández-del Amo, Elena; Balaguer, Maria D.; Colprim, Jesús

    2016-01-01

    Microbial fuel cells (MFCs) can be designed to combine water treatment with concomitant electricity production. Animal manure treatment has been poorly explored using MFCs, and its implementation at full-scale primarily relies on the bacterial distribution and activity within the treatment cell. This study reports the bacterial community changes at four positions within the anode of two almost identically operated MFCs fed swine manure. Changes in the microbiome structure are described according to the MFC fluid dynamics and the application of a maximum power point tracking system (MPPT) compared to a fixed resistance system (Ref-MFC). Both external resistance and cell hydrodynamics are thought to heavily influence MFC performance. The microbiome was characterised both quantitatively (qPCR) and qualitatively (454-pyrosequencing) by targeting bacterial 16S rRNA genes. The diversity of the microbial community in the MFC biofilm was reduced and differed from the influent swine manure. The adopted electric condition (MPPT vs fixed resistance) was more relevant than the fluid dynamics in shaping the MFC microbiome. MPPT control positively affected bacterial abundance and promoted the selection of putatively exoelectrogenic bacteria in the MFC core microbiome (Sedimentibacter sp. and gammaproteobacteria). These differences in the microbiome may be responsible for the two-fold increase in power production achieved by the MPPT-MFC compared to the Ref-MFC. PMID:27701451

  18. Improving performance of MFC by design alteration and adding cathodic electrolytes.

    PubMed

    Jadhav, G S; Ghangrekar, M M

    2008-12-01

    Performance of two microbial fuel cells (MFCs) was investigated under batch and continuous mode of operation using different cathodic electrolyte. The wastewater was supplied from the bottom port provided to the anode chamber in both the MFCs and the effluent left the anode chamber from the top port in MFC-1, whereas in MFC-2, the effluent exit was provided close to membrane. Stainless steel (SS) mesh anode was used in both the MFCs with surface area of 167 and 100 cm(2) in MFC-1 and MFC-2, respectively. Under batch mode and continuous mode of operation, these MFCs gave chemical oxygen demand removal efficiency more than 85% and about 68%, respectively. Under batch mode of operation, maximum power density of 39.95 and 56.87 mW/m(2) and maximum current density of 180.83 and 295 mA/m(2) were obtained in MFC-1 and MFC-2, respectively. Under continuous mode of operation, a reduction in power and current density was observed. Even with less surface area of the anode, MFC-2 produced more current (1.77 mA) than MFC-1 (1.40 mA). Among the cathodic electrolyte tested, these can be listed in decreasing order of power density as aerated KMnO(4) solution > KMnO(4) solution without aeration > aerated tap water > aerated tap water with NaCl.

  19. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora

    2018-05-15

    In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Experimental studies on fatigue behavior of macro fiber composite (MFC) under mechanical loading

    NASA Astrophysics Data System (ADS)

    Pandey, Akash; Arockiarajan, A.

    2016-04-01

    Macro fiber Composite (MFC) finds its application in active control, vibration control and sensing elements. MFC can be laminated to surfaces or embedded in the structures to be used as an actuator and sensors. Due to its attractive properties and applications, it may be subjected to continuous loading, which leads to the deterioration of the properties. This study is focused on the fatigue lifetime of MFC under tensile and compressive loading at room temperature. Experiments were performed using 4 point bending setup, with MFC pasted at the center of the mild steel beam, to maintain constant bending stress along MFC. MFC is pasted using vacuum bagging technique. Sinusoidal loading is given to sample while maintaining R=0.13 (for tensile testing) and R=10 (for compressive testing). For d31 and d33 type of MFC, test was conducted for the strain values of 727 μ strain, 1400 μ strain, 1700 μ strain and 1900 μ strain for fatigue under tensile loading. For fatigue under compressive loading, both d33 and d31, was subjected to minimum strain of -2000 μ strain. Decrease in the slope of dielectric displacement vs. strain is the measure for the degradation. 10 percent decrease in the slope is set as the failure criteria. Experimental results show that MFC is very reliable below 1700 μ strain (R=0.13) at the room temperature.

  1. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-12-28

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  2. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell.

    PubMed

    Li, Hui; Tian, Yu; Zuo, Wei; Zhang, Jun; Pan, Xiaoyue; Li, Lipin; Su, Xinying

    2016-04-01

    The microbial fuel cell (MFC) was evaluated as an alternative way to recover electricity from canteen based food waste. Characteristics of the organics in food waste before and after the MFC treatment were analyzed to investigate how the organic matters were biodegraded and transformed during the MFC treatment. A maximum power density of 5.6W/m(3) and an average output voltage of 0.51V were obtained. During the MFC operation, the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions. Additionally, aromatic compounds in the hydrophilic fraction were more preferentially removed than non-aromatic compounds. The MFC could easily remove the tryptophan protein-like substances in all fractions and aromatic proteins in hydrophilic and hydrophobic neutral fractions. Additionally, the hydrophobic amide-1 proteins and aliphatic components were readily hydrolyzed and biodegraded in the MFC. These findings may facilitate the pretreatment and posttreatment choices for MFC system fed with food waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sustainable green technology on wastewater treatment: The evaluation of enhanced single chambered up-flow membrane-less microbial fuel cell.

    PubMed

    Thung, Wei-Eng; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Ridwan, Fahmi; Oon, Yoong-Ling; Oon, Yoong-Sin; Lehl, Harvinder Kaur

    2018-04-01

    This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained. Copyright © 2017. Published by Elsevier B.V.

  4. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  5. Multi-factor authentication using quantum communication

    DOEpatents

    Hughes, Richard John; Peterson, Charles Glen; Thrasher, James T.; Nordholt, Jane E.; Yard, Jon T.; Newell, Raymond Thorson; Somma, Rolando D.

    2018-02-06

    Multi-factor authentication using quantum communication ("QC") includes stages for enrollment and identification. For example, a user enrolls for multi-factor authentication that uses QC with a trusted authority. The trusted authority transmits device factor information associated with a user device (such as a hash function) and user factor information associated with the user (such as an encrypted version of a user password). The user device receives and stores the device factor information and user factor information. For multi-factor authentication that uses QC, the user device retrieves its stored device factor information and user factor information, then transmits the user factor information to the trusted authority, which also retrieves its stored device factor information. The user device and trusted authority use the device factor information and user factor information (more specifically, information such as a user password that is the basis of the user factor information) in multi-factor authentication that uses QC.

  6. Exterior egg quality as affected by enrichment resources layout in furnished laying-hen cages.

    PubMed

    Li, Xiang; Chen, Donghua; Meng, Fanyu; Su, Yingying; Wang, Lisha; Zhang, Runxiang; Li, Jianhong; Bao, Jun

    2017-10-01

    This study aimed to investigate the effects of enrichment resources (a perch, dustbath, and nest) layout in furnished laying-hen cages (FC) on exterior quality of eggs. One hundred and sixty-eight (168) Hy-Line Brown laying hens at 16 weeks of age were randomly distributed to four treatments: small furnished cages (SFC), medium furnished cages type I (MFC-I), medium furnished cages type II (MFC-II), and medium furnished cages type III (MFC-III). Each treatment had 4 replicates or cages with 6 hens for SFC (24 birds for each SFC) and 12 hen/cage for MFC-I, -II, and -III (48 birds for each MFC-I, -II and -III). Following a 2-week acclimation, data collection started at 18 weeks of age and continued till 52 weeks of age. Dirtiness of egg surface or cracked shell as indicators of the exterior egg quality were recorded each week. The results showed that the proportion of cracked or dirty eggs was significantly affected by the FC type (p<0.01) in that the highest proportion of cracked or dirty eggs was found in MFC-I and the lowest proportion of dirty eggs in SFC. The results of this showed that furnished cage types affected both dirty eggs and cracked eggs (p<0.01). The results also indicated that not nest but dustbath lead to more dirty eggs. Only MFC-I had higher dirty eggs at nest than other FC (p< 0.01). The results of dirty eggs in MFC-I and MFC-II compared with SFC and MFC-III seemed suggest that a low position of dustbath led to more dirty eggs. SFC design affected exterior egg quality and the low position of dustbath in FC resulted in higher proportion of dirty eggs.

  7. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell.

    PubMed

    Yang, Na; Ren, Yueping; Li, Xiufen; Wang, Xinhua

    2017-06-01

    Anolyte acidification is a drawback restricting the electricity generation performance of the buffer-free microbial fuel cells (MFC). In this paper, a small amount of alkali-treated anion exchange resin (AER) was placed in front of the anode in the KCl mediated single-chamber MFC to slowly release hydroxyl ions (OH - ) and neutralize the H + ions that are generated by the anodic reaction in two running cycles. This short-term alkaline intervention to the KCl anolyte has promoted the proliferation of electroactive Geobacter sp. and enhanced the self-buffering capacity of the KCl-AER-MFC. The pH of the KCl anolyte in the KCl-AER-MFC increased and became more stable in each running cycle compared with that of the KCl-MFC after the short-term alkaline intervention. The maximum power density (P max ) of the KCl-AER-MFC increased from 307.5mW·m -2 to 542.8mW·m -2 , slightly lower than that of the PBS-MFC (640.7mW·m -2 ). The coulombic efficiency (CE) of the KCl-AER-MFC increased from 54.1% to 61.2% which is already very close to that of the PBS-MFC (61.9%). The results in this paper indicate that short-term alkaline intervention to the anolyte is an effective strategy to further promote the performance of buffer-free MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular factor computing for predictive spectroscopy.

    PubMed

    Dai, Bin; Urbas, Aaron; Douglas, Craig C; Lodder, Robert A

    2007-08-01

    The concept of molecular factor computing (MFC)-based predictive spectroscopy was demonstrated here with quantitative analysis of ethanol-in-water mixtures in a MFC-based prototype instrument. Molecular computing of vectors for transformation matrices enabled spectra to be represented in a desired coordinate system. New coordinate systems were selected to reduce the dimensionality of the spectral hyperspace and simplify the mechanical/electrical/computational construction of a new MFC spectrometer employing transmission MFC filters. A library search algorithm was developed to calculate the chemical constituents of the MFC filters. The prototype instrument was used to collect data from 39 ethanol-in-water mixtures (range 0-14%). For each sample, four different voltage outputs from the detector (forming two factor scores) were measured by using four different MFC filters. Twenty samples were used to calibrate the instrument and build a multivariate linear regression prediction model, and the remaining samples were used to validate the predictive ability of the model. In engineering simulations, four MFC filters gave an adequate calibration model (r2 = 0.995, RMSEC = 0.229%, RMSECV = 0.339%, p = 0.05 by f test). This result is slightly better than a corresponding PCR calibration model based on corrected transmission spectra (r2 = 0.993, RMSEC = 0.359%, RMSECV = 0.551%, p = 0.05 by f test). The first actual MFC prototype gave an RMSECV = 0.735%. MFC was a viable alternative to conventional spectrometry with the potential to be more simply implemented and more rapid and accurate.

  9. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    PubMed Central

    Lertngim, Anantaya; Phiriyawirut, Manisara; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-01-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure–properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film. PMID:29134083

  10. Modelling and simulation of two-chamber microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Zeng, Yingzhi; Choo, Yeng Fung; Kim, Byung-Hong; Wu, Ping

    Microbial fuel cells (MFCs) offer great promise for simultaneous treatment of wastewater and energy recovery. While past research has been based extensively on experimental studies, modelling and simulation remains scarce. A typical MFC shares many similarities with chemical fuel cells such as direct ascorbic acid fuel cells and direct methanol fuel cells. Therefore, an attempt is made to develop a MFC model similar to that for chemical fuel cells. By integrating biochemical reactions, Butler-Volmer expressions and mass/charge balances, a MFC model based on a two-chamber configuration is developed that simulates both steady and dynamic behaviour of a MFC, including voltage, power density, fuel concentration, and the influence of various parameters on power generation. Results show that the cathodic reaction is the most significant limiting factor of MFC performance. Periodic changes in the flow rate of fuel result in a boost of power output; this offers further insight into MFC behaviour. In addition to a MFC fuelled by acetate, the present method is also successfully extended to using artificial wastewater (solution of glucose and glutamic acid) as fuel. Since the proposed modelling method is easy to implement, it can serve as a framework for modelling other types of MFC and thereby will facilitate the development and scale-up of more efficient MFCs.

  11. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    NASA Astrophysics Data System (ADS)

    Lertngim, Anantaya; Phiriyawirut, Manisara; Wootthikanokkhan, Jatuphorn; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-10-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure-properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film.

  12. Microbial fuel cells as pollutant treatment units: Research updates.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-10-01

    Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A high-performance aluminum-feed microfluidic fuel cell stack

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Leung, Dennis Y. C.

    2016-12-01

    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  14. Cadmium recovery by coupling double microbial fuel cells.

    PubMed

    Choi, Chansoo; Hu, Naixu; Lim, Bongsu

    2014-10-01

    Cr(VI)-MFC of the double microbial fuel cell (d-MFC) arrangement could successfully complement the insufficient voltage and power needed to recover cadmium metal from Cd(II)-MFC, which operated as a redox-flow battery. It was also possible to drain electrical energy from the d-MFC by an additional passage. The highest maximum utilization power density (22.5Wm(-2)) of Cr(VI)-MFC, with the cathode optimized with sulfate buffer, was 11.3times higher than the highest power density directly supplied to Cd(II)-MFC (2.0Wm(-2)). Cr(VI)-MFC could generate 3times higher power with the additional passage than without it; and the current density for the former was 4.2times higher than the latter at the same maximum power point (38.0Am(-2) vs. 9.0Am(-2)). This boosting phenomenon could be explained by the Le Chatelier's principle, which addresses the rate of electron-hole pair formation that can be accelerated by quickly removing electrons generated by microorganisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Carbon source and energy harvesting optimization in solid anolyte microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Adekunle, Ademola; Raghavan, Vijaya; Tartakovsky, Boris

    2017-07-01

    This work investigates the application of a solid anolyte microbial fuel cell (saMFC) as a long-lasting source of electricity for powering electronic devices. Broadly available biodegradable materials such as humus, cattle manure, peat moss, and sawdust are evaluated as solid anolytes. The initial comparison shows significantly higher power production in the saMFC operated using humus as compared to other solid anolytes. At the same time, power production in the humus-based saMFC is found to decline after about 40 days of operation, while the sawdust MFC demonstrates stable performance over the test period. Following this initial comparison, a combined humus - sawdust anolyte is developed to increase saMFC life span. The optimized saMFC demonstrates stable power production for over nine months. Furthermore, power production in the saMFC is maximized by using an intermittent connection to an electrical load (on/off operation) and optimizing the connection/disconnection times. These results demonstrate the feasibility of utilizing solid anolytes for developing inexpensive and long-lasting biobatteries operated on renewable carbon sources.

  16. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.

    PubMed

    Li, Chao; Xu, Ming; Lu, Yi; Fang, Fang; Cao, Jiashun

    2016-01-01

    Two types of cathodic biofilm in microbial fuel cells (MFC) were established for comparison on their performance and microbial communities. Complete autotrophic simultaneous nitrification and denitrification (SND) without organics addition was achieved in nitrifying-MFC (N-MFC) with a total nitrogen (TN) removal rate of 0.35 mg/(L·h), which was even higher than that in denitrifying-MFC (D-MFC) at same TN level. Integrated denaturing gradient gel electrophoresis analysis based on both 16S rRNA and nirK genes showed that Alpha-, Gammaproteobacteria were the main denitrifier communities. Some potential autotrophic denitrifying bacteria which can use electrons and reducing power from cathodes, such as Shewanella oneidensis, Shewanella loihica, Pseudomonas aeruginosa, Starkeya novella and Rhodopseudomonas palustris were identified and selectively enriched on cathode biofilms. Further, relative abundance of denitrifying bacteria characterized by nirK/16S ratios was much higher in biofilm than suspended sludge according to real-time polymerase chain reaction. The highest enrichment efficiency for denitrifiers was obtained in N-MFC cathode biofilms, which confirmed autotrophic denitrifying bacteria enrichment is the key factor for a D-MFC system.

  17. Effect of temperature on a miniaturized microbial fuel cell (MFC)

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Jiang, Chenming; Chae, Junseok

    2017-12-01

    A microbial fuel cell (MFC) is a bioinspired energy converter which directly converts biomass into electricity through the catalytic activity of a specific species of bacteria. The effect of temperature on a miniaturized microbial fuel cell with Geobacter sulfurreducens dominated mixed inoculum is investigated in this paper for the first time. The miniaturized MFC warrants investigation due to its small thermal mass, and a customized setup is built for the temperature effect characterization. The experiment demonstrates that the optimal temperature for the miniaturized MFC is 322-326 K (49-53 °C). When the temperature is increased from 294 to 322 K, a remarkable current density improvement of 282% is observed, from 2.2 to 6.2 Am-2. Furthermore, we perform in depth analysis on the effect of temperature on the miniaturized MFC, and found that the activation energy for the current limiting mechanism of the MFC is approximately between 0.132 and 0.146 eV, and the result suggest that the electron transfer between cytochrome c is the limiting process for the miniaturized MFC.

  18. Mining nutrigenetics patterns related to obesity: use of parallel multifactor dimensionality reduction.

    PubMed

    Karayianni, Katerina N; Grimaldi, Keith A; Nikita, Konstantina S; Valavanis, Ioannis K

    2015-01-01

    This paper aims to enlighten the complex etiology beneath obesity by analysing data from a large nutrigenetics study, in which nutritional and genetic factors associated with obesity were recorded for around two thousand individuals. In our previous work, these data have been analysed using artificial neural network methods, which identified optimised subsets of factors to predict one's obesity status. These methods did not reveal though how the selected factors interact with each other in the obtained predictive models. For that reason, parallel Multifactor Dimensionality Reduction (pMDR) was used here to further analyse the pre-selected subsets of nutrigenetic factors. Within pMDR, predictive models using up to eight factors were constructed, further reducing the input dimensionality, while rules describing the interactive effects of the selected factors were derived. In this way, it was possible to identify specific genetic variations and their interactive effects with particular nutritional factors, which are now under further study.

  19. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells.

    PubMed

    Liao, Zhi-Hong; Sun, Jian-Zhong; Sun, De-Zhen; Si, Rong-Wei; Yong, Yang-Chun

    2015-09-01

    The feasibility to use tartaric acid doped PANI for MFC anode modification was determined. Uniform PANI nanowires doped with tartaric acid were synthesized and formed mesoporous networks on the carbon cloth surface. By using this tartaric acid doped PANI modified carbon cloth (PANI-TA) as the anode, the voltage output (435 ± 15 mV) and power output (490 ± 12 mW/m(2)) of MFC were enhanced by 1.6 times and 4.1 times compared to that of MFC with plain carbon cloth anode, respectively. Strikingly, the performance of PANI-TA MFC was superior to that of the MFCs with inorganic acids doped PNAI modified anode. These results substantiated that tartaric acid is a promising PANI dopant for MFC anode modification, and provided new opportunity for MFC performance improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Taking the Test Taker's Perspective: Response Process and Test Motivation in Multidimensional Forced-Choice Versus Rating Scale Instruments.

    PubMed

    Sass, Rachelle; Frick, Susanne; Reips, Ulf-Dietrich; Wetzel, Eunike

    2018-03-01

    The multidimensional forced-choice (MFC) format has been proposed as an alternative to the rating scale (RS) response format. However, it is unclear how changing the response format may affect the response process and test motivation of participants. In Study 1, we investigated the MFC response process using the think-aloud technique. In Study 2, we compared test motivation between the RS format and different versions of the MFC format (presenting 2, 3, 4, and 5 items simultaneously). The response process to MFC item blocks was similar to the RS response process but involved an additional step of weighing the items within a block against each other. The RS and MFC response format groups did not differ in their test motivation. Thus, from the test taker's perspective, the MFC format is somewhat more demanding to respond to, but this does not appear to decrease test motivation.

  1. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  2. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed Central

    Chouler, Jon; Di Lorenzo, Mirella

    2015-01-01

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries. PMID:26193327

  3. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed

    Chouler, Jon; Di Lorenzo, Mirella

    2015-07-16

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.

  4. A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility

    PubMed Central

    Gui, Jiang; Andrew, Angeline S.; Andrews, Peter; Nelson, Heather M.; Kelsey, Karl T.; Karagas, Margaret R.; Moore, Jason H.

    2010-01-01

    A central goal of human genetics is to identify and characterize susceptibility genes for common complex human diseases. An important challenge in this endeavor is the modeling of gene-gene interaction or epistasis that can result in non-additivity of genetic effects. The multifactor dimensionality reduction (MDR) method was developed as machine learning alternative to parametric logistic regression for detecting interactions in absence of significant marginal effects. The goal of MDR is to reduce the dimensionality inherent in modeling combinations of polymorphisms using a computational approach called constructive induction. Here, we propose a Robust Multifactor Dimensionality Reduction (RMDR) method that performs constructive induction using a Fisher’s Exact Test rather than a predetermined threshold. The advantage of this approach is that only those genotype combinations that are determined to be statistically significant are considered in the MDR analysis. We use two simulation studies to demonstrate that this approach will increase the success rate of MDR when there are only a few genotype combinations that are significantly associated with case-control status. We show that there is no loss of success rate when this is not the case. We then apply the RMDR method to the detection of gene-gene interactions in genotype data from a population-based study of bladder cancer in New Hampshire. PMID:21091664

  5. A Combinatorial Approach to Detecting Gene-Gene and Gene-Environment Interactions in Family Studies

    PubMed Central

    Lou, Xiang-Yang; Chen, Guo-Bo; Yan, Lei; Ma, Jennie Z.; Mangold, Jamie E.; Zhu, Jun; Elston, Robert C.; Li, Ming D.

    2008-01-01

    Widespread multifactor interactions present a significant challenge in determining risk factors of complex diseases. Several combinatorial approaches, such as the multifactor dimensionality reduction (MDR) method, have emerged as a promising tool for better detecting gene-gene (G × G) and gene-environment (G × E) interactions. We recently developed a general combinatorial approach, namely the generalized multifactor dimensionality reduction (GMDR) method, which can entertain both qualitative and quantitative phenotypes and allows for both discrete and continuous covariates to detect G × G and G × E interactions in a sample of unrelated individuals. In this article, we report the development of an algorithm that can be used to study G × G and G × E interactions for family-based designs, called pedigree-based GMDR (PGMDR). Compared to the available method, our proposed method has several major improvements, including allowing for covariate adjustments and being applicable to arbitrary phenotypes, arbitrary pedigree structures, and arbitrary patterns of missing marker genotypes. Our Monte Carlo simulations provide evidence that the PGMDR method is superior in performance to identify epistatic loci compared to the MDR-pedigree disequilibrium test (PDT). Finally, we applied our proposed approach to a genetic data set on tobacco dependence and found a significant interaction between two taste receptor genes (i.e., TAS2R16 and TAS2R38) in affecting nicotine dependence. PMID:18834969

  6. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    NASA Astrophysics Data System (ADS)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  7. Frontal Theta Dynamics during Response Conflict in Long-Term Mindfulness Meditators

    PubMed Central

    Jo, Han-Gue; Malinowski, Peter; Schmidt, Stefan

    2017-01-01

    Mindfulness meditators often show greater efficiency in resolving response conflicts than non-meditators. However, the neural mechanisms underlying the improved behavioral efficiency are unclear. Here, we investigated frontal theta dynamics—a neural mechanism involved in cognitive control processes—in long-term mindfulness meditators. The dynamics of EEG theta oscillations (4–8 Hz) recorded over the medial frontal cortex (MFC) were examined in terms of their power (MFC theta power) and their functional connectivity with other brain areas (the MFC-centered theta network). Using a flanker-type paradigm, EEG data were obtained from 22 long-term mindfulness meditators and compared to those from 23 matched controls without meditation experience. Meditators showed more efficient cognitive control after conflicts, evidenced by fewer error responses irrespective of response timing. Furthermore, meditators exhibited enhanced conflict modulations of the MFC-centered theta network shortly before the response, in particular for the functional connection between the MFC and the motor cortex. In contrast, MFC theta power was comparable between groups. These results suggest that the higher behavioral efficiency after conflicts in mindfulness meditators could be a function of increased engagement to control the motor system in association with the MFC-centered theta network. PMID:28638334

  8. European emissions of HFC-365mfc, a chlorine-free substitute for the foam blowing agents HCFC-141b and CFC-11.

    PubMed

    Stemmler, Konrad; Folini, Doris; Ubl, Sandy; Vollmer, Martin K; Reimann, Stefan; O'Doherty, Simon; Greally, Brian R; Simmonds, Peter G; Manning, Alistair J

    2007-02-15

    HFC-365mfc (1,1,1,3,3-pentafluorobutane) is an industrial chemical used for polyurethane foam blowing. From early 2003, HFC-365mfc has been commercially produced as a substitute for HCFC-141b, whose use in Europe has been banned since January 2004. We describe the first detection of HFC-365mfc in the atmosphere and report on a 2 year long record at the high Alpine station of Jungfraujoch (Switzerland) and the Atlantic coast station of Mace Head (Ireland). The measurements at Jungfraujoch are used to estimate the central European emissions of HFC-365mfc, HCFC-141b, and CFC-11. For HFC-365mfc, we estimate the central European emissions (Germany, France, Italy, Switzerland, The Netherlands, Belgium, and Luxembourg) in 2003 and 2004 as 400-500 tonnes year(-1). These emissions are about one-third lower on a per capita basis than what we estimate from the Mace Head measurements for the total of Europe. The estimated emissions of HCFC-141b for central Europe are higher (i.e., 7.2-3.5 ktonnes year(-1)) with a decreasing trend in the period from 2000 to 2004. Residual emissions of CFC-11 are estimated at 2.4-4.7 ktonnes year(-1) in the same time period. The Po Valley (northern Italy) appears to be a main source region for HFC-365mfc and for the former blowing agents HCFC-141b and CFC-11. In 2004, the emissions of HFC-365mfc arose from a wider region of Europe, which we attribute to an increased penetration of HFC-365mfc into the European market.

  9. Electricity generation directly using human feces wastewater for life support system

    NASA Astrophysics Data System (ADS)

    Fangzhou, Du; Zhenglong, Li; Shaoqiang, Yang; Beizhen, Xie; Hong, Liu

    2011-05-01

    Wastewater reuse and power regeneration are key issues in the research of bioregeneration life support system (BLSS). Microbial fuel cell (MFC) can generate electricity during the process of wastewater treatment, which might be promising to solve the two problems simultaneously. We used human feces wastewater containing abundant organic compounds as the substrate of MFC to generate electricity, and the factors concerning electricity generation capacity were investigated. The removal efficiency of total chemical oxygen demand (TCOD), Soluble chemical oxygen demand (SCOD) and NH4+ reached 71%, 88% and 44%, respectively with two-chamber MFC when it was fed with the actual human feces wastewater and operated for 190 h. And the maximum power density reached 70.8 mW/m 2, which implicated that MFC technology was feasible and appropriate for treating human feces wastewater. In order to improve the power generation of MFC further, human feces wastewater were fermented before poured into MFC, and the result showed that fermentation pretreatment could improve the MFC output obviously. The maximum power density of MFC fed with pretreated human feces wastewater was 22 mW/m 2, which was 47% higher than that of the control without pretreatment (15 mW/m 2). Furthermore, the structure of MFC was studied and it was found that both enlarging the area of electrodes and shortening the distance between electrodes could increase the electricity generation capacity. Finally, an automatic system, controlled by time switches and electromagnetic valves, was established to process one person's feces wastewater (1 L/d) while generating electricity. The main parts of this system comprised a pretreatment device and 3 one-chamber air-cathode MFCs. The total power could reach 787.1 mW and power density could reach the maximum of about 240 mW/m 2.

  10. A paper-based microbial fuel cell: instant battery for disposable diagnostic devices.

    PubMed

    Fraiwan, Arwa; Mukherjee, Sayantika; Sundermier, Steven; Lee, Hyung-Sool; Choi, Seokheun

    2013-11-15

    We present a microfabricated paper-based microbial fuel cell (MFC) generating a maximum power of 5.5 μW/cm(2). The MFC features (1) a paper-based proton exchange membrane by infiltrating sulfonated sodium polystyrene sulfonate and (2) micro-fabricated paper chambers by patterning hydrophobic barriers of photoresist. Once inoculum and catholyte were added to the MFC, a current of 74 μA was generated immediately. This paper-based MFC has the advantages of ease of use, low production cost, and high portability. The voltage produced was increased by 1.9 × when two MFC devices were stacked in series, while operating lifetime was significantly enhanced in parallel. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review.

    PubMed

    Lavoine, Nathalie; Desloges, Isabelle; Dufresne, Alain; Bras, Julien

    2012-10-01

    Interest in microfibrillated cellulose (MFC) has been increasing exponentially. During the last decade, this bio-based nanomaterial was essentially used in nanocomposites for its reinforcement property. Its nano-scale dimensions and its ability to form a strong entangled nanoporous network, however, have encouraged the emergence of new high-value applications. In previous years, its mode of production has completely changed, as many forms of optimization have been developed. New sources, new mechanical processes, and new pre- and post-treatments are currently under development to reduce the high energy consumption and produce new types of MFC materials on an industrial scale. The nanoscale characterization possibilities of different MFC materials are thus increasing intensively. Therefore, it is critical to review such MFC materials and their properties. Moreover, very recent studies have proved the significant barrier properties of MFC. Hence, it is proposed to focus on the barrier properties of MFC used in films, in nanocomposites, or in paper coating. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Theta dynamics reveal domain-specific control over stimulus and response conflict.

    PubMed

    Nigbur, Roland; Cohen, Michael X; Ridderinkhof, K Richard; Stürmer, Birgit

    2012-05-01

    Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.

  13. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode.

    PubMed

    Behera, Manaswini; Jana, Partha S; Ghangrekar, M M

    2010-02-01

    An attempt has been made to produce low cost MFC from the commercially available earthen pots in India, without involving any costly membrane. This MFC gave a maximum power output of 16.8 W/m(3) at a Coulombic efficiency (CE) of 31.3% with graphite plate cathode. With stainless steel mesh cathode and KMnO(4) as cathodic electrolyte the power production and CE of 70.48 W/m(3) and 64.5%, respectively, was obtained. The performance of this earthen pot MFC was evaluated with biotic and abiotic cathode. Although, biofilm formation on the cathode is observed to be helpful in enhancing power out put, the thicker biofilm on the cathode showed reduction in power. This MFC demonstrated competitive performance as compared to MFC incorporated with membrane. This low cost MFC, with total production cost of less than 1.0$, as per Indian market, demonstrated its utility as a wastewater treatment and onsite power generation device.

  14. Catastrophic complication following injection and extracorporeal shock wave therapy of a medial femoral condyle subchondral cystic lesion in a 14 year old Arabian mare.

    PubMed

    Moser, Darla K; Schoonover, Mike J; Sippel, Kate M; Dieterly, Alix M; Ritchey, Jerry W; Wall, Corey R

    2017-01-01

    This report describes fibrous cyst lining injection and extracorporeal shock wave therapy (ESWT) of a medial femoral condyle (MFC) subchondral cystic lesion (SCL) resulting in catastrophic MFC fracture in an Arabian mare. The mare was presented for evaluation of a severe hind limb lameness of approximately 4 months duration. On presentation, a non-weight bearing lameness of the left hind limb with severe effusion and soft tissue swelling of the stifle region was noted. Radiographic evaluation of the stifle revealed a large SCL of the MFC with associated osteoarthritis. Arthroscopic guided intra-lesional injection of the SCL with corticosteroids and autologous bone marrow concentrate was performed followed by ESWT of the MFC. The mare was discharged walking comfortably 48-hours post-operatively. An acute increase in lameness was noted 14 days post-operatively. Imaging revealed catastrophic fracture of the left MFC. Possible mechanisms leading to failure of the MFC secondary to the described treatment are discussed.

  15. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.

    PubMed

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy A W; Amin, Mohamed A M; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2018-04-01

    A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (R in ), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m -3 , 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m -2  °C -1 , whereas maximum power density was in a polynomial function. The temperature coefficient (Q 10 ) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures. ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen Li; Rishika Haynes; Eugene Sato

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopymore » results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.« less

  17. Microfabricated Microbial Fuel Cell Arrays Reveal Electrochemically Active Microbes

    PubMed Central

    Cho, Younghak; de Figueiredo, Paul; Han, Arum

    2009-01-01

    Microbial fuel cells (MFCs) are remarkable “green energy” devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated. PMID:19668333

  18. Interspecies comparison of subchondral bone properties important for cartilage repair.

    PubMed

    Chevrier, Anik; Kouao, Ahou S M; Picard, Genevieve; Hurtig, Mark B; Buschmann, Michael D

    2015-01-01

    Microfracture repair tissue in young adult humans and in rabbit trochlea is frequently of higher quality than in corresponding ovine or horse models or in the rabbit medial femoral condyle (MFC). This may be related to differences in subchondral properties since repair is initiated from the bone. We tested the hypothesis that subchondral bone from rabbit trochlea and the human MFC are structurally similar. Trochlea and MFC samples from rabbit, sheep, and horse were micro-CT scanned and histoprocessed. Samples were also collected from normal and lesional areas of human MFC. The subchondral bone of the rabbit trochlea was the most similar to human MFC, where both had a relatively thin bone plate and a more porous and less dense character of subchondral bone. MFC from animals all displayed thicker bone plates, denser and less porous bone and thicker trabeculae, which may be more representative of older or osteoarthritic patients, while both sheep trochlear ridges and the horse lateral trochlea shared some structural features with human MFC. Since several cartilage repair procedures rely on subchondral bone for repair, subchondral properties should be accounted for when choosing animal models to study and test procedures that are intended for human cartilage repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Homogeneous deposition-assisted synthesis of iron-nitrogen composites on graphene as highly efficient non-precious metal electrocatalysts for microbial fuel cell power generation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Jin, Xiao-Jun; Dionysiou, Dionysios D.; Liu, Hong; Huang, Yu-Ming

    2015-03-01

    This work proposed a novel strategy for synthesizing highly efficient non-precious metal oxygen reduction reaction (ORR) electrocatalysts. Fe complexes were homogeneously deposited (HD) on graphene oxide through in situ hydrolysis of urea, followed by two-step pyrolysis under Ar and NH3 atmospheres, resulting in formation of Fe- and N-functionalized graphene (HD-FeN/G). The morphology, crystalline structure and elemental composition of HD-FeN/G were characterized. ORR activity was evaluated by using a rotary disk electrode (RDE) electrochemical system. HD improved the loading and distribution of the Fe-Nx composites on graphene. The ORR activity of the as-prepared HD-FeN/G in neutral medium was comparable to that of the state-of-the-art commercial Pt/C and significantly superior to a FeN/G counterpart produced via traditional approach. The ORR electron transfer number of HD-FeN/G was as high as 3.83 ± 0.08, which suggested that ORR catalysis proceeds through a four-electron pathway. HD-FeN/G was used as a cathodic electrocatalyst in microbial fuel cells (MFCs), and the resultant HD-FeN/G-MFC showed comparable voltage output and maximum power density to those of Pt/C-MFC. The HD-FeN/G-MFC achieved a maximum power density of 885 mW m-2, which was much higher than that of FeN/G-MFC (708 mW m-2). These findings demonstrate that HD-FeN/G produced through the novel synthesis strategy proposed in this work would be a good candidate as cathodic electrocatalyst in MFCs.

  20. Tunable Optical Assembly with Vibration Dampening

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Allison, Sidney G.; Fox, Robert L.

    2008-01-01

    Since their market introduction in 1995, fiber Bragg gratings (FBGs) have emerged as excellent means of measuring such parameters as strain and temperature. Distributed-grating sensing is particularly beneficial for such structural-health monitoring applications such as those of 'smart' structures or integrated vehicle health management in aerospace vehicles. Because of the variability of their output wavelengths, tunable lasers have become widely used as means of measuring FBGs. Several versions of a lightweight assembly for strain-tuning an FBG and dampening its vibrations have been constructed. The main components of such an assembly are one or more piezoelectric actuators, an optical fiber containing one or more Bragg grating(s), a Bragg-grating strain-measurement system, and a voltage source for actuation. The piezoelectric actuators are, more specifically, piezoceramic fiber composite actuators and, can be, still more specifically, of a type known in the art as macro-fiber composite (MFC) actuators. In fabrication of one version of the assembly, the optical fiber containing the Bragg grating(s) is sandwiched between the piezoelectric actuators along with an epoxy that is used to bond the optical fiber to both actuators, then the assembly is placed in a vacuum bag and kept there until the epoxy is cured. Bonding an FBG directly into an MFC actuator greatly reduces the complexity, relative to assemblies, that include piezoceramic fiber composite actuators, hinges, ferrules, and clamp blocks with setscrews. Unlike curved actuators, MFC actuators are used in a flat configuration and are less bulky. In addition, the MFC offers some vibration dampening and support for the optical fiber whereas, in a curved piezoelectric actuator assembly, the optical fiber is exposed, and there is nothing to keep the exposed portion from vibrating.

  1. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    PubMed

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed increased encoding of the instrumental responses that monkeys made on each trial. Behaviorally, changes in neural activity were accompanied by slower stimulus-reward learning. The findings suggest that interactions among amygdala, OFC, and MFC contribute to learning about stimuli that predict rewards. Copyright © 2017 the authors 0270-6474/17/372186-17$15.00/0.

  2. Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality.

    PubMed

    Velasquez-Orta, S B; Werner, D; Varia, J C; Mgana, S

    2017-06-15

    Online monitoring of groundwater quality in shallow wells to detect faecal or organic pollution could dramatically improve understanding of health risks in unplanned peri-urban settlements. Microbial fuel cells (MFC) are devices able to generate electricity from the organic matter content in faecal pollution making them suitable as biosensors. In this work, we evaluate the suitability of four microbial fuel cell systems placed in different regions of a groundwater well for the low-cost monitoring of a faecal pollution event. Concepts created include the use of a sediment/bulk liquid MFC (SED/BL), a sediment/sediment MFC (SED/SED), a bulk liquid/air MFC (BL/Air), and a bulk liquid/bulk liquid MFC (BL/BL). MFC electrodes assembly aimed to use inexpensive, durable, materials, which would produce a signal after a contamination event without external energy or chemical inputs. All MFC configurations were responsive to a contamination event, however SED/SED and BL/Air MFC concepts failed to deliver a reproducible output within the tested period of time. BL/BL MFC and SED/BL MFCs presented an increase in the average current after contamination from -0.75 ± 0.35 μA to -0.66 ± 0.41 μA, and 0.07 ± 0.2 mA to 0.11 ± 0.03 mA, respectively. Currents produced by the SED/BL MFC (SMFC) were considerably higher than for the BL/BL MFCs, making them more responsive, readable and graphically visible. A factorial design of experiments (DOE) was applied to evaluate which environmental and design factors had the greatest effect on current response in a contamination event. Within the ranges of variables tested, salinity, temperature and external resistance, only temperature presented a statistically significant effect (p = 0.045). This showed that the biosensor response would be sensitive to fluctuations in temperature but not to changes in salinity, or external resistances produced from placing electrodes at different distances within a groundwater well. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    PubMed Central

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also showed increased encoding of the instrumental responses that monkeys made on each trial. Behaviorally, changes in neural activity were accompanied by slower stimulus–reward learning. The findings suggest that interactions among amygdala, OFC, and MFC contribute to learning about stimuli that predict rewards. PMID:28123082

  4. Preliminary Design and Evaluation of an Airfoil with Continuous Trailing-Edge Flap

    NASA Technical Reports Server (NTRS)

    Shen, Jinwei; Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Liu, Yi

    2012-01-01

    This paper presents the preliminary design and evaluation of an airfoil with active continuous trailing-edge flap (CTEF) as a potential rotorcraft active control device. The development of structural cross-section models of a continuous trailing-edge flap airfoil is described. The CTEF deformations with MFC actuation are predicted by NASTRAN and UM/VABS analyses. Good agreement is shown between the predictions from the two analyses. Approximately two degrees of CTEF deflection, defined as the rotation angle of the trailing edge, is achieved with the baseline MFC-PZT bender. The 2D aerodynamic characteristics of the continuous trailing-edge flap are evaluated using a CFD analysis. The aerodynamic efficiency of a continuous trailing-edge flap is compared to that of a conventional discrete trailing-edge flap (DTEF). It is found that the aerodynamic characteristics of a CTEF are equivalent to those of a conventional DTEF with the same deflection angle but with a smaller flap chord. A fluid structure interaction procedure is implemented to predict the deflection of the continuous trailingedge flap under aerodynamic pressure. The reductions in CTEF deflection are overall small when aerodynamic pressure is applied: 2.7% reduction is shown with a CTEF deflection angle of two degrees and at angle of attack of six degrees. In addition, newly developed MFC-PMN actuator is found to be a good supplement to MFC-PZT when applied as the bender outside layers. A mixed MFC-PZT and MFC-PMN bender generates 3% more CTEF deformation than an MFC-PZT only bender and 5% more than an MFC-PMN only bender under aerodynamic loads.

  5. Improvement of thermal and mechanical properties of composite based on polylactic acid and microfibrillated cellulose through chemical modification

    NASA Astrophysics Data System (ADS)

    Suryanegara, L.; Nugraha, R. A.; Achmadi, S. S.

    2017-07-01

    Polylactic acid (PLA) is the most representative sustainable and bio-based polymer environmentally friendly that has a great potential to replace petroleum-based plastics. However, brittleness, low heat resistance, and slow crystallization limit the wide application of PLA. One of strategies to improve PLA properties is by reinforcing with microfibrillated cellulose (MFC). Unfortunately, the hydrophilic properties of MFC make it difficult to attain good dispersion in a hydrophobic PLA matrix. Therefore, modification of MFC was needed to increase its compatibility with PLA in the composite formation. In this experiment, MFC was modified with partial acetylation (degree of substitution: 1) and further grafted with lactide monomers through ring-opening polymerization using Sn(Oct)2 catalyst. The result of acetylation and grafting were verified by infrared spectra. Composites were prepared by mixing PLA (molecular weight of 200,000) and the modified MFC at 9:1 ratio through organic solvent method. Followed by 8 min-kneading and hot pressing at 180°C, the resulted composites were evaluated for their mechanical and thermal properties. Thermal characterization carried out using differential scanning calorimetry measurements showed that the presence of modified MFC increased the temperature of glass transition and accelerated the crystallization of PLA. Mechanical properties measurement showed that the presence of modified MFC enhanced the elongation at break (1.1 to 1.8%), tensile strength (14.9 to 25.7 MPa), and modulus of elasticity (1.7 to 2.1 GPa). These results demonstrated that the modified MFC could extend the application of PLA in industry.

  6. Using live algae at the anode of a microbial fuel cell to generate electricity.

    PubMed

    Xu, Chang; Poon, Karen; Choi, Martin M F; Wang, Ruihua

    2015-10-01

    Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 10(6) cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m(2), while the maximum power density at 30.15 mW/m(2) was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m(2) was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.

  7. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment.

    PubMed

    Wang, Jie; Bi, Fanghua; Ngo, Huu-Hao; Guo, Wenshan; Jia, Hui; Zhang, Hongwei; Zhang, Xinbo

    2016-01-01

    A low-cost hybrid system integrating a membrane-less microbial fuel cell (MFC) with an anoxic/oxic membrane bioreactor (MBR) was studied for fouling mitigation. The appended electric field in the MBR was supplied by the MFC with continuous flow. Supernatant from an anaerobic reactor with low dissolved oxygen was used as feed to the MFC in order to enhance its performance compared with that fed with synthetic wastewater. The voltage output of MFC maintained at 0.52±0.02V with 1000Ω resister. The electric field intensity could reach to 0.114Vcm(-1). Compared with the conventional MBR (CMBR), the contents rather than the components of foulants on the cake layer of fouled MFC-MBR system was significantly reduced. Although only 0.5% of the feed COD was translated into electricity and applied to MBR, the hybrid system showed great feasibility without additional consumption but extracting energy from waste water and significantly enhancing the membrane filterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater

    NASA Astrophysics Data System (ADS)

    Ge, Zheng; Wu, Liao; Zhang, Fei; He, Zhen

    2015-11-01

    Development of microbial fuel cell (MFC) technology must address the challenges associated with energy extraction from large-scale MFC systems consisting of multiple modules. Herein, energy extraction is investigated with a 200-L MFC system (effective volume of 100 L for this study) treating actual municipal wastewater. A commercially available energy harvesting device (BQ 25504) is used successfully to convert 0.8-2.4 V from the MFCs to 5 V for charging ultracapacitors and running a DC motor. Four different types of serial connection containing different numbers of MFC modules are examined for energy extraction and conversion efficiency. The connection containing three rows of the MFCs has exhibited the best performance with the highest power output of ∼114 mW and the conversion efficiency of ∼80%. The weak performance of one-row MFCs negatively affects the overall performance of the connected MFCs in terms of both energy production and conversion. Those results indicate that an MFC system with balanced performance among individual modules will be critical to energy extraction. Future work will focus on application of the extracted energy to support MFC operation.

  9. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells.

    PubMed

    Kim, Jung Rae; Jung, Sok Hee; Regan, John M; Logan, Bruce E

    2007-09-01

    Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40+/-2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488+/-12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.

  10. Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells.

    PubMed

    Li, Shan-Wei; He, Hui; Zeng, Raymond J; Sheng, Guo-Ping

    2017-02-01

    Chitin is one of the most abundant biopolymers in nature and the main composition of shrimp and crab shells (usually as food wastes). Thus it is essential to investigate the potential of degrading chitin for energy recovery. This study investigated the anaerobic degradation of chitin by Aeromonas hydrophila, a chitinolytic and popular electroactive bacterium, in both fermentation and microbial fuel cell (MFC) systems. The primary chitin metabolites produced in MFC were succinate, lactate, acetate, formate, and ethanol. The total metabolite concentration from chitin degradation increased seven-fold in MFC compared to the fermentation system, as well as additional electricity generation. Moreover, A. hydrophila degraded GlcNAc (the intermediate of chitin hydrolysis) significantly faster (0.97 and 0.94 mM C/d/mM-GlcNAc) than chitin (0.13 and 0.03 mM C/d/mM-GlcNAc) in MFC and fermentation systems, indicating that extracellular hydrolysis of chitin was the rate-limiting step and this step could be accelerated in MFC. Furthermore, more chemicals produced by the addition of exogenous mediators in MFC. This study proves that the chitin could be degraded effectively by an electroactive bacterium in MFC, and our results suggest that this bioelectrochemical system might be useful for the degradation of recalcitrant biomass to recover energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Comparative Study on Multifactor Dimensionality Reduction Methods for Detecting Gene-Gene Interactions with the Survival Phenotype

    PubMed Central

    Lee, Seungyeoun; Kim, Yongkang; Kwon, Min-Seok; Park, Taesung

    2015-01-01

    Genome-wide association studies (GWAS) have extensively analyzed single SNP effects on a wide variety of common and complex diseases and found many genetic variants associated with diseases. However, there is still a large portion of the genetic variants left unexplained. This missing heritability problem might be due to the analytical strategy that limits analyses to only single SNPs. One of possible approaches to the missing heritability problem is to consider identifying multi-SNP effects or gene-gene interactions. The multifactor dimensionality reduction method has been widely used to detect gene-gene interactions based on the constructive induction by classifying high-dimensional genotype combinations into one-dimensional variable with two attributes of high risk and low risk for the case-control study. Many modifications of MDR have been proposed and also extended to the survival phenotype. In this study, we propose several extensions of MDR for the survival phenotype and compare the proposed extensions with earlier MDR through comprehensive simulation studies. PMID:26339630

  12. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    PubMed

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  13. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    PubMed Central

    Yu, Fei; Wang, Chengxian; Ma, Jie

    2016-01-01

    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  14. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.

    PubMed

    Capodaglio, A G; Molognoni, D; Dallago, E; Liberale, A; Cella, R; Longoni, P; Pantaleoni, L

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m(3), with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.

  15. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell.

    PubMed

    Jiang, Junqiu; Zhao, Qingliang; Zhang, Jinna; Zhang, Guodong; Lee, Duu-Jong

    2009-12-01

    A two-chambered microbial fuel cell (MFC) with potassium ferricyanide as its electron acceptor was utilized to degrade excess sewage sludge and to generate electricity. Stable electrical power was produced continuously during operation for 250 h. Total chemical oxygen demand (TCOD) of sludge was reduced by 46.4% when an initial TCOD was 10,850 mg/l. The MFC power output did not significantly depend on process parameters such as substrate concentration, cathode catholyte concentration, and anodic pH. However, the MFC produced power was in close correlation with the soluble chemical oxygen demand (SCOD) of sludge. Furthermore, ultrasonic pretreatment of sludge accelerated organic matter dissolution and, hence, TCOD removal rate in the MFC was increased, but power output was insignificantly enhanced. This study demonstrates that this MFC can generate electricity from sewage sludge over a wide range of process parameters.

  16. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.

    PubMed

    Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue

    2013-01-01

    Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.

  17. Improving the signal amplitude of meandering coil EMATs by using ribbon soft magnetic flux concentrators (MFC).

    PubMed

    Dhayalan, R; Satya Narayana Murthy, V; Krishnamurthy, C V; Balasubramaniam, Krishnan

    2011-08-01

    This paper presents a new method of improving the ultrasonic signal amplitude from a meander line EMAT by using soft magnetic alloy ribbon (Fe₆₀Ni₁₀V₁₀B₂₀) as a magnetic flux concentrator (MFC). The flux concentrator is a thin soft amorphous magnetic material (Fe₆₀Ni₁₀V₁₀B₂₀) which is very sensitive to a small flux change. The MFC is used with the EMAT to improve the signal amplitude and it was observed that the peak signal amplitude increases by a factor of two compared to the signal without MFC. Two dimensional numerical models have been developed for the EMAT with MFC to quantify the improvement of the received signal amplitudes. Model calculations and experiments have been carried out for a wide range of ultrasonic frequencies (500 kHz-1 MHz) in different materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Simulation and resolution of voltage reversal in microbial fuel cell stack.

    PubMed

    Sugnaux, Marc; Savy, Cyrille; Cachelin, Christian Pierre; Hugenin, Gérald; Fischer, Fabian

    2017-08-01

    To understand the biotic and non-biotic contributions of voltage reversals in microbial fuel cell stacks (MFC) they were simulated with an electronic MFC-Stack mimic. The simulation was then compared with results from a real 3L triple MFC-Stack with shared anolyte. It showed that voltage reversals originate from the variability of biofilms, but also the external load plays a role. When similar biofilm properties were created on all anodes the likelihood of voltage reversals was largely reduced. Homogenous biofilms on all anodes were created by electrical circuit alternation and electrostimulation. Conversely, anolyte recirculation, or increased nutriment supply, postponed reversals and unfavourable voltage asymmetries on anodes persisted. In conclusion, voltage reversals are often a negative event but occur also in close to best MFC-Stack performance. They were manageable and this with a simplified MFC architecture in which multiple anodes share the same anolyte. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An innovative miniature microbial fuel cell fabricated using photolithography.

    PubMed

    Chen, You-Peng; Zhao, Yue; Qiu, Ke-Qiang; Chu, Jian; Lu, Rui; Sun, Min; Liu, Xian-Wei; Sheng, Guo-Ping; Yu, Han-Qing; Chen, Jie; Li, Wen-Jie; Liu, Gang; Tian, Yang-Chao; Xiong, Ying

    2011-02-15

    Recently microbial fuel cells (MFCs) have attracted increasing interests in both environmental and energy fields. Among the various MFC configurations, miniature microbial fuel cell (mini-MFC) has a great potential for the application in medical, communication and other areas because of its miniature volume and high output power density. In this work, a 25-μL single-chamber mini-MFC was fabricated using the photolithography technique. The plate-shaped gold anodic electrode in the mini-MFC showed a higher electrochemical activity than the stripe-shaped one. A biofilm of Shewanella oneidensis MR-1 was formed on the surface of gold electrode in this micro-liter-scale MFCs. As a result, a maximum power density of 29 mW/m(2) and a maximum current density of 2148 mA/m(2) were achieved by this single-chamber mini-MFC. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.

    PubMed

    Cheng, Kai; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Chen, Qin; Pan, Keliang; Pu, Wenhong; Yang, Jiakuan; Wu, Xu; Yang, Changzhu

    2017-04-01

    Microbial consortiums aggregated on the anode surface of microbial fuel cells (MFCs) are critical factors for electricity generation as well as biodegradation efficiencies of organic compounds. Here in this study, aerobic granular sludge (AGS) was assembled on the surface of the MFC anode to form an AGS-MFC system with superior performance on epoxy reactive diluent (ERD) wastewater treatment. AGS-MFCs successfully shortened the startup time from 13d to 7d compared to the ones inoculated with domestic wastewater. Enhanced toxicity tolerance as well as higher COD removal (77.8% vs. 63.6%) were achieved. The higher ERD wastewater treatment efficiency of AGS-MFC is possibly attributed to the diverse microbial population on MFC biofilm, as well as the synergic degradation of contaminants by both the MFC anode biofilm and AGS granules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.

    PubMed

    Roh, Sung-Hee; Kim, Sun-Il

    2012-05-01

    A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy using the catalytic reaction of microorganisms. We investigated the performance of mediator-less MFC with carbon nanotubes (CNTs)/graphite felt composite electrodes. The addition of CNTs to a graphite felt electrode increases the specific surface area of the electrode and enhances the charge transfer capability so as to cause considerable improvement of the electrochemical activity for the anode reaction in a MFC. The performance of the MFC using CNTs/graphite felt electrode has been compared against a plain graphite felt electrode based MFC. A CNTs/graphite felt electrode showed as high as 15% increase in the power density (252 mW/m2) compared to graphite felt electrode (214 mW/m2). The CNTs/graphite felt anode therefore offers good prospects for application in MFCs.

  2. Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer

    PubMed Central

    Ritchie, Marylyn D.; Hahn, Lance W.; Roodi, Nady; Bailey, L. Renee; Dupont, William D.; Parl, Fritz F.; Moore, Jason H.

    2001-01-01

    One of the greatest challenges facing human geneticists is the identification and characterization of susceptibility genes for common complex multifactorial human diseases. This challenge is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes and with environmental exposures. We introduce multifactor-dimensionality reduction (MDR) as a method for reducing the dimensionality of multilocus information, to improve the identification of polymorphism combinations associated with disease risk. The MDR method is nonparametric (i.e., no hypothesis about the value of a statistical parameter is made), is model-free (i.e., it assumes no particular inheritance model), and is directly applicable to case-control and discordant-sib-pair studies. Using simulated case-control data, we demonstrate that MDR has reasonable power to identify interactions among two or more loci in relatively small samples. When it was applied to a sporadic breast cancer case-control data set, in the absence of any statistically significant independent main effects, MDR identified a statistically significant high-order interaction among four polymorphisms from three different estrogen-metabolism genes. To our knowledge, this is the first report of a four-locus interaction associated with a common complex multifactorial disease. PMID:11404819

  3. In-Situ Adhesive Bond Assessment

    DTIC Science & Technology

    2010-08-01

    a list of AR coefficients. The use of the VCC metric , with appropriate extreme value statistics models as described in detail below, allowed...equivalent PZT with thickness equal to the MFC electrode spacing , a , and length equal to the MFC net electrode length, (p le), where p is the number of ...particular geometry of the test specimen and with MFC patches affixed to the

  4. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Qing, Yan; Wu, Yiqiang

    2015-03-04

    Rheological and filtration characteristics of drilling fluids are considered as two critical aspects to ensure the success of a drilling operation. This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs). CNCs were isolated from MFC through sulfuric acid hydrolysis. In comparison with MFC, the resultant CNCs had much smaller dimensions, more negative surface charge, higher stability in aqueous solutions, lower viscosity, and less evident shear thinning behavior. These differences resulted in the distinctive microstructures between MFC/BT- and CNC/BT-WDFs. A typical "core-shell" structure was created in CNC/BT-WDFs due to the strong surface interactions among BT layers, CNCs, and immobilized water molecules. However, a similar structure was not formed in MFC/BT-WDFs. As a result, CNC/BT-WDFs had superior rheological properties, higher temperature stability, less fluid loss volume, and thinner filter cakes than BT and MFC/BT-WDFs. Moreover, the presence of polyanionic cellulose (PAC) further improved the rheological and filtration performances of CNC/BT-WDFs, suggesting a synergistic effect between PAC and CNCs.

  5. A primer on multifactor productivity : description, benefits, and uses

    DOT National Transportation Integrated Search

    2008-04-01

    This primer presents a description of multifactor : productivity (MFP) and its calculation. Productivity : is an important measure of the state of the : economy at various levels: firm, industry, sectoral, : and the macroeconomic. The method describe...

  6. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required to represent the ejected foam. The exponents were evaluated by least squares method from experimental data. The equation is used and it can represent multiple factors in other problems as well; for example, evaluation of fatigue life, creep life, fracture toughness, and structural fracture, as well as optimization functions. The software is rather simplistic. Required inputs are initial value, final value, and an exponent for each factor. The number of factors is open-ended. The value is updated as each factor is evaluated. If a factor goes to zero, the previous value is used in the evaluation.

  7. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater

    DOE PAGES

    Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.; ...

    2016-05-01

    Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m 2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m 2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stablemore » achieving an ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m 2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less

  8. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.

    Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m 2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m 2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stablemore » achieving an ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m 2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less

  9. Effect of organic loading rates and proton exchange membrane surface area on the performance of an up-flow cylindrical microbial fuel cell.

    PubMed

    Jana, Partha S; Behera, Manaswini; Ghangrekar, M M

    2012-01-01

    The effect of organic loading rates (OLRs) and proton exchange membrane (PEM) surface area on the performance of microbial fuel cells (MFCs) was evaluated. Three MFCs (MFC-1, MFC-2 and MFC-3) having PEM surface area of 10 cm2, 20 cm2 and 40 cm2, respectively, were used in the study. The MFCs were operated at influent chemical oxygen demand (COD) of 500 mg L(-1) and hydraulic retention time (HRT) of 20 h, 17 h, 13 h and 6 h in experimental Run-1 to Run-4. MFC-3, with highest PEM surface area showed highest power generation throughout the study. The optimum performancewas obtained at HRT of 13 h. In Run-5 and Run-6, the influent COD was increased to 1000 mg L(-1) and 1500 mg L(-1), respectively, maintaining the HRT at 13 h. Maximum volumetric powers of 4.26 W m(-3), 9.41 W m(-3) and 17.24 W m(-3) were obtained in MFC-1, MFC-2 and MFC-3, respectively, in Run-5 under the OLR of 1.84 kg COD m(-3) d(-1). These power values are among the higher values reported in literature; MFCs with higher PEM surface area showed better electricity generation, which clearly demonstrates that proton mass transfer is the main constraint in the MFCs which limits the power output. Combined effect of influent COD and HRT was found on electricity generation.

  10. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  11. Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research

    PubMed Central

    Osterstock, Jason B.; Pinchak, William E.; Ishii, Shun’ichi; Nelson, Karen E.

    2009-01-01

    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research. PMID:20024685

  12. Microbial fuel cells as an alternative energy source: current status.

    PubMed

    Javed, Muhammad Mohsin; Nisar, Muhammad Azhar; Ahmad, Muhammad Usman; Yasmeen, Nighat; Zahoor, Sana

    2018-06-22

    Microbial fuel cell (MFC) technology is an emerging area for alternative renewable energy generation and it offers additional opportunities for environmental bioremediation. Recent scientific studies have focused on MFC reactor design as well as reactor operations to increase energy output. The advancement in alternative MFC models and their performance in recent years reflect the interests of scientific community to exploit this technology for wider practical applications and environmental benefit. This is reflected in the diversity of the substrates available for use in MFCs at an economically viable level. This review provides an overview of the commonly used MFC designs and materials along with the basic operating parameters that have been developed in recent years. Still, many limitations and challenges exist for MFC development that needs to be further addressed to make them economically feasible for general use. These include continued improvements in fuel cell design and efficiency as well scale-up with economically practical applications tailored to local needs.

  13. Archaea-based microbial fuel cell operating at high ionic strength conditions.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia; Mauas, Pablo J D; Cortón, Eduardo

    2011-11-01

    In this work, two archaea microorganisms (Haloferax volcanii and Natrialba magadii) used as biocatalyst at a microbial fuel cell (MFC) anode were evaluated. Both archaea are able to grow at high salt concentrations. By increasing the media conductivity, the internal resistance was diminished, improving the MFC's performance. Without any added redox mediator, maximum power (P (max)) and current at P (max) were 11.87/4.57/0.12 μW cm(-2) and 49.67/22.03/0.59 μA cm(-2) for H. volcanii, N. magadii and E. coli, respectively. When neutral red was used as the redox mediator, P (max) was 50.98 and 5.39 μW cm(-2) for H. volcanii and N. magadii, respectively. In this paper, an archaea MFC is described and compared with other MFC systems; the high salt concentration assayed here, comparable with that used in Pt-catalyzed alkaline hydrogen fuel cells, will open new options when MFC scaling up is the objective necessary for practical applications.

  14. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C.

    PubMed

    Fu, Qian; Fukushima, Naoya; Maeda, Haruo; Sato, Kozo; Kobayashi, Hajime

    2015-01-01

    We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm(-2), which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.

  15. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    PubMed

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-06-01

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  16. Understanding electricity generation in osmotic microbial fuel cells through integrated experimental investigation and mathematical modeling.

    PubMed

    Qin, Mohan; Ping, Qingyun; Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen

    2015-11-01

    Osmotic microbial fuel cells (OsMFCs) are a new type of MFCs with integrating forward osmosis (FO). However, it is not well understood why electricity generation is improved in OsMFCs compared to regular MFCs. Herein, an approach integrating experimental investigation and mathematical model was adopted to address the question. Both an OsMFC and an MFC achieved similar organic removal efficiency, but the OsMFC generated higher current than the MFC with or without water flux, resulting from the lower resistance of FO membrane. Combining NaCl and glucose as a catholyte demonstrated that the catholyte conductivity affected the electricity generation in the OsMFC. A mathematical model of OsMFCs was developed and validated with the experimental data. The model predicated the variation of internal resistance with increasing water flux, and confirmed the importance of membrane resistance. Increasing water flux with higher catholyte conductivity could decrease the membrane resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood.

    PubMed

    Grinband, Jack; Savitskaya, Judith; Wager, Tor D; Teichert, Tobias; Ferrera, Vincent P; Hirsch, Joy

    2011-07-15

    The dorsal medial frontal cortex (dMFC) is highly active during choice behavior. Though many models have been proposed to explain dMFC function, the conflict monitoring model is the most influential. It posits that dMFC is primarily involved in detecting interference between competing responses thus signaling the need for control. It accurately predicts increased neural activity and response time (RT) for incompatible (high-interference) vs. compatible (low-interference) decisions. However, it has been shown that neural activity can increase with time on task, even when no decisions are made. Thus, the greater dMFC activity on incompatible trials may stem from longer RTs rather than response conflict. This study shows that (1) the conflict monitoring model fails to predict the relationship between error likelihood and RT, and (2) the dMFC activity is not sensitive to congruency, error likelihood, or response conflict, but is monotonically related to time on task. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment.

    PubMed

    Dong, Kun; Jia, Boyang; Yu, Chaoling; Dong, Wenbo; Du, Fangzhou; Liu, Hong

    2013-03-15

    This study focused on providing power for implantable medical devices (IMDs) using a microbial fuel cell (MFC) implanted in human transverse colon. Considering the condition of colonic environment, a continuous-flow single-chamber MFC without membrane was set up. The performance of the MFC was investigated. The power output of 1.6 mW under the steady state was not rich enough for some high energy-consuming IMDs. Moreover, the parameters of the simulated colonic environment, such as pH and ORP value, varied along with the time. Hence, a new MFC configuration was developed. In this novel model, pH transducers were placed in cathodic and anodic areas, so as to regulate the reactor operation timely via external intervention. And two ORP transducers were inserted next to the pH transducers, for monitoring and adjusting the MFC operation efficiently. Besides, colonic haustra were designed in order to increase the difference between cathodic and anodic areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Stress transfer and matrix-cohesive fracture mechanism in microfibrillated cellulose-gelatin nanocomposite films.

    PubMed

    Quero, Franck; Padilla, Cristina; Campos, Vanessa; Luengo, Jorge; Caballero, Leonardo; Melo, Francisco; Li, Qiang; Eichhorn, Stephen J; Enrione, Javier

    2018-09-01

    Microfibrillated cellulose (MFC) obtained from eucalyptus was embedded in gelatin from two sources; namely bovine and salmon gelatin. Raman spectroscopy revealed that stress is transferred more efficiently from bovine gelatin to the MFC when compared to salmon gelatin. Young's modulus, tensile strength, strain at failure and work of fracture of the nanocomposite films were improved by ∼67, 131, 43 y 243% respectively when using salmon gelatin as matrix material instead of bovine gelatin. Imaging of the tensile fracture surface of the MFC-gelatin nanocomposites revealed that crack formation occurs predominantly within bovine and salmon gelatin matrices rather than within the MFC or at the MFC/gelatin interface. This suggests that the mechanical failure mechanism in these nanocomposite materials is predominantly governed by a matrix-cohesive fracture mechanism. Both strength and flexibility are desirable properties for composite coatings made from gelatin-based materials, and so the findings of this study could assist in their utilization in the food and pharmaceutical industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Anaerobic microbial fuel cell treating combined industrial wastewater: Correlation of electricity generation with pollutants.

    PubMed

    Abbasi, Umara; Jin, Wang; Pervez, Arshid; Bhatti, Zulfiqar Ahmad; Tariq, Madiha; Shaheen, Shahida; Iqbal, Akhtar; Mahmood, Qaisar

    2016-01-01

    Microbial fuel cell (MFC) is a new technology that not only generates energy but treats wastewater as well. A dual chamber MFC was operated under laboratory conditions. Wastewater samples from vegetable oil industries, metal works, glass and marble industries, chemical industries and combined industrial effluents were collected and each was treated for 98h in MFC. The treatment efficiency for COD in MFC was in range of 85-90% at hydraulic retention time (HRT) of 96h and had significant impact on wastewater treatment as well. The maximum voltage of 890mV was generated when vegetable oil industries discharge was treated with columbic efficiency of 5184.7C. The minimum voltage was produced by Glass House wastewater which was 520mV. There was positive significant co-relation between COD concentration and generated voltage. Further research should be focused on the organic contents of wastewater and various ionic species affecting voltage generation in MFC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multiparametric comparison of chromogenic-based culture methods used to assess the microbiological quality of drinking water and the mFC method combined with a molecular confirmation procedure.

    PubMed

    Maheux, Andrée F; Dion-Dupont, Vanessa; Bisson, Marc-Antoine; Bouchard, Sébastien; Jubinville, Éric; Nkuranga, Martine; Rodrigue, Lynda; Bergeron, Michel G; Rodriguez, Manuel J

    2015-03-01

    MI agar and Colilert(®), as well as mFC agar combined with an Escherichia coli-specific molecular assay (mFC + E. coli rtPCR), were compared in terms of their sensitivity, ease of use, time to result and affordability. The three methods yielded a positive E. coli signal for 11.5, 10.8, and 11.5% of the 968 well water samples tested, respectively. One hundred and thirty-six (136) samples gave blue colonies on mFC agar and required confirmation. E. coli-specific rtPCR showed false-positive results in 23.5% (32/136) of cases. In terms of ease of use, Colilert was the simplest method to use while the MI method provided ease of use comparable to all membrane filtration methods. However, the mFC + E. coli rtPCR assay required highly trained employees for confirmation purposes. In terms of affordability, and considering contamination rate of well water samples tested, the Colilert method and the mFC + E. coli rtPCR assay were at least five times more costly than the MI agar method. Overall, compared with the other two methods tested, the MI agar method offers the most advantages to assess drinking water quality.

  2. Evaluation of standard and modified M-FC, MacConkey, and Teepol media for membrane filtration counting of fecal coliforms in water.

    PubMed

    Grabow, W O; Hilner, C A; Coubrough, P

    1981-08-01

    MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtainable, easy to prepare and handle, and yielded clearly recognizable fecal coliform colonies. Identification of 1,139 fecal coliform isolates showed that fecal coliform tests cannot be used to enumerate Escherichia coli because the incidence of E. coli among fecal coliforms varied from an average of 51% for river water to 93% for an activated sludge effluent after chlorination. The incidence of Klebsiella pneumoniae among fecal coliforms varied from an average of 4% for the activated sludge effluent after chlorination to 32% for the river water. The advantages of a standard membrane filtration procedure for routine counting of fecal coliforms in water using M-FC agar without rosolic acid as growth medium, in the absence of preincubation or resuscitation steps, are outlined.

  3. Fatigue life characterization for piezoelectric macrofiber composites

    NASA Astrophysics Data System (ADS)

    Henslee, Isaac A.; Miller, David A.; Tempero, Tyler

    2012-10-01

    In an effort to aid the investigation into lightweight and reliable materials for actuator design, a study was developed to characterize the temperature-dependent lifetime performance of a piezoelectric macrofiber composite (MFC). MFCs are thin rectangular patches of polyimide film, epoxy and a single layer of rectangular lead zirconium titanate (PZT) fibers. In this study, the useful life of the MFC is characterized to determine the effect of temperature on the performance of the composite as it is fatigued by cyclic piezoelectric excitation. The test specimen consists of the MFC laminated to a cantilevered stainless steel beam. Beam strain and tip displacement measurements are used as a basis for determining the performance of the MFC as it is cyclically actuated under various operating temperatures. The temperature of the beam laminate is held constant and then cycled to failure, or 250 million cycles, in order to determine the useful life of the MFC over a temperature range from - 15 to 145 °C. The results of the experiments show a strong temperature dependence of the operational life for the MFC. Damage inside the composite was identified through in situ visual inspection and during post-test microstructural observation; however, no degradation in operational performance was identified as it was cyclically actuated up to the point of failure, regardless of temperature or actuation cycle number.

  4. The power of glove: Soft microbial fuel cell for low-power electronics

    NASA Astrophysics Data System (ADS)

    Winfield, Jonathan; Chambers, Lily D.; Stinchcombe, Andrew; Rossiter, Jonathan; Ieropoulos, Ioannis

    2014-03-01

    A novel, soft microbial fuel cell (MFC) has been constructed using the finger-piece of a standard laboratory natural rubber latex glove. The natural rubber serves as structural and proton exchange material whilst untreated carbon veil is used for the anode. A soft, conductive, synthetic latex cathode is developed that coats the outside of the glove. This inexpensive, lightweight reactor can without any external power supply, start up and energise a power management system (PMS), which steps-up the MFC output (0.06-0.17 V) to practical levels for operating electronic devices (>3 V). The MFC is able to operate for up to 4 days on just 2 mL of feedstock (synthetic tryptone yeast extract) without any cathode hydration. The MFC responds immediately to changes in fuel-type when the introduction of urine accelerates the cycling times (35 vs. 50 min for charge/discharge) of the MFC and PMS. Following starvation periods of up to 60 h at 0 mV the MFC is able to cold start the PMS simply with the addition of 2 mL fresh feedstock. These findings demonstrate that cheap MFCs can be developed as sole power sources and in conjunction with advancements in ultra-low power electronics, can practically operate small electrical devices.

  5. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  6. An analysis of labor and multifactor productivity in air transportation : 1990 - 2001

    DOT National Transportation Integrated Search

    2002-01-01

    The analysis has two main objectives: 1) to examine : labor productivity and multifactor productivity : (MFP) in U.S. air transportation during the 1990 : to 2001 period and to compare these measures to : those of two other transportation subsectors ...

  7. Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment

    PubMed Central

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Sekiguchi, Yuji; Gorby, Yuri A.; Bretschger, Orianna

    2012-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8–13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m2, the maximum power density was 13 mW/m2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations. PMID:22347379

  8. A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes.

    PubMed

    Li, Hua; Song, Hai-Liang; Yang, Xiao-Li; Zhang, Shuai; Yang, Yu-Li; Zhang, Li-Min; Xu, Han; Wang, Ya-Wen

    2018-05-08

    A continuous flow microbial fuel cell constructed wetland (MFC-CW) coupled with a biofilm electrode reactor (BER) system was constructed to remove sulfamethoxazole (SMX). The BER unit powered by the stacked MFC-CWs was used as a pretreatment unit, and effluent flowed into the MFC-CW for further degradation. The experimental results indicated that the removal rate of 2 or 4 mg/L SMX in a BER unit was nearly 90%, and the total removal rate in the coupled system was over 99%. As the hydraulic retention time (HRT) was reduced from 16 h to 4 h, the SMX removal rate in the BER decreased from 75% to 48%. However, the total removal rate in the coupled system was still over 97%. The maximum SMX removal rate in the MFC-CW, which accounted for 42%-55% of the total removal, was obtained in the anode layer. In addition, the relative abundances of sul genes detected in the systems were in the order of sulI > sulII > sulIII, and significant positive correlations of sul gene copy numbers versus SMX concentration and 16S rRNA gene copy numbers were observed. Furthermore, significant negative correlations were identified between sul genes, 16S rRNA gene copy numbers, and HRT. The abundances of the sul genes in the effluent of the MFC-CW were lower than the abundances observed in the BER effluent. High-throughput sequencing revealed that the microbial community diversity of the BER was affected by running time, power supply forms and HRT. Bio-electricity from the MFC-CW may reduce microbial community diversity and contribute to reduction of the antibiotic resistance gene (ARG) abundance in the BER. Taken together, the BER-MFC-CW coupled system is a potential tool to treat wastewater containing SMX and attenuate corresponding ARG abundance. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A detailed view on Model-Based Multifactor Dimensionality Reduction for detecting gene-gene interactions in case-control data in the absence and presence of noise

    PubMed Central

    CATTAERT, TOM; CALLE, M. LUZ; DUDEK, SCOTT M.; MAHACHIE JOHN, JESTINAH M.; VAN LISHOUT, FRANÇOIS; URREA, VICTOR; RITCHIE, MARYLYN D.; VAN STEEN, KRISTEL

    2010-01-01

    SUMMARY Analyzing the combined effects of genes and/or environmental factors on the development of complex diseases is a great challenge from both the statistical and computational perspective, even using a relatively small number of genetic and non-genetic exposures. Several data mining methods have been proposed for interaction analysis, among them, the Multifactor Dimensionality Reduction Method (MDR), which has proven its utility in a variety of theoretical and practical settings. Model-Based Multifactor Dimensionality Reduction (MB-MDR), a relatively new MDR-based technique that is able to unify the best of both non-parametric and parametric worlds, was developed to address some of the remaining concerns that go along with an MDR-analysis. These include the restriction to univariate, dichotomous traits, the absence of flexible ways to adjust for lower-order effects and important confounders, and the difficulty to highlight epistasis effects when too many multi-locus genotype cells are pooled into two new genotype groups. Whereas the true value of MB-MDR can only reveal itself by extensive applications of the method in a variety of real-life scenarios, here we investigate the empirical power of MB-MDR to detect gene-gene interactions in the absence of any noise and in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. For the considered simulation settings, we show that the power is generally higher for MB-MDR than for MDR, in particular in the presence of genetic heterogeneity, phenocopy, or low minor allele frequencies. PMID:21158747

  10. A comparison of linear and nonlinear statistical techniques in performance attribution.

    PubMed

    Chan, N H; Genovese, C R

    2001-01-01

    Performance attribution is usually conducted under the linear framework of multifactor models. Although commonly used by practitioners in finance, linear multifactor models are known to be less than satisfactory in many situations. After a brief survey of nonlinear methods, nonlinear statistical techniques are applied to performance attribution of a portfolio constructed from a fixed universe of stocks using factors derived from some commonly used cross sectional linear multifactor models. By rebalancing this portfolio monthly, the cumulative returns for procedures based on standard linear multifactor model and three nonlinear techniques-model selection, additive models, and neural networks-are calculated and compared. It is found that the first two nonlinear techniques, especially in combination, outperform the standard linear model. The results in the neural-network case are inconclusive because of the great variety of possible models. Although these methods are more complicated and may require some tuning, toolboxes are developed and suggestions on calibration are proposed. This paper demonstrates the usefulness of modern nonlinear statistical techniques in performance attribution.

  11. Microalgae-microbial fuel cell: A mini review.

    PubMed

    Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih

    2015-12-01

    Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Energy generation by fermentation of glucose in a batch flow microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Badea, Silviu-Laurentiu; Enache, Stanica; Tamaian, Radu; Buga, Mihaela-Ramona; Pirvu, Cristian; Varlam, Mihai

    2016-04-01

    In the last years, microbial fuel cells (MFCs) have emerged like a novel research technologies for production of sustainable and clean electricity energy through bioxidation of organic materials, representing a promising alternative to combustion energy sources. In this study, production of bioelectricity in MFC in batch system (dual chambered MFC) was investigated. A dual chambered MFC from glass was built for this purpose. Saccharomyces cerevisiae as an active biocatalyst was explored for power generation. Graphite plates were used as electrodes and glucose as substrate. Saccharomyces cerevisiae was initially grown on a period of 72h at 30 degree Celsius, on medium of modified Sabouraud liquid medium containing 30 g glucose/L. A volume of inoculated medium (80 mL) was transferred in the anode compartment of MFC together with 20 mL glucose 1M, while neutral red was used as mediator (electron shuttle) in concentration of 200 μM in anaerobic anode chamber. Potassium permanganate (KMnO4) was used as oxidizing agent in the cathode in wide concentration range (400 μM-40 000 μM). Cathodic compartment was loaded initially with 40 mM potassium permanganate, and afterwards was supplied two times more with KMnO4 of the same concentration, in order to maintain MFC functionality. The MFC was operated on a water bath heated by a combined hot-plate magnetic-stirrer device at 30 degree Celsius and mixed at 180 rpm. The maximum open circuit potential (OCV) recorded of about 0.6 V was reached after the 3rd loading with 40 milimolles of potassium permanganate. Using a potentiostat, the polarization curve was recorded by varying the potential between 0.5 V and 0.0 V, while the intensity of current increased from 0.0 to about 1.5 mA respectively, corresponding to an anodic current density of about 0.81 A/m2. In order to optimize the design and performance of the MFC, the goal of the further research is to use variously concentrations of potassium permanganate. Furthermore, a dual chambered MFC of large volume (0.5 L), a nafion membrane between anodic and cathodic compartments, and recirculation flows of glucose and potassium permanganate are planned to be used for a longer operability of the MFC.

  13. Multifactor Screener in the 2000 National Health Interview Survey Cancer Control Supplement: Validation Results

    Cancer.gov

    Risk Factor Assessment Branch (RFAB) staff have assessed the validity of the Multifactor Screener in several studies: NCI's Observing Protein and Energy (OPEN) Study, the Eating at America's Table Study (EATS), and the joint NIH-AARP Diet and Health Study.

  14. Enhancement of electricity production in a mediatorless air-cathode microbial fuel cell using Klebsiella sp. IR21.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2016-06-01

    A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air-cathode MFC fed with a mixture of glucose and acetate (500 mg L(-1) COD), 40-60 mV of voltage (17-26 mA m(-2) of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air-cathode MFC was fed with reject wastewater (10,000 mg L(-1) COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m(-2), and 8.9 ± 3.65 mW m(-2), respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m(-2), and 18.6 ± 7.23 mW m(-2), respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.

  15. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes.

    PubMed

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-23

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H(+) to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H(+), and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m(2)). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  16. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    PubMed Central

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815

  17. Water sorption in microfibrillated cellulose (MFC): The effect of temperature and pretreatment.

    PubMed

    Meriçer, Çağlar; Minelli, Matteo; Giacinti Baschetti, Marco; Lindström, Tom

    2017-10-15

    Water sorption behavior of two different microfibrillated cellulose (MFC) films, produced by delamination of cellulose pulp after different pretreatment methods, is examined at various temperatures (16-65°C) and up to 70% RH. The effect of drying temperature of MFC films on the water uptake is also investigated. The obtained solubility isotherms showed the typical downward curvature at moderate RH, while no upturn is observed at higher RH; the uptakes are in line with characteristic values for cellulose fibers. Enzymatically pretreated MFC dispersion showed lower solubility than carboxymethylated MFC, likely due to the different material structure, which results from the different preparation methods The experimental results are analyzed by Park and GAB models, which proved suitable to describe the observed behaviors. Interestingly, while no significant thermal effect is detected on water solubility above 35°C, the uptake at 16 and 25°C, at a given RH, is substantially lower than that at higher temperature, indicating that, in such range, sorption process is endothermic. Such unusual behavior for a cellulose-based system seems to be related mainly to the structural characteristics of MFC films, and to relaxation phenomena taking place upon water sorption. The diffusion kinetics, indeed, showed a clear Fickian behavior at low temperature and RH, whereas a secondary process seems to occur at high temperature and higher RH, leading to anomalous diffusion behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode.

    PubMed

    Mardanpour, Mohammad Mahdi; Yaghmaei, Soheila

    2016-05-15

    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459 mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104 Wm(-3) was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of 5.2 μW cm(-2) obtained in this study is significantly greater than the power densities reported previously for microsized MFCs and glucose fuel cells. The maximum power density of 14 Wm(-3) obtained using urea indicates the successful performance of a microfluidic MFC using human excreta. It features high power density, self-regeneration, waste management and a low production cost (<$1), which suggest it as a promising alternative to conventional power supplies for IMDs. The performance of the microfluidic MFC as a power supply was characterized based on polarization behavior and cell potential in different substrates, operational modes, and concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater.

    PubMed

    Lee, Yun-Yeong; Kim, Tae G; Cho, Kyung-Suk

    2016-11-09

    The chemical oxygen demand (COD) removal, electricity generation, and microbial communities were compared in 3 types of microbial fuel cells (MFCs) treating molasses wastewater. Single-chamber MFCs without and with a proton exchange membrane (PEM), and double-chamber MFC were constructed. A total of 10,000 mg L(-1) COD of molasses wastewater was continuously fed. The COD removal, electricity generation, and microbial communities in the two types of single-chamber MFCs were similar, indicating that the PEM did not enhance the reactor performance. The COD removal in the single-chamber MFCs (89-90%) was higher than that in the double-chamber MFC (50%). However, electricity generation in the double-chamber MFC was higher than that in the single-chamber MFCs. The current density (80 mA m(-2)) and power density (17 mW m(-2)) in the double-chamber MFC were 1.4- and 2.2-times higher than those in the single-chamber MFCs, respectively. The bacterial community structures in single- and double-chamber MFCs were also distinguishable. The amount of Proteobacteria in the double-chamber MFC was 2-3 times higher than those in the single-chamber MFCs. For the archaeal community, Methanothrix (96.4%) was remarkably dominant in the single-chamber MFCs, but Methanobacterium (35.1%), Methanosarcina (28.3%), and Methanothrix (16.2%) were abundant in the double-chamber MFC.

  20. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  1. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes.

    PubMed

    Hou, Huijie; Li, Lei; de Figueiredo, Paul; Han, Arum

    2011-01-15

    Microbial fuel cells (MFCs) have generated excitement in environmental and bioenergy communities due to their potential for coupling wastewater treatment with energy generation and powering diverse devices. The pursuit of strategies such as improving microbial cultivation practices and optimizing MFC devices has increased power generating capacities of MFCs. However, surprisingly few microbial species with electrochemical activity in MFCs have been identified because current devices do not support parallel analyses or high throughput screening. We have recently demonstrated the feasibility of using advanced microfabrication methods to fabricate an MFC microarray. Here, we extend these studies by demonstrating a microfabricated air-cathode MFC array system. The system contains 24 individual air-cathode MFCs integrated onto a single chip. The device enables the direct and parallel comparison of different microbes loaded onto the array. Environmental samples were used to validate the utility of the air-cathode MFC array system and two previously identified isolates, 7Ca (Shewanella sp.) and 3C (Arthrobacter sp.), were shown to display enhanced electrochemical activities of 2.69 mW/m(2) and 1.86 mW/m(2), respectively. Experiments using a large scale conventional air-cathode MFC validated these findings. The parallel air-cathode MFC array system demonstrated here is expected to promote and accelerate the discovery and characterization of electrochemically active microbes. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Isolation and characterization of a novel electricity-producing yeast, Candida sp. IR11.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2015-09-01

    A novel iron-reducing yeast, Candida sp. IR11, was isolated from an anodic biofilm in a MFC reactor fed glucose as a feedstock. 200-250 mV of voltage was produced in the air-cathode MFC inoculated with a pure culture of the strain IR11 where glucose was supplied as a feedstock. When the strain IR11 was inoculated into a conventional MFC treating rejected wastewater from an upflow anaerobic sludge blanket, maximum power density and coulombic efficiency were enhanced from 15.2 ± 0.36 to 20.6 ± 1.52 mW m(-2) and from 14.4 ± 0.45% to 21.9 ± 0.71%, respectively. In addition, the inoculation with IR11 improved COD removal from 79.1 ± 1.53% to 91.3 ± 5.29%. The quantitative PCR results showed that the strain IR11 successfully attached the anodic biofilm of the MFC reactors. These results indicate that Candida sp. IR11 is a promising biocatalyst for the enhancement of MFC performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  4. Effect of molecular conformation on the mechanofluorochromic properties based on DDIF

    NASA Astrophysics Data System (ADS)

    Mai, Runsheng; Peng, Huojun; Meng, Yuying; Chang, Xinyue; Jiang, Yue; Gao, Jinwei; Zhou, Guofu; Liu, Jun-ming

    2017-07-01

    Mechanofluorochromic (MFC) materials are smart materials in that their absorption and/or emission can respond to mechanical stimuli. They have received much attention recently. Although there have been several new material systems designed, little work has been done regarding the influence of molecular conformation on MFC properties. Herein, to disclose the relationship between molecular conformation and MFC properties, two molecules based on a 6, 12-Dihydro-6, 12-diaza-indeno[1,2-b]fluorine (DDIF) building block with thienyl linker, BDDIF-Th and BDDIF-BTh, have been designed and synthesized. Optical and electrochemical properties have been studied by UV-vis spectrometer and cyclic voltammetry measurements. Weak aggregation-induced emission (AIE) phenomena were obtained in the tetrahydrofuran (THF)/water solution. MFC behaviors suggest that BDDIF-Th is more sensible to the external mechanical forces than BDDIF-BTh. The color change could be attributed to the appearance of new emission peak instead of a bathochromic or hypsochromic effect. Theoretical calculations reveal that MFC performance is highly related to the molecular conformation, meaning that the BDDIF-BTh with perpendicular conformation is more difficult to flatten than the comparatively planar BDDIF-Th.

  5. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell.

    PubMed

    Wen, Qing; Wu, Ying; Zhao, Li-xin; Sun, Qian; Kong, Fan-ying

    2010-02-01

    A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m(3) at an external resistance of 300 Omega. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.

  6. Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Jiang, Hongmei; Yang, Lu; Deng, Wenfang; Tan, Yueming; Xie, Qingji

    2017-09-01

    Herein, a macroporous graphitic carbon foam (MGCF) electrode decorated with polydopamine (PDA) is used as a high-performance anode for microbial fuel cell (MFC) applications. The MGCF is facilely prepared by pyrolysis of a powder mixture comprising maltose, nickel nitrate, and ammonia chloride, without using solid porous template. The MGCF is coated with PDA by self-polymerization of dopamine in a basic solution. The MGCF can provide a large surface area for bacterial attachment, and PDA coated on the MGCF electrode can further promote bacterial adhesion resulting from the improved hydrophility, so the MGCF-PDA electrode as an anode in a MFC can show ultrahigh bacterial loading capacity. Moreover, the electrochemical oxidation of flavins at the MGCF-PDA electrode is greatly accelerated, so the extracellular electron transfer mediated by flavins is improved. As a result, the MFC equipped with a MGCF-PDA anode can show a maximum power density of 1735 mW cm-2, which is 6.7 times that of a MFC equipped with a commercial carbon felt anode, indicating a promising anode for MFC applications.

  7. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism.

    PubMed

    Yi, Yue; Xie, Beizhen; Zhao, Ting; Liu, Hong

    2018-06-13

    Microbial fuel cell based biosensors (MFC-biosensors) utilize anode biofilms as biological recognition elements to monitor biochemical oxygen demand (BOD) and biotoxicity. However, the relatively poor sensitivity constrains the application of MFC-biosensors. To address this limitation, this study provided a systematic comparison of sensitivity between the MFC-biosensors constructed with two inocula. Higher biomass density and viability were both observed in the anode biofilm of the mixed culture MFC, which resulted in better sensitivity for BOD assessment. Compared with using mixed culture as inoculum, the anode biofilm developed with Shewanella loihica PV-4 presented lower content of extracellular polymeric substances and poorer ability to secrete protein under toxic shocks. Moreover, the looser structure in the S. loihica PV-4 biofilm further facilitated its susceptibilities to toxic agents. Therefore, the MFC-biosensor with a pure culture of S. loihica PV-4 delivered higher sensitivity for biotoxicity monitoring. This study proposed a new perspective to enhance sensor performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge.

    PubMed

    Nor, Muhamad Hanif Md; Mubarak, Mohd Fahmi Muhammad; Elmi, Hassan Sh Abdirahman; Ibrahim, Norahim; Wahab, Mohd Firdaus Abdul; Ibrahim, Zaharah

    2015-08-01

    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell*

    PubMed Central

    Wen, Qing; Wu, Ying; Zhao, Li-xin; Sun, Qian; Kong, Fan-ying

    2010-01-01

    A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%–95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m3 at an external resistance of 300 Ω. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment. PMID:20104642

  10. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community.

    PubMed

    Zhang, Qinghua; Zhang, Yanyan; Li, Daping

    2017-04-01

    The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bioelectric production from sediment of pond fishing and molasses using microbial fuel cell (MFC) technology-base with the influence of substrate concentration variety

    NASA Astrophysics Data System (ADS)

    Syafitri, L. M.; Saputro, Y. A.; Hana, P. N.; Hardiani, D.; Raharjo, B.

    2018-03-01

    Indonesia is currently faced the problem of the need for electrical energy. MFC is a technology that can be used to generate electricity by utilizing microbial activity. The aims of this study is to manage the molasses waste and sediment of fishery as a substrate in the MFC system. The research method was performed by preparing anode and cathode connected by a salt bridge forming the system of MFC Double Chamber. The result of bacteriology test using Total Plate Count (TPC) method showed that the number of bacterial colonies on the sediment substrate was 4.1 × 106 cfu/gr, while the molasses substrate was 7,1 × 104 cfu/gr. The measurement result of electricity showed that 25% sediment and 75% molasses substrate variation resulted in the highest average voltage and power density that are 0.372 V and 813.191 mW/m2. The conclusion of this research is that the mixture of sediment with molasses substrate can increase the production of electricity produced by MFC system.

  12. Multifactor Screener in the 2000 National Health Interview Survey Cancer Control Supplement: Overview

    Cancer.gov

    The Multifactor Screener may be useful to assess approximate intakes of fruits and vegetables, percentage energy from fat, and fiber. The screener asks respondents to report how frequently they consume foods in 16 categories. The screener also asks one question about the type of milk consumed.

  13. Multifactor Screener in the 2000 National Health Interview Survey Cancer Control Supplement: Uses of Screener Estimates

    Cancer.gov

    Dietary intake estimates derived from the Multifactor Screener are rough estimates of usual intake of fruits and vegetables, fiber, calcium, servings of dairy, and added sugar. These estimates are not as accurate as those from more detailed methods (e.g., 24-hour recalls).

  14. Generation of a frequency comb and applications thereof

    DOEpatents

    Hagmann, Mark J; Yarotski, Dmitry A

    2013-12-03

    Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.

  15. Enhancement in hydrogen evolution using Au-TiO2 hollow spheres with microbial devices modified with conjugated oligoelectrolytes

    PubMed Central

    Ngaw, Chee Keong; Wang, Victor Bochuan; Liu, Zhengyi; Zhou, Yi; Kjelleberg, Staffan; Zhang, Qichun; Tan, Timothy Thatt Yang; Loo, Say Chye Joachim

    2015-01-01

    Objective: Although photoelectrochemical (PEC) water splitting heralds the emergence of the hydrogen economy, the need for external bias and low efficiency stymies the widespread application of this technology. By coupling water splitting (in a PEC cell) to a microbial fuel cell (MFC) using Escherichia coli as the biocatalyst, this work aims to successfully demonstrate a sustainable hybrid PEC–MFC platform functioning solely by biocatalysis and solar energy, at zero bias. Through further chemical modification of the photo-anode (in the PEC cell) and biofilm (in the MFC), the performance of the hybrid system is expected to improve in terms of the photocurrent generated and hydrogen evolved. Methods: The hybrid system constitutes the interconnected PEC cell with the MFC. Both PEC cell and MFC are typical two-chambered systems housing the anode and cathode. Au-TiO2 hollow spheres and conjugated oligoelectrolytes were synthesised chemically and introduced to the PEC cell and MFC, respectively. Hydrogen evolution measurements were performed in triplicates. Results: The hybrid PEC–MFC platform generated a photocurrent density of 0.35 mA/cm2 (~70× enhancement) as compared with the stand-alone P25 standard PEC cell (0.005 mA/cm2) under one-sun illumination (100 mW/cm2) at zero bias (0 V vs. Pt). This increase in photocurrent density was accompanied by continuous H2 production. No H2 was observed in the P25 standard PEC cell whereas H2 evolution rate was ~3.4 μmol/h in the hybrid system. The remarkable performance is attributed to the chemical modification of E. coli through the incorporation of novel conjugated oligoelectrolytes in the MFC as well as the lower recombination rate and higher photoabsorption capabilities in the Au-TiO2 hollow spheres electrode. Conclusions: The combined strategy of photo-anode modification in PEC cells and chemically modified MFCs shows great promise for future exploitation of such synergistic effects between MFCs and semiconductor-based PEC water splitting. PMID:28721235

  16. Prospect Theory and Interval-Valued Hesitant Set for Safety Evacuation Model

    NASA Astrophysics Data System (ADS)

    Kou, Meng; Lu, Na

    2018-01-01

    The study applies the research results of prospect theory and multi attribute decision making theory, combined with the complexity, uncertainty and multifactor influence of the underground mine fire system and takes the decision makers’ psychological behavior of emotion and intuition into full account to establish the intuitionistic fuzzy multiple attribute decision making method that is based on the prospect theory. The model established by this method can explain the decision maker’s safety evacuation decision behavior in the complex system of underground mine fire due to the uncertainty of the environment, imperfection of the information and human psychological behavior and other factors.

  17. Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs

    ERIC Educational Resources Information Center

    Pierce, Charles A.; Block, Richard A.; Aguinis, Herman

    2004-01-01

    The authors provide a cautionary note on reporting accurate eta-squared values from multifactor analysis of variance (ANOVA) designs. They reinforce the distinction between classical and partial eta-squared as measures of strength of association. They provide examples from articles published in premier psychology journals in which the authors…

  18. Forest ecosystems of a Lower Gulf Coastal Plainlandscape: multifactor classification and analysis

    Treesearch

    P. Charles Goebel; Brian J. Palik; L. Katherine Kirkman; Mark B. Drew; Larry West; Dee C. Pederson

    2001-01-01

    The most common forestland classification techniques applied in the southeastern United States are vegetation-based. While not completely ignored, the application of multifactor, hierarchical ecosystem classifications are limited despite their widespread use in other regions of the eastern United States. We present one of the few truly integrated ecosystem...

  19. A Multifactor Ecosystem Assessment of Wetlands Created Using a Novel Dredged Material Placement Technique in the Atchafalaya River, Louisiana: An Engineering With Nature Demonstration Project

    DTIC Science & Technology

    functions. The strategic placement of dredged materials in locations that mimic natural process promoted additional ecological benefits, especially...regarding wading bird and infaunal habitat, thus adhering to Engineering With Nature (EWN) processes. The multifactor approach improved the wetland

  20. Microbial Fuel Cell Inoculated with Ochrobactrum Tritici KCC210 for Chromium (VI) Measurement in Electroplating Wastewater

    NASA Astrophysics Data System (ADS)

    Kuo, Jongtar; Kuo, Juiling; Cheng, Chiuyu; Chung, Yingchien

    2018-01-01

    Many methods/techniques have been developed for Cr(VI) measurement, but they are often conducted offsite or/and cannot provide real-time for Cr(VI) monitoring. A microbial fuel cell (MFC) is a self-sustaining device and has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Ochrobactrum tritici KCC210, a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic bacterium, was isolated and inoculated into the MFC to evaluate its feasibility as a Cr(VI) biosensor. The results indicated that O. tritici KCC210 exhibited high adaptability to pH, and temperature under anaerobic conditions. The maximum power density of the MFC biosensor was 17.5±0.9 mW/m2 at 2,000 Ω. A good linear relationship was observed between the Cr(VI) concentration (10-80 mg/L) and voltage output. The stable performance of the MFC biosensor indicated its potential as a reliable biosensor system. Moreover, the developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater generated from different electroplating units within 15 min with low deviations (-1.8% to 7.8%) in comparison with the values determined using standard method. Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents and has potential as an early warning detection device.

  1. A novel metal organic framework-derived carbon-based catalyst for oxygen reduction reaction in a microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Hu, Yongyou; Chen, Junfeng; Huang, Wantang; Cheng, Jianhua; Chen, Yuancai

    2018-04-01

    To improve the power generation of microbial fuel cell (MFC), the cathode is modified to increase its oxygen reduction reaction (ORR) activity by using a Cu, N-incorporated carbon-based material as catalyst, which obtained from pyrolyzing ORR active Cu (II)-based metal organic framework (MOF; Cu-bipy-BTC, bipy = 2,2‧-bipyridine, BTC = 1,3,5-tricarboxylate). MOF-800 (the product of pyrolyzing Cu-bipy-BTC at 800 °C) shows porous structure with micropores ranging from 0.5 to 1.3 nm and mesopores ranging from 27 to 46 nm. It also exhibits improved ORR electrocatalytic activity with a higher current density of -3.06 mA cm-2 compared to Cu-bipy-BTC. Moreover, the charge transfer resistance of MOF-800 cathode (1.38 Ω) is much smaller than that of Cu-bipy-BTC cathode (176.8 Ω). A maximum power density of 326 ± 11 mW m-2 is achieved by MOF-800-MFC, which is 2.6 times of that of Cu-bipy-BTC-MFC and comparable with Pt/C-MFC (402 ± 17 mW m-2). The results imply the enhancements of ORR catalytic activity and electrical conductivity of MOF-800 are due to the enhanced porous structure and abundant active sites (C-N, Cu-Nχ), which result in the improved power generation of MFC. This study provides technical and theoretical validation for the MFC performance improvement by ORR active MOF-derived catalysts modified cathodes.

  2. Deep NPM1 Sequencing Following Allogeneic Hematopoietic Cell Transplantation Improves Risk Assessment in Adults with NPM1-Mutated AML.

    PubMed

    Zhou, Yi; Othus, Megan; Walter, Roland B; Estey, Elihu H; Wu, David; Wood, Brent L

    2018-04-21

    Relapse is the major cause of death in patients with acute myeloid leukemia (AML) after allogeneic hematopoietic cell transplantation (HCT). Measurable residual disease (MRD) detected by multiparameter flow cytometry (MFC) before and after HCT is a strong, independent risk factor for relapse. As next-generation sequencing (NGS) is increasingly applied in AML MRD detection, it remains to be determined if NGS can improve prediction of post-HCT relapse. Herein, we investigated pre-HCT MRD detected by MFC and NGS in 59 adult patients with NPM1-mutated AML in morphologic remission; 45 of the 59 had post-HCT MRD determined by MFC and NGS around day 28. Before HCT, MRD detected by MFC was the most significant risk factor for relapse (hazard ratio [HR], 4.63; P < .001), whereas MRD detected only by NGS was not. After HCT, MRD detected by either MFC or NGS was significant risk factor for relapse (HR, 4.96, P = .004 and HR, 4.36, P = .002, respectively). Combining pre- and post-HCT MRD provided the best prediction for relapse (HR, 5.25; P < .001), with a sensitivity at 83%. We conclude that NGS testing of mutated NPM1 post-HCT improves the risk assessment for relapse, whereas pre-HCT MFC testing identifies a subset of high-risk patients in whom additional therapy should be tested. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose.

    PubMed

    Yan, Jinhua; Abdelgawad, Abdelrahman M; El-Naggar, Mehrez E; Rojas, Orlando J

    2016-08-20

    Spray technique was used for the adsorption of in-situ silver nanoparticles (AgNPs) onto and inside the surface of nano- and micro- fibrillar cellulose (NFC and MFC) as well as filter paper. The abundance of hydroxyl and carboxyl groups located in NFC and MFC are used to stabilize Ag ions (Ag(+)) which were then in-situ reduced to (AgNPs) by chemical or UV reduction. The surface characteristic features, elemental analysis, particle size as well as size distribution of the obtained MFC, NFC and filter paper loaded with AgNPs were characterized via field emission scanning electron microscopy connected to energy dispersive X-ray spectroscopy (FESEM- EDX) and transmission electron microscopy (TEM). The associated chemical changes after growth of AgNPs onto the cellulose substrates were assessed by fourier transform infra-red (FT-IR) while the thermal stability of such systems were investigated by thermogravimetrical analyses (TGA). The antibacterial properties of AgNPs loaded NFC, MFC and filter paper as well was investigated against Escherichia Coli. The resulted data indicate that the particle size was found to be 11 and 26nm for AgNPs nucleated on NFC and MFC-based papers respectively. The antibacterial activity of AgNPs loaded MFC exhibited higher antibacterial activity than that of AgNPs loaded NFC. Overall, the present research demonstrates facile and fast method for in-situ antibacterial AgNPs loading on cellulose substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water.

    PubMed

    Modin, Oskar; Fukushi, Kensuke; Rabaey, Korneel; Rozendal, René A; Yamamoto, Kazuo

    2011-04-01

    In wastewater treatment plants, the reject water from the sludge treatment processes typically contains high ammonium concentrations, which constitute a significant internal nitrogen load in the plant. Often, a separate nitrification reactor is used to treat the reject water before it is fed back into the plant. The nitrification reaction consumes alkalinity, which has to be replenished by dosing e.g. NaOH or Ca(OH)(2). In this study, we investigated the use of a two-compartment microbial fuel cell (MFC) to redistribute alkalinity from influent wastewater to support nitrification of reject water. In an MFC, alkalinity is consumed in the anode compartment and produced in the cathode compartment. We use this phenomenon and the fact that the influent wastewater flow is many times larger than the reject water flow to transfer alkalinity from the influent wastewater to the reject water. In a laboratory-scale system, ammonium oxidation of synthetic reject water passed through the cathode chamber of an MFC, increased from 73.8 ± 8.9 mgN/L under open-circuit conditions to 160.1 ± 4.8 mgN/L when a current of 1.96 ± 0.37 mA (15.1 mA/L total MFC liquid volume) was flowing through the MFC. These results demonstrated the positive effect of an MFC on ammonium oxidation of alkalinity-limited reject water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model.

    PubMed

    Chen, Hongmei; Chevrier, Anik; Hoemann, Caroline D; Sun, Jun; Picard, Genevieve; Buschmann, Michael D

    2013-11-01

    The influence of the location of cartilage lesions on cartilage repair outcome is incompletely understood. This study compared cartilage and bone repair in medial femoral condylar (MFC) versus femoral trochlear (TR) defects 3 months after bone marrow stimulation in mature rabbits. Intact femurs from adult rabbits served as controls. Results from quantitative histomorphometry and histological scoring showed that bone marrow stimulation produced inferior soft tissue repair in MFC versus TR defects, as indicated by significantly lower % Fill (p = 0.03), a significant increase in collagen type I immunostaining (p < 0.00001) and lower O'Driscoll scores (p < 0.05). 3D micro-CT analysis showed that repaired TR defects regained normal un-operated values of bone volume fraction, trabecular thickness, and trabecular number, whereas in MFC defects the repaired bone architecture appeared immature and less dense compared to intact un-operated MFC controls (p < 0.0001). Severe medial meniscal damage was found in 28% of operated animals and was strongly correlated with (i) low cartilage defect fill, (ii) incomplete bone repair in MFC, and (iii) with a more posterior defect placement in the weight-bearing region. We conclude that the location of cartilage lesions influences cartilage repair, with better outcome in TR versus MFC defects in rabbits. Meniscal degeneration is associated with cartilage damage. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Microbial fuel cells: Their application and microbiology

    NASA Astrophysics Data System (ADS)

    He, Zhen

    The energy crisis is an urgent global issue due to the increased consumption of the finite amount of fossil fuel. As a result, looking for alternative energy sources is of critical importance. Microbial fuel cell (MFC) technology can extract electric energy from wastewater, and thus is a sustainable approach to supply energy to our electricity-based society. My research focuses on the development of a suitable MFC reactor for wastewater treatment and the understanding of the microbial function in the MFC process. First, together with colleagues, I have developed a novel MFC reactor, named upflow microbial fuel cell (UMFC), by combining upflow and MFC technologies. The power output from the UMFC was improved by 10-fold after it was modified with a U-shape cathode. The UMFC appears to be a practical reactor for continuous operation, though the output of electric power requires further improvement. In addition, a sediment MFC with a rotating cathode was also developed and its performance was examined. Second, I have adopted a human distal gut anaerobe, Bacteroides thetaiotaomicron, as the model organism to study the role of fermentative bacterium in electricity generation. When B. thetaiotaomicron grew under an applied electric potential, an electric current was generated. GeneChip data indicated that this bacterium did not alter its metabolism during this process. Although B. thetaiotaomicron may not be capable of respiration with an electrode as the electron acceptor, the experiment has demonstrated that fermentative bacteria may play an important role in electricity generation.

  7. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment.

    PubMed

    Wu, Shijia; Li, Hui; Zhou, Xuechen; Liang, Peng; Zhang, Xiaoyuan; Jiang, Yong; Huang, Xia

    2016-07-01

    A novel stacked microbial fuel cell (MFC) which had a total volume of 72 L with granular activated carbon (GAC) packed bed electrodes was constructed and verified to present remarkable power generation and COD removal performance due to its advantageous design of stack and electrode configuration. During the fed-batch operation period, a power density of 50.9 ± 1.7 W/m(3) and a COD removal efficiency of 97% were achieved within 48 h. Because of the differences among MFC modules in the stack, reversal current occurred in parallel circuit connection with high external resistances (>100 Ω). This reversal current consequently reduced the electrochemical performance of some MFC modules and led to a lower power density in parallel circuit connection than that in independent circuit connection. While increasing the influent COD concentrations from 200 to 800 mg/L at hydraulic retention time of 1.25 h in continuous operation mode, the power density of stacked MFC increased from 25.6 ± 2.5 to 42.1 ± 1.2 W/m(3) and the COD removal rates increased from 1.3 to 5.2 kg COD/(m(3) d). This study demonstrated that this novel MFC stack configuration coupling with GAC packed bed electrode could be a feasible strategy to effectively scale up MFC systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A stackable, two-chambered, paper-based microbial fuel cell.

    PubMed

    Fraiwan, Arwa; Choi, Seokheun

    2016-09-15

    We developed a stackable and integrable paper-based microbial fuel cell (MFC) for potentially powering on-chip paper-based devices. Four MFCs were prepared on a T-shaped filter paper which was eventually folded three times to connect these MFCs in series. Each MFC was fabricated by sandwiching multifunctional paper layers for two-chambered fuel cell configuration. One drop of bacteria-containing anolyte into the anodic inlet and another drop of potassium ferricyanide for cathodic reaction flowed through patterned fluidic pathways within the paper matrix, both vertically and horizontally, reaching each of the four MFCs and filling the reservoir of each device. Bacterial respiration then transferred electrons to the anode, which traveled across an external load to the cathode where they combined with protons. The MFC stack connected in series generated a high power density (1.2μW/cm(2)), which is two orders of magnitude higher than the previous report on the paper-based MFC stack. This work will represent the fusion of the art of origami and paper-based MFC technology, which could provide a paradigm shift for the architecture and design of paper-based batteries. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    PubMed

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-05

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions. Copyright © 2016. Published by Elsevier B.V.

  10. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.

    PubMed

    Li, Siqi; Jiang, Huiyan; Pang, Wenbo

    2017-05-01

    Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.

    PubMed

    Jiang, Yong; Liang, Peng; Huang, Xia; Ren, Zhiyong Jason

    2018-07-01

    Toxicity monitoring is essential for the protection of public health and ecological safety. Microbial fuel cell (MFC) sensors demonstrated good potential in toxicity monitoring, but current MFC sensors can only be used for anaerobic water monitoring. In this study, a novel gas diffusion (GD)-biocathode sensing element was fabricated using a simple method. The GD-biocathode MFC sensor can directly be used for formaldehyde detection (from 0.0005% to 0.005%) in both aerobic and anaerobic water bodies. Electrochemical analysis indicated that the response by the sensor was caused by the toxic inhibition to the microbial activity for the oxygen reduction reaction (ORR). This study for the first time demonstrated that the GD-biocathode MFC sensor has a detection limit of 20 ppm for formaldehyde and can be used to monitor air pollution. Selective sensitivity to formaldehyde was not achieved as the result of using a mixed-culture, which confirms that it can serve as a generic biosensor for monitoring gaseous pollutants. This study expands the realm of knowledge for MFC sensor applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  13. On the Interface of Probabilistic and PDE Methods in a Multifactor Term Structure Theory

    ERIC Educational Resources Information Center

    Mamon, Rogemar S.

    2004-01-01

    Within the general framework of a multifactor term structure model, the fundamental partial differential equation (PDE) satisfied by a default-free zero-coupon bond price is derived via a martingale-oriented approach. Using this PDE, a result characterizing a model belonging to an exponential affine class is established using only a system of…

  14. Effect of Embedded Piezoelectric Sensors on Fracture Toughness and Fatigue Resistance of Composite Laminates Under Mode I Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2006-01-01

    Double-cantilevered beam (DCB) specimens of a glass/epoxy composite material with embedded piezoelectric sensors were tested both statically and under fatigue loading to determine the effect of the embedded material on the Mode I fracture toughness and fatigue resistance compared to baseline data without the embedded elements. A material known as LaRC-Macrofiber Composite (LaRC-MFC (TradeMark)), or MFC, was embedded at the midplane of the specimen during the layup. Specimens were manufactured with the embedded MFC material either at the loaded end of the specimen to simulate an initial delamination; or with the MFC material located at the delaminating interface, with a Teflon film at the loaded end to simulate an initial delamination. There were three types of specimens with the embedded material at the delaminating interface: co-cured with no added adhesive; cured with a paste adhesive applied to the embedded element; or cured with a film adhesive added to the embedded material. Tests were conducted with the sensors in both the passive and active states. Results were compared to baseline data for the same material without embedded elements. Interlaminar fracture toughness values (G(sub Ic)) for the passive condition showed little change when the MFC was at the insert end. Passive results varied when the MFC was at the delaminating interface. For the co-cured case and with the paste adhesive, G(sub Ic) decreased compared to the baseline toughness, whereas, for the film adhesive case, G(sub Ic) was significantly greater than the baseline toughness, but the failure was always catastrophic. When the MFC was in the active state, G(sub Ic) was generally lower compared to the passive results. Fatigue tests showed little effect of the embedded material whether it was active or passive compared to baseline values.

  15. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater.

    PubMed

    Wen, Qing; Wu, Ying; Cao, Dianxue; Zhao, Lixin; Sun, Qian

    2009-09-01

    Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD=626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m(3) (264 mW/m(2)). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m(2), reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.

  16. Naturally occurring antifungal agents against Zygosaccharomyces bailii and their synergism.

    PubMed

    Fujita, Ken-Ichi; Kubo, Isao

    2005-06-29

    Polygodial was found to exhibit a fungicidal activity against a food spoilage yeast, Zygosaccharomyces bailii, with the minimum fungicidal concentration (MFC) of 50 microg/mL (0.17 mM). The time-kill curve study showed that polygodial was fungicidal at any growth stage. The primary action of polygodial comes from its ability to disrupt the native membrane-associated function of integral proteins as nonionic surface active agents (surfactants) followed by a decrease in plasma membrane fluidity. The fungicidal activity of polygodial was increased 128-fold in combination with a sublethal amount (equivalent of 1/2 MFC) of anethole and vice versa relative to the fungicidal activity of anethole. The fungicidal activity of sorbic acid was enhanced 512-fold in combination with 1/2 MFC of polygodial. Conversely, the fungicidal activity of polygodial was enhanced 128-fold in combination with 1/2 MFC of sorbic acid.

  17. [Application of microbial fuel cell (MFC) in solid waste composting].

    PubMed

    Cui, Jinxin; Wang, Xin; Tang, Jingchun

    2012-03-01

    Microbial fuel cell (MFC) is a new technology that can recover energy from biomass with simultaneous waste treatment. This technique has been developed fast in recent years in combining with environmental techniques such as wastewater treatment, degradation of toxic pollutants and desalination. With the increase of solid waste, applying MFC in composting is promising due to its property of waste disposal with simultaneous energy generation. In this paper, the microbial community of MFCs during composting was summarized. Four major influencing factors including electrodes, separators, oxygen supplement and configurations on the performance of composting MFCs were discussed. The characteristics of composting MFC as a new technique for reducing solid waste were as follows: high microbial biomass resulted in the high current density; adaptable to different environmental conditions; self-adjustable temperature with high energy efficiency; the transportation of proton from anode to cathode were limited by different solid substrates.

  18. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  19. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

  20. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell.

    PubMed

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong

    2016-12-01

    The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Analysis and optimisation of a mixed fluid cascade (MFC) process

    NASA Astrophysics Data System (ADS)

    Ding, He; Sun, Heng; Sun, Shoujun; Chen, Cheng

    2017-04-01

    A mixed fluid cascade (MFC) process that comprises three refrigeration cycles has great capacity for large-scale LNG production, which consumes a great amount of energy. Therefore, any performance enhancement of the liquefaction process will significantly reduce the energy consumption. The MFC process is simulated and analysed by use of proprietary software, Aspen HYSYS. The effect of feed gas pressure, LNG storage pressure, water-cooler outlet temperature, different pre-cooling regimes, liquefaction, and sub-cooling refrigerant composition on MFC performance are investigated and presented. The characteristics of its excellent numerical calculation ability and the user-friendly interface of MATLAB™ and powerful thermo-physical property package of Aspen HYSYS are combined. A genetic algorithm is then invoked to optimise the MFC process globally. After optimisation, the unit power consumption can be reduced to 4.655 kW h/kmol, or 4.366 kW h/kmol on condition that the compressor adiabatic efficiency is 80%, or 85%, respectively. Additionally, to improve the process further, with regards its thermodynamic efficiency, configuration optimisation is conducted for the MFC process and several configurations are established. By analysing heat transfer and thermodynamic performances, the configuration entailing a pre-cooling cycle with three pressure levels, liquefaction, and a sub-cooling cycle with one pressure level is identified as the most efficient and thus optimal: its unit power consumption is 4.205 kW h/kmol. Additionally, the mechanism responsible for the weak performance of the suggested liquefaction cycle configuration lies in the unbalanced distribution of cold energy in the liquefaction temperature range.

  2. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method.

    PubMed

    Kim, Jae-Hun; Lee, Jong-Min; Jo, Hang Joon; Kim, Sook Hui; Lee, Jung Hee; Kim, Sung Tae; Seo, Sang Won; Cox, Robert W; Na, Duk L; Kim, Sun I; Saad, Ziad S

    2010-02-01

    Noninvasive parcellation of the human cerebral cortex is an important goal for understanding and examining brain functions. Recently, the patterns of anatomical connections using diffusion tensor imaging (DTI) have been used to parcellate brain regions. Here, we present a noninvasive parcellation approach that uses "functional fingerprints" obtained by correlation measures on resting state functional magnetic resonance imaging (fMRI) data to parcellate brain regions. In other terms, brain regions are parcellated based on the similarity of their connection--as reflected by correlation during resting state--to the whole brain. The proposed method was used to parcellate the medial frontal cortex (MFC) into supplementary motor areas (SMA) and pre-SMA subregions. In agreement with anatomical landmark-based parcellation, we find that functional fingerprint clustering of the MFC results in anterior and posterior clusters. The probabilistic maps from 12 subjects showed that the anterior cluster is mainly located rostral to the vertical commissure anterior (VCA) line, whereas the posterior cluster is mainly located caudal to VCA line, suggesting the homologues of pre-SMA and SMA. The functional connections from the putative pre-SMA cluster were connected to brain regions which are responsible for complex/cognitive motor control, whereas those from the putative SMA cluster were connected to brain regions which are related to the simple motor control. These findings demonstrate the feasibility of the functional connectivity-based parcellation of the human cerebral cortex using resting state fMRI. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  3. Measurement Invariance of Second-Order Factor Model of the Multifactor Leadership Questionnaire (MLQ) across K-12 Principal Gender

    ERIC Educational Resources Information Center

    Xu, Lihua; Wubbena, Zane; Stewart, Trae

    2016-01-01

    Purpose: The purpose of this paper is to investigate the factor structure and the measurement invariance of the Multifactor Leadership Questionnaire (MLQ) across gender of K-12 school principals (n=6,317) in the USA. Design/methodology/approach: Nine first-order factor models and four second-order factor models were tested using confirmatory…

  4. Bullying among adolescents in North Cyprus and Turkey: testing a multifactor model.

    PubMed

    Bayraktar, Fatih

    2012-04-01

    Peer bullying has been studied since the 1970s. Therefore, a vast literature has accumulated about the various predictors of bullying. However, to date there has been no study which has combined individual-, peer-, parental-, teacher-, and school-related predictors of bullying within a model. In this sense, the main aim of this study was to test a multifactor model of bullying among adolescents in North Cyprus and Turkey. A total of 1,052 adolescents (554 girls, 498 boys) aged between 13 and 18 (M = 14.7, SD = 1.17) were recruited from North Cyprus and Turkey. Before testing the multifactor models, the measurement models were tested according to structural equation modeling propositions. Both models indicated that the psychological climate of the school, teacher attitudes within classroom, peer relationships, parental acceptance-rejection, and individual social competence factors had significant direct effects on bullying behaviors. Goodness-of-fit indexes indicated that the proposed multifactor model fitted both data well. The strongest predictors of bullying were the psychological climate of the school following individual social competence factors and teacher attitudes within classroom in both samples. All of the latent variables explained 44% and 51% of the variance in bullying in North Cyprus and Turkey, respectively.

  5. Potential barriers to the application of multi-factor portfolio analysis in public hospitals: evidence from a pilot study in the Netherlands.

    PubMed

    Pavlova, Milena; Tsiachristas, Apostolos; Vermaeten, Gerhard; Groot, Wim

    2009-01-01

    Portfolio analysis is a business management tool that can assist health care managers to develop new organizational strategies. The application of portfolio analysis to US hospital settings has been frequently reported. In Europe however, the application of this technique has received little attention, especially concerning public hospitals. Therefore, this paper examines the peculiarities of portfolio analysis and its applicability to the strategic management of European public hospitals. The analysis is based on a pilot application of a multi-factor portfolio analysis in a Dutch university hospital. The nature of portfolio analysis and the steps in a multi-factor portfolio analysis are reviewed along with the characteristics of the research setting. Based on these data, a multi-factor portfolio model is developed and operationalized. The portfolio model is applied in a pilot investigation to analyze the market attractiveness and hospital strengths with regard to the provision of three orthopedic services: knee surgery, hip surgery, and arthroscopy. The pilot portfolio analysis is discussed to draw conclusions about potential barriers to the overall adoption of portfolio analysis in the management of a public hospital. Copyright (c) 2008 John Wiley & Sons, Ltd.

  6. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review

    PubMed Central

    Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2017-01-01

    With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection. PMID:28956857

  7. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review.

    PubMed

    Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2017-09-28

    With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p -nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.

  8. Comparative Metagenomic Analysis of Electrogenic Microbial Communities in Differentially Inoculated Swine Wastewater-Fed Microbial Fuel Cells

    PubMed Central

    Sorokin, Anatoly A.; Kiseleva, Larisa; Simpson, David J. W.; Fedorovich, V.; Sharipova, Margarita R.; Kainuma, Mami; Cohen, Michael F.; Goryanin, Igor

    2017-01-01

    Bioelectrochemical systems such as microbial fuel cells (MFCs) are promising new technologies for efficient removal of organic compounds from industrial wastewaters, including that generated from swine farming. We inoculated two pairs of laboratory-scale MFCs with sludge granules from a beer wastewater-treating anaerobic digester (IGBS) or from sludge taken from the bottom of a tank receiving swine wastewater (SS). The SS-inoculated MFC outperformed the IGBS-inoculated MFC with regard to COD and VFA removal and electricity production. Using a metagenomic approach, we describe the microbial diversity of the MFC planktonic and anodic communities derived from the different inocula. Proteobacteria (mostly Deltaproteobacteria) became the predominant phylum in both MFC anodic communities with amplification of the electrogenic genus Geobacter being the most pronounced. Eight dominant and three minor species of Geobacter were found in both MFC anodic communities. The anodic communities of the SS-inoculated MFCs had a higher proportion of Clostridium and Bacteroides relative to those of the IGBS-inoculated MFCs, which were enriched with Pelobacter. The archaeal populations of the SS- and IGBS-inoculated MFCs were dominated by Methanosarcina barkeri and Methanothermobacter thermautotrophicus, respectively. Our results show a long-term influence of inoculum type on the performance and microbial community composition of swine wastewater-treating MFCs. PMID:29158944

  9. Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C.

    PubMed

    Sekar, Narendran; Wu, Chang-Hao; Adams, Michael W W; Ramasamy, Ramaraja P

    2017-07-01

    Hyperthermophiles are microorganisms that thrive in extremely hot environments with temperatures near and even above 100°C. They are the most deeply rooted microorganisms on phylogenetic trees suggesting they may have evolved to survive in the early hostile earth. The simple respiratory systems of some of these hyperthermophiles make them potential candidates to develop microbial fuel cells (MFC) that can generate power at temperatures approaching the boiling point. We explored extracellular electron transfer in the hyperthermophilic archaeon Pyrococcus furiosus (Pf) by studying its ability to generate electricity in a two-chamber MFC. Pf growing in defined medium functioned as an anolyte in a MFC operated at 90°C, generating a maximum current density of 2 A m -2 and a peak power density of 225 mW m -2 without the addition of any external redox mediator. Electron microscopy and electrochemical impedance spectroscopy of the anode with the attached Pf biofilm demonstrated bio-electrochemical behavior that led to electricity generation in the MFC via direct electron transfer. This proof of concept study reveals for the first time that a hyperthermophile such as Pf can generate electricity in MFC at extreme temperatures. Biotechnol. Bioeng. 2017;114: 1419-1427. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments

    NASA Astrophysics Data System (ADS)

    Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang

    2017-12-01

    Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  11. Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments.

    PubMed

    Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang

    2018-02-13

    Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  12. Sampled-time control of a microbial fuel cell stack

    NASA Astrophysics Data System (ADS)

    Boghani, Hitesh C.; Dinsdale, Richard M.; Guwy, Alan J.; Premier, Giuliano C.

    2017-07-01

    Research into microbial fuel cells (MFCs) has reached the point where cubic metre-scale systems and stacks are being built and tested. Apart from performance enhancement through catalysis, materials and design, an important research area for industrial applicability is stack control, which can enhance MFCs stack power output. An MFC stack is controlled using a sampled-time digital control strategy, which has the advantage of intermittent operation with consequent power saving, and when used in a hybrid series stack connectivity, can avoid voltage reversals. A MFC stack comprising four tubular MFCs was operated hydraulically in series. Each MFC was connected to an independent controller and the stack was connected electrically in series, creating a hybrid-series connectivity. The voltage of each MFC in the stack was controlled such that the overall series stack voltage generated was the algebraic sum (1.26 V) of the individual MFC voltages (0.32, 0.32, 0.32 and 0.3). The controllers were able to control the individual voltages to the point where 2.52 mA was drawn from the stack at a load of 499.9 Ω (delivering 3.18 mW). The controllers were able to reject the disturbances and perturbations caused by electrical loading, temperature and substrate concentration.

  13. Control and characterization of a bistable laminate generated with piezoelectricity

    NASA Astrophysics Data System (ADS)

    Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.

    2017-08-01

    Extensive research has been conducted on utilizing smart materials such as piezoelectric and shape memory alloy actuators to induce snap through of bistable structures for morphing applications. However, there has only been limited success in initiating snap through from both stable states due to the lack of actuation authority. A novel solution in the form of a piezoelectrically generated bistable laminate consisting of only macro fiber composites (MFC), allowing complete configuration control without any external assistance, is explored in detail here. Specifically, this paper presents the full analytical, computational, and experimental results of the laminate’s design, geometry, bifurcation behavior, and snap through capability. By bonding two actuated MFCs in a [0MFC/90MFC]T layup and releasing the voltage post cure, piezoelectric strain anisotropy and the resulting in-plane residual stresses yield two statically stable states that are cylindrically shaped. The analytical model uses the Rayleigh-Ritz minimization of total potential energy and finite element analysis is implemented in MSC Nastran. The [0MFC/90MFC]T laminate is then manufactured and experimentally characterized for model validation. This paper demonstrates the adaptive laminate’s unassisted forward and reverse snap through capability enabled by the efficiencies gained from simultaneously being the actuator and the primary structure.

  14. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination.

    PubMed

    Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien

    2016-08-16

    Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125-0.3 mg/L and 0.3-5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen.

  15. Multi-factor authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-10-21

    Detection and deterrence of spoofing of user authentication may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a user of the hardware device. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a PUF value. Combining logic is coupled to receive the PUF value, combines the PUF value with one or more other authentication factors to generate a multi-factor authentication value. A key generator is coupled to generate a private key and a public key based on the multi-factor authentication value while a decryptor is coupled to receive an authentication challenge posed to the hardware device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.

  16. Whole systems thinking for sustainable water treatment design

    NASA Astrophysics Data System (ADS)

    Huggins, Mitchell Tyler

    Microbial fuel cell (MFC) technology could provide a low cost alternative to conventional aerated wastewater treatment, however there has been little comparison between MFC and aeration treatment using real wastewater substrate. This study attempts to directly compare the wastewater treatment efficiency and energy consumption and generation among three reactor systems, a traditional aeration process, a simple submerged MFC configuration, and a control reactor acting similar as natural lagoons. Results showed that all three systems were able to remove >90% of COD, but the aeration used shorter time (8 days) then the MFC (10 days) and control reactor (25 days). Compared to aeration, the MFC showed lower removal efficiency in high COD concentration but much higher efficiency when the COD is low. Only the aeration system showed complete nitrification during the operation, reflected by completed ammonia removal and nitrate accumulation. Suspended solid measurements showed that MFC reduced sludge production by 52-82% as compared to aeration, and it also saved 100% of aeration energy. Furthermore, though not designed for high power generation, the MFC reactor showed a 0.3 Wh/g COD/L or 24 Wh/m3 (wastewater treated) net energy gain in electricity generation. These results demonstrate that MFC technology could be integrated into wastewater infrastructure to meet effluent quality and save operational cost. The high cost and life-cycle impact of electrode materials is one major barrier to the large scale application of microbial fuel cells (MFC). We also demonstrate that biomass-derived black carbon (biochar), could be a more cost effective and sustainable alternative to granular activated carbon (GAC) and graphite granule (GG) electrodes. In a comparison study, two biochar materials made from lodgepole pine sawdust pellets (BCp) and lodgepole pine woodchips (BCc), gassified at a highest heat temperature (HHT) of 1000°C under a heating rate of 16°C/min, showed a satisfactory power density of 532 +/- 18 mW/m-2 and 457 +/- 20 mW/m-2 respectively, compared to GAC with 674 +/- 10 mW/m-2 and GG with 566 +/- 5 mW/m-2 (normalized to cathode projected surface area), as an anode material in a two-chamber MFC. BCc and BCp had BET-N2 surface area measurements of 429 cm2 g -1 and 470 cm2 g-1 respectively, lower than industrial GAC with 1248 cm2 g-1 but several orders of magnitude higher that GG with 0.44 cm2 g-1 . BCc and BCp had a lower surface resistance of 3+/-1Ω mm -1 and 6+/-1 Ω mm-1 than 8+/-2Ω mm -1 for GAC, but higher that GG with 0.4+/-0.5 Ω mm -1. We also investigated the life-cycle impact and estimated cost of biochar as an electrode material. Although there is no well-established market price for biochar, conservative estimates place the costs around 51-356 US/tonne, up to ten times cheaper that GAC (500-2500 US/tonne) and GGs (500-800 US$/tonne) with significantly greater life-cycle advantages.

  17. It is not always tickling: distinct cerebral responses during perception of different laughter types.

    PubMed

    Szameitat, Diana P; Kreifelts, Benjamin; Alter, Kai; Szameitat, André J; Sterr, Annette; Grodd, Wolfgang; Wildgruber, Dirk

    2010-12-01

    Laughter is highly relevant for social interaction in human beings and non-human primates. In humans as well as in non-human primates laughter can be induced by tickling. Human laughter, however, has further diversified and encompasses emotional laughter types with various communicative functions, e.g. joyful and taunting laughter. Here, it was evaluated if this evolutionary diversification of ecological functions is associated with distinct cerebral responses underlying laughter perception. Functional MRI revealed a double-dissociation of cerebral responses during perception of tickling laughter and emotional laughter (joy and taunt) with higher activations in the anterior rostral medial frontal cortex (arMFC) when emotional laughter was perceived, and stronger responses in the right superior temporal gyrus (STG) during appreciation of tickling laughter. Enhanced activation of the arMFC for emotional laughter presumably reflects increasing demands on social cognition processes arising from the greater social salience of these laughter types. Activation increase in the STG for tickling laughter may be linked to the higher acoustic complexity of this laughter type. The observed dissociation of cerebral responses for emotional laughter and tickling laughter was independent of task-directed focusing of attention. These findings support the postulated diversification of human laughter in the course of evolution from an unequivocal play signal to laughter with distinct emotional contents subserving complex social functions. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters

    NASA Astrophysics Data System (ADS)

    Sarma, Dhrupad; Barua, Parimal Bakul; Dey, Nabendu; Nath, Sumitro; Thakuria, Mrinmay; Mallick, Synthia

    2018-01-01

    One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.

  19. Microbial fuel cells for clogging assessment in constructed wetlands.

    PubMed

    Corbella, Clara; García, Joan; Puigagut, Jaume

    2016-11-01

    Clogging in HSSF CW may result in a reduction of system's life-span or treatment efficiency. Current available techniques to assess the degree of clogging in HSSF CW are time consuming and cannot be applied on a continuous basis. Main objective of this work was to assess the potential applicability of microbial fuel cells for continuous clogging assessment in HSSF CW. To this aim, two replicates of a membrane-less microbial fuel cell (MFC) were built up and operated under laboratory conditions for five weeks. The MFC anode was gravel-based to simulate the filter media of HSSF CW. MFC were weekly loaded with sludge that had been accumulating for several years in a pilot HSSF CW treating domestic wastewater. Sludge loading ranged from ca. 20kgTS·m(-3)CW·year(-1) at the beginning of the study period up to ca. 250kgTS·m(-3)CW·year(-1) at the end of the study period. Sludge loading applied resulted in sludge accumulated within the MFC equivalent to a clogging degree ranging from 0.2years (ca. 0.5kgTS·m(-3)CW) to ca. 5years (ca. 10kgTS·m(-3)CW). Results showed that the electric charge was negatively correlated to the amount of sludge accumulated (degree of clogging). Electron transference (expressed as electric charge) almost ceased when accumulated sludge within the MFC was equivalent to ca. 5years of clogging (ca. 10kgTS·m(-3)CW). This result suggests that, although longer study periods under more realistic conditions shall be further performed, HSSF CW operated as a MFC has great potential for clogging assessment. Copyright © 2016. Published by Elsevier B.V.

  20. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions.

    PubMed

    Fang, Zhou; Song, Hai-Liang; Cang, Ning; Li, Xian-Ning

    2015-06-15

    Microbial fuel cells (MFCs) have got tremendous attention for their capability to enhance the degradation of some recalcitrant pollutants and simultaneous electricity production. A microbial fuel cell coupled constructed wetland (CW-MFC) is a new device to treat the wastewater and produce energy which has more wastewater treatment volume and more easily to maintenance than others MFCs. The studies on the performance of CW-MFCs are necessary. In this work, the effects of hydraulic residence time (HRT), reactive brilliant red X-3B (ABRX3) proportion and COD concentration on the electricity production of CW-MFC and the degradation characteristics of ABRX3 were investigated. The decolorization rate and the electricity production increased to a peak before slowing down with the elongation of HRT. The highest decolorization rate and electricity production were obtained when HRT was 3 days. The ABRX3 proportion (calculated as COD) in the wastewater played an important role in decolorization and electricity production, which may influence the distribution of electrons in the system. The power density of CW-MFC and the decolorization rate decreased concomitantly with an increasing ABRX3 proportion. The COD concentration influenced the CW-MFC performance slightly. The highest decolorization rate and power density reached 95.6% and 0.852 W/m(3), respectively, when the COD concentration was 300 mg/L while the ABRX3 proportion was 30%. The coulombic efficiency of the CW-MFC depended on glucose and ABRX3 proportions in the wastewater. ABRX3 acquired more electrons than the anode. Further investigations are needed to optimize CW-MFC performance and explain the mechanism of biorefractory compounds degradation and electron motion in CW-MFCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Power generation from furfural using the microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Liu, Guangli; Zhang, Renduo; Zhang, Cuiping

    Furfural is a typical inhibitor in the ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In the literature, no report has shown that furfural can be utilized as the fuel to produce electricity in the microbial fuel cell (MFC), a device that uses microbes to convert organic compounds to generate electricity. In this study, we demonstrated that electricity was successfully generated using furfural as the sole fuel in both the ferricyanide-cathode MFC and the air-cathode MFC. In the ferricyanide-cathode MFC, the maximum power densities reached 45.4, 81.4, and 103 W m -3, respectively, when 1000 mg L -1 glucose, a mixture of 200 mg L -1 glucose and 5 mM furfural, and 6.68 mM furfural were used as the fuels in the anode solution. The corresponding Coulombic efficiencies (CE) were 4.0, 7.1, and 10.2% for the three treatments, respectively. For pure furfural as the fuel, the removal efficiency of furfural reached up to 95% within 12 h. In the air-cathode MFC using 6.68 mM furfural as the fuel, the maximum values of power density and CE were 361 mW m -2 (18 W m -3) and 30.3%, respectively, and the COD removal was about 68% at the end of the experiment (about 30 h). Increase in furfural concentrations from 6.68 to 20 mM resulted in increase in the maximum power densities from 361 to 368 mW m -2, and decrease in CEs from 30.3 to 20.6%. These results indicated that some toxic and biorefractory organics such as furfural might still be suitable resources for electricity generation using the MFC technology.

  2. Copper transport and regulation in Schizosaccharomyces pombe

    PubMed Central

    Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon

    2016-01-01

    The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4–Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis. PMID:24256274

  3. Copper transport and regulation in Schizosaccharomyces pombe.

    PubMed

    Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon

    2013-12-01

    The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.

  4. Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time.

    PubMed

    Akman, Dilek; Cirik, Kevser; Ozdemir, Sebnem; Ozkaya, Bestamin; Cinar, Ozer

    2013-12-01

    The main aim of this study is to investigate the bioelectricity production in continuously-fed dual chambered microbial fuel cell (MFC). Initially, MFC was operated with different anode electrode material at constant hydraulic retention time (HRT) of 2d to evaluate the effect of electrode material on electricity production. Pt electrode yielded about 642 mW/m(2) power density, which was 4 times higher than that of the MFC with the mixed metal oxide titanium (Ti-TiO2). Further, MFC equipped with Pt electrode was operated at varying HRT (2-0.5d). The power density generation increased with decreasing HRT, corresponding to 1313 mW/m(2) which was maximum value obtained during this study. Additionally, decreasing HRT from 2 to 0.5d resulted in increasing effluent dissolved organic carbon (DOC) concentration from 1.92 g/L to 2.23 g/L, corresponding to DOC removal efficiencies of 46% and 38%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. High performance spiral wound microbial fuel cell with hydraulic characterization.

    PubMed

    Haeger, Alexander; Forrestal, Casey; Xu, Pei; Ren, Zhiyong Jason

    2014-12-01

    The understanding and development of functioning systems are crucial steps for microbial fuel cell (MFC) technology advancement. In this study, a compact spiral wound MFC (swMFC) was developed and hydraulic residence time distribution (RTD) tests were conducted to investigate the flow characteristics in the systems. Results show that two-chamber swMFCs have high surface area to volume ratios of 350-700m(2)/m(3), and by using oxygen cathode without metal-catalysts, the maximum power densities were 42W/m(3) based on total volume and 170W/m(3) based on effective volume. The hydraulic step-input tracer study identified 20-67% of anodic flow dead space, which presents new opportunities for system improvement. Electrochemical tools revealed very low ohmic resistance but high charge transfer and diffusion resistance due to catalyst-free oxygen reduction. The spiral wound configuration combined with RTD tool offers a holistic approach for MFC development and optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater.

    PubMed

    Wu, Hao; Fu, Yu; Guo, Chunyu; Li, Yanbo; Jiang, Nanzhe; Yin, Chengri

    2018-07-01

    The microbial fuel cell (MFC) has emerged as a promising technology for wastewater treatment and energy recovery, but the expensive cost of proton exchange membranes (PEMs) is a problem that need to be solved. In this study, a two-chamber MFC based on our self-made PEM sulfonated poly (ether ether ketone) membrane was set up to treat phenol/acetone wastewater and synchronously generate power. The maximum output voltage was 240-250 mV. Using phenol and acetone as substrates, the power generation time in an operation cycle was 289 h. The MFC exhibited good removal performance, with no phenol or acetone detected, respectively, when the phenol concentration was lower than 50 mg/L and the acetone concentration was lower than 100 mg/L. This study provides a cheap and eco-friendly way to treat phenol/acetone wastewater and generate useful energy by MFC technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Performance evaluation and bacteria analysis of AFB-MFC enriched with high-strength synthetic wastewater.

    PubMed

    Huang, Jian-sheng; Guo, Yong; Yang, Ping; Li, Chong-ming; Gao, Hui; Feng, Li; Zhang, Yun

    2014-01-01

    In order to study the performance and bacterial communities of an anaerobic fluidized bed microbial fuel cell (AFB-MFC) system, the 16S rDNA gene sequencing was applied, and high-strength synthetic wastewater was treated by the AFB-MFC system. The high-strength synthetic wastewater, in which the concentrations of chemical oxygen demand (COD), nitrite nitrogen, and nitrate nitrogen were above 19,000, 2,516-3,871 and 927-1,427 mg/L, was treated by the AFB-MFC system. The removal efficiency of COD, nitrite nitrogen, and nitrate nitrogen reached 70-89, 98 and 98%, while the maximum voltage was 394 mV. The bacteria analysis revealed the presence of Alistipes putredinis, Carnobacterium sp., Victivallis vadensis, Klebsiella pneumoniae, Thauera sp., Parabacteroides merdae, Parvimonas micra, Parabacteroides sp., and Desulfomicrobium baculatum in the anode chamber. In addition, the Klebsiella pneumoniae was observed to have the capability of organic degradation and electricity generation, while the Thauera sp. has the capability of denitrification.

  8. [Development of a low-cost single chamber microbial fuel cell type BOD sensor].

    PubMed

    Wu, Feng; Liu, Zhi; Zhou, Ben; Zhou, Shun-gui; Rao, Li-qun; Wang, Yue-qiang

    2010-07-01

    The principle of the detector is based on the effect of microbial toxicity of water sample on the electricity generation in microbial fuel cell (MFC). The performance of the MFC-type biotoxicity detector was evaluated with the synthetic water containing heavy metals of Cd2+ and Cu2+. The experimental results demonstrated that: (1) relative to the conventional methods, the MFC-type detector is easy to operate, and suitable for on-line measurements with high sensitivity; (2) it only requires 4 h to complete measurements, and can get ready for next measurement within 4 h; (3) there is a significant linear correlation between the concentration of toxic metal(s) and inhibition ratios in Coulombic yields of MFC. As the IC20 (concentration causing 20% inhibition) of Cd2+, Cu2+ and mixed metals (Cd2+ and Cu2+) were 0.6, 0.8 and 0.25 mg/L, the regression coefficients were shown to be 0.9960, 0.9744 and 0.9907.

  9. Neuromodulation of group prejudice and religious belief

    PubMed Central

    Izuma, Keise; Deblieck, Choi; Fessler, Daniel M. T.; Iacoboni, Marco

    2016-01-01

    People cleave to ideological convictions with greater intensity in the aftermath of threat. The posterior medial frontal cortex (pMFC) plays a key role in both detecting discrepancies between desired and current conditions and adjusting subsequent behavior to resolve such conflicts. Building on prior literature examining the role of the pMFC in shifts in relatively low-level decision processes, we demonstrate that the pMFC mediates adjustments in adherence to political and religious ideologies. We presented participants with a reminder of death and a critique of their in-group ostensibly written by a member of an out-group, then experimentally decreased both avowed belief in God and out-group derogation by downregulating pMFC activity via transcranial magnetic stimulation. The results provide the first evidence that group prejudice and religious belief are susceptible to targeted neuromodulation, and point to a shared cognitive mechanism underlying concrete and abstract decision processes. We discuss the implications of these findings for further research characterizing the cognitive and affective mechanisms at play. PMID:26341901

  10. Need for optimizing catalyst loading for achieving affordable microbial fuel cells.

    PubMed

    Singh, Inderjeet; Chandra, Amreesh

    2013-08-01

    Microbial fuel cell (MFC) technology is a promising technology for electricity production together with simultaneous water treatment. Catalysts play an important role in deciding the MFC performance. In most reports, effect of catalyst - both type and quantity is not optimized. In this paper, synthesis of nanorods of MnO2-catalyst particles for application in Pt-free MFCs is reported. The effect of catalyst loading i.e., weight ratio, with respect to conducting element and binder has been optimized by employing large number of combinations. Using simple theoretical model, it is shown that too high (or low) concentration of catalysts result in loss of MFC performance. The operation of MFC has been investigated using domestic wastewater as source of bio-waste for obtaining real world situation. Maximum power density of ∼61 mW/m(2) was obtained when weight ratio of catalyst and conducting species was 1:1. Suitable reasons are given to explain the outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong

    One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.

  12. Impact of substrates acclimation strategy on simultaneous biodegradation of hydrogen sulfide and ammonia.

    PubMed

    Jiang, Xia; Luo, Yiqun; Yan, Rong; Tay, Joo Hwa

    2009-12-01

    Three columns were differentiated with feeding mixture of H(2)S and NH(3) (MFC), feeding NH(3) followed by H(2)S (NFC), and feeding H(2)S followed by NH(3) (SFC). Removal performance, biodegradation capacity and microbial community structures in the three columns were compared. The results show that NFC has a shorter acclimation period for the removal of NH(3) gas and nitrification than MFC. Under the high loading of H(2)S and NH(3) at 164 and 82 gm(-3) h(-1), respectively, NFC exhibited high removal efficiency of NH(3) (>95%) while the removal efficiencies were obtained at 63 and 75% in MFC and SFC, respectively. The removal of NH(3) gas in NFC was significantly attributed to nitrification (over 50%), while adsorption and chemical reaction contributed to the removal of NH(3) in MFC and SFC. The different biodegradation capacities of NH(3) could be due to the dissimilarity in the microbial population presented in each column.

  13. Removal and fate of trace organic compounds in microbial fuel cells.

    PubMed

    Wang, Heming; Heil, Dean; Ren, Zhiyong Jason; Xu, Pei

    2015-04-01

    This study focused on understanding and characterizing the removal of trace organic compounds (TOrCs) in microbial fuel cells (MFC). 26 TOrCs with broad physicochemical properties were spiked in synthetic wastewater. Single-chamber air-cathode MFC (SMFC) and double-chamber air-cathode MFC (DMFC) were constructed to provide combined or separated oxidation/reduction environments for TOrCs removal. The study showed that TOrCs removal processes involved both sorption and biodegradation. For neutral TOrCs, the removal efficiency was affected primarily by the biodegradability probability and hydrophobicity of the compounds, while electrostatic interactions played an additional role in the MFCs as the removal of positively charged TOrCs was generally higher than negatively charged TOrCs. The presence of TOrCs showed negligible impact on MFC power generation, likewise the operation of MFCs had marginal effect on TOrCs removal, except longer residence time in MFCs improved biological removal performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell.

    PubMed

    Li, Na; Kakarla, Ramesh; Moon, Jung Mi; Min, Booki

    2015-07-01

    Microbial fuel cells (MFCs) have gathered attention as a novel bioenergy technology to simultaneously treat wastewater with less sludge production than the conventional activated sludge system. In two different operations of the MFC and aerobic process, microbial growth was determined by the protein assay method and their biomass yields using real wastewater were compared. The biomass yield on the anode electrode of the MFC was 0.02 g-COD-cell/g- COD-substrate and the anolyte planktonic biomass was 0.14 g-COD-cell/g-COD-substrate. An MFC without anode electrode resulted in the biomass yield of 0.07 ± 0.03 g-COD-cell/g-COD-substrate, suggesting that oxygen diffusion from the cathode possibly supported the microbial growth. In a comparative test, the biomass yield under aerobic environment was 0.46 ± 0.07 g-COD-cell/g-COD-substrate, which was about 3 times higher than the total biomass value in the MFC operation.

  15. Microbial fuel cells using Cellulomonas spp. with cellulose as fuel.

    PubMed

    Takeuchi, Yuya; Khawdas, Wichean; Aso, Yuji; Ohara, Hitomi

    2017-03-01

    Cellulomonas fimi, Cellulomonas biazotea, and Cellulomonas flavigena are cellulose-degrading microorganisms chosen to compare the degradation of cellulose. C. fimi degraded 2.5 g/L of cellulose within 4 days, which was the highest quantity among the three microorganisms. The electric current generation by the microbial fuel cell (MFC) using the cellulose-containing medium with C. fimi was measured over 7 days. The medium in the MFC was sampled every 24 h to quantify the degradation of cellulose, and the results showed that the electric current increased with the degradation of cellulose. The maximum electric power generated by the MFC was 38.7 mW/m 2 , and this numeric value was 63% of the electric power generated by an MFC with Shewanella oneidensis MR-1, a well-known current-generating microorganism. Our results showed that C. fimi was an excellent candidate to produce the electric current from cellulose via MFCs. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Design and simulation of Macro-Fiber composite based serrated microflap for wind turbine blade fatigue load reduction

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Dai, Qingli; Bilgen, Onur

    2018-05-01

    A Macro-Fiber Composite (MFC) based active serrated microflap is designed in this research for wind turbine blades. Its fatigue load reduction potential is evaluated in normal operating conditions. The force and displacement output of the MFC-based actuator are simulated using a bimorph beam model. The work done by the aerodynamic, centripetal and gravitational forces acting on the microflap were calculated to determine the required capacity of the MFC-based actuator. MFC-based actuators with a lever mechanical linkage are designed to achieve the required force and displacement to activate the microflap. A feedback control scheme is designed to control the microflap during operation. Through an aerodynamic-aeroelastic time marching simulation with the designed control scheme, the time responses of the wind turbine blades are obtained. The fatigue analysis shows that the serrated microflap can reduce the standard deviation of the blade root flapwise bending moment and the fatigue damage equivalent loads.

  17. [Clinical genealogy and genetic-mathematical study of families of probands with uterine cancer in the Chernovitsy Region].

    PubMed

    Galina, K P; Peresun'ko, A P; Glushchenko, N N

    2001-01-01

    Complex clinic-genealogical and genetic-mathematical investigation of 482 patients with uterus cancer from Chernovtsy region was carried out. It was proved that primary in the population is multifactoral origin of uterus cancer. Percentage of genetic component in general susceptibility to disease was 11.40 9.40. Recurrent risk of the malignant tumor in progeny has been estimated. Results of the investigation are the base for development and execution of uterus cancer precaution and segregated with it oncopathology in proband relatives.

  18. Evaluating the performance of microbial fuel cells powering electronic devices

    NASA Astrophysics Data System (ADS)

    Dewan, Alim; Donovan, Conrad; Heo, Deukhyoun; Beyenal, Haluk

    A microbial fuel cell (MFC) is capable of powering an electronic device if we store the energy in an external storage device, such as a capacitor, and dispense that energy intermittently in bursts of high-power when needed. Therefore its performance needs to be evaluated using an energy-storing device such as a capacitor which can be charged and discharged rather than other evaluation techniques, such as continuous energy dissipation through a resistor. In this study, we develop a method of testing microbial fuel cell performance based on storing energy in a capacitor. When a capacitor is connected to a MFC it acts like a variable resistor and stores energy from the MFC at a variable rate. In practice the application of this method to testing microbial fuel cells is very challenging and time consuming; therefore we have custom-designed a microbial fuel cell tester (MFCT). The MFCT evaluates the performance of a MFC as a power source. It uses a capacitor as an energy storing device and waits until a desired amount of energy is stored then discharges the capacitor. The entire process is controlled using an analog-to-digital converter (ADC) board controlled by a custom-written computer program. The utility of our method and the MFCT is demonstrated using a laboratory microbial fuel cell (LMFC) and a sediment microbial fuel cell (SMFC). We determine (1) how frequently a MFC can charge a capacitor, (2) which electrode is current-limiting, (3) what capacitor value will allow the maximum harvested energy from a MFC, which is called the "optimum charging capacitor value," and (4) what capacitor charging potential will harvest the maximum energy from a MFC, which is called the "optimum charging potential." Using a LMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 108 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 300 mV. Using a SMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 5 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 500 mV. Our results demonstrate that the developed method and the MFCT can be used to evaluate and optimize energy harvesting when a MFC is used with a capacitor to power wireless sensors monitoring the environment.

  19. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].

    PubMed

    Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai

    2010-10-01

    Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.

  20. Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production.

    PubMed

    Li, Mingyang; He, Xinjun; Zeng, Yinxiang; Chen, Meiqiong; Zhang, Ziyang; Yang, Hao; Fang, Pingping; Lu, Xihong; Tong, Yexiang

    2015-12-01

    Hydrogen gas is emerging as an attractive fuel with high energy density for the direction of energy resources in the future. Designing integrated devices based on a photoelectrochemical (PEC) cell and a microbial fuel cell (MFC) represents a promising strategy to produce hydrogen fuel at a low price. In this work, we demonstrate a new solar-microbial (PEC-MFC) hybrid device based on the oxygen-deficient Nb 2 O 5 nanoporous (Nb 2 O 5- x NPs) anodes for sustainable hydrogen generation without external bias for the first time. Owing to the improved conductivity and porous structure, the as-prepared Nb 2 O 5- x NPs film yields a remarkable photocurrent density of 0.9 mA cm -2 at 0.6 V ( vs. SCE) in 1 M KOH aqueous solution under light irradiation, and can achieve a maximum power density of 1196 mW m -2 when used as an anode in a MFC device. More importantly, a solar-microbial hybrid system by combining a PEC cell with a MFC is designed, in which the Nb 2 O 5- x NPs electrodes function as both anodes. The as-fabricated PEC-MFC hybrid device can simultaneously realize electricity and hydrogen using organic matter and solar light at zero external bias. This novel design and attempt might provide guidance for other materials to convert and store energy.

  1. Performance monitoring in the medial frontal cortex and related neural networks: From monitoring self actions to understanding others' actions.

    PubMed

    Ninomiya, Taihei; Noritake, Atsushi; Ullsperger, Markus; Isoda, Masaki

    2018-04-27

    Action is a key channel for interacting with the outer world. As such, the ability to monitor actions and their consequences - regardless as to whether they are self-generated or other-generated - is of crucial importance for adaptive behavior. The medial frontal cortex (MFC) has long been studied as a critical node for performance monitoring in nonsocial contexts. Accumulating evidence suggests that the MFC is involved in a wide range of functions necessary for one's own performance monitoring, including error detection, and monitoring and resolving response conflicts. Recent studies, however, have also pointed to the importance of the MFC in performance monitoring under social conditions, ranging from monitoring and understanding others' actions to reading others' mental states, such as their beliefs and intentions (i.e., mentalizing). Here we review the functional roles of the MFC and related neural networks in performance monitoring in both nonsocial and social contexts, with an emphasis on the emerging field of a social systems neuroscience approach using macaque monkeys as a model system. Future work should determine the way in which the MFC exerts its monitoring function via interactions with other brain regions, such as the superior temporal sulcus in the mentalizing system and the ventral premotor cortex in the mirror system. Copyright © 2018. Published by Elsevier B.V.

  2. A novel microbial fuel cell sensor with biocathode sensing element.

    PubMed

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-08-15

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA% -1 cm -2 ) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA% -1 cm -2 ). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination

    PubMed Central

    Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien

    2016-01-01

    Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125–0.3 mg/L and 0.3–5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen. PMID:27537887

  4. Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater.

    PubMed

    Chen, Chih-Yu; Tsai, Teh-Hua; Wu, Pei-Ssu; Tsao, Shuo-En; Huang, Yu-Shan; Chung, Ying-Chien

    2018-01-28

    This study was conducted to select electrogenic bacteria from wastewater sludge. Phylogenetic analysis revealed that Proteobacteria was the dominant phylum in the microbial fuel cell (MFC) during the decomposition process of organic pollutants. Five culturable bacteria strains - namely, Bacillus subtilis, Flavobacterium sp., Aeromonas hydrophila, Citrobacter freundii, and Stenotrophomonas sp. - have a double potential in dye removal and electricity generation. We inoculated the mixed electrogenic bacteria at a specific ratio and treated them with a triphenylmethane dye, Victoria blue R (VBR), to evaluate their electricity generation ability for the artificial and real wastewater. The results of the VBR shock-loading experiment indicated that the inoculated MFC could adapt to shock loading in 1-2 days and exhibited high removal efficiency (95-100%) for 100-800 mg L -1 VBR with a power density of 8.62 ± 0.10 to 34.81 ± 0.25 mW m -2 . The selected electrogenic bacteria in the MFC could use VBR as only electron donor for power generation. The matrix effects of the real wastewater on VBR removal and electricity generation of MFC were insignificant. VBR degradation by the electrogenic bacteria involves a stepwise demethylation process to yield partially dealkylated VBR species. In addition, these results demonstrate the feasibility of inoculating culturable bacteria strains to develop an efficient MFC for purifying wastewater.

  5. The Research of Regression Method for Forecasting Monthly Electricity Sales Considering Coupled Multi-factor

    NASA Astrophysics Data System (ADS)

    Wang, Jiangbo; Liu, Junhui; Li, Tiantian; Yin, Shuo; He, Xinhui

    2018-01-01

    The monthly electricity sales forecasting is a basic work to ensure the safety of the power system. This paper presented a monthly electricity sales forecasting method which comprehensively considers the coupled multi-factors of temperature, economic growth, electric power replacement and business expansion. The mathematical model is constructed by using regression method. The simulation results show that the proposed method is accurate and effective.

  6. Biometric Data Safeguarding Technologies Analysis and Best Practices

    DTIC Science & Technology

    2011-12-01

    fuzzy vault” scheme proposed by Juels and Sudan. The scheme was designed to encrypt data such that it could be unlocked by similar but inexact matches... designed transform functions. Multifactor Key Generation Multifactor key generation combines a biometric with one or more other inputs, such as a...cooperative, off-angle iris images.  Since the commercialized system is designed for images acquired from a specific, paired acquisition system

  7. Application of GA-SVM method with parameter optimization for landslide development prediction

    NASA Astrophysics Data System (ADS)

    Li, X. Z.; Kong, J. M.

    2013-10-01

    Prediction of landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. Support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of SVM model. In this study, we presented an application of GA-SVM method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in some hydro - electrical engineering area of Southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that, the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest RSME of 0.0009 and the biggest RI of 0.9992.

  8. Mediterranean monitoring and forecasting operational system for Copernicus Marine Service

    NASA Astrophysics Data System (ADS)

    Coppini, Giovanni; Drudi, Massimiliano; Korres, Gerasimos; Fratianni, Claudia; Salon, Stefano; Cossarini, Gianpiero; Clementi, Emanuela; Zacharioudaki, Anna; Grandi, Alessandro; Delrosso, Damiano; Pistoia, Jenny; Solidoro, Cosimo; Pinardi, Nadia; Lecci, Rita; Agostini, Paola; Cretì, Sergio; Turrisi, Giuseppe; Palermo, Francesco; Konstantinidou, Anna; Storto, Andrea; Simoncelli, Simona; Di Pietro, Pier Luigi; Masina, Simona; Ciliberti, Stefania Angela; Ravdas, Michalis; Mancini, Marco; Aloisio, Giovanni; Fiore, Sandro; Buonocore, Mauro

    2016-04-01

    The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission. Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the pre-operational system developed during the MyOcean projects, consolidating the understanding of regional Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection networks and guaranteeing an efficient link with other Centers in Copernicus network. The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature, salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in 2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages the service delivery. The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components, guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products. The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily precipitation; reanalysis time-series have been increased by one year. Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface). Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.

  9. POWER FIELD MONITORING EQUIPMENT FROM WETLAND DETRITUS MATERIALS USING MICROBIAL FUEL CELL

    EPA Science Inventory

    The data from both laboratory and field experiments will provide useful information to assist designing an in-situ MFC system that uses detritus materials to achieve constant and useable electric energy output. The in-situ MFC systems installed in the forested wetlands at Wi...

  10. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03487a

  11. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    PubMed

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Viability of Existing INL Facilities for Dry Storage Cask Handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randy Bohachek; Charles Park; Bruce Wallace

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hotmore » Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.« less

  13. Viability of Existing INL Facilities for Dry Storage Cask Handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hotmore » Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.« less

  14. Evaluation of biofilm formation using milk in a flow cell model and microarray characterization of Staphylococcus aureus strains from bovine mastitis.

    PubMed

    Snel, G G M; Malvisi, M; Pilla, R; Piccinini, R

    2014-12-05

    It was hypothesized that biofilm could play an important role in the establishment of chronic Staphylococcus aureus bovine mastitis. The in vitro evaluation of biofilm formation can be performed either in closed/static or in flow-based systems. Efforts have been made to characterize the biofilm-forming ability of S. aureus mastitis isolates, however most authors used static systems and matrices other than UHT milk. It is not clear whether such results could be extrapolated to the mammary gland environment. Therefore, the present study aimed to investigate the biofilm-forming ability of S. aureus strains from subclinical bovine mastitis using the static method and a flow-based one. One hundred and twelve strains were tested by the classic tissue culture plate assay (TCP) and 30 out of them were also tested by a dynamic semi-quantitative assay using commercial UHT milk as culture medium (Milk Flow Culture, MFC) or Tryptic Soy Broth as control medium (TS Flow Culture, TSFC). Only 6 (20%) strains formed biofilm in milk under flow conditions, while 36.6% were considered biofilm-producers in TCP, and 93.3% produced biofilm in TSFC. No agreement was found between TCP, MFC and TSFC results. The association between strain genetic profile, determined by microarray, and biofilm-forming ability in milk was evaluated. Biofilm formation in MFC was significantly associated with the presence of those genes commonly found in bovine-associated strains, assigned to clonal complexes typically detected in mastitis. Based on our results, biofilm-forming potential of bovine strains should be critically analysed and tested applying conditions similar to mammary environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Workshop on multifactor aging mechanisms and models

    NASA Astrophysics Data System (ADS)

    Agarwal, V. K.

    1992-10-01

    There have been considerable efforts to understand the aging and failure mechanisms of insulation in electrical systems. However, progress has been slow because of the complex nature of the subject particularly when dealing with multiple stresses e.g. electrical, thermal, mechanical, radiation, humidity and other environmental factors. When an insulating material is exposed to just one stress factor e.g. electric field, one must devise test(s) which are not only economically efficient and practical but which take into account the nature of electric field (ac, dc and pulsed), duration and level or field strength, and field configurations. Any additional stress factor(s) make the matrix of measurements and the understanding of resulting degradation processes more complex, time consuming and expensive.

  16. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation.

    PubMed

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2011-12-15

    Decolorization of dye wastewater before discharge is pivotal because of its immense color and toxicities. In this study, a granular activated carbon based microbial fuel cell (GACB-MFC) was used without using any expensive materials like Nafion membrane and platinum catalyst for simultaneous decolorization of real dye wastewater and bioelectricity generation. After 48 hours of GACB-MFC operation, 73% color was removed at anode and 77% color was removed at cathode. COD removal was 71% at the anode and 76% at the cathode after 48 hours. Toxicity measurements showed that cathode effluent was almost nontoxic after 24 hours. The anode effluent was threefold less toxic compared to original dye wastewater after 48 hours. The GACB-MFC produced a power density of 1.7 W/m(3) with an open circuit voltage 0.45 V. One of the advantages of the GACB-MFC system is that pH was automatically adjusted from 12.4 to 7.2 and 8.0 at the anode and cathode during 48 hours operation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Neuromodulation of group prejudice and religious belief.

    PubMed

    Holbrook, Colin; Izuma, Keise; Deblieck, Choi; Fessler, Daniel M T; Iacoboni, Marco

    2016-03-01

    People cleave to ideological convictions with greater intensity in the aftermath of threat. The posterior medial frontal cortex (pMFC) plays a key role in both detecting discrepancies between desired and current conditions and adjusting subsequent behavior to resolve such conflicts. Building on prior literature examining the role of the pMFC in shifts in relatively low-level decision processes, we demonstrate that the pMFC mediates adjustments in adherence to political and religious ideologies. We presented participants with a reminder of death and a critique of their in-group ostensibly written by a member of an out-group, then experimentally decreased both avowed belief in God and out-group derogation by downregulating pMFC activity via transcranial magnetic stimulation. The results provide the first evidence that group prejudice and religious belief are susceptible to targeted neuromodulation, and point to a shared cognitive mechanism underlying concrete and abstract decision processes. We discuss the implications of these findings for further research characterizing the cognitive and affective mechanisms at play. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    NASA Astrophysics Data System (ADS)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  19. Artificial gills for robots: MFC behaviour in water.

    PubMed

    Ieropoulos, Ioannis; Melhuish, Chris; Greenman, John

    2007-09-01

    This paper reports on the first stage in developing microbial fuel cells (MFCs) which can operate underwater by utilizing dissolved oxygen. In this context, the cathodic half-cell is likened to an artificial gill. Such an underwater power generator has obvious potential for autonomous underwater robots. The electrical power from these devices increased proportionately with water flow rate, temperature and salinity. The current output at ambient temperature (null condition) was 32 microA and this increased by 200% (approximately 100 microA) as a result of a corresponding temperature increase (DeltaT) of 52 degrees C. Similarly, the effect of increasing the water flow rate resulted in an increase in the MFC output ranging from 135% to 150%. Furthermore, the same positive effect was recorded when artificial seawater was used instead, in which case the increase in the MFC current output was >100% (from 32 to 65 microA). There was a distinct difference in the MFC performance when operated under low turbulent as opposed to high turbulent flow rates. These findings can be advantageous in the design of underwater autonomous robots.

  20. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs).

    PubMed

    Puig, S; Serra, M; Coma, M; Balaguer, M D; Colprim, J

    2011-01-01

    Microbial fuel cells (MFCS) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that needs to be treated before being discharged. The goal of this paper is to assess simultaneous domestic wastewater treatment and energy production using an air-cathode MFC, paying special attention to nitrogen compound transformations. An air-cathode MFC was designed and run treating 1.39 L d(-1) of wastewater with an organic load rate of 7.2 kg COD m(-3) d(-1) (80% removal efficiency) and producing 1.42 W m(-3). In terms of nitrogen transformations, the study demonstrates that two different processes took place in the MFC: physical-chemical and biological. Nitrogen loss was observed increasing in line with the power produced. A low level of oxygen was present in the anodic compartment, and ammonium was oxidised to nitrite and nitrate.

  1. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.

    PubMed

    Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

    2010-04-01

    An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell.

    PubMed

    Choi, Chansoo; Hu, Naixu

    2013-04-01

    In this study, tetrachloroaurate as an electron acceptor of a microbial fuel cell (MFC) has been studied to discover the parameters that affect the cost-effective recovery of gold. The modeling and equations for calculating the maximum actual efficiency and electrochemical impedance spectroscopic internal resistance of the MFC were also developed. The maximum power density (Pmax) of 6.58 W/m(2) with a fill factor of 0.717 was achieved for 60 mL volumes of 2000 ppm Au(III) catholyte and 12.2 mM acetate anolyte, respectively. The Pmax can also be predicted simply by measuring Rint by EIS. Additionally, the maximum actual MFC efficiency of about 57% was achieved, and the recovery efficiency of Au and the remaining concentration reached 99.89±0.00% and 0.22±0.00 ppm, respectively, for an Au(III) concentration of 200 ppm. The anodic concentration polarization quenching of the MFC strongly supports a mediator mechanism for the electron transfer from the microorganism to the anode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.

    PubMed

    Zhuang, Li; Zhou, Shungui; Yuan, Yong; Liu, Tinglin; Wu, Zhifeng; Cheng, Jiong

    2011-01-01

    This study described an Enterobacter aerogenes-catalyzed microbial fuel cell (MFC) with a carbon-based anode that exhibited a maximum power density of 2.51 W/m(3) in the absence of artificial electron mediators. The MFC was started up rapidly, within hours, and the current generation in the early stage was demonstrated to result from in situ oxidation of biohydrogen produced by E. aerogenes during glucose fermentation. Over periodic replacement of substrate, both planktonic biomass in the culture liquid and hydrogen productivity decreased, while increased power density and coulombic efficiency and decreased internal resistance were unexpectedly observed. Using scanning electron microscopy and cyclic voltammetry, it was found that the enhanced MFC performance was associated with the development of electroactive biofilm on the anodic surface, proposed to involve an acclimation and selection process of E. aerogenes cells under electrochemical tension. The significant advantage of rapid start-up and the ability to develop an electroactive biofilm identifies E. aerogenes as a suitable biocatalyst for MFC applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Effective Control of Bioelectricity Generation from a Microbial Fuel Cell by Logical Combinations of pH and Temperature

    PubMed Central

    Tang, Jiahuan; Liu, Ting; Yuan, Yong

    2014-01-01

    In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as “temperature” and “pH.” Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices. PMID:24741343

  5. Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method.

    PubMed

    Li, Xiao; Lu, Yaobin; Luo, Haiping; Liu, Guangli; Zhang, Renduo

    2017-10-01

    The aim of this study was to investigate the microbial stratification structure within cathodic biofilm of the microbial fuel cell (MFC) using the freezing microtome method. Experiments were conducted in a single-chamber air-cathode MFC with 0.8g/L maltodextrin as substrate for ∼30d operation. The maximum power density was 945±10mW/m 2 in the MFC. Maltodextrin resulted in the relative abundance of Candidatus Saccharibacteria of 37.0% in the anodic biofilm. Different bacterial communities were identified in different layers within the cathodic biofilm. The relative abundance of Enterococcus was 3.7%, 10.5%, and 1.6% in the top (100-150μm), middle (50-100μm), and bottom (0-50μm) layers, respectively. Higher bacterial viability was observed within the top and bottom layers of the cathodic biofilm. Understanding the stratification of bacterial community in cathodic biofilm should be important to control the cathodic biofilm in the MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. On the coupling of nonlinear macro-fiber composite piezoelectric cantilever dynamics with hydrodynamic loads

    NASA Astrophysics Data System (ADS)

    Tan, D.; Erturk, A.

    2018-03-01

    For bio-inspired, fish-like robotic propulsion, the Macro-Fiber Composite (MFC) piezoelectric technology offers noiseless actuation with a balance between actuation force and velocity response. However, internal nonlinear- ities within the MFCs, such as piezoelectric softening, geometric hardening, inertial softening, and nonlinear dissipation, couple with the hydrodynamic loading on the structure from the surrounding fluid. In the present work, we explore nonlinear actuation of MFC cantilevers underwater and develop a mathematical framework for modeling and analysis. In vacuo resonant actuation experiments are conducted for a set of MFC cantilevers of varying length to width aspect ratios to validate the structural model in the absence of fluid loading. These MFC cantilevers are then subjected to underwater resonant actuation experiments, and model simulations are compared with nonlinear experimental frequency response functions. It is observed that semi-empirical hydro- dynamic loads obtained from quasilinear experiments have to be modified to account for amplitude dependent added mass, and additional nonlinear hydrodynamic effects might be present, yielding qualitative differences in the resulting underwater frequency respones curves with increased excitation amplitude.

  7. Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks.

    PubMed

    Tanpichai, Supachok; Quero, Franck; Nogi, Masaya; Yano, Hiroyuki; Young, Robert J; Lindström, Tom; Sampson, William W; Eichhorn, Stephen J

    2012-05-14

    The deformation micromechanics of bacterial cellulose (BC) and microfibrillated cellulose (MFC) networks have been investigated using Raman spectroscopy. The Raman spectra of both BC and MFC networks exhibit a band initially located at ≈ 1095 cm(-1). We have used the intensity of this band as a function of rotation angle of the specimens to study the cellulose fibril orientation in BC and MFC networks. We have also used the change in this peak's wavenumber position with applied tensile deformation to probe the stress-transfer behavior of these cellulosic materials. The intensity of this Raman band did not change significantly with rotation angle, indicating an in-plane 2D network of fibrils with uniform random orientation; conversely, a highly oriented flax fiber exhibited a marked change in intensity with rotation angle. Experimental data and theoretical analysis shows that the Raman band shift rate arising from deformation of networks under tension is dependent on the angles between the axis of fibrils, the strain axis, the incident laser polarization direction, and the back scattered polarization configurations. From this analysis, the effective moduli of single fibrils of BC and MFC in the networks were estimated to be in the ranges of 79-88 and 29-36 GPa, respectively. It is shown also that for the model to fit the data it is necessary to use a negative Poisson's ratio for MFC networks and BC networks. Discussion of this in-plane "auxetic" behavior is given.

  8. A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions.

    PubMed

    Feng, Cuijie; Hou, Chia-Hung; Chen, Shaohua; Yu, Chang-Ping

    2013-04-01

    The microbial fuel cell (MFC) is an emerging technology, which uses exoelectrogenic microorganisms to oxidize organic matter in the wastewater to produce electricity. However, the low energy output limits its application in practice. Capacitive deionization (CDI), an electrochemically controlled method for deionization by the adsorption of ions in the electrical double layer region at an electrode-solution interface, requires a low external power supply. Therefore, in this study, we investigated the MFC driven CDI (MFC-CDI) technology to integrate deionization with wastewater treatment and electricity production. Taking advantage of the low potential requirement of CDI, voltage generated from a continuous flow MFC could be used to drive the CDI to achieve removal of the electrolyte to a stable status. The results indicated that among the three connection types of MFCs including single-, series-, and parallel-configuration, the parallel connection of two MFCs resulted in the highest potential (0.63V) applied to CDI and the conductivity removal of NaCl solution was more than 60%. The electrosorption capacities under different electrolyte concentrations of 50, 100 and 150 mg L(-1) were 150, 346 and 295 μg g(-1), respectively. These results suggest that the new MFC-CDI technology, which utilizes energy recovery from the wastewater, has great potential to be an energy saving technology to remove low level dissolved ions from aqueous solutions for the water and wastewater treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  10. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

    PubMed

    Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis

    2018-04-19

    The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater.

    PubMed

    Liu, Jinmeng; Wang, Xinhua; Wang, Zhiwei; Lu, Yuqin; Li, Xiufen; Ren, Yueping

    2017-03-01

    Microbial fuel cells (MFCs) and forward osmosis (FO) are two emerging technologies with great potential for energy-efficient wastewater treatment. In this study, anaerobic acidification and FO membrane were simultaneously integrated into an air-cathode MFC (AAFO-MFC) for enhancing bio-electricity and water recovery from low-strength wastewater. During a long-term operation of approximately 40 days, the AAFO-MFC system achieved a continuous and relatively stable power generation, and the maximum power density reached 4.38 W/m 3 . The higher bio-electricity production in the AAFO-MFC system was mainly due to the accumulation of ethanol resulted from anaerobic acidification process and the rejection of FO membrane. In addition, a proper salinity environment in the system controlled by the addition of MF membrane enhanced the electricity production. Furthermore, the AAFO-MFC system produced a high quality effluent, with the removal rates of organic matters and total phosphorus of more than 97%. However, the nitrogen removal was limited for the lower rejection of FO membrane. The combined biofouling and inorganic fouling were responsible for the lower water flux of FO membrane, and the Desulfuromonas sp. utilized the ethanol for bio-electricity production was observed in the anode. These results substantially improve the prospects for simultaneous wastewater treatment and energy recovery, and further studies are needed to optimize the system integration and operating parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  13. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen

    PubMed Central

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-01-01

    Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor. PMID:23486252

  15. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen.

    PubMed

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-08-01

    Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor.

  16. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater.

    PubMed

    Saz, Çağdaş; Türe, Cengiz; Türker, Onur Can; Yakar, Anıl

    2018-03-01

    An operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH 4 + , and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively. However, the highest NO 3 - removal (63%) was achieved by unplanted control module during the experiment period. The maximum average output voltage, power density, and Coulombic efficiency were obtained in wetland module vegetated with Typha angustifolia for 1.01 ± 0.14 V, 7.47 ± 13.7 mWatt/m 2 , and 8.28 ± 10.4%, respectively. The results suggest that the presence of Typha angustifolia vegetation in the CW-MFC matrix provides the benefits for treatment efficiency and bioelectric production; thus, it increases microbial activities which are responsible for biodegradation of organic compounds and catalyzed to electron flow from anode to cathode. Consequently, we suggest that engineers can use vegetated wetland matrix with Typha angustifolia in CW-MFC module in order to maximize treatment efficiency and bioelectric production.

  17. Effect of electric impulse for improved energy generation in mediatorless dual chamber microbial fuel cell through electroevolution of Escherichia coli.

    PubMed

    Nandy, Arpita; Kumar, Vikash; Kundu, Patit P

    2016-05-15

    The main emphasis of this study is to understand the electroactive behavior of a microbe in microbial fuel cell (MFC) under specific selection pressure. This study explores potential of a non-electrogenic microbe for power production in a mediatorless MFC under the influence of a specific stress. Electric pulse of specific magnitude has been applied to Escherichia coli cells in a MFC and compared the results with unpulsed (control) MFC. Maximum power density of 187.77 mW/m(2) and 284.44 mW/m(2) for the control and experimental MFC has been observed at corresponding current density of 1444.44 mA/m(2) and 1777.77 mA/m(2). The results show improved performance for the pulsed (experimental) system, despite of initial downfall with respect to the control system. This suggests bacterial adaptation against electrical pulses which leads to evolution of an efficient electrogen. This observation is further confirmed by analyzing the results of Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) Electrochemical Impedence Spectroscopy (EIS), enlightening different attributes like electrochemical property, bacterial morphology and impedance. The study is focused on development of a microbial fuel cell catalysed by E. coli, through triggering electroactive property in the microbe by exposing it to external stress. This study is unique in nature as it is mediatorless, economical and describes about a new method of natural bacterial evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Altered effective connectivity within default mode network in major depression disorder

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Wang, Huaning; Zhang, Linchuan; Cui, Longbiao; Lu, Hongbing

    2016-03-01

    Understanding the neural basis of Major Depressive Disorder (MDD) is important for the diagnosis and treatment of this mental disorder. The default mode network (DMN) is considered to be highly involved in the MDD. To find directed interaction between DMN regions associated with the development of MDD, the effective connectivity within the DMN of the MDD patients and matched healthy controls was estimated by using a recently developed spectral dynamic causal modeling. Sixteen patients with MDD and sixteen matched healthy control subjects were included in this study. While the control group underwent the resting state fMRI scan just once, all patients underwent resting state fMRI scans before and after two months' treatment. The spectral dynamic causal modeling was used to estimate directed connections between four DMN nodes. Statistical analysis on connection strengths indicated that efferent connections from the medial frontal cortex (MFC) to posterior cingulate cortex (PCC) and to right parietal cortex (RPC) were significant higher in pretreatment MDD patients than those of the control group. After two-month treatment, the efferent connections from the MFC decreased significantly, while those from the left parietal cortex (LPC) to MFC, PCC and RPC showed a significant increase. These findings suggest that the MFC may play an important role for inhibitory conditioning of the DMN, which was disrupted in MDD patients. It also indicates that disrupted suppressive function of the MFC could be effectively restored after two-month treatment.

  19. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.

    PubMed

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu; Chung, Ying-Chien

    2017-10-27

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship ( r ² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

  20. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater

    PubMed Central

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu

    2017-01-01

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5–9, 20–35 °C, coexisting ions, and salinity of 0–15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m2 at 1500 Ω. A good linear relationship (r2 = 0.997) was observed between the Cr(VI) concentration (2.5–60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (−6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations. PMID:29076985

  1. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil.

    PubMed

    Waller, Stefanie Bressan; Madrid, Isabel Martins; Ferraz, Vanny; Picoli, Tony; Cleff, Marlete Brum; de Faria, Renata Osório; Meireles, Mário Carlos Araújo; de Mello, João Roberto Braga

    The study aimed to evaluate the anti-Sporothrix sp. activity of the essential oil of Origanum majorana Linn. (marjoram), its chemical analysis, and its cytotoxic activity. A total of 18 fungal isolates of Sporothrix brasiliensis (n: 17) from humans, dogs and cats, and a standard strain of Sporothrix schenckii (n: 1) were tested using the broth microdilution technique (Clinical and Laboratory Standard Institute - CLSI M27-A3) and the results were expressed in minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). The MIC 50 and MIC 90 of itraconazole against S. brasiliensis were 2μg/mL and 8μg/mL, respectively, and the MFC 50 and MFC 90 were 2μg/mL and >16μg/mL, respectively, with three S. brasiliensis isolates resistant to antifungal. S. schenckii was sensitive at MIC of 1μg/mL and MFC of 8μg/mL. For the oil of O. majorana L., all isolates were susceptible to MIC of ≤2.25-9mg/mL and MFC of ≤2.25-18mg/mL. The MIC 50 and MIC 90 were ≤2.25mg/mL and 4.5mg/mL, respectively, and the MFC 50/90 values were twice more than the MIC. Twenty-two compounds were identified by gas chromatography with a flame ionization detector (CG-FID) and 1,8-cineole and 4-terpineol were the majority. Through the colorimetric (MTT) assay, the toxicity was observed in 70-80% of VERO cells between 0.078 and 5mg/mL. For the first time, the study demonstrated the satisfactory in vitro anti-Sporothrix sp. activity of marjoram oil and further studies are needed to ensure its safe and effective use. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle.

    PubMed

    de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A

    2005-08-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (P<0.05), indicative of LFF. At 50% MFC, pre-exercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P<0.05) and 13.2 +/- 5.6 pps (P>0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (P<0.05) from 27.7 +/- 6.6% MFC before exercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.

  3. The role of mmu-miR-155-5p-NF-κB signaling in the education of bone marrow-derived mesenchymal stem cells by gastric cancer cells.

    PubMed

    Wang, Mei; Yang, Fang; Qiu, Rong; Zhu, Mengchu; Zhang, Huiling; Xu, Wenrong; Shen, Bo; Zhu, Wei

    2018-03-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are important precursors of tumor stromal cells. Previously, we have demonstrated that miR-155-5p inhibition directly induced transition of BM-MSCs into gastric cancer-associated MSCs. Whether miR-155-5p is involved in the education of BM-MSCs by gastric cancer cells has not been established. Murine BM-MSCs (mMSCs) were isolated and grown in conditioned medium derived from gastric cancer cell line MFC (MFC-CM). The tumor-promoting phenotype and function of mMSCs were detected by immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), cell colony formation assay, transwell migration, and invasion assays. Luciferase reporter assays and western blot analyses were conducted to reveal the relationship between nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 and mmu-miR-155-5p. miRNA mimics, inhibitor, and the NF-κB inhibitor pyrrolidine dithiocarbamic acid (PDTC) were used to evaluate the role of miR-155-5p-NF-κB signaling in the education of mMSCs by MFC-CM. We successfully established the education model of mMSCs by MFC-CM and found that mmu-miR-155-5p expression levels were reduced in mMSCs. Mimicking this deregulation by transfecting miRNA inhibitor into mMSCs produced a similar effect as that of MFC-CM on mMSCs. NF-κB p65 was validated as a target of mmu-miR-155-5p, which also negatively regulated NF-κB activation. Inhibition of NF-κB activation by PDTC abolished the effect of the miRNA inhibitor on mMSCs. mmu-miR-155-5p overexpression partially blocked the effect of MFC-CM in educating mMSCs, while PDTC treatment completely eliminated MFC-CM activity. These results indicate that miR-155-5p is not the sole miRNA mediating the education of BM-MSCs by gastric cancer cells, but downstream NF-κB signaling is indispensable for this process. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Intranasal Introduction of Fc-Fused Interleukin-7 Provides Long-Lasting Prophylaxis against Lethal Influenza Virus Infection.

    PubMed

    Kang, Moon Cheol; Choi, Dong-Hoon; Choi, Young Woo; Park, Seong Jeong; Namkoong, Hong; Park, Ki Seok; Ahn, So-Shin; Surh, Charles D; Yoon, Sun-Woo; Kim, Doo-Jin; Choi, Jung-ah; Park, Yunji; Sung, Young Chul; Lee, Seung-Woo

    2015-12-09

    Influenza A virus (IAV) infection frequently causes hospitalization and mortality due to severe immunopathology. Annual vaccination and antiviral drugs are the current countermeasures against IAV infection, but they have a limited efficacy against new IAV variants. Here, we show that intranasal pretreatment with Fc-fused interleukin-7 (IL-7-mFc) protects mice from lethal IAV infections. The protective activity of IL-7-mFc relies on transcytosis via neonatal Fc receptor (FcRn) in the lung and lasts for several weeks. Introduction of IL-7-mFc alters pulmonary immune environments, leading to recruitment of T cells from circulation and their subsequent residency as tissue-resident memory-like T (TRM-like) cells. IL-7-mFc-primed pulmonary TRM-like cells contribute to protection upon IAV infection by dual modes. First, TRM-like cells, although not antigen specific but polyclonal, attenuate viral replication at the early phase of IAV infection. Second, TRM-like cells augment expansion of IAV-specific cytotoxic T lymphocytes (CTLs), in particular at the late phase of infection, which directly control viruses. Thus, accelerated viral clearance facilitated by pulmonary T cells, which are either antigen specific or not, alleviates immunopathology in the lung and mortality from IAV infection. Depleting a subset of pulmonary T cells indicates that both CD4 and CD8 T cells contribute to protection from IAV, although IL-7-primed CD4 T cells have a more prominent role. Collectively, we propose intranasal IL-7-mFc pretreatment as an effective means for generating protective immunity against IAV infections, which could be applied to a potential prophylaxis for influenza pandemics in the future. The major consequence of a highly pathogenic IAV infection is severe pulmonary inflammation, which can result in organ failure and death at worst. Although vaccines for seasonal IAVs are effective, frequent variation of surface viral proteins hampers development of protective immunity. In this study, we demonstrated that intranasal IL-7-mFc pretreatment protected immunologically naive mice from lethal IAV infections. Intranasal pretreatment with IL-7-mFc induced an infiltration of T cells in the lung, which reside as effector/memory T cells with lung-retentive markers. Those IL-7-primed pulmonary T cells contributed to development of protective immunity upon IAV infection, reducing pulmonary immunopathology while increasing IAV-specific cytotoxic T lymphocytes. Since a single treatment with IL-7-mFc was effective in the protection against multiple strains of IAV for an extended period of time, our findings suggest a possibility that IL-7-mFc treatment, as a potential prophylaxis, can be developed for controlling highly pathogenic IAV infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Analysis of the Impedance Resonance of Piezoelectric Multi-Fiber Composite Stacks

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Djrbashian, A.; Bradford, S C

    2013-01-01

    Multi-Fiber CompositesTM (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFCTM to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.

  6. Security enhanced multi-factor biometric authentication scheme using bio-hash function.

    PubMed

    Choi, Younsung; Lee, Youngsook; Moon, Jongho; Won, Dongho

    2017-01-01

    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An's scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user's ID during login. Cao and Ge improved upon Younghwa An's scheme, but various security problems remained. This study demonstrates that Cao and Ge's scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge's scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost.

  7. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Jon; Ireland, Sean; Skuse, David

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  8. Probabilistic Usage of the Multi-Factor Interaction Model

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2008-01-01

    A Multi-Factor Interaction Model (MFIM) is used to predict the insulating foam mass expulsion during the ascending of a space vehicle. The exponents in the MFIM are evaluated by an available approach which consists of least squares and an optimization algorithm. These results were subsequently used to probabilistically evaluate the effects of the uncertainties in each participating factor in the mass expulsion. The probabilistic results show that the surface temperature dominates at high probabilities and the pressure which causes the mass expulsion at low probabil

  9. Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells.

    PubMed

    Miran, Waheed; Jang, Jiseon; Nawaz, Mohsin; Shahzad, Asif; Lee, Dae Sung

    2018-06-15

    Microbial fuel cells (MFCs) are known for their ability to enhance the removal rate of toxins while generating power. This research presents a performance assessment of MFCs for power generation and sulfamethoxazole (SMX) degradation using SMX acclimatized cultures. Experiments were performed in MFC batch mode using different SMX concentrations in synthetic wastewater. The experimental results showed that voltage generation was >400mV up to the SMX concentration of 0.20mM (at 400Ω external resistance). Control experiments supported the inference that biodegradation was the main process for SMX removal compared to sorption by SMX acclimatized cultures and that the process results in efficient removal of SMX in MFC mode. The specific removal rates of SMX in MFC with SMX acclimatized sludge were 0.67, 1.37, 3.43, 7.32, and 13.36μm/h at initial SMX concentrations of 0.04, 0.08, 0.20, 0.39, and 0.79mM, respectively. Moreover, the MFC was able to remove >90% of the TOC from the wastewater up to SMX concentrations of 0.08mM. However, this TOC removal produces negative effects at higher SMX concentrations due to toxic intermediates. Microbial community analysis revealed large changes in bacterial communities at the phylum, class, and genus levels after SMX acclimatization and MFC operation. Thauera, a well-known aromatic-degrading bacteria, was the most dominant genus present in post-acclimatized conditions. In summary, this study showed that acclimatized sludge can play an important role in the biodegradation of SMX in MFCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Ammonia removal via microbial fuel cell (MFC) dynamic reactor

    NASA Astrophysics Data System (ADS)

    Alabiad, I.; Ali, U. F. M.; Zakarya, I. A.; Ibrahim, N.; Radzi, R. W.; Zulkurnai, N. Z.; Azmi, N. H.

    2017-06-01

    Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.

  11. In vitro activity of echinocandins against 562 clinical yeast isolates from a Romanian multicentre study.

    PubMed

    Mares, Mihai; Minea, Bogdan; Nastasa, Valentin; Rosca, Irina; Bostanaru, Andra-Cristina; Marincu, Iosif; Toma, Vasilica; Cristea, Violeta Corina; Murariu, Carmen; Pinteala, Mariana

    2018-06-01

    The study presents the echinocandin susceptibility profile of a multi-centre collection of pathogenic yeast isolates from Romanian tertiary hospitals. The 562 isolates were identified using ID32C strips, MALDI-TOF MS and DNA sequencing. Minimal inhibitory concentrations (MICs) of caspofungin (CAS), micafungin (MCA), and anidulafungin (ANI) were assessed and interpreted according to EUCAST guidelines. Minimal fungicidal concentrations (MFC) were determined by plating content from the clear MIC wells. The activity was considered fungicidal at MFC/MIC ≤ 4. The three echinocandins had strongly correlated MICs and high percentages of MIC essential agreement. Most often, MCA had the lowest MICs, followed by CAS and ANI. Against C. parapsilosis and C. kefyr, CAS had the lowest MIC values. The MIC50 values were between 0.03 and 0.25 mg/l, except C. parapsilosis. The MIC90 values were usually one dilution higher. MFCs and MICs were weakly correlated. ANI and MCA had the lowest MFC values. The MFC50 values were between 0.06 and 0.5 mg/l, except C. parapsilosis, C. guilliermondii, and C. dubliniensis. The MFC90 values were usually two dilutions higher. Based on EUCAST breakpoints, 47 isolates (8.4%) were resistant to at least one echinocandin, most often ANI. Most resistant isolates were of C. albicans, C. glabrata, and C. krusei. There were 17 isolates (3%) resistant to echinocandins and fluconazole and most belonged to the same three species. MCA and ANI had the highest rates of fungicidal activity. The high rates of echinocandin resistance and significant multidrug resistance make prophylaxis and empiric therapy difficult.

  12. Electrochemical properties of electrodes with different shapes and diffusion kinetic analysis of microbial fuel cells on ocean floor

    NASA Astrophysics Data System (ADS)

    Fu, Yubin; Liu, Jia; Su, Jia; Zhao, Zhongkai; Liu, Yang; Xu, Qian

    2012-03-01

    Microbial fuel cell (MFC) on the ocean floor is a kind of novel energy- harvesting device that can be developed to drive small instruments to work continuously. The shape of electrode has a great effect on the performance of the MFC. In this paper, several shapes of electrode and cell structure were designed, and their performance in MFC were compared in pairs: Mesh (cell-1) vs. flat plate (cell-2), branch (cell-3) vs. cylinder (cell-4), and forest (cell-5) vs. disk (cell-6) FC. Our results showed that the maximum power densities were 16.50, 14.20, 19.30, 15.00, 14.64, and 9.95 mWm-2 for cell-1, 2, 3, 4, 5 and 6 respectively. And the corresponding diffusion-limited currents were 7.16, 2.80, 18.86, 10.50, 18.00, and 6.900 mA. The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes. The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary. These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC, and the differences in the electrode shape lead to the differences in cell performance. These results would be useful for MFC structure design in practical applications.

  13. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode

    PubMed Central

    Nguyen, Thuy Thu; Luong, Tha Thanh Thi; Tran, Phuong Hoang Nguyen; Bui, Ha Thi Viet; Nguyen, Huy Quang; Dinh, Hang Thuy; Kim, Byung Hong; Pham, Hai The

    2015-01-01

    In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm–2 of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe2+ as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm–2 of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples. PMID:25712332

  14. Punishing an error improves learning: the influence of punishment magnitude on error-related neural activity and subsequent learning.

    PubMed

    Hester, Robert; Murphy, Kevin; Brown, Felicity L; Skilleter, Ashley J

    2010-11-17

    Punishing an error to shape subsequent performance is a major tenet of individual and societal level behavioral interventions. Recent work examining error-related neural activity has identified that the magnitude of activity in the posterior medial frontal cortex (pMFC) is predictive of learning from an error, whereby greater activity in this region predicts adaptive changes in future cognitive performance. It remains unclear how punishment influences error-related neural mechanisms to effect behavior change, particularly in key regions such as pMFC, which previous work has demonstrated to be insensitive to punishment. Using an associative learning task that provided monetary reward and punishment for recall performance, we observed that when recall errors were categorized by subsequent performance--whether the failure to accurately recall a number-location association was corrected at the next presentation of the same trial--the magnitude of error-related pMFC activity predicted future correction. However, the pMFC region was insensitive to the magnitude of punishment an error received and it was the left insula cortex that predicted learning from the most aversive outcomes. These findings add further evidence to the hypothesis that error-related pMFC activity may reflect more than a prediction error in representing the value of an outcome. The novel role identified here for the insular cortex in learning from punishment appears particularly compelling for our understanding of psychiatric and neurologic conditions that feature both insular cortex dysfunction and a diminished capacity for learning from negative feedback or punishment.

  15. Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@ polyaniline-carbon felt anode.

    PubMed

    Zhong, Dengjie; Liao, Xinrong; Liu, Yaqi; Zhong, Nianbing; Xu, Yunlan

    2018-06-01

    A new electrode which embedded polyaniline (PANI) in petaline NiO (NiO@PANI-CF) was prepared through in-situ growth and in-situ polymerization. The NiO@PANI-CF integrated the high capacitive character of NiO and the high conductivity of PANI, which effectively increased electricity generation capacity of NiO@PANI-MFC. The maximum output power density and the charge transfer resistance of NiO@PANI-MFC were 1078.8 mW·m -2 and 10.4 Ω respectively, which were 6.6 times and 68% lower than that of CF-MFC respectively. Moreover, NiO@PANI-MFC could effectively biodegrade dye wastewater due to high biocompatibility of NiO@PANI-CF. The color and COD removal efficiencies of Reactive Brilliant Red X-3B reached 95.94% and 64.24% at 48 h respectively. The results demonstrate that the NiO@PANI-CF has the advantage of high conductivity, high capacitance, high specific surface area, super hydrophilicity, low polarization performance, low charge transfer resistance, high biocompatibility and high stablity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater

    NASA Astrophysics Data System (ADS)

    Lu, Mengqian; Chen, Shing; Babanova, Sofia; Phadke, Sujal; Salvacion, Michael; Mirhosseini, Auvid; Chan, Shirley; Carpenter, Kayla; Cortese, Rachel; Bretschger, Orianna

    2017-07-01

    Microbial fuel cells (MFCs) have been shown as a promising technology for wastewater treatment. Integration of MFCs into current wastewater treatment plant have potential to reduce the operational cost and improve the treatment performance, and scaling up MFCs will be essential. However, only a few studies have reported successful scale up attempts. Fabrication cost, treatment performance and operational lifetime are critical factors to optimize before commercialization of MFCs. To test these factors, we constructed a 20 L MFC system containing two 10 L MFC reactors and operated the system with brewery wastewater for nearly one year. Several operational conditions were tested, including different flowrates, applied external resistors, and poised anodic potentials. The condition resulting in the highest chemical oxygen demand (COD) removal efficiency (94.6 ± 1.0%) was a flow rate of 1 mL min-1 (HRT = 313 h) and an applied resistor of 10 Ω across each MFC circuit. Results from each of the eight stages of operation (325 days total) indicate that MFCs can sustain treatment rates over a long-term period and are robust enough to sustain performance even after system perturbations. possible ways to improve MFC performance were discussed for future studies.

  17. A microfluidic direct formate fuel cell on paper.

    PubMed

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique.

    PubMed

    Izadi, Paniz; Rahimnejad, Mostafa; Ghoreyshi, Ali

    2015-01-01

    Microbial fuel cell (MFC) is a novel technology that is able to convert the chemical energy of organic and inorganic substrates to electrical energy directly. The use of fossil fuels and recent energy crisis bring increasing attention to this technology. Besides electricity generation, wastewater treatment is another application of MFCs. Sulfide is a hazardous ion that is common in wastes. In this article, dual-chamber MFC was fabricated and a mixed culture of microorganisms was used as an active biocatalyst in an anaerobic anodic chamber to convert substrate to electricity. The obtained experimental results indicate that this MFC can successfully alter sulfide to elementary sulfur and power generation. The initial concentration of sulfide in wastewater was 1.5 g L(-1) , and it was removed after 10 days of MFC operation. Maximum produced power and current density were 48.68 mW⋅m(-2) and 231.47 mA⋅m(-2) , respectively. Besides, the influences of a biocathode were investigated and accordingly the data obtained for power and current density were increased to 372.27 mW⋅m(-2) and 1,665.15 mA⋅m(-2) , respectively. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  19. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran.

    PubMed

    Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio

    2016-10-01

    This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2017-04-01

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H+/OH- transport) and electric field-driven migration on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Overall, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.

  1. Understanding the degradation of Congo red and bacterial diversity in an air-cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation.

    PubMed

    Sun, Jian; Li, Youming; Hu, Yongyou; Hou, Bin; Zhang, Yaping; Li, Sizhe

    2013-04-01

    We investigated the mechanism of Congo red degradation and bacterial diversity in a single-chambered microbial fuel cell (MFC) incorporating a microfiltration membrane and air-cathode. The MFC was operated continuously for more than 4 months using a mixture of Congo red and glucose as fuel. We demonstrated that the Congo red azo bonds were reduced at the anode to form aromatic amines. This is consistent with the known mechanism of anaerobic biodegradation of azo dyes. The MFC developed a less dense biofilm at the anode in the presence of Congo red compared to its absence indicating that Congo red degradation negatively affected biofilm formation. Denaturing gradient gel electrophoresis and direct 16S ribosomal DNA gene nucleotide sequencing revealed that the microbial communities differed depending on whether Congo red was present in the MFC. Geobacter-like species known to generate electricity were detected in the presence or absence of Congo red. In contrast, Azospirillum, Methylobacterium, Rhodobacter, Desulfovibrio, Trichococcus, and Bacteroides species were only detected in its presence. These species were most likely responsible for degrading Congo red.

  2. Performance evaluation of a hybrid system for efficient palm oil mill effluent treatment via an air-cathode, tubular upflow microbial fuel cell coupled with a granular activated carbon adsorption.

    PubMed

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy Ai Wei; Mohamed Amin, Mohamed Afizal; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2016-09-01

    An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Soldier-relevant body borne load impacts minimum foot clearance during obstacle negotiation.

    PubMed

    Brown, T N; Loverro, K L; Schiffman, J M

    2016-07-01

    Soldiers often trip and fall on duty, resulting in injury. This study examined ten male soldiers' ability to negotiate an obstacle. Participants had lead and trail foot minimum foot clearance (MFC) parameters quantified while crossing a low (305 mm) and high (457 mm) obstacle with (19.4 kg) and without (6 kg) body borne load. To minimize tripping risk, participants increased lead foot MFC (p = 0.028) and reduced lead (p = 0.044) and trail (p = 0.035) foot variability when negotiating an obstacle with body borne load. While obstacle height had no effect on MFC (p = 0.273 and p = 0.126), placing the trail foot closer to the high obstacle when crossing with body borne load, resulted in greater lead (R = 0.640, b = 0.241, p = 0.046) and trail (R = 0.636, b = 0.287, p = 0.048) MFC. Soldiers, when carrying typical military loads, may be able to minimize their risk of tripping over an obstacle by creating a safety margin via greater foot clearance with reduced variability. Published by Elsevier Ltd.

  4. A simple microbial fuel cell model for improvement of biomedical device powering times.

    PubMed

    Roxby, Daniel N; Tran, Nham; Nguyen, Hung T

    2014-01-01

    This study describes a Matlab based Microbial Fuel Cell (MFC) model for a suspended microbial population, in the anode chamber for the use of the MFC in powering biomedical devices. The model contains three main sections including microbial growth, microbial chemical uptake and secretion and electrochemical modeling. The microbial growth portion is based on a Continuously Stirred Tank Reactor (CSTR) model for the microbial growth with substrate and electron acceptors. Microbial stoichiometry is used to determine chemical concentrations and their rates of change and transfer within the MFC. These parameters are then used in the electrochemical modeling for calculating current, voltage and power. The model was tested for typically exhibited MFC characteristics including increased electrode distances and surface areas, overpotentials and operating temperatures. Implantable biomedical devices require long term powering which is the main objective for MFCs. Towards this end, our model was tested with different initial substrate and electron acceptor concentrations, revealing a four-fold increase in concentrations decreased the power output time by 50%. Additionally, the model also predicts that for a 35.7% decrease in specific growth rate, a 50% increase in power longevity is possible.

  5. Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst.

    PubMed

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli; Kumar, Senthil

    2017-05-01

    Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m 2 , at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m 3  day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.

  6. Improvement of corrosion resistance of low-alloy steels by resurfacing using multifunction cavitation in water

    NASA Astrophysics Data System (ADS)

    Ijiri, Masataka; Yoshimura, Toshihiko

    2018-02-01

    Low-alloy steels are based on carbon steel in combination with several percent or less (in many cases, 1 mass%) alloying elements, and they offer improved resistance to corrosion at a cost slightly higher than that of carbon steel. However, these materials do not exhibit the same corrosion resistance as stainless steel. The authors have previously developed a novel multifunction cavitation (MFC) technique, which combines ultrasonic cavitation with water jet cavitation. In this study, MFC was used to modify the surface of Cr-Mo steel (SCM435) and Ni-Cr-Mo steel (SNCM630). MFC was found to improve the residual stress value of the material as the result of surface modification while also imparting high strength and superior corrosion resistance.

  7. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    PubMed

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Security enhanced multi-factor biometric authentication scheme using bio-hash function

    PubMed Central

    Lee, Youngsook; Moon, Jongho

    2017-01-01

    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An’s scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user’s ID during login. Cao and Ge improved upon Younghwa An’s scheme, but various security problems remained. This study demonstrates that Cao and Ge’s scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge’s scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost. PMID:28459867

  9. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment

    NASA Astrophysics Data System (ADS)

    De Kauwe, M. G.; Medlyn, B.; Walker, A.; Zaehle, S.; Pendall, E.; Norby, R. J.

    2017-12-01

    Multifactor experiments are often advocated as important for advancing models, yet to date, such models have only been tested against single-factor experiments. We applied 10 models to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions: comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2-induced water savings to extend the growing season length. Observed interactive (CO2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.

  10. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  11. Relationship between Iron Accumulation and White Matter Injury in Multiple Sclerosis: A Case-Control Study

    PubMed Central

    Raz, Eytan; Branson, Brittany; Jensen, Jens H.; Bester, Maxim; Babb, James S.; Herbert, Joseph; Grossman, Robert I.; Inglese, Matilde

    2015-01-01

    PURPOSE Despite the increasing development and applications of iron imaging, the pathophysiology of iron accumulation in multiple sclerosis (MS), and its role in disease progression and development of clinical disability, is poorly understood. The aims of our study were to determine the presence and extent of iron in T2 visible lesions and gray and white matter using magnetic field correlation (MFC) MRI and correlate with microscopic white matter (WM) injury as measured by diffusion tensor imaging (DTI). MATERIALS AND METHODS This is a case-control study incuding a series of 31 patients with clinically definite MS. The mean age was 39 years [standard deviation (SD)=9.55], they were 11 males and 20 females, with a disease duration average of 3 years (range 0-13) and a median EDSS of 2 (0-4.5). Seventeen healthy volunteers (6 males and 11 females) with a mean age of 36 years (SD=11.4) were recruited. All subjects underwent MR imaging on a 3T scanner using T2-weighted sequence, 3D T1 MPRAGE, MFC, single-shot DTI and postcontrast T1. T2-lesion volumes, brain volumetry, DTI parameters and iron quantification were calculated and multiple correlations were exploited. RESULTS Increased MFC was found in the putamen (p=0.061), the thalamus (p=0.123), the centrum semiovale (p=0.053), globus pallidus (p=0.008) and gray matter (GM) (p=0.004) of MS patients compared to controls. The mean lesional MFC was 121 s−2 (SD=67), significantly lower compared to the GM MFC (<0.0001). The GM mean diffusivity (MD) was inversely correlated with the MFC in the centrum semiovale (p<0.001), and in the splenium of the corpus callosum (p<0.001). CONCLUSION Patients with MS have increased iron in the globus pallidus, putamen and centrum with a trend toward increased iron in all the brain structures. Quantitative iron evaluation of WM and GM may improve the understanding of MS pathophysiology, and might serve as a surrogate marker of disease progression. PMID:25416468

  12. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper.

    PubMed

    Miran, Waheed; Jang, Jiseon; Nawaz, Mohsin; Shahzad, Asif; Jeong, Sang Eun; Jeon, Che Ok; Lee, Dae Sung

    2017-12-01

    Microbial fuel cells (MFCs) have been widely investigated for organic-based waste/substrate conversion to electricity. However, toxic compounds such as heavy metals are ubiquitous in organic waste and wastewater. In this work, a sulfate reducing bacteria (SRB)-enriched anode is used to study the impact of Cu 2+ on MFC performance. This study demonstrates that MFC performance is slightly enhanced at concentrations of up to 20 mg/L of Cu 2+ , owing to the stimulating effect of metals on biological reactions. Cu 2+ removal involves the precipitation of metalloids out of the solution, as metal sulfide, after they react with the sulfide produced by SRB. Simultaneous power generation of 224.1 mW/m 2 at lactate COD/SO 4 2- mass ratio of 2.0 and Cu 2+ of 20 mg/L, and high Cu 2+ removal efficiency, at >98%, are demonstrated in the anodic chamber of a dual-chamber MFC. Consistent MFC performance at 20 mg/L of Cu 2+ for ten successive cycles shows the excellent reproducibility of this system. In addition, total organic content and sulfate removal efficiencies greater than 85% and 70%, respectively, are achieved up to 20 mg/L of Cu 2+ in 48 h batches. However, higher metal concentration and very low pH at <4.0 inhibit the SRB MFC system. Microbial community analysis reveals that Desulfovibrio is the most abundant SRB in anode biofilm at the genus level, at 38.1%. The experimental results demonstrate that biological treatment of low-concentration metal-containing wastewater with SRB in MFCs can be an attractive technique for the bioremediation of this type of medium with simultaneous energy generation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of organic matter removal and electricity generation by using integrated microbial fuel cells for wastewater treatment.

    PubMed

    Yamashita, Takahiro; Ishida, Mitsuyoshi; Ogino, Akifumi; Yokoyama, Hiroshi

    2016-01-01

    A floating all-in-one type of microbial fuel cell (Fa-MFC) that allows simple operation and installation in existing wastewater reservoirs for decomposition of organic matter was designed. A prototype cell was constructed by fixing a tubular floater to an assembly composed of a proton-exchange membrane and an air-cathode. To compare anode materials, carbon-cloth anodes or carbon-brush anodes were included in the assembly. The fabricated assemblies were floated in 1-L beakers filled with acetate medium. Both reactors removed acetate at a rate of 133-181 mg/L/d. The Fa-MFC quipped with brush anodes generated a 1.7-fold higher maximum power density (197 mW/m(2)-cathode area) than did that with cloth anodes (119 mW/m(2)-cathode area). To evaluate the performance of the Fa-MFCs on more realistic substrates, artificial wastewater, containing peptone and meat extract, was placed in a 2-L beaker, and the Fa-MFC with brush anodes was floated in the beaker. The Fa-MFC removed the chemical oxygen demand of the wastewater at a rate of 465-1029 mg/L/d, and generated a maximum power density of 152 mW/m(2)-cathode area. When the Fa-MFC was fed with actual livestock wastewater, the biological oxygen demand of the wastewater was removed at a rate of 45-119 mg/L/d, with electricity generation of 95 mW/m(2)-cathode area. Bacteria related to Geobacter sulfurreducens were predominantly detected in the anode biofilm, as deduced from the analysis of the 16S rRNA gene sequence.

  14. A Two Year Randomized Controlled Trial of Progressive Resistance Exercise for Parkinson’s Disease

    PubMed Central

    Corcos, Daniel M.; Robichaud, Julie A.; David, Fabian J.; Leurgans, Sue E.; Vaillancourt, David E.; Poon, Cynthia; Rafferty, Miriam R.; Kohrt, Wendy M.; Comella, Cynthia L.

    2013-01-01

    Background The effects of progressive resistance exercise (PRE) on the motor signs of Parkinson’s disease have not been studied in controlled trials. Our aim was to compare 6, 12, 18, and 24 month outcomes of patients with Parkinson’s disease who received PRE to a stretching, balance, and strengthening exercise program. Methods We conducted a randomized controlled trial between September 2007 and July 2011. Pairs of patients, matched by sex and off-medication Unified Parkinson’s Disease Rating Scale, motor subscale (UPDRS-III), were randomly assigned to the interventions with a 1:1 allocation ratio. The PRE group performed a weight lifting program. The Modified Fitness Counts (mFC) group performed a stretching, balance, and strengthening exercise program. Patients exercised two days per week for 24 months at a gym. A personal trainer directed both weekly sessions for the first six months and one weekly session after six months. The primary outcome was the off-medication UPDRS-III score. Patients were followed for 24 months at six-month intervals. Results Of 51 patients, 20 in PRE and 18 in mFC completed the trial. At 24 months, the mean off-medication UPDRS-III score decreased more with PRE than with mFC (mean difference: - 7·3 points; 95% CI: -11·3 to -3·6; P < 0·001). The PRE group had ten adverse events. The mFC group had seven adverse events. Conclusions PRE demonstrated a statistically and clinically significant reduction in UPDRS-III scores compared to mFC and is recommended as a useful adjunct therapy to improve Parkinsonian motor signs. PMID:23536417

  15. A graph-based approach to inequality assessment

    NASA Astrophysics Data System (ADS)

    Palestini, Arsen; Pignataro, Giuseppe

    2016-08-01

    In a population consisting of heterogeneous types, whose income factors are indicated by nonnegative vectors, policies aggregating different factors can be represented by coalitions in a cooperative game, whose characteristic function is a multi-factor inequality index. When it is not possible to form all coalitions, the feasible ones can be indicated by a graph. We redefine Shapley and Banzhaf values on graph games to deduce some properties involving the degrees of the graph vertices and marginal contributions to overall inequality. An example is finally provided based on a modified multi-factor Atkinson index.

  16. Microbial Fuel Cells for Powering Navy Devices

    DTIC Science & Technology

    2014-01-20

    specific MFC being analyzed. Figure 3 depicts simulated voltage vs. current plots (black curves) and corresponding power vs. current...Powering Navy Devices 7     Fig. 3 – Simulated voltage vs current and power vs current polarization plots for a two- chamber MFC in which membrane...the anode is generated by fermentation of glucose by other microorganisms in the sediment represented by clostridium in Fig. 4. The products of the

  17. A disposable power source in resource-limited environments: A paper-based biobattery generating electricity from wastewater.

    PubMed

    Fraiwan, Arwa; Kwan, Landen; Choi, Seokheun

    2016-11-15

    We report a novel paper-based biobattery which generates power from microorganism-containing liquid derived from renewable and sustainable wastewater which is readily accessible in the local environment. The device fuses the art of origami and the technology of microbial fuel cells (MFCs) and has the potential to shift the paradigm for flexible and stackable paper-based batteries by enabling exceptional electrical characteristics and functionalities. 3D, modular, and retractable battery stack is created from (i) 2D paper sheets through high degrees of folding and (ii) multifunctional layers sandwiched for MFC device configuration. The stack is based on ninja star-shaped origami design formed by eight MFC modular blades, which is retractable from sharp shuriken (closed) to round frisbee (opened). The microorganism-containing wastewater is added into an inlet of the closed battery stack and it is transported into each MFC module through patterned fluidic pathways in the paper layers. During operation, the battery stack is transformed into the round frisbee to connect eight MFC modules in series for improving the power output and simultaneously expose all air-cathodes to the air for their cathodic reactions. The device generates desired values of electrical current and potential for powering an LED for more than 20min. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.

    PubMed

    Hochman, Eldad Yitzhak; Orr, Joseph M; Gehring, William J

    2014-02-01

    Cognitive control in the posterior medial frontal cortex (pMFC) is formulated in models that emphasize adaptive behavior driven by a computation evaluating the degree of difference between 2 conflicting responses. These functions are manifested by an event-related brain potential component coined the error-related negativity (ERN). We hypothesized that the ERN represents a regulative rather than evaluative pMFC process, exerted over the error motor representation, expediting the execution of a corrective response. We manipulated the motor representations of the error and the correct response to varying degrees. The ERN was greater when 1) the error response was more potent than when the correct response was more potent, 2) more errors were committed, 3) fewer and slower corrections were observed, and 4) the error response shared fewer motor features with the correct response. In their current forms, several prominent models of the pMFC cannot be reconciled with these findings. We suggest that a prepotent, unintended error is prone to reach the manual motor processor responsible for response execution before a nonpotent, intended correct response. In this case, the correct response is a correction and its execution must wait until the error is aborted. The ERN may reflect pMFC activity that aimed to suppress the error.

  19. A paper-based microbial fuel cell array for rapid and high-throughput screening of electricity-producing bacteria.

    PubMed

    Choi, Gihoon; Hassett, Daniel J; Choi, Seokheun

    2015-06-21

    There is a large global effort to improve microbial fuel cell (MFC) techniques and advance their translational potential toward practical, real-world applications. Significant boosts in MFC performance can be achieved with the development of new techniques in synthetic biology that can regulate microbial metabolic pathways or control their gene expression. For these new directions, a high-throughput and rapid screening tool for microbial biopower production is needed. In this work, a 48-well, paper-based sensing platform was developed for the high-throughput and rapid characterization of the electricity-producing capability of microbes. 48 spatially distinct wells of a sensor array were prepared by patterning 48 hydrophilic reservoirs on paper with hydrophobic wax boundaries. This paper-based platform exploited the ability of paper to quickly wick fluid and promoted bacterial attachment to the anode pads, resulting in instant current generation upon loading of the bacterial inoculum. We validated the utility of our MFC array by studying how strategic genetic modifications impacted the electrochemical activity of various Pseudomonas aeruginosa mutant strains. Within just 20 minutes, we successfully determined the electricity generation capacity of eight isogenic mutants of P. aeruginosa. These efforts demonstrate that our MFC array displays highly comparable performance characteristics and identifies genes in P. aeruginosa that can trigger a higher power density.

  20. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  1. Insights into the applicability of microbial fuel cells in wastewater treatment plants for a sustainable generation of electricity.

    PubMed

    Krieg, Thomas; Mayer, Florian; Sell, Dieter; Holtmann, Dirk

    2017-11-21

    Microbial fuel cells (MFCs) are often discussed as a part of a sustainable generation of electricity for the coming 'energy revolution'. In particular, the application of MFCs in wastewater treatment plants (WWTPs) are often regarded as an attractive alternative to reduce costs while generating electricity. Field surveys are necessary to show the applicability of MFCs in WWTPs considering daily fluctuations and environmental effects such as rain events affecting the MFC performance remarkably. In this study, a MFC system was tested in four municipal WWTPs using different modes of operation. A correlation between current densities and sludge loading (SL) was identified. At low SLs, the activated sludge needs a large amount of the energy derived from the substrate for the maintenance metabolism resulting in quite low current densities of the MFC. At high SLs much more of the energy can be transferred from the activated sludge to the electrode, resulting in higher currents. Furthermore, the effect of environmental conditions on the current densities was evaluated. WWTPs have daily fluctuations depending on the wastewater composition, weather phenomena and population equivalents. Our data show that these daily fluctuations can only be observed in the MFC performance at WWTPs below 50,000 population equivalents.

  2. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H +/OH – transport) and electric field-driven migrationmore » on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less

  3. Simultaneous wastewater treatment and bioelectricity production in microbial fuel cells using cross-linked chitosan-graphene oxide mixed-matrix membranes.

    PubMed

    Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R

    2017-05-01

    Microbial fuel cells (MFCs) are emerging technology for wastewater treatment by chemical oxygen demand (COD) reduction and simultaneous bioelectricity production. Fabrication of an effective proton exchange membrane (PEM) is a vital component for MFC performance. In this work, green chitosan-based (CS) PEMs were fabricated with graphene oxide (GO) as filler material (CS-GO) and cross-linked with phosphoric acid (CS-GO-P(24)) or sulfuric acid (CS-GO-S(24)) to determine their effect on PEM properties. Interrogation of the physicochemical, thermal, and mechanical properties of the cross-linked CS-GO PEMs demonstrated that ionic cross-linking based on the incorporation of PO 4 3- groups in the CS-GO mixed-matrix composites, when compared with sulfuric acid cross-linking commonly used in proton exchange membrane fuel cell (PEMFC) studies, generated additional density of ionic cluster domains, rendered enhanced sorption properties, and augmented the thermal and mechanical stability of the composite structure. Consequently, bioelectricity performance analysis in MFC application showed that CS-GO-P(24) membrane produced 135% higher power density than the CS-GO-S(24) MFC system. Simultaneously, 89.52% COD removal of primary clarifier municipal wastewater was achieved in the MFC operated with the CS-GO-P(24) membrane.

  4. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2017-02-23

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H +/OH – transport) and electric field-driven migrationmore » on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less

  5. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells.

    PubMed

    Vogl, Andreas; Bischof, Franz; Wichern, Marc

    2016-01-01

    The startup of microbial fuel cells (MFCs) is known to be prone to failure or result in erratic performance impeding the research. The aim of this study was to advise a quick launch strategy for laboratory-scale MFCs that ensures steady operation performance in a short period of time. Different startup strategies were investigated and compared with membraneless single chamber MFCs. A direct surface-to-surface biofilm transfer (BFT) in an operating MFC proved to be the most efficient method. It provided steady power densities of 163 ± 13 mWm(-2) 4 days after inoculation compared to 58 ± 15 mWm(-2) after 30 days following a conventional inoculation approach. The in situ BFT eliminates the need for microbial acclimation during startup and reduces performance fluctuations caused by shifts in microbial biodiversity. Anaerobic pretreatment of the substrate and addition of suspended enzymes from an operating MFC into the new MFC proved to have a beneficial effect on startup and subsequent operation. Polarization methods were applied to characterize the startup phase and the steady state operation in terms of power densities, internal resistance and power overshoot during biofilm maturation. Applying this method a well-working MFC can be multiplied into an array of identically performing MFCs.

  6. Intelligent energy harvesting scheme for microbial fuel cells: Maximum power point tracking and voltage overshoot avoidance

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Radenkovic, Miloje; Park, Jae-Do

    2017-02-01

    Microbial fuel cells (MFCs) are renewable and sustainable energy sources that can be used for various applications. The MFC output power depends on its biochemical conditions as well as the terminal operating points in terms of output voltage and current. There exists one operating point that gives the maximum possible power from the MFC, maximum power point (MPP), for a given operating condition. However, this MPP may vary and needs to be tracked in order to maintain the maximum power extraction from the MFC. Furthermore, MFC reactors often develop voltage overshoots that cause drastic drops in the terminal voltage, current, and the output power. When the voltage overshoot happens, an additional control measure is necessary as conventional MPPT algorithms will fail because of the change in the voltage-current relationship. In this paper, the extremum seeking (ES) algorithm was used to track the varying MPP and a voltage overshoot avoidance (VOA) algorithm is developed to manage the voltage overshoot conditions. The proposed ES-MPPT with VOA algorithm was able to extract 197.2 mJ during 10-min operation avoiding voltage overshoot, while the ES MPPT-only scheme stopped harvesting after only 18.75 mJ because of the voltage overshoot happened at 0.4 min.

  7. Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Li, Jian; Battaglia, Francine; He, Zhen

    2016-11-01

    Microbial fuel cells (MFCs) offer an alternative approach to treat wastewater with less energy input and direct electricity generation. To optimize MFC anodic performance, adding granular activated carbon (GAC) has been proved to be an effective way, most likely due to the enlarged electrode surface for biomass attachment and improved mixing of the flow field. The impact of a flow field on the current enhancement within a porous anode medium (e.g., GAC) has not been well understood before, and thus is investigated in this study by using mathematical modeling of the multi-order Butler-Volmer equation with computational fluid dynamics (CFD) techniques. By comparing three different CFD cases (without GAC, with GAC as a nonreactive porous medium, and with GAC as a reactive porous medium), it is demonstrated that adding GAC contributes to a uniform flow field and a total current enhancement of 17%, a factor that cannot be neglected in MFC design. However, in an actual MFC operation, this percentage could be even higher because of the microbial competition and energy loss issues within a porous medium. The results of the present study are expected to help with formulating strategies to optimize MFC with a better flow pattern design.

  8. Multiparameter flow cytometry reveals myelodysplasia-related aberrant antigen expression in myelodysplastic/myeloproliferative neoplasms.

    PubMed

    Kern, Wolfgang; Bacher, Ulrike; Schnittger, Susanne; Alpermann, Tamara; Haferlach, Claudia; Haferlach, Torsten

    2013-05-01

    Within the myelodysplastic/myeloproliferative neoplasm (MDS/MPN) category of the WHO (2008), only chronic myelomonocytic leukemia was so far evaluated by multiparameter flow cytometry (MFC). To investigate the potential of MFC for MDS/MPNs, unclassifiable (MDS/MPNu), and refractory anemia associated with ring sideroblasts and marked thrombocytosis (RARS-T), we studied 91 patients with these entities (60 males/31 females; 35.3-87.4 years) for MDS-related aberrant immunophenotypes (≥ 2 different cell lineages with ≥ 3 aberrantly expressed antigens). Data were correlated with cytomorphology and cytogenetics. MFC identified MDS-related immunophenotypes in 54/91 (59.3%) of patients. Patients with or without MDS-related immunophenotype did not differ significantly by demographic characteristics, blood values, or median overall survival. MDS-related immunophenotype cases showed a higher number of aberrantly expressed antigens (mean ± SD, 4.9 ± 2.4 vs. 2.0 ± 1.4; P < 0.001). Aberrant karyotypes showed a similar frequency in patients with and without MDS-related immunophenotype (11/54; 20.4% vs. 7/37; 18.9%; P = n.s.). MDS-related immunophenotype are present in more than half of patients with MDS/MPNu and RARS-T. MFC therefore may be helpful to separate cases into more "MDS-like" or "MPN-like" subgroups. Copyright © 2012 International Clinical Cytometry Society.

  9. Antibacterial paperboard packaging using microfibrillated cellulose.

    PubMed

    Lavoine, Nathalie; Desloges, Isabelle; Manship, Brigitte; Bras, Julien

    2015-09-01

    The industry and consumers are focusing more and more on the development of biodegradable and lightweight food-packaging materials, which could better preserve the quality of the food and improve its shelf-life. In an attempt to meet these requirements, this study presents a novel bio-substrate able to contain active bio-molecules for future food-packaging applications. Based on a paperboard substrate, the development of an antibacterial bio-packaging material is, therein, achieved using a chlorhexidine digluconate (CHX) solution as a model of an antibacterial molecule, mixed with microfibrillated cellulose (MFC) and used as coating onto paperboard samples. AFM and FE-SEM analyses were performed to underline the nanoporous MFC network able to trap and to progressively release the CHX molecules. The release study of CHX was conducted in an aqueous medium and showed a lower proportion (20 %) of CHX released when using MFC. This led to the constant release of low amounts of CHX over 40 h. Antibacterial tests were carried out to assess the preservation of the antibacterial activity of the samples after the release studies. Samples remained active against Bacillus subtilis, with better results being obtained when MFC was used. The preservation of the quality of a model food was finally evaluated paving the way for future promising applications in the food packaging industry.

  10. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  11. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m(2) was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  12. Topographic analysis of individual activation patterns in medial frontal cortex in schizophrenia

    PubMed Central

    Stern, Emily R.; Welsh, Robert C.; Fitzgerald, Kate D.; Taylor, Stephan F.

    2009-01-01

    Individual variability in the location of neural activations poses a unique problem for neuroimaging studies employing group averaging techniques to investigate the neural bases of cognitive and emotional functions. This may be especially challenging for studies examining patient groups, which often have limited sample sizes and increased intersubject variability. In particular, medial frontal cortex (MFC) dysfunction is thought to underlie performance monitoring dysfunction among patients with previous studies using group averaging to have yielded conflicting results. schizophrenia, yet compare schizophrenic patients to controls To examine individual activations in MFC associated with two aspects of performance monitoring, interference and error processing, functional magnetic resonance imaging (fMRI) data were acquired while 17 patients with schizophrenia and 21 healthy controls performed an event-related version of the multi-source interference task. Comparisons of averaged data revealed few differences between the groups. By contrast, topographic analysis of individual activations for errors showed that control subjects exhibited activations spanning across both posterior and anterior regions of MFC while patients primarily activated posterior MFC, possibly reflecting an impaired emotional response to errors in schizophrenia. This discrepancy between topographic and group-averaged results may be due to the significant dispersion among individual activations, particularly among healthy controls, highlighting the importance of considering intersubject variability when interpreting the medial frontal response to error commission. PMID:18819107

  13. Multi-Factor Analysis for Selecting Lunar Exploration Soft Landing Area and the best Cruise Route

    NASA Astrophysics Data System (ADS)

    Mou, N.; Li, J.; Meng, Z.; Zhang, L.; Liu, W.

    2018-04-01

    Selecting the right soft landing area and planning a reasonable cruise route are the basic tasks of lunar exploration. In this paper, the Von Karman crater in the Antarctic Aitken basin on the back of the moon is used as the study area, and multi-factor analysis is used to evaluate the landing area and cruise route of lunar exploration. The evaluation system mainly includes the factors such as the density of craters, the impact area of craters, the formation of the whole area and the formation of some areas, such as the vertical structure, rock properties and the content of (FeO + TiO2), which can reflect the significance of scientific exploration factor. And the evaluation of scientific exploration is carried out on the basis of safety and feasibility. On the basis of multi-factor superposition analysis, three landing zones A, B and C are selected, and the appropriate cruising route is analyzed through scientific research factors. This study provides a scientific basis for the lunar probe landing and cruise route planning, and it provides technical support for the subsequent lunar exploration.

  14. The Human Performance Envelope: Past Research, Present Activities and Future Directions

    NASA Technical Reports Server (NTRS)

    Edwards, Tamsyn

    2017-01-01

    Air traffic controllers (ATCOs) must maintain a consistently high level of human performance in order to maintain flight safety and efficiency. In current control environments, performance-influencing factors such as workload, fatigue and situation awareness can co-occur, and interact, to effect performance. However, multifactor influences and the association with performance are under-researched. This study utilized a high fidelity human in the loop enroute air traffic control simulation to investigate the relationship between workload, situation awareness and ATCO performance. The study aimed to replicate and extend Edwards, Sharples, Wilson and Kirwans (2012) previous study and confirm multifactor interactions with a participant sample of ex-controllers. The study also aimed to extend Edwards et als previous research by comparing multifactor relationships across 4 automation conditions. Results suggest that workload and SA may interact to produce a cumulative impact on controller performance, although the effect of the interaction on performance may be dependent on the context and amount of automation present. Findings have implications for human-automation teaming in air traffic control, and the potential prediction and support of ATCO performance.

  15. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  16. Lockheed Martin Missiles and Fire Control’s (MFC) Ascent to Greatness: Perspectives of a SECDEF Fellow

    DTIC Science & Technology

    2008-04-01

    and has approximately 2,000 courses available. This collaborative and exceedingly effective learning environment is supported by ancillary tools and...responsive subject-matter-experts to help leaders and employees grow and become more effective . MFC has six leadership development programs commensurate...concept; hence, keeping the company viable and strong for the foreseeable future, by sticking to its core and not chasing fads or jumping on

  17. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review

    PubMed Central

    Choudhury, Payel; Prasad Uday, Uma Shankar; Bandyopadhyay, Tarun Kanti; Ray, Rup Narayan

    2017-01-01

    ABSTRACT There is an urgent need to find an environment friendly and sustainable technology for alternative energy due to rapid depletion of fossil fuel and industrialization. Microbial Fuel Cells (MFCs) have operational and functional advantages over the current technologies for energy generation from organic matter as it directly converts electricity from substrate at ambient temperature. However, MFCs are still unsuitable for high energy demands due to practical limitations. The overall performance of an MFC depends on microorganism, appropriate electrode materials, suitable MFC designs, and optimizing process parameters which would accelerate commercialization of this technology in near future. In this review, we put forth the recent developments on microorganism and electrode material that are critical for the generation of bioelectricity generation. This would give a comprehensive insight into the characteristics, options, modifications, and evaluations of these parameters and their effects on process development of MFCs. PMID:28453385

  18. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water.

    PubMed

    Yuan, Lulu; Yang, Xufei; Liang, Peng; Wang, Lei; Huang, Zheng-Hong; Wei, Jincheng; Huang, Xia

    2012-04-01

    A new technology (CDI-MFC) that combined capacitive deionization (CDI) and microbial fuel cell (MFC) was developed to treat low-concentration salt water with NaCl concentration of 60mg/L. The water desalination rate was 35.6mg/(Lh), meanwhile the charge efficiency was 21.8%. Two desorption modes were investigated: discharging (DC) mode and short circuit (SC) mode. The desalination rate in the DC mode was 200.6±3.1mg/(Lh), 47.8% higher than that in the SC mode [135.7±15.3mg/(Lh)]. The average current in the DC mode was also much higher than that of the SC mode. The energy stored in the CDI cell has been reused to enhance the electron production of MFC by the discharging desorption mode (DC mode), which offers an approach to recover the electrostatic energy in the CDI cell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Enhanced power generation and energy conversion of sewage sludge by CEA-microbial fuel cells.

    PubMed

    Abourached, Carole; Lesnik, Keaton Larson; Liu, Hong

    2014-08-01

    The production of methane from sewage sludge through the use of anaerobic digestion has been able to effectively offset energy costs for wastewater treatment. However, significant energy reserves are left unrecovered and effluent standards are not met necessitating secondary processes such as aeration. In the current study a novel cloth-electrode assembly microbial fuel cell (CEA-MFC) was used to generate electricity from sewage sludge. Fermentation pretreatment of the sludge effectively increased the COD of the supernatant and improved reactor performance. Using the CEA-MFC design, a maximum power density of 1200 mW m(-2) was reached after a fermentation pre-treatment time of 96 h. This power density represents a 275% increase over those previously observed in MFC systems. Results indicate continued improvements are possible and MFCs may be a viable modification to existing wastewater treatment infrastructure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Electricity generation from carbon monoxide in a single chamber microbial fuel cell.

    PubMed

    Mehta, P; Hussain, A; Tartakovsky, B; Neburchilov, V; Raghavan, V; Wang, H; Guiot, S R

    2010-05-05

    Electricity production from carbon monoxide (CO) is demonstrated in a single chamber microbial fuel cell (MFC) with a CoTMPP-based air cathode. The MFC was inoculated with anaerobic sludge and continuously sparged with CO as a sole carbon source. Volumetric power output was maximized at a CO flow rate of 4.8LLR(-1)d(-1) reaching 6.4mWLR(-1). Several soluble and gaseous degradation products including hydrogen, methane, and acetate were detected, resulting in a relatively low apparent Coulombic efficiency of 8.7%. Tests also demonstrated electricity production from hydrogen and acetate with the highest and fastest increase in voltage exhibited after acetate injection. It is hypothesized that electricity generation in a CO-fed MFC is accomplished by a consortium of carboxydotrophic and carbon monoxide - tolerant anodophilic microorganisms. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  2. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review.

    PubMed

    Choudhury, Payel; Prasad Uday, Uma Shankar; Bandyopadhyay, Tarun Kanti; Ray, Rup Narayan; Bhunia, Biswanath

    2017-09-03

    There is an urgent need to find an environment friendly and sustainable technology for alternative energy due to rapid depletion of fossil fuel and industrialization. Microbial Fuel Cells (MFCs) have operational and functional advantages over the current technologies for energy generation from organic matter as it directly converts electricity from substrate at ambient temperature. However, MFCs are still unsuitable for high energy demands due to practical limitations. The overall performance of an MFC depends on microorganism, appropriate electrode materials, suitable MFC designs, and optimizing process parameters which would accelerate commercialization of this technology in near future. In this review, we put forth the recent developments on microorganism and electrode material that are critical for the generation of bioelectricity generation. This would give a comprehensive insight into the characteristics, options, modifications, and evaluations of these parameters and their effects on process development of MFCs.

  3. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].

    PubMed

    Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng

    2010-10-01

    The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.

  4. The Multi-factor Predictive Seis &Gis Model of Ecological, Genetical, Population Health Risk and Bio-geodynamic Processes In Geopathogenic Zones

    NASA Astrophysics Data System (ADS)

    Bondarenko, Y.

    I. Goal and Scope. Human birth rate decrease, death-rate growth and increase of mu- tagenic deviations risk take place in geopathogenic and anthropogenic hazard zones. Such zones create unfavourable conditions for reproductive process of future genera- tions. These negative trends should be considered as a protective answer of the com- plex biosocial system to the appearance of natural and anthropogenic risk factors that are unfavourable for human health. The major goals of scientific evaluation and de- crease of risk of appearance of hazardous processes on the territory of Dnipropetrovsk, along with creation of the multi-factor predictive Spirit-Energy-Information Space "SEIS" & GIS Model of ecological, genetical and population health risk in connection with dangerous bio-geodynamic processes, were: multi-factor modeling and correla- tion of natural and anthropogenic environmental changes and those of human health; determination of indicators that show the risk of destruction structures appearance on different levels of organization and functioning of the city ecosystem (geophys- ical and geochemical fields, soil, hydrosphere, atmosphere, biosphere); analysis of regularities of natural, anthropogenic, and biological rhythms' interactions. II. Meth- ods. The long spatio-temporal researches (Y. Bondarenko, 1996, 2000) have proved that the ecological, genetic and epidemiological processes are in connection with de- velopment of dangerous bio-geophysical and bio-geodynamic processes. Mathemat- ical processing of space photos, lithogeochemical and geophysical maps with use of JEIS o and ERDAS o computer systems was executed at the first stage of forma- tion of multi-layer geoinformation model "Dnipropetrovsk ARC View GIS o. The multi-factor nonlinear correlation between solar activity and cosmic ray variations, geophysical, geodynamic, geochemical, atmospheric, technological, biological, socio- economical processes and oncologic case rate frequency, general and primary popula- tion sickness cases in Dnipropetrovsk City (1.2 million persons) are described by the multi-factor predictive SEIS & GIS model of geopathogenic zones that determines the human health risk and hazards. Results and Conclusions. We have created the SEIS system and multi-factor predictive SEIS model for the analysis of phase-metric spatio- 1 temporal nonlinear correlation and variations of rhythms of human health, ecological, genetic, epidemiological risks, demographic, socio-economic, bio-geophysical, bio- geodynamic processes in geopathogenic hazard zones. Cosmophotomaps "CPM" of vegetation index, anthropogenic-landscape and landscape-geophysical human health risk of Dnipropetrovsk City present synthesis-based elements of multi-layer GIS, which include multispectral images SPOT o, maps of different geophysical, geochem- ical, anthropogenic and citogenic risk factors, maps of integral oncologic case rate frequency, general and primary population sickness cases for administrative districts. Results of multi-layer spatio-temporal correlation of geophysical field parameters and variations of population sickness rate rhythms have enabled us to state grounds and to develop medico-biological and bio-geodynamic classification of geopathogenic zones. Bio-geodynamic model has served to define contours of anthropogenic-landscape and landscape-geophysical human health risk in Dnipropetrovsk City. Biorhythmic vari- ations give foundation for understanding physiological mechanisms of organism`s adaptation to extreme helio-geophysical and bio-geodynamic environmental condi- tions, which are dictated by changes in Multi-factor Correlation Stress Field "MCSF" with deformation of 5D SEIS. Interaction between organism and environment results in continuous superpositioning of external (exogenic) Nuclear-Molecular-Cristallic "NMC" MCSF rhythms on internal (endogenic) Nuclear-Molecular-Cellular "NMCl" MCSF rhythms. Their resonance wave (energy-information) integration and disinte- gration are responsible for structural and functional state of different physiological systems. Herewith, complex restructurization of defense functions blocks the adapta- tion process and may turn to be the primary reason for phase shifting, process and biorhythms hindering, appearance of different deseases. Interaction of biorhythms with natural and anthropogenic rhythms specify the peculiar features of environ- mental adaptation of living species. Such interaction results in correlation of sea- sonal rhythms in variations of thermo-baro-geodynamic "TBG" parameters of am- bient air with toxic concentration and human health risk in Dnipropetrovsk City. Bio-geodynamic analysis of medical and demographic situations has provided for search of spatio-temporal correlation between rhythms of general and primary pop- ulation sickness cases and oncologic case rate frequency, other medico-demographic rhythms, natural processes (helio-geophysical, thermodynamic, geodynamic) and an- thropogenic processes (industrial and houschold waste disposal, toxic emissions and their concentration in ambient air). The year of 1986, the year of minimum helio- geophysical activity "2G1dG1" and maximum anthropogenic processes associated with changes in sickness and death rates of the population of Earth were synchronized. With account of quantum character of SEIS rhythms, 5 reference levels of desyn- chronized helio-geophysical and bio-geodynamic processes affecting population sick- ness rate have been specified within bio-geodynamic models. The first reference level 2 of SEIS desynchronization includes rhythms with period of 22,5 years: ... 1958,2; 1980,7; 2003,2; .... The second reference level of SEIS desynchronization includes rhythms with period of 11,25 years: ... 1980,7; 1992; 2003,2;.... The third reference level covers 5,625-years periodic rhythms2:... 1980,7; 1986,3; 1992; 1997,6; 2003,2; .... The fourth quantum reference level includes rhythms 3 with period of 2,8125 years: ... 1980,7; 1983,5; 1986,3; 1989,1; 1992; 1994,8; 1997,6; 2000,4; 2003,2; .... Rhythms with 1,40625-years period fall is fifth reference level of SEIS desynchro- nization: ...1980,7; 1982,1; 1983,5; 1984,9; 1986,3; 1987,7; 1989,1; 1990,5; 1992; 1993,3; 1994,8; 1996,2; 1997,6; 1999; 2000,4; 2001,8; 2003,2;.... Analysis of alternat- ing medical and demographic situation in Ukraine (1981-1992)and in Dnipropetrovsk (1988-1995)has allowed to back up theoretical model of various-level rhythm quan- tum, with non-linear regularities due to phase-metric spatio-temporal deformation be- ing specified. Application of new technologies of Risk Analysis, Sinthesis and SEIS Modeling at the choice of a burial place for dangerous radioactive wastes in the zone of Chernobyl nuclear disaster (Shestopalov V., Bondarenko Y...., 1998) has shown their very high efficiency in comparison with GIS Analysis. IV.Recommendations and Outlook. In order to draw a conclusion regarding bio-geodynamic modeling of spatio-temporal structure of areas where common childhood sickness rate exists, it is necessary to mention that the only thing that can favour to exact predicting of where and when important catastrophes and epidemies will take place is correct and complex bio-geodynamic modeling. Imperfection of present GIS is the result of the lack of interactive facilities for multi-factor modeling of nonlinear natural and an- thropogenic processes. Equations' coefficients calculated for some areas are often irrelevant when applied to others. In this connection there arises a number of prob- lems concerning practical application and reliability of GIS-models that are used to carry out efficient ecological monitoring. References Bondarenko Y., 1997, Drawing up Cosmophotomaps and Multi-factor Forecasting of Hazard of Development of Dan- gerous Geodynamic Processes in Dnipropetrovsk,The Technically-Natural Problems of failures and catastrophes in connection with development of dangerous geological processes, Kiev, Ukraine, 1997. Bondarenko Y., 1997, The Methodology of a State the Value of Quality of the Ground and the House Level them Ecology-Genetic-Toxic of the human health risk based on multi-layer cartographical model", Experience of application GIS - Technologies for creating Cadastral Systems, Yalta, Ukraine, 1997, p. 39-40. Shestopalov V., Bondarenko Y., Zayonts I., Rudenko Y. , Bohuslavsky A., 1998, Complexation of Structural-Geodynamical and Hydrogeological Methods of Studying Areas to Reveal Geological Structural Perspectives for Deep Isolation of Radioactive Wastes, Field Testing and Associated Modeling of Potential High-Level Nuclear Waste Geologic Disposal Sites, Berkeley, USA, 1998, p.81-82. 3

  5. Machine Learning for Detecting Gene-Gene Interactions

    PubMed Central

    McKinney, Brett A.; Reif, David M.; Ritchie, Marylyn D.; Moore, Jason H.

    2011-01-01

    Complex interactions among genes and environmental factors are known to play a role in common human disease aetiology. There is a growing body of evidence to suggest that complex interactions are ‘the norm’ and, rather than amounting to a small perturbation to classical Mendelian genetics, interactions may be the predominant effect. Traditional statistical methods are not well suited for detecting such interactions, especially when the data are high dimensional (many attributes or independent variables) or when interactions occur between more than two polymorphisms. In this review, we discuss machine-learning models and algorithms for identifying and characterising susceptibility genes in common, complex, multifactorial human diseases. We focus on the following machine-learning methods that have been used to detect gene-gene interactions: neural networks, cellular automata, random forests, and multifactor dimensionality reduction. We conclude with some ideas about how these methods and others can be integrated into a comprehensive and flexible framework for data mining and knowledge discovery in human genetics. PMID:16722772

  6. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. [Electricity generation and contaminants degradation performances of a microbial fuel cell fed with Dioscorea zingiberensis wastewater].

    PubMed

    Li, Hui; Zhu, Xiu-Ping; Xu, Nan; Ni, Jin-Ren

    2011-01-01

    The electricity generation performance of a microbial fuel cell (MFC) utilizing Dioscorea zingiberensis wastewater was studied with an H-shape reactor. Indexes including pH, conductivity, oxidation peak potential and chemical oxygen demand (COD) of the anolyte were monitored to investigate the contaminants degradation performance of the MFC during the electricity generation process, besides, contaminant ingredients in anodic influent and effluent were analyzed by GC-MS and IR spectra as well. The maximum power density of the MFC could achieve 118.1 mW/m2 and the internal resistance was about 480 omega. Connected with a 1 000 omega external resistance, the output potential was about 0.4 V. Fed with 5 mL Dioscorea zingiberensis wastewater, the electricity generation lasted about 133 h and the coulombic efficiency was about 3.93%. At the end of electricity generation cycle, COD decreased by 90.1% while NH4(+) -N decreased by 66.8%. Furfural compounds, phenols and some other complicated organics could be decomposed and utilized in the electricity generation process, and the residual contaminants in effluent included some long-chain fatty acids, esters, ethers, and esters with benzene ring, cycloalkanes, cycloolefins, etc. The results indicate that MFC, which can degrade and utilize the organic contaminants in Dioscorea zingiberensis wastewater simultaneously, provides a new approach for resource recovery treatment of Dioscorea zingiberensis wastewater.

  8. A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment.

    PubMed

    Dong, Yue; Feng, Yujie; Qu, Youpeng; Du, Yue; Zhou, Xiangtong; Liu, Jia

    2015-12-15

    Energy self-sufficiency is a highly desirable goal of sustainable wastewater treatment. Herein, a combined system of a microbial fuel cell and an intermittently aerated biological filter (MFC-IABF) was designed and operated in an energy self-sufficient manner. The system was fed with synthetic wastewater (COD = 1000 mg L(-1)) in continuous mode for more than 3 months at room temperature (~25 °C). Voltage output was increased to 5 ± 0.4 V using a capacitor-based circuit. The MFC produced electricity to power the pumping and aeration systems in IABF, concomitantly removing COD. The IABF operating under an intermittent aeration mode (aeration rate 1000 ± 80 mL h(-1)) removed the residual nutrients and improved the water quality at HRT = 7.2 h. This two-stage combined system obtained 93.9% SCOD removal and 91.7% TCOD removal (effluent SCOD = 61 mg L(-1), TCOD = 82.8 mg L(-1)). Energy analysis indicated that the MFC unit produced sufficient energy (0.27 kWh m(-3)) to support the pumping system (0.014 kWh m(-3)) and aeration system (0.22 kWh m(-3)). These results demonstrated that the combined MFC-IABF system could be operated in an energy self-sufficient manner, resulting to high-quality effluent.

  9. Idiopathic multifocal choroiditis/punctate inner choroidopathy with acute photoreceptor loss or dysfunction out of proportion to clinically visible lesions

    PubMed Central

    Munk, Marion R.; Jung, Jesse J.; Biggee, Kristin; Tucker, William R.; Sen, H. Nida; Schmidt-Erfurth, Ursula; Fawzi, Amani A.; Jampol, Lee M.

    2014-01-01

    Purpose To report acute/subacute vision loss and paracentral scotomata in patients with idiopathic multifocal choroiditis/punctate inner choroidopathy (MFC/PIC) due to large zones of acute photoreceptor attenuation surrounding the chorioretinal lesions. Methods Multimodal-imaging case-series Results Six females and 2 males were included (mean age 31.5±5.8 years). Vision ranged from 20/20-1 to hand motion (mean 20/364). SD-OCT demonstrated extensive attenuation of the external limiting membrane (ELM), ellipsoid and interdigitation zones, adjacent to the visible MFC/PIC lesions. The corresponding areas were hyperautofluorescent on fundus-autofluorescence (FAF), and were associated with corresponding visual field defects. Full-field ERG (available in 3 cases) showed markedly decreased cone/rod response and multifocal ERG revealed reduced amplitudes and increased implicit times in 2 cases. Three patients received no treatment, the remaining were treated with oral corticosteroids (n=4), oral acyclovir/valacyclovir (n=2), intravitreal/posterior subtenon triamcinolone-acetate (n=3) and anti-VEGF (n=2). Visual recovery occurred in only 3 cases, of whom 2 were treated. Varying morphological recovery was found in 6 cases, associated with decrease in hyperautofluorescence on FAF. Conclusions MFC/PIC can present with transient or permanent central photoreceptor attenuation/loss. This presentation is likely a variant of MFC/PIC with chorioretinal atrophy. Associated changes are best evaluated using multimodal imaging. PMID:25322466

  10. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells.

    PubMed

    Miran, Waheed; Jang, Jiseon; Nawaz, Mohsin; Shahzad, Asif; Lee, Dae Sung

    2018-06-15

    The biotreatment of recalcitrant wastes in microbial fuel cells (MFCs) rather than chemical, physical, and advanced oxidation processes is a low-cost and eco-friendly process. In this study, sulfate-reducing mixed communities in MFC anodic chamber were employed for simultaneous electricity generation, dye degradation, and sulfate reduction. A power generation of 258 ± 10 mW/m 2 was achieved under stable operating conditions in the presence of electroactive sulfate-reducing bacteria (SRB). The SRBs dominant anodic chambers result in dye, chemical oxygen demand (COD), and sulfate removal of greater than 85% at an initial COD (as lactate)/SO 4 2- mass ratio of 2.0 and dye concentration of 100 mg/L. The effects of the COD/SO 4 2- ratio (5.0:1.0-0.5:1.0) and initial diazo dye concentration (100-1000 mg/L) were studied to evaluate and optimize the MFC performance. Illumina Miseq technology for bacterial community analysis showed that Proteobacteria (89.4%), Deltaproteobacteria (52.7%), and Desulfovibrio (48.2%) were most dominant at phylum, class, and genus levels, respectively, at the MFC anode. Integration of anaerobic SRB culture in MFC bioanode for recalcitrant chemical removal and bioenergy generation may lead to feasible option than the currently used technologies in terms of overall pollutant treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor.

    PubMed

    Bombelli, Paolo; Dennis, Ross J; Felder, Fabienne; Cooper, Matt B; Madras Rajaraman Iyer, Durgaprasad; Royles, Jessica; Harrison, Susan T L; Smith, Alison G; Harrison, C Jill; Howe, Christopher J

    2016-10-01

    Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens , and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m -2 ) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m -2 ). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m -2 . The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station).

  12. Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor

    PubMed Central

    Dennis, Ross J.; Felder, Fabienne; Cooper, Matt B.; Royles, Jessica; Harrison, Susan T. L.; Smith, Alison G.; Howe, Christopher J.

    2016-01-01

    Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens, and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m−2) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m−2). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m−2. The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station). PMID:27853542

  13. Testing the effects of adolescent alcohol use on adult conflict-related theta dynamics.

    PubMed

    Harper, Jeremy; Malone, Stephen M; Iacono, William G

    2017-11-01

    Adolescent alcohol use (AAU) is associated with brain anomalies, but less is known about long-term neurocognitive effects. Despite theoretical models linking AAU to diminished cognitive control, empirical work testing this relationship with specific cognitive control neural correlates (e.g., prefrontal theta-band EEG dynamics) remains scarce. A longitudinal twin design was used to test the hypothesis that greater AAU is associated with reduced conflict-related EEG theta-band dynamics in adulthood, and to examine the genetic/environmental etiology of this association. In a large (N=718) population-based prospective twin sample, AAU was assessed at ages 11/14/17. Twins completed a flanker task at age 29 to elicit EEG theta-band medial frontal cortex (MFC) power and medial-dorsal prefrontal cortex (MFC-dPFC) connectivity. Two complementary analytic methods (cotwin control analysis; biometric modeling) were used to disentangle the genetic/shared environmental risk towards AAU from possible alcohol exposure effects on theta dynamics. AAU was negatively associated with adult cognitive control-related theta-band MFC power and MFC-dPFC functional connectivity. Genetic influences primarily underlie these associations. Findings provide strong evidence that genetic factors underlie the comorbidity between AAU and diminished cognitive control-related theta dynamics in adulthood. Conflict-related theta-band dynamics appear to be candidate brain-based endophenotypes/mechanisms for AAU. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell.

    PubMed

    Ding, Jing; Lu, Yong-Ze; Fu, Liang; Ding, Zhao-Wei; Mu, Yang; Cheng, Shuk H; Zeng, Raymond J

    2017-03-01

    Anaerobic oxidation of methane (AOM) contributes significantly to the global methane sink. Previously, studies of anaerobic methanotrophic (ANME) archaea have been limited as they have not been separable from their bacterial partners during the AOM process because of their dependence on the bacteria. A microbial fuel cell (MFC) is a device capable of directly transforming chemical energy to electrical energy via electrochemical reactions involving biochemical pathways. In this study, decoupling of denitrifying anaerobic methane oxidation (DAMO) archaea and DAMO bacteria was investigated in an microbial fuel cell (MFC) using methane as the fuel. The DAMO fuel cell worked successfully but demonstrated weak electrogenic capability with around 25 mV production. After 45 days' enrichment, the sequencing and fluorescence in situ hybridization results showed the DAMO archaea percentage had increased from 26.96% (inoculum) to 65.77% (electrode biofilm), while the DAMO bacteria percentage decreased from 24.39% to 2.07%. Moreover, the amount of ANME-2d had doubled in the electrode biofilm compared with the inoculum. The sequencing results also showed substantial enrichment of the Ignavibacterium and Geobacter genera. The roles of Ignavibacterium and Geobacter in the MFC system need to be further investigated. Nevertheless, these results illustrate that an MFC device may provide a possible approach to separate DAMO archaea from DAMO bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst

    PubMed Central

    Kharkwal, Shailesh; Tan, Yi Chao; Lu, Min; Ng, How Yong

    2017-01-01

    A novel microbial fuel cell (MFC)-based biosensor was designed for continuous monitoring of biochemical oxygen demand (BOD) in real wastewater. To lower the material cost, manganese dioxide (MnO2) was tested as an innovative cathode catalyst for oxygen reduction in a single chamber air-cathode MFC, and two different crystalline structures obtained during synthesis of MnO2 (namely β- and γ-MnO2) were compared. The BOD sensor was studied in a comprehensive way, using both sodium acetate solution and real domestic wastewater (DWW). The optimal performance of the sensor was obtained with a β-MnO2 catalyst, with R2 values of 0.99 and 0.98 using sodium acetate solution and DWW, respectively. The BOD values predicted by the β-MnO2 biosensor for DWW were in agreement with the BOD5 values, determined according to standard methods, with slight variations in the range from 3% to 12%. Finally, the long-term stability of the BOD biosensor was evaluated over 1.5 years. To the best of our knowledge, this is the first report of an MFC BOD sensor using an MnO2 catalyst at the cathode; the feasibility of using a low-cost catalyst in an MFC for online measurement of BOD in real wastewater broadens the scope of applications for such devices. PMID:28134838

  16. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts.

    PubMed

    Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M

    2017-08-01

    Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison of Exoelectrogenic Bacteria Detected Using Two Different Methods: U-tube Microbial Fuel Cell and Plating Method

    PubMed Central

    Yu, Jaecheul; Cho, Sunja; Kim, Sunah; Cho, Haein; Lee, Taeho

    2012-01-01

    In a microbial fuel cell (MFC), exoelectrogens, which transfer electrons to the electrode, have been regarded as a key factor for electricity generation. In this study, U-tube MFC and plating methods were used to isolate exoelectrogens from the anode of an MFC. Disparate microorganisms were identified depending on isolation methods, despite the use of an identical source. Denaturing gel gradient electrophoresis (DGGE) analysis showed that certain microorganisms became dominant in the U-tube MFC. The predominant bacterium was similar to Ochrobactrum sp., belonging to the Alphaproteobacteria, which was shown to be able to function as an exoelectrogen in a previous study. Three isolates, one affiliated with Bacillus sp. and two with Paenibacillus sp., were identified using the plating method, which belonged to the Gram-positive bacteria, the Firmicutes. The U-tube MFCs were inoculated with the three isolates using the plating method, operated in the batch mode and the current was monitored. All of the U-tube MFCs inoculated with each isolate after isolation from plates produced lower current (peak current density: 3.6–16.3 mA/m2) than those in U-tube MFCs with mixed culture (48.3–62.6 mA/m2). Although the isolates produced low currents, various bacterial groups were found to be involved in current production. PMID:22129603

  18. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment.

    PubMed

    De Kauwe, Martin G; Medlyn, Belinda E; Walker, Anthony P; Zaehle, Sönke; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Hickler, Thomas; Jain, Atul K; Luo, Yiqi; Lu, Xingjie; Luus, Kristina; Parton, William J; Shu, Shijie; Wang, Ying-Ping; Werner, Christian; Xia, Jianyang; Pendall, Elise; Morgan, Jack A; Ryan, Edmund M; Carrillo, Yolima; Dijkstra, Feike A; Zelikova, Tamara J; Norby, Richard J

    2017-09-01

    Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2  yr -1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO 2 -induced water savings to extend the growing season length. Observed interactive (CO 2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change. © 2017 John Wiley & Sons Ltd.

  19. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO 2 enrichment experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Kauwe, Martin G.; Medlyn, Belinda E.; Walker, Anthony P.

    Multi-factor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date such models have only been tested against single-factor experiments. We applied 10 TBMs to the multi-factor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multi-factor experiments can be used to constrain models, and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2 yr -1). Comparison with data highlighted model failures particularlymore » in respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against single-factors was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they over-estimated the effect of warming on leaf onset and did not allow CO 2-induced water savings to extend growing season length. Observed interactive (CO 2 x warming) treatment effects were subtle and contingent on water stress, phenology and species composition. Since the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. Finally, we outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.« less

  20. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO 2 enrichment experiment

    DOE PAGES

    De Kauwe, Martin G.; Medlyn, Belinda E.; Walker, Anthony P.; ...

    2017-02-01

    Multi-factor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date such models have only been tested against single-factor experiments. We applied 10 TBMs to the multi-factor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multi-factor experiments can be used to constrain models, and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2 yr -1). Comparison with data highlighted model failures particularlymore » in respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against single-factors was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they over-estimated the effect of warming on leaf onset and did not allow CO 2-induced water savings to extend growing season length. Observed interactive (CO 2 x warming) treatment effects were subtle and contingent on water stress, phenology and species composition. Since the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. Finally, we outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.« less

  1. Effect of biofilm and selective mixed culture on microbial fuel cell for the treatment of tempeh industrial wastewater

    NASA Astrophysics Data System (ADS)

    Arbianti, Rita; Surya Utami, Tania; Leondo, Vifki; Elisabeth; Andyah Putri, Syafira; Hermansyah, Heri

    2018-03-01

    Microbial Fuel Cell (MFC) provides a new alternative in the treatment of organic waste. MFC produces 50-90% less sludge to be disposed than other methods. MFC technology can utilize existing microorganisms in the waste as a catalyst to generate electricity and simultaneously also serves as a wastewater treatment unit itself. Tempeh wastewater is one of the abundant industrial wastewater which can be processed using MFC. Research using the selective mixed culture is very likely to do due to the good result on COD removals by adding mixed culture. Microorganisms in tempeh wastewater consist of bacteria gram positive and gram negative. This study focused on the aspects of waste treatment which is determined by decreased levels of COD and BOD. Variations in this study are the formation time of biofilm and the addition of selective gram. MFC operated for 50 hours. For a variation of biofilm formation, experiments were performed after incubation by replacing incubation substrates used in the formation of biofilms. Biofilm formation time in this study was 3 days, 5 days, 7 days and 14 days. Gram positive and gram negative bacteria were used in selective mixed culture experiments. Selective mixed culture added to the reactor by 1 mL and 5 mL. Selection of gram-positive or gram-negative bacteria carried by growing mixed culture on selective media. COD and BOD levels were measured in the wastewater before and after the experiment conducted in each variation. Biofilm formation optimum time is 7 days which decrease COD and BOD levels by 18.2% and 35.9%. The addition of gram negative bacteria decreases COD and BOD levels by 29.32% and 51.32%. Further research is needed in order to get a better result on decreasing levels of COD and BOD.

  2. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial communities, while the quality of available organic matter may have played a significant role in supporting high performing microbial communities.

  3. Global emissions of the hydrofluorocarbons (HFCs) HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa based on atmospheric observations

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Miller, B. R.; Rigby, M. L.; Reimann, S.; Muhle, J.; Agage, Soge, Snu Members, Kopri Members

    2010-12-01

    We report on the atmospheric measurements and global emissions of the hydrofluorocarbons (HFCs) HFC-365mfc (CH3CH2CF2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). These measurements are from in-situ observations at stations of AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System for Observations of Halogenated Greenhouse Gases in Europe), and from the Korean station Gosan. We also report on flask sample measurements from the Antarctic stations King Sejong and Troll, and extend our records back to the 1970s using archived air samples of both hemispheres. All data are used in a global 12-box 2-dimensional atmospheric transport model to derive global abundances and emission estimates. All four HFCs have strongly increased in the atmosphere in recent years with growth rates at nearly 10 %, resulting in dry air mole fractions at the end of 2009 of 0.49 ppt for HFC-365mfc, 1.00 ppt for HFC-245fa, and 0.51 ppt for HFC-227ea. HFC-236fa, for which we report the first atmospheric measurements, is less abundant and has grown to 0.069 ppt at the end of 2009. Our model results show rapidly growing emissions of HFC-365mfc and HFC-245fa after 2002 but surprisingly these have now started to decline to globally 2.7 kt/yr (HFC-365mfc) and 6.1 kt/yr (HFC-245fa). On the other hand HFC-227ea and HFC-236fa show uninterrupted growth in their emissions of 2.5 kt/yr and 0.2 kt/yr at the end of 2009.

  4. Improved energy output levels from small-scale Microbial Fuel Cells.

    PubMed

    Ieropoulos, I; Greenman, J; Melhuish, C

    2010-04-01

    This study reports on the findings from the investigation into small-scale (6.25 mL) MFCs, connected together as a network of multiple units. The MFCs contained unmodified (no catalyst) carbon fibre electrodes and for initial and later experiments, a standard ion-exchange membrane for the proton transfer from the anode to the cathode. The anode microbial culture was of the type commonly found in domestic wastewater fed with 5 mM acetate as the carbon-energy (C/E) source. The cultures were mature and acclimatised in the MFC environment for approximately 2 months before being re-inoculated in the experimental MFC units. The cathode was of the O(2) diffusion open-to-air type, but for the purposes of the polarization experiments, the cathodic electrodes were moistened with ferricyanide. The main aim of this study was to investigate the effects of connecting multiples of MFC units together as a method of scale up by using stacks and comparison of the effects of different PEM and MFC structural materials on the performance. Impedance matching (maximum-power-transfer) was achieved through calculation of total internal impedance. Three different PEM materials were compared in otherwise identical MFCs in sets of three. For individual isolated MFCs, Hyflon E87-03 was shown to produce twice, whilst E87-10 produced approximately 1.5 times the power output of the control (standard) PEM. However, when MFCs containing the E87-03 and E87-10 membranes were connected in a stack, the system suffered from severe instability and cell reversal. To study the effects of the various polymeric MFC structural materials, four small-scale units were manufactured from three different types of RP material; acrylo-butadiene-styrene coated (ABS), ABS coated (ABS-MEK) and polycarbonate (polyC). The stack of four (4) units prototyped out of polyC produced the highest power density values in polarisation experiments (80 mW/m(2)). 2009 Elsevier B.V. All rights reserved.

  5. [Study on building index system of risk assessment of post-marketing Chinese patent medicine based on AHP-fuzzy neural network].

    PubMed

    Li, Yuanyuan; Xie, Yanming; Fu, Yingkun

    2011-10-01

    Currently massive researches have been launched about the safety, efficiency and economy of post-marketing Chinese patent medicine (CPM) proprietary Chinese medicine, but it was lack of a comprehensive interpretation. Establishing the risk evaluation index system and risk assessment model of CPM is the key to solve drug safety problems and protect people's health. The clinical risk factors of CPM exist similarities with the Western medicine, can draw lessons from foreign experience, but also have itself multi-factor multivariate multi-level complex features. Drug safety risk assessment for the uncertainty and complexity, using analytic hierarchy process (AHP) to empower the index weights, AHP-based fuzzy neural network to build post-marketing CPM risk evaluation index system and risk assessment model and constantly improving the application of traditional Chinese medicine characteristic is accord with the road and feasible beneficial exploration.

  6. [Suicidality and musical preferences: a possible link?].

    PubMed

    Mikolajczak, Gladys; Desseilles, Martin

    2012-01-01

    Music is an important part of young people's lives. In this article, we attempt to answer two questions on the links between music et suicide. First, we examine if certain types of music favor suicidal process (ideation and acting out); and, secondly, we examine if music can constitute a tool to reduce the risk of suicide. Several factors possibly involved in links between musical preferences and the suicidal process are developed: the Velten effect and the musical mood induction procedure, the identification and the learning by imitation, the media influence as well as the individual characteristics. A multifactor approach is necessary to understand the complex and birectional links that unite musical preferences and suicide risk.

  7. [Genetic diseases in pediatric patients hospitalised in the town of Ubaté, Colombia].

    PubMed

    Páez, Paola; Suárez-Obando, Fernando; Zarante, Ignacio

    2008-01-01

    Describing genetic disease frequency in a second-level hospital's in-patient paediatric service The hospital's statistical department's records for 2005 were comprehensively reviewed; the study was carried out in the town of Ubaté during 2006. Complex diseases led to nearly 25% of all hospitalisations, including multifactor diseases and congenital malformations. However, an aetiological study and/or geneticist consultation or referral took place on a few occasions. Primary care hospitals should become more relevant reference centres for detecting genetic diseases amongst the paediatric population. New mechanisms are needed for implementing this to allow patients access to a geneticist and for an aetiological diagnosis to be made and providing suitable genetic counselling.

  8. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    PubMed

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The prevalence and structure of obsessive-compulsive personality disorder in Hispanic psychiatric outpatients

    PubMed Central

    Ansell, Emily B.; Pinto, Anthony; Crosby, Ross D.; Becker, Daniel F.; Añez, Luis M.; Paris, Manuel; Grilo, Carlos M.

    2010-01-01

    This study sought to confirm a multi-factor model of Obsessive-compulsive personality disorder (OCPD) in a Hispanic outpatient sample and to explore associations of the OCPD factors with aggression, depression, and suicidal thoughts. One hundred and thirty monolingual, Spanish-speaking participants were recruited from a community mental health center and were assessed by bilingual doctoral level clinicians. OCPD was highly prevalent (26%) in this sample. Multi-factor models of OCPD were tested and the two factors - perfectionism and interpersonal rigidity - provided the best model fit. Interpersonal rigidity was associated with aggression and anger while perfectionism was associated with depression and suicidal thoughts. PMID:20227063

  10. A Multifactor Secure Authentication System for Wireless Payment

    NASA Astrophysics Data System (ADS)

    Sanyal, Sugata; Tiwari, Ayu; Sanyal, Sudip

    Organizations are deploying wireless based online payment applications to expand their business globally, it increases the growing need of regulatory requirements for the protection of confidential data, and especially in internet based financial areas. Existing internet based authentication systems often use either the Web or the Mobile channel individually to confirm the claimed identity of the remote user. The vulnerability is that access is based on only single factor authentication which is not secure to protect user data, there is a need of multifactor authentication. This paper proposes a new protocol based on multifactor authentication system that is both secure and highly usable. It uses a novel approach based on Transaction Identification Code and SMS to enforce another security level with the traditional Login/password system. The system provides a highly secure environment that is simple to use and deploy with in a limited resources that does not require any change in infrastructure or underline protocol of wireless network. This Protocol for Wireless Payment is extended as a two way authentications system to satisfy the emerging market need of mutual authentication and also supports secure B2B communication which increases faith of the user and business organizations on wireless financial transaction using mobile devices.

  11. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode.

    PubMed

    Zhu, Feng; Wang, Wancheng; Zhang, Xiaoyan; Tao, Guanhong

    2011-08-01

    A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m(2). Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells.

    PubMed

    Lai, Bin; Wang, Peng; Li, Haoran; Du, Zhuwei; Wang, Lijuan; Bi, Sichao

    2013-03-01

    A new type of carbon-nitrogen-metal catalyst, PANI-Fe-C, was synthesized by calcination process. According to the results of FT-IR and XPS analysis, polyaniline chain was broken by calcination. Small nitrogen-contained molecular fragments were gasified during calcination process, while the remaining nitrogen atoms were enchased in the new produced multiple carbon rings by C-N and CN bonds and performed as the catalytic active sites and the covalent centers for soluble iron components. Calculated from the polarization curves, a maximum power density of 10.17W/m(3) for the MFC with the synthetic catalyst was obtained, which was slightly higher than the MFC with Pt/C catalyst of 9.56W/m(3). All the results obtained in this paper proved that the newly synthetic nitrogen-carbon-metal catalyst would be a potential alternative to the expensive Pt/C catalyst in the field of MFC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Characteristics of electricity generation and biodegradation in tidal river sludge-used microbial fuel cells.

    PubMed

    Touch, Narong; Hibino, Tadashi; Nagatsu, Yoshiyuki; Tachiuchi, Kouhei

    2014-04-01

    The electricity generation behavior of microbial fuel cell (MFC) using the sludge collected from the riverbank of a tidal river, and the biodegradation of the sludge by the electricity generation are evaluated. Although the maximum current density (150-300 mA/m(2)) was higher than that of MFC using freshwater sediment (30 mA/m(2)), the output current was greatly restricted by the mass transfer limitation. However, our results also indicate that placing the anode in different locations in the sludge could reduce the mass transfer limitation. After approximately 3 months, the removal efficiency of organic carbon was approximately 10%, demonstrated that MFC could also enhance the biodegradation of the sludge by nearly 10-fold comparing with the natural biodegradation. We also found that the biodegradation could be identified by the behavior of oxygen consumption of the sludge. Importantly, the oxygen consumption of the sludge became higher along with the electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity.

    PubMed

    Gregoire, K P; Becker, J G

    2012-09-01

    Agricultural crop residues contain high amounts of biochemical energy as cellulose and lignin. A portion of this biomass could be sustainably harvested for conversion to bioenergy to help offset fossil fuel consumption. In this study, the potential for converting lignocellulosic biomass directly to electricity in a microbial fuel cell (MFC) was explored. Design elements of tubular air cathode MFCs and leach-bed bioreactors were integrated to develop a new solid-substrate MFC in which cellulose hydrolysis, fermentation, and anode respiration occurred in a single chamber. Electricity was produced continuously from untreated corncob pellets for >60 d. Addition of rumen fluid increased power production, presumably by providing growth factors to anode-respiring bacteria. Periodic exposure to oxygen also increased power production, presumably by limiting the diversion of electrons to methanogenesis. In the absence of methanogenesis, bioaugmentation with Geobacter metallireducens further improved MFC performance. Under these conditions, the maximum power density was 230 mW/m(3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  16. 'NASA Invention of the Year' Controls Noise and Vibration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Developed at NASA's Langley Research Center, the Macro-Fiber Composite (MFC) is designed to control vibration, noise, and deflections in composite structural beams and panels. Smart Material Corporation specializes in the development of piezocomposite components, and licensed the MFC technology from Langley in 2002. To date, Smart Material Corporation has sold MFCs to over 120 customers, including such industry giants as Volkswagen, Toyota, Honda, BMW, General Electric, and the tennis company, HEAD. The company estimates that its customers have filed at least 100 patents for their various unique uses of the technology. In addition, the company's product portfolio has grown to include piezoceramic fibers and fiber composites, piezoceramic actuators and sensors, and test equipment for these products. It also offers a compact, lightweight power system for MFC testing and validation. Consumer applications already on the market include piezoelectric systems as part of audio speakers, phonograph cartridges and microphones, and recreational products requiring vibration control, such as skis, snowboards, baseball bats, hockey sticks, and tennis racquets.

  17. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    PubMed

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    PubMed

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Advanced oxidation of biorefractory organics in aqueous solution together with bioelectricity generation by microbial fuel cells with composite FO/GPEs

    NASA Astrophysics Data System (ADS)

    Fu, Bao-rong; Shen, Chao; Ren, Jing; Chen, Jia-yi; Zhao, Lin

    2018-03-01

    In this study, ferric oxide loading graphite particle electrodes (FO/GPEs) were prepared as cathode of a three-dimensional electrode MFC-Fenton system. The properties of the composite cathode were examined with higher surface area and more mesopores. FO/GPEs could work as both cathode and Fenton iron reagents, contributing to high oxidation activity and better performance of electricity generation. The application of FO/GPEs MFC-Fenton system on degrading p-nitrophenol presented high catalytic efficiency in a wide range of pH value. The removal of p-nitrophenol and TOC attained to about 85 % within 8 and 64 h at neutral pH, respectively. A neutral FO/GPEs MFC-Fenton oxidation mechanism was also proposed. Specifically, both the surface iron sites and dissolved iron ions catalyzed the decomposition of H2O2. As results, the generated hydroxyl radicals were used for p-nitrophenol degradation and the iron oxide was recycled.

  20. An MFC-Based Online Monitoring and Alert System for Activated Sludge Process

    PubMed Central

    Xu, Gui-Hua; Wang, Yun-Kun; Sheng, Guo-Ping; Mu, Yang; Yu, Han-Qing

    2014-01-01

    In this study, based on a simple, compact and submersible microbial fuel cell (MFC), a novel online monitoring and alert system with self-diagnosis function was established for the activated sludge (AS) process. Such a submersible MFC utilized organic substrates and oxygen in the AS reactor as the electron donor and acceptor respectively, and could provide an evaluation on the status of the AS reactor and thus give a reliable early warning of potential risks. In order to evaluate the reliability and sensitivity of this online monitoring and alert system, a series of tests were conducted to examine the response of this system to various shocks imposed on the AS reactor. The results indicate that this online monitoring and alert system was highly sensitive to the performance variations of the AS reactor. The stability, sensitivity and repeatability of this online system provide feasibility of being incorporated into current control systems of wastewater treatment plants to real-time monitor, diagnose, alert and control the AS process. PMID:25345502

  1. Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Shecheng; Institute of Micro and Nano Optics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060; Zhang, Weigang, E-mail: zhangwg@nankai.edu.cn, E-mail: haozhang@nankai.edu.cn

    2015-02-23

    A reconfigurable Mach-Zenhnder interferometer (MZI) based on a microfluidic cavity (MFC) constructed by embedding a microfiber between two segments of single-mode fibers with pre-designed lateral offset has been proposed and experimentally demonstrated. The MFC serves as an interference arm with an eccentric annular cross section and allows convenient sample (gas or liquids) replacement procedure. The microfiber works as the other interference arm that provides the proposed device with ease of reconstruction and also enhances the force sensitivity. The re-configurability and the ultra-wide tuning sensitivity range are demonstrated by immersing the MZI constructed with a 484 μm-long-MFC and a microfiber 44more » μm in diameter in different droplets. Ultrahigh sensitivities of 34.65 nm/°C (∼88 380 nm/RIU) and −493.7 nm/N (∼−590 pm/με) are experimentally achieved using a droplet with a refractive index of ∼1.44.« less

  2. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment.

    PubMed

    Ren, Yueping; Chen, Jinli; Li, Xiufen; Yang, Na; Wang, Xinhua

    2018-04-01

    Short-term initial anolyte pH adjustment can relieve the performance deterioration of the single-chamber air-cathode buffer-free microbial fuel cell (BFMFC) caused by anolyte acidification. Adjusting the initial anolyte pH to 9 in 5 running cycles is the optimum strategy. The relative abundance of the electrochemically active Geobacter in the KCl-pH9-MFC anode biofilm increased from 59.01% to 75.13% after the short-term adjustment. The maximum power density (P max ) of the KCl-pH9-MFC was elevated from 316.4mW·m -2 to 511.6mW·m -2 , which was comparable with that of the PBS-MFC. And, after the short-term adjusting, new equilibrium between the anolyte pH and the anode biofilm electrochemical activity has been established in the BFMFC, which ensured the sustainability of the improved bioelectricity generation performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell.

    PubMed

    Happe, Manuel; Sugnaux, Marc; Cachelin, Christian Pierre; Stauffer, Marc; Zufferey, Géraldine; Kahoun, Thomas; Salamin, Paul-André; Egli, Thomas; Comninellis, Christos; Grogg, Alain-François; Fischer, Fabian

    2016-01-01

    Phosphate remobilization from digested sewage sludge containing iron phosphate was scaled-up in a microbial fuel cell (MFC). A 3litre triple chambered MFC was constructed. This reactor was operated as a microbial fuel cell and later as a microbial electrolysis cell to accelerate cathodic phosphate remobilization. Applying an additional voltage and exceeding native MFC power accelerated chemical base formation and the related phosphate remobilization rate. The electrolysis approach was extended using a platinum-RVC cathode. The pH rose to 12.6 and phosphate was recovered by 67% in 26h. This was significantly faster than using microbial fuel cell conditions. Shrinking core modelling particle fluid kinetics showed that the reaction resistance has to move inside the sewage sludge particle for considerable rate enhancement. Remobilized phosphate was subsequently precipitated as struvite and inductively coupled plasma mass spectrometry indicated low levels of cadmium, lead, and other metals as required by law for recycling fertilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Carbon-Neutral Photosynthetic Microbial Fuel Cell Powered by Microcystis aeruginosa.

    PubMed

    Ma, Meirong; Cao, Limin; Chen, Li; Ying, Xiaofang; Deng, Zongwu

    2015-07-01

    A photosynthetic microbial fuel cell (m-PMFC) is developed for generating electricity by harnessing solar energy using Microcystis aeruginosa. In this m-PMFC, commensal bacteria can consume the nutrients that Microcystis aeruginosa produces to generate electricity so that no net CO₂production occurs. A b-MFC is constructed to confirm the role of commensal bacteria in electric generation. An s-PMFC is constructed to confirm the contribution of Microcystis aeruginosa as substrates. The power outputs of m-PMFCs exhibit no significant difference in terms of different inoculation amount of Microcystis aeruginosa or light/dark cycles. The power density of m-PMFC exhibits similar response to bubbling of N₂and O₂as that of b-MFC, as confirmed by cyclic voltammetry analysis of m-PMFC and b-MFC. Scanning electron microscope images demonstrate that the biofilm of m-PMFC consists mainly of commensal bacteria. These results suggest that commensal bacteria act as the main biocatalysts and Microcystis aeruginosa as the anode substrates in the m-PMFC.

  5. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    PubMed

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m 2 and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Evaluation of Kefir as a New Anodic Biocatalyst Consortium for Microbial Fuel Cell.

    PubMed

    Silveira, Gustavo; Schneedorf, José Maurício

    2018-02-21

    Kefir, a combined consortium of bacteria and yeast encapsulated by a polymeric matrix of exopolysaccharides, was used as anodic biocatalyst in a two-chamber microbial fuel cell (MFC). Fermentation was followed during 72 h and polarization curves were obtained from linear sweep voltammetry. The effect of methylene blue as charge-transfer mediator in the kefir metabolism was evaluated. UV/Vis spectrophotometry and cyclic voltammetry were applied to evaluate the redox state of the mediator and to characterize the electrochemical activity, whereas current interruption was used for internal resistance determination. Aiming to establish a relationship between the microbial development inside the anodic chamber with the generated power in the MFC, total titratable acidity, pH, viscosity, carbohydrate assimilation, and microbial counting were assayed. The kefir-based MFC demonstrated a maximum power density of 54 mW m -2 after 24 h fermentation, revealing the potential use of kefir as a biocatalyst for microbial fuel cells.

  7. A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment

    PubMed Central

    Dong, Yue; Feng, Yujie; Qu, Youpeng; Du, Yue; Zhou, Xiangtong; Liu, Jia

    2015-01-01

    Energy self-sufficiency is a highly desirable goal of sustainable wastewater treatment. Herein, a combined system of a microbial fuel cell and an intermittently aerated biological filter (MFC-IABF) was designed and operated in an energy self-sufficient manner. The system was fed with synthetic wastewater (COD = 1000 mg L−1) in continuous mode for more than 3 months at room temperature (~25 °C). Voltage output was increased to 5 ± 0.4 V using a capacitor-based circuit. The MFC produced electricity to power the pumping and aeration systems in IABF, concomitantly removing COD. The IABF operating under an intermittent aeration mode (aeration rate 1000 ± 80 mL h−1) removed the residual nutrients and improved the water quality at HRT = 7.2 h. This two-stage combined system obtained 93.9% SCOD removal and 91.7% TCOD removal (effluent SCOD = 61 mg L−1, TCOD = 82.8 mg L−1). Energy analysis indicated that the MFC unit produced sufficient energy (0.27 kWh m−3) to support the pumping system (0.014 kWh m−3) and aeration system (0.22 kWh m−3). These results demonstrated that the combined MFC-IABF system could be operated in an energy self-sufficient manner, resulting to high-quality effluent. PMID:26666392

  8. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater.

    PubMed

    Liu, Xian-Wei; Sun, Xue-Fei; Huang, Yu-Xi; Sheng, Guo-Ping; Zhou, Kang; Zeng, Raymond J; Dong, Fang; Wang, Shu-Guang; Xu, An-Wu; Tong, Zhong-Hua; Yu, Han-Qing

    2010-10-01

    Microbial fuel cells (MFCs) provide new opportunities for the simultaneous wastewater treatment and electricity generation. Enhanced oxygen reduction capacity of cost-effective metal-based catalysts in an air cathode is essential for the scale-up and commercialization of MFCs in the field of wastewater treatment. We demonstrated that a nano-structured MnO(x) material, prepared by an electrochemically deposition method, could be an effective catalyst for oxygen reduction in an MFC to generate electricity with the maximum power density of 772.8 mW/m(3) and remove organics when the MFC was fed with an acetate-laden synthetic wastewater. The nano-structured MnO(x) with the controllable size and morphology could be readily obtained with the electrochemical deposition method. Both morphology and manganese oxidation state of the nano-scale catalyst were largely dependent on the electrochemical preparation process, and they governed its catalytic activity and the cathodic oxygen reduction performance of the MFC accordingly. Furthermore, cyclic voltammetry (CV) performed on each nano-structured material suggests that the MnO(x) nanorods had an electrochemical activity towards oxygen reduction reaction via a four-electron pathway in a neutral pH solution. This work provides useful information on the facile preparation of cost-effective cathodic catalysts in a controllable way for the single-chamber air-cathode MFC for wastewater treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The Denitrification Characteristics and Microbial Community in the Cathode of an MFC with Aerobic Denitrification at High Temperatures.

    PubMed

    Zhao, Jianqiang; Wu, Jinna; Li, Xiaoling; Wang, Sha; Hu, Bo; Ding, Xiaoqian

    2017-01-01

    Microbial fuel cells (MFCs) have attracted much attention due to their ability to generate electricity while treating wastewater. The performance of a double-chamber MFC with simultaneous nitrification and denitrification (SND) in the cathode for treating synthetic high concentration ammonia wastewater was investigated at different dissolved oxygen (DO) concentrations and high temperatures. The results showed that electrode denitrification and traditional heterotrophic denitrification co-existed in the cathode chamber. Electrode denitrification by aerobic denitrification bacterium (ADB) is beneficial for achieving a higher voltage of the MFC at high DO concentrations (3.0-4.2 mg/L), while traditional heterotrophic denitrification is conducive to higher total nitrogen (TN) removal at low DO (0.5-1.0 mg/L) concentrations. Under high DO conditions, the nitrous oxide production and TN removal efficiency were higher with a 50 Ω external resistance than with a 100 Ω resistance, which demonstrated that electrode denitrification by ADB occurred in the cathode of the MFC. Sufficient electrons were inferred to be provided by the electrode to allow ADB survival at low carbon:nitrogen ratios (≤0.3). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) results showed that increasing the DO resulted in a change of the predominant species from thermophilic autotrophic nitrifiers and facultative heterotrophic denitrifiers at low DO concentrations to thermophilic ADB at high DO concentrations. The predominant phylum changed from Firmicutes to Proteobacteria , and the predominant class changed from Bacilli to Alpha, Beta , and Gamma Proteobacteria .

  10. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.

    PubMed

    Shrestha, Namita; Chilkoor, Govinda; Xia, Lichao; Alvarado, Catalina; Kilduff, James E; Keating, John J; Belfort, Georges; Gadhamshetty, Venkataramana

    2017-06-15

    Municipal wastewater is an attractive alternative to freshwater sources to meet the cooling water needs of thermal power plants. Here we offer an energy-efficient integrated microbial fuel cell (MFC)/ultrafiltration (UF) process to purify primary clarifier effluent from a municipal wastewater treatment plant for use as cooling water. The microbial fuel cell was shown to significantly reduce chemical oxygen demand (COD) in the primary settled wastewater effluent upstream of the UF module, while eliminating the energy demand required to deliver dissolved oxygen in conventional aerobic treatment. We investigated surface modification of the UF membranes to control fouling. Two promising hydrophilic monomers were identified in a high-throughput search: zwitterion (2-(Methacryloyloxy)-ethyl-dimethyl-(3-sulfopropyl ammoniumhydroxide, abbreviated BET SO 3 - ), and amine (2-(Methacryloyloxy) ethyl trimethylammonium chloride, abbreviated N(CH 3 ) 3 + ). Monomers were grafted using UV-induced polymerization on commercial poly (ether sulfone) membranes. Filtration of MFC effluent by membranes modified with BET SO 3 - and N(CH 3 ) 3 + exhibited a lower rate of resistance increase and lower energy consumption than the commercially available membrane. The MFC/UF process produced high quality cooling water that meets the Electrical Power Research Institute (EPRI) recommendations for COD, a suite of metals (Fe, Al, Cu, Zn, Si, Mn, S, Ca and Mg), and offered extremely low corrosion rates (<0.05 mm/yr). A series of AC and DC diagnostic tests were used to evaluate the MFC performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer

    PubMed Central

    de Paula, Ana Caroline L.; Medeiros, Julliane D.; de Azevedo, Analice C.; Chagas, Jéssica M. de Assis; da Silva, Vânia L.

    2018-01-01

    Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC)—a typical Brazilian white soft cheese—and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes) were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota. PMID:29463055

  12. Arsenic mitigation in paddy soils by using microbial fuel cells.

    PubMed

    Gustave, Williamson; Yuan, Zhao-Feng; Sekar, Raju; Chang, Hu-Cheng; Zhang, Jun; Wells, Mona; Ren, Yu-Xiang; Chen, Zheng

    2018-07-01

    Arsenic (As) behavior in paddy soils couples with the redox process of iron (Fe) minerals. When soil is flooded, Fe oxides are transformed to soluble ferrous ions by accepting the electrons from Fe reducers. This process can significantly affect the fate of As in paddy fields. In this study, we show a novel technique to manipulate the Fe redox processes in paddy soils by deploying soil microbial fuel cells (sMFC). The results showed that the sMFC bioanode can significantly decrease the release of Fe and As into soil porewater. Iron and As contents around sMFC anode were 65.0% and 47.0% of the control respectively at day 50. The observed phenomenon would be explained by a competition for organic substrate between sMFC bioanode and the iron- and arsenic-reducing bacteria in the soils. In the vicinity of bioanode, organic matter removal efficiencies were 10.3% and 14.0% higher than the control for lost on ignition carbon and total organic carbon respectively. Sequencing of the 16S rRNA genes suggested that the influence of bioanodes on bulk soil bacterial community structure was minimal. Moreover, during the experiment a maximum current and power density of 0.31 mA and 12.0 mWm -2 were obtained, respectively. This study shows a novel way to limit the release of Fe and As in soils porewater and simultaneously generate electricity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The role of riboflavin in decolourisation of Congo red and bioelectricity production using Shewanella oneidensis-MR1 under MFC and non-MFC conditions.

    PubMed

    Gomaa, Ola M; Fapetu, Segun; Kyazze, Godfrey; Keshavarz, Tajalli

    2017-03-01

    Dissimilatory metal reducing bacteria can exchange electrons extracellularly and hold great promise for their use in simultaneous wastewater treatment and electricity production. This study investigated the role of riboflavin, an electron carrier, in the decolourisation of Congo red in microbial fuel cells (MFCs) using Shewanella oneidensis MR-1 as a model organism. The contribution of the membrane-bound protein MtrC to the decolourisation process was also investigated. Within the range of riboflavin concentrations tested, 20 µM was found to be the best with >95% of the dye (initial concentration 200 mg/L) decolourised in MFCs within 50 h compared to 90% in the case where no riboflavin was added. The corresponding maximum power density was 45 mW/m 2 . There was no significant difference in the overall decolourisation efficiencies of Shewanela oneidensis MR-1 ΔMtrC mutants compared to the wild type. However, in terms of power production the mutant produced more power (P max 76 mW/m 2 ) compared to the wild type (P max 46 mW/m 2 ) which was attributed to higher levels of riboflavin secreted in solution. Decolourisation efficiencies in non-MFC systems (anaerobic bottles) were similar to those under MFC systems indicating that electricity generation in MFCs does not impair dye decolourisation efficiencies. The results suggest that riboflavin enhances both decolourisation of dyes and simultaneous electricity production in MFCs.

  14. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage.

    PubMed

    Ha, Phuc Thi; Moon, Hyunsoo; Kim, Byung Hong; Ng, How Yong; Chang, In Seop

    2010-03-15

    An alternative method for determining the charge transfer resistance and double-layer capacitance of microbial fuel cells (MFCs), easily implemented without a potentiostat, was developed. A dynamic model with two parameters, the charge transfer resistance and double-layer capacitance of electrodes, was derived from a linear differential equation to depict the current generation with respect to activation overvoltage. This model was then used to fit the transient cell voltage response to the current step change during the continuous operation of a flat-plate type MFC fed with acetate. Variations of the charge transfer resistance and the capacitance value with respect to the MFC design conditions (biocatalyst existence and electrode area) and operating parameters (acetate concentration and buffer strength in the catholyte) were then determined to elucidate the validity of the proposed method. This model was able to describe the dynamic behavior of the MFC during current change in the activation loss region; having an R(2) value of over 0.99 in most tests. Variations of the charge transfer resistance value (thousands of Omega) according to the change of the design factors and operational factors were well-correlated with the corresponding MFC performances. However, though the capacitance values (approximately 0.02 F) reflected the expected trend according to the electrode area change and catalyst property, they did not show significant variation with changes in either the acetate concentration or buffer strength. (c) 2009 Elsevier B.V. All rights reserved.

  15. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer.

    PubMed

    de Paula, Ana Caroline L; Medeiros, Julliane D; de Azevedo, Analice C; de Assis Chagas, Jéssica M; da Silva, Vânia L; Diniz, Cláudio G

    2018-02-19

    Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC)-a typical Brazilian white soft cheese-and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes) were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota.

  16. Effect of platy and tubular nanoclays on behaviour of biodegradable PCL/PLA blend and related microfibrillar composites

    NASA Astrophysics Data System (ADS)

    Kelnar, Ivan; Kratochvíl, Jaroslav

    2016-05-01

    Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.

  17. Microbiome characterization of MFCs used for the treatment of swine manure.

    PubMed

    Vilajeliu-Pons, Anna; Puig, Sebastià; Pous, Narcís; Salcedo-Dávila, Inmaculada; Bañeras, Lluís; Balaguer, Maria Dolors; Colprim, Jesús

    2015-05-15

    Conventional swine manure treatment is performed by anaerobic digestion, but nitrogen is not treated. Microbial Fuel Cells (MFCs) allow organic matter and nitrogen removal with concomitant electricity production. MFC microbiomes treating industrial wastewaters as swine manure have not been characterized. In this study, a multidisciplinary approach allowed microbiome relation with nutrient removal capacity and electricity production. Two different MFC configurations (C-1 and C-2) were used to treat swine manure. In C-1, the nitrification and denitrification processes took place in different compartments, while in C-2, simultaneous nitrification-denitrification occurred in the cathode. Clostridium disporicum and Geobacter sulfurreducens were identified in the anode compartments of both systems. C. disporicum was related to the degradation of complex organic matter compounds and G. sulfurreducens to electricity production. Different nitrifying bacteria populations were identified in both systems because of the different operational conditions. The highest microbial diversity was detected in cathode compartments of both configurations, including members of Bacteroidetes, Chloroflexiaceae and Proteobacteria. These communities allowed similar removal rates of organic matter (2.02-2.09 kg COD m(-3)d(-1)) and nitrogen (0.11-0.16 kg Nm(-3)d(-1)) in both systems. However, they differed in the generation of electric energy (20 and 2 mW m(-3) in C-1 and C-2, respectively). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine

    PubMed Central

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies. PMID:27031728

  19. Temperature, inocula and substrate: Contrasting electroactive consortia, diversity and performance in microbial fuel cells.

    PubMed

    Heidrich, E S; Dolfing, J; Wade, M J; Sloan, W T; Quince, C; Curtis, T P

    2018-02-01

    The factors that affect microbial community assembly and its effects on the performance of bioelectrochemical systems are poorly understood. Sixteen microbial fuel cell (MFC) reactors were set up to test the importance of inoculum, temperature and substrate: Arctic soil versus wastewater as inoculum; warm (26.5°C) versus cold (7.5°C) temperature; and acetate versus wastewater as substrate. Substrate was the dominant factor in determining performance and diversity: unexpectedly the simple electrogenic substrate delivered a higher diversity than a complex wastewater. Furthermore, in acetate fed reactors, diversity did not correlate with performance, yet in wastewater fed ones it did, with greater diversity sustaining higher power densities and coulombic efficiencies. Temperature had only a minor effect on power density, (Q 10 : 2 and 1.2 for acetate and wastewater respectively): this is surprising given the well-known temperature sensitivity of anaerobic bioreactors. Reactors were able to operate at low temperature with real wastewater without the need for specialised inocula; it is speculated that MFC biofilms may have a self-heating effect. Importantly, the warm acetate fed reactors in this study did not act as direct model for cold wastewater fed systems. Application of this technology will encompass use of real wastewater at ambient temperatures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    PubMed

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  1. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell.

    PubMed

    He, Ziming; Liu, Jing; Qiao, Yan; Li, Chang Ming; Tan, Timothy Thatt Yang

    2012-09-12

    The bioanode is the defining feature of microbial fuel cell (MFC) technology and often limits its performance. In the current work, we report the engineering of a novel hierarchically porous architecture as an efficient bioanode, consisting of biocompatible chitosan and vacuum-stripped graphene (CHI/VSG). With the hierarchical pores and unique VSG, an optimized bioanode delivered a remarkable maximum power density of 1530 mW m(-2) in a mediator-less MFC, 78 times higher than a carbon cloth anode.

  2. Combustion of anaerobically digested humus as a fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayhanian, M.; Jenkins, B.M.; Baxter, L.L.

    Two pilot scale combustion experiments were conducted to explore the application of an anaerobically digested humus as fuel for commercial boilers. The experiments were performed in a fluidized bed combustor (FBC) and a multifuel suspension combustor (MFC). The results obtained indicate that the humus, blended with another conventional fuel (e.g., wood), can be used as a fuel in commercial boilers. Preliminary results of ash deposit analyses from the MFC indicate that the rate of deposition was low compared to high fouling biomass fuels such as straws, and similar to deposits obtained from wood.

  3. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits

    PubMed Central

    Gui, Jiang; Moore, Jason H.; Williams, Scott M.; Andrews, Peter; Hillege, Hans L.; van der Harst, Pim; Navis, Gerjan; Van Gilst, Wiek H.; Asselbergs, Folkert W.; Gilbert-Diamond, Diane

    2013-01-01

    We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR’s constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to identify the empirical distribution of QMDR’s testing score. We then applied QMDR to genetic data from the ongoing prospective Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. PMID:23805232

  4. Computational analysis of gene-gene interactions using multifactor dimensionality reduction.

    PubMed

    Moore, Jason H

    2004-11-01

    Understanding the relationship between DNA sequence variations and biologic traits is expected to improve the diagnosis, prevention and treatment of common human diseases. Success in characterizing genetic architecture will depend on our ability to address nonlinearities in the genotype-to-phenotype mapping relationship as a result of gene-gene interactions, or epistasis. This review addresses the challenges associated with the detection and characterization of epistasis. A novel strategy known as multifactor dimensionality reduction that was specifically designed for the identification of multilocus genetic effects is presented. Several case studies that demonstrate the detection of gene-gene interactions in common diseases such as atrial fibrillation, Type II diabetes and essential hypertension are also discussed.

  5. The prevalence and structure of obsessive-compulsive personality disorder in Hispanic psychiatric outpatients.

    PubMed

    Ansell, Emily B; Pinto, Anthony; Crosby, Ross D; Becker, Daniel F; Añez, Luis M; Paris, Manuel; Grilo, Carlos M

    2010-09-01

    This study sought to confirm a multi-factor model of Obsessive-compulsive personality disorder (OCPD) in a Hispanic outpatient sample and to explore associations of the OCPD factors with aggression, depression, and suicidal thoughts. One hundred and thirty monolingual, Spanish-speaking participants were recruited from a community mental health center and were assessed by bilingual doctoral-level clinicians. OCPD was highly prevalent (26%) in this sample. Multi-factor models of OCPD were tested and the two factors - perfectionism and interpersonal rigidity - provided the best model fit. Interpersonal rigidity was associated with aggression and anger while perfectionism was associated with depression and suicidal thoughts. (c) 2010 Elsevier Ltd. All rights reserved.

  6. What mental health teams want in their leaders.

    PubMed

    Corrigan, P W; Garman, A N; Lam, C; Leary, M

    1998-11-01

    The authors present the findings of the first phase of a 3-year study developing a skills training curriculum for mental health team leaders. A factor model empirically generated from clinical team members was compared to Bass' (1990) Multifactor Model of Leadership. Members of mental health teams generated individual responses to questions about effective leaders. Results from this survey were subsequently administered to a sample of mental health team members. Analysis of these data yielded six factors: Autocratic Leadership, Clear Roles and Goals, Reluctant Leadership, Vision, Diversity Issues, and Supervision. Additional analyses suggest Bass' Multifactor Model offers a useful paradigm for developing a curriculum specific to the needs of mental health team leaders.

  7. The Black Sea Monitoring and Forecasting Center (BS-MFC) in the framework of the Copernicus Marine Service

    NASA Astrophysics Data System (ADS)

    Palazov, Atanas; Coppini, Giovanni; Ciliberti, Stefania Angela; Gregoire, Marilaure; Staneva, Joanna; Peneva, Elisaveta; Özsoy, Emin; Vandenbulcke, Luc; Storto, Andrea; Lemieux-Dudon, Benedicte; Lovato, Tomas; Masina, Simona; Pinardi, Nadia; Palermo, Francesco; Creti, Sergio; Macchia, Francesca; Lecci, Rita; Behrens, Arno; Marinova, Veselka; Slabakova, Violeta

    2017-04-01

    The BS-MFC entered the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/) in October 2016, providing regular and systematic information about the ocean state in the Black Sea in operational mode. An expert team constitutes the BS-MFC Consortium: the Institute of Oceanology, Bulgarian Academy of Sciences (IO-BAS, Bulgaria) coordinates the service and the management in collaboration with Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC, Italy), Helmholtz-Zentrum Geesthacht - Institute of Coastal Research (HZG, Germany), the University of Liege (ULG, Belgium), the Sofia University "St. Kliment Ohridski (USOF, Bulgaria) and the Eurasia Earth Sciences Institute - Istanbul Technical University (ITU, Turkey). The system provides a complete data catalogue for the Black Sea ocean variables such as temperature, salinity, sea level, currents, biogeochemistry and waves through a technologically advanced and resilient service, which is fully interconnected with the other Centers in the Copernicus network. The high level BS-MFC architecture is based on 3 Production Units, for Physics, Biogeochemistry and Waves products respectively, a Dissemination/Archiving Unit for the delivery of the products and their archiving/accessibility, a Local Service Desk connected to the CMEMS Service Desk devoted to support all the operational activities, and backup units for all the main service components. Products consist of analysis/hindcast, 10-days forecast and reanalysis, describing the physical (currents, temperature, salinity, sea level, mixed layer depth and bottom temperature), the biogeochemical state and waves. To implement and improve the service, the BS-MFC has detailed an evolution plan, actually under implementation, devoted to establish, assess and improve the systems and their operational functionalities, providing some improvements from the scientific point of view concerning the modeling components (e.g., the fully aligned Physics, Biogeochemistry and Waves systems, the open boundary conditions at the Bosporus, the state-of-the-art core models and increased spatial resolution among the major actions) and high quality products, towards an optimal interface between the Mediterranean and the Black Seas. The contribution will present the main operational and research & development activities at the basis of the systems, given an overview on the future plans for improving the service for the delivery of new products.

  8. A multi-factor Rasch scale for artistic judgment.

    PubMed

    Bezruczko, Nikolaus

    2002-01-01

    Measurement properties are reported for a combined scale of abstract and figurative artistic judgment aptitude items. Abstract items are synthetic, rule-based images from Visual Designs Test which implements a statistical algorithm to control design complexity and redundancy, and figurative items are canvas paintings in five styles, Fauvism, Post-Impressionism, Surrealism, Renaissance, and Baroque especially created for this research. The paintings integrate syntactic structure from VDT Abstract designs with thematic content for each style at four levels of complexity while controlling redundancy. Trained test administrators collected preference for synthetic abstract designs and authentic figurative art from 462 examinees in Johnson O'Connor Research Foundation testing offices in Boston, New York, Chicago, and Dallas. The Rasch model replicated measurement properties for VDT Abstract items and identified an item hierarchy that was statistically invariant between genders and generally stable across age for new, authentic figurative items. Further examination of the figurative item hierarchy revealed that complexity interacts with style and meaning. Sound measurement properties for a combined VDT Abstract and Figurative scale shows promise for a comprehensive artistic judgment construct.

  9. Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: surveying the optimal scenario for microbial fuel cell implementation.

    PubMed

    Corbella, Clara; Garfí, Marianna; Puigagut, Jaume

    2014-02-01

    Sediment microbial fuel cell (sMFC) represents a variation of the typical configuration of a MFC in which energy can be harvested via naturally occurring electropotential differences. Moreover, constructed wetlands show marked redox gradients along the depth which could be exploited for energy production via sMFC. In spite of the potential application of sMFC to constructed wetlands, there is almost no published work on the topic. The main objective of the present work was to define the best operational and design conditions of sub-surface flow constructed wetlands (SSF CWs) under which energy production with microbial fuel cells (MFCs) would be maximized. To this aim, a pilot plant based on SSF CW treating domestic sewage was operated during six months. Redox gradients along the depth of SSF CWs were determined as function of hydraulic regime (continuous vs discontinuous) and the presence of macrophytes in two sampling campaigns (after three and six months of plant operation). Redox potential (EH) within the wetlands was analysed at 5, 15 and 25 cm. Results obtained indicated that the maximum redox gradient was between the surface and the bottom of the bed for continuous planted wetlands (407.7 ± 73.8 mV) and, to a lesser extent, between the surface and the middle part of the wetland (356.5 ± 76.7 mV). Finally, the maximum redox gradients obtained for planted wetlands operated under continuous flow regime would lead to a power production of about 16 mW/m(2). © 2013.

  10. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    PubMed

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  11. Detection of mitotic figures and G2+ tumor nuclei with histone markers correlates with worse overall survival in patients with Merkel cell carcinoma.

    PubMed

    Henderson, Samuel A; Tetzlaff, Michael T; Pattanaprichakul, Penvadee; Fox, Patricia; Torres-Cabala, Carlos A; Bassett, Roland L; Prieto, Victor G; Richards, Hunter W; Curry, Jonathan L

    2014-11-01

    High mitotic figure count (MFC) correlates with low survival rate in Merkel cell carcinoma (MCC). However, the prognostic impact of histone biomarkers as surrogates of MFC in MCC is unknown. We evaluated the prognostic significance of the immunodetection of mitotic figures and of G2+ tumor nuclei with histone-associated mitotic markers H3K79me3T80ph (H3KT) and phosphohistone H3 (PHH3) in MCC. Immunohistochemical analyses of H3KT and PHH3 and proliferative marker Ki-67 were performed in a series of 21 cases of MCC. The significance of the pathologic data and immunoreactivity with these markers was evaluated with Pearson correlation and paired Student t-test. Univariate Cox proportional hazards regression models were performed to assess the relationships between these markers and survival. H3KT detected a higher number of mitotic figure (p<0.0001) and G2+ tumor nuclei (p<0.0052) than did PHH3. Furthermore, the MFC combined with G2+ tumor nuclei detected with H3KT compared to PHH3 and manual MFC was a significant predictor of impaired survival in patients with MCC (p=0.035; HR=1.0172), corresponding to a 1.72% increased risk of death for each unit increase in H3KT. Biomarker analysis of proliferative rates with histone markers may have relevance in stratifying risk in patients with MCC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells.

    PubMed

    Sonawane, Jayesh M; Yadav, Abhishek; Ghosh, Prakash C; Adeloju, Samuel B

    2017-04-15

    Microbial fuel cells (MFCs) are novel bio-electrochemical device for spontaneous or single step conversion of biomass into electricity, based on the use of metabolic activity of bacteria. The design and use of MFCs has attracted considerable interests because of the potential new opportunities they offer for sustainable production of energy from biodegradable and reused waste materials. However, the associated slow microbial kinetics and costly construction materials has limited a much wider commercial use of the technology. In the past ten years, there has been significant new developments in MFCs which has resulted in several-fold increase in achievable power density. Yet, there is still considerable possibility for further improvement in performance and development of new cost effective materials. This paper comprehensively reviews recent advances in the construction and utilization of novel anodes for MFCs. In particular, it highlights some of the critical roles and functions of anodes in MFCs, strategies available for improving surface areas of anodes, dominant performance of stainless-steel based anode materials, and the emerging benefits of inclusion of nanomaterials. The review also demonstrates that some of the materials are very promising for large scale MFC applications and are likely to replace conventional anodes for the development of next generation MFC systems. The hurdles to the development of commercial MFC technology are also discussed. Furthermore, the future directions in the design and selection of materials for construction and utilization of MFC anodes are highlighted. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Alteration of functional connectivity during real-time fMRI regulation of PCC

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoyan; Yao, Li; Long, Zhiying

    2012-03-01

    Real-time functional magnetic resonance imaging (rtfMRI) can be used to train the subjects to selectively control activity of specific brain area so as to affect the activation in the target region and even to improve cognition and behavior. So far, whether brain activity in posterior cingulate cortex (PCC) can be regulated by rtfMRI has not been reported. In the present study, we aimed at investigating whether real-time regulation of activity in PCC can change the functional connectivity between PCC and other brain regions. A total of 12 subjects underwent two training runs, each lasts 782s. During the training, subjects were instructed to down regulate activity in PCC by imagining right hand finger movement with the sequence of 4-2-3-1-3-4-2 during task and relax as possible as they can during rest. To control for any effects induced by repeated practice, another 12 subjects in the control group received the same experiment procedure and instruction except with no feedback during training. Experiment results show that increased functional connectivity of PCC with medial frontal cortex (MFC) was observed in both groups during the two training runs. However, PCC of the experimental group is correlated with larger areas in MFC than the control group. Because the positive correlation between task performance and MFC to PCC connectivity has been demonstrated previously, we infer that the stronger connectivity between PCC and MFC in the experimental group may suggest that the experimental group with neurofeedback can more efficiently regulate PCC than the control group without neurofeedback.

  14. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.

    PubMed

    Wang, Yanhua; Wu, Jiayan; Yang, Shengke; Li, Huihui; Li, Xiaoping

    2018-06-27

    Due to the known problems of microbial fuel cells (MFCs), such as low electricity generation performance and high cost of operation, we modified the electrode with graphene and polyaniline (PANI) is a single-chamber air-cathode MFC and then evaluated the effects of electrode modification on MFC electricity generation performance. Carbon cloth electrodes (unmodified, CC; graphene-modified, G/CC; and polyaniline-graphene-modified, PANI-G/CC) were prepared using the impregnation method. Sulfonated cobalt phthalocyanine (CoPcS) was then introduced as a cathode catalyst. The Co-PANI-G/CC cathode showed higher catalytic activity toward oxygen reduction compared with other electrodes. The maximum power density of the MFC with Co-PANI-G/CC cathode was 32.2 mW/m², which was 1.8 and 6.1 times higher than the value obtained with Co-G/CC and Co/CC cathodes, respectively. This indicates a significant improvement in the electricity generation of single-chamber MFCs and provides a simple, effective cathode modification method. Furthermore, we constructed single-chamber MFCs using the modified anode and cathode and analyzed electricity generation and oxytetracycline (OTC) degradation with different concentrations of OTC as the fuel. With increasing added OTC concentration, the MFC performance in both electricity generation and OTC degradation gradually decreased. However, when less than 50 mg/L OTC was added, the 5-day degradation rate of OTC reached more than 90%. It is thus feasible to process OTC-containing wastewater and produce electricity using single-chamber MFCs, which provides a new concept for wastewater treatment.

  15. Development of an unbiased, semi-automated approach for classifying plasma cell immunophenotype following multicolor flow cytometry of bone marrow aspirates.

    PubMed

    Post, Steven R; Post, Ginell R; Nikolic, Dejan; Owens, Rebecca; Insuasti-Beltran, Giovanni

    2018-03-24

    Despite increased usage of multiparameter flow cytometry (MFC) to assess diagnosis, prognosis, and therapeutic efficacy (minimal residual disease, MRD) in plasma cell neoplasms (PCNs), standardization of methodology and data analysis is suboptimal. We investigated the utility of using the mean and median fluorescence intensities (FI) obtained from MFC to objectively describe parameters that distinguish plasma cell (PC) phenotypes. In this retrospective study, flow cytometry results from bone marrow aspirate specimens from 570 patients referred to the Myeloma Institute at UAMS were evaluated. Mean and median FI data were obtained from 8-color MFC of non-neoplastic, malignant, and mixed PC populations using antibodies to CD38, CD138, CD19, CD20, CD27, CD45, CD56, and CD81. Of 570 cases, 252 cases showed only non-neoplastic PCs, 168 showed only malignant PCs, and 150 showed mixed PC populations. Statistical analysis of median FI data for each CD marker showed no difference in expression intensity on non-neoplastic and malignant PCs, between pure and mixed PC populations. ROC analysis of the median FI of CD expression in non-neoplastic and malignant PCs was used to develop an algorithm to convert quantitative FI values to qualitative assessments including "negative," "positive," "dim," and "heterogeneous" expression. FI data derived from 8-color MFC can be used to define marker expression on PCs. Translation of FI data from Infinicyt software to an Excel worksheet streamlines workflow and eliminates transcriptional errors when generating flow reports. © 2018 International Clinical Cytometry Society. © 2018 International Clinical Cytometry Society.

  16. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2015-10-10

    This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p<0.05). Quantitative droplet digital PCR indicated that AC-MFCs had a greater bacterial population than ACM-MFCs (p<0.05). Likewise, ribosomal tag pyrosequencing revealed that the diversity index of bacterial communities was greater for AC-MFCs (p<0.05). Network analysis revealed that the most abundant genus was Enterococcus, which comprised ≥62% of the community and was positively associated with PEM and negatively associated with the rate of chemical oxygen demand (COD) removal (Pearson correlation>0.9 and p<0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Efficacy and safety of a multifactor intervention to improve therapeutic adherence in patients with chronic obstructive pulmonary disease (COPD): protocol for the ICEPOC study.

    PubMed

    Barnestein-Fonseca, Pilar; Leiva-Fernández, José; Vidal-España, Francisca; García-Ruiz, Antonio; Prados-Torres, Daniel; Leiva-Fernández, Francisca

    2011-02-14

    Low therapeutic adherence to medication is very common. Clinical effectiveness is related to dose rate and route of administration and so poor therapeutic adherence can reduce the clinical benefit of treatment. The therapeutic adherence of patients with chronic obstructive pulmonary disease (COPD) is extremely poor according to most studies. The research about COPD adherence has mainly focussed on quantifying its effect, and few studies have researched factors that affect non-adherence. Our study will evaluate the effectiveness of a multifactor intervention to improve the therapeutic adherence of COPD patients. A randomized controlled clinical trial with 140 COPD diagnosed patients selected by a non-probabilistic method of sampling. Subjects will be randomly allocated into two groups, using the block randomization technique. Every patient in each group will be visited four times during the year of the study. Motivational aspects related to adherence (beliefs and behaviour): group and individual interviews; cognitive aspects: information about illness; skills: inhaled technique training. Reinforcement of the cognitive-emotional aspects and inhaled technique training will be carried out in all visits of the intervention group. Adherence to a prescribed treatment involves a behavioural change. Cognitive, emotional and motivational aspects influence this change and so we consider the best intervention procedure to improve adherence would be a cognitive and emotional strategy which could be applied in daily clinical practice. Our hypothesis is that the application of a multifactor intervention (COPD information, dose reminders and reinforcing audiovisual material, motivational aspects and inhalation technique training) to COPD patients taking inhaled treatment will give a 25% increase in the number of patients showing therapeutic adherence in this group compared to the control group.We will evaluate the effectiveness of this multifactor intervention on patient adherence to inhaled drugs considering that it will be right and feasible to the clinical practice context. Current Controlled Trials ISRCTN18841601.

  18. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.

    PubMed

    Chang, Shih-Hsien; Wu, Chih-Hung; Wang, Ruei-Cyun; Lin, Chi-Wen

    2017-05-15

    A low-cost mini tubular microbial fuel cell (MFC) was developed for treating groundwater that contained benzene in monitoring wells. Experimental results indicate that increasing the length and density, and reducing the size of the char particles in the anode effectively reduced the internal resistance. Additionally, a thinner polyvinyl alcohol (PVA) hydrogel separator and PVA with a higher molecular weight improved electricity generation. The optimal parameters for the MFC were an anode density of 1.22 g cm -3 , a coke of 150 μm, an anode length of 6 cm, a PVA of 105,600 g mol -1 , and a separator thickness of 1 cm. Results of continuous-flow experiments reveal that the increasing the sets of MFCs and connecting them in parallel markedly improved the degradation of benzene. More than 95% of benzene was removed and electricity of 38 mW m -2 was generated. The MFC ran continuously up to 120 days without maintenance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Boosting Power Density of Microbial Fuel Cells with 3D Nitrogen‐Doped Graphene Aerogel Electrode

    PubMed Central

    Yang, Yang; Liu, Tianyu; Zhang, Feng; Ye, Dingding; Liao, Qiang

    2016-01-01

    A 3D nitrogen‐doped graphene aerogel (N‐GA) as an anode material for microbial fuel cells (MFCs) is reported. Electron microscopy images reveal that the N‐GA possesses hierarchical porous structure that allows efficient diffusion of both bacterial cells and electron mediators in the interior space of 3D electrode, and thus, the colonization of bacterial communities. Electrochemical impedance spectroscopic measurements further show that nitrogen doping considerably reduces the charge transfer resistance and internal resistance of GA, which helps to enhance the MFC power density. Importantly, the dual‐chamber milliliter‐scale MFC with N‐GA anode yields an outstanding volumetric power density of 225 ± 12 W m−3 normalized to the total volume of the anodic chamber (750 ± 40 W m−3 normalized to the volume of the anode). These power densities are the highest values report for milliliter‐scale MFCs with similar chamber size (25 mL) under the similar measurement conditions. The 3D N‐GA electrode shows great promise for improving the power generation of MFC devices. PMID:27818911

  20. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    PubMed

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system. Published by Elsevier Ltd.

  1. Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater.

    PubMed

    Colombo, Alessandra; Marzorati, Stefania; Lucchini, Giorgio; Cristiani, Pierangela; Pant, Deepak; Schievano, Andrea

    2017-08-01

    Spirulina was cultivated in cathodic compartments of photo-microbial fuel cells (P-MFC). Anodic compartments were fed with swine-farming wastewater, enriched with sodium acetate (2.34g COD L -1 ). Photosynthetic oxygen generation rates were sufficient to sustain cathodic oxygen reduction, significantly improving P-MFC electrochemical performances, as compared to water-cathode control experiments. Power densities (0.8-1Wm -2 ) approached those of air-cathode MFCs, run as control. COD was efficiently removed and only negligible fractions leaked to the cathodic chamber. Spirulina growth rates were comparable to those of control (MFC-free) cultures, while pH was significantly (0.5-1unit) higher in P-MFCs, due to cathodic reactions. Alkaliphilic photosynthetic microorganisms like Spirulina might take advantage of these selective conditions. Electro-migration along with diffusion to the cathodic compartment concurred for the recovery of most nutrients. Only P and Mg were retained in the anodic chamber. A deeper look into electro-osmotic mechanisms should be addressed in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of power shape on energy extraction from microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Feng, Shuo; Roane, Timberley M.; Park, Jae-Do

    2017-10-01

    Microbial fuel cells (MFCs) generate renewable energy in the form of direct current (DC) power. Harvesting energy from MFCs started with passive components such as resistors and capacitors, then charge pumps were introduced with some more advantages. Power electronics converters were later preferred due to their higher efficiency and controllability; however, they introduce high frequency current ripple due to their high frequency switching. In this paper, the effect of shape of power extraction on MFC performance was investigated using three types of current shapes: continuous, square-wave, and triangular-wave. Simultaneously, chemical parameters, such as pH, dissolved oxygen, electrical conductivity, and redox potential, in the anode chamber were monitored to see how these parameters change with the shape of the electrical power extraction. Results showed that the shape of the extracted current did not have a substantial effect on the MFC life span, output power, and energy extraction, nor on the chemical parameters. The outcome of this study provided insight for the electrical impact by power electronics converters on some microbial and chemical aspects of an MFC system.

  3. Features of Golenkinia sp. and microbial fuel cells used for the treatment of anaerobically digested effluent from kitchen waste at different dilutions.

    PubMed

    Hou, Qingjie; Cheng, Juan; Nie, Changliang; Pei, Haiyan; Jiang, Liqun; Zhang, Lijie; Yang, Zhigang

    2017-09-01

    The aim of this work was to study Golenkinia sp. and microbial fuel cells (MFCs) for the treatment of anaerobically digested effluent from kitchen waste (ADE-KW) with different dilution factors. A dual-chamber MFC was fabricated for treating ADE-KW in the two chambers of the MFC and harvesting Golenkinia sp. All the anodic TN was removed more than 80%. COD removal efficiency increased from 48.2% to 76% when the dilution factor increased from 1 to 4. Maximum COD and TN removal rates were 3.56 and 3.71mg·L -1 ·h -1 when ADE-KW was treated without dilution in the anodic chamber. All the cathodic TN and TP removal efficiencies were approximately 90%. The highest open circuit voltage (OCV) and power density were approximately 400mV and 400mW when ADE-KW was treated directly (undiluted) in the MFC, with the highest biomass and total lipid content production of Golenkinia sp. in the cathodic chamber. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Preparation of micro-fibrillated cellulose based on sugar palm ijuk (Arenga pinnata) fibres through partial acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Saputro, A.; Verawati, I.; Ramahdita, G.; Chalid, M.

    2017-07-01

    The aim of this study was to isolate and characterized micro-fibrillated cellulose (MFC) from sugar palm/ijuk fibre (Arenga pinnata) by partial sulfuric acid hydrolysis. Cellulose fibre was prepared by repeated treatments with 5 wt% sodium hydroxide 2 h at 80°C, followed by bleaching with 1.7 wt% sodium chlorite for 2 h at 80°C in acidic environment under stirring. MFC was prepared by partial hydrolysis with sulfuric acid in various concentrations (30, 40, 50, and 60 % for 45 min at 45 °C) under stirring. Fourier Transform Infrared, Field Emission Scanning Electron Microscope, Thermo Gravimetric Analyzer and X-ray Diffraction characterized cellulose fibre and MFC. FTIR measurements showed that alkaline and bleaching treatments were effective to remove non-cellulosic constituents such as wax, lignin and hemicellulose. FESEM observation revealed conversion into more clear surface and defibrillation of cellulosic fibre after pre-treatments. XRD measurement revealed increase in crystallinity after pre-treatments and acid hydrolysis from 54.4 to 87.8%. Thermal analysis showed that increasing acid concentration reduced thermal stability.

  5. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells.

    PubMed

    Guerrini, Edoardo; Grattieri, Matteo; Faggianelli, Alessio; Cristiani, Pierangela; Trasatti, Stefano

    2015-12-01

    Influence of PTFE in the external Gas Diffusion Layer (GDL) of open-air cathodes applied to membraneless microbial fuel cells (MFCs) is investigated in this work. Electrochemical measurements on cathodes with different PTFE contents (200%, 100%, 80% and 60%) were carried out to characterize cathodic oxygen reduction reaction, to study the reaction kinetics. It is demonstrated that ORR is not under diffusion-limiting conditions in the tested systems. Based on cyclic voltammetry, an increase of the cathodic electrochemical active area took place with the decrease of PTFE content. This was not directly related to MFC productivity, but to the cathode wettability and the biocathode development. Low electrodic interface resistances (from 1 to 1.5 Ω at the start, to near 0.1 Ω at day 61) indicated a negligible ohmic drop. A decrease of the Tafel slopes from 120 to 80 mV during productive periods of MFCs followed the biological activity in the whole MFC system. A high PTFE content in the cathode showed a detrimental effect on the MFC productivity, acting as an inhibitor of ORR electrocatalysis in the triple contact zone.

  6. The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mo, Xiaoping; Li, Kexun; Liu, Yi; Wang, Junjie; Yang, Tingting

    2017-08-01

    Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW m-2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.

  7. Study on ammonium and organics removal combined with electricity generation in a continuous flow microbial fuel cell.

    PubMed

    Liu, Shuxin; Li, Lan; Li, Huiqiang; Wang, Hui; Yang, Ping

    2017-11-01

    A continuous microbial fuel cell system was constructed treating ammonium/organics rich wastewater. Operational performance of MFC system, mechanisms of ammonium removal, effect of ammonium on organics removal and energy output, C and N balance of anode chamber and microbial community analysis of anode chamber were studied. It was concluded that 0.0914kg/m 3 d NH 4 + -N and 5.739kg/m 3 d COD were removed from anode chamber and simultaneous nitrification and denitrification (SND) occurred in cathode chamber resulting in COD, TN removal rate of 88.53%, 71.35% respectively. Excess ammonium affected energy output and the MFC system reached maximum energy output of 816.8mV and 62.94mW/m 3 . In anode chamber, Spirochaetes bacterium sp., Methanobacterium formicicum sp. was predominant in bacteria, archaea communities respectively which contributed to wastewater treatment and electricity generation. This study showed the potential for practical application of continuous flow MFC system treating ammonium/organics rich wastewater and achieving electricity generation simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  9. In Vitro Comparison of Terbinafine and Itraconazole against Penicillium marneffei

    PubMed Central

    McGinnis, Michael R.; Nordoff, Nicole G.; Ryder, Neil S.; Nunn, Gary B.

    2000-01-01

    We evaluated terbinafine and itraconazole against 30 isolates of Penicillium marneffei using a modification of the National Committee for Clinical Laboratory Standards broth macrodilution MIC testing protocol for yeasts. The minimal fungicidal concentration (MFC) was determined by plating 100 μl from each MIC drug dilution having no growth onto Sabouraud glucose agar incubated at 30°C. The MFC was the dilution at which growth was absent at 72 h of incubation. The MICs, in micrograms per milliliter, were as follows: terbinafine, 0.03 to 1.0 (geometric mean titer, 0.09); itraconazole, 0.03 to 0.5 (geometric mean titer, 0.04). The MFCs, in micrograms per milliliter, were as follows: terbinafine, 0.03 to 8 (geometric mean titer, 2.60); itraconazole, 0.03 to 8 (geometric mean titer, 2.45). Primary fungicidal activity (MFC within 2 dilutions of MIC) was observed with terbinafine in eight isolates and with itraconazole in four isolates. The data indicate that terbinafine is active against P. marneffei in vitro and may have a previously unrealized role in the management of infections caused by this fungus. PMID:10770792

  10. MFC Communications Infrastructure Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Cannon; Terry Barney; Gary Cook

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.more »   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.« less

  11. A novel method for preparing microfibrillated cellulose from bamboo fibers

    NASA Astrophysics Data System (ADS)

    Dat Nguyen, Huu; Thanh Thuy Mai, Thi; Bich Nguyen, Ngoc; Duy Dang, Thanh; Loan Phung Le, My; Dang, Tan Tai; Tran, Van Man

    2013-03-01

    The bamboo fiber is a potential candidate for biomass and power source application. In this study, microfibrillated cellulose (MFC) is prepared from raw fibers of bamboo tree (Bambusa Blumeana J A & J H Schultes) by an alkali treatment at room temperature in association with a bleaching treatment followed by a sulfuric acid hydrolysis. Field-emission scanning electron microscopy (FESEM) images indicated that final products ranged from 20 to 40 nm in diameter. The chemical composition measurement and Fourier transform infrared (FTIR) spectroscopy showed that both hemicellulose and lignin are mostly removed in the MFC. The x-ray diffraction (XRD) results also show that MFC has crystallinity of more than 70%. The thermogravimetric analysis (TGA) curves revealed that cellulose microfibers have a two-step thermal decomposition behavior owing to the attachment of sulfated groups onto the cellulose surface in the hydrolysis process with sulfuric acid. The obtained MFCs may have potential applications in alternative power sources as biomass, in pharmaceutical and optical industries as additives, as well as in composite fields as a reinforcement phase.

  12. In vitro activity of Schinus terebinthifolius (Brazilian pepper tree) on Candida tropicalis growth and cell wall formation.

    PubMed

    Alves, Lívia A; Freires, Irlan de A; de Souza, Tricia M P A; de Castro, Ricardo D

    2012-01-01

    The aim of this study was to evaluate the in vitro antifungal activity of Schinus terebinthifolius (Brazilian pepper tree) tincture on planktonic Candida tropicalis (ATCC 40042), which is a microorganism associated to oral cavity infections. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through the microdilution technique. Possible action of the tincture on fungal cell wall formation was also studied by adding an osmotic protector (0.8M sorbitol) to the microplates. Nystatin was used as standard control and tests were performed in triplicate. S. terebinthifolius was found to have MIC and MFC values of 625 microg/mL on the strain assayed, whereas nystatin showed MIC and MFC of 6.25 microg/mL. Results suggest that S. terebinthifolius tincture acts on fungal cell walls, since the sorbitol test indicated a MIC of 1.250 microg/mL. It may be concluded that S. terebinthifolius has potential in vitro antifungal activity against C. tropicalis strains, and probably acts by inhibiting fungal cell wall formation.

  13. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    PubMed

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  14. Copper removal and microbial community analysis in single-chamber microbial fuel cell.

    PubMed

    Wu, Yining; Zhao, Xin; Jin, Min; Li, Yan; Li, Shuai; Kong, Fanying; Nan, Jun; Wang, Aijie

    2018-04-01

    In this study, copper removal and electricity generation were investigated in a single-chamber microbial fuel cell (MFC). Result showed that copper was efficiently removed in the membrane-less MFC with removal efficiency of 98.3% at the tolerable Cu 2+ concentration of 12.5 mg L -1 , the corresponding open circuit voltage and maximum power density were 0.78 V and 10.2 W m -3 , respectively. The mechanism analysis demonstrated that microbial electrochemical reduction contributed to the copper removal with the products of Cu and Cu 2 O deposited at biocathode. Moreover, the microbial community analysis indicated that microbial communities changed with different copper concentrations. The dominant phyla were Proteobacteria and Bacteroidetes which could play key roles in electricity generation, while Actinobacteria and Acidobacteria were also observed which were responsible for Cu-resistant and copper removal. It will be of important guiding significance for the recovery of copper from low concentration wastewater through single-chamber MFC with simultaneous energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode.

    PubMed

    Chen, Junfeng; Hu, Yongyou; Tan, Xiaojun; Zhang, Lihua; Huang, Wantang; Sun, Jian

    2017-10-01

    This study proposed a three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) by in situ microbial-induced reduction of GO and polarity reversion in microbial fuel cell (MFC). Both graphene modified bioanode (GM-BA) and biocathode (GM-BC) were of 3D graphene/biofilm architectures; the viability and thickness of microbial biofilm decreased compared with control bioelectrode (C-BE). The coulombic efficiency (CE) of GM-BA was 2.1 times of the control bioanode (C-BA), which demonstrated higher rate of substrates oxidation; the relationship between peak current and scan rates data meant that GM-BC was of higher efficiency of catalyzing oxygen reduction than the control biocathode (C-BC). The maximum power density obtained in D-GM-BE MFC was 122.4±6.9mWm -2 , the interfacial charge transfer resistance of GM-BA and GM-BC were decreased by 79% and 75.7%. The excellent electrochemical performance of D-GM-BE MFC was attributed to the enhanced extracellular electron transfer (EET) process and catalyzing oxygen reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell

    PubMed Central

    Pham, Hai The; Boon, Nico; Aelterman, Peter; Clauwaert, Peter; De Schamphelaire, Liesje; Van Oostveldt, Patrick; Verbeken, Kim; Rabaey, Korneel; Verstraete, Willy

    2008-01-01

    Summary In many microbial bioreactors, high shear rates result in strong attachment of microbes and dense biofilms. In this study, high shear rates were applied to enrich an anodophilic microbial consortium in a microbial fuel cell (MFC). Enrichment at a shear rate of about 120 s−1 resulted in the production of a current and power output two to three times higher than those in the case of low shear rates (around 0.3 s−1). Biomass and biofilm analyses showed that the anodic biofilm from the MFC enriched under high shear rate conditions, in comparison with that under low shear rate conditions, had a doubled average thickness and the biomass density increased with a factor 5. The microbial community of the former, as analysed by DGGE, was significantly different from that of the latter. The results showed that enrichment by applying high shear rates in an MFC can result in a specific electrochemically active biofilm that is thicker and denser and attaches better, and hence has a better performance. PMID:21261869

  17. Bacterial community shift and incurred performance in response to in situ microbial self-assembly graphene and polarity reversion in microbial fuel cell.

    PubMed

    Chen, Junfeng; Zhang, Lihua; Hu, Yongyou; Huang, Wantang; Niu, Zhuyu; Sun, Jian

    2017-10-01

    In this work, bacterial community shift and incurred performance of graphene modified bioelectrode (GM-BE) in microbial fuel cell (MFC) were illustrated by high throughput sequencing technology and electrochemical analysis. The results showed that Firmicutes occupied 48.75% in graphene modified bioanode (GM-BA), while Proteobacteria occupied 62.99% in graphene modified biocathode (GM-BC), both were dominant bacteria in phylum level respectively. Typical exoelectrogens, including Geobacter, Clostridium, Pseudomonas, Geothrix and Hydrogenophaga, were counted 26.66% and 17.53% in GM-BA and GM-BC. GM-BE was tended to decrease the bacterial diversity and enrich the dominant species. Because of the enrichment of exoelectrogens and excellent electrical conductivity of graphene, the maximum power density of MFC with GM-BA and GM-BC increased 33.1% and 21.6% respectively, and the transfer resistance decreased 83.8% and 73.6% compared with blank bioelectrode. This study aimed to enrich the microbial study in MFC and broaden the development and application for bioelectrode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    PubMed Central

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-01-01

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology. PMID:26378546

  19. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    PubMed

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mutual facilitations of food waste treatment, microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production.

    PubMed

    Hou, Qingjie; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yu, Ze

    2016-03-01

    Food waste contains large amount of organic matter that may be troublesome for handing, storage and transportation. A microbial fuel cell (MFC) was successfully constructed with different inoculum densities of Chlorella vulgaris for promoting food waste treatment. Maximum COD removal efficiency was registered with 44% and 25 g CODL(-1)d(-1) of substrate degradation rate when inoculated with the optimal initial density (150 mg L(-1)) of C. vulgaris, which were 2.9 times and 3.1 times higher than that of the abiotic cathode. With the optimum inoculum density of C. vulgaris, the highest open circuit voltage, working voltage and power density of MFC were 260 mV, 170 mV and 19151 mW m(-3), respectively. Besides the high biodiesel quality, promoted by MFC stimulation the biomass productivity and highest total lipid content of C. vulgaris were 207 mg L(-1)d(-1) and 31%, which were roughly 2.7 times and 1.2 times higher than the control group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The excellent performance of nest-like oxygen-deficient Cu1.5Mn1.5O4 applied in activated carbon air-cathode microbial fuel cell.

    PubMed

    Wang, Junjie; Tian, Pei; Li, Kexun; Ge, Baochao; Liu, Di; Liu, Yi; Yang, Tingting; Ren, Rong

    2016-12-01

    This study investigated the performance of nano spinel nest-like oxygen-deficient Cu 1.5 Mn 1.5 O 4 doping activated carbon (AC) as air cathode in microbial fuel cell (MFC). The Cu 1.5 Mn 1.5 O 4 was synthesized via hydrothermal method and subsequent annealed. The maximum power density (MPD) of MFC with oxygen-deficient Cu 1.5 Mn 1.5 O 4 modified cathode was 1928±18mWm -2 , which was 1.53 times higher than the bare cathode. The electrochemical studies showed that Cu 1.5 Mn 1.5 O 4 doping AC exhibited higher kinetic activity and lower resistance. The mechanism of oxygen reduction for the catalyst was a four electron pathway. The oxygen deficient of Cu 1.5 Mn 1.5 O 4 played an important role in catalytic activity. So Cu 1.5 Mn 1.5 O 4 would be an excellent promising catalyst for ORR in MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell.

    PubMed

    Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi

    2015-11-01

    Commercial Co3O4 and ortho-hexagon spinel nano-Co3O4 (OHSNC) were doped in the AC at a different percentage (5%, 10% and 15%) to enhance the performance of microbial fuel cell (MFC). The maximum power density of MFC with 10% OHSNC doped cathode was 1500±14 mW m(-2), which was 97.36% and 41.24% higher than that with the bare AC air cathode and commercial Co3O4 respectively. The electrocatalytic behavior for their better performance was discussed in detail with the help of various structural and electrochemical techniques. The OHSNC was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the improved performance owed to the enhancement of both kinetics activity and the number of electron transfer in the ORR, and the internal resistance was largely reduced. Therefore, OHSNC was proved to be an excellent cathodic catalyst in AC air cathode MFC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Investigation and optimization of the novel UASB-MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM).

    PubMed

    Zhang, Baogang; Zhang, Jing; Yang, Qi; Feng, Chuanping; Zhu, Yuling; Ye, Zhengfang; Ni, Jinren

    2012-11-01

    COD/sulfate ratio and hydraulic residence time (HRT), both of which influence sulfate loadings jointly, are recognized as the most two important affecting factors for sulfate removal and bioelectricity generation in the novel up-flow anaerobic sludge blanket reactor-microbial fuel cell (UASB-MFC) integrated system. The response surface methodology (RSM) was employed for the optimization of this system and the optimum condition with COD/sulfate ratio of 2.3 and HRT of 54.3h was obtained with the target of maximizing the power output. In terms of maximizing the total sulfate removal efficiency, the obtained optimum condition was COD/sulfate ratio of 3.7 and HRT of 55.6h. Experimental results indicated the undistorted simulation and reliable optimized results. These demonstrated that RSM was effective to evaluate and optimize the UASB-MFC system for sulfate removal and energy recovery, providing a promising guide to further improvement of the system for potential applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Transplant Image Processing Technology under Windows into the Platform Based on MiniGUI

    NASA Astrophysics Data System (ADS)

    Gan, Lan; Zhang, Xu; Lv, Wenya; Yu, Jia

    MFC has a large number of digital image processing-related API functions, object-oriented and class mechanisms which provides image processing technology strong support in Windows. But in embedded systems, image processing technology dues to the restrictions of hardware and software do not have the environment of MFC in Windows. Therefore, this paper draws on the experience of image processing technology of Windows and transplants it into MiniGUI embedded systems. The results show that MiniGUI/Embedded graphical user interface applications about image processing which used in embedded image processing system can be good results.

  5. Probabilistic lifetime strength of aerospace materials via computational simulation

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.

    1991-01-01

    The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.

  6. A survey about methods dedicated to epistasis detection.

    PubMed

    Niel, Clément; Sinoquet, Christine; Dina, Christian; Rocheleau, Ghislain

    2015-01-01

    During the past decade, findings of genome-wide association studies (GWAS) improved our knowledge and understanding of disease genetics. To date, thousands of SNPs have been associated with diseases and other complex traits. Statistical analysis typically looks for association between a phenotype and a SNP taken individually via single-locus tests. However, geneticists admit this is an oversimplified approach to tackle the complexity of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must be considered. Unfortunately, epistasis detection gives rise to analytic challenges since analyzing every SNP combination is at present impractical at a genome-wide scale. In this review, we will present the main strategies recently proposed to detect epistatic interactions, along with their operating principle. Some of these methods are exhaustive, such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver operating characteristic curve analysis; some are non-exhaustive, such as machine learning techniques (random forests, Bayesian networks) or combinatorial optimization approaches (ant colony optimization, computational evolution system).

  7. Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India.

    PubMed

    Choudhari, Milind K; Punekar, Sachin A; Ranade, Ramchandra V; Paknikar, Kishore M

    2012-05-07

    Stingless bee (Trigona sp.) propolis is widely used in the folk medicine of Western Maharashtra, India to treat a variety of ailments. To determine the chemical composition and evaluate the antimicrobial activity of Indian stingless bee propolis. Chemical composition of the ethanolic extract of propolis (EEP) was determined by GC-MS analysis. A range of bacteria including multidrug resistant (MDR) cultures as well as a yeast strain was tested for antimicrobial activity using EEP. MIC, MBC, MFC, Kill curves and post agent effect (PAE) of the EEP were assessed using standard microbiological methods. GC-MS analysis revealed that propolis contained 24 compounds (9 known and 15 newly reported). Many of these were known bioactive compounds, including antimicrobials. The MICs of EEP were in the range of 1.21-9.75μg/mL while the MBCs/MFC were between 2.43 and 19.5μg/mL. The time required to achieve 90% (1 log(10)) reduction in culture growth ranged between 1.06 and 3.53h at their respective MIC values. PAE for all the cultures was >24h. Indian stingless bee propolis has a complex nature with 24 chemical compounds. It has a potent broad-spectrum antimicrobial activity. The latter finding, in conjunction with other bioactive properties, could provide a scientific basis to its popular use in the Indian folk medicine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Clotrimazole is highly effective in vitro against feline Sporothrix brasiliensis isolates.

    PubMed

    Gagini, Thalita; Borba-Santos, Luana Pereira; Messias Rodrigues, Anderson; Pires de Camargo, Zoilo; Rozental, Sonia

    2017-11-01

    Sporothrix brasiliensis, the most virulent species in the Sporothrix schenckii complex, is responsible for the ongoing epidemics of human and animal sporotrichosis in Brazil. Feline outbreaks are usually driven by S. brasiliensis and followed by extensive transmission to humans. Itraconazole is the first-line treatment for both feline and human sporotrichosis; however, reduced sensitivity is an emerging issue. Thus, we investigated the effect of the widely used antifungal clotrimazole - alone or in combination with itraconazole - against the pathogenic (yeast) form of feline and human S. brasiliensis isolates, in vitro. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were determined for treatment with clotrimazole and itraconazole, as monotherapy or in combination. In addition, the effect of the drugs on neutral lipid levels and the yeast ultrastructure were evaluated by flow cytometry and transmission electron microscopy (TEM), respectively. The MIC and MFC values show that clotrimazole was more effective than itraconazole against feline S. brasiliensis isolates, while human isolates were more sensitive to itraconazole. Similarly to itraconazole, treatment with clotrimazole induced statistically significant neutral lipid accumulation in S. brasiliensis yeasts, and treated yeasts displayed irregularities in the cell membrane and a thicker cell wall when observed by TEM. Clotrimazole increased the antifungal activity of itraconazole in combination assays, with a synergistic effect for two feline isolates. The strong activity of clotrimazole against feline S. brasiliensis isolates suggests that this drug is potentially a new alternative for the treatment of feline sporotrichosis, alone or in combination with itraconazole.

  9. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    NASA Astrophysics Data System (ADS)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (<4mug/L) in both bioreactors with acetate as a carbon source and nutrients at loading rates less than 0.063 L/s (1 gpm; 0.34 L/m2s). The sand medium bioreactor could achieve complete-perchlorate removal up to flow rate of 0.126 L/s. A regular backwashing cycle (once a week) was an important factor for completely removing perchlorate in groundwater. Power generation directly from pure or mixed organic matter was examined using microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange membrane (PEM), was initially acclimated for one month to domestic wastewater, and then was operated as a plug flow reactor system. Power density using domestic wastewater as a substrate was 72 +/- 1 mW/m2 at a liquid flow rate of 0.39 mL/min (1.1 hr hydraulic retention time, HRT), and COD removal was 42%. At a longer HRT of 4.0 hr, the COD removal increased to 79%, and power density was 43 mW/m2. Several organic compounds (about 1000 mg-COD/L) also generated high power densities including: glucose (212 +/- 2 mW/m2), acetate (286 +/- 3 mW/m2), butyrate (220 +/- 1 mW/m2), dextran (150 +/- 1 mW/m 2), and starch (242 +/- 3 mW/m2). Therefore, it was shown that power could be successfully generated in a continuous-mode MFC with a variety of organic substrates. Animal wastewater was also tested as substrate to generate power in an air-cathode single chamber MFC operated in batch mode. This preliminary experiment demonstrated that power generation could be sustained with animal wastewater and that wastewater strength and odors were substantially reduced in the reactor after only one day of operation.

  10. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation.

    PubMed

    Yoshizawa, Tomoya; Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2014-11-01

    Wastewater can be treated in microbial fuel cells (MFCs) with the aid of microbes that oxidize organic compounds using anodes as electron acceptors. Previous studies have suggested the utility of cassette-electrode (CE) MFCs for wastewater treatment, in which rice paddy-field soil was used as the inoculum. The present study attempted to convert an activated-sludge (AS) reactor to CE-MFC and use aerobic sludge in the tank as the source of microbes. We used laboratory-scale (1 L in capacity) reactors that were initially operated in an AS mode to treat synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and detergents. After the organics removal became stable, the aeration was terminated, and CEs were inserted to initiate an MFC-mode operation. It was demonstrated that the MFC-mode operation treated the wastewater at similar efficiencies to those observed in the AS-mode operation with COD-removal efficiencies of 75-80%, maximum power densities of 150-200 mW m(-2) and Coulombic efficiencies of 20-30%. These values were similar to those of CE-MFC inoculated with the soil. Anode microbial communities were analyzed by pyrotag sequencing of 16S rRNA gene PCR amplicons. Comparative analyses revealed that anode communities enriched from the aerobic sludge were largely different from those from the soil, suggesting that similar reactor performances can be supported by different community structures. The study demonstrates that it is possible to construct wastewater-treatment MFCs by inserting CEs into water-treatment tanks. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    PubMed

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  12. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.

    PubMed

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.

  13. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat

    PubMed Central

    Sillivan, Stephanie E.; Konradi, Christine

    2011-01-01

    The timeline of dopamine (DA) system maturation and the signaling properties of dopamine receptors (DRs) during rat brain development are not fully characterized. We used in situ hybridization and quantitative PCR to map DR mRNA transcripts in the medial frontal cortex (mFC) and striatum (STR) of the rat from embryonic day (E) 15 to E21. The developmental trajectory of DR mRNAs revealed distinct patterns of DA receptors 1 and 2 (DRD1, DRD2) in these brain regions. Whereas the mFC had a steeper increase in DRD1 mRNA, the STR had a steeper increase in DRD2 mRNA. Both DR mRNAs were expressed at a higher level in the STR compared to the mFC. To identify the functional properties of DRs during embryonic development, the phosphorylation states of cyclic AMP response element binding protein (CREB), extracellular signal-regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3 beta (GSK3β) were examined after DR stimulation in primary neuronal cultures obtained from E15 and E18 embryos and cultured for 3 days to ensure a stable baseline level. DR-mediated signaling cascades were functional in E15 cultures in both brain regions. Because DA fibers do not reach the mFC by E15, and DA was not present in cultures, these data indicate that DRs can become functional in the absence of DA innervation. Since activation of DR signal transduction pathways can affect network organization of the developing brain, maternal exposure to drugs that affect DR activity may be liable to interfere with fetal brain development. PMID:22015925

  14. In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis.

    PubMed

    Houicher, Abderrahmane; Hechachna, Hind; Teldji, Hanifa; Ozogul, Fatih

    2016-01-01

    The aim of this study was to determine the antifungal activity of the essential oils isolated from three aromatic plants against 13 filamentous fungal strains. The major constituents of Mentha spicata, Thymus vulgaris, and Laurus nobilis essential oils were carvone (52.2%), linalool (78.1%), and 1,8-cineole (45.6%), respectively. There are also some patents suggesting the use of essential oils as natural and safe alternatives to fungicides for plant protection. In the present work, M. spicata essential oil exhibited the strongest activity against all tested fungi in which Fusarium graminearum, F.moniliforme, and Penicillium expansum were the most sensitive to mint oil with lower minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 2.5 μL mL-1 (v/v). Thymus vulgaris essential oil was less active compared to the oil of M. spicata. Aspergillus ochraceus was the most sensitive strain to thyme oil with MIC and MFC values of 2.5 and 5 μL mL-1, respectively. Thymus vulgaris essential oil also exhibited a moderate fungicidal effect against the tested fungi, except for A. niger (MFC >20 μL-1). L. nobilis essential oil showed a similar antifungal activity with thyme oil in which A. parasiticus was the most resistant strain to this oil (MFC >20 μL mL-1). Our findings suggested the use of these essential oils as alternatives to synthetic fungicides in order to prevent pre-and post-harvest infections and ensure product safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium-Sulfur Batteries.

    PubMed

    Zhao, Qian; Zhu, Qizhen; Miao, Jiawei; Guan, Zhaoruxin; Liu, Huan; Chen, Renjie; An, Yabin; Wu, Feng; Xu, Bin

    2018-04-04

    With the high energy density of 2600 W h kg -1 , lithium-sulfur (Li-S) batteries have been considered as one of the most promising energy storage systems. However, the serious capacity fading resulting from the shuttle effect hinders its commercial application. Encapsulating small S 2-4 molecules into the pores of ultramicroporous carbon (UMC) can eliminate the dissolved polysulfides, thus completely inhibiting the shuttle effect. Nevertheless, the sulfur loading of S 2-4 /UMC is usually not higher than 1 mg cm -2 because of the limited pore volume of UMC, which is a great challenge for small sulfur cathode. In this paper, by applying ultralight 3D melamine formaldehyde-based carbon foam (MFC) as a current collector, we dramatically enhanced the areal sulfur loading of the S 2-4 electrode with good electrochemical performances. The 3D skeleton of MFC can hold massive S 2-4 /UMC composites and act as a conductive network for the fast transfer of electrons and Li + ions. Furthermore, it can serve as an electrolyte reservoir to make a sufficient contact between S 2-4 and electrolyte, enhancing the utilization of S 2-4 . With the MFC current collector, the S 2-4 electrode reaches an areal sulfur loading of 4.2 mg cm -2 and performs a capacity of 839.8 mA h g -1 as well as a capacity retention of 82.5% after 100 cycles. The 3D MFC current collector provides a new insight for the application of Li-S batteries with high areal small sulfur loading and excellent cycle stability.

  16. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production

    PubMed Central

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939

  17. Modeling conflict and error in the medial frontal cortex.

    PubMed

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  18. In vitro activity of origanum vulgare essential oil against candida species

    PubMed Central

    Cleff, Marlete Brum; Meinerz, Ana Raquel; Xavier, Melissa; Schuch, Luiz Filipe; Schuch, Luiz Filipe; Araújo Meireles, Mário Carlos; Alves Rodrigues, Maria Regina; de Mello, João Roberto Braga

    2010-01-01

    The aim of this study was to evaluate the in vitro activity of the essential oil extracted from Origanum vulgare against sixteen Candida species isolates. Standard strains tested comprised C. albicans (ATCC strains 44858, 4053, 18804 and 3691), C. parapsilosis (ATCC 22019), C. krusei (ATCC 34135), C. lusitaniae (ATCC 34449) and C. dubliniensis (ATCC MY646). Six Candida albicans isolates from the vaginal mucous membrane of female dogs, one isolate from the cutaneous tegument of a dog and one isolate of a capuchin monkey were tested in parallel. A broth microdilution technique (CLSI) was used, and the inoculum concentration was adjusted to 5 x 106 CFU mL-1. The essential oil was obtained by hydrodistillation in a Clevenger apparatus and analyzed by gas chromatography. Susceptibility was expressed as Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC). All isolates tested in vitro were sensitive to O. vulgare essential oil. The chromatographic analysis revealed that the main compounds present in the essential oil were 4-terpineol (47.95%), carvacrol (9.42%), thymol (8.42%) and □-terpineol (7.57%). C. albicans isolates obtained from animal mucous membranes exhibited MIC and MFC values of 2.72 μL mL-1 and 5 μL mL-1, respectively. MIC and MFC values for C. albicans standard strains were 2.97 μL mL-1 and 3.54 μL mL-1, respectively. The MIC and MFC for non-albicans species were 2.10 μL mL-1 and 2.97 μL mL-1, respectively. The antifungal activity of O. vulgare essential oil against Candida spp. observed in vitro suggests its administration may represent an alternative treatment for candidiasis. PMID:24031471

  19. A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment

    PubMed Central

    2014-01-01

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m2/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m3, which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m3). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m3). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements. PMID:24568605

  20. Hexavalent chromium removal and bioelectricity generation by Ochrobactrum sp. YC211 under different oxygen conditions.

    PubMed

    Chen, Chih-Yu; Cheng, Chiu-Yu; Chen, Ching-Kuo; Hsieh, Min-Chi; Lin, Ssu-Ting; Ho, Kuo-Ying; Li, Jo-Wei; Lin, Chia-Pei; Chung, Ying-Chien

    2016-01-01

    Bioremediation is an environmentally friendly method of reducing heavy metal concentration and toxicity. A chromium-reducing bacterial strain, isolated from the vicinity of an electroplate factory, was identified as Ochrobactrum sp. YC211. The efficiency and capacity per time of Ochrobactrum sp. YC211 for hexavalent chromium (Cr(VI)) removal under anaerobic conditions were superior to those under aerobic conditions. An acceptable removal efficiency (96.5 ± 0.6%) corresponding to 30.2 ± 0.8 mg-Cr (g-dry cell weight-h)(-1) was achieved by Ochrobactrum sp. YC211 at 300 mg L(-1) Cr(VI). A temperature of 30°C and pH 7 were the optimal parameters for Cr(VI) removal. By examining reactivated cells, permeabilized cells, and cell-free extract, we determined that Cr(VI) removal by Ochrobactrum sp. YC211 under anaerobic conditions mainly occurred in the soluble fraction of the cell and can be regarded as an enzymatic reaction. The results also indicated that an Ochrobactrum sp. YC211 microbial fuel cell (MFC) with an anaerobic anode was considerably superior to that with an aerobic anode in bioelectricity generation and Cr(VI) removal. The maximum power density and Cr(VI) removal efficiency of the MFC were 445 ± 3.2 mW m(-2) and 97.2 ± 0.3%, respectively. Additionally, the effects of coexisting ions (Cu(2+), Zn(2+), Ni(2+), SO4(2-), and Cl(-)) in the anolyte on the MFC performance and Cr(VI) removal were nonsignificant (P > 0.05). To our knowledge, this is the first report to compare Cr(VI) removal by different cells and MFC types under aerobic and anaerobic conditions.

  1. Molecules for security measures: from keypad locks to advanced communication protocols.

    PubMed

    Andréasson, J; Pischel, U

    2018-04-03

    The idea of using molecules in the context of information security has sparked the interest of researchers from many scientific disciplines. This is clearly manifested in the diversity of the molecular platforms and the analytical techniques used for this purpose, some of which we highlight in this Tutorial Review. Moreover, those molecular systems can be used to emulate a broad spectrum of security measures. For a long time, molecular keypad locks enjoyed a clear preference and the review starts off with a description of how these devices developed. In the last few years, however, the field has evolved into something larger. Examples include more complex authentication protocols (multi-factor authentication and one-time passwords), the recognition of erroneous procedures in data transmission (parity devices), as well as steganographic and cryptographic protection.

  2. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure

    NASA Astrophysics Data System (ADS)

    Nakagaito, A. N.; Yano, H.

    2005-01-01

    A completely new kind of high-strength composite was manufactured using microfibrillated cellulose (MFC) derived from kraft pulp. Because of the unique structure of nano-order-scale interconnected fibrils and microfibrils greatly expanded in the surface area that characterizes MFC, it was possible to produce composites that exploit the extremely high strength of microfibrils. The Young’s modulus (E) and bending strength (σb) of composites using phenolic resin as binder achieved values up to 19 GPa and 370 MPa, respectively, with a density of 1.45 g/cm2, exhibiting outstanding mechanical properties for a plant-fiber-based composite.

  3. Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC.

    PubMed

    Taghavi, M; Stinchcombe, A; Greenman, J; Mattoli, V; Beccai, L; Mazzolai, B; Melhuish, C; Ieropoulos, I A

    2015-12-10

    The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which was fed by urine via a manual gaiting pump. The simple and single loop cardiovascular fish circulatory system was used as the inspiration for the design of the manual pump. A wireless programmable communication module, engineered to operate within the range of the generated electricity, was employed, which opens a new avenue for research in the utilisation of waste products for powering portable as well as wearable electronics.

  4. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells.

    PubMed

    Inoue, Kengo; Ito, Toshihiro; Kawano, Yoshihiro; Iguchi, Atsushi; Miyahara, Morio; Suzuki, Yoshihiro; Watanabe, Kazuya

    2013-11-01

    Cassette-electrode microbial fuel cells (CE-MFCs) are efficient and scalable devices for electricity production from organic waste. Previous studies have demonstrated that CE-MFCs are capable of generating electricity from artificial wastewater at relatively high efficiencies. In this study, a single-cassette CE-MFC was constructed, and its capacity for electricity generation from cattle manure suspended in water (solid to water ratio of 1:50) was examined. The CE-MFC reactor was operated in batch mode for 49 days; electricity generation became stable 2 weeks after initiating the operation. The maximum power density was measured at 16.3 W m⁻³ on day 26. Sequencing analysis of PCR-amplified 16S rRNA gene fragments obtained from the original manure and from anode biofilms suggested that Chloroflexi and Geobacteraceae were abundant in the anode biofilm (29% and 18%, respectively), whereas no Geobacteraceae sequences were detected in the original manure sample. The results of this study suggest that CE-MFCs can be used to generate electricity from water-suspended cattle manure in a scalable MFC system. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans.

    PubMed

    Leite, Maria Clerya Alvino; Bezerra, André Parente de Brito; de Sousa, Janiere Pereira; Guerra, Felipe Queiroga Sarmento; Lima, Edeltrudes de Oliveira

    2014-01-01

    Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast's morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral's mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.

  6. Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems.

    PubMed

    Liang, Peng; Wu, Wenlong; Wei, Jincheng; Yuan, Lulu; Xia, Xue; Huang, Xia

    2011-08-01

    A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.

  7. Neural signatures of social conformity: A coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies.

    PubMed

    Wu, Haiyan; Luo, Yi; Feng, Chunliang

    2016-12-01

    People often align their behaviors with group opinions, known as social conformity. Many neuroscience studies have explored the neuropsychological mechanisms underlying social conformity. Here we employed a coordinate-based meta-analysis on neuroimaging studies of social conformity with the purpose to reveal the convergence of the underlying neural architecture. We identified a convergence of reported activation foci in regions associated with normative decision-making, including ventral striatum (VS), dorsal posterior medial frontal cortex (dorsal pMFC), and anterior insula (AI). Specifically, consistent deactivation of VS and activation of dorsal pMFC and AI are identified when people's responses deviate from group opinions. In addition, the deviation-related responses in dorsal pMFC predict people's conforming behavioral adjustments. These are consistent with current models that disagreement with others might evoke "error" signals, cognitive imbalance, and/or aversive feelings, which are plausibly detected in these brain regions as control signals to facilitate subsequent conforming behaviors. Finally, group opinions result in altered neural correlates of valuation, manifested as stronger responses of VS to stimuli endorsed than disliked by others. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Models for Microbial Fuel Cells: A critical review

    NASA Astrophysics Data System (ADS)

    Xia, Chengshuo; Zhang, Daxing; Pedrycz, Witold; Zhu, Yingmin; Guo, Yongxian

    2018-01-01

    Microbial fuel cells (MFCs) have been widely viewed as one of the most promising alternative sources of renewable energy. A recognition of needs of efficient development methods based on multidisciplinary research becomes crucial for the optimization of MFCs. Modeling of MFCs is an effective way for not only gaining a thorough understanding of the effects of operation conditions on the performance of power generation but also becomes of essential interest to the successful implementation of MFCs. The MFC models encompass the underlying reaction process and limiting factors of the MFC. The models come in various forms, such as the mathematical equations or the equivalent circuits. Different modeling focuses and approaches of the MFC have emerged. In this study, we present a state of the art of MFCs modeling; the past modeling methods are reviewed as well. Models and modeling methods are elaborated on based on the classification provided by Mechanism-based models and Application-based models. Mechanisms, advantages, drawbacks, and application fields of different models are illustrated as well. We exhibit a complete and comprehensive exposition of the different models for MFCs and offer further guidance to promote the performance of MFCs.

  9. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less

  10. An analysis of the possibility of Macro Fiber Composite transducers application in modernized freight wagon

    NASA Astrophysics Data System (ADS)

    Płaczek, M.; Wróbel, A.; Buchacz, A.

    2016-08-01

    Paper presents an analysis of the possibility of application of piezoelectric foils - Macro Fiber Composite (MFC) in modernized freight wagons. It was verified if they can be successfully applied as sensors in developed system for structural health monitoring and in energy harvesting system. It is a part of a research project that aim is to develop a technology of freight wagons modernization. The goal of the project is to elongate the period between periodic repairs (by better corrosion protection) and improve conditions of exploitation of modernized wagons (easier unloading during winter conditions - no freezes of the charge to the freight wagon body shell). The additional aim is to develop system for structural health monitoring of the modernized body of the freight wagon as well as the system supporting management of a fleet of wagons using GPS system with power supply based on the energy recovered by MFC's from the wagon's vibrations during its exploitation. Results of laboratory tests as well as results of measurements on the real freight wagon during observed driving of the wagon are presented. At the same time measurements of the electric voltage generated by the MFC transducers excited by low frequencies harmonic excitation were verified.

  11. Porous metal-organic framework Cu3(BTC)2 as catalyst used in air-cathode for high performance of microbial fuel cell.

    PubMed

    Tian, Pei; Liu, Di; Li, Kexun; Yang, Tingting; Wang, Junjie; Liu, Yi; Zhang, Song

    2017-11-01

    Metal-organic framework Cu 3 (BTC) 2 , prepared by an easy hydrothermal method, was used as the oxygen-based catalyst in microbial fuel cell (MFC). The maximum power density of Cu 3 (BTC) 2 modified air-cathode MFC was 1772±15mWm -2 , almost 1.8 times higher than the control. BET results disclosed high specific surface area of 2159.7m 2 g -1 and abundant micropores structure. Regular octahedron and porous surface of Cu 3 (BTC) 2 were observed in SEM. XPS testified the existence of divalent copper in the extended 3D frameworks, which importantly acted as the Lewis-acid sites or redox centers in ORR. Additionally, the total resistance decreased by 42% from 17.60 to 10.24Ω compared with bare AC electrode. The rotating disk electrode test results showed a four-electron transfer pathway for Cu 3 (BTC) 2 , which was crucial for electrochemical catalytic activity. All the structural and electrochemical advantages make Cu 3 (BTC) 2 a promising catalyst for ORR in MFC. Copyright © 2017. Published by Elsevier Ltd.

  12. Ultrasonographic Evaluation of Femoral Cartilage Thickness in Patients with Ankylosing Spondylitis

    PubMed Central

    Batmaz, İ; Kara, M; Tiftik, T; Çapkin, E; Karkucak, M; Serdar, ÖF; Kartal, F; Sarıyıldız, MA; Özçakar, L

    2014-01-01

    Objective: To evaluate femoral cartilage thickness in patients with ankylosing spondylitis (AS) by using ultrasonography. Methods: Eighty-four patients (55 M, 29 F) with a diagnosis of AS and 84 age-, gender- and body mass index-matched healthy subjects were enrolled. Demographic and clinical characteristics of the patients including disease duration, morning stiffness and medications were recorded. The femoral cartilage thicknesses of both knees were measured with a 7–12 MHz linear probe while subjects' knees were held in maximum flexion. Three mid-point measurements were taken from both knees (lateral femoral condyle (LFC), intercondylar area (ICA) and medial femoral condyle (MFC)). Results: Concerning both ICA (p < 0.001) and left MFC (p = 0.013), cartilage measurements were significantly thicker in AS patients than control subjects. In a subgroup analysis (anti-tumour necrosis factor (TNF) users vs anti-TNF naive) cartilage thickness measurements – bilateral ICA (p = 0.000) and left MFC (p = 0.017) – were found to be greater in AS patients under anti-TNF treatment (n = 65) when compared with those of healthy controls. Conclusion: We imply that AS patients seem to have thicker femoral cartilage, which could be related to anti-TNF treatment. PMID:25429476

  13. Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A

    2011-01-01

    Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium atmore » the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.« less

  14. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Microbial fuel cells as power supply of a low-power temperature sensor

    NASA Astrophysics Data System (ADS)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  16. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes.

    PubMed

    Hou, Bin; Sun, Jian; Hu, Yong-you

    2011-03-01

    Different microfiltration membrane (MFM), proton exchange membrane (PEM) and ultrafiltration membranes (UFMs) with different molecular cutoff weights of 1K (UFM-1K), 5K (UFM-5K) and 10K (UFM-10K) were incorporated into air-cathode single-chamber microbial fuel cells (MFCs) which were explored for simultaneous azo dye decolorization and electricity generation to investigate the effect of membrane on the performance of the MFC. Batch test results showed that the MFC with an UFM-1K produced the highest power density of 324 mW/m(2) coupled with an enhanced coulombic efficiency compared to MFM. The MFC with UMF-10K achieved the fastest decolorization rate (4.77 mg/L h), followed by MFM (3.61 mg/L h), UFM-5K (2.38 mg/L h), UFM-1K (2.02 mg/Lh) and PEM (1.72 mg/Lh). These results demonstrated the possibility of using various membranes in the system described here, and showed that UFM-1K was the best one based on the consideration of both cost and performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Separation and detection of amino acid metabolites of Escherichia coli in microbial fuel cell with CE.

    PubMed

    Wang, Wei; Ma, Lihong; Lin, Ping; Xu, Kaixuan

    2016-07-01

    In this work, CE-LIF was employed to investigate the amino acid metabolites produced by Escherichia coli (E. coli) in microbial fuel cell (MFC). Two peptides, l-carnosine and l-alanyl-glycine, together with six amino acids, cystine, alanine, lysine, methionine, tyrosine, arginine were separated and detected in advance by a CE-LIF system coupled with a homemade spontaneous injection device. The injection device was devised to alleviate the effect of electrical discrimination for analytes during sample injection. All analytes could be completely separated within 8 min with detection limits of 20-300 nmol/L. Then this method was applied to analyze the substrate solution containing amino acid metabolites produced by E. coli. l-carnosine, l-alanyl-glycine, and cystine were used as the carbon, nitrogen, and sulfur source for the E. coli culture in the MFC to investigate the amino acid metabolites during metabolism. Two MFCs were used to compare the activity of metabolism of the bacteria. In the sample collected at the running time 200 h of MFC, the amino acid methionine was discovered as the metabolite with the concentrations 23.3 μg/L. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flexible and stretchable microbial fuel cells with modified conductive and hydrophilic textile.

    PubMed

    Pang, Sumiao; Gao, Yang; Choi, Seokheun

    2018-02-15

    We built a flexible, stretchable microbial fuel cell (MFC) by laminating two functional components: a bioanode textile with a conductive and hydrophilic polymer coating and a solid-state cathode textile loaded with silver oxide. The textile MFC used Pseudomonas aeruginosa PAO1 as a biocatalyst to generate the maximum power and current density of 1.0µW/cm 2 and 6.3µA/cm 2 , respectively, which are comparable with or even higher than other flexible MFCs such as paper-based devices (~ a few µW/cm 2 ). Additionally, the textile MFC generated consistent power even with repeated 70 cycles of 50% stretching. A simple batch fabrication method simultaneously produced 20 individual 2cm × 2cm devices by using brushing, spraying, ironing, and computerized sewing, a process that will revolutionize the mass production of textile MFCs. This achievement is scientifically meaningful because developing textile MFCs requires integration of both electronic and fluidic components into the textile three-dimensionally. This flexible and stretchable energy harvesting device is expected to be easily integrated with the next generation stretchable electronics for realizing low-power, stand-alone, self-sustainable systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Plasma membrane damage to Candida albicans caused by chlorine dioxide (ClO2).

    PubMed

    Wei, M-K; Wu, Q-P; Huang, Q; Wu, J-L; Zhang, J-M

    2008-08-01

    To investigate the plasma membrane damage of chlorine dioxide (ClO(2)) to Candida albicans ATCC10231 at or below the minimal fungicidal concentration (MFC). ClO(2) at MFC or below was adopted to treat the cell suspensions of C. albicans ATCC10231. Using transmission electron microscopy, no visible physiological alteration of cell shape and plasma membrane occurred. Potassium (K(+)) leakages were significant; likewise, it showed time- and dose-dependent increases. However, adenosine triphosphate (ATP) leakages were very slight. Research shows that when 99% of the cells were inactivated, the leakage was measured at 0.04% of total ATP. Compared with the mortality-specific fluorescent dye of DiBAC(4)(3), majority of the inactivated cells were poorly stained by propidium iodide, another mortality-specific fluorescent dye which can be traced by flow cytometry. At or below MFC, ClO(2) damages the plasma membranes of C. albicans mainly by permeabilization, rather than by the disruption of their integrity. K(+) leakage and the concomitant depolarization of the cell membrane are some of the critical events. These insights into membrane damages are helpful in understanding the action mode of ClO(2).

  20. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  1. Multifactor Screener in OPEN: Scoring Procedures & Results

    Cancer.gov

    Scoring procedures were developed to convert a respondent's screener responses to estimates of individual dietary intake for percentage energy from fat, grams of fiber, and servings of fruits and vegetables.

  2. The CMEMS IBI-MFC Forecasting Service in 2017: Evolution and Novelties associated to the CMEMS service release

    NASA Astrophysics Data System (ADS)

    Lorente, Pablo; Sotillo, Marcos G.; Gutknecht, Elodie; Dabrowski, Tomasz; Aouf, Lotfi; Toledano, Cristina; Amo-Baladron, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Rainaud, Romain; Alvarez-Fanjul, Enrique

    2017-04-01

    The IBI-MFC (Iberia-Biscay-Ireland Monitoring & Forecasting Centre) has been providing daily ocean model estimates and forecasts of diverse physical parameters for the IBI regional seas since 2011, first in the frame of MyOcean projects and later as part of the Copernicus Marine Environment Monitoring Service (CMEMS). By April 2017, coincident with the V3 CMEMS Service Release, the IBI-MFC will extend their near real time (NRT) forecast capabilities. Two new operational IBI forecast systems will be operationally run to generate high resolution biochemical (BIO) and wave (WAV) products on the IBI area. The IBI-NRT-BIO forecast system, based on a 1/36° NEMO-PISCES model application, is run once a week coupled with the IBI physical forecast solution and nested to the CMEMS GLOBAL-BIO solution. On the other hand, the IBI-NRT-WAV system, based on a MeteoFrance-WAM 10km resolution model application, runs twice a day using ECMWF wind forcing. Among other novelties related to the evolution of the IBI physical (PHY) solution, it is worthwhile mentioning the provision, as part of the IBI-NRT-PHY product daily updated, of three-dimensional hourly data on specific areas within the IBI domain. The delivery of these new hourly data along the whole water column has been achieved after the request from IBI users, in order to foster downscaling approaches by providing coherent open boundary conditions to any potential high-resolution coastal model nested to IBI regional solution. An extensive skill assessment of IBI-NRT forecast products has been conducted through the NARVAL (North Atlantic Regional VALidation) web tool, by means of the automatic computation of statistical metrics and quality indicators. By now, this tool has been focused on the validation of the IBI-NRT-PHY system. Nowadays, NARVAL is facing a significant upgrade to validate the aforementioned new biogeochemical and wave IBI products. To this aim, satellite derived observations of chlorophyll and significant wave height will be used, together with in-situ wave parameters measured by mooring buoys. Within this validation framework, special emphasis has been placed on the intercomparison of different forecast model solutions in overlapping areas in order to evaluate models' performances and prognostic capabilities. This common uncertainty estimates of IBI and other model solution is currently performed by NARVAL using both CMEMS forecast model sources (i.e. GLOBAL-MFC, MED-MFC and NWS-MFC) and non-CMEMS operational forecast solutions (mostly downstream application nested to the IBI solution). With respect to the IBI multi-year (MY) products, it is worth mentioning that the actual biogeochemical and physical reanalysis products will be re-run along year 2017, extending its time coverage backwards until 1992. Based on these IBI-MY products, a variety of climatic indicators related to essential oceanographic processes (i.e. western coastal upwelling or the Mediterranean Outflow Water) are currently being computed.

  3. Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes.

    PubMed

    Lin, Eugene; Pei, Dee; Huang, Yi-Jen; Hsieh, Chang-Hsun; Wu, Lawrence Shih-Hsin

    2009-08-01

    Recent studies indicate that obesity may play a key role in modulating genetic predispositions to type 2 diabetes (T2D). This study examines the main effects of both single-locus and multilocus interactions among genetic variants in Taiwanese obese and nonobese individuals to test the hypothesis that obesity-related genes may contribute to the etiology of T2D independently and/or through such complex interactions. We genotyped 11 single nucleotide polymorphisms for 10 obesity candidate genes including adrenergic beta-2-receptor surface, adrenergic beta-3-receptor surface, angiotensinogen, fat mass and obesity associated gene, guanine nucleotide binding protein beta polypeptide 3 (GNB3), interleukin 6 receptor, proprotein convertase subtilisin/kexin type 1 (PCSK1), uncoupling protein 1, uncoupling protein 2, and uncoupling protein 3. There were 389 patients diagnosed with T2D and 186 age- and sex-matched controls. Single-locus analyses showed significant main effects of the GNB3 and PCSK1 genes on the risk of T2D among the nonobese group (p = 0.002 and 0.047, respectively). Further, interactions involving GNB3 and PCSK1 were suggested among the nonobese population using the generalized multifactor dimensionality reduction method (p = 0.001). In addition, interactions among angiotensinogen, fat mass and obesity associated gene, GNB3, and uncoupling protein 3 genes were found in a significant four-locus generalized multifactor dimensionality reduction model among the obese population (p = 0.001). The results suggest that the single nucleotide polymorphisms from the obesity candidate genes may contribute to the risk of T2D independently and/or in an interactive manner according to the presence or absence of obesity.

  4. A Computationally Efficient Hypothesis Testing Method for Epistasis Analysis using Multifactor Dimensionality Reduction

    PubMed Central

    Pattin, Kristine A.; White, Bill C.; Barney, Nate; Gui, Jiang; Nelson, Heather H.; Kelsey, Karl R.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.

    2008-01-01

    Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free data mining method for detecting, characterizing, and interpreting epistasis in the absence of significant main effects in genetic and epidemiologic studies of complex traits such as disease susceptibility. The goal of MDR is to change the representation of the data using a constructive induction algorithm to make nonadditive interactions easier to detect using any classification method such as naïve Bayes or logistic regression. Traditionally, MDR constructed variables have been evaluated with a naïve Bayes classifier that is combined with 10-fold cross validation to obtain an estimate of predictive accuracy or generalizability of epistasis models. Traditionally, we have used permutation testing to statistically evaluate the significance of models obtained through MDR. The advantage of permutation testing is that it controls for false-positives due to multiple testing. The disadvantage is that permutation testing is computationally expensive. This is in an important issue that arises in the context of detecting epistasis on a genome-wide scale. The goal of the present study was to develop and evaluate several alternatives to large-scale permutation testing for assessing the statistical significance of MDR models. Using data simulated from 70 different epistasis models, we compared the power and type I error rate of MDR using a 1000-fold permutation test with hypothesis testing using an extreme value distribution (EVD). We find that this new hypothesis testing method provides a reasonable alternative to the computationally expensive 1000-fold permutation test and is 50 times faster. We then demonstrate this new method by applying it to a genetic epidemiology study of bladder cancer susceptibility that was previously analyzed using MDR and assessed using a 1000-fold permutation test. PMID:18671250

  5. Surgeons' Leadership Styles and Team Behavior in the Operating Room.

    PubMed

    Hu, Yue-Yung; Parker, Sarah Henrickson; Lipsitz, Stuart R; Arriaga, Alexander F; Peyre, Sarah E; Corso, Katherine A; Roth, Emilie M; Yule, Steven J; Greenberg, Caprice C

    2016-01-01

    The importance of leadership is recognized in surgery, but the specific impact of leadership style on team behavior is not well understood. In other industries, leadership is a well-characterized construct. One dominant theory proposes that transactional (task-focused) leaders achieve minimum standards and transformational (team-oriented) leaders inspire performance beyond expectations. We videorecorded 5 surgeons performing complex operations. Each surgeon was scored on the Multifactor Leadership Questionnaire, a validated method for scoring transformational and transactional leadership style, by an organizational psychologist and a surgeon researcher. Independent coders assessed surgeons' leadership behaviors according to the Surgical Leadership Inventory and team behaviors (information sharing, cooperative, and voice behaviors). All coders were blinded. Leadership style (Multifactor Leadership Questionnaire) was correlated with surgeon behavior (Surgical Leadership Inventory) and team behavior using Poisson regression, controlling for time and the total number of behaviors, respectively. All surgeons scored similarly on transactional leadership (range 2.38 to 2.69), but varied more widely on transformational leadership (range 1.98 to 3.60). Each 1-point increase in transformational score corresponded to 3 times more information-sharing behaviors (p < 0.0001) and 5.4 times more voice behaviors (p = 0.0005) among the team. With each 1-point increase in transformational score, leaders displayed 10 times more supportive behaviors (p < 0.0001) and displayed poor behaviors 12.5 times less frequently (p < 0.0001). Excerpts of representative dialogue are included for illustration. We provide a framework for evaluating surgeons' leadership and its impact on team performance in the operating room. As in other fields, our data suggest that transformational leadership is associated with improved team behavior. Surgeon leadership development, therefore, has the potential to improve the efficiency and safety of operative care. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Research on infrared small-target tracking technology under complex background

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao

    2012-10-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.

  7. Leveraging Commercially Issued Multi-Factor Identification Credentials

    NASA Technical Reports Server (NTRS)

    Baldridge, Tim W.

    2010-01-01

    This slide presentation reviews the Identity, Credential and Access Management (ICAM) system. This system is a complete system of identity management, access to desktops and applications, use of smartcards, and building access throughout NASA.

  8. Stretch-tuning optical fiber Bragg gratings using macro-fiber composite (MFC) piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Shams, Qamar A.; Geddis, Demetris L.

    2005-11-01

    The demand for high safety and reliability standards for aerospace vehicles has resulted in time-consuming periodic on-ground inspections. These inspections usually call for the disassembling and reassembling of the vehicle, which can lead to damage or degradation of structures or auxiliary systems. In order to increase aerospace vehicle safety and reliability while reducing the cost of inspection, an on-board real-time structural health monitoring sensing system is required. There are a number of systems that can be used to monitor the structures of aerospace vehicles. Fiber optic sensors have been at the forefront of the health monitoring sensing system research. Most of the research has been focused on the development of Bragg grating-based fiber optic sensors. Along with the development of fiber Bragg grating sensors has been the development of a grating measurement technique based on the principle of optical frequency domain reflectometry (OFDR), which enables the interrogation of hundreds of low reflectivity Bragg gratings. One drawback of these measurement systems is the 1 - 3 Hz measurement speed, which is limited by commercially available tunable lasers. The development of high-speed fiber stretching mechanisms to provide high rate tunable Erbium-doped optical fiber lasers can alleviate this drawback. One successful approach used a thin-layer composite unimorph ferroelectric driver and sensor (THUNDER) piezoelectric actuator, and obtained 5.3-nm wavelength shift. To eliminate the mechanical complexity of the THUNDER actuator, the research reported herein uses the NASA Langley Research Center (LaRC) Macro-Fiber Composite (MFC) actuator to tune Bragg grating based optical fibers.

  9. Simultaneous electricity production and antibiotics removal by microbial fuel cells.

    PubMed

    Zhou, Ying; Zhu, Nengwu; Guo, Wenying; Wang, Yun; Huang, Xixian; Wu, Pingxiao; Dang, Zhi; Zhang, Xiaoping; Xian, Jinchan

    2018-07-01

    The removal of antibiotics is crucial for improvement of water quality in animal wastewater treatment. In this paper, the performance of microbial fuel cell (MFC) in terms of degradation of typical antibiotics was investigated. Electricity was successfully produced by using sludge supernatant mixtures and synthesized animal wastewater as inoculation in MFC. Results demonstrated that the stable voltage, the maximum power density and internal resistance of anaerobic self-electrolysis (ASE) -112 and ASE-116 without antibiotics addition were 0.574 V, 5.78 W m -3 and 28.06 Ω, and 0.565 V, 5.82 W m -3 and 29.38 Ω, respectively. Moreover, when adding aureomycin, sulfadimidine, roxithromycin and norfloxacin into the reactors, the performance of MFC was inhibited (0.51 V-0.41 V), while the output voltage was improved with the decreased concentration of antibiotics. However, the removal efficiency of ammonia nitrogen (NH 3 -N) and total phosphorus (TP) were both obviously enhanced. Simultaneously, LC-MS analysis showed that the removal efficiency of aureomycin, roxithromycin and norfloxacin were all 100% and the removal efficiency of sulfadimidine also reached 99.9%. These results indicated that antibiotics displayed significantly inhibitions for electricity performance but improved the quality of water simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Nitrogen removal and power generation from treated municipal wastewater by its circulated irrigation for resource-saving rice cultivation.

    PubMed

    Watanabe, Toru; Mashiko, Takuma; Maftukhah, Rizki; Kaku, Nobuo; Pham, Dong Duy; Ito, Hiroaki

    2017-02-01

    This study aims at improving the performance of the cultivating system of rice for animal feed with circulated irrigation of treated municipal wastewater by applying a larger amount of wastewater, as well as adding a microbial fuel cell (MFC) to the system. The results of bench-scale experiments indicate that this modification has increased the rice yield, achieving the target for the rice cultivar used in the experiment. In addition, an assessment of protein content of the harvested rice showed that the value of the rice as animal fodder has improved. Compared with normal one-way irrigation, circulated irrigation significantly enhanced the plant growth and rice production. The direction of the irrigation (bottom-to-top or top-to-bottom) in the soil layer had no significant effect. This modified system demonstrated >96% for nitrogen removal from the treated wastewater used for the irrigation, with approximately 40% of the nitrogen being used for rice plant growth. The MFC installed in the system facilitated power generation comparable with that reported for normal paddy fields. The power generation appeared to be enhanced by bottom-to-top irrigation, which could provide organic-rich treated wastewater directly to the bacterial community living on the anode of the MFC set in the soil layer.

  11. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    PubMed

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. [Performance of Electricity Generation and Feasibility of Discontinuous Power Supply of MFC by Using Pretreated Excess Sludge as Fuel].

    PubMed

    Zhao, Yan-hui; Zhao, Yang-guo; Guo, Liang

    2016-03-15

    The feasibility of treating pretreated excess sludge and capacity of supplying continuous power of microbial fuel cells (MFCs) were investigated. Two-chamber microbial fuel cells were started up and operated by using thermal pretreated excess sludge as the substrate. Potential fluctuations were achieved by changing the cathode electron acceptor. During the changes of electron acceptor, the operational stability of MFCs was assessed. The results indicated that the MFCs started successfully with oxygen as the cathode electron acceptor and reached 0.24 V after 148 hours. When the cathode electron acceptor was replaced by potassium ferricyanide, MFCs could obtain the maximum output voltage and maximum power density of 0.66 V and 4.21 W · m⁻³, respectively. When the cathode electron acceptor was changed from oxygen to potassium ferricyanide or the MFCs were closed circuit, the output power of MFCs recovered rapidly. In addition, changes of electron acceptor showed no effect on the removal of COD and ammonia nitrogen. Their removal efficiencies approached to 70% and 80%, respectively. This study concluded that MFC could treat the pretreated excess sludge and produce electricity simultaneously with a high power density. The MFC could also achieve discontinuous electricity supply during operation.

  13. Design of Iron(II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells.

    PubMed

    Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2017-08-24

    Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication

    NASA Astrophysics Data System (ADS)

    Philamore, Hemma; Rossiter, Jonathan; Walters, Peter; Winfield, Jonathan; Ieropoulos, Ioannis

    2015-09-01

    We present novel solutions to a key challenge in microbial fuel cell (MFC) technology; greater power density through increased relative surface area of the ion exchange membrane that separates the anode and cathode electrodes. The first use of a 3D printed polymer and a cast latex membrane are compared to a conventionally used cation exchange membrane. These new techniques significantly expand the geometric versatility available to ion exchange membranes in MFCs, which may be instrumental in answering challenges in the design of MFCs including miniaturisation, cost and ease of fabrication. Under electrical load conditions selected for optimal power transfer, peak power production (mean 10 batch feeds) was 11.39 μW (CEM), 10.51 μW (latex) and 0.92 μW (Tangoplus). Change in conductivity and pH of anolyte were correlated with MFC power production. Digital and environmental scanning electron microscopy show structural changes to and biological precipitation on membrane materials following long term use in an MFC. The cost of the novel membranes was lower than the conventional CEM. The efficacy of two novel membranes for ion exchange indicates that further characterisation of these materials and their fabrication techniques, shows great potential to significantly increase the range and type of MFCs that can be produced.

  15. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    PubMed Central

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-01-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery. PMID:27197845

  16. Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans.

    PubMed

    Gavanji, Shahin; Larki, Behrouz

    2017-03-01

    To determine the effect of propolis on Candida albicans and to compare it with the effects of some other herbal extracts and antibiotics on this pathogenic fungi. The extracts of propolis, Thymus vulgaris, Caryophillium aromaticus, Echinophora platyloba, Allium cepa and Cinnamomum zeylanicum were prepared and the antifungi effects of the extracts were examined on Candida albicans ATCC10231 using disc-diffusion assay and micro-broth dilution. The minimum fungicidal concentration (MFC) and minimum inhibitory concentrations (MIC) as well as inhibition zone were evaluated and the anti fungi effects of herbal extracts were compared with amphotricin B and nystatin at the times of 24, 48 and 72 h. Data analysis was performed using t test. Obtained results showed that propolis extract with MIC 90 and MFC equal to 39 and 65 μg/mL, respectively, possess the highest antifungal activity when compared with other studied extracts. The extracts of Allium cepa and Thymus vulgaris, with MFC of 169 and 137 μg/mL, respectively, showed the lowest effects on the fungi. Also nystatin and amphotricin B yielded better effects on the tested fungi compared with the effects of all studied extracts on Candida albicans. Propolis extract is effective in controlling Candida albicans. However, the issue requires further investigation on samples in animals and performing toxicological examinations.

  17. Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores.

    PubMed

    Halake, Kantappa S; Lee, Jonghwi

    2014-05-25

    In the area of artificial hydrogels, simultaneous engineering of the volume transition characteristics and mechanical properties of stimuli-responsive hydrogels is an important subject. By unrestricted architecting of hierarchical structures, natural hydrogels are able to provide a wide range of swelling and mechanical properties, beyond the limits of artificial hydrogels. Herein, a combination of nanostructures and microstructures was developed to construct superporous hydrogels. Fibers of microfibrillated cellulose (MFC), an eco-friendly reinforcing material, were used as nanostructures, aligned micropores were used as microstructures, and in situ photopolymerization was used to immobilize the two structures together within the gel networks of poly(N-isopropyl acrylamide) (PNIPAm). The introduction of MFC distinctly enhanced volume transition, mainly by decreasing the swelling ratios above the transition. The introduction of directional micropores increased the swelling ratio below the transition and decreased the swelling ratio above the transition, thereby also enhancing the volume transition. Additionally, the formation of aligned micropores achieved fast water infiltration, which is beneficial for superabsorbent applications. The introduction of aligned micropores reduced the elastic modulus, but this could partially be compensated for by reinforcement with MFC. This combination of crystalline nanofibers and aligned micropores has great potential for the development of stimuli-responsive superporous hydrogels outperforming current artificial hydrogels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Non-perturbative manipulation through a 3D microfluidic treadmill

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jeremias; Liu, Bin

    2017-11-01

    Our capabilities of micromanipulation have evolved with advances in contact-free trapping techniques under various disciplines, such as optical, magnetic, and microfluidic traps. In these techniques, a microscale particle is held in place under compression due to electromagnetic or hydrodynamic forces. In this work, we present a trap-free design of a microfluidic ``treadmill'' (MFC), realized by a uniform flow along arbitrary directions in a 3D microfluidic device, which is composed of a central chamber and pairs of x - and y - channels at different elevations. Through boundary element simulations, we demonstrate that 3D background flows along any direction can be generated in the middle of the chamber, controlled by a set of syringe pumps. By tuning the detailed geometry of the MFC, we show the optimized shape of the device that leads to minimized strain rate, allowing for manipulation of the suspended particles with negligible perturbations. We also show an experimental realization of the MFC device, using laser stereolithography. The x - , y - , and z - manipulation modes are obtained independently by a syringe pump with push/pull mechanisms, and are compared with the above simulation results. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).

  19. Bioelectricity from kitchen and bamboo waste in a microbial fuel cell.

    PubMed

    Moqsud, M Azizul; Omine, Kiyoshi; Yasufuku, Noriyuki; Bushra, Quazi S; Hyodo, Masayuki; Nakata, Yukio

    2014-02-01

    This study evaluated bioelectricity generation by using kitchen garbage (KG) and bamboo waste (BW) as a solid waste management option by a microbial fuel cell (MFC) method. The nutrient content [nitrogen, phosphorus and potassium (NPK)] of the by-products of bioelectricity were also analyzed and assessed for their potential use as a soil amendment. A one-chamber MFC was used for bioelectricity generation in laboratory experiments using both KG and BW. A data-logger recorded voltage every 20 mins at a constant room temperature of 25°C over 45 days. The trend of voltage generation was different for the two organic wastes. In the case of KG, the voltage at the initial stage (0-5 days) increased rapidly and then gradually to a peak of 620 mV. In contrast, the voltage increased gradually to a peak of 540 mV in the case of BW. The by-products of bioelectricity can be used as soil conditioner as its NPK content was in the range of soil conditioner mentioned in other literature. Thus, the MFC has emerged as an efficient and eco-friendly solution for organic waste management, especially in developing and technologically less sophisticated countries, and can provide green and safe electricity from organic waste.

  20. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

Top